

EGU25-15464, updated on 14 Apr 2025 https://doi.org/10.5194/egusphere-egu25-15464 EGU General Assembly 2025 © Author(s) 2025. This work is distributed under the Creative Commons Attribution 4.0 License.

And yet they move: microbial movement in soil habitats

Kyle Mason-Jones 1, Steffen Schluter 2, Ksenia Guseva 3, Clementine Chirol 4, Lionel Dupuy 5,6, Amandine Erktan I, Jie Hu⁸, Ilonka Engelhardt Hanbang Zou 10, Samuel Bickel 11, Jing-Zhong Lu 12,13, Jennifer Pett-Ridge 14, Wilfred Otten 5, Hannes Schmidt Naoise Nunan 16,17, Edith Hammer 10, Philippe Baveye 18, Tessa Camenzind 19, and Lukas Y. Wick 20

¹Soil Microbial Interactions, Department of Geosciences, University of Tübingen, Tübingen, Germany

²Department of Soil System Science, Helmholtz-Centre for Environmental Research UFZ, Halle, Germany

³Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria

⁴INRAE, AgroParisTech, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes, Palaiseau, France

⁵Department of Conservation of Natural Resources, Neiker, Derio, Spain

⁶Ikerbasgue, Basgue Foundation for Science, Bilbao, Spain

⁷Eco&Sols, Univ Montpellier, IRD, INRAE, CIRAD, Institut Agro, Montpellier, France

⁸Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands

⁹Geo-Biosphere Interactions, Department of Geosciences, University of Tübingen, Tübingen, Germany

¹⁰Department of Biology, Lund University, Lund, Sweden

¹¹Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria

¹²Animal Ecology, J. F. Blumenbach Institute for Zoology and Anthropology, University of Göttingen, Germany

¹³Senckenberg Museum for Natural History, Görlitz, Germany

¹⁴Lawrence Livermore National Laboratory, Physical & Life Science Directorate, Livermore, CA, USA

¹⁵Faculty of Engineering and Applied Sciences, Environmental Sustainability, Cranfield University, Bedfordshire, UK

¹⁶Institute of Ecology and Environmental Sciences – Paris, Sorbonne Université, CNRS, IRD, INRAe, Paris, France

¹⁷Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden

¹⁸Saint Loup Research Institute, Saint Loup Lamairé, France

Movement of organisms plays a crucial role in microbial ecology, yet little is known about how, when and at what speeds soil microorganisms move. Literature offers conflicting lines of evidence, even regarding whether single-celled organisms can move at all under typical soil conditions. We review the literature on microbial movement in the context of soil physicochemical complexity, to establish its likelihood and its prerequisite conditions. Our focus is on movement at the spatial and temporal scales relevant for microbiota (µm to cm, seconds to days), with particular attention to bacteria and fungi. We synthesize experimental data for bacteria to show that unicellular movement can occur in moderately moist soils, although it is suppressed under dry conditions. By integrating current knowledge of microbial physiology and soil physics, we propose underlying mechanisms that may overcome the challenging conditions of soil, including non-flagellar surface movements (pili, in particular) and the role of biosurfactants. Our energetic analysis also shows that movement is possible, even under moderately oligotrophic conditions. Movement modes are entirely different for filamentous microorganisms like fungi, however, which are not restricted by water connectivity, grow much slower than prokaryotic movement, and must contend with the great tortuosity of the soil habitat. However, once a fungal network is established, cytoplasmic streaming can translocate resources and even the entire fungal cytoplasm at speeds comparable to bacteria (5 µm/s). Fungal hyphae also provide physical connections and favorable conditions to support prokaryotic movement along their surfaces. Hitchhiking, in which one organism is transported by the movement and energy of another, is also likely to be important in soil. A diverse array of movement possibilities emerges from our analysis, suggesting that soil microbiata. However, many key unknowns remain to be addressed and hypotheses experimentally tested, and we propose an ambitious roadmap to

How to cite: Mason-Jones, K., Schluter, S., Guseva, K., Chirol, C., Dupuy, L., Erktan, A., Hu, J., Engelhardt, I., Zou, H., Bickel, S., Lu, J.-Z., Pett-Ridge, J., Otten, W., Schmidt, H., Nunan, N., Hammer, E., Baveye, P., Camenzind, T., and Wick, L. Y.: And yet they move: microbial movement in soil habitats, EGU General Assembly 2025, Vienna, Austria, 27 Apr-2 May 2025, EGU25-15464, https://doi.org/10.5194/egusphere-egu25-15464, 2025.

¹⁹Institute of Biology, Freie Universität Berlin, Berlin, Germany

²⁰Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research UFZ, Leipzig, Germany