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S U M M A R Y 

Distributed acoustic sensing (DAS) is a recent technology that turns optical fibres into mul- 
tisensor arrays. In the marine environment, it offers new possibilities for measuring seismic 
and environmental signals. While DAS can be applied to existing fibre optic cables used for 
communications, a major limitation of such efforts is that the position of the cable is not 
always known with sufficient accuracy. In particular, for submarine telecommunication cables, 
the positioning accuracy decreases with increasing depth. This problem affects the accuracy 

of earthquake locations and source parameters based on DAS signals. This limitation calls for 
methods to retrieve the cable’s position and orientation. Here, we propose a method for relo- 
cating a linear section of cable—or multiple connected segments—using incidental acoustic 
sources, particularly boats moving in the vicinity of the cable. The method is based on target 
motion analysis (TMA) for sources in uniform rectilinear motion. We consider Bearing-Only 

TMA (BO-TMA) and the Bearing and Frequency TMA (BF-TMA), which respectively use 
changes in backazimuth (called bearing in navigation) and changes in both backazimuth and 

Doppler frequency shift as the source moves. We adapt these methods to the 3-D case to 

account for the difference in depth between the fibre and the sources. Both cases lead to a 
nonlinear inverse problem, which we solve by the Levenberg–Marquardt method. On synthetic 
data, we test both TMA techniques on single and multiple source trajectories and evaluate 
their accuracy as a function of source trajectory and velocity. We then test the BO-TMA on 

real DAS recordings of acoustic signals produced by passing ships near a 42 km-long fibre 
optic cable off the coast of Toulon, southeastern France. In this study case, the position and 

characteristics of the acoustic source are known. While the Doppler frequency shift at low 

frequency (30 Hz) is difficult to measure with sufficient accuracy ( < 0 . 1◦), we demonstrate
that effective cable location can be achieved by BO-TMA using multiple ship passages with a 
variety of trajectories. Once the linear sections of the cable have been relocated, the stage is set 
to reconstruct the entire cable configuration. More generally, the 3-D TMA on linear antennas 
developed here can be used to locate either the sources or the antenna situated at different 
depths. 

Key words: Inverse theory; Acoustic emission; Distributed acoustic sensing. 
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istributed acoustic sensing (DAS) transforms existing fibre optic
ables into antennas sensitive to longitudinal (along-cable) strain or
train rate, on a broad frequency band and with metre-scale reso-
ution over distances exceeding one hundred kilometres (Rao et al.
021 ; Waagaard et al. 2021 ). A DAS interrogator connected to one
nd of the cable sends repeated laser pulses into the fibre, records
he Rayleigh backscattered light from the fibre’s inherent impurities
C© The Author(s) 2025.Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
Hartog 2017 ), and applies optical and digital processing to measure
he effect of environmental disturbances on the cable’s optical fibre.
he ability to connect the interrogator at an onshore cable termina-

ion of the cable makes DAS much easier and more economical to
eploy and maintain than traditional marine instrumentation such as
cean-bottom seismometers (OBS), hydrophones or pressure sen-
ors, which typically require costly vessel-based deployment and
eriodic recovery for maintenance or data retrieval. Moreover, if
eal-time data acquisition is needed, these conventional instruments
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must be connected to shore via dedicated seafloor cables for power 
supply and data transmission, significantly increasing installation 
complexity and cost. 

Originally developed in the oil and gas industry (Mateeva et al. 
2014a ; Parker et al. 2014 ; Ashry et al. 2022 ), distributed acous- 
tic sensing (DAS) has been widely utilized for approximately a 
decade in crustal-scale seismology on land. This technology em- 
ploys dedicated cables or telecom dark fibre (Daley et al. 2013 ; 
Dou et al. 2017 ; Jousset et al. 2018 ) as well as operational tele- 
com cables (Brenne et al. 2024 ). The expansion of DAS applica- 
tions to underwater environments, leveraging submarine telecom 

cables, has yielded extensive observations about the solid Earth and 
its interactions with the ocean (Lindsey et al. 2019 ; Sladen et al. 
2019 ; Williams et al. 2019 ). These observations encompass a range 
of phenomena, including small-scale local seismicity, teleseismic 
ear thquakes, ocean g ravity waves and microseismic noise (e.g. Lior 
et al. 2021 ; Fernández-Ruiz et al. 2022 ; Guerin et al. 2022 ; Mazur 
et al. 2024 ), achieving unprecedented spatial resolution. Further- 
more, DAS data collected on the ocean floor has enhanced our 
understanding of the underwater environment. This includes moni- 
toring deep-sea currents (Mata Flores et al. 2023 ), detecting inter- 
nal waves and seabed temperatures (Matsumoto et al. 2021 ; Pelaez 
Qui˜ nones et al. 2023 ), tracking marine mammals (Bouffaut et al. 
2022 ; Landrø et al. 2022 ), and observing anthropogenic noise such 
as maritime traffic (Rivet et al. 2021 ), as well as meteorological 
phenomena like storms (Taweesintananon et al. 2023 ). 

The potential to utilize thousands of kilometres of pre-existing 
telecommunication cables makes DAS a cost-effective technology. 
However, one of the limiting factors in the use of existing cables 
is the inaccurate knowledge of their location. Telecommunication 
companies may lack precise route information or may be reluctant 
to share it due to the sensitive nature of their infrastructure. For 
decommissioned cables, it is sometimes impossible to find any doc- 
umentation of the cable deployment. For recent cables, it may be 
possible to obtain the route taken by the cable-laying vessel during 
deployment, but the map-view position of the cable can change be- 
tween its release and its final resting position on the seabed. Large 
layback, current drift, seafloor bathymetry and slack in the cable, 
can result in uncertainties on the touchdown cable position that 
can range from 2 per cent to 20 per cent of the water depth (Andres 
1998 ; Mamatsopoulos et al. 2020 ). As we will later show in our own 
case study, we observe a comparable magnitude of uncertainty—
approximately 400 m. 

An accurate knowledge of the submarine cable position is es- 
sential to minimize uncertainties in the analysis of DAS data. In 
the study by Trabattoni et al. ( 2024 ), which focuses on a subma- 
rine cable in Chile, residual traveltime differences were identified 
that could plausibly be attributed, at least in part, to cable mislo- 
cation and lateral velocity variations in deeper structures. These 
residuals—after correcting for lateral variations in the sedimentary 
cover—can reach up to 0.1 s for P waves and 0.3 s for S waves. 
Although lateral variations in deeper velocity structure cannot be 
ruled out, the observed residuals are consistent with local cable 
position uncertainties on the order of a few hundred metres. 

Minimizing positioning errors to less than 100 m would enhance 
the full potential of distributed acoustic sensing (DAS) technology. 
This improvement would not only enable more accurate imaging 
of deeper velocity structures through traveltime tomography (e.g. 
Biondi et al. 2023b ) but also improve the precision of the event loca- 
tions. Previous studies have addressed cable relocation using DAS 

data in both underwater and terrestrial environments, employing 
GPS-tracked sources for accurate positioning. Shao et al. ( 2025 ) 
demonstrated ship tracking using frequency shifts extracted via 
synchrosqueezing transform on offshore DAS cables, while Biondi 
et al. ( 2023a ) achieved precise geolocation of DAS channels on land 
cables by combining DAS with GPS-tracked vehicles. Here, we ad- 
dress this issue by using sources of acoustic signals with known 
location, such as boats, to reposition and reorient submarine cables. 

Several sensor relocation methods have been developed and ef- 
fectively applied for underwater acoustic sensor arrays and ocean 
bottom seismometers. One such method utilizes the direction of ar- 
rival of waves, estimated through array processing, whose ultimate 
precision (the so-called Cramer-Rao bound) depends on the array 
geometry (e.g. Gazzah & Marcos 2005 ; Gera & Mulgrew 2009 ). 
Cepstrum signal analysis, which exploits multiple wave paths in the 
water column, has also been applied effectively (Gao et al. 2008 ; 
Ferguson et al. 2019 ; Trabattoni et al. 2020 ). Cross-correlation 
techniques to retrieve the relative position between sensors in a 
hydrophone array demonstrated their effectiveness particularly on 
broad-band signals (Sabra et al. 2005 ). In the absence of controlled 
acoustic sources, the use of ship noise has proven useful to relocate 
the elements of a linear antenna at shallow depth (Gemba et al. 
2018 ) and ocean bottom seismometers (Trabattoni et al. 2020 ). 

In this study we develop a sensor relocation method for optical 
fibre cables in deep water using acoustic noise emitted by boats. 
Here, the cable is transformed into a sensor arrays by DAS. As 
shown by Rivet et al. ( 2021 ), boat noise is detectable even at great 
depths ( > 1 km) at frequencies below 50 Hz. This noise has a spe- 
cific signature consisting of distinct frequencies and their respective 
harmonics. The boat analysed by the authors in their example had 
indeed several spectral lines at 16, 33, 41, 49, 57, 76 and 83 Hz. 
Because boats broadcast their location and velocity through their au- 
tomatic identification system (AIS), they serve as effective acoustic 
sources. We extend and adapt 2-D passive trajectography principles, 
such as those developed by Nardone et al. ( 1984 ), Passerieux et al. 
( 1988 ), Ho & Chan ( 2006a ), Pillon & Jauffret ( 2005 ) and Chan &
Rudnicki ( 1992 ), to perform the relocation of a fix cable using mov- 
ing sources. The method we develop here is specifically designed 
for linear cable segments and determines both the location of the 
centre of the selected cable segment and its orientation. 

We first introduce and adapt in Section 2 the basic principles of 
passive trajectography using angle and frequency measurements—
Bearing and Frequency TMA (BF-TMA)—to the 3-D case, where 
both the source and the antenna may lie at different depths. A non- 
linear solver is used to tackle the resulting inverse problem. We then 
extend the method to the relocation of multiple cable segments, in- 
troducing regularization to ensure spatial and angular continuity 
between the segments. At this stage, the method is demonstrated 
on simulated time-series in Section 3 , where we evaluate its per- 
formance. In Section 4 , we apply the approach to real DAS data 
recorded on a seafloor cable off the coast of Toulon, France, and re- 
locate a linear section of the cable. In the same section, we also test 
the method on a synthetic case that mimics the real configuration, 
using multiple sources and multiple cable segments. 

2  3 - D  B E A R I N G  A N D  F R E Q U E N C Y  

TA RG E T  M O T I O N  A NA LY S I S  F O R  

F I B R E  O P T I C  C A B L E  R E L O C AT I O N  

2.1 Application to distributed acoustic sensing and cable 
relocation 

We utilize target motion analysis (TMA) to relocate sections of a 
seafloor fibre optic cable based on acoustic time-series acquired 
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Figure 1. Map view of the reference frame for the bearing measurement of 
a moving source by a fixed observer. 
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Figure 2. For a given pseudo-bearing angle θ , the admissible source loca- 
tions are situated along the intersection between the water surface and the 
cone of revolution of angle θ around the cable axis, displayed by a red line. 
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sing DAS during the passage of a boat in the vicinity of the cable.
ereafter, the boat is designated as the source and the selected

egment of the fibre optic cable is designated as the observer. 
We consider a 3-D reference frame, with the � x axis pointing

ast, the � y axis pointing north and the � z axis pointing vertically
pwards (Fig. 1 ). The observer is characterized by the position
f its centre ( xFO , yFO , 0) and its orientation relative to the north,

FO . We ignore the slope of the seafloor and assume that the cable is
orizontal. We define the state vector μDAS = ( xFO , yFO , γFO ) , which
ontains the state parameters of the observer we aim to determine.
he source position is determined using AIS data sampled at 5-
in intervals. Between these 5-min intervals, we assume that the

ource moves with uniform rectilinear motion (URM). We further
ssume the water depth, h , is constant and known. At any given time

i = iT , where T is the time-step, the source position is known and
etermined by its initial position ( xs0 , ys0 , h ) and constant velocity
� s = (ẋs , ẏs , 0) as 

xs ( i) = xs0 + iT ẋs

ys ( i) = ys0 + iT ẏs .
(1) 

.2 Pseudo-bearing and frequency measurements 

o determine the observer’s position and orientation, we measure
he angle θ in 3-D the observer’s orientation (the cable axis) and the
able-source direction, referred to as the pseudo-bearing, as well as
he Doppler frequency shift, which is the change in frequency of
he acoustic wave observed when there is relative motion between
he source and the observer. 

There are multiple possible source locations compatible with a
iven θ value; they lie along the intersection (a hyperbola) between
he water surface and the angle cone θ around the cable axis (Fig. 2 ,
ed line). 

Since DAS transforms a fiber optic cable into a linear sensor
rray, we perform beamforming on DAS data to estimate pseudo-
earing and frequency. Numerous beamforming methods have been
eveloped over the decades (Cox et al. 1987 ; Van Veen & Buckley
988 ) and more recently, they have been applied to DAS, notably
n seismic studies (Nayak et al. 2021 ; van den Ende & Ampuero
021 ; Guerin et al. 2022 ). Here, we choose to perform beamform-
ng in the frequency domain (Boué et al. 2013 ) because it preserves
he direction of propagation, including its sign, which is often lost
n time-domain approaches. Additionally, frequency-domain beam-
orming enables us to identify the most coherent frequency compo-
ent across the array and to measure the Doppler shift associated
ith the relative motion between the source and the observer. 

.3 Pseudo-bearing misfit in 3-D TMA 

e express the pseudo-bearing as a function of the state parameters.
he scalar product between the unit vector along the cable, � o =

sin γFO , cos γFO , 0) , and the position of the source relative to the
entre of the cable section, � s = ( xs − xFO , ys − yFO , h ) , is: 

�  · � s = ||� s || cos θ. (2) 

Thus, 

cos θ = ( ys − yFO ) cos γFO + ( xs − xFO ) sin γFO√ 

( xs − xFO )2 + ( ys − yFO )2 + h2 
. (3) 

The pseudo-bearing θi measured at time ti includes bearing mea-
urement errors. We define the pseudo-bearing misfit εθi as the
ifference between the measured pseudo-bearing cosine cos θi and
he one predicted by eq. ( 3 ): 

θi = cos θi − ( ysi − yFO ) cos γFO + ( xsi − xFO ) sin γFO√ 

( xsi − xFO )2 + ( ysi − yFO )2 + h2
. (4) 

.4 Frequency error in 3-D TMA 

he apparent source frequency f measured by the observer, sub-
ected to the Doppler effect, is 

f 

fs 
= 1 + vproj

c0 
, (5) 

here fs is the real source frequency that can be determined from a
pectrogram of the signal recorded by sensors assumed to be near the
oat’s passage, c0 the acoustic wave speed and vproj the projection
f the source velocity onto the observer-to-source direction: 

proj = � vs · � s / ||� s || . (6) 

Expanding, we get 

proj = ( xs − xFO )ẋs + ( ys − yFO )ẏs √ 

( xs − xFO )2 + ( ys − yFO )2 + h2 
. (7) 

hen, we can express the frequency shift as 

f 

fs 
= 1 + ( xs − xFO )ẋs + ( ys − yFO )ẏs

c0 

√ 

( xs − xFO )2 + ( ys − yFO )2 + h2 
. (8)

art/ggaf339_f1.eps
art/ggaf339_f2.eps
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The apparent frequency fi measured at time ti includes frequency 
measurement errors. We define the frequency misfit ε fi as the dif- 
ference between the normalized measured frequency fi / fs and the 
one predicted by eq. ( 8 ): 

ε fi =
fi

fs 
− 1 − ( xsi − xFO )ẋs + ( ysi − yFO )ẏs

c0 

√ 

( xsi − xFO )2 + ( ysi − yFO )2 + h2 
. (9) 

2.5 Nonlinear least-square inversion 

We aim to find the values of the state parameters that minimize 
an objective function defined as the sum of the L2 norms of the 
pseudo-bearing and Doppler shift error vectors, { εθi }i= 1 ,··· ,Nobs and
{ ε fi }i= 1 ,··· ,Nobs , respectively, where Nobs is the number of observa- 
tions of the source. 

We define the observed data vector d ∈ R
2 Nobs as the concatena- 

tion of the pseudo-bearing angles θi and apparent frequencies fi 

measured at times ti , for i = 1 , . . . , Nobs . Thus, the data vector is 
written as: 

d = [
θ1 f1 θ2 f2 · · · θNobs fNobs

]� ∈ R
2 Nobs . (10) 

Note that when we consider only bearing BO-TMA, d ∈ R
Nobs . 

The model prediction G ( m ) is the matrix product of m is the state 
vector of Nparam 

model parameters containing the central position 
( xFO , yFO ) and azimuthal angle γFO to be determined 

m = [
xFO yFO γFO 

] ∈ R
Nparam (11) 

and G the nonlinear system of 2 × Nobs equations that define the for- 
ward problem (eqs 3 and 8 ). The objective function to be minimized 
is 

S( m ) = ||G ( m ) − d ||2 =
m ∑ 

i= 1
( Gi ( m ) − di )

2 . (12) 

The objective function depends nonlinearly on m . To solve this 
nonlinear least-squares problem, we use the Levenberg–Marquardt 
(L-M) method. This approach is an improvement over the Gauss–
Newton method that solves the nonlinear problem by approximating 
the exact Hessian matrix with its Jacobian matrix, avoiding the high 
cost of computing the second derivatives of the objective function 
(e.g. Pratt et al. 1998 ). The L-M method transitions between a 
gradient descent far from the solution and Gauss–Newton near the 
solution. 

We iteratively update the model parameters, starting with an 
initial guess m0 , as 

mk+ 1 = mk + � mk+ 1 , (13) 

where � mk+ 1 satisfies the normal equations 

� mk+ 1 = −( J T J − λI )−1 J T ( G ( mk ) − d ) , (14) 

where J is the Jacobian matrix of size ( 2 Nobs , Nparam 

): 

J =

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

∂ε f1 

∂xFO 

∂ε f1 

∂yFO 

∂ε f1 

∂γFO 
∂εθ1 

∂xFO 

∂εθ1 

∂yFO 

∂εθ1 

∂γFO 
... ... ... 

... ... ... 
∂ε fNobs 

∂xFO 

∂ε fNobs 

∂yFO 

∂ε fNobs 

∂γFO 
∂εθNobs 

∂xFO 

∂εθNobs 

∂yFO 

∂εθNobs 

∂γFO 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

(15) 

Setting 
x = ( xsi − xFO ) (16) 

y = ( ysi − yFO ) (17) 

R =
√ 

x2 + y2 + h2 (18) 

we write the derivatives for pseudo-bearing misfits as 

∂εθi 

∂xFO 
= sin γFO ( y2 + h2 ) − xy cos γFO

R3 
(19) 

∂εθi 

∂yFO 
= cos γFO ( x2 + h2 ) − xy sin γFO

R3 
(20) 

∂εθi 

∂γFO 
= y sin γFO − x cos γFO

R 

(21) 

and for frequency misfits as 

∂ε fi 

∂xFO 
= ẋs 

c0 R 

− x (ẋs x + ẏs y )

c0 R3 
(22) 

∂ε fi 

∂yFO 
= ẏs 

c0 R 

− y (ẋs x + ẏs y ) 

c0 R3 
(23)

∂ε fi 

∂γFO 
= 0 . (24)

We incorporate data measurement errors through a weighted 
least-squares approach. We assume that the measurement errors 
follow a normal distribution with a standard deviation σi . The ob- 
jective function is replaced by 

S( m ) =
m ∑ 

i= 1
( Gi ( m ) − di )

2 /σ 2 
i . (25) 

Because pseudo-bearing misfits are expressed as cosine residuals, 
we compute their standard deviation using the error propagation 
method. The resulting weighted pseudo-bearing misfit is 

εθwi =
εθi 

sin ( θi ) σθ i 
(26) 

with σθ i in radian. Accordingly, the components of the Jacobian 
corresponding to the pseudo-bearing misfit are normalized by 
sin ( θi ) σθ i . Similarly, the weighted frequency misfits are 

ε f wi =
fs ε fi

σ f i 
(27) 

and their Jacobian components are normalized by σ f i / fs . 
The objective function S( m ) provides useful statistical informa- 

tion about the quality of the model estimates. Since S( m ) depends 
on normally distributed random errors in d , it is a random vari- 
able and has a χ 2 distribution with Nobs − Nparam 

degrees of free- 
dom. We evaluate the localization uncertainty by estimating the 
95 per cent -tile of the χ 2 distribution, which is a good approxima- 
tion of the 95 per cent confidence interval in nonlinear regression 
when the problem is not strongly nonlinear (Aster et al. 2018 ). The 
95 per cent confidence interval is defined by the inequality 

χ 2 ( m ) − χ 2 ( m∗) ≤ �2 , (28) 

where �2 is the 95th percentile of the χ 2 distribution and m∗ the 
nonlinear least-squares solution. We evaluate �2 such that the prob- 
ability P ( χ 2 ( m ) − χ 2 ( m∗) ≤ �2 ) = 95 per cent . 

Because the Levenberg–Marquardt method has no guarantee to 
find the global minimum, especially using BO-TMA and when few 

sources are used, we carry the inversion multiple times considering 
different initial guesses close to the a priori position of the cable. 
This strategy significantly improves the chances of convergence 
towards the true position of the cable. 
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.6 Extension to multiple segments 

he approach proposed by BO and BF TMA has so far focused on
 single fibre segment. The length of this segment must be selected
ased on the signal-to-noise ratio (SNR), the desired angular reso-
ution and the level of spatial accuracy required. This point will be
iscussed in more detail in Sections 3.2.2 and 3.2.3 , but in practice,
he usable segment length typically remains within a few hundred

etres at most. To retrieve the geometry of a longer portion of the
bre, it is beneficial to jointly invert multiple adjacent segments.
n the following, to enforce geometric coherence between adjacent
egments, we introduce a regularization based on two terms: (1) a
patial continuity term ensuring the proper connection of segments,
nd (2) an angular continuity term promoting smooth orientation
hanges. Each term is modulated by a specific weight to balance
heir respective influence in the inversion. 

The inversion problem now minimizes the following objective
unction: 

min 
m

‖ dobs − G ( m )‖ 2 + wd ‖ rdist ‖ 2 + wγ ‖ razimuth ‖ 2 , (29) 

here rdist and razimuth are the residuals associated with the dis-
ance and azimuth continuity terms, and wd , wγ are their respective
eights. 
To reconstruct the geometry of a fibre that spans several segments,

e first extend the inversion scheme to jointly estimate the param-
ters of all segments. This requires modifying the definition of the
tate vector, the data vector and the forward operator accordingly. 

The full state vector m ∈ R
3 Nsegments now contains the concate-

ated parameters for all Nsegments fibre segments. Each segment j is
escribed by its horizontal and vertical coordinates ( x j , y j ) and its
zimuth angle γ j . The full state vector is: 

 = [
x1 y1 γ1 x2 y2 γ2 · · · xNsegments yNsegments γNsegments

] ∈ R
3 Nsegments

.(3

The observed data vector d ∈ R
2 Nobs Nsegments consists of the

seudo-bearing angles θi, j and apparent frequencies fi, j measured
t times ti concatenated for each segment j . It is written as: 

 = [
θ1 , 1 f1 , 1 θ2 , 1 f2 , 1 · · · θNobs ,Nsegments fNobs ,Nsegments

]� ∈ R2 Nobs Nsegments .

(31) 

The Jacobian matrix is now of dimension 

 ∈ R
2 Nobs Nsegments ×3 Nsegments (32) 

nd can be described as a block-diagonal matrix. Each block J j ∈
2 Nobs ×3 corresponds to the contribution of segment j , observations
t segment j depend only on its own parameters ( x j , y j , γ j ) . No
ross-terms exist between segments in the data misfit part; segments
re only coupled via regularization terms, such as continuity or
ngular smoothness constraints described in the following. 

The global Jacobian J thus takes the block-diagonal form: 

 =

⎡ 

⎢ ⎢ ⎢ ⎣ 

J1 0 · · · 0 
0 J2 · · · 0 
.. . 

.. . 
. . .

.. . 
0 0 · · · JNsegments

⎤ 

⎥ ⎥ ⎥ ⎦ 

∈ R
2 Nobs Nsegments ×3 Nsegments , (33) 

here each block Ji ∈ R
2 Nobs ×3 contains the partial derivatives of

he observed angles and frequencies with respect to the parameters
 x j , y j , γ j ) of the j-th segment. 

Now, let us introduce the regularization terms. First, for the spatial
ontinuity terms, we need to define the endpoints as a function of the
tate parameters. Each segment j is described by its centre position
 xi , yi ) and azimuthal angle γi . The segment has a fixed length L ,
nd its endpoints are defined as: 

x(1) 
j =

[
x j 

y j 

]
− L

2 

[
sin γ j 

cos γ j 

]
, 

x(2) 
j =

[
x j 

y j 

]
+ L

2 

[
sin γ j 

cos γ j 

]
. 

To ensure that the two extremities of segment i and segment i + 1
lign, we define a distance-based regularization residual as: 

dist 
j =

(∥∥∥x(1)
j+ 1 − x(2) 

j 

∥∥∥2
− d2

0

)
, (34) 

here d0 is the reference separation, typically of the size of the
patial sample of the DAS measurement (here 10 m). This could be
ut to an arbitrary distance if the segments are not continuous in
pace, which can happen in case some cable sections are discarded
i.e. low SNR, vibrating segments). 

Let define 

x = (
x j+ 1 − L 

2 sin ( γ j+ 1 )
) − (

x j + L 
2 sin ( γ j )

)
, (35) 

y = (
y j+ 1 − L 

2 cos ( γ j+ 1 )
) − (

y j + L 
2 cos ( γ j )

)
. (36) 

Then, the partial derivatives of the continuity residual r dist 
j are,

elative on the segment j variables 

∂ r dist 
j 

∂x j 
= −2 w · dx,

∂ r dist 
j 

∂y j 
= −2 w · dy,

∂ r dist 
j 

∂γ j 
= −2 w ·

(
dx · L 

2 
cos ( γ j ) − dy · L 

2 
sin ( γ j )

)
, (37) 

nd relative to segment j + 1 variable 

∂ r dist 
j 

∂x j+ 1 
= 2 w · dx,

∂ r dist 
j 

∂y j+ 1 
= 2 w · dy,

∂ r dist 
j 

∂γ j+ 1 
= 2 w ·

(
dx · L 

2 
cos ( γ j+ 1 ) · α − dy · L 

2 
sin ( γ j+ 1 )

)
. (38) 

Let idx j = 3( j − 1) (i.e. segment j’s position in the state vec-
or) the j-th row of the Jacobian Jdist is therefore 

Jdist [ j, idx j + 1] = −2 w · dx (39) 

Jdist [ j, idx j + 2] = −2 w · dy (40) 

Jdist [ j, idx j + 3] = −2 w · (
dx · L 

2 cos ( γ j ) − dy · L 
2 sin ( γ j )

)
(41) 

Jdist [ j, idx j + 4] = + 2 w · dx (42) 

Jdist [ j, idx j + 5] = + 2 w · dy (43) 

Jdist [ j, idx j + 6] = + 2 w · (
dx · L 

2 cos ( γ j+ 1 ) − dy · L 
2 sin ( γ j+ 1 )

)
(44

The second regularization term is used to minimize large varia-
ions in orientation between segments. We define the angular resid-
al as 

azimuth 
j =

{(
γi+ j − γ j

)
, if | γ j+ 1 − γ j | > γth ,

0 , otherwise , 
(46) 

here γth is a threshold (e.g. 5◦) beyond which angular continuity
s enforced. The j-th row of the Jacobian is therefore 

Jazimuth [ j, 3 j] = −1 , Jazimuth [ j, 3 j + 3] = 1 (47)
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Figure 3. Sample of modelled strain-rate signals generated as the boat moves, recorded by the FO segment. (a) Geometry of the FO segment with channel 
numbers. The strain-rate signals are shown at three different times: 0 s (b), 90 s (c) and 180 s (d). The vertical axis represents the channel indices along the FO 

segment. 

Figure 4. 3-D Bearing and Frequency Target Motion Analysis (BF-TMA) conducted on synthetic data, and comparison of uncertainties between BF-TMA 

and Bearing-Only Target Motion Analysis (BO-TMA). (a) Map view of the BF-TMA results. A single source was analysed (black arrow). The initial guess of 
the cable location is shown by the blue segment, the true cable location by the dark red line and the best estimated position by the red circles. The residuals 
χ2 , represented on a logarithmic scale, are computed on a 2-D spatial grid, with γFO fixed to the best estimated value from the BF-TMA analysis. Contours 
of the residual χ2 values are displayed for both the BF-TMA (black contours) and the BO-TMA analysis (red contours). The bold contour indicates the 95th 
percentile of the χ2 distribution, which approximates the 95 per cent confidence interval of the BF-TMA (black) and BO-TMA (red) best estimates of the 
cable-segment centre position. (b) Beam forming result performed on 30 s time-window sliding every 1 s on the synthetic DAS data for an acoustic source of 
37 Hz. (c) Comparison between the measured and modelled pseudo-bearing angles θ shown by blue dots and red line, respectively. (d) Same as (c) but for 
the frequency. Measurement’s noise with a standard deviation of 1◦ in bearing and 0.016 Hz in frequency was introduced. Pseudo-bearing and frequency were 
determined using beam forming. 
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Figure 5. Comparison of the standard deviation of the inverted parameters 
(blue lines) with the square root of the Cramer-Rao bound (red lines). 

Figure 6. Precision of the solution as a function of depth parameters. For 
each parameter, the error between the actual position and the estimated 
position is measured. 
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Figure 7. Localization error between the estimated and true positions of 
the fibre segment as a function of the angular resolution. Each realization 
is represented by a light blue diamond. Error bars indicate the mean and 
standard deviation over 100 realizations for each angular resolution. The 
array length as a function of angular resolution (beamwidth) is shown in 
red. 
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The total continuity regularization residual vector is constructed
y concatenating all spatial and angular terms: 

regularization =
[ 
r dist 

1 , . . . , r dist 
Nsegments 

, r azimuth 
1 , . . . , r azimuth 

Nsegments 

] T
. (48)

When adding regularization terms, additional rows appear in J
hat couple parameters of neighbouring segments. These introduce
ff-diagonal blocks, resulting in the augmented Jacobian: 

total =
[

Jdata 

Jregularization 

]
, (49) 

ith 

regularization =
[

Jdist 

Jazimuth 

]
. (50) 

This structure allows for joint inversion of multiple segments,
nforcing spatial coherence while fitting the observed data. 
 S Y N T H E T I C  T E S T S  

.1 Case study: BF-TMA on synthetic DAS data 

e first apply the method to synthetic data, with pseudo-bearing and
requency determined through beamforming. We consider realistic
ata processing conditions. 

Using an analytical acoustic wave simulation code, we simulate
train time-series along the fibre due to an acoustic source passing
ear the cable. We consider the cosine squared angular sensitivity
f DAS, which makes it blind to signals propagating perpendicular
o the fibre, and the response s i nc due to spatially integrated DAS
easurement over the gauge length (Bakku 2015 ; Hartog 2017 ).
he physical parameters of the seabed and the cable response, such
s the coupling between the cable and the ground or the cable
oisson ratio, are not taken into account. 

We express the strain-rate for acoustic waves reaching the fibre
nd detected by DAS in a water layer with constant acoustic wave
peed c, following the methodology outlined in Rivet et al. ( 2021 ).
or an incoming acoustic wave with particle velocity Av , angular
requency ω, wave-number � k , the induced strain along a fibre aligned
ith the x-axis is 

xx = −Av

c 
cos 2 ( θ ) exp i( ωt−� k ·� r ) , (51) 

here θ is the angle between � k and the x-axis, � r is the vector between
he source and the receiver and t is time. DAS measures strain-rate
veraged over a gauge length LDAS , which is: 

˙DAS = ε̇xx sinc 

(
kx 

LDAS 

2 

)
. (52) 

The Levenberg–Marquardt method requires an initial guess
or the cable parameters. In practical cable repositioning appli-
ations, a suitable initial guess can be obtained by projecting
he path of the vessel that deployed the cable onto the seafloor.
n the current example we set xFO1 = 400 m , yFO1 = 200 m and

FO1 = 0◦, while the real position is xFOtrue = 0 m , yFOtrue = 500 m
nd γFOtrue = 15◦. The depth of the cable is 1000 m. The source’s
oordinates and trajectory are known through AIS positioning.
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Figure 8. Time window length (a, b and c) and corresponding source position uncertainties (d, e and f) required to resolve the Doppler shift as a function of 
source frequency, apparent velocity variation and frequency resolution. The red lines correspond to the Doppler. 
In this example, xs0 = 1550 m , ys0 = −200 m , vx = 3 m s−1 and
vy = 10 m s−1 . 

Beam forming is applied to a sliding window of 30 s on a 200- 
s-long signal, using the same temporal sampling as applied to the
real data. The antenna used is 410 m long and consists of 41 sensors
spaced 10 m apart. Fig. 3 displays a sample of the modelled strain- 
rate signal over a one-second duration, recorded across all selected 
channels, at different times as the boat moves. 

To measure the pseudo-bearing angle, we pick the maximum 

energy for each beamforming performed for each time window. 
In real cases, coherent noise sources may occasionally be more 
energetic than the targeted source. In such cases, after detrending 
the polynomial that best fits the angles, we estimate the standard 
deviation and ignore values beyond 2 times the standard deviation. 
For frequency measurement, we also do it through the beamforming 
measurement, which we resolve in frequency. Here, the frequency 
of the maximum beamformed energy is retained. 

We incorporate noise into the pseudo-bearing estimates using a 
standard deviation of 1◦. In acoustic measurements, the beamwidth 
at the −3 dB level defines the resolution limit and is given by 

θw = 50
c 

f L 

, (53)

where ff is the frequency, LL is the array length (or aperture), 
cc is the wave speed and θw is expressed in degrees (Medwin & 

Clay 1997 ). This beamwidth represents a conservative estimate—
an upper bound—on the angular resolution. In our case, for a fre- 
quency of 37 Hz, an array length of 410 m, and a sound speed of 
1500 m s−1 , the beamwidth is approximately 4 . 9◦, corresponding 
to an angular spread of about ±2 . 4◦ around the beam centre. In 
practice, especially in high signal-to-noise conditions, the actual 
angular error obtained from peak-picking is typically significantly 
smaller than the beamwidth. Based on our tests on real data, we 
adopt a standard deviation of 1◦ for the pseudo-bearing uncertainty, 
which realistically reflects the observed variability in beamforming 
results. 

The frequency measurement uncertainty depends on the fre- 
quency resolution in the beamforming calculation, which is equal 
to the reciprocal of the window length. Here, we assume a 
standard deviation of 0.16 Hz, which is half the frequency 
resolution. 

The result of 3-D BF-TMA applied to synthetic data is shown 
in Fig. 4 . The χ 2 ( m ) values are computed for xFO ranging from 

−1200 to 2500 m and for yFO ranging from −2000 to 2500 m, with
increments of 100 m, fixing γFO at it best estimated value. The bold
contour shown in the figure represents the 95 per cent -tile of the χ 2

distribution. The a posteriori error is of only 18 m in this exam- 
ple, but the 95 per cent confidence interval covers an area of several 
hundred meters in the less constrained direction (x-axis). This con- 
fidence interval can be further reduced by incorporating additional 
source trajectories recorded by the fibre optical cable on different 
experiments, as will be shown later in Section 4 , with an example of 
relocation using multiple sources. The cable’s positioning can thus 
be further improved with future experiments recording more boats. 

The convergence of the algorithm on this simple synthetic test 
that mimics a real case study validates the idea that the method can 
be applied to real data. This method is well-suited for relocating a 
fibre optic cable. 
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Figure 9. Cable position (black line) and boat trajectory (yellow line) in a real configuration. The red section corresponds to the cable to be relocated. 
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.2 Performance of 3-D BF-TMA 

.2.1 Quantifying estimation accuracy using the Cramér-Rao 
ound 

o quantify the performance of this algorithm, we compare the
ariance of our estimator, applied to synthetic data with noise, to
he Cramer-Rao bound (CRB), which is defined as the variance of
n ideal unbiased estimator and is given by the inverse of the Fisher
nformation matrix. This bound provides a theoretical lower limit
n the variance of our estimator. The calculations can be found
n Nardone et al. ( 1984 ), Le Cadre et al. ( 2000 ) and Ho & Chan
 2006b ). 

In this synthetic exercise, using the same geometry as in Fig. 4 ,
he total number of observations is increased to 195. This means that
he source trajectory contains up to 195 positions, and the boat is ob-
erved for 3.25 min. We performed a statistical study on 200 draws,
tarting with a subset of 60 observations (1 min long) and increasing
p to 195 observations. Pseudo-bearing and frequency values were
etermined through beam forming. The standard deviation of the
stimated parameters xFO , yFO and γFO was compared to the CRB,
hich is displayed here as 

√ 

CRB (Fig. 5 ). The CRB is reached
symptotically, demonstrating the efficiency of the algorithm. 

We then analyse how the precision of the solution is affected by
he FO depth, source frequency and the source angle relative to the
bre (Fig. 6 ). The results of this analysis can help us optimize the
election of sources for relocating the cable. The convergence of the
ethod is even more assured when the Doppler shift in frequency

i.e. projected velocity) is greater, which according to the eq. ( 8 )
orresponds to high frequency or shallow depth. As we move away
rom these optimal conditions, frequency extraction by the beam
orming method may lose accuracy. Under these conditions, the
stimation of the observer’s position is less reliable. The optimal
ngle between the FO and the source being around the broadside
 

f the cable, we observe that the error increases when the angle
etween the source and the observer is less than 50◦. However,
ue to the angular sensitivity of the cable, detecting boats close
o the vertical may be challenging (Mateeva et al. 2014b ). Boats
etected at angles around 60◦, where sensitivity is sufficient (Rivet
t al. 2021 ), represent a good compromise between beam forming
ccuracy and signal-to-noise ratio. 

.2.2 Evaluating the trade-off between angular and spatial 
esolution 

n beam forming-based relocation, a fundamental trade-off arises
etween angular resolution and spatial resolution. 

On the one hand, short segments improve spatial accuracy and
nsure that each estimated source position reflects local variations
long the fibre. On the other hand, angular resolution depends
trongly on the effective aperture length L relative to the wave-
ength λ as stated in eq. ( 53 ). Thus, longer segments are required to
educe the uncertainty in the direction of arrival. 

This trade-off implies that high spatial resolution (short L ) comes
t the cost of poor angular resolution, while long segments improve
eam for ming perfor mance but reduce the ability to localize spatial
ariations along the array. 

As a practical example, we consider that a boat emits at a fre-
uency of 36 Hz, and we estimate the average localization error of
 fibre segment as a function of the angular resolution (beamwidth).
e make a conservative assumption that the angular measurement

rror is equal to half the beamwidth, which can indeed occur in
ases of very low signal-to-noise ratio (SNR). These estimates are
ompared over different array lengths L (Fig. 7 ). We find that a good
ompromise between spatial and angular resolution is obtained for

L ≈ 265 m, which corresponds to a beamwidth of approximately
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Figure 10. 3-D Bearing-Only Target Motion Analysis (BO-TMA) conducted on real data. (a) A 2-D map of the BO-TMA results. Two different sources from a 
single boat at two different times period were analysed (black arrows). The initial guess of the cable location is indicated by the blue segment, the best estimate 
of the position by the red circles. The residuals, χ2 , represented on a logarithmic scale, are computed on a 2-D spatial grid, fixing γFO to the best estimated 
value from the BO-TMA analysis. Contours of χ2 are displayed. The bold contour indicates the 95-th percentile of the χ2 distribution, which approximates the 
95 per cent confidence interval for the BO-TMA best fibre position. (b) Beam forming results performed on a 6-s time window sliding every 1 s on the DAS 
synthesized data for an acoustic source of 37 Hz. (c) Comparison between the measured and modeled pseudo-bearing angles θ , shown by blue dots and the red 
line, respectively. Pseudo-bearing angles outside the 1.5-sigma are considered as outliers and not included in the inversion (yellow dots). 
8◦ and a normalized aperture N = L/λ ≈ 6 . 2 , with acceptable per- 
formance for N in the range of 5.5–7. 

3.2.3 Doppler resolution and its implications 

For the Doppler shift data to be informative, it must be sufficiently 
well-resolved. The Doppler shift depends on the apparent velocity—
it is maximal when the boat is moving directly toward or away 
from the sensor, along the axis defined between the fibre and the 
boat—and on the source frequency, with higher frequencies yielding 
greater shifts. We define the Doppler frequency difference, refor- 
mulated from eq. ( 5 ), as 

� f = fd − fs = vs cos ( θ ) 

c0 
fs (54) 

with θ the angle of incidence between the direction of motion of the 
boat and the axis defined between the fibre and the boat. 

To resolve the Doppler difference � f , the frequency resolution 
fres of the beamforming analysis must be smaller than � f/ 2 . We 
can express the frequency resolution and time window length for 
beam forming as T , 

fres ≤ � f 

k 
⇒ T ≥ k 

� f 
, (55) 
where k is a resolution factor (the higher the value, the better the 
resolution). The minimal requirement to resolve the Doppler shift 
is met with k = 2 . 

The time window T required to resolve the frequency difference 
directly translates into an uncertainties in the source position, due 
to the vessel’s displacement during T , εsource = T × v. There is a 
trade-off between the precise resolution of the Doppler shift, which 
is required to achieve precise relocation of the fibre, and the spatial 
resolution that can be achieved for a given time window length. 

Fig. 8 displays time window length and the corresponding spatial 
resolution of the source position, required to resolve the Doppler 
difference, as a function of source frequency and apparent velocity. 
Here we consider the average tankers’ speed at approximately 13 
knots (24 km h−1 )—which are likely to generate DAS signals with 
a signal-to-noise ratio above 3 dB—travel. We see that higher fre- 
quencies should be targeted to be included in the inversion, as they 
can resolve the source position with sufficiently small errors and 
achieve fine frequency resolution. 

3.3 Case study: 3-D bearing-only target motion analysis 

When the configuration is not optimal for the use of the Doppler 
shift as seen in previous section, a frequency shift may be difficult to 
measure with sufficient precision. We investigate the possibility to 
apply the 3-D BO-TMA algorithm, based on pseudo-bearing alone, 
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Figure 11. Same as Fig. 10 . BO-TMA conducted on synthetic data with a geometry close to the experiment we conducted in Toulon. A total of four boat 
trajectories were used in the inversion. Measurement’s noise with a standard deviation of 1◦ in bearing were introduced for the third and fourth UMR transits 
of the source. 
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o one or multiple sources in URM. Unlike BO-TMA, which is used
o track a moving source from a stationary observer and results in an
nfinite number of possible solutions (due to the position ambiguity
long a hyperbola), in our case, the boat’s speed is known. This
nowledge eliminates the distance ambiguity, constraining the in-
ersion process even when only the pseudo-bearing is utilized. Fig. 4
hows in dark red the residual that would be obtained for BO-TMA
ase, with only the bearing angle being inverted. The confidence
nterval is slightly larger, as the Doppler frequency shift is well re-
olved in the previous case. This result demonstrates that BO-TMA
an serve as a viable alternative when frequency measurements are
ot sufficiently accurate. 

 A P P L I C AT I O N  T O  R E A L  DA S  DATA  

ased on the DAS data we have explored, the measurement and
se of pseudo-bearing alone proved to be sufficiently robust. Con-
equently, we adopt a Bearing-Only Target Motion Analysis (BO-
MA) approach. We apply it to the strain rate time-series recorded

n July 2020 on a 42 km-long underwater fibre optic cable deployed
ff the coast of Toulon, south-east France. This KM3NeT-Fr in-
rastr ucture is par t of the MEUST (Mediterranean Eurocentre for
nderwater Sciences and Technologies) and NUMerEnv (NeUtrino
er Environment) projects (Lamare 2016 ; Coyle et al. 2017 ). An
ragon Photonics HDAS interrogator unit was connected to one

nd of the fibre. During the DAS acquisition, an 80-m-long and
0-m-wide vessel sailed above the cable, and its AIS position was
ecorded with an average temporal resolution of 3 min.
In this acquisition, the spatial sampling (distance between two
ensing points) is set at 10 m, and the gauge length at 20 m and
emporal sampling is set at 1 KHz. We selected a section of cable to
e relocated that is 21 km from the interrogator unit along the fibre
Fig. 9 ). The section of cable studied consists of 40 sensors, resulting
n an antenna length of 400 m. This section was chosen because it
s linear; despite the uncertainty regarding the exact position of
he cable, it can be assumed to be rectilinear over this distance.
his linearity is necessary for applying the 3-D BO-TMA method
eveloped here. Additionally, the signal recorded on this section,
nlike other sections, has a high signal-to-noise ratio, enabling the
xploitation of two boat segments and the measurement of pseudo-
earing angles. The two signal sequences studied last 120 and 60
, respectively. The sliding time windows used for beam forming
re set at 30 s, ensuring the source’s position remains accurately
nown. By recording one pseudo-bearing observation per second,
e gathered two data sets with 115 and 55 observations each. 
Fig. 10 displays the inversion result using BO-TMA. In this case,

he two independent URM sections of the source are studied si-
ultaneously. The standard deviation of each individual pseudo-

earing angle was estimated independently for each lag. Outlier
seudo-bearing angles exceeding 1.5 times the standard deviation
ere assigned a large error and thus neglected in the inversion (indi-
ated by the yellow dots in Fig. 10 c). While the angles between the
ource positions and the source are quite far from the broadside, the
seudo-bearing angles remain below 60◦, ensuring observability. 

We performed a synthetic test, illustrated in Fig. 11 , to replicate
he configuration of the real-case experiment. The synthetic data
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Figure 12. Same as Fig. 10 . BO-TMA conducted on synthetic data with a geometry close to the experiment we conducted in Toulon. Measurement’s noise 
with a standard deviation of 1◦ in bearing were introduced for all the UMR transits of the source. 
simulate the DAS strain rate time-series measured at a fibre segment 
positioned at the location estimated by the BO-TMA inversion. The 
results of this test are consistent, showing two lobes of possible 
positions within a 95 per cent confidence interval. 

This initial synthetic test enabled us to further evaluate the impact 
of incorporating multiple source paths, as shown in Fig. 12 . Here, 
we added two additional boat trajectories, maintaining the source 
frequency at 37 Hz, with the boats travelling at velocities of 13 and 
6 knots, respectively. The localization uncertainties are significantly 
reduced, resulting in a single lobe. 

Finally, we investigate a case study demonstrating the extension of 
the relocation method to multiple segments, using synthetic data that 
mimic the configuration of the real experiment. Building on the pre- 
vious multisource relocation—which represents a more favourable 
scenario—we now apply the multisegment relocation approach de- 
scribed in Section 2.6 using BF-TMA (Fig. 13 ). For each segment, 
we assume that the same sources are visible; however, the method is 
compatible with varying source visibility, which is expected in very 
long fibre deployments. In this example, we consider four segments, 
each 390 m in length. The initial configuration is offset by 10◦ in 
azimuth, 300 m in longitude and –400 m in latitude. We retrieve po- 
sition errors of less than 30 m, which are within an acceptable range 
compared to the uncertainties expected for a single segment, shown 
by the 95 per cent confidence interval in Fig. 12 . We observe that 
the continuity regularization ensures even distances between seg- 
ments, while the azimuth regularization provides smooth changes in 
azimuth. 
5  D I S C U S S I O N  

The TMA methods presented here enable the real position of an 
underwater fibre optic cable segment to be determined, based on 
an initial estimate. This is achieved using either a combination of 
pseudo-bearing and frequency data or pseudo-bearing data alone, 
recorded over several observations of acoustic waves from a moving 
source. While the results presented here are based on a single source 
and achieve a relocation precision within 100 m, the performance 
of the method can be greatly improved by including more sources as 
shown in Fig. 12 . Doppler shift observations can be used to further 
constrain the solution. However, as seen in Section 3.2.3 , the shift 
can be very small and difficult to measure for low-frequency sources 
( < 100 Hz ). 

Currently, the method only inverts for the position and azimuth 
of linear portions of cable. With improved localization, other pa- 
rameters related to the bathymetry, which are assumed to be known 
here, may also need to be inverted. 

Here, the slope of the cable was assumed to be zero. For the 
section of cable studied, the slope is likely less than 5◦. This ap- 
proximation interferes with the algorithm’s estimation of the cable’s 
position. To account for this, we first need to redefine the pseudo- 
bearing misfit we are trying to minimize, then integrate it into the 
calculation of the Jacobian matrix. The state vector would then be- 
come μ = ( xFO , yFO , γFO , ψFO ) , where ψFO is the slope of the cable. 
However, considering a slope of 5◦ will lead to an error of 87 m 

at a depth of 1000 m, which is within the uncertainties of the best 
location estimation when considering a single source. 
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Figure 13. BF-TMA performed on synthetic data for four fibre segments, using a geometry similar to the real experiment conducted off Toulon. Four distinct 
boat UMR transits were used in the inversion. (a) Map view showing the initial guess, actual and estimated segment positions. The position errors of the four 
segments are indicated in the title. (b,d,f,h) For each segment, comparison between the measured and modelled pseudo-bearing angles θ shown by blue dots 
and red line, respectively. (c,e,g,i) Same as (c) comparison between the measured frequencies. Measurement’s noise with a standard deviation of 1◦ in bearing 
and 0.016 Hz in frequency was introduced. 
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Another parameter that can improve relocation accuracy is the
epth of the cable. In our method, the depth is fixed and assumed to
e known from the preliminary estimate of the cable geometry. It
s conceivable to add the depth as a state parameter and estimate it
s well. However, this could affect the observability of the problem.
o address this, we could discretize the solution field, using known
athymetry to assign a depth with each longitude/latitude pair. In
his way, the algorithm will only propose a solution at one of the
epths defined by the bathymetry. 

Uncertainties on the sound speed in the water column may as well
mpact the precision of the relocation. The water column velocity is
onsidered constant here. However, because the sources we typically
ense using DAS are located close to the vertical of the fibre, with a
aximum sensitivity at 60◦ from the horizontal (Rivet et al. 2021 ),

nd because we focus on the direct path, we do not expect the effect
o be larger than a few metres. 

Finally, when considering large ships, which are typically the
oisiest vessels, we assume that the source is co-located with the
osition of the AIS. This assumption holds true within a few tens of
etres, given the distance between the engine and the positioning

ystem on the boat. 
While the Levenberg–Marquardt method does not guarantee

eaching the global minimum, it does offer advantages. With just
hree parameters to determine for each fibre segment, global op-
imization methods prove highly effective and efficient. However,
hen employing this approach to solve for multiple consecutive
 l  
bre segments simultaneously the number of model parameters can
ubstantially rise, making it less suitable for global optimization
ethods. Moreover, it is not always feasible to invert for the entire

able, and it may be beneficial to invert for segments independently.
his was evident in the KM3NeT-Fr cable, where due to site and cou-
ling conditions, a specific acoustic source might not be detected on
ll cable segments. To ensure finding the global minimum, several
tarting conditions could be tested around the best-known position.

 C O N C LU S I O N  

e have introduced a method for relocating a straight segment of
nderwater optical fibre cable using noise emitted by passing ships
nd recorded on the strain-rate time-series acquired through DAS
echnology. After outlining the principle of target motion analysis
or source localization, we adapted this method for 3-D localiza-
ion. Given that the inverse problem is not linear, we utilized the
evenberg–Marquardt algorithm to solve it. 
Considering a single source, the confidence interval of 95 per cent

f the recovered position is about a few hundred metres, depend-
ng on the geometry of the source and the fibre. In synthetic tests,
he localization is recovered with an accuracy of less than 100 m.
his improvement is significant compared to the very sparse lo-
ation data provided by cable operators. Further enhancement in
ocalization can be achieved by incorporating more sources (AIS

art/ggaf339_f13.eps
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data are publicly available) and conducting longer DAS experi- 
ments. 

We demonstrate that while a method exploiting pseudo-bearing 
and frequency simultaneously can help better constrain the location 
of the cable, it may not always be possible to precisely measure the 
frequency within ±0 . 1 Hz at low frequencies in real data. Another 
approach exploiting only pseudo-bearing allows for cable relocation 
within acceptable precision. 

This initial implementation establishes a high-performance 
method for relocating a single section of optical fibre. We have 
extended the approach to support multiple-segment relocation by 
introducing a regularization scheme into the Levenberg–Marquardt 
algorithm. This regularization imposes spatial and angular con- 
tinuity constraints between adjacent segments, ensuring a coher- 
ent reconstruction of the fibre geometry. While the method shows 
promising results on synthetic data sets, further testing on a broader 
range of scenarios is needed. In particular, real-data processing 
components—including the beam forming technique and frequency 
estimation method—must be further validated and potentially re- 
fined. Future efforts will focus on applying this approach to larger 
fibre sections, with the ultimate goal of enabling relocation of an 
entire fibre-optic cable network. 
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manuscript. This includes the beam forming step, implemented us- 
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