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Abstract Accurate modeling of infrasound transmission loss is crucial for assessing the performance of the
International Monitoring System, which monitors compliance with the Comprehensive Nuclear-Test-Ban
Treaty by detecting atmospheric explosions. This modeling supports the design and maintenance of the
operating monitoring network. State-of-the-art propagation modeling tools enable transmission loss to be finely
simulated using atmospheric models. However, the computational cost prohibits the exploration of a large
parameter space in operational monitoring applications. To address this, recent studies made use of a deep
learning algorithm capable of making transmission loss predictions almost instantaneously. However, the use of
nudged atmospheric models leads to an incomplete representation of the medium, and the absence of
temperature as an input makes the algorithm incompatible with long-range propagation. In this study, we
address these limitations by using both wind and temperature fields as inputs to a neural network, simulated up
to 130 km altitude and 4,000 km distance. We exploit convolutional and recurrent layers to capture spatially and
range-dependent features embedded in realistic atmospheric models, improving the overall performance. The
neural network reaches an average error of 4 dB compared to full parabolic equation simulations and provides
epistemic and data-related uncertainty estimates. Its evaluation on the 2022 Hunga Tonga-Hunga Ha'apai
volcanic eruption demonstrates its prediction capability using atmospheric conditions and frequencies not
included in the training. This represents a significant step toward near real-time assessment of International
Monitoring System detection thresholds of explosive sources.

Plain Language Summary Accurate modeling of infrasound transmission loss is essential in a wide
range of applications, such as improving atmospheric data assimilation for numerical weather prediction,
assessing attenuation maps of sources of interest, or estimating the spatial and temporal variability of the
International Monitoring System infrasound network performance. However, the high computational cost of
numerical modeling solvers makes them impractical in near real-time analysis. To address this, we develop a
convolutional recurrent neural network able to predict ground-level transmission losses for a propagation range
of 4,000 km and for five frequencies ranging from 0.1 to 1.6 Hz in 0.045 s. The proposed method exploits range-
dependent atmospheric specifications that combine horizontal wind speed and temperature fields, including
small-scale atmospheric perturbations. In comparison with the state-of-the-art neural network (Brissaud et al.,
2023, https://doi.org/10.1093/gji/ggac307), the proposed model achieves an average error of the same
magnitude while extending the propagation range at a global scale and providing estimates of epistemic and
data-related uncertainty. The model is evaluated on the 2022 Hunga Tonga-Hunga Ha'apai volcanic eruption
and demonstrates its performance in a general setting by providing accurate predictions at new sampling
regions, new dates, and new source frequencies.

1. Introduction

Many high-energy atmospheric phenomena, whether natural (meteoroids, earthquakes, or volcanoes) or human-
made (aircraft, chemical or nuclear explosions), generate acoustic waves at inaudible frequencies (<20 Hz),
called infrasound. Such waves can propagate thousands of kilometers through various atmospheric waveguides
and be refracted back to the surface, allowing for detection on a global scale. For that reason, they are contin-
uously recorded by the ground-based infrasound stations of the International Monitoring System (IMS). In order
to monitor compliance with the Comprehensive Nuclear-Test-Ban Treaty, the IMS was designed to allow the
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detection of any explosions with a yield of one kiloton of TNT (Christie et al. (2022); Marty (2019)). The In-
ternational Data Center uses automatic processes to identify such explosions among the mass of data recorded by
the IMS stations, providing an estimate of the wavefront parameters useful for source location and character-
ization (back azimuth, apparent velocities, amplitudes, frequencies; Mialle et al. (2019)). The IMS infrasound
recordings play a key role in the development of new advanced processing methods leveraging deep learning
algorithms (e.g., Bishop et al. (2022); Albert and Linville (2020)).

Transmission loss (TL) is the cumulative decrease in acoustic energy as waves propagate. Typically, TL is given
in decibels and in terms of amplitude at range divided by the amplitude at a fixed reference distance. Accurate
modeling of TL is essential for interpreting the IMS infrasound station measurements and evaluating event
detection thresholds (Green and Bowers (2010); Le Pichon et al. (2009)). Such evaluation represents a key step
toward optimizing the design of the IMS network to effectively monitor infrasonic sources worldwide. As
infrasound recordings can provide information about various atmospheric properties, such as winds and tem-
peratures, accurate modeling of TL can also help to better infer these properties at altitudes where direct atmo-
spheric measurements are scarce, through inverse methods (Amezcua et al. (2024); Assink (2012); Blixt
et al. (2019); Letournel et al. (2024); Le Pichon et al. (2005); Smets and Evers (2014); Vera Rodriguez
et al. (2020)).

The computational cost of existing numerical propagation modeling tools, such as finite-difference codes
(Brissaud et al. (2016); de Groot-Hedlin et al. (2011)), spectral element methods (Brissaud et al. (2017); Martire
et al. (2022)), normal modes (Waxler et al., 2021), or parabolic equation solvers (Waxler et al., 2021), does not
allow the exploration of a wide parameter space (variations in the atmospheric state, in frequencies, or in source
location) for near real-time TL estimation. This makes these tools inconvenient for operational frameworks with
real-time calculation requirements, such as the monitoring of explosive sources by IMS stations. To overcome
prohibitive computational time, less expressive methods such as ray tracing can be used. This approach estimates
TLs at a global scale, integrating complex atmospheric data (e.g., multiple wind components, strong vertical
stratification, horizontal dependencies) as well as Earth's topographical relief. However, it is limited by the
presence of shadow zones (Gutenberg (1939) chapter 8; Pierce (2019)) for which the predicted TL is under-
estimated. Moreover, this method is a high-frequency approximation that neglects diffraction-related effects that
occur in finite-frequency wave propagation. Le Pichon et al. (2012) propose an alternative approach, with
empirical propagation equations relying on simplified assumptions. The model is based on multiparametric
regression fitting to the output of parabolic equation solvers to predict TL at ground level. However, this was
derived from idealized atmospheric specifications neglecting range-dependent variations and focusing only on
stratospheric wind speeds at 50 km altitude. As a result, the model struggles to predict TL when the structure of
the atmospheric waveguides varies along the propagation path, in the absence of stratospheric waveguides, or at
high frequencies (>1 Hz).

Machine learning techniques are currently explored in the field of acoustic wave propagation modeling in the
atmosphere. Brissaud et al. (2023) enhance the work of Le Pichon et al. (2012) by developing a deep learning
algorithm predicting infrasound TL from realistic range-dependent atmospheric fields simulated at a regional
scale. The method exploits a convolutional neural network (LeCun et al., 2015) to estimate ground-level TL at
around 5 dB error compared to parabolic equation-based simulations. A key aspect is the negligible computation
times at the inference stage (around 0.05 s per prediction) compared to physical solvers. The TL is estimated for a
given frequency between 0.1 and 3.2 Hz. While these results are promising, the propagation range of 1,000 km is a
limitation when performing a global-scale investigation of TL, for example, when studying long-range propa-
gation of microbaroms (Vorobeva et al., 2021) or when predicting the IMS detection thresholds, where the
average distance between infrasound stations is around 2,000 km. Moreover, the input data used to train the model
are built using an interpolation of various atmospheric specifications with different resolutions. This leads to an
incomplete resolution of the atmospheric variability. A simplification is finally made by considering only wind
speeds as inputs of the neural network.

Pettit and Wilson (2020) introduced a physics-aware neural network to model acoustic wave propagation through
the atmospheric boundary layer (<2 km altitude) and recover underlying physical parameters. The propagation
range is kept within 1 km from the source, and only audible frequencies are considered (50 and 150 Hz). The
proposed model is a physics-informed neural network. It is a data-driven algorithm accounting for physical
constraints by integrating an additional regularization term in its loss function. This approach provides a good
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approximation of the TL fields at a local scale but fails to recover the underlying physical parameters not provided
as inputs (e.g., friction velocity, surface heat flux). Another study developed a fully connected neural network to
model two-dimensional acoustic TL from a set of predefined inputs describing a turbulent atmosphere (Hart
et al., 2021). Errors of about 7 dB were obtained over a 10-km distance, but the atmospheric modeling is reduced
to 13 classes, which does not allow for a detailed characterization of the medium.

In this study, we enhance the work of Le Pichon et al. (2012) and address the limitations of Brissaud et al. (2023)
by exploiting realistic range-dependent wind speed and temperature fields simulated up to 4,000 km distance and
by optimizing the deep learning architecture. The key optimization relies on the use of recurrent layers in addition
to convolutional layers. The convolutional layers capture the spatially local features embedded in the input at-
mospheric specifications. The recurrent ones capture the range dependencies, as infrasound waves travel only in
the forward direction so that the attenuation at a range d does not depend on the atmospheric state beyond. The
proposed neural network is trained on a large set of 4,000-km-long parabolic equation simulations. Predictive
uncertainties are quantified by considering the uncertainty related to the model architecture and to the input data.
We retrospectively apply our model on the atmospheric conditions of 15 January 2022 to emulate a near real-time
TL map around the Hunga Tonga-Hunga Ha'apai (now referred to as Tonga) volcano, whose major eruption
generated infrasound that propagated over several thousand kilometers (Vergoz et al., 2022). The network is also
evaluated on new source frequencies, representing a concept validation and a first step toward the evaluation of
the minimum detectable explosive energy by the IMS (Le Pichon et al., 2009).

The current paper is organized as follows. In Section 2, the data used to train the neural network are presented.
Section 3 details the architecture of the convolutional recurrent neural network. Section 4 evaluates the model
performances on testing and generalization data. Section 5 quantifies the epistemic and the data uncertainties.
Section 6 presents the Tonga case study, and Section 7 reviews and summarizes our findings.

2. Data for Transmission Loss Estimation
2.1. Inputs: Realistic Range-Dependent Atmospheric Slices

Infrasound propagation is sensitive to the atmospheric medium, in particular to horizontal and vertical gradients
of sound speed, which is directly related to temperature and wind (de Groot-Hedlin et al., 2009). Waves traveling
through the atmosphere can be refracted down to the ground by positive gradients or upward by negative ones.
Hence, infrasound can propagate through different waveguides, depending on the wind and the temperature in the
troposphere (0—12 km altitude), stratosphere (12—-60 km altitude), and mesosphere (60-90 km altitude). Above
90 km altitude, in the thermosphere, the temperature greatly increases, leading to a permanent thermospheric
waveguide. Within the geometric ray-tracing approximation, the effective sound speed ratio ¢, indicates the
presence or the absence of such waveguides:

Cefi(2)

ez =0) 3 Cerr(2) = up(2) + c(2), M

Cratio (Z) =

where u((z) is the horizontal component of the wind speed in the direction of propagation and ¢(z) = /yRT(z) is
the adiabatic sound speed with y the adiabatic index, R the specific gas constant for air, and T the absolute
temperature. For sources at ground level, the condition c,,;,(z) > 1 indicates the presence of a waveguide at the
altitude z, which refracts the wave back toward the surface. Infrasound is then reflected by the ground and
propagates through successive reflections between the surface and the upper atmosphere. The c,,;, approximation
holds only for high frequencies, flows with small Mach numbers, and shallow propagation angles. It does not take
into account the influence of crosswinds or diffraction. However, as shown in Assink (2012), infrasound TL is not
very sensitive to such winds.

The atmospheric input data used to train the neural network are realistic slices A, ; of ¢,,4,. The slices are vertical-
horizontal planes covering the altitude z € [0, 130] km and the distance from the source d € [0,4000] km (see
Figure 1). The temperatures and wind speeds used to calculate the c,;, are extracted from the Whole Atmosphere
Community Climate Model (WACCM) forecast products (Atmospheric Chemistry Observations and Modeling,
National Center for Atmospheric Research, University Corporation for Atmospheric Research; Gettelman
et al. (2019)). We use the sixth version of this product, providing a horizontal resolution of 100 X 140 km and a
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14 model top above 130 km, distributed across 88 vertical levels. The horizontal
winds are calculated by projecting the zonal and meridional components
13 along the wave propagation path from the source to the receiver. In contrast,
15 Brissaud et al. (2023) used the ERAS high-resolution reanalysis product from
—_ the European Center for Medium-Range Weather Forecasts to extract wind
é 1.1 speeds up to the mesosphere. This model possesses 137 vertical levels but
'6' 8 reaches a maximum altitude of 80 km (Hersbach et al., 2020). To represent the
'g statopTi® 10 5 atmosphere beyond this limit, Brissaud et al. (2023) used two climatologies
= oo (Drob et al. (2015); Picone et al. (2002)). However, in comparison to
< 401 WACCM, this hybrid approach does not capture the interannual variability in
0.8 the upper layers of the atmosphere. This can lead to poorly modeled wave
201 propagation in the absence of stratospheric waveguides.

s 7 Because of its coarse spatial resolution, WACCM cannot resolve the full
0+ . v . 0.6 gravity wave (GW) spectrum, and the effect of these waves must be param-

0 1000 2000 3000 . .. . . .
Distance [km] eterized, as it is the case in most state-of-the-art numerical weather prediction
systems (Gettelman et al. (2019); Alexander (2021)). However, such pa-
Figure 1. Two-dimensional ¢y, field constructed using temperatures and rameterizations represent the deposition of GW energy in the larger-scale
horizontal wind speeds extracted from the WACCM model. This example flow without accounting for the vertical propagation of the waves (Plou-
highlights the waveguide due to the strong increase of the temperature above gonven, 2020). Notably, the wind perturbations along the GW propagation

the mesopause as well as a weaker waveguide in the stratosphere (¢, > 1 in

red and white, respectively).

paths are not accounted for when GW is not resolved by the dynamical core.
As these oscillations can have a major impact on infrasound propagation
paths (Chunchuzov & Kulichkov, 2019), attention should be paid to account for their effect in propagation
simulations and, in particular, across the IMS infrasound network (Listowski et al., 2024). In the current work, we
opt for an idealized albeit already used method in infrasound studies (Brissaud et al. (2023); Green and
Bowers (2010); Le Pichon et al. (2012)). It involves adding perturbations with realistic amplitudes obtained from
avertical GW spectrum model (Gardner et al., 1993). Figure 2 panel a) shows an example of a vertical c ,;, profile
disturbed by 10 realizations of the GW model. Panel b) illustrates a range-dependent wind field disturbed by
GWs, which can be superimposed on the c.,;, slices. See Appendix A for additional details on the process
developed to obtain such perturbations. This approach assumes a continuum of sources and does not account for
the filtering of GWs by the large-scale flow upon vertical propagation. However, it provides the needed small
scales of realistic amplitudes to feed the training database with relevant atmospheric features otherwise lacking
from the WACCM model. Moreover, the stochastic generation of GW through the randomly chosen phases (see
Appendix A) leads to an ensemble approach. In doing so, we define an uncertainty for the atmospheric field,
which is used in Section 5, where the sensitivity of the neural network to the atmospheric slices is investigated.

Cratio profile perturbated by 10

a) realizations of the Gardner model b) Zonal wind speed field perturbations

30
i % 3 120 j— ———
i = ’ 20
100 1001
'E‘ E‘ 10
X~ 80 S 80 ot
= = .._E
w ]
— 0
S 60 B 60 =
= = =
= =
< 40 < 40 F—10
201 20 -20
0 1 > 0 ' T 30
0.6 08 1.0 1.2 1.4 0 500 1000 1500 2000 2500 3000 3500
Cratio profile at 0 km from the source Distance [km]

Figure 2. (a) Vertical ¢, profile perturbed by 10 realizations of the GW model. (b) Two-dimensional zonal wind
disturbances field induced by the GW. Such perturbations are accounted for in the atmospheric slices.
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Figure 3. Distribution of 4,000-km-long atmospheric slices on the globe.

Aiming to represent a large quantity of atmospheric conditions, we sample the Earth with a set of 162 points
arranged on a regular grid of 20°resolution on 15 January 2021. From each point, we collect atmospheric slices
A, 4 of ¢y along eight directions: north, north-east, east, south-east, south, south-west, west, and north-west (see
Figure 3). Each slice is perturbed by ten two-dimensional GW fields and is projected along two azimuths, 90° and
270°. We therefore obtain 162 x 8 X 10 X 2 = 25,920 atmospheric slices A, 4. The choice of spatial resolution
results from a trade-off between achieving global sampling and maintaining a reasonable computational cost for
building the database. Propagating along eight directions and projecting onto two azimuths enable the multi-
plication of atmospheric conditions in a second step, at minimal additional computational cost. We chose the date
of January 15 because it corresponds to a period of the year with extreme dynamical events, such as sudden
stratospheric warmings (Baldwin et al., 2021). Moreover, in 2021 that day, the winds reached zonal speeds of
—50 m.s~! in the tropics and more than 150 m.s~! at midlatitudes in the Northern Hemisphere.

2.2. Outputs: Infrasound Transmission Losses

The TL expresses the amplitude and phase variation as a wave propagates through the atmosphere. Along its path,
a part of the acoustic energy loss is due to intrinsic wave attenuation mechanisms in the atmosphere, combined
with the geometric spread. The TLs to be estimated are simulated using the numerical solver ePape from the
NCPAprop package developed at the National Center for Physical Acoustics (Waxler et al., 2021). ePape sim-
ulates, for a single frequency and in a vertical-horizontal plane, the amplitude of the long-range pressure produced
by a unit point source in relation to the level at a reference distance of 1 km from that source. The TL is obtained
by calculating the modulus of this simulated pressure field and is commonly expressed in decibels:

P
TL =20 x log,, (170>, 2)

where P is the pressure at a given distance and P, the pressure at the reference distance of 1 km.

ePape uses the atmospheric absorption coefficients defined by Sutherland and Bass (2004) and the parabolic
equation method (PE) to simulate the pressure field. The PE method is well adapted to simulate wave propagation
in a range-dependent medium, such as the one modeled by the atmospheric slices A_ ;. It accounts for diffraction
effects and scattering by acoustic impedance variations in the atmospheric model (Waxler & Assink, 2019). The
PE method assumes the atmospheric medium as a locally stratified domain and considers only signals with a
frequency content large compared to the Brunt-Viisild frequency (0.05 Hz). Inputs to the ePape solver are
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atmospheric states represented by the zonal, meridional, and vertical winds in m.s™!, the temperature in Kelvin,
the density in g.cm™3, and the pressure in mbar. The influence of the winds on the propagation is modeled using
the ¢, approximation described in Section 2.1.

Each of the 25,920 atmospheric slices A, ; is associated with five ground-level TLs # simulated at frequencies
f =0.1,0.2,0.4,0.8 and 1.6 Hz. The maximum propagation range is fixed at 4,000 km from the source. This
enables the study of events on a global scale (such as the Tonga volcano eruption), as well as the evaluation of the
detection capabilities of the IMS network. The expensiveness of the PE method only appears during the database
creation stage. The proposed neural network will predict ground-level TL from new atmospheric scenarios almost
instantaneously.

3. A Convolutional Recurrent Neural Network-Based Solution for TL Estimation
3.1. Architecture of the Model

To accurately and rapidly estimate ground-level TL, we develop a supervised neural network designed to emulate
the output of the numerical solver ePape. We denote this network with Fy (Az,d, f ) Supervised neural networks are
powerful learning systems capable of approximating nonlinear functions by optimizing a set of parameters 6 to
minimize a loss function. They map input data, such as (Az,d, f ) to output data, such as £, by learning hierarchical

representations that capture the complex relationships between them.

The proposed deep learning architecture relies on convolutional neural networks and recurrent neural networks
(CNNs and RNNs; LeCun et al. (2015)). CNNs are well adapted for extracting spatial patterns in multidimen-
sional data. They detect and encode local spatial correlations by applying convolutional filters that extract fea-
tures. These features are progressively transformed and compressed into a latent representation of reduced spatial
dimensions through pooling operations. This latent representation captures increasingly abstract and informative
patterns of the input, making CNNSs particularly effective for identifying spatial dependencies in the atmospheric
slices A, ;. RNNs process sequential data by maintaining a state vector, which serves as a memory of past in-
formation in the sequence. At each time step, the state vector is updated by combining the current input with the
information from previous steps, allowing the network to model temporal or range dependencies. However,
traditional RNNs struggle with long-range dependencies due to vanishing or exploding gradients. To address this,
gate recurrent units (GRUs; Cho (2014)) are applied in the current work. GRUs employ gating mechanisms to
control the flow of information, enabling the network to capture both short- and long-range dependencies effi-
ciently. In the context of this study, GRUs are well-adapted for processing range-dependent atmospheric slices,
where sequential correlations between adjacent c,;, profiles play a critical role in estimating TLs.

To detect and encode relevant features in the atmospheric slices A, 4, FO(Az,d’ f) stacks three “convolutional
feature extraction blocks” (CFE Blocks), an “alignment block™, a “recurrent block”, and three “dense feature
transformation blocks” (DFT Blocks). Each CFE block contains a two-dimensional convolutional layer, a pooling
layer, and a dropout layer. The convolutional layers (in purple in Figure 4) have an increasing number of filters
across the CFE Blocks (64, 128, and 256, respectively). These filters progressively extract more complex and
abstract features from the input data. We incorporate nonlinearity in Fg(Az’d, f) by using the smooth and
differentiable hyperbolic tangent activation function. Hyperbolic tangent transforms output values between —1
and 1, which limits the risk of gradient explosion. The max-pooling layers (in yellow in Figure 4) perform
dimensionality reduction on the convolved arrays A, ;. They limit the number of parameters to be learned and
create invariance to small shifts and distortions. Finally, dropout layers (in blue in Figure 4) randomly drop 35% of
the connections between neurons in each forward pass. They introduce a regularization that limits overfitting by
making the network less dependent on specific neurons. At the end of the three CFE blocks, the atmospheric slices
A, 4 are encoded into latent structures of dimension (height X width X depth) = (55 X 5 X 256), the height
being the altitude and the width the distance from the source.

Each latent structure is then passed to the alignment block to be transposed and reshaped into (5 X (55 X 256))
arrays. This allows them to be exploited by two GRU layers (in green in Figure 4), which require inputs in the
form of (time steps X features). The recurrent layers improve the performance of the architecture by enabling the
range dependencies that exist in the encoded range-dependent atmospheric slices to be captured. The source
frequency f of the TL to be predicted is added at the end of the recurrent block.
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PREDICTIVE

STAGE

STAGE

A

Input 1: 2D atmospheric
slice Az,x (including smalle-scale
perturbations)

Input shape:
433x40x 1

Convolutional Feature Extraction
Block (CFE Block) x 3

Output shape CFE Block@1:
217 x 20 x 64

Output shape CFE Block@2:
109 x 10 x 128

Output shape CFE Block@3:
55 x 5 x 256

Alignment Block

Output shape: 5 x 14080

Recurrent Block

Output shape: 5 x 400

Input 2: source frequency
dp-

Input shape: 5 x 1

Dense Feature Transformation
Block (DFT Block) x 3

Output shape DFT Block@1:
5x 2048

Output shape DFT Block@2: .
5x 1536

Output shape DFT Block@3: .
5x1024

3x3 kernels

Max-pooling2D
2x2 patches

Dropout
0.35 rate

Concatenate

. A
Batch Normalization
Q ReLU

Dropout
0.35 rate

v

Batch Normalization

Figure 4. Architecture of Fy (Az,d, f). The atmospheric model A_ 4, including GW perturbations, and the source frequency f are
first encoded by three CFE blocks, an alignment block, a recurrent block, and three DFT blocks. Then, the ground-level TL is

predicted over 4,000 km.
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The last transformations applied on the encoded atmospheric slices and the source frequency are performed by
three DFT blocks. Each DFT block contains a batch normalization layer, a fully connected layer, and a dropout
layer. Batch normalization (in brown in Figure 4) keeps the data standard deviation close to 1, which stabilizes the
training and increases the robustness. The fully connected layers (in red in Figure 4) have a decreasing width
across the DFT blocks, containing respectively 2048, 1,536, and 1,024 neurons. As normalization operations are
performed before each fully connected layer, we use the rectified linear unit function as the activation function
(ReLU; Glorot et al. (2011)) without risking gradient explosion even if it does not hold the data distribution
between —1 and 1 as the hyperbolic tangent function does.

After these encoding stages, Fg(AZ,d, f) flattens and normalizes the data to pass them to an 800-neurons fully
connected layer with the linear activation function to estimate the ground-level TL # linearly interpolated over
800 points.

3.2. Learning Procedure

To train Fy (Az,d, f), we select some of the atmospheric slices A, ; and associated PE simulations # as training and
validation samples. Five GW realization fields out of 10 are superimposed on each slice, keeping half of the
perturbation fields unseen to evaluate the model on them later. Within the same objective, we remove 12 sampling
points, all eight directions of propagation associated, among the initial 162 ones. About 70% and 20% of the
remaining data (randomly selected) form the training and the validation sets. As a result, the training set contains
Kiain = 0.7 X [(162 — 12) X 8 X 5 X 2 X 5] = 42,000 samples. We perform a cross-validation with 10 in-
dependent selections of the training and validation samples. This allows training F, (Az,d7 f ) 10 times and keeping
the model with the best hyperparameters.

Fy (Az,d, f) is implemented in Python using the TensorFlow library (Abadi et al., 2015). The training was per-
formed on a high-performance computing cluster equipped with Nvidia A100 GPUs (40 GB memory each). On
average, training the model takes approximately 23 min. See Appendix B for additional details.

After training, Fy (Az,d’ f) achieves near-instantaneous inference. It predicts a 4,000-km-long ground-level TL in
0.045 s regardless of the source frequency f (Dell Inc. Intel(R) Core(TM) 19-13900 48 CPUs 77.8 GB RAM on
RedHat 9.5). By gathering multiple samples in the same batch, it can reduce this time to approximately 0.08 s for
100 simultaneous predictions. The estimated computation time saving compared to the PE method is three to four
(for f > 3 Hz) orders of magnitude for global-scale applications requiring several thousand simulations at various
frequencies (as in the assessment of detection capabilities of the IMS network).

4. Experimental Evaluations
4.1. Performances on the Testing Data Set

We evaluate Fy (Az,d, f) on the 10% remaining atmospheric slices limited to five GW perturbation fields (see
Section 3.2). These slices correspond to test data, that is, to atmospheric conditions extracted at the same sampling
points as those used for learning, but along different directions. At this stage, 12 sampling points among the 162
ones are kept aside to use them later for the generalization. As a result, the testing set contains
Kt = 0.1 X [(162 — 12) X 8 X 5 X 2 X 5] = 6,000 samples.

Figure 5 shows three examples of TL for various frequencies and atmospheric conditions. Panel a) corresponds to
a downwind scenario (horizontal average of c,,;, maxima between 30 and 60 km altitude larger than one), which
favors long-range propagation of infrasound. Panel b) illustrates a typical upwind scenario with the horizontal
average of c,,;, maxima between 30 and 60 km lower than one. In both cases, Fy (Az,d, f ) approximates the TL as a
function of distance as well as the behavior far from the source. The model also captures quite well the first
shadow zone visible in panel a), when the propagation conditions are favorable in the stratosphere. One advantage
of Fy (szd, f) is its ability to represent rapid changes in propagation regimes across the distance, leading to strong
variations in the TL to be predicted along the propagation path. This ability is missing in the semianalytical
attenuation model developed by Le Pichon et al. (2012). However, panel c) nuances this observation, with an
example of prediction misfitting the PE simulation after 2,500 km of propagation. We observe in all cases that
Fy (Az,d, f) does not reproduce all small-scale spatial variations present in the PE simulations. We explain this
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Figure 5. Examples of ground-level TLs predicted by Fy (Az,dv f ) compared to PE simulations. The maximum of c,,;, between
30 and 60 km altitude is averaged over 4,000 km. (a) Results at 1.6 Hz with c,;, = 1 (downwind scenario). (b) Results at
0.8 Hz with ¢, = 0.9 (upwind scenario). (c) Poorer result at 0.8 Hz.
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Figure 6. Comparison between 6,000 PE simulations (panel a) and predictions (panel b) associated with a pointwise error in percentage (panel c).

“low-pass filter” property by the well-known difficulty of deep learning algorithms in predicting high-frequency
features (referred to as “spectral bias”; Rahaman et al. (2019)) and by the use of convolutional layers, which tend
to smooth the local patterns. This bias could be mitigated either by preprocessing the input data in the frequency
domain (e.g., standardizing the source frequency) or by modifying the architecture to better capture high-
frequency features (e.g., by increasing the model's depth and width or by adding residual connections).

A broader evaluation of the testing data has been carried out to confirm the observation derived from Figure 5.
Figure 6 compares the 6,000 predictions made by Fy (Az!d, f) to the PE simulations. In the three panels of the
figure, scenarios are horizontally arranged, sorted on the y-axis by the horizontal average of c,,;, maxima between
30 and 60 km. This representation allows investigating the ability of Fj (Az,d, f) to capture the influence of the
stratospheric waveguide on wave propagation (de Groot-Hedlin et al., 2009). The comparison between the PE
simulations (panel a)) and the predictions (panel b)) confirms the capacity of the model to recover the overall TL
while smoothing out fine-scale spatial variations.

We introduce two metrics to quantify the errors: the relative absolute error (MRAE) and the root mean square
error (RMSE), both averaged along the propagation path. The MRAE captures the difference in percentage

between predictions £ and PE simulations #:

2 (1(4),- &
MRAE:iz(wao); D =800 points, ®3)

D d=1 |(4)d|

where d is the distance from the source. Such a metric penalizes errors close to the source equally just as much as
those at larger ranges. This avoids overweighting errors occurring at large distances, where infrasound is often
very attenuated, preventing signals to be detected above the background noise at IMS stations. The RMSE is
computed to make comparisons with results published by Brissaud et al. (2023). The RMSE evaluates the dif-
ference between two TLs in decibels.

For each sample of the testing set, the pointwise relative absolute error along the propagation path shows regions
with errors reaching 15% in the first 250 km (see Figure 6 panel c)). These higher error areas correspond to regions
where most TL variation occurs within the first acoustic shadow zone and the first stratospheric return. The
MRAE computed on the whole testing set follows a distribution peaking at an error of 6.2% (see Figure 7 panel
a)). The median of the overall distribution is 7% with a 95%-percentile of 15.4%.

The distribution of the RMSE has a mean of 4.3 dB over the 4,000-km-long propagation paths. A slight
degradation of the performance is noted for upwind scenarios (see panel b) of Figure 7). The predominant class of
the error distribution is for downwind scenarios, with an RMSE between 2.5 and 3.5 dB, compared to 3.5-4.5 dB
for the upwind scenarios. These results are consistent with Brissaud et al. (2023), which obtained an average
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Figure 7. Distributions of the MRAE (panel a) and of the RMSE (panel b) along the 4,000-km-long propagation paths for the 6,000 samples of the testing set. A
distinction is made between upwind and downwind scenarios.

RMSE of 5 dB regardless of the initial wind conditions over 1,000 km. This highlights the ability of our new
model to maintain its performance against a realistic atmospheric medium covering a longer propagation range.

As in Brissaud et al. (2023), our analysis reveals a degradation of the performance with increasing frequency.
Figure 8 shows the MRAE distributions obtained by Fy (Az!d, f ) for the five frequencies f = 0.1, 0.2,0.4, 0.8, and
1.6 Hz. The MRAE distributions restricted to the TL of higher frequencies (f > 0.8 Hz) are wider than the one
associated with the TL of lower frequencies (e.g., 14.4% of 95%-percentile at 0.1 Hz and 20.3% at 1.6 Hz). We
explain this by the larger sensitivity of higher frequencies to small-scale variations, which are more challenging to
predict with our current data set size.

MRAE distribution on the testing set

=1 f=0.1 Hz
f=0.2 Hz
3 f=0.4 Hz
[ f=0.8 Hz
f=1.6 Hz

0.25

0.20

Density

0.10

2 4 6 8 10 12 14 16 18
MRAE over 4000 km [%]

Figure 8. MRAE distributions along the 4,000-km-long propagation paths for the five source frequencies. One can see the
degradation of the performance with increasing frequency.
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Figure 9. MRAE distributions at 0.2, 0.8, and 1.6 Hz on the testing and generalization sets.

4.2. Performance Assessment Using the Generalization Set

To further evaluate the model performance, we construct a generalization set using 12 sampling points previously
left apart and keep all 10 GW perturbation fields per atmospheric slice (see Section 3.2). The generalization
samples correspond to unseen locations on the Earth, sampled on the same date as the training data, with addi-
tional small-scale variation fields. As a result, the generalization set contains Ky, = 12 X 8 X 10X
2 X 5 = 9.600 samples.

Analyzing the variability of the atmospheric conditions present in the generalization set is important for a
comprehensive performance evaluation of Fy (Az,d, f). The comparison of the mean c,;, fields computed on the
generalization and the training sets reveals differences three times larger than the highest differences reached
when making the same comparison on the testing and the training sets, particularly in the thermosphere. We
explain these observations by the use of a larger number of GW perturbation fields in the generalization set, whose
effects are mainly visible in the upper layers of the atmosphere. See Appendix C for additional details.

As the differences between the generalization and the training sets are larger than between the testing and the
training ones, we observe a slight degradation of the performance on the generalization data. We note a wider
distribution of the MRAE over 4,000 km and a larger median (of approximately 8.5% on the generalization
samples instead of 7% on the testing ones). Figure 9 illustrates this result by comparing the MRAE distribution on
the testing and the generalization sets at 0.2, 0.8, and 1.6 Hz. A similar shift in the generalization distributions is
noted for all source frequencies.

5. Epistemic Uncertainty and Data Sensitivity

Quantifying the uncertainties is crucial for many applications, such as monitoring explosive sources using the
IMS. In this section, we introduce two ways of quantifying the uncertainties associated with the predictions of

Fy (Az’d, f) by distinguishing epistemic uncertainty from data uncertainty.

A way to quantify the epistemic uncertainty (i.e., related to the model's architecture) is to use Bayesian methods.
A Bayesian neural network G,(I) (Tishby and Solla (1989); Buntine (1991)) can predict a new sample (/*,0")
that incorporates epistemic uncertainty by considering its parameters ¢ as random variables following a posterior
distribution p(¢, (1, 0)) given observed samples (1, O). The posterior distribution is based on prior belief on ¢ and
on the use of Bayes' theorem (Gawlikowski et al., 2023). The predictive posterior distribution for a new input I* is
obtained by marginalizing over ¢, which implies integrating over all possible values of ¢ weighted by their
posterior probabilities:

PO, (1.0)) = f P(O° | ) X plep. (1. O))d )
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However, calculating the posterior distribution p(¢, (I, 0)) and performing marginalization can be intractable for
complex models such as neural networks. In this work, we use the Monte Carlo dropout method (Gal &
Ghahramani, 2015) to approximate p(O*|I*,(I,0)) and indirectly the posterior distribution. I corresponds to an
input sample (A, 4.f) and O to a PE simulation 4. We modify the architecture of Fy(A_4.f) so as to define its
dropout layers as a set of random variables following a Bernoulli distribution. The units of these modified layers
can be activated not only during training but also during a prediction. At the inference stage, the model is then no
more deterministic but stochastic. The distribution associated with each new input (Azjd, f)* is obtained by
averaging the predictions of the set formed by such Bayesian networks. This method allows us to provide a
distribution of predictions for any new input while being inexpensive in terms of training time.

The second source of uncertainty reflects the inherent noise of the data that feed the neural network. We use the
test-time augmentation method to quantify the sensitivity of Fy (Az,d, f ) to the variations of its input data. Several
versions of each input (Az,d, f) are generated by applying augmentation techniques and making predictions for
each of them, which can then be averaged to obtain an output distribution. This method has the advantage of not
being resource-intensive because the architecture is not modified and does not require additional training samples.
The augmentation applied on each input implies superimposing 10 realizations of the GW perturbation fields on
the atmospheric slices A, ;. Therefore, the simulated and predicted TLs are the result of the average of 10 sim-
ulations/predictions originating from the same slice.

We calculate the uncertainties on the generalization set. Figure 10 shows an example of TLs associated with a
sampling point of the generalization set, with all eight directions of propagation considered. The predicted
standard deviation (in orange) is estimated by considering both epistemic and data uncertainties and is compared
to the data uncertainty obtained on the PE simulations (in blue). One can see larger uncertainties (up to 3 dB) for
propagation directions associated with upwind atmospheric conditions (see panels c) and d)). Nevertheless, even
in the directions where the uncertainty is the largest, it does not recover all variations of the PE simulations. This is
explained by the aforementioned disability of Fy (Az,d, f) to capture all TL variations induced by the GW per-
turbations. Panel i) represents the pointwise relative absolute error averaged along the eight directions. This
confirms the increase of error in the first 250 km, reaching 15.6%. See Appendix D for additional details.

6. Tonga Case Study: Example of Generalization in Time, Space, and Frequency

A direct application of our model is the near real-time prediction of TL maps around a source of interest. To
emulate this use case, we choose the Tonga volcano as the source, which erupted on 15 January 2022. This event
is widely documented (Matoza et al. (2022); Podglajen et al. (2022); Vergoz et al. (2022)). The eruption generated
atmospheric waves that were detected by all the operational IMS infrasound stations.

We collect 360 atmospheric slices around the Tonga volcano to form a new generalization set: the Tonga-set. Like
the previous generalization set presented in Section 4.2, these samples correspond to unseen locations on the
Earth. In addition, the date of sampling is different. The mean c,,;, fields computed on the training set and the
Tonga-set reveal regions with a difference of up to 0.1 of ¢, above the mesopause (see Figure 11). This is six
times larger than the highest difference reached when comparing the training to the previous generalization set.
The distributions of minimal, average, and maximal values of ¢, in the troposphere, stratosphere, mesosphere,
and thermosphere give more details on these differences (see Appendix E). As an illustration, the training set
contains slices with a minimal c,;, between 0.65 and 0.73 in the troposphere and between 0.4 and 0.6 in the
stratosphere, which are situations totally absent in the Tonga-set. On the contrary, the proportion of slices with a
minimal c,;, between 0.7 and 0.8 in the stratosphere or with a mean c,;, between 1.0 and 1.15 in the ther-
mosphere is overrepresented in the Tonga-set. Similarly, the Tonga-set overrepresents slices with a ¢,
maximum of 1.6 above 90 km altitude. Such differences impact the generalization capabilities of Fy (Azyd, f),
which depends on the similarities between the training and the evaluation sets.

At 01:00:00 UTC on 15 January 2022, atmospheric models predict regions with both downwind and upwind
propagation conditions. Stratospheric guiding is visible westward (200°-315° azimuth) with mean c,;, reaching
1.2 at 50 km altitude. On the contrary, for eastward propagation, the mean c,;, reaches 0.6 in the stratosphere. At
lower altitudes, we observe the existence of a weak tropospheric waveguide at the top of the boundary layer in all
directions. In addition, mesospheric waveguides are predicted for the direction 135°.
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Figure 10. TLs associated with a sample of the generalization set at f = 0.2 Hz, all directions of propagation considered. The predicted standard deviation (in orange) is
computed by combining the epistemic and the data uncertainties. It is compared to the simulated data uncertainty obtained on the PEs (in blue).
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Figure 11. Differences between the mean c,,;, fields computed on all the samples of the training set and the Tonga-set.

At the inference stage and with a batch of 360 samples, F (Az,d, f) predicts the 4,000-km-long ground-level TLs
all around the volcano in less than 0.3 s, regardless of the frequency (Dell Inc. Intel(R) Core(TM) 19-13900 48
CPUs 77.8 GB RAM on RedHat 9.5). Despite the differences observed between the training set and the Tonga-set,
the median MRAE computed on this last set is 7.9% only. This illustrates the ability of Fj (Az,d, f) to accurately
predict TL maps for an event absent of its training and validation sets. Figure 12 shows simulated and predicted
TL maps (panels a) and b)) as well as the pointwise error (panel c)) at f = 0.8 Hz. The TL reaches —125 dB
eastward, where infrasound waves are not refracted to the ground in the stratosphere but propagate into the
thermosphere (upwind scenarios). This direction is associated with a global increase of the errors, particularly
along 135°. These areas with higher errors are explained by the aforementioned differences observed above the
mesopause when comparing the training set and the Tonga-set.

Appendix F shows the distribution of the MRAE as a function of frequency and mean c,,;,. This confirms poorer
performances in upwind cases and with increasing frequency. At 1.6 Hz, the 95%-percentile of the MRAE rises up
to 26.4%, which is by far the highest error we observe. Such sensitivity to downwind/upwind conditions is larger
than what was observed previously for the testing set (see Section 4.1). This is explained by the lack of repre-
sentation of slices with a minimal stratospheric c,;, between 0.7 and 0.8 in the training set compared to the
Tonga-set, preventing Fy (Az,a" f ) from correctly learning how to predict the TL in that situation. In the absence of
stratospheric waveguides (upwind), infrasound waves reach the mesopause, where the training set and the Tonga-
set differ significantly.

For the 360 predictions, the epistemic and the data uncertainties are quantified using a combination of the Monte
Carlo dropout method with the test-time augmentation technique. The total uncertainty of a given prediction
corresponds to the standard deviation obtained from an initial atmospheric slice disturbed by 10 GW perturbation
fields and whose associated TLs are simulated/predicted 10 times by the set of Monte Carlo dropout Fy (Az,d’ f)s‘
The total uncertainty increases with increasing frequency and for upwind conditions. Figure 13 shows the total
uncertainty map obtained by Fy (Az,d, f ) atf = 1.6 Hz. The standard deviation reaches more than 10 dB eastward,
where the 95%-percentile of the MRAE rises up to 26.4%. This highlights again that high uncertainties are
estimated in regions of large errors.

To further deepen the generalization capabilities of Fy (Az,da f), we consider unseen source frequencies f: 0.3, 0.6,
1.0, 1.2, and 1.4 Hz. Appendix F displays the distributions of the MRAE according to these frequencies and to the
mean c;,. The strong correlation between the error distributions obtained on the set of new frequencies
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Figure 12. Simulated and predicted TLss around the Tonga volcano (panels a and b), and pointwise error in percentage (panel
c)atf = 0.8 Hz. The IMS stations located within a 4,000-km radius of the volcano are marked with dots (IS22, 1S24, IS36,
and 1540).
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Figure 13. Epistemic and data uncertainty map at 1.6 Hz.

compared with the original distributions is highlighted. For each distribution, the errors remain in the same order
of magnitude. Higher errors (between 20% and 30%) are spread on the same range of mean c,,;, values (mainly
for upwind cases). However, the increase of error with increasing frequency is visible as early as f becomes larger
than or equal to 0.6 Hz. The Tonga-set study thus shows the overall ability of Fy (Az,d’ f) to generalize to new
atmospheric model regimes, new dates, and new source frequencies.

7. Conclusion

We have shown the ability of a deep learning algorithm F, (Az,d’ f ) to estimate almost instantaneously infrasound
ground-level TLs over a distance of 4,000 km, at f € [0.1,0.2,0.4,0.8,1.6] Hz. Fg(AZ!d, f) is a convolutional
recurrent neural network inspired by the CNN developed in Brissaud et al. (2023). Our addition of recurrent layers
after the convolution layers allows it to extract both spatially local and range-dependent features embedded in
realistic atmospheric models. However, as in Brissaud et al. (2023), we cannot assert that Fy (Az,d, f) respects the
inherent range-dependence of the atmospheric models. Indeed, despite the use of recurrent layers, the filters in the
convolutional layer use local information before and after each given distance to encode spatial features.

The Sutherland-Bass coefficients used in ePape allow the inclusion of the absorption of acoustic energy by the
atmosphere. However, these coefficients do not account for second-order effects due to changes in viscosity and
specific heat ratio with deviations in the atmospheric composition above 90 km altitude (Sutherland and
Bass (2004)). Moreover, it is important to note that the used PE method cannot model nonlinear propagation
effects, which become more prominent above the mesopause. To limit the computational cost, the propagation
problem was simplified in Cartesian coordinates, assuming a flat terrain with infinite ground impedance at sea
level, and by preselecting only five frequencies. Given these limitations, which may introduce bias in the sim-
ulations, numerical explorations with fully resolved time- and range-dependent wave propagation techniques
accounting for nonlinear propagation effects would provide more realistic simulation results.

Fy(A,4.f) was trained and validated on 42,000 samples (A, 4,f). Once done, it estimates a TL in approximately
0.045 s, regardless of the frequency. This constitutes a major improvement compared to other numerical prop-
agation modeling tools such as PE solvers, with a computation time saving between three and four orders of
magnitude. The performance of the network was evaluated on 6,000 testing samples. A median MRAE of 7% and
a mean RMSE of 4.3 dB were obtained. The robustness of the model to the atmospheric conditions was
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highlighted, as well as its “low-pass filter” property. A slight decrease in performance with increasing frequency
has been noticed.

Fy (Azyd, f) was then evaluated on atmospheric conditions that differ more from the training one. Generalization
data correspond to atmospheric slices built from previously randomly drawn points on the Earth. As expected, the
model reached poorer performances (median MRAE 8.5%). The generalization data were also used to estimate
epistemic and data-related uncertainties. This revealed an increase in the uncertainties with increasing error,
particularly for upwind atmospheric scenarios. The combination of the two uncertainties partly recovers the
whole variability of the simulated TL considering multiple GW perturbation fields. Still, they allow for the
qualitative incorporation of a part of the uncertainties associated with the atmospheric models used as input data
(Listowski et al., 2024). There are other techniques that could be explored to quantify the uncertainties in more
detail, such as deep ensemble approaches (Lakshminarayanan et al., 2017).

We used Fy (Az,d, f ) to predict near real-time TL maps for infrasound generated by the eruption of the Tonga
volcano. The slices extracted around the volcano represented unseen atmospheric conditions in terms of location
and date. The median MRAE value was 7.9%. We demonstrated the ability of the model to predict the TL maps at
five new source frequencies.

This whole work represents a first step toward the near real-time assessment of the global detection capabilities of
the IMS infrasound network. Accurate TL estimations are essential for assessing the minimum detectable
explosive energy (e.g., Le Pichon et al. (2009); Blom et al. (2018)). The detection capability of the IMS network is
also strongly affected by the time-varying station noise level above which signals can be reliably detected (e.g.,
Marty et al. (2021)). Computing global detectability maps at an hourly temporal resolution requires large numbers
of TL estimations across multiple frequencies. While the computational costs of PE solvers are prohibitive, this
remains feasible using empirical attenuation relations (Green and Bowers (2010); Le Pichon et al. (2009); Le
Pichon et al. (2012)) or our neural network. However, these challenges are amplified when examining statistical
approaches through the exploration of ensembles of initial atmospheric conditions (e.g., Hedlin and Drob (2014);
Vanderbecken et al. (2020)). Since conventional numerical propagation methods are not yet capable of exploring
a vast parameter space for global and real-time operational applications, cost-effective machine learning-based
models present a promising approach to reduce computational burden while maintaining high prediction
accuracy.

Future works include the specialization of the neural network on a regional scale using fine-tuning. An expected
outcome is an increase in performance when predicting TL on global and regional reference events (e.g., the
Tonga volcano eruption, the Lebanese explosion in Beirut-Pilger et al. (2021), the Finnish explosions
Hukkakero—Vorobeva et al. (2023), and the Negev desert controlled explosion—Fee et al. (2013)). Increasing the
amount of input data could further enhance the neural network performance. Appendix G shows promising
preliminary results, obtained by doubling the size of the training database by sampling the Earth's atmosphere
both on 15 January 2021, and 15 August 2021. Conducting explainability studies of the predictions could also
improve the neural network performance. Such studies highlight useful characteristics in the input data for un-
derstanding the model's decision-making process and know how to build relevant training databases. In the
context of data assimilation, such neural architectures also offer valuable insights for developing adjoint methods
(Letournel et al., 2024). This application takes direct advantage of the nature of the neural networks, since nu-
merical propagation methods such as PE solvers do not allow the determination of all the partial derivatives
needed to calculate the adjoint without being computationally expensive. Finally, a topic of interest is the
modeling of two-dimensional outputs, allowing TL predictions at receivers in altitude. The predicted two-
dimensional TL could be exploited for further atmospheric investigations using stratospheric balloon observa-
tions of large explosive sources (Albert et al. (2023); Bowman and Krishnamoorthy (2021); Podglajen
et al. (2022); Silber et al. (2023)).

Appendix A: Construction of Two-Dimensional Range-Dependent GW Perturbation
Fields

The vertical GW spectrum as a function of the vertical wavenumber m essentially consists of two regimes. The
first part, m < m*, is the nonsaturated part driven by the GW source, with an increase until the maximum of
spectral energy at m = m*, where m” is called the dominant wavenumber. At larger wavenumbers, m > m*, this
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is the saturated part of the spectrum (Smith et al., 1987) with a characteristic —3 slope in the logarithmic scale (see
Figure 1 of Gardner et al. (1993)). Typical values for m* are a few to about 10 km as documented in Gardner
et al. (1993) and in the literature (Allen and Vincent (1995); Hostetler and Gardner (1994); Chu (2018)).

The method used throughout this study consists in using the analytical expression of the vertical GW spectrum
presented in Gardner et al. (1993) with the vertical profile of m* to build vertical profiles of perturbations for a
given set of 10-km thick overlapping atmospheric layers (50% overlap). The analytical expression of the vertical
GW spectrum is given by Gardner et al. (1993) (their Equation 7):

aN? (m\’

27:—3 — m< m,
m; \m,
aN?

Et(m) = ‘275—3 m., Smgmb (Al)

m

2w < m
mp \m

where the nonsaturated regime (m < m,), the saturated regime (m, < m < m;), and the turbulence regime
(my, < m) are represented. The term my, is defined as the buoyancy wavenumber identifying the transition between
saturated GW and turbulence, and N as the buoyancy frequency reflecting the vertical stability of the atmosphere.
The term « is a constant below 1 accounting for superposition effects when multiple waves interact, generating
instabilities that lower the threshold of wave saturation (Gardner et al., 1993).

The vertical profile of m* is given by Gardner et al. (1993) (their Equation 43):

Z .
m, ~ exp [—m], (Az)

where z is the altitude, H the atmospheric scale height, and s and —¢ the spectral indices of the m-spectrum in the
source regime and the saturation regime, which are key parameters that influence both the shape and the
magnitude of the horizontal wavenumber spectrum.

For each of the vertical GW spectra that are modeled for a set of altitudes z, the inverse Fourier transform is
derived given a randomly chosen phase. This provides vertical perturbation profiles, which respectively char-
acterize each of the atmospheric layers centered on each z. Then, all these vertical profiles are weighted and
linearly combined to produce a full perturbation profile for the whole atmosphere, retaining perturbation am-
plitudes characteristic of each altitude. The Gaussian weights used in the combination are centered at midlayers
and normalized to ensure the total weight addressed to a given atmospheric layer is 100%, thus avoiding an excess
of redistributed energy in any of the layers. This method is applied for a given number of randomly chosen phases,
producing an ensemble of several realizations of GW perturbation profiles as shown in Figure 2 panel a).

In the last stage, randomly chosen vertical GW profiles (among those derived above) are horizontally and linearly
combined using the horizontal correlation length documented in Gardner et al. (1993) (their Section 4 and Table 4).
The final product is a two-dimensional range-dependent GW perturbation field as shown in Figure 2 panel b).
Such fields are superimposed on the ¢, slices.

Appendix B: Details on the Learning Process

To optimize memory, we interpolate all atmospheric slices A, ; and ground-level TLs. The atmospheric slices are
interpolated to a regular grid (height X width X depth) = (433 X 40 X 1). The height corresponds to the
altitude, with z € [0,129.9], and the widrh corresponds to the distance from the source, with d € [0,3900],
keeping only a vertical c,,;, profile every 100 km. The resulting 0.3 km step in altitude is sufficient to preserve the
effects induced on the atmospheric slices by the small-scale GW perturbations. Indeed, as stated in Appendix A,
the GW vertical spectra upon which the perturbations are built peak at a critical wavenumber m* corresponding to
a few kilometers in wavelength. The exponential decrease of energy at smaller and larger wavenumbers,
respectively, ensures that the relevant part of the GW spectrum will be well accounted for at each altitude with a
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Figure B1. Training and validation loss of Fj (Az’d, f) during the best run.

0.3-km vertical step. The ground-level TL is interpolated with a regular step of 5 km, leading to a £ vector of 800
points. This allows unifying the TL calculated using the ePape solver, which has different spatial resolutions
according to the source frequency f.

Both the atmospheric slices A, ; and ground-level TLs ¢; are standardized before feeding F (Az,d, f). The stan-
dardization involves removing the mean and scaling to unit variance. This preprocessing step allows us to speed
up learning and minimize the risks of explosion/disappearance of the gradient when dealing with an important
number of parameters (£ (Az,d’ f) contains approximately 27 million parameters).

Following the work of Brissaud et al. (2023), the difference between the predictions 2’/ and the PE simulations #;
is quantified by the root mean square error (RMSE) loss function. This metric is widely used in regression
problems. Since the atmospheric slices A, ; and the expected outputs £ are standardized, the RMSE is dimen-
sionless. The training loss of the best run of Fy (Az,d, | ) (see Section 3.2) converges to 0.119 after 76 iterations, as
shown by the green curve in Figure B1.

Training is conducted over a maximum of 150 epochs, with an early stopping if the loss function on validation
data remains stable beyond 20 iterations. To improve the convergence, the parameters 0 are initialized in the first
convolutional layer using the Glorot initializer (Glorot & Bengio, 2010), and the input data (Az,d, f) are divided
into batches of size 32. The Adam optimizer (Kingma, 2014) is used with an initial learning rate 7 = 1 x 1074,
which is reduced by a factor of 10 after the tenth epoch if no improvement in validation loss is observed.

Appendix C: Details on the Comparisons Between the Training and the Generalization
Sets

This appendix aims at detailing the comparison realized between the training and the generalization sets presented
in Section 4.2. Each panel of Figure C1 focuses on a specific atmospheric layer. The altitudes of each layer are
defined as presented in Section 2, with the troposphere being defined between O and 12 km, the stratosphere
between 12 and 60 km, the mesosphere between 60 and 90 km, and the thermosphere between 90 and 130 km
altitude. For each layer, the minimal, average, and maximal c,,;, distributions are plotted for both the training and
the generalization sets. As an example, the minimal distribution is obtained by distributing all the minimal values
of ¢,,i0 among 20 bins of ¢,,;, ranging from 0.1 to 2.0 with a step of 0.1. As the training and the generalization sets
contain different numbers of scenarios, all results are plotted as a density.

For each layer, we observe small departures of the distributions of the generalization atmospheric slices A, 4
compared to the ones obtained on the training set. These departures can take the form of some situations slightly
overrepresented in the generalization set, like in the mesosphere with a minimal ¢, of 0.6 or a maximal ¢, of
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Figure C1. Distributions of minimal, average, and maximal values of ¢ ,;, in the troposphere, stratosphere, mesosphere, and
thermosphere computed on the training and the generalization sets.

1.15. We explain this by the differences induced in the way we extract the generalization slices compared to the
training ones. Generalization samples correspond to 12 sampling points randomly set apart from the 162 initial
ones, associated with 10 GW perturbation fields. Generalization data correspond thus to unseen locations on the
Earth sampled on the same date as the training ones, with additional small-scale variations. However, it is
important to notice that the variability induced by the GW perturbation fields remains minor and is mainly visible
above the stratosphere (see Figure 2 panel b)). Indeed, the minimal and maximal zonal wind speed disturbances

induced by these fields are on average —25/25 m.s~!.

Appendix D: Epistemic and Data-Related Uncertainties on the Generalization Set

This appendix is a complement to Section 5 and provides details on the epistemic and data-related uncertainties
obtained on the generalization set.

The epistemic uncertainty associated with all the predictions of the generalization set is relatively small, with an
average of 1.98 dB for all source frequencies. The largest standard deviations (between 3 and 5 dB) are reached
for upwind atmospheric scenarios with f > 0.8 Hz. Figure D1 highlights the increase of epistemic uncertainty with
increasing frequency, with an average of 1.6 dB for f <0.4 Hz up to 2.18 dB at 0.8 Hz and 2.8 dB at 1.6 Hz. We
also observe an increase of epistemic uncertainty in the first 250 km from the source, particularly at higher
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Figure D1. Uncertainty related to the model architecture, quantified on the generalization set using the Monte Carlo dropout
method.

frequencies. All of this demonstrates the correlation existing between the higher uncertainty estimates and the
areas with higher predictive errors (see Section 4.1).

We performed various numbers of inferences to estimate the epistemic uncertainty using the Monte Carlo dropout
method (10 as presented in Section 5, 50, 100, and 150). Each time, the average epistemic uncertainty remains
below 2 dB across all source frequencies. This may seem low but is quite expected since the Monte Carlo dropout
method relies on the assumption that dropout layers introduce sufficient stochasticity during forward passes to
effectively sample the model's parameters. However, this assumption may lead to a less accurate approximation
of the Bayesian inference and resulting epistemic uncertainty. Such limitation can thus provide an additional
explanation for the inability of Fy (Az,d, f ) to recover all variations of the PE simulations, as observed in Section 5.

Regarding data-related uncertainty, the standard deviation estimated on the generalization predictions is on
average equal to 1.16 dB along 4,000 km, against 3.22 dB on the PE simulations. This indicates that the un-
certainty induced on the TL by perturbing the initial ¢, slices with 10 GW perturbation fields is not fully
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Figure D2. Uncertainty related to the input data, quantified on the generalization set using the test-time augmentation
technique.

captured by Fy (Az,d, f). However, even if the model acts as a low-pass filter, the data uncertainty associated with
the predictions follows the global increase of uncertainty observed on the PE simulations in the absence of
stratospheric waveguides (upwind scenarios). Figure D2 shows moreover that there is a slight increase in the
average data-related uncertainty with increasing frequency, from 1 dB at 0.1 Hz to 1.5 dB at 1.6 Hz. Even if such a
pattern is not visible in the PE simulations, we can link it with the increase of predictive errors with increasing
frequency (see Section 4.1).

Appendix E: Details on the Comparisons Between the Training and the Tonga Set

This appendix aims to detail the comparison realized between the training set and the Tonga-set introduced in
Section 6. The process used to obtain the distributions presented in Figure E1 is similar to the one described in
Appendix C1. The results presented in this Appendix can be linked with Figure 11, which gives another point of
view on the differences between the two sets.

The atmospheric slices of the Tonga-set being extracted on a never-before-encountered location on Earth and on a
new date, we observe strong differences between their distributions and the one obtained on the training data.
These differences are visible for all the minimal, average, and maximal ¢, distributions for all considered
atmospheric layers. Some departures correspond to over/under-represented atmospheric conditions in a given set,
as previously observed in Appendix C1. For example, the Tonga-set contains a strong overrepresentation of slices
with a minimal ¢, of 0.75 in the stratosphere or with an average c,,;, of 1.04 above 90 km altitude. In addition to
that, some distributions exhibit a horizontal shift compared to the training ones, such as the maximal distribution
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Figure E1. Distributions of minimal, average, and maximal values of ¢, in the troposphere, stratosphere, mesosphere, and
thermosphere computed on the training set and the Tonga-set.

in the troposphere or the maximal one in the thermosphere. It is important to note that all these differences can
interfere in the same atmospheric slice.

Appendix F: MRAE Distribution According to the Atmospheric Conditions and Source
Frequencies on the Tonga-Set

The current Appendix shows the distribution of the MRAE according to the source frequency and the mean ¢y,
in the troposphere, stratosphere, mesosphere, and thermosphere on the Tonga-set. The mean c,,;, values are
obtained by averaging the c,,;, contained within the range of altitudes of each atmospheric layer and along the
4,000-km-long propagation paths.

Figure F1 highlights the conditions associated with larger generalization errors (>20%), particularly in the
absence of stratospheric or mesospheric waveguides at f > 0.8 Hz. Another region of higher errors is highlighted
in panel a) for maximal mean c,,;, values in the troposphere. We link this region with notable differences in the
training set and the Tonga-set atmospheric slice distributions (see horizontal shift of the Tonga maximal dis-
tribution in the troposphere, Appendix E1).

We further analyze the generalization capabilities of Fy (Az,d, f ) by evaluating it on five never-before-encountered
source frequencies: 0.3, 0.6, 1.0, 1.2, and 1.4 Hz. Figure F2 details the distribution of the MRAE according to
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Figure F1. MRAE distribution according to the atmospheric conditions on the Tonga-set for the five usual source frequencies
f =0.1,0.2,0.4,0.8,1.6 Hz.

these new frequencies and the mean c,,;, per atmospheric layer on the Tonga-set. It highlights areas of larger
generalization errors (>20%), which can be strongly linked with the ones obtained by Fy (Az,d’ f) on the same
atmospheric slices, for the five usual source frequencies (see Figure F1). These regions with higher errors spread

on the exact same mean ¢, values but started as early as 0.6 Hz.
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Figure F2. MRAE distribution according to the initial atmospheric conditions on the Tonga-set, for five never-before-
encountered source frequencies f = 0.3,0.6,1.0,1.2,1.4 Hz.

Appendix G: Impact of the Time Coverage of the Training Database on the
Generalization Capabilities

We create an expanded database by sampling the Earth's atmosphere not only on 15 January 2021, but also on 15
August 2021. We build realistic atmospheric slices and run PE simulations following the processes described in
Section 2. The neural network is trained on this expanded database as presented in Section 3. By doing so, we aim
to investigate the effect of increasing the time resolution of the training database on the model's performance. The
model presented in this study is referred to as the “generic model”, and the newly trained one as the “expanded

model.”

The generic and the expanded models are both evaluated on a new generalization set composed of 360 atmo-
spheric slices around the military site of Hukkakero (Finland), extracted on 20 August 2019 and 14 August 2020.
This site was selected because of its repeated explosions during a summer month in the northern hemisphere and
is a benchmark event in the infrasound community (Vorobeva et al., 2023).

Figure G1 panel a) shows five boxplots (for the five source frequencies) summarizing the MRAE distributions
along the 4,000-km-long propagation paths obtained by applying the generic model on this new generalization
set. Compared with the previous evaluations, a degradation of the performance is noted. For all source fre-
quencies, the median error is around 10%. We attribute this to the dates of 14 August 2019 and 20, 2020 being well
outside the training domain of the generic model. On the other side, the expanded model shows improved
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performance (see panel b), with a significant reduction in median and quantile errors, especially below 0.4 Hz.
This seems to indicate that increasing the time resolution of the training database by sampling the Earth at
multiple dates (days, months, years) leads to better generalization capabilities of Fy (Az,d, f).
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