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2 Earth Observation and Public Health
Priority: Applications and Research  

Areas by Theme 

This section presents six applications of  Earth the reader on the classes of  resolution used to 
Observation (EO) to public health issues. There categorize EO systems and on EO systems and 
are also two tables in Appendix B that can guide their spatial, spectral, and temporal resolution. 
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Context, state of knowledge, 
challenges, and responses 

The World Health Organization (WHO) has 
highlighted identification and monitoring of 
vector populations as an important component 
of  global vector-borne disease surveillance ef-
forts.1 (WHO, 2012, 2015) EO data could play a 
crucial role in identifying risk locations for mos-
quito-borne diseases globally on the basis of 
habitat and climate variables. Were EO data to 
have sufficiently high spatial and temporal reso-
lution, applied research could develop weath-
er-based and environment-based forecasting of 
high-risk locations and time periods for mosqui-
to-borne diseases using statistical models. Fur-
thermore, EO data may contribute to monitoring 
the evolution of risk. EO data are also useful for 
measuring or mapping a range of  environmen-
tal parameters that help determine mosquito 
vector occurrence and abundance and the rate 
of development of mosquito-borne parasites and 
pathogens in mosquito vectors. These param-
eters include rainfall, extent of  standing water, 
temperature, and land use and land cover. 

Examples of recent research 

For more than two decades, extensive research 
has been conducted into the use of  EO data as a 
tool to inform responses to mosquito-borne dis-
eases (Hay et  al., 1998a; Kalluri et  al., 2007; 
Kotchi et  al., 2019). Main objectives include 
identifying risk areas at various spatial scales 
(Rogers et  al., 2002), identifying seasonality in 
risk in different locations (Hay et  al., 1998b), 
and forecasting impending outbreaks or peaks 
in disease risk (Ceccato et  al., 2005). EO data 
have been used in a number of  ways for these 
purposes. In its simplest form, EO data analysis 
for identifying different habitats can consist of 
classifying imagery into relevant landscape clas-
ses. In a case study on dengue, Machault et  al. 
(2014) developed dynamic risk maps at the 
housing level on a daily basis for the vector mos-
quito Aedes aegypti in the French Antilles. The 
study identified EO data with very high spatial 
resolution of  0.5 m as a suitable source to pro-
duce land use classes for a spatio-temporal stat-
istical model. Catry et al. (2016) fused radar and 

optical satellite imagery and derived land cover 
classifications for studying the eco-epidemiology 
of  vector-borne diseases in tropical South Amer-
ica. Their study demonstrated that relevant land 
cover maps and wetland classifications could be 
generated on a weekly basis using multi-temporal 
cloud-penetrating C-band synthetic aperture 
radar (SAR) Sentinel-1A satellite data in com-
bination with optical Sentinel-2 data and L-band 
SAR Advanced Land Observing Satellite-1 
(ALOS) (Fig. 2.1.1). 

In many parts of  the world, there is insuffi-
cient ground-truthed information to reliably 
classify EO data as habitat that is either suitable 
or unsuitable for mosquito-borne disease trans-
mission. Climate and habitat conditions must be 
suitable year-round for mosquito populations 
and pathogen transmission cycles to persist. Fre-
quently used EO data processing techniques 
include ecological niche modeling, principal 
components analysis or Fourier processing, fol-
lowed by discriminant analysis; supplemented 
with human case surveillance data, these tech-
niques can be used to identify habitats that are 
predictive for mosquito-borne disease transmis-
sion (Rogers et al., 2002; Moua et al., 2021). 

High levels of  morbidity and mortality from 
mosquito-borne diseases, such as malaria, are 
often associated with areas where transmission 
of mosquito-borne diseases is unstable. This in-
cludes specific transition zones between regions 
where the pathogens are endemic and where 
environmental conditions preclude their trans-
mission (Ewing et  al., 2021). The underlying 
reason is mostly immunological: people in tran-
sition zones are less likely to have been infected 
and to be immune to new infections. In research-
ing these transition zones, EO data sets can be 
useful in several ways. First, they have sufficient 
resolution to identify these transition areas 
(Bejon et al., 2010). Second, EO data can identify 
land management practices, such as irrigation, 
that render conditions suitable for mosqui-
to-borne disease transmission in landscapes 
otherwise hostile to the vectors or transmission 
(Baeza et al., 2013). Third, detailed EO data can 
identify urban environments where disease 
transmission may be very different from trans-
missions occurring in rural areas (Tatem and 
Hay, 2004; Ferraguti et al., 2021). 

While much of  this research has taken place 
in an academic setting, there are increasing 
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Fig. 2.1.1. Example of a land cover map based on the analysis of multi-sensor satellite imagery for 
classifying wetland areas in a densely forested area at the border between French Guiana and Brazil, 
South America. Cloud-penetrating Sentinel-1A C-band SAR data were combined with Sentinel-2 optical 
data (both at 10 m resolution) to produce a general land cover map. A combination of C-band and ALOS 
L-band SAR data was then analyzed to discriminate and map wetlands, especially flooded vegetation
areas. (From: Catry et al., 2016, 2018b.)

efforts to transfer knowledge gained and to im-
plement successful EO utilization in operational 
mosquito-borne disease programs. An example is 
the MALAREO project, which has developed and 
implemented EO-based capabilities for national 
malaria control programs in the southern por-
tion of  Africa. High-resolution land cover and 
wetland maps were produced and integrated in a 
geographic information system (GIS) to identify 
potential vector habitats and risk associated with 
different human activities (Franke et al., 2015). 
The spatial detail of  the EO data has an intrinsic 
value for identifying and classifying habitat be-
cause ground-truthed information is rare and in-
consistent. Furthermore, repeat coverage can be 
utilized to detect important changes with regard 
to habitat, land use, and land cover (Lucas 
et al., 2015). While weather and climate may be 
among the most intensively measured environ-
mental variables, interpolation of  data points is a 
common practice in mosquito-borne disease 
suitability mapping. In some circumstances, EO 
data were found to outperform interpolated 

weather station data, especially in regions with a 
low-density network of  meteorological stations 
(Hay and Lennon, 1999). 

Recent studies have shown that SAR and 
optical EO data are strongly complementary in 
the assessment of  the relationships between en-
vironment components and mosquito-borne 
disease transmission (Machault et  al., 2011; Li 
et  al., 2016, 2017). EO by means of  radar re-
mote sensing has great potential to assist with 
the characterization of  vegetated wetlands 
(Catry et al., 2018a; see also Fig. 2.1.2). In practical 
and technical terms, radar capabilities are based 
in part on a large variety of  cloud-penetrating 
sensors that operate at different wavelengths, 
polarizations, and temporal and spatial resolu-
tions useful for wetland analyses. Furthermore, 
data access is facilitated by open data policies, 
such as those governing the use of  the European 
Copernicus Programme and Sentinel-1 data 
archives. These aspects are favorable for EO re-
search and applications regarding the epidemi-
ology of  mosquito-borne diseases like malaria. 
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Fig. 2.1.2. Framework of combining optical and SAR remotely sensed data for characterizing and 
mapping wetlands and accumulations of water. (From: Catry et al., 2018a.) 

For instance, Anopheles mosquitoes depend, to 
some degree, on the presence of  forested areas 
and strongly depend on the presence of  water for 
their survival and propagation. However, defor-
ested areas provide favorable conditions for mal-
aria vector breeding and feeding, and forest and 
secondary forest provide resting sites for adult 
mosquitoes after feeding (Yasuoka and Levins, 
2007; Vittor et  al., 2009; Hahn et  al., 2014; 
MacDonald and Mordecai, 2019). 

Challenges and questions 

The tasks of  identifying and quantifying environ-
mental determinants involved in the transmis-
sion of  mosquito-borne diseases are the main 
challenges and opportunities for the use of  EO 
data in public health. In addition, researchers 
need to gain a better understanding of  how these 
determinants relate to socio-economic, socio-
demographic, and human behavioral factors. 
Depending on scope and purpose, assessments of 
mosquito-borne disease risks require EO data at 
various levels of  detail, ranging from very high to 
moderate spatial resolution, and at various tem-
poral scales, involving seasonal to daily data ac-
quisition. Many environmental variables can be 

derived from EO data streams, including tempera-
ture, humidity, wind and wind speed, as well as 
land use and land cover information. For detailed 
geospatial mosquito habitat assessment, several 
thematic data sources need to be collated. These 
can be used to gauge the impact of  actual weather 
conditions, to map land use and land cover, and to 
relate the information to settlement locations, ex-
posure, built-up area configurations, and behav-
ioral patterns of  the local population. On one 
hand, previous studies have noted insufficient EO 
data for the composition of  coherent time series 
and the lack of accessible very-high-resolution 
data or SAR data (Herbreteau et  al., 2007; 
Machault et  al., 2011). The high cost for very 
high spatial resolution satellite data for producing 
adequate spatial coverage is a barrier for the R&D 
use of  such data and its application in public 
health programs. On the other hand, researchers 
and practitioners are faced with mounting data 
assimilation and processing demands and a 
dearth of  available processing capabilities. 

There are several questions and critical 
issues that need to be answered and resolved, 
including: 

• What EO data sets are most suitable, access-
ible, and practical for producing risk maps
of  mosquito-borne disease transmission,
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i.e. for identifying where mosquito-borne
disease transmission can occur? 

• What EO data sets are most suitable, ac-
cessible, and practical for determining
seasonal or weekly changes in risk associ-
ated with changes in mosquito density
and infection, i.e. for forecasting risk on a
weekly to monthly basis associated with
rates of  mosquito reproduction and mor-
tality and development rates of  pathogens
in mosquitoes?

• What are the main constraints in terms of
obtaining, maintaining, and delivering
EO-derived products and services to re-
searchers, public health policy makers, and 
practitioners involved in mosquito-borne
disease control programs? 

Responses and options 

Below are the comments and suggestions of  the 
experts consulted about critical issues and EO 
data requirements in the study and analysis of 
mosquito-borne diseases: 

• Objectives requiring timely geospatial infor-
mation on mosquito habitats can be
achieved with EO-based land cover and
land use mapping, with a focus on urban
and agricultural areas. 

• Objectives based on information on mos-
quito abundance require timely EO-derived
information on temperature, humidity, pre-
cipitation, and suitable environment, and
require mosquito distribution maps at vari-
ous spatial resolutions. 

• In some instances, a combination of  optical, 
thermal, and SAR data may be needed. 

• The spatial and temporal resolution of EO
data required to develop risk maps for pub-
lic health needs to match weather and en-
vironmental determinants that drive, in
part, the transmission of  mosquito-borne
diseases. There is a need to characterize and 
identify, at a local scale, areas of  high spa-
tial and temporal mosquito density; me-
dium to high spatial resolution is required
for identifying mosquito habitat areas. 

• There is a need for multi-temporal EO
data acquisitions, selection of comple-
mentary data sets, skillful application of

image processing techniques, and alloca-
tion of  sufficient financial resources to 
accomplish the above. 

Modeling environment–human–vector 
interaction hazard using EO data and 

land cover maps in a local, 
cross-border setting between French 

Guiana and Brazil 

The prevention and control of mosquito-borne 
diseases are challenging public health issues. Dis-
ease transmission is a multi-scale process, strongly 
controlled by weather and environmental factors. 
Remote sensing data analyses are suitable for 
characterizing spatial and temporal dynamics 
of such diseases. Yet, despite the growing number 
of  EO data sources and various technical capaci-
ties currently available, the selection of  suitable 
EO data for the production of  hazard maps and 
exposure risk maps remains a challenging task. 
The crucial issue is the selection of  adequate EO-
derived geospatial time series that fit the temporal 
and spatial dynamics of  the studied disease. 

We present here as a case study the re-
search of  Li et al. (2016), in which the role of 
land cover classes involved in the life cycle of the 
malaria vector (Anopheles darlingi) in the Ama-
zon region was investigated. SPOT 5 (Satellite 
pour l’Observation de la Terre 5), optical satel-
lite imagery taken in 2012 at 10 m resolution 
was used to produce a land cover map from 
which landscape indicators were derived, in-
cluding forest fragmentation and density of 
boundaries between forested and non-forested 
areas (Fig. 2.1.3). 

The study relied on partial knowledge-based 
modeling of  malaria transmission risk for a 
500  km2 area in the Amazon region between 
French Guiana and Brazil, using a landscape-
based approach and review of  pertinent literature. 
A landscape model was obtained by generating 
land use and land cover (LULC) maps of  the 
area, followed by computing and combining 
landscape metrics to build a set of  normalized 
landscape-based hazard indices. The quantitative 
landscape characterization involved defining a 
spatial window for the metrics computation. 
The dimension of  this window corresponds to a 
zone where the landscape characteristics are 
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Fig. 2.1.3. Flow chart outlining vector-human interaction hazard mapping in the study of Malaria, with 
land cover classification derived from optical and SAR EO data for the Camopi area in the border region 
between French Guiana and Brazil in South America. (From: Li et al., 2016). 

most likely to influence the chance of  encounter 
between Anopheles mosquitoes and human be-
ings. A Normalized Landscape-based Hazard 
Index (NLHI) was selected in conjunction with 
the knowledge-based model and connection 
with incidence of malaria caused by Plasmodium 
falciparum (Li et al., 2016). 

Analysis results revealed that hazard-free 
areas (green color on index map in Fig. 2.1.3) 
around the village of  Camopi consist of  dense 
forest areas that are not affected by deforest-
ation and areas where the anthropogenic pres-
sure is high, for example at the confluence of 
two rivers. Conversely, high hazard areas (yel-
low and red colors) correspond to the areas 
where there is a high density of  forest edge and 
where the percentage of  forest is higher than in 
the zones with the highest anthropogenic pres-
sure. Li et  al. (2016) validated this approach 
with actual malaria incidence from the 
cross-border region between French Guiana 
and Brazil. This study confirms that EO data can 
be an efficient tool for identifying environmen-
tal features related to malaria transmission and 

that an NLHI of  malaria transmission can be de-
veloped using satellite imagery. 

However, the presence of clouds and cloud 
shadows in many tropical environments results 
in missing data on optical images. Likewise, 
many wetland areas that are obscured from 
view by vegetation canopies – and hence are not 
observable by optical remote sensing – can con-
ceivably contain breeding sites for malaria vec-
tors. Alternatively, SAR can be used or combined 
with optical imagery for extracting environmen-
tal information related to vector habitats, as SAR 
has proven itself  capable of  penetrating clouds 
and detecting water bodies reliably. Further re-
search should consider the temporal aspects of 
deforestation by producing a time series of  land 
cover maps and then studying the evolution of 
the NLHI associated with malaria in the Amazon 
region. Institutions in Brazil, such as the National 
Institute for Space Research (INPE), already 
produce such deforestation maps derived from 
satellite imagery under Project PRODES.2 Li et al. 
(2017) demonstrated that the NLHI calculation 
can be scaled up from a local scale to a regional 
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scale. The NLHI calculations for the Amazon re-
gion currently involve biomass map products3 of 
Landsat-based deforestation time series over the 
Brazilian territory. 

Expected outcomes and impacts 

This study establishes a malaria hazard index 
that is driven by spatial knowledge and landscape 
information using EO data as an important in-
put. The index can be produced on a regular 
basis in support of  malaria prediction, surveil-
lance, and control. The index is calculated using 
LULC maps as input in the geospatial model; the 
model output maps serve actors of  disease sur-
veillance and vector control (Fig. 2.1.3). These 
maps identify areas where interactions between 
malaria vectors and human populations are 
likely to occur, based on the spatial configur-
ation of landscape features. In essence, the maps 
provide information on locations where people 
are more likely to be exposed to mosquitoes and 
infected by malaria pathogens. This is a key ele-
ment to take into account when defining and op-
timizing vector control strategies for public 
health responses. 

The example presented here shows an ap-
plication of  EO data to health issues at a local 
scale. This approach was subsequently applied at 
a regional scale (Li et al., 2017) and is currently 
extended to include the entire Amazon region. 
Since this region covers more than 6.5 million km2 

and spans nine countries (Bolivia, Brazil, Colom-
bia, Ecuador, France/French Guiana, Guyana, 
Peru, Suriname, and Venezuela), working at this 
scale requires the use of EO data in order to pro-
duce the required geospatial information and 
address public health issues. It is extremely diffi-
cult to deal with the health problems of different 
countries when data sources are heterogeneous 
in terms of  content and quality. The example of 
the cross-border area between French Guiana 
and Brazil demonstrates that EO data analysis is 
an effective way to produce homogeneous and 
standardized information that overcomes this 
problem. Updates of  these maps are possible us-
ing multi-temporal EO data – weekly, monthly, 
or seasonal EO-based updates can be provided 

depending on the satellite and sensor system se-
lected. In fact, current SAR and optical imagery 
from the Sentinel Constellations and the Euro-
pean Space Agency’s (ESA) Copernicus Pro-
gramme provide weekly data free of  charge at a 
spatial resolution that is adequate for such 
large-scale cross-border applications of  EO for 
health issues. 

The end users for such maps are actors in 
the public health domain representing local, 
regional, and national institutions. More specif-
ically, the primary users of these maps are con-
cerned with the elaboration of  vector control 
strategies and activities in the field. EO data can 
potentially bridge part of  the information gap 
that confronts health surveillance communities. 
Yet, going beyond the scope and content of  the 
case studies presented here, the needs of  public 
health actors in terms of  various geospatial data 
and products are not always satisfied for two 
reasons. First, satellite sensors are not primarily 
designed for health applications, often rendering 
spatial, temporal, or spectral data properties in-
adequate for addressing public health issues. Se-
cond, the methodologies for the production of 
hazard and risk maps developed by researchers 
of  the EO community may not always be suitable 
or adequate in a public health context due to the 
complexity of  the methodologies, the cost of 
high-resolution data, and the lack of  computing 
resources. 

Technical considerations and  
perspectives for producing risk maps 

The production of  LULC maps and hazard maps 
like those shown in Fig. 2.1.1 and Fig. 2.1.2 
requires optical and SAR images at various 
spatial and temporal resolutions. In this case, 
environmental variables are extracted from 
three different sources. 

High-resolution EO products with high 
temporal resolution, including Sentinel-1 and 
ALOS SAR data and Sentinel-2 optical data, are 
the primary products needed for the generation 
of  these maps. Data access is free and data acqui-
sition can occur worldwide every 5–12 days. The 
high-resolution products can be complemented 

Subject to the CABI Digital Library Terms & Conditions, available at https://cabidigitallibrary.org/terms-and-conditions



18 Chapter 2   

 
 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

 
 
 

 
 
 

 

 

 
 
 
 

 
 
 

 
 
 
 

with very-high-resolution imagery, albeit less 
frequently. For instance, optical sensors of  the 
French Pléiades satellite constellation can ac-
quire images at 50  cm resolution. Although 
extremely useful for detailed studies of  mosquito-
borne diseases within urban environments, in 
an operational context, the cost and volume of 
such data could prove prohibitive. Commercially 
available SAR data are also very expensive. 
Lower resolution images from the advanced very 
high resolution radiometer (AVHRR), Moderate 
Resolution Imaging Spectroradiometer (MODIS) 
or Visible/Infrared Imager Radiometer Suite 
(VIIRS) sensors are a suitable source for identify-
ing microclimatic indicators related to variables 
like surface temperature, surface moisture, 
near-surface air temperature, and water stress; 
these data are acquired daily and can be ac-
cessed without charge. 

Frequent updates and cloud presence re-
quire the use of  a multi-temporal series of  optical 
EO data and the combination of  optical and SAR 
data. This necessitates considerable data storage 
resources for regular production of  land cover 
and risk maps, and for their use in an operational 
context. The addition of  sensors recently 
launched (such as the RADARSAT Constellation 
Mission), or future launches such as the Surface 
Water Ocean Topography (SWOT) satellite 
planned for 2022 and the BIOMASS for 2023, 
will increase the volume of  EO data utilization 
and attendant data storage issues. Future devel-
opments in EO big data storage and sharing will 
also have to take these aspects into account and 
possibly rely on cloud computing for data storage, 
processing, and analysis. Following the model 
currently proposed by “Google Earth Engine,” 
large volumes of  data could be remotely processed 
and analyzed without downloading the data. 

Using EO big data implies the development 
of  adapted computing methods such as artificial 
intelligence and machine learning algorithms. 
Together with storage capacities, computing 
resources will have to be customized for such ap-
plications. Automated and generic methods are 
preferred as they would facilitate the production 
of  EO-based products like land cover maps any-
where in the world. Likewise, the analysis of  im-
ages and the production of the risk maps require 
image processing software and a GIS capability. 
Expertise in EO image analysis, geo-informatics, 

and mapping is essential for the development of 
risk maps. Availability of  freeware and EO and 
GIS “toolboxes,” open access to EO data, as well 
as training programs strongly encourage the use 
of EO products by non-specialists, including 
those in the public health sector. Note that the 
Copernicus RUS (Research and User Support) 
service portal, managed by the ESA, offers assist-
ance to users. The portal promotes the uptake of 
Copernicus data and helps the scaling up of  R&D 
activities with its data. They also offer free access 
to computing resources, storage, and freeware 
for processing data and developing technical so-
lutions customized to users’ needs, they provide 
a dedicated helpdesk for assistance, and they or-
ganize regular training sessions.4 

Many new sensors are to be launched in 
the next few years, offering new possibilities in 
terms of  spatial and temporal resolutions, and 
technical capabilities. Together with the cur-
rently orbiting high- and moderate-resolution 
sensors, the RADARSAT Constellation Mission 
and the SWOT and BIOMASS missions, among 
others, will provide new EO data sources to pro-
duce more accurate land cover maps, time ser-
ies, and quality information for vector control 
and surveillance. While EO products and meth-
odologies will initially have to be custom de-
signed to better fit public health needs, proven 
methodologies need to be automated in the fu-
ture and be robust and user-friendly enough to 
be implemented by non-specialists. To do so, the 
remote sensing, entomology, epidemiology, and 
public health communities have to interact 
more efficiently. They need to form a commu-
nity of  practice, integrating data from a wide 
variety of  sources at various scales and qualities 
to help mitigate public health issues such as 
mosquito-borne diseases. 

Risk mapping of entomological Rift 
Valley fever in Senegal at high 

spatio-temporal resolution using 
remote sensing 

The emergence and re-emergence of  infectious 
diseases with high epidemic potential, such as 
Rift Valley fever (RVF), have caused public health 
actors to adapt their management strategies 
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concerning human and veterinary health. RVF 
is transmitted by mosquitoes and is naturally 
maintained by wildlife reservoir hosts. In out-
break situations, transmission cycles among 
wildlife spill over into livestock. Humans can ac-
quire infections from mosquitoes but also from 
infected livestock. This adaptation requires the 
development of  new means of  risk prediction. 
In this context, the study of  vector-borne infec-
tious diseases requires the knowledge of  factors 
conducive to the emergence and spread of  those 
diseases. 

The French space agency Centre national 
d’études spatiales (CNES) and its partners 
have applied the conceptual approach of  tele-
epidemiology to RVF (Fig. 2.1.4). Factors deter-
mining the occurrence and spread of pathogens 
can be environmental, climatic, demographic, 
socio-economic, and/or behavioral. Some can 
be identified by EO data analysis, which requires 
the development of  effective methods to use 
remote sensing for risk factor characterization, 
mapping, and monitoring. This methodological 
approach has been successfully applied to RVF 

in the Ferlo region of  Senegal, leading toward 
the development of  a dynamic mapping proced-
ure of  Zones Potentially Occupied by Mosquitoes 
(ZPOMs) (Lacaux et  al., 2007). RVF is a viral 
disease that occurs largely in Africa, causing 
very serious economic losses in livestock. 

The RVF project presented here depends 
on the cooperation of  French and Senegalese 
institutions, including the Centre de Suivi 
Ecologique, the Dakar Pasteur Institute, the Dir-
ection of  Veterinarian Services, Météo-France, 
and CNES (Lafaye et al., 2013). The project has 
developed a new decision support tool utilizing 
SPOT-5 satellite imagery with the objective to 
improve animal health management and sup-
port local users in the public health sector. 
Funding support was provided by the French 
Ministry of  Ecology. 

In the Ferlo region of  Senegal, the abun-
dance of the main RVF vectors (Aedes vexans 
and Culex poicilipes) is directly linked to the 
occurrence and extent of  surface water 
ponding, which is closely related to the 
spatio-temporal variability of rainfall events 

In situ data 

Hazard maps Vulnerability map 

Risk map 

Adaptive strategy 
for risk management 

Analyzing multidisciplinary in situ data sets to identify the 
main mechanisms at stake linking physical, biological and 
socio-economic parameters associated with the surge of 

an infectious disease 

Remote sensing monitoring of environment, linking 
epidemics with the environmental and/or climatic factors 

such as rainfall, vegetation, hydrology 

Identification of the confounding factors 

Dynamic potential presence 
of the pathogenic agent Host distribution 

Environmental 

(Demographic surveillance data, 
existing control measures...) 

risk of being exposed to the pathogenic agent 

Disease control response 

Obtaining adapted space products 

Remote sensing data 

Ancillary data 
Early Warning System 

Fig. 2.1.4. The conceptual approach of tele-epidemiology for vector-borne diseases. 
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(Guilloteau et  al., 2014). Hence, rainfall dis-
tribution and its spatial heterogeneity is a key 
parameter for the emergence of  the main RVF 
vectors. The goal of  the project was to use GIS 
tools and EO data to detect ponds as potential 
breeding sites and evaluate the risk of  expos-
ure for cattle to vector bites. A risk model for 
the emergence of  mosquitoes has been devel-
oped and validated using field entomological 
surveillance (Bicout et  al., 2003, 2015; Por-
phyre et al. 2005). 

Three steps have been necessary to 
achieve the goal. As a first step, a procedure 
and index were established for detecting and 
mapping small and temporary ponds with 
high-resolution SPOT-5 imagery. Repeat satel-
lite data acquisitions provided synoptic views 
concerning the dynamics of  the approximately 
1300 ponds as potential vector breeding sites 
in the Barkédji area. A Normalized Difference 
Pond Index (NDPI) was obtained by combining 
data of  the green and short-wave infrared 
(SWIR) bands. 

The second step involved modeling ZPOMs 
by linking rainfall variability, pond dynamics, 
and density of  aggressive vectors. Spot-5 im-
ages and meteorological information from in 
situ data collection or data from five satellite-
based rainfall products – Tropical Rainfall 
Measuring Mission (TRMM), Global Satellite 
Mapping of  Precipitation (GSMaP), African 
rainfall estimate (RFE), Climate Prediction 
Center morphing method (CMORPH), and Pre-
cipitation Estimation from Remotely Sensed In-
formation using Artificial Neural Networks 
(PERSIANN) – were used to fit a model with 
hydrological and entomological components. 
The modeling results consisted of  dynamic 
maps that were generated on a daily basis at a 
spatial resolution of  10 m to predict the ento-
mological risk for RVF in the Ferlo region of 
Senegal (Fig. 2.1.5). 

The third step consisted of  overlaying 
vector hazard information in the form of  the 
dynamic ZPOMs and host vulnerability infor-
mation in the form of  the location of  beef 
feedlot cattle grazing area to evaluate the en-
vironmental risk of  cattle exposure to vector 
bites. Integrating the dynamic model on mos-
quito proliferation and the position of  actual 
livestock grazing areas into a GIS allowed the 

Directorate of  Veterinary Services of  Senegal 
to issue, on a trial basis, weekly risk zone fore-
casting bulletins valid for the subsequent 
10 days. 

Expected outcomes and impacts 

The maps generated by this project indicate 
and outline the RVF risk areas associated with 
surface water ponding, mosquito breeding, 
and cattle grazing for a test area in Senegal. EO 
satellite data offered synoptic views and re-
peated measurements concerning the location 
and extent of  more than 1300 ponds. The 
scope and frequency of  this undertaking would 
not have been feasible by means of in situ data 
collection. 

The end user of  the RVF project products is 
the Directorate of  Veterinary Services of Sene-
gal, who can integrate this information into its 
adaptation strategy of  animal health manage-
ment. This strategy could include the following 
recommendations to effectively mitigate the 
exposure of  cattle to RVF, and thus to minimize 
infection risk for humans: 

• (Re-)locate livestock grazing areas away
from risk zones, with warning signs in local 
languages posted near the ponds to inform
breeders to keep their animals at least
500 m away from the ponds. 

• Issue regular bulletins so the Pasteur Insti-
tute of Dakar can organize effcient larval
and vector control actions. 

• Issue regular bulletins so the Directorate of
Veterinary Services of  Senegal can organize 
and optimize vaccination campaigns in the
riskiest zones. 

• Establish a joint communication strategy
by integrating information of  the forecasted 
risk bulletins into the National Information 
System of  Surveillance of  Epidemics used
by the Ministry of  Livestock in Senegal and
the Headquarters of  the Directorate of  Vet-
erinary Services of  Senegal and its local
representatives in rural districts. 

• Plan to broadcast RVF-related messages
in local languages through local radio
stations.
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10 m 
Rain gauge, Rainfall SPOT 

Satellite products data image 4 spectral 
bands 

2003/08/26 
Pond detection Correction 

NDVI/NDPI 
© CNES 2003, distribution AIRBUS Defence & 

Space/Spot Image 

Corrected Pond location and 
rainfall data maximum surfaces 

Pond simple 
model 

Pond surface Pond modeled as a gaussian depression 
dynamic Aggressiveness 

(Number of bites of 
Entomological Aedis vexans per host, 

model per night) 
for July 2, 2003 

Vector 
aggressiveness, Aggressiveness 

risk maps 

© CNES/OMP product, CNES 2003 

Fig. 2.1.5. Flow chart outlining the RVF entomological risk modeling approach. 

Technical considerations and  
perspectives for producing risk maps 

The RVF maps have been built based on a value 
chain proposition that clearly identifies satellite 
data sources and data provider, the service pro-
vider, and the end user (Table 2.1.1). EO data 
analysis and the production of  the risk map re-
quire image processing GIS software packages. 
Expertise in EO image analysis, geo-informatics, 
and mapping is essential for the production of 
risk maps. 

In the absence of  SPOT-5, which ceased 
operation, the opportunity exists to access 
Sentinel-2 satellite data for mapping rain-fed 
ponds in the manner proposed by the RVF tool. 

The constellation of the Sentinel-2A and Senti-
nel-2B satellites could deliver images with ad-
equate spectral, spatial, and temporal resolution 
required to produce the risk maps at the scale 
that meets the needs of  the user. Future devel-
opment should consider the implementation of 
this tool through an open-source software. The 
following table lists examples of  EO-derived 
products that are potentially useful as geospa-
tial reference or background formation for pub-
lic health-related studies and applications. 
While these products have not been devised ini-
tially with public health applications in mind, 
they could provide important resources and in-
sights for the understanding of  mosquito-borne 
disease dynamics (Table 2.1.2). 

Notes 

1 http://www.who.int/campaigns/world-health-day/2014/global-brief/en/, see also World Meteorological 
Organization (WMO) 2014. 
2 http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes (accessed 31 December 2021). 
3 http://mapbiomas.org (accessed 31 December 2021). 
4 https://rus-copernicus.eu/portal/ (accessed 31 December 2021). 
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Table 2.1.1. The value chain of the RVF project. 

Satellites → Data provider → Service provider  → End user → Benefit 

Centre de Suivi 
Ecologique de 
Dakar 

Directorate of 
Veterinary 
services of 
Senegal 

Better 
management 
of animal 
health 

SPOT-5 === Optical image 
By Airbus Defense and 

Space 

Small and 
temporary pond 
mapping at 10 m 
resolution 

Dynamic high-
resolution maps 
(10 m spatial 
resolution, daily 
temporal 
resolution) 
predicting the 
entomological 
risk for Rift Valley 
fever (presence 
of mosquitoes) 

Forecasting 
bulletins of risk 
zones for cattle 
exposed to 
mosquito bites 

End user adapts 
and optimizes 
their strategy 
of animal 
health 
management 

TRMM ===
GPM-core 
GCOM-W-AMSR2 
DSMP-SSMI 
NOAA-AQUA 
NOAA-AMSU 
METOP-AMSU 
GOES-8 
GOES-10 
Meteosat-6 
Meteosat-7 

Satellite rainfall estimates 
TMPA (TRMM Multi-

satellite Precipitation 
Analysis) by NASA/JAXA 

GSMap (Global Satellite 
Mapping of Precipitation) 
products by JAXA-
CREST 

RFE (African Rainfall 
Estimation) by NOAA-
CPC 

PERSIANN (Precipitation 
Estimation from 
Remotely Sensed 
Information Using 
Artificial Neural 
Networks) by the CHRS, 
University of California 

CMORPH product from the 
DMSP, NOAA, Aqua, 
and TRMM satellites by 
NOAA-CPC 

Ground data  
Entomological data by the  

Dakar Pasteur Institute 

AMSU, Advanced Microwave Sounding Unit; AQUA, Aqua Earth-observing satellite mission; CHRS, Center for 
Hydrometeorology and Remote Sensing (University of California); NOAA CMORPH, Climate Prediction Center morphing 
method; CPC, Climate Prediction Center; DMSP, NOAA Defense meteorological satellite program; GCOM-W-AMSR2, 
Global Change Observation Mission – Water “Shizuku” – Advanced Microwave Scanning Radiometer 2; GOES, Geostationary 
Satellite Server; GPM, global precipitation measurement mission; JAXA, Japan Aerospace Exploration Agency; Metop, 
meteorological operational satellite; NOAA, National Oceanic and Atmospheric Administration; SPOT 5, Satellite pour 
l’Observation de la Terre 5; SSMI, special sensor microwave imager; TRMM, tropical rainfall measuring mission. 

Table 2.1.2. Examples of EO-derived products that are potentially useful as geospatial reference or 
background formation for public health-related studies and applications. 

Product type Application in public health 

Global land cover maps (e.g., MERIS GlobCover, 
PALSAR forest vs. non-forest maps, SAR global 
wetland maps) 

For coarse identification of environmental 
features and habitat suitability to vectors for 
targeted studies 

Vegetation indices (NDVI or EVI from MODIS or 
AVHRR) 

For showing the evolution of vegetation cover 
(deforestation) and its implications on the 
distribution of vectors 

Soil moisture (SMOS) For mapping potential breeding sites for some 
mosquito species 

Continued 
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Table 2.1.2. Continued. 

Product type Application in public health 

Continental water quality maps from MODIS For assessing the suitability of water and 
wetlands to the development of mosquito 
larvae (potential breeding sites) 

DEMs from SRTM or TandDEM-X For assessing the role of topography on water 
circulation and breeding site distributions 

Time series of EO products For assessing the dynamics of the relationships 
between environmental features and disease 
transmission 

Meteorological sensors For assessing the role of climate variables on 
disease transmission 

Climate models For providing scenarios and predicting disease 
distributions worldwide 

AVHRR, advanced very high-resolution radiometer; DEM, Digital Elevation Model; EO, Earth Observation; EVI, 
Enhanced Vegetation Index; MERIS GlobCover, Medium Resolution Imaging Spectrometer, Global land cover; 
MODIS, Moderate Resolution Imaging Spectroradiometer; NDVI, Normalized Difference Vegetation Index; PALSAR, 
Phased Array L-band Synthetic Aperture Radar; SAR, synthetic aperture radar; SMOS, Soil Moisture Ocean 
Salinity; SRTM, Shuttle Radar Topography Mission; TandDEM-X, TerraSAR-X add-on for Digital Elevation 
Measurement. 
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