2 Earth Observation and Public Health
Priority: Applications and Research
Areas by Theme

This section presents six applications of Earth
Observation (EO) to public health issues. There
are also two tables in Appendix B that can guide

the reader on the classes of resolution used to
categorize EO systems and on EO systems and
their spatial, spectral, and temporal resolution.

2.1 Mosquito-borne Diseases
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12 Chapter 2

Context, state of knowledge,
challenges, and responses

The World Health Organization (WHO) has
highlighted identification and monitoring of
vector populations as an important component
of global vector-borne disease surveillance ef-
forts.! (WHO, 2012, 2015) EO data could play a
crucial role in identifying risk locations for mos-
quito-borne diseases globally on the basis of
habitat and climate variables. Were EO data to
have sufficiently high spatial and temporal reso-
lution, applied research could develop weath-
er-based and environment-based forecasting of
high-risk locations and time periods for mosqui-
to-borne diseases using statistical models. Fur-
thermore, EO data may contribute to monitoring
the evolution of risk. EO data are also useful for
measuring or mapping a range of environmen-
tal parameters that help determine mosquito
vector occurrence and abundance and the rate
of development of mosquito-borne parasites and
pathogens in mosquito vectors. These param-
eters include rainfall, extent of standing water,
temperature, and land use and land cover.

Examples of recent research

For more than two decades, extensive research
has been conducted into the use of EO data as a
tool to inform responses to mosquito-borne dis-
eases (Hay et al., 1998a; Kalluri et al., 2007;
Kotchi et al., 2019). Main objectives include
identifying risk areas at various spatial scales
(Rogers et al., 2002), identifying seasonality in
risk in different locations (Hay et al., 1998b),
and forecasting impending outbreaks or peaks
in disease risk (Ceccato et al., 2005). EO data
have been used in a number of ways for these
purposes. In its simplest form, EO data analysis
for identifying different habitats can consist of
classifying imagery into relevant landscape clas-
ses. In a case study on dengue, Machault et al.
(2014) developed dynamic risk maps at the
housing level on a daily basis for the vector mos-
quito Aedes aegypti in the French Antilles. The
study identified EO data with very high spatial
resolution of 0.5 m as a suitable source to pro-
duce land use classes for a spatio-temporal stat-
istical model. Catry et al. (2016) fused radar and
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optical satellite imagery and derived land cover
classifications for studying the eco-epidemiology
of vector-borne diseases in tropical South Amer-
ica. Their study demonstrated that relevant land
cover maps and wetland classifications could be
generated on a weekly basis using multi-temporal
cloud-penetrating C-band synthetic aperture
radar (SAR) Sentinel-1A satellite data in com-
bination with optical Sentinel-2 data and L-band
SAR Advanced Land Observing Satellite-1
(ALOS) (Fig. 2.1.1).

In many parts of the world, there is insuffi-
cient ground-truthed information to reliably
classify EO data as habitat that is either suitable
or unsuitable for mosquito-borne disease trans-
mission. Climate and habitat conditions must be
suitable year-round for mosquito populations
and pathogen transmission cycles to persist. Fre-
quently used EO data processing techniques
include ecological niche modeling, principal
components analysis or Fourier processing, fol-
lowed by discriminant analysis; supplemented
with human case surveillance data, these tech-
niques can be used to identify habitats that are
predictive for mosquito-borne disease transmis-
sion (Rogers et al., 2002; Moua et al., 2021).

High levels of morbidity and mortality from
mosquito-borne diseases, such as malaria, are
often associated with areas where transmission
of mosquito-borne diseases is unstable. This in-
cludes specific transition zones between regions
where the pathogens are endemic and where
environmental conditions preclude their trans-
mission (Ewing et al., 2021). The underlying
reason is mostly immunological: people in tran-
sition zones are less likely to have been infected
and to be immune to new infections. In research-
ing these transition zones, EO data sets can be
useful in several ways. First, they have sufficient
resolution to identify these transition areas
(Bejon et al., 2010). Second, EO data can identify
land management practices, such as irrigation,
that render conditions suitable for mosqui-
to-borne disease transmission in landscapes
otherwise hostile to the vectors or transmission
(Baeza et al., 2013). Third, detailed EO data can
identify urban environments where disease
transmission may be very different from trans-
missions occurring in rural areas (Tatem and
Hay, 2004; Ferraguti et al., 2021).

While much of this research has taken place
in an academic setting, there are increasing
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Fig. 2.1.1. Example of a land cover map based on the analysis of multi-sensor satellite imagery for
classifying wetland areas in a densely forested area at the border between French Guiana and Brazil,
South America. Cloud-penetrating Sentinel-1A C-band SAR data were combined with Sentinel-2 optical
data (both at 10 m resolution) to produce a general land cover map. A combination of C-band and ALOS
L-band SAR data was then analyzed to discriminate and map wetlands, especially flooded vegetation

areas. (From: Catry et al., 2016, 2018b.)

efforts to transfer knowledge gained and to im-
plement successful EO utilization in operational
mosquito-borne disease programs. An example is
the MALAREO project, which has developed and
implemented EO-based capabilities for national
malaria control programs in the southern por-
tion of Africa. High-resolution land cover and
wetland maps were produced and integrated in a
geographic information system (GIS) to identify
potential vector habitats and risk associated with
different human activities (Franke et al., 2015).
The spatial detail of the EO data has an intrinsic
value for identifying and classifying habitat be-
cause ground-truthed information is rare and in-
consistent. Furthermore, repeat coverage can be
utilized to detect important changes with regard
to habitat, land use, and land cover (Lucas
et al., 2015). While weather and climate may be
among the most intensively measured environ-
mental variables, interpolation of data points is a
common practice in mosquito-borne disease
suitability mapping. In some circumstances, EO
data were found to outperform interpolated
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weather station data, especially in regions with a
low-density network of meteorological stations
(Hay and Lennon, 1999).

Recent studies have shown that SAR and
optical EO data are strongly complementary in
the assessment of the relationships between en-
vironment components and mosquito-borne
disease transmission (Machault et al., 2011; Li
et al., 2016, 2017). EO by means of radar re-
mote sensing has great potential to assist with
the characterization of vegetated wetlands
(Catry etal., 2018a; see also Fig. 2.1.2). In practical
and technical terms, radar capabilities are based
in part on a large variety of cloud-penetrating
sensors that operate at different wavelengths,
polarizations, and temporal and spatial resolu-
tions useful for wetland analyses. Furthermore,
data access is facilitated by open data policies,
such as those governing the use of the European
Copernicus Programme and Sentinel-1 data
archives. These aspects are favorable for EO re-
search and applications regarding the epidemi-
ology of mosquito-borne diseases like malaria.
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mapping wetlands and accumulations of water. (From: Catry et al., 2018a.)

For instance, Anopheles mosquitoes depend, to
some degree, on the presence of forested areas
and strongly depend on the presence of water for
their survival and propagation. However, defor-
ested areas provide favorable conditions for mal-
aria vector breeding and feeding, and forest and
secondary forest provide resting sites for adult
mosquitoes after feeding (Yasuoka and Levins,
2007; Vittor et al., 2009; Hahn et al., 2014;
MacDonald and Mordecai, 2019).

Challenges and questions

The tasks of identifying and quantifying environ-
mental determinants involved in the transmis-
sion of mosquito-borne diseases are the main
challenges and opportunities for the use of EO
data in public health. In addition, researchers
need to gain a better understanding of how these
determinants relate to socio-economic, socio-
demographic, and human behavioral factors.
Depending on scope and purpose, assessments of
mosquito-borne disease risks require EO data at
various levels of detail, ranging from very high to
moderate spatial resolution, and at various tem-
poral scales, involving seasonal to daily data ac-
quisition. Many environmental variables can be
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derived from EO data streams, including tempera-
ture, humidity, wind and wind speed, as well as
land use and land cover information. For detailed
geospatial mosquito habitat assessment, several
thematic data sources need to be collated. These
can be used to gauge the impact of actual weather
conditions, to map land use and land cover, and to
relate the information to settlement locations, ex-
posure, built-up area configurations, and behav-
ioral patterns of the local population. On one
hand, previous studies have noted insufficient EO
data for the composition of coherent time series
and the lack of accessible very-high-resolution
data or SAR data (Herbreteau et al, 2007;
Machault et al., 2011). The high cost for very
high spatial resolution satellite data for producing
adequate spatial coverage is a barrier for the R&D
use of such data and its application in public
health programs. On the other hand, researchers
and practitioners are faced with mounting data
assimilation and processing demands and a
dearth of available processing capabilities.

There are several questions and critical
issues that need to be answered and resolved,
including:

e  What EO data sets are most suitable, access-
ible, and practical for producing risk maps
of mosquito-borne disease transmission,
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i.e. for identifying where mosquito-borne
disease transmission can occur?

e  What EO data sets are most suitable, ac-
cessible, and practical for determining
seasonal or weekly changes in risk associ-
ated with changes in mosquito density
and infection, i.e. for forecasting risk on a
weekly to monthly basis associated with
rates of mosquito reproduction and mor-
tality and development rates of pathogens
in mosquitoes?

e  What are the main constraints in terms of
obtaining, maintaining, and delivering
EO-derived products and services to re-
searchers, public health policy makers, and
practitioners involved in mosquito-borne
disease control programs?

Responses and options

Below are the comments and suggestions of the
experts consulted about critical issues and EO
data requirements in the study and analysis of
mosquito-borne diseases:

®  (Objectives requiring timely geospatial infor-
mation on mosquito habitats can be
achieved with EO-based land cover and
land use mapping, with a focus on urban
and agricultural areas.

®  (Objectives based on information on mos-
quito abundance require timely EO-derived
information on temperature, humidity, pre-
cipitation, and suitable environment, and
require mosquito distribution maps at vari-
ous spatial resolutions.

e Insome instances, a combination of optical,
thermal, and SAR data may be needed.

e  The spatial and temporal resolution of EO
data required to develop risk maps for pub-
lic health needs to match weather and en-
vironmental determinants that drive, in
part, the transmission of mosquito-borne
diseases. There is a need to characterize and
identify, at a local scale, areas of high spa-
tial and temporal mosquito density; me-
dium to high spatial resolution is required
for identifying mosquito habitat areas.

® There is a need for multi-temporal EO
data acquisitions, selection of comple-
mentary data sets, skillful application of
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image processing techniques, and alloca-
tion of sufficient financial resources to
accomplish the above.

Modeling environment-human-vector
interaction hazard using EO data and
land cover maps in a local,
cross-border setting between French
Guiana and Brazil

The prevention and control of mosquito-borne
diseases are challenging public health issues. Dis-
ease transmission is a multi-scale process, strongly
controlled by weather and environmental factors.
Remote sensing data analyses are suitable for
characterizing spatial and temporal dynamics
of such diseases. Yet, despite the growing number
of EO data sources and various technical capaci-
ties currently available, the selection of suitable
EO data for the production of hazard maps and
exposure risk maps remains a challenging task.
The crucial issue is the selection of adequate EO-
derived geospatial time series that fit the temporal
and spatial dynamics of the studied disease.

We present here as a case study the re-
search of Li et al. (2016), in which the role of
land cover classes involved in the life cycle of the
malaria vector (Anopheles darlingi) in the Ama-
zon region was investigated. SPOT 5 (Satellite
pour I'Observation de la Terre 5), optical satel-
lite imagery taken in 2012 at 10 m resolution
was used to produce a land cover map from
which landscape indicators were derived, in-
cluding forest fragmentation and density of
boundaries between forested and non-forested
areas (Fig. 2.1.3).

The study relied on partial knowledge-based
modeling of malaria transmission risk for a
500 km? area in the Amazon region between
French Guiana and Brazil, using a landscape-
based approach and review of pertinent literature.
A landscape model was obtained by generating
land use and land cover (LULC) maps of the
area, followed by computing and combining
landscape metrics to build a set of normalized
landscape-based hazard indices. The quantitative
landscape characterization involved defining a
spatial window for the metrics computation.
The dimension of this window corresponds to a
zone where the landscape characteristics are



16 Chapter 2

Landcover maps

Optical
Imagery

Input
EO data

Modelling human —

Landscape metrics R .
vector interaction rate

Camopi

¢ N
Camopi
o 2 Brazil } T

Normalized Landscape
Hazard Index

Fig. 2.1.3. Flow chart outlining vector-human interaction hazard mapping in the study of Malaria, with
land cover classification derived from optical and SAR EO data for the Camopi area in the border region
between French Guiana and Brazil in South America. (From: Li et al., 2016).

most likely to influence the chance of encounter
between Anopheles mosquitoes and human be-
ings. A Normalized Landscape-based Hazard
Index (NLHI) was selected in conjunction with
the knowledge-based model and connection
with incidence of malaria caused by Plasmodium
falciparum (Li et al., 2016).

Analysis results revealed that hazard-free
areas (green color on index map in Fig. 2.1.3)
around the village of Camopi consist of dense
forest areas that are not affected by deforest-
ation and areas where the anthropogenic pres-
sure is high, for example at the confluence of
two rivers. Conversely, high hazard areas (yel-
low and red colors) correspond to the areas
where there is a high density of forest edge and
where the percentage of forest is higher than in
the zones with the highest anthropogenic pres-
sure. Li et al. (2016) validated this approach
with actual malaria incidence from the
cross-border region between French Guiana
and Brazil. This study confirms that EO data can
be an efficient tool for identifying environmen-
tal features related to malaria transmission and
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that an NLHI of malaria transmission can be de-
veloped using satellite imagery.

However, the presence of clouds and cloud
shadows in many tropical environments results
in missing data on optical images. Likewise,
many wetland areas that are obscured from
view by vegetation canopies — and hence are not
observable by optical remote sensing — can con-
ceivably contain breeding sites for malaria vec-
tors. Alternatively, SAR can be used or combined
with optical imagery for extracting environmen-
tal information related to vector habitats, as SAR
has proven itself capable of penetrating clouds
and detecting water bodies reliably. Further re-
search should consider the temporal aspects of
deforestation by producing a time series of land
cover maps and then studying the evolution of
the NLHI associated with malaria in the Amazon
region. Institutions in Brazil, such as the National
Institute for Space Research (INPE), already
produce such deforestation maps derived from
satellite imagery under Project PRODES.? Li et al.
(2017) demonstrated that the NLHI calculation
can be scaled up from a local scale to a regional



Earth Observation and Public Health Priority 17

scale. The NLHI calculations for the Amazon re-
gion currently involve biomass map products?® of
Landsat-based deforestation time series over the
Brazilian territory.

Expected outcomes and impacts

This study establishes a malaria hazard index
that is driven by spatial knowledge and landscape
information using EO data as an important in-
put. The index can be produced on a regular
basis in support of malaria prediction, surveil-
lance, and control. The index is calculated using
LULC maps as input in the geospatial model; the
model output maps serve actors of disease sur-
veillance and vector control (Fig. 2.1.3). These
maps identify areas where interactions between
malaria vectors and human populations are
likely to occur, based on the spatial configur-
ation of landscape features. In essence, the maps
provide information on locations where people
are more likely to be exposed to mosquitoes and
infected by malaria pathogens. This is a key ele-
ment to take into account when defining and op-
timizing vector control strategies for public
health responses.

The example presented here shows an ap-
plication of EO data to health issues at a local
scale. This approach was subsequently applied at
aregional scale (Li et al., 2017) and is currently
extended to include the entire Amazon region.
Since this region covers more than 6.5 million km?
and spans nine countries (Bolivia, Brazil, Colom-
bia, Ecuador, France/French Guiana, Guyana,
Peru, Suriname, and Venezuela), working at this
scale requires the use of EO data in order to pro-
duce the required geospatial information and
address public health issues. It is extremely diffi-
cult to deal with the health problems of different
countries when data sources are heterogeneous
in terms of content and quality. The example of
the cross-border area between French Guiana
and Brazil demonstrates that EO data analysis is
an effective way to produce homogeneous and
standardized information that overcomes this
problem. Updates of these maps are possible us-
ing multi-temporal EO data — weekly, monthly,
or seasonal EO-based updates can be provided
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depending on the satellite and sensor system se-
lected. In fact, current SAR and optical imagery
from the Sentinel Constellations and the Euro-
pean Space Agency’s (ESA) Copernicus Pro-
gramme provide weekly data free of charge at a
spatial resolution that is adequate for such
large-scale cross-border applications of EO for
health issues.

The end users for such maps are actors in
the public health domain representing local,
regional, and national institutions. More specif-
ically, the primary users of these maps are con-
cerned with the elaboration of vector control
strategies and activities in the field. EO data can
potentially bridge part of the information gap
that confronts health surveillance communities.
Yet, going beyond the scope and content of the
case studies presented here, the needs of public
health actors in terms of various geospatial data
and products are not always satisfied for two
reasons. First, satellite sensors are not primarily
designed for health applications, often rendering
spatial, temporal, or spectral data properties in-
adequate for addressing public health issues. Se-
cond, the methodologies for the production of
hazard and risk maps developed by researchers
of the EO community may not always be suitable
or adequate in a public health context due to the
complexity of the methodologies, the cost of
high-resolution data, and the lack of computing
resources.

Technical considerations and
perspectives for producing risk maps

The production of LULC maps and hazard maps
like those shown in Fig. 2.1.1 and Fig. 2.1.2
requires optical and SAR images at various
spatial and temporal resolutions. In this case,
environmental variables are extracted from
three different sources.

High-resolution EO products with high
temporal resolution, including Sentinel-1 and
ALOS SAR data and Sentinel-2 optical data, are
the primary products needed for the generation
of these maps. Data access is free and data acqui-
sition can occur worldwide every 5—12 days. The
high-resolution products can be complemented
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with very-high-resolution imagery, albeit less
frequently. For instance, optical sensors of the
French Pléiades satellite constellation can ac-
quire images at 50 cm resolution. Although
extremely useful for detailed studies of mosquito-
borne diseases within urban environments, in
an operational context, the cost and volume of
such data could prove prohibitive. Commercially
available SAR data are also very expensive.
Lower resolution images from the advanced very
high resolution radiometer (AVHRR), Moderate
Resolution Imaging Spectroradiometer (MODIS)
or Visible/Infrared Imager Radiometer Suite
(VIIRS) sensors are a suitable source for identify-
ing microclimatic indicators related to variables
like surface temperature, surface moisture,
near-surface air temperature, and water stress;
these data are acquired daily and can be ac-
cessed without charge.

Frequent updates and cloud presence re-
quire the use of a multi-temporal series of optical
EO data and the combination of optical and SAR
data. This necessitates considerable data storage
resources for regular production of land cover
and risk maps, and for their use in an operational
context. The addition of sensors recently
launched (such as the RADARSAT Constellation
Mission), or future launches such as the Surface
Water Ocean Topography (SWOT) satellite
planned for 2022 and the BIOMASS for 2023,
will increase the volume of EO data utilization
and attendant data storage issues. Future devel-
opments in EO big data storage and sharing will
also have to take these aspects into account and
possibly rely on cloud computing for data storage,
processing, and analysis. Following the model
currently proposed by “Google Earth Engine,”
large volumes of data could be remotely processed
and analyzed without downloading the data.

Using EO big data implies the development
of adapted computing methods such as artificial
intelligence and machine learning algorithms.
Together with storage capacities, computing
resources will have to be customized for such ap-
plications. Automated and generic methods are
preferred as they would facilitate the production
of EO-based products like land cover maps any-
where in the world. Likewise, the analysis of im-
ages and the production of the risk maps require
image processing software and a GIS capability.
Expertise in EO image analysis, geo-informatics,
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and mapping is essential for the development of
risk maps. Availability of freeware and EO and
GIS “toolboxes,” open access to EO data, as well
as training programs strongly encourage the use
of EO products by non-specialists, including
those in the public health sector. Note that the
Copernicus RUS (Research and User Support)
service portal, managed by the ESA, offers assist-
ance to users. The portal promotes the uptake of
Copernicus data and helps the scaling up of R&D
activities with its data. They also offer free access
to computing resources, storage, and freeware
for processing data and developing technical so-
lutions customized to users’ needs, they provide
a dedicated helpdesk for assistance, and they or-
ganize regular training sessions.*

Many new sensors are to be launched in
the next few years, offering new possibilities in
terms of spatial and temporal resolutions, and
technical capabilities. Together with the cur-
rently orbiting high- and moderate-resolution
sensors, the RADARSAT Constellation Mission
and the SWOT and BIOMASS missions, among
others, will provide new EO data sources to pro-
duce more accurate land cover maps, time ser-
ies, and quality information for vector control
and surveillance. While EO products and meth-
odologies will initially have to be custom de-
signed to better fit public health needs, proven
methodologies need to be automated in the fu-
ture and be robust and user-friendly enough to
be implemented by non-specialists. To do so, the
remote sensing, entomology, epidemiology, and
public health communities have to interact
more efficiently. They need to form a commu-
nity of practice, integrating data from a wide
variety of sources at various scales and qualities
to help mitigate public health issues such as
mosquito-borne diseases.

Risk mapping of entomological Rift
Valley fever in Senegal at high
spatio-temporal resolution using
remote sensing

The emergence and re-emergence of infectious
diseases with high epidemic potential, such as
Rift Valley fever (RVF), have caused public health
actors to adapt their management strategies
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concerning human and veterinary health. RVF
is transmitted by mosquitoes and is naturally
maintained by wildlife reservoir hosts. In out-
break situations, transmission cycles among
wildlife spill over into livestock. Humans can ac-
quire infections from mosquitoes but also from
infected livestock. This adaptation requires the
development of new means of risk prediction.
In this context, the study of vector-borne infec-
tious diseases requires the knowledge of factors
conducive to the emergence and spread of those
diseases.

The French space agency Centre national
d’études spatiales (CNES) and its partners
have applied the conceptual approach of tele-
epidemiology to RVF (Fig. 2.1.4). Factors deter-
mining the occurrence and spread of pathogens
can be environmental, climatic, demographic,
socio-economic, and/or behavioral. Some can
be identified by EO data analysis, which requires
the development of effective methods to use
remote sensing for risk factor characterization,
mapping, and monitoring. This methodological
approach has been successfully applied to RVF

in the Ferlo region of Senegal, leading toward
the development of a dynamic mapping proced-
ure of Zones Potentially Occupied by Mosquitoes
(ZPOMs) (Lacaux et al., 2007). RVF is a viral
disease that occurs largely in Africa, causing
very serious economic losses in livestock.

The RVF project presented here depends
on the cooperation of French and Senegalese
institutions, including the Centre de Suivi
Ecologique, the Dakar Pasteur Institute, the Dir-
ection of Veterinarian Services, Météo-France,
and CNES (Lafaye et al., 2013). The project has
developed a new decision support tool utilizing
SPOT-5 satellite imagery with the objective to
improve animal health management and sup-
port local users in the public health sector.
Funding support was provided by the French
Ministry of Ecology.

In the Ferlo region of Senegal, the abun-
dance of the main RVF vectors (Aedes vexans
and Culex poicilipes) is directly linked to the
occurrence and extent of surface water
ponding, which is closely related to the
spatio-temporal variability of rainfall events
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Fig. 2.1.4. The conceptual approach of tele-epidemiology for vector-borne diseases.
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(Guilloteau et al., 2014). Hence, rainfall dis-
tribution and its spatial heterogeneity is a key
parameter for the emergence of the main RVF
vectors. The goal of the project was to use GIS
tools and EO data to detect ponds as potential
breeding sites and evaluate the risk of expos-
ure for cattle to vector bites. A risk model for
the emergence of mosquitoes has been devel-
oped and validated using field entomological
surveillance (Bicout et al., 2003, 2015; Por-
phyre et al. 2005).

Three steps have been necessary to
achieve the goal. As a first step, a procedure
and index were established for detecting and
mapping small and temporary ponds with
high-resolution SPOT-5 imagery. Repeat satel-
lite data acquisitions provided synoptic views
concerning the dynamics of the approximately
1300 ponds as potential vector breeding sites
in the Barkédji area. A Normalized Difference
Pond Index (NDPI) was obtained by combining
data of the green and short-wave infrared
(SWIR) bands.

The second step involved modeling ZPOMs
by linking rainfall variability, pond dynamics,
and density of aggressive vectors. Spot-5 im-
ages and meteorological information from in
situ data collection or data from five satellite-
based rainfall products — Tropical Rainfall
Measuring Mission (TRMM), Global Satellite
Mapping of Precipitation (GSMaP), African
rainfall estimate (RFE), Climate Prediction
Center morphing method (CMORPH), and Pre-
cipitation Estimation from Remotely Sensed In-
formation using Artificial Neural Networks
(PERSIANN) — were used to fit a model with
hydrological and entomological components.
The modeling results consisted of dynamic
maps that were generated on a daily basis at a
spatial resolution of 10 m to predict the ento-
mological risk for RVF in the Ferlo region of
Senegal (Fig. 2.1.5).

The third step consisted of overlaying
vector hazard information in the form of the
dynamic ZPOMs and host vulnerability infor-
mation in the form of the location of beef
feedlot cattle grazing area to evaluate the en-
vironmental risk of cattle exposure to vector
bites. Integrating the dynamic model on mos-
quito proliferation and the position of actual
livestock grazing areas into a GIS allowed the

Subject to the CABI Digital Library Terms & Conditions, available at https://cabidigitallibrary.org/terms-and-conditions

Directorate of Veterinary Services of Senegal
to issue, on a trial basis, weekly risk zone fore-
casting bulletins valid for the subsequent
10 days.

Expected outcomes and impacts

The maps generated by this project indicate
and outline the RVF risk areas associated with
surface water ponding, mosquito breeding,
and cattle grazing for a test area in Senegal. EO
satellite data offered synoptic views and re-
peated measurements concerning the location
and extent of more than 1300 ponds. The
scope and frequency of this undertaking would
not have been feasible by means of in situ data
collection.

The end user of the RVF project products is
the Directorate of Veterinary Services of Sene-
gal, who can integrate this information into its
adaptation strategy of animal health manage-
ment. This strategy could include the following
recommendations to effectively mitigate the
exposure of cattle to RVF, and thus to minimize
infection risk for humans:

® (Re-)locate livestock grazing areas away
from risk zones, with warning signs in local
languages posted near the ponds to inform
breeders to keep their animals at least
500 m away from the ponds.

e  Issue regular bulletins so the Pasteur Insti-
tute of Dakar can organize efficient larval
and vector control actions.

e  Issue regular bulletins so the Directorate of
Veterinary Services of Senegal can organize
and optimize vaccination campaigns in the
riskiest zones.

e [Establish a joint communication strategy
by integrating information of the forecasted
risk bulletins into the National Information
System of Surveillance of Epidemics used
by the Ministry of Livestock in Senegal and
the Headquarters of the Directorate of Vet-
erinary Services of Senegal and its local
representatives in rural districts.

® Plan to broadcast RVF-related messages
in local languages through local radio
stations.
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Fig. 2.1.5. Flow chart outlining the RVF entomological risk modeling approach.

Technical considerations and
perspectives for producing risk maps

The RVF maps have been built based on a value
chain proposition that clearly identifies satellite
data sources and data provider, the service pro-
vider, and the end user (Table 2.1.1). EO data
analysis and the production of the risk map re-
quire image processing GIS software packages.
Expertise in EO image analysis, geo-informatics,
and mapping is essential for the production of
risk maps.

In the absence of SPOT-5, which ceased
operation, the opportunity exists to access
Sentinel-2 satellite data for mapping rain-fed
ponds in the manner proposed by the RVF tool.

The constellation of the Sentinel-2A and Senti-
nel-2B satellites could deliver images with ad-
equate spectral, spatial, and temporal resolution
required to produce the risk maps at the scale
that meets the needs of the user. Future devel-
opment should consider the implementation of
this tool through an open-source software. The
following table lists examples of EO-derived
products that are potentially useful as geospa-
tial reference or background formation for pub-
lic health-related studies and applications.
While these products have not been devised ini-
tially with public health applications in mind,
they could provide important resources and in-
sights for the understanding of mosquito-borne
disease dynamics (Table 2.1.2).

Notes

' http://www.who.int/campaigns/world-health-day/2014/global-brief/en/, see also World Meteorological

Organization (WMO) 2014.

2 http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes (accessed 31 December 2021).
3 http://mapbiomas.org (accessed 31 December 2021).
4 https://rus-copernicus.eu/portal/ (accessed 31 December 2021).
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Table 2.1.1. The value chain of the RVF project.

Satellites — Data provider — Service provider - End user — Benefit
Centre de Suivi Directorate of Better
Ecologique de Veterinary management
Dakar services of of animal
Senegal health
SPOT-5 === Optical image Small and End user adapts
By Airbus Defense and temporary pond and optimizes
Space mapping at 10 m their strategy
TRMM === Satellite rainfall estimates resolution of animal
GPM-core TMPA (TRMM Multi- Dynamic high- health
GCOM-W-AMSR2 satellite Precipitation resolution maps management
DSMP-SSMI Analysis) by NASA/JAXA (10 m spatial
NOAA-AQUA GSMap (Global Satellite resolution, daily
NOAA-AMSU Mapping of Precipitation)  temporal
METOP-AMSU products by JAXA- resolution)
GOES-8 CREST predicting the
GOES-10 RFE (African Rainfall entomological
Meteosat-6 Estimation) by NOAA- risk for Rift Valley
Meteosat-7 CPC fever (presence

PERSIANN (Precipitation
Estimation from
Remotely Sensed
Information Using
Artificial Neural
Networks) by the CHRS,
University of California

CMORPH product from the
DMSP, NOAA, Aqua,
and TRMM satellites by
NOAA-CPC

Ground data

Entomological data by the
Dakar Pasteur Institute

of mosquitoes)
Forecasting
bulletins of risk
zones for cattle
exposed to
mosquito bites

AMSU, Advanced Microwave Sounding Unit; AQUA, Aqua Earth-observing satellite mission; CHRS, Center for
Hydrometeorology and Remote Sensing (University of California); NOAA CMORPH, Climate Prediction Center morphing
method; CPC, Climate Prediction Center; DMSP, NOAA Defense meteorological satellite program; GCOM-W-AMSR2,
Global Change Observation Mission — Water “Shizuku” — Advanced Microwave Scanning Radiometer 2; GOES, Geostationary
Satellite Server; GPM, global precipitation measurement mission; JAXA, Japan Aerospace Exploration Agency; Metop,
meteorological operational satellite; NOAA, National Oceanic and Atmospheric Administration; SPOT 5, Satellite pour
'Observation de la Terre 5; SSMI, special sensor microwave imager; TRMM, tropical rainfall measuring mission.

Table 2.1.2. Examples of EO-derived products that are potentially useful as geospatial reference or
background formation for public health-related studies and applications.

Product type

Application in public health

Global land cover maps (e.g., MERIS GlobCover,
PALSAR forest vs. non-forest maps, SAR global

wetland maps)

For coarse identification of environmental

targeted studies

features and habitat suitability to vectors for

Vegetation indices (NDVI or EVI from MODIS or
AVHRR)

Soil moisture (SMOS)

For showing the evolution of vegetation cover
(deforestation) and its implications on the
distribution of vectors

For mapping potential breeding sites for some
mosquito species

Continued
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Table 2.1.2. Continued.

Product type Application in public health

Continental water quality maps from MODIS For assessing the suitability of water and
wetlands to the development of mosquito
larvae (potential breeding sites)

DEMSs from SRTM or TandDEM-X For assessing the role of topography on water
circulation and breeding site distributions
Time series of EO products For assessing the dynamics of the relationships

between environmental features and disease
transmission

Meteorological sensors For assessing the role of climate variables on
disease transmission
Climate models For providing scenarios and predicting disease

distributions worldwide

AVHRR, advanced very high-resolution radiometer; DEM, Digital Elevation Model; EO, Earth Observation; EVI,
Enhanced Vegetation Index; MERIS GlobCover, Medium Resolution Imaging Spectrometer, Global land cover;
MODIS, Moderate Resolution Imaging Spectroradiometer; NDVI, Normalized Difference Vegetation Index; PALSAR,
Phased Array L-band Synthetic Aperture Radar; SAR, synthetic aperture radar; SMOS, Soil Moisture Ocean
Salinity; SRTM, Shuttle Radar Topography Mission; TandDEM-X, TerraSAR-X add-on for Digital Elevation
Measurement.
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