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Abstract

Seed dispersal by endozoochory is essential to plant dynamics, but once

released in the feces, the seeds face a hostile environment that is not always

favorable to germination. Indeed, feces may contain inhibitors, have high seed

density, and be densely structured. However, feces visitors such as vertebrates

and invertebrates may play an essential role in secondary seed dispersal (SSD)

and can alleviate the chemical and physical constraints of the feces. Yet, their

relative roles in the dispersal of small- and medium-sized seeds are not well

documented. In this study, we designed a field experiment in the French

Pyrénées mountains to disentangle the relative role of vertebrate and inverte-

brate on feces removal, disaggregation, and secondary dispersal of small- and

medium-sized seeds. We thus used 30 brown bear (Ursus arctos) fresh feces

and separated each of them into three sub-samples submitted to different treat-

ments allowing total access of any visitor, access restricted to invertebrates,

and no visitor access, respectively. We inserted eight raspberry (Rubus idaeus)

and five blueberry (Vaccinium myrtillus) marked seeds in each sub-sample to

assess SSD. In parallel, we used camera and pitfall traps to document the pres-

ence of vertebrate and invertebrate visitors, respectively. After ten days, we

weighed the fecal matter remaining, counted the remaining seeds, and

assessed the feces disaggregation based on visual examination and objective

criteria. We observed a significant effect of invertebrates on feces removal, dis-

aggregation, and secondary dispersal of both seed species. Vertebrates did not

visit the feces. Dung beetles caught in pitfall traps appear as the main second-

ary seed dispersers and disaggregation agents in this area. We also pinpointed

that diet composition and structure of brown bear feces affect dung beetle

attraction and activities. Our study in a temperate mountainous area identifies

dung beetles as key agents in the disaggregation of large feces and secondary

dispersal of small- and medium-sized seeds, with no evidence of rodents. Diet

composition and the fecal matter trapping the seeds affect seed fate by modu-

lating dung beetle activity. By releasing variable fecal contents, omnivorous
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primary seed vectors have an even more complex effect on seed fate than

expected.
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INTRODUCTION

Seed dispersal is a key ecological process mediated by a
diversity of abiotic and biotic vectors that shape plant dis-
tribution and communities. Biotic vectors often enable
long-distance and directional dispersal through zoochory
(Beckman & Sullivan, 2023; Jordano, 2017; Nathan
et al., 2008). Such dispersal enables plants to colonize
new environments, to change elevational (Mendes
et al., 2025; Naoe et al., 2016, 2019) and latitudinal
(Nuñez et al., 2023) ranges, and to potentially escape
unfavorable abiotic or biotic conditions (Beckman &
Sullivan, 2023). Vectors including mammals (Baltzinger
et al., 2019), frogs (Gould & Valdez, 2024), reptiles
(Valido & Olesen, 2019), birds (Lovas-Kiss et al., 2018),
and invertebrates (Martins et al., 2006) disperse seeds
through epizoochory (e.g., attached on the fur or the
hooves) and endozoochory (e.g., consumed and defe-
cated). Unlike epizoochory, endozoochory involves criti-
cal phases with repercussions for seed viability and
germinability, either positive or negative. The chewing
process already represents an important filter that may
alter or even destroy certain seeds, drawing the limit
between seed predation and seed dispersal
(Janzen, 1971). Once ingested, the seed ends up in the
digestive tract. Gut passage can increase germinability by
removing the pulp or conversely reduce seed viability.
Coevolution between plants and animals selected seed
traits favoring their resistance and adaptation to the ani-
mal digestive tract (Traveset et al., 2007; Traveset &
Verdú, 2002). The journey is not over after digestion
because seeds embedded in the feces have to cope with a
harsh (Enders & Vander Wall, 2012; Pauly et al., 2024)
but somewhat fertile environment (Traveset et al., 2007).

Frugivore or omnivore feces may contain a very high
seed density, usually from different plant species, leading
to competition and potential negative density-dependent
or allelopathic effects (Traveset et al., 2007).
Furthermore, feces is a complex matrix with both physi-
cal and chemical properties related to the animal diet
(Frank et al., 2017; Ramos et al., 2024; Stricklan
et al., 2020), which can influence fungi and bacteria
development (Meyer & Witmer, 1998) and may reduce
germination potential (Enders & Vander Wall, 2012;

Pauly et al., 2024; Valenta & Fedigan, 2009). Indeed, feces
are physically challenging (Mancilla-Leyt�on et al., 2012;
Pauly et al., 2024) and may contain inhibitors (Malo &
Su�arez, 1995; Ramos et al., 2024; Traveset et al., 2001),
affecting germination in the end. Among
endozoochorous agents, large mammals appear to release
an even more unfavorable feces environment for seed
germination with exacerbated constraints. For instance,
Stricklan et al. (2020) show that small and porous bird
poops do not hamper germination in contrast to larger
and thicker mammal feces, which is in agreement with
other monospecific studies (Mancilla-Leyt�on et al., 2012;
Miller, 1995; Pauly et al., 2024). However, once seeds ger-
minate, feces may provide a fertile environment favoring
seedlings’ growth (Traveset et al., 2007 but see
Miller, 1995, Pauly et al., 2024), though this effect may
change among animal species (Ramos et al., 2024) or
with intraspecific diet variation (Traveset et al., 2001). In
this context, feces’ visitors and disaggregation agents
should play a key role in seed dispersal success by limit-
ing these constraints through disaggregation and second-
ary seed dispersal (SSD or diplochory).

Visitors of mammal feces can remove and disaggre-
gate part of the feces, reducing seed density within the
feces and secondary disperse part of the seed pool
(Lawson et al., 2012; Miloti�c et al., 2019; Niederhauser &
Matlack, 2017; Urrea-Galeano et al., 2019). All of which
globally increase seed dispersal effectiveness (Culot
et al., 2015; Falcon et al., 2024; Ishikawa, 2011). Feces
disaggregation and SSD agents are usually rodents (Culot
et al., 2009; Pan et al., 2016; Wall et al., 2017), dung bee-
tles (Andresen & Urrea-Galeano, 2022), or sometimes
ants (Blanco et al., 2011; Böhning-Gaese et al., 1999;
Bona et al., 2023). Rodents, attracted by the odor of the
feces (Beaune et al., 2012), are interested in the large and
numerous seeds contained in mammal feces that may
represent an energetic banquet (Koike et al., 2012;
Shakeri et al., 2018). In tropical areas, rodents are often
considered seed predators and a threat to seed survival
(Nichols et al., 2008) even if some reports involve
scatter-hoarding behavior of viable seeds
(Andresen, 2002; Forget & Milleron, 1991; Jansen
et al., 2002). In temperate areas, however, rodents are
better recognized for their role in SSD (Enders & Vander
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Wall, 2012; Koike et al., 2012; Niederhauser &
Matlack, 2017; Pan et al., 2016; Shakeri et al., 2018) than
for seed predation (but see Bermejo et al., 1998; Koike
et al., 2012; Pan et al., 2016).

Dung beetles are well-known to disaggregate feces
(Miloti�c et al., 2019) and for their SSD function
(Andresen & Urrea-Galeano, 2022; Miloti�c et al., 2019).
They are primarily interested in the fecal matter regard-
less of the seeds it contains (Andresen &
Urrea-Galeano, 2022). In fact, several factors can influ-
ence visits by dung beetles and SSD, as recently reviewed
by Andresen and Urrea-Galeano (2022). For instance, the
type and texture of feces may modulate the attraction of
dung beetles due to specific stimuli like volatile organic
compounds (Frank et al., 2017, 2018; Santos-Heredia
et al., 2010). Therefore, depending on the animal diet and
physiology, the feces may attract particular dung beetle
functional groups in variable abundances (Andresen &
Urrea-Galeano, 2022; Enari et al., 2016; Frank
et al., 2017; Miloti�c et al., 2019; Noriega, 2012;
Santos-Heredia et al., 2011). In this context, feces from
omnivores such as brown bears may attract a community
of dung beetles specific to herbivores and also carnivores
(Frank et al., 2017) probably depending on omnivore
feces composition. Variation in the dung beetle commu-
nity induces different functions and roles for the seed fate
(Griffiths et al., 2016; Manning et al., 2016; Miloti�c
et al., 2019), which raises questions about the fate of
seeds within the diverse feces omnivores release. Other
factors such as the fecal deposition pattern (Fuzessy
et al., 2022 but see Santos-Heredia et al., 2010), the defe-
cation site (Santos-Heredia et al., 2011), or the amount of
feces (Andresen & Urrea-Galeano, 2022) also modulate
the feces attractivity of dung beetles and thus disaggrega-
tion and SSD. In fact, the seeds dispersed are usually
smaller or equal to the size of the dung beetle, and seed
shape or appendages may affect secondary dispersal prob-
ability (Andresen & Urrea-Galeano, 2022).

However, the relative role of vertebrates and inverte-
brates in seed fate from mammal feces has rarely been
tested experimentally in sites when or where both are
present (Culot et al., 2009; Hulme, 1997; Pan et al., 2016),
especially in temperate areas (Koike et al., 2012).
Furthermore, these few previous studies focused on large
seeds (Hulme, 1997; Koike et al., 2012; Pan et al., 2016),
and their findings cannot be applied to determine the rel-
ative contribution of vertebrates and invertebrates to
smaller seeds secondarily dispersed. Small- and
medium-sized seeds may interest rodents (Shakeri
et al., 2018; Wall et al., 2017) and be easily transferred by
dung beetles (Andresen & Urrea-Galeano, 2022; Miloti�c
et al., 2019). We hypothesize that feces visitors can be sig-
nificant agents on small- and medium-sized seed fate by

removing part of the feces, by reducing the seed pool, or
by disaggregating the fecal matrix (H1) and that both
types of visitors are implicated in such a process (H2). As
mentioned previously, the characteristics of the feces
(e.g., amount, deposition site, composition, and release
pattern) containing the seeds are critical for their detec-
tion and disaggregation. In this sense, omnivores that
release feces composed of meat, plant, insect, or mixed
items should induce variable seed fate. We hypothesize
that for a given omnivore, the feces composition has a
determinant effect on its attractivity, disaggregation, and
SSD by biotic visitors (H3).

To test our first two hypotheses, we designed a realis-
tic experiment (as suggested by Andresen &
Urrea-Galeano, 2022) in a temperate area using feces of
brown bear (Ursus arctos, L. 1758). Brown bear is an
omnivore that consumes plants, insects, or meat
(Lagalisse et al., 2003) and is well-known to disperse
seeds of various sizes from fleshy-fruit-bearing plants as
well as herbaceous plants (García-Rodríguez et al., 2021;
Lalleroni et al., 2017; Pauly et al., 2024), thus making it a
relevant biological model for studying these interactions
in a temperate area. In our field experiment, we first
assessed the relative effect of vertebrates and inverte-
brates on (1) feces removal, (2) feces disaggregation, and
(3) small- and medium-sized seed secondary dispersal. At
the same time, we identified the feces visitors using cam-
eras and pitfall traps. Furthermore, we tested the effect of
diet composition on visitor attractiveness and activity
based on seed secondary dispersal.

MATERIALS AND METHODS

Study site

Our study was conducted in the Pyrénées mountains
(36,600 km2) shared between the south of France,
Andorra, and the north of Spain, and peaking at 3404 m
of altitude. Pyrénées host a wide diversity of plants,
including endemics (Ninot et al., 2017), and several
potential long-distance seed dispersers, among which are
the brown bear, small carnivores (e.g., European pine
marten Martes martes, L. 1758), wild ungulates (e.g., Red
Deer Cervus elaphus, L. 1758; pyrenean chamois
Rupicapra pyrenaica, L. 1758), and domestic ungulates
(e.g., sheep Ovis aries L. 1758). Many dung beetles includ-
ing endemics (Jay-Robert et al., 2003) are present. More
precisely, we conducted our field experiment in Melles
(Haute-Garonne, France), in an open and flat
semi-natural grassland, at the edge of a forest, at 1400 m
of altitude and within the Pyrenean brown bear current
distribution range.
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Study population and feces collection

The brown bear population in the Pyrénées includes at
least 83 individuals in 2023 and is therefore classified crit-
ically endangered by IUCN. It is growing in numbers,
benefitting from previous translocations of 11 Slovenian
brown bear individuals (in 1996, 1997, 2006, 2016, and
2018). In 2023, the population range covered about
7100 km2 from the east to the west of the Pyrénées
(Sentilles et al., 2024). Based on coproscopic investiga-
tions, the Pyrenean brown bear’s seasonal diet is com-
posed mainly of forbs and ungulates (mostly scavenged)
in spring, berries in summer, and hard mast in fall. Other
mammals and invertebrates also contribute to its diet
(Lagalisse et al., 2003).

We collected very fresh (from the day) wild brown
bear feces in the Pyrénées between 2019 and 2023 using a
scat detection dog (Sentilles et al., 2021), following spot-
ting, depredation, or identified feeding sites. We selected
30 feces large enough to conduct the experiment, col-
lected in spring, summer, and fall, resulting in different
diet composition. The composition of each feces was
determined based on visual investigation of undigested
remains of the main food items (e.g., seeds and fruits for
soft plants, fibrous parts for plants, exoskeleton
for insects, hair and bones for vertebrates). The pool of
feces thus included 8 feces composed mostly of
fragmented hard mast, 7 composed of soft mast, and
12 composed of vegetative parts of plants. One was com-
posed of vertebrate material, one of invertebrates, and
the last one of honey wax. There were no “large seed”

detected in the feces used (e.g., cherry or apple seeds).
Feces were stored at −20�C before the experiment.

Experimental design

Our experiment was conducted during the late summer
2024 at the beginning of September in an open area at the
edge of the forest. We defrosted and split each of the 30 feces
samples into three 100-g sub-samples (i.e., 90 sub-samples).
For each feces, we distributed the three sub-samples into
three treatments: total access (no cage), access restricted to
invertebrates (i.e., invertebrate access, thanks to a
wide-mesh cage, mesh = 1.3 cm), and no access (fine-mesh
cage, mesh = 0.1 cm), respectively (see Figure 1).

To test SSD and ensure the same number of seeds per
treatment, we inserted homogeneously eight Rubus
idaeus (L. 1753) seeds (medium size, 6.00 × 3.00 mm
[Cappers et al., 2006]) and five Vaccinium myrtillus
(L. 1753) seeds (small size, 1.50 × 0.25 mm [Cappers
et al., 2006]) per sub-sample, in line with Miloti�c et al.
(2019). Seeds were thus inserted inside each sub-sample
(n = 90) for a total of 720 and 450 seeds, respectively. To
avoid importing non-Pyrenean seeds, they were extracted
from Pyrenean brown bear feces, not used in this specific
experiment. All seeds were colored neon yellow using a
forestry paint that is non-noxious, non-irritating, water-
proof, temporary, and UV-resistant to facilitate recovery
and extraction at the end of the experiment.

The 90 feces were thus randomly deposited directly
on grass separated by 50 cm from each other in nine rows

F I GURE 1 Illustration of the treatments carried out on the feces, allowing access of vertebrates and invertebrates (“Total access,” with
no cage), access only of invertebrates (“Invertebrate access,” wide-mesh cage, mesh = 1.3 cm), and no access of aboveground visitors (“No
access,” fine-mesh cage, mesh = 0.1 cm). Photo credit: Grégoire Pauly.
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of 10 sub-samples. For each feces sample, the three
sub-samples were associated with the three treatments.
Each cage was firmly anchored in the ground to prevent
passage between the ground and the base of the cage. No
ground screen was installed.

We assessed the visiting small vertebrates using three
camera traps located at two corners of the experimental
design, and at a height of 40 cm, the third one covered
another part of the experiment. Vertebrate identification
on pictures was done by the authors. We assessed visiting
insects using three black circular pitfall traps filled with
water and one drop of washing-up. We placed a mesh
roof onto which we deposited at the center a
non-accessible but odorant brown bear feces composed of
fleshy fruits that were not used in the experiment. The
pitfall traps were set a few meters from the experiment
and for the same duration as the experiment. Once the
feces were brought back to the laboratory, if any insects
were found in the feces, they were identified.
Identification was done by one of the authors, an expert
on coprophagous and coprophilous insects.

The experiment and traps were left during 10 days from
10 to 19 September 2024 with regular checks to ensure that
the experiment was running properly. We installed an elec-
tric cattle fence around the experiment and the traps
(12 × 10 m) to prevent potential disturbance by roaming
megafauna and a rain gauge to monitor precipitation. We
took a picture of each sub-sample at the beginning and the
end of the experiment directly in the field.

In parallel to the experiment, we set aside ~20 g of
each of the brown bear feces used for the experiment
(n = 30) as a “ratio control.” We dried this ratio control
in an oven (60�C) until no more weight loss was observed
to estimate its final dry mass. This allowed us to calculate
the ratio between fresh and dry mass for each sample
and thus estimate the initial dry mass of the fresh 100-g
sub-sample (Appendix S1 for ratio details).

Feces measurements

At the end of the experiment, each sub-sample was col-
lected, dried in an oven (60�C) in the same way as for the
ratio control, and then weighed to determine the final
dry matter. We determined the fecal removal by
subtracting final from initial dry matter. In each
sub-sample, we also counted the number of remaining
colored R. idaeus and V. myrtillus seeds using a mortar to
break up dry fragments, collecting seeds under a binocu-
lar magnifier, and deploying similar searching time per
sub-sample of the same diet composition to estimate SSD.
SSD is the number of seeds that were not recovered at
the end of the experiment for each plant species tested.

Based on the final picture of each sub-sample (n = 90),
we assess the disaggregation of feces based on objective
and innovative criteria (and never used before) (Figure 2).
“Intact” can be a single fecal unit with no obvious traces
of invertebrate or vertebrate activity. “Disturbed” can be a
single fecal unit with the presence of dung invertebrate/
vertebrate activity (e.g., small holes) on part of the feces.
Alternatively, it can also show a few more or less
connected secondary fecal units. “Very disturbed” can be a
single unit with the presence of dung invertebrate/
vertebrate activity on several parts of the feces.
Alternatively, there may be several more or less connected
secondary fecal units (Figure 2). The disaggregation status
was assessed by wildlife specialists (n = 3) and colleagues
from our research laboratories (n = 9) in single blind
based on a picture without information of the treatment.
For a given picture, the most frequent assessment among
observers was kept, and in the event of a tie, a consultation
between authors was held to make a final decision.

To assess the effect of the main diet composition of
feces on visits, we used cumulative numbers of seeds
retrieved in treatments with access for visitors (total
access and access restricted to invertebrates).

Data analysis

To test the relative effect of vertebrate and invertebrate visi-
tors on feces removal, we performed a Gamma Generalized
Linear Mixed Model (GLMM), dealing with positive values,
using sub-sample final dry mass as the response variable,
treatment as the explanatory variable, sample ID as a ran-
dom factor, and sub-sample initial drymass as a co-variate.

To test the relative effect of vertebrates and inverte-
brates on small- and medium-sized seed removal, we
performed a Gamma GLMM, dealing with positive
values, using the number of seeds per sub-sample as the
response variable, treatment as the explanatory variable,
and sample ID as a random factor. We ran a model for
each plant species (R. idaeus and V. myrtillus). If, for a
species, all the seeds were removed from at least one
sub-sample (i.e., n = 0), then a Poisson GLMM was
performed to analyze the seed removal for this species,
dealing with counted data and zero values.

To test the effect of treatment on the fecal sub-sample
disaggregation, we performed a χ2 test of independence
per pair of treatment (e.g., χ2 test on feces with total
access vs. feces with no access treatment). To compare
the information obtained with the feces removal values
and the disaggregation score, we carried out a Spearman
correlation test.

To test the effect of diet composition on visits, we ran
separate analyses for R. idaeus and V. myrtillus and only
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tested feces with diet composition that at least occurred
twice: hard mast (n = 8), soft mast (n = 7), and vegeta-
tive plant parts (n = 12) as treatments. We discarded the
other types of feces with a single occurrence (honey,
meat, and insects). We performed a Gamma Generalized
Linear Model (GLM), dealing with positive values, on the
number of seeds with feces diet composition as an
explanatory factor.

All the analyses were carried out in R studio (v. 4.3.3)
using the lme4 package (v 1.1-35.5) (Bates et al., 2015) for
GLM and GLMM. To obtain the marginal and conditional
R2 of our models, we used the MuMIn package (v. 1.48.4)
and the trigamma method (Barton, 2024). The visualiza-
tions were carried out using Microsoft Office Professional
Plus 2016 (Figures 1–2) and the ggplot2 package (v. 3.5.1)
(Wickham, 2011) with R studio (Figures 3–5), keeping in
mind color blind people. The silhouettes of dung beetles
and rodents were freely obtained from Canva.

RESULTS

Feces removal

There was a significant effect of the treatment on feces
material removal (Gamma GLMM, marginal R2 = 0.79,

conditional R2 = 0.88, see Appendix S2 for details). Feces
transfer was significantly higher in the sub-samples with
total access of all visitors (7.3 ± 4.7 g; mean ± SD) than in
the sub-samples with no access (5.2 ± 3.6 g; p = 0.0002,
df = inf, z ratio = 3.995) and significantly higher in the
sub-samples with invertebrate access only (6.8 ± 4.9 g)
than in the sub-samples with no access (p = 0.0422,
df = inf, z ratio = 2.410). We found no significant differ-
ence between sub-samples with total access of all visitors
and sub-samples with invertebrate access only (p = 0.250,
df = inf, z ratio = 1.590) (Figure 3).

Secondary seed dispersal

Seed extraction could not be carried out on the feces
composed of honey due to the formation of an
unbreakable paste after oven drying. We observed a
significant difference in the number of Rubus idaeus
seeds retrieved among treatments (Gamma GLMM,
marginal R2 = 0.16, conditional R2 = 0.31, see
Appendix S2 for details). Significantly fewer R. idaeus
seeds were found at the end of the experiment in
sub-samples with total access of all visitors (6.5 ± 1.9
seeds) than in sub-samples with no access (7.9 ± 0.3
seeds; p = 0.0059, df = inf, z ratio = −3.081), and in

F I GURE 2 Schematic illustration and picture of feces according to the disaggregation assessment defined here: “Intact” feces show no

clear evidence of visits by invertebrates or vertebrates. “Disturbed” feces show evidence of visits (holes, fragments). “Very disturbed” feces
show numerous evidence of visits. Photo credit: Grégoire Pauly.
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sub-samples with invertebrate access only (6.3 ± 1.9
seeds) than in those with no access (p = 0.0016,
df = inf, z ratio = −3.454). There was no significant
difference in sub-samples with total access of all visi-
tors and sub-samples with invertebrate access only
(p = 0.9235, df = inf, z ratio = 0.380) (Figure 4). We
observed a significant difference in the number of
V. myrtillus seeds retrieved among treatments (Poisson
GLM, marginal R2 = 0.11; see Appendix S2 for details).
Significantly fewer V. myrtillus seeds were found at the
end of the experiment in sub-samples with invertebrate
access only (2.7 ± 1.5 seeds) than sub-samples with no
access (4.4 ± 0.6 seeds; p = 0.0020, df = inf, z ratio =

−3.389). We observed no significant difference between
sub-samples with total access of all visitors (3.3 ± 1.1
seeds) and sub-samples with invertebrate access only
(p = 0.3610, df = inf, z ratio = 1.362) and a marginal
difference between sub-samples with no access and
sub-samples with total access of all visitors
(p = 0.0963, df = inf, z ratio = −2.069; Figure 4).

Disaggregation assessment

The disaggregation assessment was done on the
90 sub-samples in blind by 12 people including
the authors. Feces sub-samples with total access of all

visitors and sub-samples with access restricted to inverte-
brates were assessed as “intact” with 7/30 and 7/30 occur-
rences each. Feces sub-samples with no access were
assessed as “intact” in 15/30 occurrences (Table 1). We
observed a significant difference in disaggregation
between sub-samples with no access and sub-samples
with total access of all visitors (χ2 test, χ2 = 9.3, df = 2,
p = 0.010) and between sub-samples with invertebrate
access only and sub-samples with no access (χ2 = 7.5,
df = 2, p = 0.023). We found no significant difference
between sub-samples with no access and sub-samples
with invertebrate access only (χ2 = 0.4, df = 2,
p = 0.826). We found a weak correlation (Spearman cor-
relation, 0.12) between disaggregation score and value of
feces removal.

Effect of diet composition

The main food composition of the feces had an effect on
R. idaeus removal (Poisson GLM R2 = 0.15; see
Appendix S2 for details) with significantly more seeds
retrieved in feces composed of hard mast (15.1 ± 0.8
seeds) than in feces composed of vegetative parts (12.0
± 3.1 seeds) (p = 0.04, t = −2.181). There was no signifi-
cant difference in R. idaeus removal between feces com-
posed of hard mast and feces composed of soft mast

F I GURE 3 Boxplot (midline, median; box limits, quartiles; whiskers, maximum and minimum without outliers) of the dry fecal mass

removed (measured as initial dry mass − final dry mass, symbolized by the points) from the sub-samples after 10 days in each treatment.

Each treatment allowed access of vertebrates and invertebrates (“Total access”), invertebrates only (“Invertebrate access”), and no visitors

from the surface (“No access”). The letters represent significant differences among treatments based on a General Linear Mixed Model

(GLMM) Gamma.
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(12.7 ± 3.9 seeds), as well as between feces composed of
soft mast and vegetative parts (Figure 5). We observed no
significant differences (see Appendix S2 for details) in
V. myrtillus removal among feces composed of hard mast
(7.0 ± 1.9 seeds), soft mast (6.6 ± 1.5 seeds), and vegeta-
tive parts (6.7 ± 3.0 seeds) (Figure 5). In the feces com-
posed mostly of meat, we retrieved 6/16 R. idaeus and
4/10 V. myrtillus seeds, while in the feces composed of
insects, we retrieved 11/16 R. idaeus and 6/10 V. myrtillus
seeds. We were not able to count seeds in the feces com-
posed of honey.

Visitors community

No vertebrate visitors were detected with the camera
traps during the experiment. The camera traps were fre-
quently triggered during dung beetle flights. Based on pit-
fall traps and insects retrieved in feces, eight taxa of
invertebrates were identified, including three dung bee-
tles: two Anoplotrupes stercorosus (Scriba 1791), one
Trypocopris pyrenaeus (Charpentier 1825), and four
females of Onthophagus gr. ovatus (Latreille 1802). We
also identified ground beetles (one Calathus luctuosus,

F I GURE 4 Boxplot (midline, median; box limits, quartiles; whiskers, maximum and minimum without outliers) of the number (points)

of Rubus idaeus (initially n = 8) and Vaccinium myrtillus (initially n = 5) retrieved from feces sub-samples in each treatment. Each

treatment allowed access of vertebrates and invertebrates (“Total access”), invertebrates only (“Invertebrate access”), and no visitors from

the surface (“No access”). The letters related to the number of R. idaeus represent significant differences among treatments based on a

General Linear Mixed Model (GLMM) Gamma. The letters related to the number of V. myrtillus represent significant differences among

treatments based on a General Linear Model (GLM) Poisson.

TAB L E 1 Feces disaggregation assessment of the 90 sub-samples performed by wildlife experts and scientists according to access of

feces to vertebrate and invertebrate visitors (total access), invertebrates only (invertebrate access), and no aboveground visitors (no access).

State of feces

Total access Invertebrate access No access

No. sub-samples Percentage No. sub-samples Percentage No. sub-samples Percentage

Intact 7 23 7 23 15 50

Disturbed 14 47 16 53 14 47

Very disturbed 9 30 7 23 1 3

Note: Each cell contains the number or percentage of sub-samples per state of faces for each type of access.
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Latreille 1804; one Amara lunicollis, Schiødte 1837),
earwigs (six Forficula auricularia, L. 1758), and honey
bees (nine Apis mellifera, L. 1758). The Onthophagus
gr. ovatus was retrieved in feces after the end of
experiment.

No disturbance of the experiment from humans or
ungulates was reported. There was only one day of rain
(September 11, 2024) with 14 mm measured with the
rain gauge.

DISCUSSION

Our experiment in Pyrénées based on brown bear feces
reveals the crucial role that visitors play as disaggregation
agents (feces removal and disaggregation) and secondary
seed dispersers of small- and medium-sized seeds, and
how it is affected by the diet composition. Such activities
are essential processes for limiting the constraints exerted
by the feces matrix on seeds and improving their germi-
nation (Enders & Vander Wall, 2012; Pauly et al., 2024;
Ramos et al., 2024). We observed significantly less feces
material and seeds removed in feces with a fine-mesh
cage, which prevented any visit from aboveground visi-
tors, congruent with Koike et al. (2012) and our hypothe-
sis H1. Based on few seeds inserted per sub-sample, we
observed a significant activity of SSD by visitors in only
10 days, in agreement with (Miloti�c et al., 2019) on dung

beetle SSD in Europe. It has been reported that such
activity of feces visitors increases the seed dispersal
effectiveness of primary seed dispersers with more seed-
lings observed (Culot et al., 2015; Falcon et al., 2024;
Ishikawa, 2011). The disaggregation assessment, as objec-
tively as possible, shows that feces accessible to visitors
are more disaggregated than feces with no aboveground
visitors, strengthening our other results and congruent
with our hypothesis H1. However, part of the variation
could also be due to handling bias or to our inability to
collect the complete feces content and seeds even if we
did this with a high degree of precaution. The loss of
feces material or seeds in sub-samples with no access
of aboveground visitors, and the similar percentage of
disturbed feces between the three access treatments, can
be due to abiotic factors, bacteria decomposition, soil
biotic agents (Koike et al., 2012), or feces handling at the
beginning or the end of the experiment. Furthermore,
and contrary to our hypothesis H2, our study in temper-
ate ecosystems reveals that invertebrates are the predomi-
nant SSD and disaggregation agents as we observed no
vertebrates with camera traps and no difference between
treatments with or without access of vertebrates
(i.e., feces with no cage or with a wide-mesh cage)
in feces removal, seed removal, and disaggregation
assessment. Based on those findings, for constraining
brown bear feces (Pauly et al., 2024) that may contain
numerous seeds with strong competition among them

F I GURE 5 Boxplot (midline, median; box limits, quartiles; whiskers, maximum and minimum without outliers) of the number (points)

of Rubus idaeus and Vaccinium myrtillus seeds counted in feces accessible to visitors (feces with total access or access restricted to

invertebrates) according to the main diet composition: hard mast, soft mast, or vegetative parts. The letters in graphics represent the

significant difference among main food compositions from a General Linear Model (GLM) Gamma.
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(García-Rodríguez et al., 2022), such activity by dung bee-
tles might be crucial in the role of brown bears in seed
dispersal (García-Rodríguez et al., 2021).

The invertebrates identified included three dung bee-
tle species and a few other species (ground beetles, bees,
and earwigs), while other potential agents such as mag-
gots were not observed probably due to the time of the
year (Sladecek et al., 2017). Dung beetles were the most
numerous coprophagous group collected. The low abun-
dance of insects collected may be explained by the attrac-
tiveness of brown bear feces (Frank et al., 2017) or by our
monitoring to collect them. However, this suggests that
dung beetles, which also frequently triggered camera
traps, were the main invertebrate group of feces removal,
disaggregation, and SSD in this study, which are organ-
isms usually implicated in such processes (Andresen &
Urrea-Galeano, 2022). The seeds were probably secondar-
ily dispersed horizontally or vertically and buried in the
soil seed bank (Andresen & Urrea-Galeano, 2022). Our
results support previous findings on the effect of dung
beetles in reducing seed aggregation within feces (Miloti�c
et al., 2019; Santos-Heredia et al., 2010; Urrea-Galeano
et al., 2019). Studies in tropical areas show also that such
dispersal induces a decrease in seedling aggregation but
also contrasting effects on the establishment of these
seedlings, which depend on other biotic factors (Lawson
et al., 2012; Urrea-Galeano et al., 2019). The short dura-
tion of our study also reveals that SSD and disaggregation
can occur very quickly following feces release.

In this study, we also pinpointed that the composition
of brown bear feces has a significant effect on visitor
activity, here dung beetles, which is congruent with our
hypothesis H3. Indeed, feces composed mostly of hard
mast were significantly less visited than feces composed
of soft mast or vegetative parts, and we observed impor-
tant seed removal in the single feces composed of meat.
This difference is probably due to the texture or the nutri-
ents in the feces (Andresen & Urrea-Galeano, 2022;
Frank et al., 2017) or may be related to the experimental
design we used. The effect of feces composition on dung
beetle’s community and activity has been noticed previ-
ously within frugivore monkey species (Santos-Heredia
et al., 2011) or among animal species with different diets
(Enari et al., 2016; Frank et al., 2017). In this sense, seed
fate may also depend on the fecal matrix in which seeds
are embedded. For omnivores like the brown bear, feces
composition is more variable than for frugivores,
suggesting that the spectrum of effects of the fecal matrix
on dung beetle community attraction (Frank et al., 2017)
and the seed fate may be even wider. The effect of feces
composition should be relevant for most of the omnivores
involved in seed dispersal (e.g., Suids [Massei &
Genov, 2004] or Mustelids [Otani, 2002; Tochigi

et al., 2022]), with potential positive implications for
dung beetle diversity.

Rodents, usual secondary seed dispersers (Culot
et al., 2009; Pan et al., 2016; Wall et al., 2017), did not
seem to be attracted by the small- and medium-sized
seeds used in our experiment or by hard mast fragments,
thus providing no effect on feces disaggregation or SSD.
It contrasts with other studies showing that rodents are
important feces visitors and secondary seed dispersers
(Enders & Vander Wall, 2012; Koike et al., 2012; Pan
et al., 2016; Shakeri et al., 2018). Although rodents can be
attracted by medium-sized seeds (Shakeri et al., 2018;
Wall et al., 2017), studies that unveiled such SSD activity
focused on larger seeds such as Prunus sp. (L. 1753),
Cornus sp. (L. 1758), Taxus sp. (L. 1753), or Rhamnus
sp. (L. 1753) (Enders & Vander Wall, 2012; Koike
et al., 2012; Pan et al., 2016; Shakeri et al., 2018). The
feces may only be attractive to rodents when large seeds
are present and visible, and small- or medium-sized seeds
are only consumed from fruit or when they are available
on the ground. The small number of seeds included may
also explain the lack of attractiveness to rodents,
although we did not observe any activity on feces initially
composed of soft mast (R. idaeus, V. myrtillus). The site of
our experiment (open area at the edge of a forest) may
also explain these results, as the rodent community in
temperate areas can be more species-rich inside forests
(Shakeri et al., 2018). Another explanation can be the
proximity of a hiking trail, which was potentially limiting
rodent activity (Lee et al., 2019). However, brown bear
can also transport large seeds (García-Rodríguez
et al., 2021; Lalleroni et al., 2017) and may interest
rodents (Shakeri et al., 2018).

Other vertebrates present in the Pyrénées, such as birds,
can handle feces (e.g., Pyrrhocorax pyrrhocorax, Upupa
epops, or Milvus milvus) (Niederhauser & Matlack, 2017;
Young, 2015). For instance, Upupa epops can flip dry cow
feces to collect insects beneath (Skead, 1950), whereas some
birds such as Eremophila alpestris can break open the feces
(Bent, 1942). In fact, other animals (e.g., mammals,
amphibians, squamates, or other invertebrates) may inter-
act with feces (Young, 2015). Interaction and disturbance
by those dung beetle predators may have important effects
on the fecal matrix and seed germination (Enders &
Vander Wall, 2012; Pauly et al., 2024). Consequently, we
argue that similar to carrion (Anderson, 2019; Bajerlein
et al., 2011), feces may represent a trophic successional
environment with coprophagous insects and then their
predators (Koskela & Hanski, 1977), all potentially playing
a role in feces decomposition and the fate of small- and
medium-sized seeds in brown bear feces.

Our field study is the first to test experimentally the
relative role of vertebrates and invertebrates on the
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secondary dispersal of medium- and small-sized seeds. To
confirm our results, other similar realistic studies should
be carried out in temperate or tropical areas.
Furthermore, monitoring the fate of displaced seeds
would also provide valuable information on the dynamics
of small- and medium-sized seeds, as well as helping to
better characterize the effect of SSD on the seed dispersal
effectiveness of brown bear or other species. It has been
studied on larger seed removal by both types of visitors
(Koike et al., 2012) or in other studies on dung beetles
SSD (Lawson et al., 2012; Urrea-Galeano et al., 2019).
Our disaggregation assessment seems to complement the
measurement of feces removal and represents a first
quantification attempt, but the development of even
more objective indicators to determine feces disaggrega-
tion (e.g., based on picture with same angle, distance,
and light) is welcome if we want to better assess this
overlooked but crucial aspect (Pauly et al., 2024).

Overall, our study in temperate areas highlighted the
role of dung beetles in small- and medium-sized seed
removal and feces disaggregation, whereas vertebrates
did not forage such feces (i.e., lacking larger seeds).
However, other vertebrates, especially predators of
coprophagous insects, may play a role in feces disaggre-
gation. Therefore, future research is encouraged to con-
sider the trophic succession in feces to quantify the role
of each visitor in fecal disaggregation and SSD.
Furthermore, we proved that the composition diversity of
omnivore feces affected visitor activity and thus SSD. In
this sense, the role of omnivore in seed dispersal appears
even more complex than previously thought, and further
consideration should be given to the fecal matrix compo-
sition enveloping seeds.
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