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1. Taxonomy, biology and distribution of the species within the Funestus
Group

1.1. Introduction

Anopheles funestus Giles, 1900 is considered one of the most proficient malaria vectors world‐
wide [1]. It thrives in a wide range of habitats through the Afrotropical Region. Largely
neglected with regard to its counterpart Anopheles gambiae, An. funestus cannot be ignored in
any comprehensive control program aiming at the eradication of malaria from the African
continent. Its transmission role goes beyond that of secondary vector, surpassing An. gam‐
biae in many parts of Africa [2]. One of the main reasons of this inattention is the difficulty of
adapting this species to standard insectary conditions, despite noteworthy molecular and
epidemiological advances over the past three decades. Currently, substantial evidence shows
that a group of species belongs to the taxon “An. funestus”, with different morphological,
behavioural and epidemiological characteristics.

1.2. The Funestus Group

The term “Funestus Group” was first coined in its strictest sense by Gillies and De Meillon [3]
to designate a group of species morphologically close to An. funestus. Seventy years after the
first description of An. funestus sensu stricto (hereafter An. funestus) by Giles in 1900, Mick Gillies
and Botha De Meillon developed a new classification based on larva, pupa and adult stages.
In fact, first suspicions of the existence of heterogeneity within An. funestus populations came
from the early 1930’s [4, 5]. They stated, based on larval studies, the presence of ‘varieties’, most
of them were subsequently recognized as species within the group. These species showed
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minor or no morphological differences at adult stage. They were then classified under the
Funestus Group and their recognition was based on the identification of eggs, larvae or
pharyngeal armature [3]. However, in Southern and Eastern Africa, several populations of
outdoors resting mosquitoes were distinguishable from An. funestus by small morphological
characters at the adult stage, while the larva were indistinguishable. These taxonomical
observations were later confirmed by cytogenetic studies as different species of An. funestus
[6-8].

Given the laborious nature of morphological and cytogenetic techniques, several studies were
undertaken for the research of simple and useful molecular identification tools [9-12]. These
techniques have the advantage to be applicable to all developmental stages. On the basis of
morphological [13, 14] and molecular studies [15, 16], the status and position of each species
within the Funestus Group was revisited. It is now accepted that An. funestus belongs to a
group composed of five subgroups of which 3 groups containing 13 species are present in the
Afrotropical region (Table 1) [17].

Summary of ecological characteristics of Funestus group in Africa. 

Subgroup Species Geographical distribution Host preference Vector role

An. funestus continental anthropophilic major
An. funestus like local
An. aruni local
An. confusus regional zoophilic unknow
An. parensis regional minor
An. vaneedeni local unknow
An. longipalpis type C local zoophilic             unknown

An. leesoni continental zoophilic minor
An. longipalpis type A local zoophilic             unknown

An. rivulorum continental zoophilic minor
An. rivulorum like local
An. brucei local unknow
An. fuscivenosus local

African species of the Funestus Group

Funestus

Minimus

Rivulorum

Table 1. Summary of ecological characteristics of Funestus Group in Africa.

1.3. Geographical distribution

Among the species of the Funestus Group, An. funestus, An. leesoni and An. rivulorum exhibit
the widest distribution. They are traditionally represented throughout the entire sub-Saharan
Africa [1, 3]. Figure 1 presents the predicted distribution of these species [11, 12]. Anopheles
funestus is found virtually all across the continent (Fig. 1A). Being predominantly a savannah
mosquito [18], this malaria vector is present in many other areas, such as high altitude zones
(900 m in Madagascar [19], 1400 m in Central Africa [20] and up to 2000 m in Kenya [21]) and
forested areas of West and Central Africa [18, 22-25]. Moreover, it can inhabit extreme dry
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conditions in the Sahel, when suitable breeding place are available, such as human-made
irrigation zones [26, 27]. On the other hand, An. funestus is scarce or completely absent along
the coast [18]. Anopheles funestus disappeared from several parts of Africa after adverse climatic
conditions (i.e recurrent droughts) and/or vector control programs [28]. Unfortunately, this
mosquito gradually re-emerged once control measures stopped or suitable environmental
conditions re-appeared [29-32], evidencing its extraordinary environmental plasticity and
dispersion ability.

The other species of the group exhibit locally defined distribution (Fig. 1B, C). Anopheles
parensis, An. confusus and An. aruni are localized in East Africa [33, 34]. In West and Central
Africa, we find An. rivulorum-like and An. brucei [11, 12]. Finally, in Southern Africa, we find
An. vaneedeni, An. parensis again, An. fuscivenosus, An. funestus-like and An. longipalpis types A
(South Africa) and C (Zambia) [1, 35, 36]. Certainly, these records are based on sampling efforts,
and we might expect changes in the number of species within the group as well in their
distribution.

Figure 1. Distribution of the 13 species of the Funestus Group in Africa, A: Anopheles funestus, (modified from [37]); B:
An. leesoni, An. longipalpis (type A and C), An. aruni and An. parensis (Courtesy of Dr. S. Manguin), C: An. rivolorum, An.
rivolorum-like, An. funestus-like, An. vaneedeni, An. fuscivenosus and An. brucei (Courtesy of Dr. S. Manguin).

1.4. Breeding place

Anopheles funestus breeds in natural/artificial permanent and semi-permanent water bodies
with floating or emerging vegetation. However, in areas with both vegetation types, this
mosquito prefers the latter one [3]. Natural breeding occurs in edges of swamps, in weedy and
grassy parts of rivers, streams, furrows, ditches and ponds. The presence of vegetation is
crucial for mosquito breeding (Fig 2. A-C). Mainly because aquatic stages have a marked
preference for shaded habitats and can barely survive in water bodies directly exposed to
sunlight. Artificial breeding opportunities include rice fields, wells and domestic water-
containers [3]. The main limiting factors to their development include salinity, extreme
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temperatures and sometimes, heavy rains. For the other species within the Funestus Group,
the biology of aquatic stages is poorly understood. The larva of An. leesoni, An. rivulorum and
An. vaneedeni are often found in association with those of An. funestus. In Kenya, An. rivulo‐
rum replaced An. funestus in rice fields after indoor residual spraying [38]. The presence of
vegetation appears to be essential too. These breeding sites are represented generally by slow-
moving backwaters of grassy rivers and tide pools. In western Kenya, larva of An. rivulorum
were recently found in hyacinth water protected by trees [39]. Similarly, An. parensis develops
in permanent swamps and ponds between the reeds and the emergent vegetation. However,
An. parensis is a species of stagnant water that has never been found in rivers. The larva were
always collected in marshes, temporary and permanent ponds, among reeds and emerging
vegetation [1, 3]. Anopheles aruni breeds in ponds, rice fields or ditches near human habitations.
Larva of An. brucei were found in streams of forested river beds. Anopheles confusus, on the
other hand, breeds in the vegetation of the edges of slow flowing rivers. Anopheles longipalpis

in weedy and grassy parts of rivers, streams, furrows, ditches and ponds. The presence of vegetation is crucial for breeding (Fig 2. 
A-C), mainly because aquatic stages have a marked preference for shaded habitats and can barely survive in water bodies directly 
exposed to sunlight. Artificial breeding opportunities include rice fields, wells and domestic water-containers [3]. The main 
limiting factors to their development include salinity, extreme temperatures and sometimes, heavy rains. For the other species 
within the Funestus Group, the biology of aquatic stages is poorly understood. The larva of An. leesoni, An. rivulorum and An. 
vaneedeni are often found in association with those of An. funestus. In Kenya, An. rivulorum replaced An. funestus in rice fields after 
indoor residual [38]. The presence of vegetation appears to be essential too. These breeding sites are represented generally by slow-
moving backwaters of grassy rivers and tide pools. In western Kenya, larva of An. rivulorum were recently found in hyacinth water 
protected by trees [39]. Similarly, An. parensis develops in permanent swamps and ponds between the reeds and the emergent 
vegetation. However, An. parensis is a species of stagnant water that has never been found in rivers. The larva were always 
collected in marshes, temporary and permanent ponds, among reeds and emerging vegetation [1, 3]. Anopheles aruni breeds in 
ponds, rice fields or ditches near human habitations. Larva of An. brucei were found in streams of forested river beds. Anopheles 
confusus, on the other hand, breeds in the vegetation of the edges of slow flowing rivers. Anopheles longipalpis prefers relatively calm 
water with abundant aquatic vegetation on the banks of fast-flowing rivers [3]. In many occasions, breeding places are very similar 
to An. funestus. Unfortunately, no information exists about breeding places for An. fuscivenosus, An. rivulorum-like and An. funestus-
like [1, 3, 36, 40].  

 

Figure 2. Breeding sites of Anopheles funestus (Photos D. Ayala, Cameroon). A: Pitoa (Cameroon) is situated in the northern dry savannah, close 
to a permanent human-made lake, which provides a year-round breeding site for An. funestus. B: Tibati (Cameroon) is located in the central 
highlands of the country. Anopheles funestus breeds year-round in the lake, which provides shaded areas thanks to the lake vegetation. C: Mfou 
(Cameroon) is situated in the southern rainforest, in the surroundings of Yaoundé. The artificial water-body provides an excellent breeding site for 
An. funestus, making it the major vector of the village.  

1.5. Resting behaviour and host feeding preference: Their impact on vector capacity  

Despite the morphological similarities that exist between members of the group, these species show extreme behavioural 
differences that affect their vectorial capacities. To date, all malaria transmission studies have shown that An. funestus is the main 
malaria vector in the group, with infection rates up to 11% [41] and exceptionally 50% [42]. Anopheles funestus has late-night biting 
patterns, commonly between midnight and the early hours of the morning [22, 43, 44]. It is also the most endophilic and 
anthropophilic member of the Funestus group [45-47]. In savanna areas where its breeding sites are rain-dependant, An. funestus 
follows in peak abundance its counterpart An. gambiae, therefore extending malaria transmission from the beginning to the first 
part of the dry season [48, 49]. Overall, An. funestus shows fairly consistent host feeding preferences (human) and resting behaviour 
(indoor) throughout its entire range. However, behavioural differences linked to chromosomal polymorphisms have been 
documented. For instance, Lochouarn et al. [50] reported a west-east gradient of human to animal biting preference, corresponding 
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Figure 2. Breeding sites of Anopheles funestus (Photos D. Ayala, Cameroon). A: Pitoa (Cameroon) is situated in the
northern dry savannah, close to a permanent human-made lake, which provides a year-round breeding site for An.
funestus. B: Tibati (Cameroon) is located in the central highlands of the country. Anopheles funestus breeds year-round
in the lake, which provides shaded areas thanks to the lake vegetation. C: Mfou (Cameroon) is situated in the southern
rainforest, in the surroundings of Yaoundé. The artificial water-body provides an excellent breeding site for An. funes‐
tus, making it the major vector of the village.
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 prefers relatively calm water with abundant aquatic vegetation on the banks of fast-flowing
rivers [3]. In many occasions, breeding places are very similar to An. funestus. Unfortunately,
no information exists about breeding places for An. fuscivenosus, An. rivulorum-like and An.
funestus-like [1, 3, 36, 40].

1.5. Resting behaviour and host feeding preference: Their impact on vector capacity

Despite the morphological similarities that exist between members of the group, these species
show extreme behavioural differences that affect their vectorial capacities. To date, all malaria
transmission studies have shown that An. funestus is the main malaria vector in the group,
with infection rates up to 11% [41] and exceptionally 50% [42]. Anopheles funestus has late-night
biting patterns, commonly between midnight and the early hours of the morning [22, 43, 44].
It is also the most endophilic and anthropophilic member of the Funestus Group [45-47]. In
savanna areas where its breeding sites are rain-dependant, An. funestus follows in peak
abundance its counterpart An. gambiae, therefore extending malaria transmission from the
beginning to the first part of the dry season [48, 49]. Overall, An. funestus shows fairly consistent
host feeding preferences (human) and resting behaviour (indoor) throughout its entire range.
However, behavioural differences linked to chromosomal polymorphisms have been docu‐
mented. For instance, Lochouarn et al. [50] reported a west-east gradient of human to animal
biting preference, corresponding to chromosomal polymorphisms that also follow this cline.
In Burkina Faso, different chromosomal inversion combinations (chromosomal forms, see
below) were associated with different resting and biting activities [42]. These studies showed
that carriers of inverted arrangements on the arm 2R and 3R feed predominantly on humans
(anthropophilic) and rest inside dwellings, while the standard counterpart exhibit higher
levels of zoophily and exophily (Guelbeogo, pers. Comm.). In Madagascar, the carriers of
inverted arrangements 3Ra and 3Rb were less anthropophilic than carriers of standard
arrangements [51]. In Senegal, the population of mosquitoes with inverted arrangements 3Ra
and 3Rb was also more zoophilic. However, this heterogeneity in host preference might also
be related to specific local conditions, such as host availability [52] or indoor microclimatic
conditions (i.e. humidity).

The  other  species  of  the  group  are  mainly  zoophilic,  but  can  occasionally  feed  on  hu‐
mans [3]. Anopheles rivulorum has been incriminated as a malaria vector in Tanzania [53].
Indeed, this species was found naturally infected by Plasmodium falciparum. However, this
species is mainly zoophilic (77% animal hosts) and shows a lower longevity compared to
An.  funestus.  Positive  infected specimens of  An.  rivulorum  were also observed in coastal
Tanzania by Temu et al. [54]. This study also found positive specimens of An. leesoni and
An. parensis  to P. falciparum,  suggesting a secondary role of these mosquitoes in malaria
transmission.  Plasmodium  falciparum  infected  An.  parensis  specimens  were  also  observed
during an entomological study in South Africa using an Enzyme-Linked Immunosorbent
Assay  (ELISA)  [55].  Anopheles  vaneedeni  feeds  rarely  on  humans  outdoors  (1.22%).  Al‐
though experimentally infected with P. falciparum in the laboratory, it has never been found
involved in  transmission in  natural  conditions  [56].  Anopheles  longipalpis  has  never  been
involved in malaria transmission [1, 3, 57]. In East Africa (Tanzania and Ethiopia), different
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authors have reported human feeding behaviour of An. longipalpis from indoor and outdoor
collections  [58-60].  Recently,  Kent  et  al.,  [57]  reported  that  even  when  found  in  large
numbers  resting  indoors  together  with  An.  funestus  in  Zambia,  An.  longipalpis  remains
predominantly zoophilic.

2. Insecticide susceptibility and vector control

Because of its highly anthropophilic and endophilic behaviour, An. funestus has been an “easy”
target in malaria control programs (i.e. insecticide treated materials or indoor residual
spraying). Anopheles funestus has developed insecticide resistance in many parts of the African
continent [61-64]. To date, An. funestus has been shown resistant to pyrethroids, carbamates
and DDT. The first documented reports on insecticide resistance in this malaria mosquito
(mainly to BHC, dieldrin, and malathion) were in West Africa (Mali, Ghana, Benin), Central
Africa (Cameroon) and East Africa (Kenya), following vector control programs [65-68]. Recent
studies have shown that dieldrin resistance is still high in An. funestus populations from
Burkina Faso, despite the fact that this insecticide is no longer used in public health [47]. In
agreement with Burkina Faso results, Wondji et al. [69] documented An. funestus resistant
populations to dieldrin in Cameroon due to the remaining presence of RdlR target-site
mutation. With regard to pyrethroids, resistant An. funestus populations were first detected in
Southern Africa, being at the origin of the malaria outbreaks in the late 1990’s [31, 62].
Pyrethroid resistant populations for this mosquito were also reported in Ghana, West Africa,
combined with carbamate resistance [70]. Altogether, it is now clearly established that An.
funestus populations in Africa show resistance to at least the 4 insecticide classes recommended
for vector control by WHO.

During the last decade, efforts have been made in order to unravel the molecular mechanisms
involved in insecticide resistance. The mechanisms discovered involve insecticide detoxifica‐
tion by one or multiple metabolic pathways mediated by glutathione S-transferases (GST),
monooxygenases and/or esterases [61, 71-73]. No evidence for the presence of L1014F kdr
mutation or G119S Ace-1 mutation has been detected in An. funestus [63, 64, 71, 72]. However,
a multiple insecticide resistance profile has been recently observed in Benin [74]. Insecticide
resistance is an threat to effective malaria control. With the advent of malaria control program
through the use of LLINs (Long Lasting Insecticidal Nets) and IRS (Indoor Residual Spraying),
the presence of insecticide resistant populations should be carefully monitored. It would
improve the implementation and management of current and future malaria vector control
programs in Africa. In this context, a novel approach using the pyrrole insecticide chlorfenapyr
against pyrethroid resistant An. funestus populations has led to valuable results [75]. An
important challenge for the study of molecular mechanisms of insecticide resistance is the
development and maintenance of laboratory colonies. To date, only two colonies are currently
maintained at insectarium conditions, coming from southern Africa [76], although, some
progress has been made and new strains have been established in Burkina Faso (Sagnon et
al., pers. comm.).
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3. Molecular tools

3.1. Introduction

In 2002, the genome of An. gambiae s.s. was publicly released [77]. This event had a very large
impact on the better understanding of the complexity of the malaria system. Furthermore, the
publication of the An. gambiae genome brought with itself a rapid development of new genetic
tools, from molecular markers (i.e. SNPs chips, microarrays, microsatellites, etc) to transgenic
mosquitoes, for instance. To date, no other malaria mosquito genome has been released but
progress has been made, and soon (2013), the release of several Anopheles genomes, including
An. funestus [78], is expected.

Three inherent characteristics of An. funestus, have hampered the study of this mosquito at the
molecular level. First, its “eternal” role as second important malaria vector. For decades, An.
funestus has been neglected with regard to its well-studied congener An. gambiae. With virtually
the same geographical distribution as An. gambiae across the African continent, An. funestus
has been many times overruled because its mosaic-like presence (see previous section in this
chapter). However, its major role in malaria transmission has been evidenced throughout the
continent, surpassing in a number of locations An. gambiae and An. arabiensis [2] in many places.
Second, the extreme difficulties to breed An. funestus in standard insectary conditions. To date,
as mentioned earlier in this chapter, there exist only two colonies of An. funestus with published
records: FANG and FUMOZ (and its pyrethroid resistance counterpart FUMOZ-R), originat‐
ing from Angola and Mozambique, respectively [76, 79]. Both colonies have been recurrently
used in insecticide resistance studies of An. funestus [74, 79, 80]. Indeed, it is one of these
colonies (FUMOZ), which has been elected as reference An. funestus genome for sequencing
[78]. Unfortunately and besides the numerous efforts in many parts of Africa, only one new
colony has been colonized (Sagnon et al., pers. comm.). Third, polytene chromosomes of this
species exhibit a poor quality in comparison with An. gambiae [7]. The assembly of the An.
gambiae genome was primarily based on techniques, which required the identification of
probes through polytene chromosomes [77]. Although polytene chromosomes are readable,
as several studies assert, however, the effort involved is very high and the rate of success,
significantly lower.

Despite these challenges, and the lack of a publicly available An. funestus genome, several
noteworthy molecular and genetic advances have been reached in this malaria mosquito
during the last decade. These advances have been inspired by those previously achieved in
An. gambiae. Particularly, we can distinguish two fields: molecular markers and expression
profiling analysis.

3.2. Molecular markers

In the late 70’s and beginning of the 80’s, several studies revealed the importance of chromo‐
somal inversions as genetic markers to differentiate species within the Funestus Group [6, 7].
These results mirrored those obtained in the An. gambiae complex [81, 82]. But, we had to wait
until the end of the 90’s and the past decade to settle the role of the chromosomal inversions
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in local adaptation and speciation within An. funestus populations [42, 52, 83-86]. Despite its
evident interest, the technical demands of traditional karyotype analysis, the low rate of
success in chromosome preparations, and the sex- and stage-specific limitations, have
hampered the proliferation of this kind of studies. Nowadays, the new advances in molecular
karyotyping in An. gambiae (based on quick, low-cost and convenient PCR reactions) have re-
launched an interest in this field [87, 88]. Together with new high-throughput technology, the
An. funestus genome will undoubtedly open new possibilities to develop molecular karyotyp‐
ing in this mosquito.

 
Table 2. Summary of microsatellite loci in An. funestus 

These molecular markers have been key in numerous advances. For instance, SNPs and microsatellites allowed to Wondji and co-
workers to explore the genetic basis of insecticide resistance in this malaria vectors [79]. Several genes including the P450 
cytochrome (CYP6P9a and CYP6P9b) were associated to DDT resistance by Quantitative Trait Loci (QTL) analysis using both 
markers [72]. The role of microsatellites in population genetic studies is discussed in other sections of this chapter (see below). 
Despite these advances, we are still far from An. gambiae molecular advances. For instance, in An. funestus 75 microsatellite loci have 
been identified, compared to 300 in An. gambiae. With regards to SNPs, 509 have been reported in An. funestus [79, 89], compared to 
400,000 in An. gambiae [80]. 

3.3. Expression profiles 

Considering the lack of An. funestus genome, transcriptome analysis appeared as a suitable alternative to whole genome 
sequencing. This technique is significantly cheaper and provides important information at the gene transcript level. Moreover, it 
provides valuable molecular tools for the analysis of gene expression evolution and comparative analysis among other Culicidae 
members, such as An. gambiae, Ae. aegypti or Cx. pipiens. 

In 2007, Calvo et al., [96] investigated salivary gland genes from 916 cDNA clones coming from adult females. This study debuted 
the analysis of transcripts in this mosquito, providing important clues about the evolution of salivary gland proteins in blood 
feeding insects and Culicidae. In particular, a 30 KDa allergen family and several mucins were exclusively found in Culicidae when 
compared to Aedes albopictus, Aedes aegypti and Culex pipiens quinquefasciatus. Moreover, ten proteins and peptide families were only 
found in Anopheles when included in the analysis An. gambiae, Anopheles stephensi and Anopheles darlingi. Later, two new studies 
emerged with the aim to analyze the transcriptome evolution and differences in expression profile between insecticide susceptible 
and resistant phenotypes of An. funestus, respectively [80, 97]. While, Serazin et al. [97] used SANGER sequencing technology for 
this purpose, Gregory et al. [80] employed de novo expression profiling by 454 pyrosequencing. In general, these two studies were 
largely complementary and boosted the available genetic information in An. funestus. However, 454 pyrosequencing allowed 
parallel DNA sequencing and increased sequencing depth and genome coverage. For instance, Gregory et al. [80] improved the 
number of ESTs (Exressed Sequence Tags) from 2,846 [97] to 18,103 contigs. Regarding comparative analysis with other 
mosquitoes, both studies agreed on the fact that the highest similarity pattern remains with An. gambiae. Interestingly, the mean 
percentage of similarity differs drastically between functional groups. Two groups of housekeeping functions show the highest 
amino acid sequence conservation: protein synthesis and degradation. On the other hand, three groups of interest patently showed 
very low similarity scores, suggesting accelerated rates of evolution. These three functional categories – salivary, immunity and 
extracellular structures – may be driven by environmental selection pressures. For instance, selective pressures imposed by 
parasites could explain both the highest genetic variability and the lowest conservation of immune genes between An. funestus and 
An. gambiae. Alternatively, de novo 454 sequencing offered the opportunity to identify new SNPs. In this sense, 31,000 potential 
SNPs were discovered over 4.579 Mb of sequence, meaning one SNP every 70 bp [80]. Thus, expression profile studies led to 

Chromosome Locus Accession number Forward primer Reverse primer Allele size

FUNE AY6009 GACCGGTTCTGGTATCGTC ATCGAGTCACCCAATTCTCC 136–154
FUNQ AY6021 GCAAACTGCTAGTAAATGTTTCC *ACACAACGCCACCACTATGA 84–98
AFND6 AF171036 GCTTCTTCTCCCCTAATCTG TCCTGCTTTTTAGTTTGTCG 184–212
AFUB15 AY029722 GATGCCGGGAGTAATAGCAA AGACAGCCCGTAGAACGGTA 155–191
AFND2 AF171032 ATAAACCCGTCCATTCCCTT CCTATGATTCGCTCCTGACA 131–151
AFND32 AY291367 GAAGCATTTTGGGTTAGACTC GCAGTTGTTTACCTTTCACTG 103–121
AFUB14 AY029721 ATCAGTGCTCCTCCACATCC CGTGGTTGGCAATGTTACTG 152–188
AFND17 AF171047 AAAACGCCACAAAGAGCAC CGGGTCAAATTCTACCGTAAG 129–157
AFUB4 AY029711 CTATCAGCAGCCGCCACA GATGCCGATGAGGAATGTTG 183–192
AFUB25 AY029723 GTGGAAACGGTGGTACTGT CGCCATGTAGCTAGGGTTTG 212–224
AFUB10 AY029717 TGTCCATGTACAACCGCAAC TTCTCCAGCATCATCAGCAC 195–210
AFND37 AY291373 GATCGATACAATAAGTGTAGAAATAAT TCACGATGTGCAACCTATAA 161–189
AFUB30 AY029737 GCCAGTTTGCAGAACCAAAT CTGCTGCTGATGTTGCTGAT 154–163
AFUB7 AY029714 ATGGGACGATGGATTACCAA GCCAGTTTGCAGAACCAAAT 220–223
AFUB16 AY029723 CGTGGATGGCAATGTTACTG TGCGACTTATCAGTGCTCCT 179–209
AFND21 AF171051 CCGCACACCAACTTACACTC TGGCGTGGGATTAAATAGG 96–104
AFUB13 GACTTCCGCCACAGAACATC CTCAGGCTCGCAGTAGGAGT 207–210
AFND19 AF171049 CAGAACCACTTCGATTCAAC CCTGCACTCAGAAACACAC 172–205
FUND AY6008 GCTAACTACTCCGAAGCGCT GATCGCAAAACTTCCGGTT 145–177
FUNI AY6013 *GCAACTAAGCTGGGACAGGA GCATCTAACCCTGCTGCTT 181–197
AFND3 AF171033 ACGACTGTAACCACAACACC TAGTAGCGAAGGCGAAAGAT 171–195
FUNF AY6010 CCTTCAGTTTCGATTGGCG AATAAGATGCGACCGTGGC 104–118

AFND10 AF171040 TTTTTTCTTCCCGTGTTGC TACCATTTGATTACAGCGCC 114–146
AFUB17 AY029724 GAAAACCGTACGAACGATGG TGCGACAGTAGCACAGGGTA 187–196
AFUB1 AY029708 CAGCAGCAGCAGCAACAG GACGTTAGCATCTCCACCAG 266–269
AFUB12 AY029719 TGGGGAACTGGTCGTTAGAG CTGGTGATGGGATTGAGGAT 152–158
FUNK AY6015 GCGCTTCCGCAAACATAC ACTCACACCCCATTCTTGTG 184–202
263B12 AGTGCGTCAGAGTTTGAA TCGATTGATGGCGATGATAA 230–242
261H03 CGCTCAAACTGAAAGCGATA GGATGCGGAGATGATGTTGT 208–220
263A06 CGTTCGGTTTCGCTAACTGT CGTTCTATTTCGGGGTGTGT 210–220

AFUB21 AY029728 *AACGCAGCAGTGGAGAGAAT AACACCAACCCTTGTTGTGC 224–230
AFND30 AY291369 GCCAGTTTGCAGAACCAAAT CTGCTGCTGATGTTGCTGAT 81–107

Chr. X

Chr. 2

Chr. 3

Unknown

Table 2. Summary of microsatellite loci in An. funestus modified from Wondji et al. [89].

In An. funestus, several genes have been recurrently involved in genetic studies: three nuclear
genes (ITS1, ITS2 and D3) and another three mitochondrial genes (COI, COII and ND5).
Nuclear genes have been involved in species differentiation within the Funestus Group [15,
16], while mitochondrial genes revealed signatures of incipient speciation between popula‐
tions of Burkina Faso [85]. Another kind of molecular markers, Single Nucleotide Polymor‐
phisms (SNPs), have been recently developed in this malaria mosquito. Wondji et al. [79]
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reported a genome-wide set of SNP markers from 50 genes. A total of 494 SNPs were identified,
which were added to 15 SNPs previously discovered by analyzing sequence traces of 11
physically mapped DNA fragments of cytochrome P450s of An. funestus. However, to date,
microsatellites are the most frequently employed molecular markers in An. funestus [89-92].
Seventy-five microsatellites have been developed, although, only 32 were successfully
revisited by Wondji et al [89] (Table 2). They are widely distributed across the An. funestus
genome. They have allowed the analysis of population genetic structure, gene flow and
demographic events across Africa [93], from Senegal [40], Cameroon [83, 86], Kenya [94] to
Madagascar [95], revealing important signatures of local adaptation, dispersion or speciation.

These molecular markers have been key in numerous advances. For instance, SNPs and
microsatellites allowed to Wondji and co-workers to explore the genetic basis of insecticide
resistance in this malaria vectors [79]. Several genes including the P450 cytochrome (CYP6P9a
and CYP6P9b) were associated to DDT resistance by Quantitative Trait Loci (QTL) analysis
using both markers [72]. The role of microsatellites in population genetic studies is discussed
in other sections of this chapter (see below). Despite, we are still far from the molecular
advances carried out on An. gambiae. For instance, in An. funestus 75 microsatellite loci have
been identified, compared to 300 in An. gambiae. With regards to SNPs, 509 have been reported
in An. funestus [79, 89], compared to 400,000 in An. gambiae [80].

3.3. Expression profiles

Considering the lack of An. funestus genome, transcriptome analysis appeared as a suitable
alternative to whole genome sequencing. This technique is significantly cheaper and provides
important information at the gene transcript level. Moreover, it provides valuable molecular
tools for the analysis of gene expression evolution and comparative analysis among other
Culicidae members, such as An. gambiae, Ae. aegypti or Cx. pipiens.

In 2007, Calvo et al., [96] investigated salivary gland genes from 916 cDNA clones coming from
adult females. This study debuted the analysis of transcripts in this mosquito, providing
important clues about the evolution of salivary gland proteins in blood feeding insects and
Culicidae. In particular, a 30 KDa allergen family and several mucins were exclusively found
in Culicidae when compared to Aedes albopictus, Aedes aegypti and Culex pipiens quinquefascia‐
tus. Moreover, ten proteins and peptide families were only found in Anopheles when included
in the analysis An. gambiae, Anopheles stephensi and Anopheles darlingi. Later, two new studies
emerged with the aim to analyze the transcriptome evolution and differences in expression
profile between insecticide susceptible and resistant phenotypes of An. funestus, respectively
[80, 97]. While, Serazin et al. [97] used SANGER sequencing technology for this purpose,
Gregory et al. [80] employed de novo expression profiling by 454 pyrosequencing. In general,
these two studies were largely complementary and boosted the available genetic information
in An. funestus. However, 454 pyrosequencing allowed parallel DNA sequencing and increased
sequencing depth and genome coverage. For instance, Gregory et al. [80] improved the number
of ESTs (Expressed Sequence Tags) from 2,846 [97] to 18,103 contigs. Regarding comparative
analysis with other mosquitoes, both studies agreed on the fact that the highest similarity
pattern remains with An. gambiae. Interestingly, the mean percentage of similarity differs
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drastically between functional groups. Two groups of housekeeping functions show the
highest amino acid sequence conservation: protein synthesis and degradation. On the other
hand, three groups of interest patently showed very low similarity scores, suggesting accel‐
erated rates of evolution. These three functional categories – salivary, immunity and extrac‐
ellular structures – may be driven by environmental selection pressures. For instance, selective
pressures imposed by parasites could explain both the highest genetic variability and the
lowest conservation of immune genes between An. funestus and An. gambiae. Alternatively, de
novo 454 sequencing offered the opportunity to identify new SNPs. In this sense, 31,000
potential SNPs were discovered over 4.579 Mb of sequence, meaning one SNP every 70 bp [80].
Thus, expression profile studies led to identify genes under selective pressures (i.e. insecticide
resistance, immunity genes) and might generate new functional genomic tools (i.e. microarrays
or SNP platforms) while we wait for future genomic sequencing of An. funestus.

4. Population genetic structure across Africa

4.1. Introduction

In malaria mosquitoes, population genetics have been revealed as an excellent tool for
implementation of vector control programs. The study of gene flow among vector populations
allows the analysis of mosquitoes’ movement in natural populations, and therefore, how those
populations are segregated. They can, for instance, assist to follow the expansion of genes of
interest, such as those that confer insecticide resistance [98], or potentially help to introduce
transgenic mosquitoes, refractory to parasite infection [99, 100]. On the other hand, these
population genetic studies might be useful to investigate the genetic basis of speciation
and/or local adaptation processes. They evidence a considerable importance in vector control
measures [101].

The biology of An. funestus has supported several “a priories” about its population structure in
natural conditions. As mentioned previously in this chapter, this malaria mosquito mainly
breeds in permanent or semi-permanent water bodies, such as rice fields, swamps or artificial
lakes, always linked to human presence (see above). Moreover, this mosquito has exhibited a
very slow recolonization power of those areas treated with insecticide. Both characteristics
have led to assume the population subdivision of An. funestus. In this section, we will discuss
the population structure of this malaria vector across Africa as revealed by two types of
markers: chromosomal inversions and molecular markers.

4.2. Cytogenetic studies

The study of chromosomal rearrangements – cytogenetics – of An. funestus debuted early in
the 1980’s [6, 7], preceded by the success of this kind of studies in its congener An. gambiae [81,
82, 102]. It allowed differentiating members of the Funestus Group, avoiding the challenging
interpretation of taxo-morphological rules. Green & Hunt [7] and Green [6] showed differences
in the chromosomal polymorphism within the species of the group. As in An. gambiae, several
chromosomal inversions were species-specific, while other inversions were polymorphic in
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some species and fixed in others. Although, other cytogenetic studies appeared in the mean‐
time, we had to wait until 2001 when Sharakhov et al. [103] finally established the chromosome
map of this species (Fig. 2), based on comparisons to the An. gambiae map [102].

Figure 3. Chromosome map of An. funestus

For its predominant role as malaria vector and its wide geographical distribution across sub-
Saharan Africa, An. funestus has been the most studied species of the group, although greatly
exceeded by the studies in An. gambiae [82, 104, 105]. Seventeen chromosomal inversions have
been recognized, with specific distribution through the African continent [6]; [52]; [84,
106-108]; (D. Ayala pers. comm.). Among them, four inversions are found all across the
continent (2Ra, 3Ra, 3Rb, 3La), while others have a regional distribution (i.e. 2Rt in West Africa
or 2Rh in South and Central Africa), or a very localized distribution (2Rd in the southern
forested areas of Cameroon). These distributional patterns could be due to environmental
selection, demographic effects or historical events [109].

Chromosomal inversions have been widely implicated in the process of speciation and local
adaptation in a wide range of animals and plants [110, 111]. In recent years, studies on the
chromosome composition  of  the  populations  of  An.  funestus  were  conducted  in  several
African countries. These results showed a great complexity with different trends. In Burkina
Faso, a deficit of heterozygotes and linkage disequilibrium among some rearrangements,
led Costantini et al. [42] to identify two chromosomal forms: Kiribina and Folonzo, with a
certain parallelism with the chromosomal forms of An. gambiae from Mali [104, 112]. These
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two  forms  are  also  differentiated  at  the  ecological  level.  While  Kiribina  appears  better
adapted to arid conditions, Folonzo inhabits more humid habitats [84, 113]. The presence
of  these  two chromosomal  forms  was  not  observed  in  other  countries  such  as  Angola,
Madagascar or Kenya [108, 114] (LeGoff, pers. comm.). Nevertheless, deficits of heterozy‐
gotes were also detected, particularly in inversions of the 3R and 3L arm, in some areas of
Cameroon and Senegal [52, 83, 86, 115]. These studies did not show a clear division between
the "chromosomal forms from Burkina Faso", rather a non-random distribution of chromo‐
somal inversions and their frequencies through different habitats and environments. This
fact suggests that most inversions frequencies in An. funestus do not follow a neutral pattern.
Ayala et al. [86] observed a sharp contrast between population structure measured at neutral
microsatellite markers and at chromosomal inversions. Microsatellite data detected only a
weak signal of population structure due to distance among geographical zones in Came‐
roon, as previously described by Cohuet et al. [83]. By contrast, strong differentiation among
habitats was revealed by chromosomal inversions, strongly suggesting a role of environmen‐
tal  selection  in  shaping  their  distribution.  Moreover,  in  the  same  study,  there  was  no
apparent  difference  between  microsatellite  loci  (FST  estimates)  lying  within  and  outside
polymorphic chromosomal inversions [86].

4.3. Molecular markers

The first assays to characterize wild populations of this mosquito were based on mitochondrial
(Internal Transcribed Spacer 2, ITS2) and ribosomal DNA (cytochrome b gene, cyt-b) [116].
The results did not show any differentiation between chromosomal forms previously descri‐
bed by Costantini [42], rather one panmictic population. At the beginning of this century, new
microsatellite markers were developed, which allowed more precise studies [89-92]. At the
country scale, the results have evidenced a general trend to only one population, with a slight
but significant isolation by distance. In Kenya, Braginets et al. [94] did not find any population
genetic structure throughout the country, however, an important sub-division due to Rift
Valley was found. A similar pattern was already observed in An. gambiae [117]. In Madagascar,
Ayala et al. [95] did not find a population structure at the island level, rather a correlation
between genetic and geographic distance across vector populations. In Senegal, Cohuet et al.
[40] also showed genetic differentiation due to distance, without a clear relationship between
"Burkina Faso chromosomal forms" and genetic data.

Similar results were obtained in Cameroon, where for the first time, a latitudinal cline across
different environments was analyzed [83, 86]. As in previous studies, genetic differentiation
among populations might be explained by isolation by distance. On the other hand, in Burkina
Faso, Michel et al. [85] showed a genetic divergence between chromosomal forms on the basis
of five microsatellite markers and sequence of a mitochondrial gene (ND-5). These results
validated in some extend those precluded by Costantini et al. [42] and Guelbeogo et al. [84].
Unfortunately, they still remain restricted to Burkina Faso, similarly to chromosomal forms of
An. gambiae in West Africa [118]. In recent years, several population genetic studies have been
conducted at the sub-region and/or continental scale. Temu et al. [119], showed a similar
pattern to the other studies at the country level for five countries in Eastern and Southern
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Africa: the genetic distance limited the gene flow among populations and promoted genetic
differentiation among populations. A comprehensive study using samples across the continent
provided important findings [93]. Anopheles funestus was subdivided into three large blocks:
West Africa, East Africa and Central Africa [120, 121]. This subdivision was roughly similar
than that observed in An. gambiae across Africa [122]. Despite these results and the unques‐
tionable accuracy of the analysis, the question about the incipient speciation of An. funestus,
still remains to be elucidated.

The very rapid pace of development of genetic and molecular tools will allow characterizing
An. funestus populations in a very detailed fashion. New molecular tools, such as SNP chip,
RAD-tag or DNA microarrays, will certainly contribute to a better understanding of the
biology of this mosquito. The expected An. funestus genome sequencing will undoubtedly
boost new advances in order to elucidate a variety of biological processes involved in local
adaptation, speciation, parasite transmission or the immunity system among others. It will
also enable comparative studies with other anopheline species, particularly, An. gambiae.

5. Conclusion

During the last decade, we have seen how new molecular advances have elevated An.
gambiae to the level of model species with regard to the number of data and tools available.
Anopheles funestus is still far from this point. Undoubtedly, it is one of the major and more
deadly malaria vectors worldwide. Its capacity to adapt to a wide range of ecological settings
coupled with the appearance of insecticide resistance highlight the importance for studying
this mosquito. However, the extreme difficulty to establish colonies in insectary conditions has
hindered its study. Now, its upcoming genome sequencing and the availability of new
molecular tools preclude a promising future for the study of this malaria mosquito.

The An. funestus geographical distribution mirrors An. gambiae’s across the whole African
continent, with presumably similar environmental pressures. This mosquito exhibits a large
number of chromosomal and genetic polymorphisms. Furthermore, it belongs to a group of
morphologically undistinguishable species. This malaria mosquito is suspected to be at the
heart of an ongoing speciation process, as its congener An. gambiae. Once the new techniques
and vector control strategies have achieved their goals in An. gambiae, An. funestus will become
the new target for succeeding malaria control programs. Moreover, the parallel study between
both species will help to elucidate the ecological and genetics mechanisms involved in many
biological processes from immunity system to local adaptation or speciation.

In this chapter, we revisited the state-of-the-art of this malaria mosquito as well as the other
species of the Funestus Group. Detailed descriptions were provided on their biology, role in
malaria transmission and insecticide resistance status. We examined the new genomic
advances and how they can be useful for improving vector control strategies. To sum up, we
strongly believe that a general knowledge about this mosquito is essential for the success of
its control and the ultimate aim to reduce the malaria burden in Africa.
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