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A B S T R A C T

Savanna fires are a dominant ecological force in West Africa, shaping land systems, carbon dynamics, and 
biodiversity. Yet, their impacts on ecosystem productivity and recovery remain poorly quantified at meaningful 
spatial and temporal scales. This study presents a decadal assessment (2014–2023) of fire activity and post-fire 
vegetation response across a ~ 229,000  km2 transboundary region of Burkina Faso, Ghana, and Côte d’Ivoire. 
Using Harmonized Landsat–Sentinel (HLS) imagery and VIIRS active fire detections, we mapped burned areas 
(BA) at 30  m resolution—capturing extensive small fires often missed by global datasets. Fire-induced Net 
Primary Productivity (NPP) losses were estimated using downscaled MODIS productivity data, and post-fire 
recovery times were tracked at monthly and annual scales. Fires were highly seasonal, with > 80 % of BA 
occurring between November and January, peaking in December. Despite a dip around 2017, interannual BA 
remained relatively stable (0.29 % yr− 1 increase, p > 0.05). Immediate NPP losses averaged ~ 11 × 10–2 Mg C 
ha− 1 per year, with higher per-hectare losses in forested and high-biomass zones. Roughly 65 % of BA recovered 
to pre-fire NPP levels within a year, primarily in grasslands and croplands. However, recovery in woody and 
mesic areas was slower and more variable. We emphasize that recovery was assessed in terms of NPP (carbon 
uptake), not structural biomass or species composition—functional recovery does not necessarily imply full 
ecological recovery. Using machine learning, we identified soil moisture (dry-season NDMI) and temperature as 
dominant predictors of recovery time, with soil fertility (nitrogen content) and water retention capacity 
emerging as key drivers. Interestingly, fire frequency and land cover type had limited predictive power once 
climate and soil factors were accounted for, suggesting that environmental factors, more than fire regime 
characteristics, shape recovery. These findings support the idea that well-timed, low-intensity fires—particularly 
early-season burns—can promote carbon resilience in fire-adapted landscapes. This underscores the value of 
high-resolution remote sensing and soil data in guiding fire-smart management and balancing ecological and 
livelihood goals under climate change.

1. Introduction

Fire is a major ecological force in savanna landscapes and plays a 
critical role in the global carbon cycle. Tropical savannas, including 

those of West Africa, account for a substantial portion of the Earth’s 
burned area (BA) and fire emissions. According to Giglio et al. (2016), 
Africa contributes approximately 70 % of global BA, while Van der Werf 
et al. (2017) estimate that the continent accounts for about 50 % of fire- 
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related carbon emissions. These figures highlight the global importance 
of African savannas for land–atmosphere interactions and global climate 
regulation.

In West Africa, fire regimes are shaped by a combination of bio
physical conditions and long-standing human practices. Unlike many 
other tropical regions where fire may be mainly climate-driven, savanna 
fires here are largely anthropogenic, embedded in traditional land 
management and cultural practices (Caillault et al., 2020; Laris et al., 
2023). Fire is often used to clear land, manage grazing, facilitate hunt
ing, and maintain open landscapes. Such intentional burning contributes 
to a relatively predictable and spatially extensive fire regime (Devineau 
et al., 2010; Dahan et al., 2023). Laris et al. (2016) describe this as a 
“buffering fire regime,” where frequent, early-season, low-intensity fires 
help prevent woody encroachment and sustain savanna structure. This 
aligns with the broader “fire-vegetation feedback” framework (Beckage 
and Ellingwood 2009; Hurteau et al., 2019; Gold et al., 2023), which 
posits that fire is not just a disturbance, but a structuring process 
maintaining the savanna state and preventing transitions toward forest.

Fire timing also plays a key ecological role. Early and mid-dry season 
fires are generally less intense and allow for rapid post fire regrowth, 
while late season fires, when fuels are dry and continuous, tend to be 
more severe and ecologically disruptive (N’Dri et al., 2012; N’Dri et al., 
2022). Zoffoun et al. (2024) found that fire intensity peaks early in the 
dry season in West Africa, though this varies by vegetation and moisture 
conditions. Studies by Dwomoh and Wimberly (2017) and Amoako and 
Gambiza (2022) have demonstrated how land cover, fuel structure, and 
phenology influence fire frequency and behaviour, resulting in spatially 
heterogeneous burn patterns across the savanna-forest mosaic.

This ecological complexity is further enriched by the concept of 
pyrodiversity, i.e., variability in fire regimes over space and time. 
Pyrodiversity is increasingly recognized as a driver of biodiversity and 
ecosystem resilience (Beale et al., 2018; Jones and Tingley, 2021). 
Variation in fire return interval, patchiness, and intensity can create a 
mosaic of successional stages and resource availability, promoting spe
cies coexistence. However, excessive or poorly timed fires may reduce 
this diversity, especially in ecotonal areas where forest and savanna 
meet (Hoffmann et al., 2012; Pellegrini et al., 2016).

Despite the ecological importance of fire, its impact on ecosystem 
functioning, especially on primary productivity, remains poorly quan
tified at high spatial resolution in West Africa. Wildfires can cause im
mediate reductions in photosynthetic capacity by consuming biomass 
and damaging plant tissues (Fernández-García et al., 2018). Post-fire 
vegetation recovery is a key indicator of system functioning. In fire- 
adapted ecosystems, grasses and resprouting shrubs often recover 
within a single growing season (Tredennick et al., 2014), but in mesic or 
woody zones, recovery can be slower and more variable, depending on 
climate and disturbance history (Dikshit and Evans, 2024). Other biotic 
pressures, such as grazing, further shape post-fire dynamics: heavy 
herbivory can delay or redirect regrowth trajectories, sometimes 
favouring shrub encroachment (Roques et al., 2001; Thapa et al., 2022; 
Vincent et al., 2024).

At broader scales, climate and soil conditions strongly influence fire 
impacts and recovery. Rainfall amount and distribution govern vegeta
tion structure and fuel loads, thereby modulating fire frequency and 
intensity (Devine et al., 2015; Huntley, 2023). Soil fertility, water 
retention capacity, and plant trait composition also influence post-fire 
regrowth rates and ecosystem trajectories (Hoffmann et al., 2012). 
The interaction of these factors makes West Africa savanna fire ecology 
highly context dependent, highlighting the need for regionally grounded 
studies.

Satellite remote sensing has revolutionized the monitoring of wild
fires, providing consistent data on active fires and BA across large re
gions (Dezfuli et al., 2024). Coarse-resolution products from the 
Moderate Resolution Imaging Spectroradiometer (MODIS) sensor have 
enabled global fire trend analyses (Katagis and Gitas, 2022; Chen et al., 
2023) and revealed a human-driven decline in BA over the past decades 

(Andela et al., 2017), including parts of Africa (e.g., due to agricultural 
expansion and fire suppression) (Forkel et al., 2019). In West Africa, 
however, fire remains a frequent disturbance, and traditional satellite 
products (500–1000 m) often under detect small fires that are prevalent 
in these savanna mosaics (Ramo et al., 2021). Recent advances in earth 
observation offer improved capabilities for wildfire studies. The Visible 
Infrared Imaging Radiometer Suite (VIIRS) sensor (375 m) and Sentinel- 
2 (10–20 m) provide higher resolution detection of fire activity and 
burned scars (Fu et al., 2020; Gaveau et al., 2021; Pinto et al., 2021). By 
combining data from multiple sensors, it is now possible to map BA at 
higher resolution, capturing fine-scale burn patterns that were previ
ously missed (Filipponi, 2019). In addition to broad-scale monitoring, 
recent work has also shown that remote sensing can be effective at 
detecting and analysing fire effects in marginal or transitional zones, 
such as forest edges and ecotones (Rossetti et al., 2024; Calderisi et al., 
2025). This granularity is crucial in heterogeneous West African land
scapes, where burn scars are often small and patchy due to fragmented 
land cover and controlled burning practices (Laris, 2005).

In this study, we integrate multi-source satellite data to assess 
wildfire impacts on ecosystem productivity in West African savannas 
over a ten-year period (2014–2023). We aim to (1) generate a high- 
resolution BA dataset integrating VIIRS active fire detections and 
Harmonized Landsat-Sentinel-2 imagery, (2) quantify the immediate 
loss of net primary productivity (NPP) due to fire and its spatial vari
ability across land cover types, (3) evaluate the post-fire recovery time 
of vegetation at monthly and annual scales, and (4) identify the envi
ronmental and biophysical drivers that influence recovery rates, using a 
machine learning approach. We define NPP loss in two ways: seasonal 
loss, as the short-term drop in carbon uptake following fire, and annual 
loss, as the difference in productivity between years before and after 
burning. Our analysis emphasizes functional recovery—the return of 
NPP—rather than structural recovery, which involves slower regrowth 
of biomass and canopy structure (Bond and Keeley, 2005). We use the 
term “recovery” to refer to the return of ecosystem productivity 
(measured via NPP) following fire. Where the term “functional resil
ience” is used, it specifically refers to the capacity of an ecosystem to 
regain its carbon uptake function (via NPP), without implying full 
structural or compositional restoration. By focusing on West Africa, a 
region with intense fire activity and diverse ecosystems, our study 
provides new insights into savanna fire dynamics. We further discuss the 
implications of our findings for fire management, carbon accounting, 
and biodiversity conservation in the context of climate change.

Understanding how fire affects NPP which represents the net carbon 
uptake by ecosystems, is central to our study. Immediately after a fire, 
NPP typically drops as photosynthetic capacity is reduced, and it can 
take months or years for productivity to return to pre-fire levels (Landi 
et al., 2020; Klupar et al., 2021). The length of this recovery period is a 
key indicator of ecosystem resilience (carbon resilience in terms of NPP 
recovery). Previous research has shown that post-fire recovery rates 
depend on fire intensity, vegetation type, and climate conditions such as 
rainfall availability (Tepley et al., 2018). In frequently burned savannas, 
grasses and resprouting shrubs may recover within a single growing 
season, whereas in less fire-adapted forests, canopy regeneration may 
require several years. However, there is limited quantitative data on 
recovery times in West African savannas across large spatial scales. 
Moreover, the drivers of recovery—whether primarily controlled by fire 
characteristics (frequency, seasonality, severity), vegetation properties, 
or external factors like moisture and temperature—are not fully un
derstood in this region.

2. Study area

The study area encompasses a savanna region in West Africa span
ning approximately 4.6◦ W to 1.7◦ E longitude and 8.5◦ N to 11.4◦ N 
latitude (Fig. 1). This rectangular region covers about 229,500 km2, an 
area roughly equivalent to 71 % of Côte d’Ivoire’s land surface or nearly 
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the entirety of Ghana. It includes parts of southern Burkina Faso, 
northern Ghana, and north-eastern Côte d’Ivoire, intersecting diverse 
ecological zones and socio-economic landscapes. It spans a gradient 
from the West Sudanian savanna biome in the north to the Guinean 
forest–savanna mosaic in the south (as classified by Olson et al., 2001). 
This gradient includes semi-arid savannas where fire is more limited by 
fuel and rainfall, and mesic, fire-driven savannas in the south, where 
frequent burning suppresses woody encroachment and shapes vegeta
tion structure (Sankaran et al., 2005; Higgins et al., 2007). Within these 
broad vegetation types, vegetation cover ranges from grass-dominated 
savannas and open woodlands to patches of deciduous and semi- 
evergreen forests embedded in the mosaic. This variety of land cover 
provides critical ecosystem services, including carbon sequestration, 

water regulation, and wildlife habitat.
Within the study region are areas of notable conservation impor

tance. Comoé National Park in north-eastern Côte d’Ivoire (a UNESCO 
World Heritage Site) covers ~ 11,500 km2 and contains a rich tapestry 
of habitats—forests, savannas, and wetlands—that support high biodi
versity (Koné et al., 2018). Its transitional location between forest and 
savanna makes Comoé particularly valuable for studying fire impacts on 
different vegetation types. Similarly, the Pô-Nazinga-Sissili complex 
(CAP/PONASI) in southern Burkina Faso is a large protected area and 
Ramsar wetland, harbouring diverse flora and fauna. This landscape 
includes fire-adapted savanna species such as Vitellaria paradoxa (shea 
tree) and Afzelia africana, as well as large mammals like elephants that 
move between Burkina Faso and Ghana (Zoungrana et al., 2023). Both 

Fig. 1. Study area. The upper panel shows the West Sudanian Savanna and Guinean Forest-Savanna Mosaic ecoregions (Olson et al., 2001) and the lower panel the 
study area major land use and land cover according to the MCD12 dataset (Friedl and Sulla-Menashe, 2019).
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protected and unprotected lands in the region experience seasonal fires 
and serve as reference points for understanding natural vs. human- 
modified fire regimes. The area’s strategic location and ecological di
versity makes it highly relevant for understanding fire dynamics, carbon 
cycling, and vegetation recovery processes.

The climate is tropical with a unimodal rainfall pattern. A rainy 
season from roughly May to October brings annual precipitation of 
about 800 mm in the north to over 1200 mm in southern areas. A 
pronounced dry season from November to April features high temper
atures (average daily 25–35 ◦C) and desiccated vegetation, creating 
conditions conducive to fire spread (Laris, et al., 2020). In this region, 
wildfires are most frequent during the early dry season, when accumu
lated grassy fuels and crop residues are ignited by farmers or natural 
causes. Indeed, fire is an ingrained component of local land manage
ment. It is used for clearing fields, hunting, and pasture renewal. While 
these fires are often set intentionally, they can escape control and burn 
extensive areas. Rural communities possess traditional knowledge for 
coping with wildfires like early dry season burns, firebreaks, and com
munity fire brigades (Krawchuk and Moritz, 2011), but fire remains a 
significant risk to both livelihoods and biodiversity.

Widespread agriculture and grazing influence the fire regime. 
Outside protected areas, expanding croplands and shifting cultivation 
have led to land cover changes that may either increase or decrease fire 
occurrence. Deforestation, mostly as a result of farmland expansion 
tends to fragment the landscape, sometimes reducing the continuity of 
burnable fuels, but agricultural fires for clearing can add to overall fire 
numbers. Recent studies highlight rapid land-use change in parts of West 
Africa (Dimobe et al., 2018) and stress the need to balance agricultural 
development with ecosystem conservation. In our study area, regions 
around Dano (Burkina Faso) and Bolgatanga (Ghana) represent such 
human-dominated savannas where fire, farming, and grazing interact. In 
contrast, core zones of Comoé National Park and remote savanna 
woodlands experience more natural fire regimes, primarily driven by 
climate and fuel loads. This mix of conditions across the study area 
provides an ideal natural laboratory to investigate how fire impacts on 
productivity differ by land use and ecological context. Moreover, with 
climate change potentially altering rainfall patterns and drying trends in 
West Africa, examining historical fire-recovery dynamics offers insights 
into future ecosystem resilience under shifting fire frequencies and in
tensities. This rectangular extent was selected to maximize ecological 
representativeness by spanning key vegetation transitions, while also 
ensuring consistent spatial and temporal coverage across the HLS, 
MODIS, and VIIRS datasets from 2014 to 2023. This choice also helped 
reduce issues of data incompleteness due to cloud cover and tile edge 
effects, without being constrained by administrative boundaries.

3. Materials

3.1. VIIRS active fire data

We used VIIRS active fire product to identify fire occurrences. Spe
cifically, the 375 m resolution VIIRS active fire data (VNP14IMGML) 
from the Suomi-NPP satellite was obtained via NASA’s FIRMS (Fire In
formation for Resource Management System) archive (FIRMS, 2025). 
VIIRS provides global fire observations multiple times per day and offers 
enhanced nighttime fire detection compared to MODIS (Li et al. 2018). It 
employs dynamic contextual algorithms like MODIS but at finer spatial 
resolution, making it capable of detecting relatively smaller fire events. 
Each active fire record represents the center of a ~ 375 m pixel flagged 
as containing a fire or thermal anomaly (Schroeder et al., 2014). VIIRS’s 
greater sensitivity at night and higher pixel density significantly 
improve the monitoring of fires in savanna environments (Justice et al., 
2013; Li et al., 2018).

For this study, we filtered VIIRS active fires: low-confidence de
tections (potential false alarms from sun glint) were removed, and only 
fire-type events (excluding industrial heat sources like gas flares or 

volcanoes) with fire radiative power > 0 were retained. The final set of 
VIIRS fire points was used both to guide BA mapping and as independent 
indicators of fire timing and location.

3.2. Optical imagery: Harmonized Landsat-Sentinel-2

To map BA, we utilized the Harmonized Landsat and Sentinel-2 
dataset (HLS) which fuses Landsat-8/9 OLI and Sentinel-2A/B MSI ob
servations into a consistent 30 m, 2–3 day composite product. HLS 
provides surface reflectance data with atmospheric corrections, co- 
registration, and bandpass harmonization applied so that Landsat and 
Sentinel pixels are radiometrically comparable (Claverie et al., 2018). 
We accessed all available HLS images covering the study area from 2014 
to 2023 (HLS v2.0; products L30 – Masek et al., 2021a and S30 – Masek 
et al., 2021b) using NASA’s CMR-STAC API (EOSDIS, 2025). For each 
image date, we retrieved six spectral bands relevant to BA detec
tion—Blue, Green, Red, near-infrared (NIR) broad and narrow bands, 
and two shortwave infrared (SWIR1, SWIR2) bands, along with the 
accompanying cloud mask (Fmask). These bands (detailed in Table 1) 
correspond to Landsat-OLI bands 2–7 and Sentinel-2 bands 2–4, 8 and 
8A, as well as 11 and 12 (compare Tab. 1), covering visible blue (~0.49  
μm) through SWIR (~2.2 μm) wavelengths. The high spectral and 
temporal resolution of HLS is crucial for accurately delineating burn 
scars shortly after fire events and distinguishing them from unburned 
vegetation.

3.3. Vegetation productivity: MODIS Gross/Net Primary productivity

To assess fire impacts on ecosystem productivity, we employed 
satellite-derived estimates of Gross Primary Productivity (GPP) and Net 
Primary Productivity (NPP) from the MODIS sensor. We obtained, from 
Google Earth Engine (GEE), the MOD17 Collection 6 datasets at 500 m 
resolution for the study period: the 8-day GPP product (MOD17A2H/ 
MYD17A2H for Terra/Aqua) and the annual NPP product (MOD17A3H) 
(Running et al., 2004). GPP represents total carbon fixation by vegeta
tion through photosynthesis, while NPP is the portion of GPP remaining 
after plant respiration losses, thus indicating net biomass accumulation. 
MOD17 uses a light-use efficiency model to estimate productivity, 
factoring in absorbed photosynthetically active radiation and stress 
scalars for temperature and moisture (Zhao et al., 2006). Although 
MODIS productivity data are relatively coarse, they provide consistent, 
validated measures of carbon flux suitable for regional assessments. For 
each year 2014–2023, we extracted the annual NPP and all 8-day GPP 
composites covering the region. These were used to calculate higher- 
temporal-resolution NPP (downscaled to 8-day, Section 4.2) to match 
fire occurrence timing.

The MODIS land cover product (MCD12Q1) was also used to stratify 
results by land use/land cover (LULC) type, classifying each pixel (500  
m) into categories such as savanna, forest, cropland, etc., based on the 
IGBP scheme (Friedl and Sulla-Menashe, 2019). This dataset was 
selected because of its consistent annual coverage (2001 to present), 
aligning with our study period. Although higher-resolution products like 
ESA WorldCover (10 m) offer more detailed classifications, they typi
cally suffer from inconsistent annual updates entire study area. The 
MODIS product was chosen for its reliable temporal coverage and global 
extent, making it ideal for our long-term analysis of land cover change 
and post-fire recovery in West Africa.

3.4. Other satellite data

We included additional environmental variables known to influence 
fire severity and recovery (Wulder et al., 2021; Shang et al., 2022). 
These factors were selected based on their documented influence on fire 
behaviour, severity, and ecosystem recovery. Specifically, moisture 
availability is critical because it determines plant regrowth potential and 
fire intensity. To capture moisture variability, we derived the 
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Normalized Difference Moisture Index (NDMI) from the HLS data. NDMI 
is calculated as (NIR – SWIR) / (NIR + SWIR), using reflectance in the 
narrow NIR band (~0.86 μ m) and SWIR1 (~1.6 μ m). NDMI is sensitive 
to water content in vegetation and soil; higher NDMI values indicate 
wetter conditions. We generated NDMI time series for the study area at 
30 m resolution, concurrent with pre- and post-fire image composites.

Temperature, land surface temperature (LST) influence fire behav
iour, with higher temperatures typically resulting in more intense fires. 
In parallel, precipitation and air temperature provide vital information 
on climate anomalies, such as droughts, which affect fuel availability 
and recovery post-fire. Collectively, these variables capture both the 
immediate effects of fire (e.g., intensity, duration) and long-term re
covery potential (e.g., regrowth, moisture availability).

LST was derived from Landsat-8 thermal infrared data using the 
single-channel algorithm by Ermida et al. (2020) within GEE. The 
retrieved LST data (in ◦C) at 30 m resolution were aggregated to monthly 
means to represent background temperature conditions during the dry 
season. Climate variables, including total precipitation and mean 2 m air 
temperature from ERA5 reanalysis (Hersbach et al., 2020), were 
extracted for each month at a spatial resolution of approximately 11 km 
(0.1◦). Despite the relatively coarse resolution, these climate datasets 
offer crucial contextual insights into rainfall deficits and heat anomalies 
that could influence both fire behaviour and vegetation regrowth.

All spatial datasets were co-registered and resampled to a common 
30 m grid that spans the entire study area, aligned with the HLS pixel 
grid, ensuring consistency and enabling the integration of the datasets 
for analysis.

To incorporate edaphic factors into the post-fire recovery analysis, 
we integrated standardized global soil data from SoilGrids (Batjes and 
van Oostrum, 2023), provided by ISRIC. The dataset delivers gridded 
soil estimates at 250 m resolution, suitable for regional-level analyses, 
although higher resolution data would offer more precise insights. 
Variables were extracted for the 0–5 cm depth interval, which corre
sponds to the surface processes influencing fire effects and vegetation 
regrowth.

The following soil parameters were included in the analysis: 

• Soil texture class: derived from the clay, silt, and sand fractions using 
USDA thresholds. Each pixel was assigned to one of 12 texture 
classes, enabling the modelling of soil physical properties.

• Soil organic carbon (SOC): reflecting topsoil fertility, SOC plays a key 
role in post-fire vegetation productivity by supporting regrowth.

• Nitrogen content: representing the total nitrogen in the soil, this 
serves as a proxy for nutrient availability, critical for plant recovery.

• Water retention at 10 kPa and 1500 kPa: representing plant-available 
water and wilting point moisture, respectively, these values are 
essential for understanding water limitations during post-fire 
recovery.

• Soil classification: classifying the soils according to the World 
Reference Base for Soil Resources (WRB) provides broader insights 
into functional soil differences and their role in fire recovery.

In addition to other environmental variables, we used the MODIS 

MCD12Q1 land cover product, which provides annual global land use/ 
land cover classifications at a 500 m resolution. This dataset was 
selected because of its consistent annual coverage (2001 to present), 
aligning with our study period. Although higher-resolution datasets like 
Landsat or Sentinel-2 offer more detailed classifications, they typically 
suffer from inconsistent annual updates and missing data for our entire 
study area. The MODIS product was chosen for its reliable temporal 
coverage and global extent, making it ideal for our long-term analysis of 
land cover change and post-fire recovery in West Africa.

To ensure spatial consistency, all datasets were resampled to match 
the 30  m grid of the HLS imagery. MODIS-based variables (GPP, NPP, 
and land cover) and climate variables were processed in GEE, which 
performs automatic internal resampling when datasets are reprojected 
or exported at resolutions finer than their native scale (Google Devel
oppers, 2024). Continuous data were resampled using bilinear interpo
lation and categorical data with nearest-neighbour resampling. 
SoilGrids data (250  m) were resampled in R using the terra package 
(Hijmans, 2025), with bilinear interpolation for continuous attributes 
(e.g., nitrogen, water retention) and nearest-neighbour for categorical 
layers. All resampling operations used the HLS extent and resolution as 
reference to preserve spatial alignment across layers.

4. Methods

The workflow of this study has four major steps (Fig. 2). An impor
tant distinction to highlight is the definition of the fire season and the 
study period. In the study area, the fire season aligns with the dry sea
son, which typically begins in November and extends through April of 
the following year. Consequently, the fire season in this study was 
defined similarly. For instance, the 2019 fire season spans from 
November 2018 to April 2019. This approach was consistently applied 
for fire seasons from 2014 to 2023. 

BA mapping: The first step involves generating monthly BA datasets 
at a 30-meter spatial resolution using HLS data combined with VIIRS 
active fire.
Estimating productivity loss: The second step estimates the loss in 
NPP and GPP caused by fires. Since these productivity datasets are 
available at a coarser resolution (500 m), they were resampled to 
align with the BA data’s 30 m resolution. This resampling ensures 
consistency and facilitates integration in subsequent analyses.
Post-fire vegetation recovery: The third step evaluates vegetation 
recovery trajectories at both monthly and annual time scales. This 
analysis examines how vegetation recovers over time following fire 
disturbances, providing insights into ecosystem resilience.
Identifying drivers of recovery: The final step assesses potential 
factors influencing recovery rates. This includes evaluating variables 
such as fire frequency, land cover, climatic variables, soil properties 
and moisture to understand their roles in shaping post-fire recovery 
dynamics.

All statistical analyses were conducted in R and significance was 
assessed at the 95 % confidence level unless otherwise noted.

Table 1 
Harmonized Landsat and Sentinel-2 (HLS) spectral bands used for burned area mapping, with approximate Landsat OLI and Sentinel-2 MSI equivalents and central 
wavelengths. (Abbreviations: NIR – near-infrared; SWIR – shortwave infrared; B – band.).

Band name OLI band number MSI band number HLS bands codename Landsat-8 HLS band code name Sentinel-2 Wavelength (micrometers)

Blue 2 2 B02 B02 0.45 - 0.51*
Green 3 3 B03 B03 0.53 - 0.59*
Red 4 4 B04 B04 0.64 - 0.67*
NIR Broad − 8 − B08 0.78 – 0.88**
NIR Narrow 5 8A B05 B8A 0.85 - 0.88*
SWIR 1 6 11 B06 B11 1.57 - 1.65*
SWIR 2 7 12 B07 B12 2.11 - 2.29*

* from OLI specifications; ** from MSI specifications.
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4.1. Burned area mapping

Our BA mapping approach (Fig. 2, sub-section 1) combined multi- 
spectral change detection with active fire information to delineate 
burned patches at 30 m spatial resolution. The procedure was imple
mented in monthly time steps.

Pre- and post-fire composites.
For each month with available HLS imagery, we constructed a pair of 

cloud-free composite images representing the pre-fire and post-fire 
conditions. The month of interest (e.g., January 2019) is the target 
month for BA detection. The pre-fire composite covers approximately 
one month before the fire (from the start of the preceding month up to 
the day before the target month begins), and the post-fire composite 
covers about one month after the fire (from the start of the target month 
through the end of the following month). To create these composites, we 
used the maximum and minimum value compositing approach, respec
tively, for the pre-fire and post-fire periods. For the pre-fire composite, 
the maximum values of each pixel across all available imagery within 
the one-month period were selected, representing the “healthiest” state 
of the landscape with minimal cloud cover and disturbances. For the 
post-fire composite, the minimum values of each pixel were chosen, 
capturing the most severely affected areas by fire, as this corresponds to 
the lowest spectral reflectance after the burn. This approach accentuates 
the spectral differences caused by burning, highlighting areas with 
substantial loss of vegetation cover.

Cloud and land cover masking.
We applied rigorous masking to remove non-valid pixels. First, we 

utilized the HLS Fmask layer to exclude clouds and cloud shadows (Zhu 
and Woodcock, 2014). Any pixel flagged as cloud/shadow in any image 
contributing to the composites was masked out. We then applied addi
tional spectral filters: pixels with abnormal blue reflectance (<0.15) or 
very high SWIR2 reflectance (>0.5 %) consistent with clouds were also 
masked (Roteta et al., 2021), complementing Fmask step. Open water 
and urban areas were masked using the ESA WorldCover 2020 land 
cover map (Zanaga et al., 2021) to avoid confusion with dark water or 
built surfaces that have similar spectral properties as BA.

Spectral indices for burn detection

We calculated three spectral indices known to be sensitive to 
burning: the Normalized Burn Ratio (NBR), NBR2, and the Burned Area 
Index (BAI). The formulas and spectral bands used for these indices are 
presented in Table 2. The NBR and its variant NBR2, designed to assess 
burn severity, exploit changes in reflectance within the near-infrared 
and mid-infrared regions (Veraverbeke et al., 2011; Atak and Tonya
loğlu, 2020; Rossetti et al., 2022). The NBR index typically ranges from 
− 1 to 1, where values close to 1 represent healthy vegetation, negative 
values indicate severe burn (more negative values reflecting more 
intense burns), and values near zero often correspond to BA. NBR2 is 
similar but uses a broader mid-infrared band range, providing an 
enhanced sensitivity to low-severity burns (NBR2 ranges from − 0.2 to 
0.6, with lower values indicating higher burn severity) (Storey et al., 
2016; van Gerrevink and Veraverbeke, 2021).

Moreover, BAI provides critical insights into post-fire vegetation 
recovery and resilience, making it indispensable for ecological evalua
tions (Marcos et al., 2018; Liu et al., 2021). BAI values range from 
0 (indicating no burn or no vegetation) to higher positive values, with 
higher BAI values representing more extensive burning and lower values 
indicating less burn impact. For each index, the pre-fire, post-fire, and 
difference values were calculated, which were used both in image 
classification and in the sampling process to distinguish burned and 

Fig. 2. Conceptual framework illustrating the workflow for understanding fire-driven Net Primary Productivity (NPP) loss, post-fire recovery trajectories, and their 
potential influencing factors.

Table 2 
Spectral indices used for burned area mapping and their formulae, derived from 
Harmonized Landsat and Sentinel-2 (HLS) data. RED = reflectance in the red 
band, NIR = reflectance in the near-infrared band; SWIR = reflectance in the 
shortwave infrared band.

Spectral indices Equation Reference
Acronym Full name

BAI Burned Area Index 1
(0.1 − RED)2

+ (0.6 − NIR)2
Chuvieco et al., 
2002

NBR Normalized Burn 
Ratio

NIR − SWIR2
NIR + SWIR2 Key and Benson, 

1999
NBR2 Normalized Burn 

Ratio 2
SWIR1 − SWIR2
SWIR2 + SWIR2 Key and Benson, 

2006

B. Ouattara et al.                                                                                                                                                                                                                               International Journal of Applied Earth Observation and Geoinformation 143 (2025) 104783 

6 



unburned candidate pixels.
Active fire integration (Hotspots).
We incorporated both the VIIRS active fire data and Murphy et al.’s 

(2016) hotspot algorithm to improve our BA search. The VIIRS active 
fire points were buffered by 375 m (the nominal VIIRS pixel size) to 
define regions where fire activity was likely, and these buffers were 
merged with hotspots derived from HLS imagery based on Murphy et al. 
(2016).

In this method, we identified “hot pixels” in the HLS imagery by 
detecting reflectance anomalies that indicate recent burning. Specif
ically, Murphy et al. (2016) use two key variables, α (alpha) and β (beta), 
to flag potential fire pixels: 

• α: represents pixels where NIR reflectance is anomalously low (a 
signature of burnt or stressed vegetation).

• β: represents pixels where SWIR reflectance is anomalously high, 
suggesting the presence of fire-affected surfaces.

Each pixel’s NIR and SWIR reflectance values were compared against 
predefined threshold values based on these anomalies. If the reflectance 
values fell outside the expected range for healthy vegetation, the pixel 
was flagged as a potential fire hotspot.

To further refine our analysis, we combined the VIIRS fire points 
(with their 375 m buffer) and Murphy’s HLS-derived hotspots to identify 
regions with confirmed fire activity. A minimum cluster size of 100 
pixels (~9 ha) was required for burn delineation, ensuring that small or 
isolated fire signals were not misclassified as burns. If no fire signals 
were detected in a given area, it was assumed that no burn occurred for 
that month, reducing false positives. This approach ensures that only 
areas with evidence of fire activity from both the active fire data and the 
HLS hotspot algorithm are considered, improving the precision of our 
BA detection.

Two-tailed thresholding.
We employed a two-tailed threshold approach on the spectral index 

distributions to classify burned vs. unburned pixels. Specifically, for 
each index (e.g., NBR), we calculated percentile-based thresholds for 
both fire-affected areas and non-fire areas. This was done for both pre- 
fire and post-fire conditions.

To do this, we: 

• For fire-affected areas: identified the typical range of index values by 
calculating the percentiles (e.g., 5th, 95th) for the pre-fire and post- 
fire indices in regions that had been impacted by fire.

• For non-fire areas (control areas): calculated their own pre/post-fire 
percentiles to prevent other non-fire-related changes, like phenology 
shifts, from being misclassified as fire.

A pixel was labelled as burned if its pre-fire index value fell below the 
calculated fire threshold, and its post-fire value was sufficiently lower, 
indicating a significant decrease in vegetation health. DeltaNBR (ΔNBR) 
refers to the difference in NBR before and after the fire, and we used this 
to quantify the magnitude of the burn. If the pixel had a sufficient ΔNBR 
(a large decrease), it was classified as burned. This approach was applied 
separately for the NBR, NBR2, and BAI indices. This method is partic
ularly effective in heterogeneous landscapes, such as in West Africa 
(Laris, 2005), where vegetation and land cover variability pose chal
lenges to traditional BA mapping techniques. For the period of interest 
(month), regions affected by fire are those overlaid by identified hot
spots from the previous sub-section.

Burn scar identification
The preliminary burn classification from each index was combined. 

We used a majority consensus rule requiring at least two out of the three 
indices to agree on a pixel being burned. This reduces false positives that 
might arise if a single index is noisy or affected by non-fire factors. The 
resulting burned pixels were aggregated into contiguous patches, and 
very small or linear features (likely false detections or fire lines) were 

eliminated. Finally, we visually inspected the monthly BA maps against 
original imagery for quality control, and then mosaicked all months to 
obtain the full BA dataset for 2014–2023.

On a monthly basis, pixels were categorized into one of the following 
four groups based on their fire frequency during the 2014–2023 fire 
seasons: 

• rarely burned: burned fewer than 7 times in the study period (<7).
• occasionally burned: burned between 7 and 12 times (7–12).
• moderately burned: burned between 13 and 18 times (13–18).
• frequently burned: burned more than 18 times (>18).

This categorization enabled the stratification of areas by burn in
tensity and recurrence over the study period, providing a proxy for burn 
severity. This information was also used in the drivers of recovery time 
assessment.

Burned area performance.
Our BA mapping algorithm was validated and compared with 

existing products. We performed an accuracy assessment using reference 
fire perimeters from the Burned Area Reference Database (BARD). 
Specifically, we used the FireCCI Africa 2019 dataset (Stroppiana et al., 
2022) derived from Sentinel-2 for five sample tiles (15 × 15 km each) in 
West Africa. These reference polygons for burned/unburned areas in 
2019 were compared to our monthly BA outputs for the corresponding 
locations and period. Standard metrics including omission and com
mission errors, and the Dice coefficient, were computed to quantify 
agreement. Additionally, we conducted an intercomparison by over
laying our BA maps with several widely-used BA products that cover the 
study region: FireCCI51 (MODIS 250 m, Chuvieco et al., 2018), Fire
CCI SFD20 (Sentinel-2 20 m, Chuvieco et al., 2022), FireCCIS310 
(Sentinel-3, 300 m, Lizundia-Loiola et al., 2022), VIIRS-BA (VIIRS 375  
m, prototype product by Ouattara et al., 2024), and MCD64A1 Collec
tion 6 (MODIS 500 m, Giglio et al., 2018). We compared spatial patterns 
of burn detection for selected subsets (Comoé National Park and Dano) 
to illustrate differences, especially in capturing small fires. These in
tercomparisons were qualitative (not a formal validation) and only 
meant to highlight relative strengths of our approach.

4.2. Net primary productivity loss calculation

To quantify the loss of productivity due to fire, we calculated the 
difference between expected NPP in the absence of fire and the observed 
NPP after fire. A challenge is that MODIS NPP is annual; to attribute NPP 
loss to specific fire events and seasons, we downscaled NPP in time using 
the higher-frequency GPP data. We employed a proportional down
scaling approach: for each pixel and year, the fraction of annual GPP 
occurring in each 8-day period was used to partition the annual NPP into 
8-day increments, as represented in Equation (1): 

NPP8d =

(
GPP8d

GPPy

)

× NPPy (1) 

Where: NPP8d represents the downscaled yearly NPP to an 8-day com
posite; GPP8d refers to GPP data already available at an 8-day composite; 
GPPyr is the sum of GPP8d for a given year (y) and NPPy is the annual 
NPP composite data available at the yearly scale

We then aggregated these into monthly NPP totals and also into fire- 
season NPP (summing from November through April for each fire season 
year) to match our fire analysis periods.

For every pixel that burned, we defined the pre-fire NPP as the NPP 
in the last full month prior to burning (for monthly analysis) or the year 
preceding the fire year (for annual analysis). The post-fire NPP was 
taken as the NPP measured during or after the fire event. The NPP loss 
due to a fire was then computed as: 
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• Monthly scale: ΔNPPm = NPPm(pre-fire) – NPPm(post-fire) in the same 
fire season. For example, if a fire occurred in December, we compare 
October NPP (pre-fire baseline for that pixel) to December or sub
sequent months’ NPP.

• Annual scale: ΔNPPy = NPPy(pre-fire year) – NPPy(fire year). If an area 
burned in the 2018–2019 fire season, we compare total NPP of 2018 
to that of 2019 in that pixel.

We masked these calculations to only fire-affected pixels using our 
BA maps: ΔNPP was computed only within the BA, effectively attrib
uting productivity loss to fire-disturbed zones. Summing ΔNPP over all 
burned pixels gives the total carbon productivity lost to fires in the re
gion for a given period. We normalized the ΔNPP by dividing the total 
NPP loss by the area of the burned pixels (i.e., total BA in hectares). This 
gives the NPP loss density, expressed as Mg C ha− 1 burned. This 
approach allows comparison of fire impact severity across regions and 
land cover types.

We stratified the NPP loss analysis by land cover category (MODIS 
MCD12Q1) to see how different ecosystems respond to fire. We addi
tionally examined trends in annual NPP loss over 2014–2023 using the 
Mann-Kendall non-parametric test (α = 0.05), via the Kendall package in 
R software (McLeod, 2011), to detect any significant increase or 
decrease in fire-related carbon loss. Finally, we computed the ratio of 
NPP loss to BA for each year and location, as mentioned, to identify 
hotspots of disproportionately high or low impact areas where small 
burns cause large productivity drops or vice versa.

4.3. Post-fire vegetation recovery analysis

We assessed vegetation recovery times after fire at two temporal 
scales: monthly (short-term) and multi-year (long-term). Recovery was 
defined in terms of NPP returning to baseline levels. For monthly re
covery, we defined the pre-fire baseline as the October NPP – the last full 
month before the fire season. While this captures peak productivity in 
many forested zones, in some grassland systems September might 
represent the actual productivity maximum. For annual recovery, the 
baseline was the NPP of the year 2014 (the first year of our analysis), 
under the assumption that areas unburned since 2014 had stable or 
increasing productivity up to a fire event.

For each burned pixel, we tracked the time series of NPP after the fire 
and identified the first time it equalled or exceeded the pre-fire baseline. 
The time to recovery was counted in months for the short-term analysis 
(with a maximum window of 12 months beyond the fire) and in years for 
the long-term analysis (up to 9 years beyond the fire, given our 
2014–2023 data range). If NPP never recovered to baseline within the 
period of record, the pixel was labelled as “unrecovered”. Using this 
approach, we generated maps of recovery time, effectively measuring 
ecosystem recovery patterns both spatially and temporally.

We then classified recovery time into categories to facilitate 
interpretation.

For monthly recovery: Immediate (within 1 month), Short-term (2–3  
months), Medium-term (4–5 months), Long-term (6–7 months), and Not 
recovered in 7 months or more.

For annual recovery: Fast (1 year), Moderate (2–3 years), Gradual 
(4–5 years), Delayed (6–7 years), Very Delayed (8–9 years), or Not 
recovered by 2023. These thresholds were chosen based on natural 
breaks in the data distribution and ecological relevance (e.g., recovery 
within one growing season vs. multiple years).

Furthermore, to understand differences among ecosystems, we 
stratified recovery outcomes by LULC type (savannas, forests, grass
lands, croplands). This reveals, for example, if forests systematically 
take longer to recover than grasslands, or if agricultural areas show 
unique patterns due to human intervention (like replanting). We also 
examined the spatial clustering of slow vs. fast recovery areas to see if 
certain regions (e.g., particular parks or climate zones) exhibit notable 
delayed regrowth.

4.4. Drivers of recovery time

We investigated which environmental and biophysical factors best 
explain the variability in post-fire vegetation recovery time across the 
burned pixels. For this, we constructed a spatially explicit dataset of 
recovery outcomes and potential predictor variables at 30  m resolution, 
matching the resolution of the BA and vegetation data. Recovery time 
(in years) was used as the response variable, derived from time-series 
NPP analysis as previously described.

The predictor variables included: 

• fire regime: burn frequency (number of times a pixel burned between 
2014 and 2023)

• land cover: MODIS LULC classification
• climate: mean annual precipitation and temperature (from ERA5)
• vegetation moisture and aridity: mean dry-season NDMI (from HLS) 

and mean dry-season LST (from Landsat)
• soil properties: soil texture class, nitrogen content, Soil organic 

matter water retention at 10 kPa and 1500 kPa, and Soil 
Classification.

Vegetation characteristics were represented via land cover categories 
from MODIS MCD12Q1. While this provides broad structural types 
(forest, grassland etc.), it does not capture species composition or fine- 
scale traits (e.g., resprouting ability, leaf area index), which likely also 
influence recovery patterns but were not explicitly assessed.

To allow the model to capture non-linear effects and interactions, we 
created pairwise interaction terms between continuous variables (e.g., 
NDMI × temperature) and between continuous and categorical variables 
(e.g., NDMI × land cover class). In total, over 100 features were 
generated, including original predictors and interaction terms.

We employed a machine learning approach using the H2O AutoML 
framework (within R software with the package H2O, Fryda et al., 2024) 
to build predictive models of recovery time. AutoML trained and eval
uated multiple algorithms including gradient boosting machines (GBM), 
random forest, extreme gradient boosting (XGBoost), neural networks, 
and generalized linear models on our dataset. We reserved 30 % of the 
data for validation, training models on the remaining 70 %. AutoML also 
performed automated feature selection to drop irrelevant predictors, 
and iteratively tuned hyperparameters within a given time/resource 
limit (we allowed up to 10 models per algorithm). Model performance 
was ranked by the lowest mean residual deviance on the validation set. 
The top-performing model was chosen for interpretation.

From the best model, we extracted variable importance metrics to 
identify which factors contributed most to explaining recovery time 
variability. Additionally, we explored key interactions and partial 
dependence effects to interpret the influence of specific environmental 
gradients (e.g., soil water retention vs. NDMI) on recovery trajectories. 
This integrative approach helps disentangle how both aboveground (e. 
g., climate, fire regime) and belowground (e.g., soil fertility, water 
holding capacity) factors modulate vegetation recovery dynamics in 
West African savannas. We did not include SHAP or partial dependence 
plots analyses to avoid dispersing focus; permutation importance suf
fices for our objectives and aligns with common practice in eco‑climate 
studies (Bradter et al., 2022; Thuiller, 2024).

5. Results

5.1. Burned area dynamics

Spatio-temporal patterns.
Annual fire activity in the study area is strongly seasonal. Fig. 3

shows the intra-annual distribution of BA. Early dry season burns 
(November–December) dominate, followed by the middle dry season 
(January–February), while the late dry season (March–April) contrib
utes the least. December is consistently the peak month, accounting for 
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about one-third of the total annual BA on average. Summed over 
2014–2023, November through January contributed > 84 % of all BA 
each year. In absolute terms, the region experienced on average 22 ×
103 km2 of area burned per year, with year-to-year variation (std ~ 8 ×
103 km2). Spatially, burns were widespread across the savanna portions 
of all three countries, but certain hotspots emerged. Fire season typically 
onset in November, rapidly peaked by December, and then declined. A 
minor resurgence in April was observed in a few years, likely associated 
with late dry-season agricultural fires or localized droughts extending 
the fire window.

Inter-annual trends (Fig. 3c) indicate a slight upward trend in BA 
over the decade, but this trend is not statistically significant. The non- 
parametric Mann-Kendall test yielded a tau corresponding to + 0.29 
% per year (p > 0.05), suggesting no clear increase or decrease. A linear 
fit illustrates that BA was relatively low in the mid-2010 s (minimum 
around 2017 coinciding with a notably wet year that reduced fires), 

followed by a rise post-2018. By 2023, BA slightly exceeded the 2014 
level, reflecting a possible resurgence of fire activity in recent years. This 
could be related to climate variability or socio-economic factors (e.g., 
shifts in land management).

Burned area frequency categories.
We classified pixels based on how frequently they experienced fire 

during the 2014–2023 fire seasons (Fig. 4). The majority (~60 %) of the 
study area fell into the “rarely burned” category (burned fewer than 7 
times during the study period). These rarely BA include most of the 
agricultural zones in southern Burkina Faso and northern Côte d’Ivoire, 
as well as parts of the northernmost sparse savannas.

About 34 % of the area was “occasionally burned” (burned 7–12 
times), predominantly in northern Ghana and scattered patches else
where. The “moderately burned” class (13–18 times) covered around 5 
% of the landscape and tended to concentrate in ecologically important 
zones such as Comoé National Park and the Bima region, as well as some 

Fig. 3. Burned area seasonality and trends (2014–2023). (a) Spatial distribution of mean monthly burned area frequency (number of years in which a given pixel 
burned in each month, visualized as intensity per month). (b) Total area burned per month, averaged over the decade, showing the dominant contribution of 
Nov–Dec. (c) Annual burned area time series with loess regression (dashed line) and Mann-Kendall trend result. December is the peak month each year, and 
interannual variability is evident, with a mild increasing tendency that is not statistically significant.

B. Ouattara et al.                                                                                                                                                                                                                               International Journal of Applied Earth Observation and Geoinformation 143 (2025) 104783 

9 



parts of Burkina Faso’s savannas. These areas experience fire roughly 
every other year on average and are often described as having a natural 
fire regime. However, in protected areas like Comoé or PONASI, these 
fire patterns are largely influenced by human activity, particularly 
hunting fires and traditional land use (Laris, 2011).

Lastly, “frequently burned” areas (burned more than 18 times) made 
up less than 1 % of the area. There was no large contiguous zone of 

frequent burns; instead, these were small pockets, often near Bima 
(Ghana) and at the edges of Comoé National Park. While these zones 
appear naturally fire-prone, they are typically maintained by repeated 
human burning—especially for early dry-season grass clearing in short- 
grass savannas or bowe types (Laris, 2011). The low proportion of this 
class suggests that, while fire is widespread, very frequent burning is 
limited to specific anthropogenically maintained sites, such as 

Fig. 4. Fire frequency map (2014–2023) categorizing areas by burn frequency (counts are per month during the 2014–2023 fire seasons): rarely burned (<7), 
occasionally burned (7–12), moderately burned (13–18), frequently burned (>18). Insets highlight examples from Dano, Bima, and Comoé National Park, showcasing 
landscapes with moderate-to-high fire recurrence.

Fig. 5. Burned area comparison in two example areas (upper row: Dano, Burkina Faso; lower row: Comoé National Park, Côte d’Ivoire, January 2019). Each panel 
shows a true-color image with burn scars, and the burn classification from: This study (HLS-BA, 30 m), FireCCISFD20 (Sentinel-2, 20 m; Chuvieco et al., 2022), 
FireCCI51 (MODIS, 250 m; Chuvieco et al., 2018), VIIRS-BA prototype (375 m; Ouattara et al., 2024), FireCCI310 (300 m; Lizundia-Loiola et al., 2022), MCD64A1 
(MODIS, 500 m; Giglio et al., 2018).
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rangelands and annually burned fields.
Burned area mapping accuracy.
Our BA product was evaluated against high-resolution reference data 

and other BA datasets. The comparison with BARD fire perimeters for 
2019 showed good agreement: our monthly mapping correctly identi
fied 89 % of the reference burned polygons (omission error ~ 11 %) and 
had a commission error of ~ 15 %. Many of the omitted fires were 
extremely small (<0.5 ha) or occurred under heavy cloud cover, high
lighting the challenges of full detection. The overall accuracy against 
BARD was 95 %, indicating reliable performance in delineating burned 
vs. unburned areas at 30 m.

Intercomparison with other products.
Fig. 5 illustrates how our BA map compares to several existing 

products in two example subsets (10 × 10 km) in Dano (Burkina Faso) 
and Comoé National Park. The high-resolution FireCCISFD20 (Sentinel- 
2, 20 m) is the closest to ours in resolution and showed very similar burn 
patterns, often detecting the same small burn scars. MODIS-based 
products (FireCCI51 at 250 m, MCD64A1 at 500 m) tended to miss 
many of the finer burns, only capturing the larger fire-affected areas as 
larger, more continuous patches. Our product and FireCCISFD20 
captured intricate shapes of burned patches—long narrow burns along 
riverbanks, small circular farm burns—those coarser datasets either 
generalized or omitted. For instance, in Comoé National Park subset, a 
series of small burns under 5 ha are clearly visible in our 30 m map and 
the 20 m Sentinel-based map, whereas the 250 m and 500 m maps either 

show nothing or a single large burned polygon merging them. This 
demonstrates the added value of higher spatial resolution for burn 
mapping in these fragmented savanna-forest landscapes. The VIIRS-BA 
(375 m) product performed intermediate—detecting some, but not 
all, small fires. Overall, the results emphasize that fine-scale burns, 
which can constitute a significant portion of total fire events in West 
Africa, are much better accounted for in our HLS-based dataset. Such 
detail is crucial for ecological assessments (understanding patchy fire 
effects on vegetation) and management strategies (like planning fire 
breaks or controlled burns), especially in areas where fire sizes are 
inherently small due to human landscape fragmentation or fuel 
distribution.

5.2. Ecosystem productivity reduction

Spatio-temporal dynamics of net primary productivity loss.
In our analysis, we explicitly distinguish seasonal (monthly) versus 

annual fire-induced NPP losses. In the results, we refer to seasonal NPP 
loss as the productivity reduction occurring in a given month of the dry- 
fire season (Fig. 6a), whereas annual NPP loss is the total yearly pro
ductivity deficit from all fires (Fig. 6b). Fig. 6a shows the average 
monthly NPP loss during the fire season. December and January, which 
have the most extensive burning, showed the highest NPP loss, each 
losing on average ~ 3.8–12.6 × 10-2 Mg C ha− 1 (as NPP) per month. 
Combined, December–January accounted for the bulk of the fire- 

Fig. 6. Fire-induced Net Primary Productivity (NPP) loss. (a) Mean monthly NPP loss during the fire season (Nov–Apr), highlighting peak losses in Dec–Jan. (b) 
Interannual variation of total NPP loss with no significant trend over 2014–2023. (c) Spatial distribution of cumulative NPP loss (Mg C ha− 1) attributable to fires, 
2014–2023. Northern savannas show minimal loss or slight gains (green/blue), central areas moderate loss (yellow), and southern areas and forest patches high 
loss (red).
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induced productivity deficit (~1.6 Mg C ha− 1). By contrast, March and 
April, when fires are fewer and smaller, showed a decrease in NPP, with 
average monthly values of ~ 1.6 × 10-2 Mg C ha− 1 for March and ~ 1.3 
× 10-2 Mg C ha− 1 for April, indicating an increase in productivity in 
those months due to lower fire intensity and biomass reduction. This 
suggests that the timing of fires has a clear relationship with carbon 
impact: early dry-season fires remove productive vegetation that would 
have otherwise fixed carbon through the dry season, whereas late- 
season fires tend to find less biomass as many annual grasses have 
already senesced, resulting in smaller carbon flux perturbations. Over 
the 10-year period, December was consistently the peak month for NPP 

loss each year.
At the annual scale (Fig. 6b), total NPP loss to fires in the study area 

averaged about 11 × 10-2 Mg C ha− 1 per year, which represents the 
carbon that would have been stored if fires had not occurred. Year-to- 
year variation in NPP loss mirrored the BA trends. The lowest fire 
impact was in 2018, which corresponded to 2017′s low fire activity; that 
year’s NPP loss was minimal, reflecting relatively undisturbed vegeta
tion growth. There were noticeable oscillations: for example, NPP loss 
dropped in 2016–2018 and then rose after 2019, paralleling the BA in
crease. However, the Mann-Kendall trend test on annual NPP loss 
showed no significant trend (p > 0.1), indicating that despite 

Fig. 7. Net Primary Productivity (NPP) loss density (×10-4 Mg C ha− 1 burned) across the study area. Cooler colours represent lower carbon loss per unit of burned 
area, while warmer colours indicate areas with higher NPP loss per hectare, reflecting more severe fire impact. Notably, Comoé National Park shows localized 
hotspots of high loss density, whereas much of the northern savanna exhibits relatively lower per-area NPP loss.
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fluctuations, there is no clear long-term change in fire-related carbon 
loss over 2014–2023. This stability suggests that any potential intensi
fication of fire impact due to climate or land-use changes has so far been 
offset by other factors (or vice versa). On average, we estimate that 
wildfires reduced the region’s annual NPP by roughly 4–6 % each year 
(given typical NPP values for these savannas).

Spatially, fire impacts on NPP exhibited a north–south gradient 
(Fig. 6c). In the northernmost Sudanian savannas (drier region), many 
areas showed negligible or even slightly positive NPP change despite 
burning. In about 20 % of the area (mainly North Burkina and extreme 
North Ghana), NPP in burned pixels was unchanged or a small net gain 
(up to + 0.2 × 102 Mg C ha− 1 per year). This counterintuitive gain could 
occur if post-fire regrowth in wet years overshot the pre-fire biomass or 
if fires removed mostly dead litter, spurring new growth. The central 
savanna belt and southern woodland mosaic had moderate NPP losses 
(up to ~ 3 × 102 Mg C ha− 1 per year). These zones, covering ~ 40 % 
(central) and ~ 36 % (south) of the area, correspond to mixed land cover 
where fire removes grass and some woody biomass but ecosystems are 
moderately resilient. The highest NPP losses were concentrated in about 
4–5 % of the area, notably in and around Comoé National Park 
(southeast of the study area) and parts of southeast Ghana. These areas 
lost up to ~ 9 × 102 Mg C ha− 1 per year over the decade indicating 
intense fires in carbon-rich environments (woodland/forest patches). 
Comoé, for instance, contains dense tree cover in gallery forests that, 
when burned, result in substantial carbon emission and slow regrowth. 
This pattern aligns with well-established fire ecology theory: more 
humid, high-biomass systems tend to suffer greater immediate carbon 
losses due to the combustion of accumulated fuel loads, while more arid 
zones — with lower biomass — may show minimal loss or even short- 
term NPP gains following fire, potentially due to reduced competition 
or nutrient cycling.

NPP loss density.

When normalized by the BA, the NPP loss density (amount of NPP 
lost per ha burned) also shows a gradient (Fig. 7). On average, each 
hectare of BA in the northern savannas resulted in a loss of ~ 4–6 × 10-4 

Mg C ha− 1 of NPP, whereas in the southern, denser vegetated areas, each 
hectare burned lost > 10 × 10-4 Mg C ha− 1. The highest loss densities 
(>12 × 10-4 Mg C ha− 1) were in Comoé National Park and surroundings, 
indicating that when these forest-savanna mosaics burn, they lose a very 
large amount of productivity relative to the area burned. This is ex
pected as these areas have more biomass and higher productivity to 
begin with. In contrast, parts of northern Ghana (around Bolgatanga) 
had lower loss densities (~6–8 × 10-4 Mg C ha− 1), meaning fires there, 
while frequent, impact less carbon per unit area—consistent with those 
being grass-dominated fires with lower fuel loads. One interpretation is 
that northern fires could be “surface fires” consuming mostly grasses, 
which regrow quickly, whereas southern fires may also consume shrubs 
or young trees, leading to higher carbon impact. These density maps are 
useful for pinpointing vulnerable areas where fire does disproportionate 
damage to productivity (edges of forests or protected areas). They also 
provide a metric for modelers to calibrate fire emission models: e.g., an 
average of ~ 8 × 10-4 Mg C ha− 1 lost can be compared to emission 
factors and biomass estimates in savannas.

Burned Area – NPP Loss – LULC Nexus.
We analysed how the impacts of fire activity and its productivity vary 

across different LULC classes (Fig. 8). Overall, savannas and forests were 
the ecosystems most affected by fire. Roughly 44 % of all savanna areas 
burned at least once during the study period, including ~ 19 % in woody 
savannas and ~ 25 % in open savannas. Both subtypes are naturally fire- 
prone, although they differ in vegetation structure.

In forest ecosystems, approximately 41 % of total forest area was 
affected by fire. Notably, deciduous forests made up the majority of 
burned forest area (~39 %), while evergreen and mixed forests com
bined represented only ~ 2 % of forest area burned. This indicates that 

Fig. 8. Burned area and NPP loss by land cover type. Left: Proportion of total burned area occurring in each LULC category (savanna, forest subtypes, cropland, 
grassland). Right: Proportion of total NPP loss attributable to fires in each LULC. Forest fires (especially evergreen/mixed) yield outsized carbon losses compared to 
their area burned, whereas grassland/cropland fires have lower impact per area.
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even relatively closed deciduous forests can burn extensively during the 
dry season, whereas evergreen and mixed forests are more fire-resistant 
due to persistent canopy moisture.

Croplands and grasslands also saw considerable fire activity: about 
35 % of cropland area and 33 % of grassland area experienced burning. 
Fieldwork conducted during the study confirmed that fires in croplands 
are frequently set intentionally for land preparation or post-harvest 
residue management. Grassland fires can be natural or used for 
pasture control. These findings underscore that fire is widespread across 
both wild and human-managed landscapes in West Africa.

When evaluating the distribution of NPP loss by LULC, clear differ
ences emerge in ecosystem vulnerability: 

• in evergreen forests, just ~ 1 % of forest area burned over the whole 
analysis period, but this small fraction accounted for ~ 26 % of total 
NPP loss.

• mixed forests had similar proportion: ~1% of area burned, contrib
uting ~ 18 % of NPP loss.

• deciduous forests, with ~ 39 % of forest area burned, caused only ~ 
13 % of the NPP loss.

This highlights those fires in evergreen and mixed forests are espe
cially destructive in terms of carbon—they likely kill mature trees and 
lead to prolonged productivity declines. In contrast, deciduous forests, 
although more frequently affected, may experience less severe per-area 
carbon losses due to faster post-fire recovery and more open canopy 
structure.

Savanna systems exhibited proportional NPP losses: open savannas 
accounted for ~ 19 %, and woody savannas ~ 8 % of total NPP loss, 
which aligns closely with their share of BA. These systems, being fire- 

adapted, tend to regenerate quickly and lose less carbon per hectare 
burned.

Croplands and grasslands each contributed ~ 8 % of total NPP 
loss—lower than their respective BA shares—indicating that these sys
tems, with generally low biomass and rapid post-fire regrowth, suffer 
relatively minor carbon impacts.

5.3. Post-fire vegetation recovery

Recovery trajectories.
Vegetation in most BA eventually regained its pre-fire productivity, 

but the timeframe for recovery varied widely (Fig. 9). On average, we 
found that NPP in burned patches returned to baseline in about 3 months 
post-fire. Notably, roughly 65 % of the burned pixels achieved full re
covery within 1 year. These quickly recovering areas are largely the 
grassy savannas and farmlands where either herbaceous vegetation re- 
sprouts in the next wet season or crops are replanted. An additional 
~ 16 % of BA recovered in 2–3 years. Therefore, by three years out, over 
80 % of BA had recovered. The remaining ~ 20 % took longer or did not 
recover within our analysis period. Specifically, delayed recovery classes 
(4–5, 6–7, 8–9 years) together accounted for ~ 14 % of BA, and these 
were mostly scattered in northern Ghana and parts of Comoé National 
Park. The “very delayed” (8–9 years) category was rare and often cor
responded to spots that might have burned multiple times before fully 
recovering or where a shift in vegetation occurred (e.g., grass replacing 
shrubs). Fig. 9 highlights that long-term unrecovered patches were not 
large continuous zones but rather mosaics (small pockets within the 
generally recovering matrix). For instance, in Comoé National Park, 
which generally regains productivity in a few years, there were isolated 
depressions where recovery took nearly the whole decade—possibly due 

Fig. 9. Post-fire recovery time categories (spatial distribution). Most burnt areas (green) regenerate quickly, whereas scattered patches in Ghana and Comoé National 
Park (red) show much slower recovery.
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to repeated fire hits or drought impacts.
In contrast, some regions like around Dano (Burkina Faso) exhibited 

very fast recovery, usually within the same growing season or by the 
next year. These differences suggest that local conditions (soil, species 
composition, fire intensity) modulate recovery. Overall, the fact that 
two-thirds of the area bounced back within a year demonstrates a 
resilient baseline for West African savannas – they are well adapted to 
frequent fire. However, the presence of a significant minority of areas 
with multi-year recovery indicates that severe or repeated burns can 
push some ecosystems to slow regenerative trajectories.

Recovery by land cover.
When analysing recovery rates by LULC, clear patterns emerged 

(Fig. 10). At monthly scale, grasslands showed the highest proportion of 
immediate recovery (within 1 month). These are typically areas of pure 
grasses that can re-sprout quickly from roots after early-season fires, 
especially if rains return. Deciduous forests, savannas (both woody and 
open), and croplands had relatively fewer cases of one-month recovery, 
but many fell into short-term (2–3 months) recovery. Deciduous forests 
often flush new leaves in the next wet season (within a couple of months 
after fire if timed before rains), and savannas likewise regrow herba
ceous cover by the wet season. Croplands may be ploughed or replanted, 
effectively “recovering” in terms of productivity when the new crop 
grows. Medium to long-term recovery (4–7 months) was uncommon 
overall, but where it occurred it was mostly in savannas and croplands. 
This could indicate instances of fire coinciding with drought or soil 
degradation delaying regrowth.

At annual scale, nearly all LULC types were dominated by rapid re
covery classes, but with nuanced differences. Deciduous forests actually 
showed the highest fraction of fast recovery (within 1 year) among LULC 
categories. This seems counterintuitive given forests have more biomass 
to regrow; a possible explanation is that many deciduous forest pixels 
include understory grass that recovers, and the metric NPP might be 
satisfied by partial recovery of the system (even if tree biomass is not 
fully restored). Savannas also had a high share of 1-year recoveries, 
followed by moderate (2–3 year) recoveries. Grasslands and croplands 
interestingly had more cases of delayed (6–7 years) and very delayed 
(8–9 years) recovery than forests or savannas. This likely reflects human 
factors: some croplands might have been abandoned after a fire, or 
converted to something with lower productivity, hence never “recov
ering” in terms of NPP. Grassland recovery could be delayed if repeated 
burning prevents accumulation of biomass year after year. Still, those 

long delays were a small portion of grassland/cropland pixels.
All vegetation types in this region exhibit strong resilience, but the 

risk of prolonged recovery is slightly higher in managed or open-land 
systems, possibly due to land degradation or repeated disturbance, 
whereas the mostly natural savanna and deciduous woodland systems 
tend to recover their productivity relatively quickly.

5.4. Factors influencing recovery rates

The H2O AutoML analysis selected a GBM as the best model for 
predicting recovery time from environmental variables. The final GBM 
achieved high predictive accuracy, with a cross-validated R2 of 
approximately 0.94 and a Root Mean Squared Error (RMSE) of 0.5 years, 
indicating robust model performance. The top-performing GBM slightly 
outperformed other candidate models, including two additional GBMs 
with alternative hyperparameters and two XGBoost models.

The variable importance results (Fig. 11), scaled to 100 %, provide 
clear insights: soil nutrients and soil moisture retention capacity 
emerged as the most influential predictors, surpassing climatic, land- 
cover, and fire-related variables. Conversely, fire regime characteris
tics, soil classification, and vegetation types contributed minimally to 
explaining recovery variability.

The most important predictor was (1) soil total nitrogen. Areas with 
higher nitrogen levels recovered more rapidly—likely because nitrogen 
is a key limiting nutrient that fuels post-fire regrowth. Soils rich in 
organic nitrogen appear to accelerate the return of biomass and pro
ductivity after burning. This was followed by (2) soil water-holding 
capacity (measured via retention at 1500  kPa), which ranked among 
the top variables. Soils with greater water retention sustained vegetation 
growth better through the dry season, supporting faster recovery inde
pendently of rainfall patterns. Both (3) NDMI and its interaction with 
itself (NDMI × NDMI) were also highly ranked. This underscores that 
consistent vegetation moisture—more than just peak green
ness—supports resilience. The squared interaction reflects the impor
tance of moisture stability, suggesting that environments with steady 
moisture availability facilitate stronger recovery than those with fluc
tuating conditions. Several interaction terms involving (4) NDMI and 
temperature or LST were also highly influential. The NDMI × LST term, 
in particular, highlighted the compound stress of drought and heat: even 
moist areas may recover slowly under extreme heat due to increased 
evapotranspiration. Conversely, cooler microclimates aided regrowth 

Fig. 10. Recovery patterns by land cover. Left: Proportion of burned area in each LULC achieving annual recovery within 1, 2–3, 4–5, 6–7, 8–9 years. Right: 
Proportion achieving monthly recovery within 1, 2–3, 4–5, 6–7 months. Grasslands show very fast initial recovery (many in 1 month), while croplands and 
grasslands have a tail of very delayed cases at the annual scale, unlike forests which mostly recover by 3 years.
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even in less moist zones. Precipitation and its interactions appeared with 
lower—but still non-negligible—importance, reinforcing the notion that 
soil water availability may be more critical than short-term rainfall in
puts in supporting regrowth.

By contrast, fire-related variables—such as burn frequency—and 
vegetation type (land cover class) had near-zero relative importance. 
Whether a site was grassland or forest, or burned once or multiple times, 
had limited predictive power once moisture and soil conditions were 
accounted for. This reinforces the idea that post-fire recovery is pri
marily shaped by underlying ecosystem traits—not fire recurrence itself.

These results highlight the dominant role of edaphic factors (espe
cially nitrogen availability and soil water retention) in shaping recovery 
speed. Vegetation moisture (NDMI) and temperature remain important, 
particularly through their interactions, but nutrient availability and soil 
hydrological properties substantially enhance model performance. The 
negligible contribution of fire regime metrics implies that recovery 
trajectories are largely shaped by ecological context rather than 
disturbance frequency. While fire characteristics may influence other 
aspects of fire ecology (e.g. structural change, species turnover), they 
appear secondary for functional recovery as measured by NPP in this 
system.

6. Discussion

6.1. Fire regimes and carbon dynamics in west African savannas

Our results paint a comprehensive picture of how wildfire regimes 
impact vegetation productivity in West African savannas, and they 
provide important insights into ecosystem resilience. The pronounced 
seasonality we observed — with fires largely confined to the dry months 
and peaking in December — aligns with known regional fire regimes 
(Lehmann et al., 2014; Laris et al., 2016) and reflects the strong influ
ence of climate on fire timing in Africa (Wimberly et al, 2024). However, 
previous research shows that human land-use practices also shape fire 
seasonality, often initiating burning earlier than the climate-driven 
drying cycle would predict (Le Page et al., 2010). While our analysis 
focused on climatic and environmental drivers, this human dimension is 
essential for interpreting savanna fire patterns more fully. This seasonal 
concentration means that fire effects on carbon and ecology are also 
highly seasonal: a large flush of carbon is released and productivity 
drops sharply in early dry season, followed by a gradual recovery that 
often begins even before the onset of rains, likely reflecting early leaf 

flush and herbaceous regrowth triggered by temperature and photope
riod cues (Herrmann et al., 2005; Ryan et al., 2011). We found no strong 
long-term trend in BA or NPP loss from 2014 to 2023, suggesting a 
relatively stable fire regime over the past decade. This is notable because 
other studies have reported declining BA globally — particularly in 
African savannas — due to agricultural expansion, grazing pressure, and 
landscape fragmentation, a phenomenon referred to as the “human fire 
sink” (Andela et al., 2017). However, more recent work by Caillault et al. 
(2020) highlights that many savanna regions, especially in West Africa, 
exhibit stable fire activity over the past decade, where traditional fire 
use continues and fire suppression is limited. Our study area may reflect 
this pattern, with fire regimes maintained by customary practices and 
year-to-year variability shaped primarily by climate rather than fire 
exclusion. For instance, the dip in fire activity around 2017–2018 
coincided with wetter conditions, illustrating how rainfall can override 
human factors in certain years by limiting fuel dryness.

The integration of high-resolution BA mapping proved crucial for 
accurately quantifying fire impacts. By capturing small fires, we deter
mined that a considerable portion of the landscape (especially croplands 
and fragmented savannas) burns at fine scales that coarser satellites 
miss. These small fires, while individually modest, collectively 
contributed significantly to total BA and carbon loss. This finding cor
roborates recent literature emphasizing the importance of accounting 
for “missing small fires” in global fire budgets (van der Werf et al., 2017; 
Li et al., 2018). In West African rural contexts, these small burns often 
result from farm cleaning or hunting activities. The spatial burn fre
quency patterns we found – with most areas burning only occasionally 
and very few burning annually – suggest that fire rotation periods are on 
the order of 3–5 years in many savannas. This is consistent with 
ecological understanding that while savanna grasses can burn yearly, 
intentional fire management and patchiness usually create a mosaic of 
different burn ages (Archibald et al., 2009). Comoé National Park dis
plays a mosaic of fire frequencies: while much of the park burns at 
moderate intervals, localized zones within it show some of the highest 
fire recurrence in the region. This suggests that while natural barriers (e. 
g., rivers, moist forest patches) and management may reduce wide
spread reburning, certain areas remain highly fire-exposed—possibly 
due to fuel continuity or anthropogenic ignition within or near park 
boundaries.

Our analysis of carbon productivity loss due to fire reveals both the 
scale and ecological pattern of its impact. Across the ~ 230,000 km2 

study region, fires caused an average loss of ~ 11 × 102 Mg C ha− 1 per 

Fig. 11. Variable importance for recovery time (gradient boosting machines – GBM model). Bars show relative importance (% of the top variable). Soil variables 
(total nitrogen, water-holding capacity) and vegetation moisture (NDMI-related terms) dominate the model, along with their interactions with temperature. Climate 
× moisture interactions (e.g. NDMI × LST) are also highly influential. Fire frequency and broad land-cover categories have near-zero importance, indicating minor 
direct effects on recovery.
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year in NPP – carbon that would otherwise have been sequestered in 
biomass or soil. While savannas are often described as “fire-resilient,” 
this resilience refers primarily to vegetation cover, not carbon balance. 
The carbon cost of fire is unevenly distributed: more humid, high- 
biomass areas – such as forest–savanna mosaics and evergreen wood
lands – suffer disproportionately high NPP losses per hectare. These 
systems burn more intensely and recover more slowly, particularly when 
fire kills woody vegetation that took years to accumulate. This pattern 
aligns with the fire trap or Gulliver effect (Bond and van Wilgen, 1996), 
where frequent fires in mesic savannas suppress tree maturation and 
reinforce open structures despite high productivity. In contrast, semi- 
arid savannas are more water-limited and less affected per fire 
(Sankaran et al., 2005; Higgins et al., 2007). Our LULC-stratified results 
confirm that evergreen forests contribute disproportionately to NPP loss, 
relative to their BA. This has important implications for carbon man
agement: protecting woody patches and preventing fire intrusion into 
forest fragments could significantly reduce emissions – even if open 
savannas and croplands continue to experience regular burning, where 
carbon is often regained more quickly. This also ties into the broader 
debate around fire timing and carbon outcomes – namely, whether 
promoting early dry-season burning could help reduce long-term carbon 
loss. While our study does not explicitly assess fire timing, the observed 
resilience of open savannas and vulnerability of woody zones suggests 
that fire intensity and vegetation type jointly influence carbon 
dynamics.

Compared to other ecosystems globally, the fire-induced NPP losses 
observed in West Africa (up to ~ 9 × 102 Mg C ha− 1 per year in for
est–savanna mosaics) are high. In southern African savannas and the 
Brazilian Cerrado, annual fire-driven losses typically range from 2 to 10 
Mg C ha− 1, reflecting lower biomass and more frequent but less intense 
fires (Williams et al., 2025; Silva et al., 2019). In contrast, tropical 
rainforest fires, though rare, can cause catastrophic losses exceeding 50 
Mg C ha− 1 per event due to dense biomass and slow recovery (Aragão 
et al., 2018). Boreal forests experience similar magnitudes during severe 
fires, but with long fire-return intervals. These comparisons position 
West Africa’s Forest–savanna transition as a globally significant hotspot 
for fire-related carbon loss, combining the flammability of savannas 
with the biomass vulnerability of tropical forests.

Another key point is that we did not observe a significant long-term 
trend in NPP loss – meaning fire’s impact on regional carbon storage has 
been relatively steady in recent years. However, if climate change leads 
to more extreme droughts or higher temperatures, one might expect 
larger NPP losses per fire (as vegetation would be more stressed and 
perhaps less productive even before fire). Additionally, if socio- 
economic changes lead to either more intense burning (e.g., through 
deforestation fires) or less burning (fire suppression), the carbon balance 
could shift. In this sense, our results provide a baseline for the current 
decade. Continuous monitoring is needed to detect any deviation from 
this baseline under future climate scenarios.

6.2. Vegetation resilience and post-fire recovery processes

The estimated speed of post-fire recovery — with over 65 % of BA 
regaining pre-fire NPP within a year — highlights the capacity of many 
West African savanna ecosystems for rapid functional rebound. This 
reflects broad fire-adaptive traits among dominant vegetation types, 
including fast-growing grasses and resprouting woody species (Staver 
et al., 2011, Zeitler et al., 2025). However, this resilience is not uniform: 
as our results show, recovery is slower in more humid and woody zones, 
where fire may inflict greater structural damage and regrowth is 
delayed. These contrasting dynamics underscore that savannas are both 
fire-adapted and fire-sensitive, depending on vegetation structure, fuel 
load, and burn conditions — a complexity also highlighted in recent 
synthesis work (Lehmann et al., 2014; Hahn and Leßmeister, 2021; 
Bowring et al., 2022). Our finding that deciduous forests often recovered 
to pre-fire NPP levels within a year suggests that, while above-ground 

vegetation may have been altered, root systems likely remained intact, 
allowing for rapid regrowth and leaf flushing in the next wet season. 
However, this does not imply full structural or ecological recovery. It is 
critical to distinguish functional recovery—the return of NPP—from 
structural recovery, which involves the regrowth of original biomass, 
canopy structure, and species composition. An area may regain its car
bon uptake quickly through fast-growing grasses or resprouting shrubs, 
yet take years to recover its original tree height, woody biomass, or 
floristic identity (Bond and Keeley, 2005). Our study focuses on this 
functional aspect, which is central to understanding carbon cycling, but 
it does not capture biodiversity shifts or long-term vegetation structure. 
These may diverge significantly, particularly in zones that burn 
frequently or intensely, and should be addressed in future work using 
structural or floristic indicators.

The small fraction of areas with very delayed or no recovery raises 
important questions. These zones were often located in croplands and 
grasslands, where land use decisions and agro-pastoral practices, rather 
than fire alone, may explain the observed low productivity. In these 
systems, fields may be left fallow, rotated with different crops, or used 
seasonally for grazing. While fallow land is reportedly declining, it re
mains a common management strategy. In such cases, our NPP-based 
analysis would classify these fields as “non-recovered,” even if the 
apparent inactivity reflects intentional land-use choices rather than 
ecological degradation. Similarly, repeated grazing or clearing pressure 
may lead to vegetation shifts toward lower-productivity cover types (e. 
g., compacted soils or unpalatable shrubs).

In more natural systems (especially unmanaged grasslands and open 
savannas), the pattern of long-term non-recovery may reflect the cu
mulative effects of repeated burning. While a single fire is often quickly 
absorbed by fire-adapted vegetation, chronic fire disturbance over years 
or decades can degrade ecosystems. Frequent burns may reduce soil 
nutrient stocks (through volatilization or erosion) and favour fire- 
tolerant but less productive species, ultimately lowering the land
scape’s carbon carrying capacity (Cleary et al., 2010; Wright et al., 
2020). In our data, such processes may appear as areas that never return 
to pre-fire NPP levels. From a management perspective, identifying 
these persistent low-productivity patches could help target interventions 
such as reseeding, grazing exclusion, soil restoration, or adjusted fire 
regimes to support full ecosystem recovery.

When it comes to the drivers of post-fire recovery, edaphic factors 
overwhelmingly control recovery speed. Soil fertility and moistur
e—especially nitrogen content and water-holding capacity—are the 
strongest predictors of how fast burned savannas bounce back. In 
contrast, NDMI (post-fire greenness) and temperature rank secondary, 
while fire frequency and cover type have negligible influence. This 
suggests that within each land cover type, there is a wide range of re
covery outcomes depending on local environmental conditions. How
ever, since fire timing was not included in the analysis, we interpret this 
result cautiously—fire seasonality may interact with both vegetation 
type and climate, influencing post-fire recovery.

Another key finding from the drivers analysis was the surprisingly 
small effect of fire frequency on post-fire recovery time. Intuitively, one 
might expect areas that burn repeatedly to recover more slowly due to 
cumulative disturbance. However, our data showed no strong correla
tion: areas burning for the third or fourth time often recovered as quickly 
as those burning for the first time, after accounting for environmental 
variables. This aligns with extensive savanna fire ecology literature, 
which suggests that frequent burning in fire-adapted system
s—particularly mesic savannas—does not necessarily impair recovery 
and may even maintain vegetation in a stable state (Laris, 2017; San
karan et al., 2005; Staver et al., 2011).

Recovery in our study area is largely resource-limited: soils rich in 
nutrients and moisture support fast regrowth and allow woody plants to 
thrive. This dynamic reflects what has been described as the Gulliver 
effect or fire trap (Freeman et al., 2017; Hoffmann et al., 2019), where 
frequent low-intensity fires suppress tree recruitment but do not reduce 
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grass productivity—keeping ecosystems locked in a low-biomass, fast- 
recovering state. Many grasslands in our study area are likely adapted to 
this regime, where fast-regrowing annuals dominate and repeated fire is 
part of the natural cycle.

In contrast, on nutrient-poor or well-drained soils, tree seedlings 
remain stunted. This is consistent with theories suggesting that chronic 
burning depletes soil nitrogen and suppresses NPP. Ecologically, our 
findings support the idea that the tree–grass balance in savannas hinges 
not just on fire regime but also on soil fertility and water availability, 
which control juvenile growth rates (Pellegrini et al., 2018). For land 
management, these findings imply that improving soil resources can 
speed recovery: for example, conserving soil organic matter or length
ening fire-free intervals (especially after late-season burns) can help 
trees reach escape height. In water-retentive, nutrient-rich soils, vege
tation can recover rapidly even under frequent fire.

It is also possible that the range of fire frequencies in our dataset 
(mostly ≤ 7 burns over 10 years) was not sufficient to detect degradation 
thresholds. More extreme cases of high-frequency burning, or longer 
historical periods, might show different outcomes. Additionally, our 
recovery metric resets after each fire, meaning a pixel can recover 
quickly each time, even if its absolute productivity remains lower over 
time. This highlights an important nuance: rapid “recovery” to a modest 
baseline in a fire-adapted grassland is not the same as structural or 
compositional recovery in more woody systems.

While prior work such as Tepley et al. (2018) highlights the role of 
vegetation feedbacks and recovery duration in forested systems, our 
findings suggest that in West African savannas, post-fire recovery as 
measured by NPP is more strongly governed by climate and soil condi
tions than by fire frequency or land cover. This likely reflects the faster 
recovery dynamics and lower sensitivity to vegetation-fire feedbacks in 
these fire-adapted landscapes.

6.3. Implications for fire management and ecosystem conservation

Our findings have several implications for fire management and 
climate mitigation in West African savannas. One key result is that 
forested areas exhibited higher per-hectare NPP losses during fire 
events, even though many functionally recovered within a year. This 
suggests that while these systems are capable of regaining carbon up
take, they may still experience significant immediate biomass loss and 
potential shifts in structure or species composition. Forest patches 
embedded within the savanna matrix—especially those with dense 
woody cover—are therefore ecologically sensitive and merit targeted 
protection from high-intensity or repeated burning.

Fire management strategies in protected areas such as Comoé Na
tional Park should prioritize preventing late dry-season fires, when fuels 
are driest and fire intensity peaks. Effective approaches may include 
maintaining firebreaks, promoting early dry-season burns in surround
ing savannas to reduce fuel loads, and engaging with local communities 
who already practice seasonally timed burning for agricultural and 
pastoral purposes. As noted by Laris (2017), early burning is often used 
traditionally to protect rather than harm forested zones, and suppression 
of these practices can backfire by increasing the risk of intense late- 
season burns. Supporting community-led fire calendars—rather than 
imposing top-down restrictions—offers a culturally grounded, ecologi
cally effective path toward resilience. This not only helps to minimize 
carbon emissions but also preserves biodiversity in forest remnants that 
may host species not found in the surrounding savanna.

Our results also show that most savanna fires have relatively low 
long-term impacts on productivity, particularly when burning occurs 
under milder conditions. This supports a fire management paradigm that 
views fire not as a threat to be eradicated, but as a tool to be timed and 
guided wisely. Controlled early-season burns, when vegetation still re
tains moisture, appear to allow for faster recovery and reduced carbon 
loss—patterns reflected in our monthly recovery data. Rather than 
replacing traditional fire use, fire management policies should aim to 

enhance its effectiveness and sustainability, by co-developing strategies 
that support both local land use objectives and broader ecological goals 
such as soil conservation or carbon sequestration.

From a climate change perspective, maintaining productivity and 
reducing carbon losses in frequently burned savanna systems is a 
meaningful contribution to regional mitigation strategies. Though sa
vannas store less carbon per hectare than rainforests, they cover vast 
areas and burn regularly—making their cumulative role in the carbon 
cycle non-trivial. Reducing unnecessary or unintentional fire
s—especially those offering little benefit or caused by unmanaged 
ignition—can help cut emissions. At the same time, supporting rapid 
post-fire recovery through landscape restoration, soil moisture retention 
(e.g., mulching, cover crops), or erosion control may accelerate carbon 
re-sequestration.

Finally, although our study did not find strong trends in fire activity 
or recovery over the past decade, this does not guarantee future stability. 
Climate projections for West Africa point toward more erratic rainfall 
patterns and potentially longer or harsher dry seasons (Alamou et al., 
2022; Yapo et al., 2023). If these changes lead to earlier or more intense 
fires, NPP losses could rise, and recovery may slow. Conversely, elevated 
CO2 levels could enhance plant growth through fertilization effects 
(O’Leary et al., 2015), potentially speeding up recovery or fuelling more 
intense burns if biomass accumulates. Continued monitoring using high- 
resolution fire and productivity metrics, as demonstrated in this study, 
will be critical for anticipating and responding to shifts in fire regimes 
under changing climate conditions.

6.4. Uncertainties and limitations

While comprehensive, our study has several uncertainties and limi
tations worth noting. First, our BA mapping, despite its high resolution, 
is not infallible. We relied on remote sensing detection, which can miss 
understory fires or very small burns, especially under cloud cover. We 
mitigated this with multi-source data and our algorithm, but an un
known fraction of area might still be unaccounted for (particularly fires 
occurring under dense smoke or in persistently cloudy periods). The 
validation against BARD was limited to 2019, expansion of reference 
data in other years would strengthen confidence in our BA estimates.

Second, satellite-derived NPP has its own uncertainties. We down
scaled annual NPP using GPP fractions, assuming a proportional rela
tionship. If fires themselves alter the efficiency of NPP vs. GPP (for 
example, maybe plants under post-fire stress have higher respiration 
fraction), our estimated NPP loss might be off. Also, MODIS at 500 m 
could mix burned and unburned areas in one pixel, and while we tried to 
isolate burned contributions by masking with our BA map, any 
misregistration or mixed pixel issues could blur the actual NPP drop. We 
included October and May in the fire-season integration to capture full 
effects, but it is possible that some pre-fire productivity decline (e.g., due 
to drought) or post-fire fertilization effects are conflated. Field mea
surements of biomass and NPP after fires would be valuable to calibrate 
the magnitude of satellite-inferred losses.

Our recovery metric, based on matching pre-fire NPP, might some
times label a pixel as “recovered” even if the vegetation composition 
changed. For example, if a forest burns and is replaced by fast-growing 
shrubs/grass that achieve similar NPP, we count it as recovered, even 
though from a biodiversity standpoint it is not the same. Conversely, if 
fire causes a shift to a less productive state (like shrubland to grassland 
with lower leaf area), we count as non-recovery even if ground cover is 
back. Thus, our method is focused on functional recovery and does not 
capture all ecological dimensions of recovery. This should be kept in 
mind – managers should not equate “NPP recovery” with full ecosystem 
recovery.

There are several limitations and uncertainties in our driver’s anal
ysis that need to be addressed. One significant limitation is that the 
analysis does not establish causality. Although the statistical perfor
mance of the driver’s analysis is robust, correlations between variables 

B. Ouattara et al.                                                                                                                                                                                                                               International Journal of Applied Earth Observation and Geoinformation 143 (2025) 104783 

18 



such as soil nutrients, moisture, temperature, and recovery should be 
interpreted with caution. It is important to note that while soil fertility 
(nitrogen content) and moisture availability were found to be strong 
predictors of post-fire recovery, other unmeasured factors—such as soil 
microbial activity, herbivory, and other ecological processes—could 
also play a role in shaping recovery outcomes. Thus, while soil factors 
like nitrogen and water retention capacity provide key insights, further 
field studies are necessary to better isolate the exact mechanisms driving 
recovery.

Another limitation arises from our use of environmental proxies, 
such as NDMI and temperature, which may not fully capture the 
complexity of the recovery process. For instance, NDMI captures mois
ture availability but may not accurately represent soil moisture at 
deeper levels or reflect finer-scale temporal variations in soil water 
content. Although NDMI is a valuable indicator, it is still a remote- 
sensing-derived metric, and its interpretation could be affected by sea
sonal changes and vegetation type. Future studies should consider 
combining multiple moisture proxies, such as direct soil moisture 
measurements, to improve the accuracy of moisture availability as
sessments, especially in heterogeneous landscapes like those of West 
African savannas.

Fire seasonality was another aspect not fully incorporated into the 
analysis. While our study focused on the impacts of fire in the dry sea
son, the timing of the fire (early vs. late dry season) could influence both 
fire intensity and the capacity of ecosystems to recover (Laris et al., 
2021). Fire seasonality, along with its interactions with temperature and 
moisture, may modulate recovery dynamics. The absence of fire timing 
in our current analysis represents an important gap, as late-season fires 
often burn more intensely, which could lead to higher carbon loss and 
slower recovery. In future studies, incorporating fire seasonality and fire 
intensity data—possibly through satellite-derived fire radiative power 
or field data on fire severity—would offer a more comprehensive un
derstanding of how fire interacts with the environment to affect post-fire 
recovery.

Finally, while we used a range of climate and soil data, some critical 
environmental variables could not be included. For example, soil data, 
such as from the SoilGrids dataset (Batjes and van Oostrum, 2023), 
provide valuable insights into the influence of soil properties on re
covery at a 250 m resolution. However, higher-resolution data would be 
preferable to better capture finer-scale variations in soil properties, 
especially in heterogeneous landscapes like West African savannas. 
Furthermore, our climate predictors came from coarse-resolution rean
alysis data (ERA5 ~ 10  km), which may not capture fine-scale rainfall 
variability (e.g., localized storms) that also influences recovery. Never
theless, the relatively strong performance of our models, even with these 
broad-scale inputs, suggests that soil data and temperature are dominant 
and detectable drivers of post-fire resilience.

The inclusion of more detailed soil data in future studies could refine 
our understanding of how these factors influence recovery time, 
particularly in areas where soil moisture and fertility interact with 
climate to modulate regrowth. Furthermore, our climate predictors 
came from coarse-resolution reanalysis data (ERA5 ~ 10  km), which 
may not capture fine-scale rainfall variability (e.g., localized storms) 
that also influences recovery. Nevertheless, the relatively strong per
formance of our models, even with these broad-scale inputs, suggests 
that edaphic factors, soil moisture and temperature are dominant and 
detectable drivers of post-fire resilience.

Finally, future research could extend this work by examining emis
sions (translating NPP loss to carbon emissions and accounting for 
combustion vs. decay) and by integrating faunal impacts (fires also 
impact wildlife and grazing, which in turn affect vegetation recovery). 
There is also the need to consider extreme events: our decade had no 
exceptionally severe drought. If an extreme El Niño drought occurred, 
what would be the combined effect with fire? Our study sets the stage for 
answering such questions by providing methods and baseline 
relationships.

7. Conclusion

We developed and applied an integrated remote sensing framework 
to estimate how fires affect ecosystem productivity and recovery in West 
African savannas. By using high-resolution satellite data (VIIRS, Land
sat, Sentinel-2) and machine learning, we produced a 30 m BA record 
and captured detailed fire impacts on carbon dynamics from 2014 to 
2023. Our findings reveal a generally resilient yet fire-influenced land
scape: most areas burn infrequently and recover their productivity 
within months, reflecting adaptive traits of savanna vegetation. On the 
other hand, intense fires in high-biomass areas (like forest patches) 
cause substantial carbon losses and longer recovery, highlighting those 
areas as priorities for fire management. We showed that soil factors, 
especially soil nutrients (e.g., total nitrogen) and soil moisture retention 
capacity, overwhelmingly govern the pace of post-fire recovery, more so 
than fire history or vegetation type. This recovery reflects the ecosys
tem’s ability to regain its carbon uptake capacity after fire, as captured 
through NPP trajectories. However, this does not equate to full ecolog
ical recovery, which would require species-level monitoring of vegeta
tion composition and structure. This emphasizes the need to incorporate 
climate projections in fire impact assessments – e.g., prolonged droughts 
could impede recovery even if fire regimes remain unchanged. From a 
practical perspective, this study underscores the importance of fine-scale 
fire monitoring in savannas. The ability to detect small fires allowed us 
to more accurately estimate BA and NPP loss, which are crucial for 
carbon budget calculations. We estimate that, over the last decade, fires 
reduced NPP in the region by roughly 11 × 10-2 Mg C ha− 1 per year. 
Mitigating these carbon losses through improved fire management 
(optimizing fire timing and location) could contribute to climate change 
mitigation, while also protecting local livelihoods and biodiversity.

For instance, preventing late-season fires in and around forests can 
avoid disproportionately large carbon emissions and foster quicker 
vegetation rebound.

We also provide new methodological avenues – our two-tailed BA 
detection and the use of AutoML for ecological modelling can be 
transferred to other regions and disturbance studies. This multidisci
plinary approach (combining earth observation, ecology, and data sci
ence) proved powerful in unravelling complex interactions between fire, 
climate, and vegetation.

In conclusion, West African savannas exhibit rapid but variable re
covery from fire. While functional resilience, in terms of NPP recovery, 
provides insight into the ecosystem’s ability to bounce back, it does not 
necessarily imply full ecological recovery, which can involve slower 
processes like biomass and canopy regrowth. Sustainable management 
will require maintaining that recovery capacity in the face of growing 
human pressures and climate change. By identifying the drivers of re
covery and the areas of concern, our research offers a science-based 
guide for policymakers and land managers. Actions such as integrated 
fire management planning, conservation of moisture-rich refugia, and 
community engagement in fire use can enhance post-fire recovery and 
safeguard the ecosystem services these savannas provide – from carbon 
sequestration to biodiversity and agriculture. As wildfires globally are 
becoming a focal point under climate change, this regional study con
tributes a timely case of how remote sensing can inform proactive 
strategies to coexist with fire while minimizing its adverse impacts.
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