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ARTICLE INFO ABSTRACT

Keywords: Water scarcity and the inter-annual variability of water resources in semi-arid areas are limiting factors for
Semi-arid agricultural production. The characterization of plant water use, together with water stress, can help us to
EVaPOtraHISPIraUO“ monitor the impact of drought on agrosystems and ecosystems, especially in the Sahel region. Indeed, this
Contextual

region is identified as a "hot spot" for climate change. In-situ measurements often are insufficient for accounting

E\ggSBII)A for spatial variability at large scales (> 100 km) due to the scarcity of gauge networks. To tackle this issue,

Sahel remotely sensed evaporation is often used. In this study, estimates using thermal infrared and visible data
from MODIS/TERRA and AQUA are used. Spatially distributed estimates of the daily actual evapotranspiration
(ETd) are simulated using the EVASPA S-SEBI Sahel (E3S) ensemble contextual method over a mesoscale area
(145x145 km) in central Senegal. E3S uses a set of different methods in order to identify the dry and wet edges
of the surface temperature/albedo scatterplot and therefore estimate the evaporative fraction (EF). However,
contextual approaches assume the simultaneous presence of sufficient fully wet and fully dry pixels within
the same satellite image. This assumption of heterogeneity does not always hold, especially in the Sahel,
which is characterized by the alternation of dry and wet seasons due to the monsoon-influenced climate. To
tackle this issue, E3S uses different sets of methods depending on the season, based on local knowledge. The
present study thus aims at generalizing the approach by proposing a new version of E3S called "E3S-V2". This
latter allows an automatic detection of different heterogeneity conditions. Therefore, a sensitivity analysis
examining the effect of using different EF estimation methods over different spatial coverages was performed.
It made it possible to identify relevant normalized indicators to determine the heterogeneity level, as well as
to discriminate among the most adapted EF determination methods for each situation. From this analysis, an
automated procedure of method selection according to the heterogeneity conditions is proposed. A local-scale
evaluation was performed using eddy-covariance measurements in the Senegal Groundnut Basin. A spatialized
evaluation was also performed using GLEAM and ERA5-Land, which are proven reference ETd products over
the area. "E3S-V2" simulations yield comparable performances with in-situ and reference products in our study
area.
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1. Introduction

In semi-arid areas, water scarcity and the inter-annual variability of
water resources are critical for natural and anthropic ecosystems (Nor-
ton et al, 2016). Indeed, these areas are extremely vulnerable to
climatic changes and the modification of rainfall regimes (Panthou
et al., 2018), including longer dry periods and more intense rainfall
events (Trenberth, 2011). Ongoing climate changes intensify the evap-
orative demand; this is linked to a continuous increase in temperatures,
which could lead to more frequent periods of drought (Vogt et al.,
2018) and impact the hydrological cycle drastically (Ragab and Prud-
homme, 2002). In fact, in semi-arid areas, more than 80% of the annual
available water is lost through evapotranspiration (Chehbouni et al.,
2008). This constitutes a serious threat given the limited water supply
in these regions. In addition, a growing population, irrigation and live-
stock rearing, among other things, are increasing water consumption
and affecting water availability. Therefore, an important issue in these
countries is to provide accurate estimates of surface water deficits in a
spatially distributed manner for water planning and management.

As evapotranspiration (ET) is a key factor for scarce water resources
management, its estimation is critical. Direct measurements of turbu-
lent heat fluxes could be performed for an accurate ET estimation.
However, measurements are not able to account for the spatial variabil-
ity of this variable in some regions, e.g., less developed countries, that
are scarcely gauged. The growing number of spatial ET products offer
an interesting alternative for addressing these issues. These products
are generated using a wide range of methods, including empirical
equations (e.g., the FAO56 method for the separate estimation of soil
evaporation and crop transpiration, neural network approaches or data
fusion), land surface models (LSMs), energy balance models or interpo-
lated in-situ measurements. In Etchanchu et al. (2025), a comparison
of 20 available ET products in the Sahel was conducted at both the
local scale, using in-situ measurements, and mesoscale (100 x 100
km). The results revealed that, currently, there is no product that
simultaneously combines a good spatio-temporal resolution (e.g., <1
km, <daily) and good performance. Energy balance models can be a
useful tool because they allow spatial ET estimates at various space—
time resolutions. These methods rely mainly on solving the surface
energy budgets (Anderson and Kustas, 2008), which are expressed as a
function of the land surface temperature (LST) acquired from remote
sensing (RS) data, making it possible to determine the latent heat
flux (LE). The LST can thus be used as a signature of the partition of
available energy toward higher sensible (dry conditions) or latent (wet
conditions) heat flux values (Sheffield and Wood, 2012). RS data in
the thermal infrared (TIR) domain (3-15 pm) are therefore particularly
informative for assessing water availability and thus for adjusting water
requirements (Boulet et al., 2007).

TIR-based methods can be divided into two families: contextual
and single-pixel methods (Chirouze et al., 2014). Contextual methods
include all approaches based on the thermal contrast (hot/dry and
cold/wet pixels) using the synchronous information of several pixels
of a given image in order to compute a relative estimation of the water
stress level at the satellite overpass (Bastiaanssen et al., 1998; Allen
et al., 2007; Carlson, 2007; Roerink et al., 2000). Single-pixel methods,
on the other hand, mostly solve the surface energy budget for each pixel
independently from the others (Lagouarde and Boulet, 2016). The latter
are more adapted to uniform landscapes with homogeneous vegetation
and surface water conditions. Moreover, they can be more adapted to
the use of low-resolution data that could cover many individual plots
with different land-use in the same pixel (Chirouze et al., 2014). Nev-
ertheless, unlike contextual approaches, single-pixel methods (Boulet
et al.,, 2015; Norman et al., 1995; Su, 2002) are more sensitive to
absolute errors in surface temperature estimates. Indeed, contextual
methods require less meteorological data as input, which reduces the
number of uncertainty sources and facilitates operational applications.
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Contextual methods such as the Simplified Surface Energy Balance In-
dex (S-SEBI) (Roerink et al., 2000) or the LST-VI triangle model (Jiang
and Islam, 1999) are widely used due to their simple mechanism, lower
data input requirements and appropriate performance (Chirouze et al.,
2014; Jiang and Islam, 2001; Tang and Li, 2017; Carlson and Petropou-
los, 2019). These methods assume that the differences in the LST are
induced only by the evaporative cooling effect, ranging between the dry
(hottest pixel) and wet (coldest pixel) boundaries, where ET is assumed
to be, respectively, null (unavailability of soil moisture) and at potential
ET (Tang et al., 2010). Consequently, for each pixel, the evaporative
fraction (EF) can be estimated relative to its position between these
two boundaries (Tang et al., 2010; Carlson, 2007; Zhu et al., 2020).
The applicability and accuracy of these methods is limited mainly by
two aspects. First, this approach assumes the presence of a sufficient
heterogeneity between dry and wet pixels within the same image at
the time of acquisition (Lagouarde and Boulet, 2016). This can be prob-
lematic when the conditions are quite homogeneous, e.g., immediately
after rain events or during a dry season (Tang et al., 2010). Second,
this method depends significantly on the correct identification of the
dry and wet edges in the LST-VI space (Zhu et al., 2020). Indeed, the
definition of the limiting edges of the EF determines the magnitude and
frequency distributions of EF estimates significantly (Long and Singh,
2013). Moreover, the inappropriate selection of these two boundaries
can induce the consistent overestimation or underestimation of the EF,
which leads to unrealistic ET estimation (Long and Singh, 2013). A
correct determination of the true dry and wet edges is thus critical, as
it remains the main source of uncertainty in these approaches (Olioso
et al., 2015).

In general, model boundaries are defined empirically from the im-
age information using linear regressions or theoretically using different
energy balance models. The wet edge, for example, is not always easy
to identify due to cloud pixels (Carlson et al., 1995), which can produce
anomalously low values of temperature. In order to simplify the proce-
dure, the wet edge is generally identified by using the lowest observed
clear pixel surface temperature in the image scene (Jiang and Islam,
2001) or by directly using the air temperature (Zhang et al., 2008;
Liang et al., 2011) or the surface temperature of a water body (Zhang
et al., 2008) and/or a well-irrigated agricultural area (Carlson, 2007).
For the dry edge, most methods use scatterplots to fit it, which can
lead in many cases to errors. Indeed, in some regions, a triangular
(or trapezoidal) shape does not form well, so the dry edge cannot be
easily identified. Second, the temperature of the observed dry edge is
generally lower than that of the true dry edge (Liang et al., 2011).
Consequently, in some studies, such as Zhang et al. (2008) or Liang
et al. (2011), the dry edge is identified using a surface energy balance
method to define the true driest bare soil and the true driest full-cover
vegetation. However, resolving the energy balance equation usually
requires complex parameterization and additional meteorological mea-
surements, which constrain the generalization of the method and its
operational applications (Carlson, 2007; Tang et al., 2010; Zhu et al.,
2020). A variety of empirical algorithms are proposed for contextual
method users for dry edge identification. Jiang and Islam (2003) apply
a correction parameter to re-scale the EF and account for different
water stress conditions at the dry edge: from O on bare soil to 1 on
full vegetation cover when root zone soil water is not stressed. This
method provides satisfactory results when no water stress conditions
in the root zone occur at the observed dry edge (Jiang and Islam,
2003). In other studies, such as Tang et al. (2010), it is considered
that when using satellite remote sensors, the dry edge (high LST
pixels) is easily identified compared to the wet edge in arid and semi-
arid regions. Therefore, in these regions, the observed dry edge from
the satellite remote sensors can represent the true dry edge. The EF
is then determined using a water stress correction parameter (Jiang
and Islam, 2003). However, the surface temperatures at the observed
wet edge may be higher than at the true wet edge, which can lead
therefore to EF overestimation. Thus, Tang et al. (2010) propose a
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method more adapted for arid and semi-arid climate regions to estimate
the highest surface temperature at each fraction cover interval and
subsequently determine both the dry and wet edges. In the same
context, a contextual method was applied efficiently in the Sahelian
climate in Allies et al. (2020). In this study, the authors have used
the EVASPA S-SEBI Sahel (E3S) algorithm adapted from the EVASPA
tool (Gallego-Elvira et al., 2013) to obtain more reliable results in these
semi-arid regions characterized by the alternation of a dry season and
a monsoon period. E3S is an approach that derives ET estimates from
a dynamic weighting scheme of ET estimates derived from several EF
methods used in previously cited studies. Indeed, it was proven in
different studies, mainly for ET estimation, that it is usually better to
use an ensemble estimation than any single method in order to consider
seasonal and climatic variations (Mueller et al., 2013; Ershadi et al.,
2014). However, methods should be weighted according to different
sites and seasons in order to enable more realistic estimation. In Allies
et al. (2020), method selection was performed using fixed dates for the
wet, dry and transition season, without taking the actual hydric state of
the surface into account. It also used an empirical approach to assign
weights between methods based on the Leaf Area Index (LAI) time
series during the transition season. Their study demonstrates that this
approach consistently outperforms both non-ensemble and unweighted
ensemble methods. However, their methodology relies on in-situ exper-
tise specific to their study area in Southwest Niger, West Africa. As a
result, it cannot be easily generalized to other regions without sufficient
knowledge of local conditions, making application on other regions
or at large scale challenging. To address this limitation, the authors
propose weight allocation through objective statistical techniques, such
as Bayesian Model Averaging (BMA). However, the frequent lack of
ground ET measurements often limits the training of such statistical
methods. The aim of this study is to develop a new method, based on
the same concept but offering more robust and generalized estimation
of wet and dry situations regardless of prior local knowledge about
precipitation regimes or vegetative state. This approach will aid in
generating more accurate ET estimations with E3S adapted to the actual
hydroclimatic conditions of the satellite acquisitions and in limiting the
high uncertainty inherent to the determination of wet and dry edges in
these situations.

The new approach is based on a sensitivity analysis of the EF with
respect to the position of dry and wet edges in order to discriminate
adequate EF calculation methods that should be used. The new E3S
version is tested in a Sahelian agropastoral area in central Senegal. The
objective of this work is therefore twofold: (1) Perform a homogeneity
assessment (thermal contrast) regarding surface conditions in the same
image, and (2) develop an automatic algorithm to select adequate
empirical methods for the definition of dry and wet edges for each
detected case.

2. Materials and methods
2.1. Study area

The study was conducted in a meso-site (140 x 140 km) region
in Senegal, West Africa (13.78°N to 15°N; 15°W to 17.09°W; Fig.
1(a)), referred to as “Senegal center” in the study. The site exten-
sion corresponds approximately to a Sentinel 2 tile size, which is a
good compromise to obtain sufficient heterogeneity and to satisfy the
hypothesis of constant climatic behavior as well.

The region is characterized by a tropical semi-arid climate and by
the strong temporal and spatial variability of rainfall, with episodic
droughts and frequent crop failures (Kizito et al., 2006). The climate
is characterized by a rainy season that lasts from June to October
and a dry season that lasts from November to May, as presented in
the temperature/rainfall ratios graph (Fig. 2). The total annual rainfall
in this region is low and highly variable, with less rainfall mainly
during the early part of the wet season (Roupsard et al., 2020). The
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annual rainfall average is about 585 mm per year over the 1991-2020
period according to in-situ measurements from Fatick station. The mean
annual temperature oscillates around 27.7 °C and fluctuates between
a maximum average of 35 °C in the month of May and a minimum
of 15 °C in the month of January. Most of the area is covered by
agro-pastoral plots and Croplands (groundnut, millet, sorghum, cowpea
and watermelon), mostly subsistence farming, as part of the Senegal
Groundnut Basin (see Fig. 1(b)). Agroforestry is often practiced in this
area, which also includes protected natural reserves (Thies and Ban-
dia). The study area is characterized by considerable ecosystemic and
hydrologic variability, mainly due to the presence of the Saloum Delta,
including mangrove forests. This latter induces different biodiversity
dimensions and wide heterogeneous characteristics. The Faidherbia-
flux measurement site (Roupsard et al., 2020), in the Niakhar locality,
referred to as “Niakhar” later in this study (Fig. 1(a)), provides two dif-
ferent instruments for flux measurement positioned at different heights
(4.5 m and 20 m). Therefore, depending on the nearby vegetation type
and height, mainly agroforestry plot with millet/groundnut rotation
from the groundnut basin, different aerodynamic characteristics are
observed at this site.

2.2. EVASPA S-SEBI Sahel (E3S)

EVASPA S-SEBI Sahel (E3S) was developed by Allies et al. (2020)
as an adaptation for the Sahelian context. E3S is based on the S-SEBI
contextual method (Roerink et al., 2000) and the EVapotranspiration
Assessment from SPAce (EVASPA) tool (Gallego-Elvira et al., 2013).
In the S-SEBI and E3S models, dry and wet temperatures are retrieved
according to albedo values (a) using a scatterplot of the surface tem-
perature and albedo (Fig. 3). However, EVASPA generates an ensemble
of ET estimates and the associated uncertainties from the combination
of several methods for edge identification.

E3S involves 18 algorithms for wet and dry edge determination (see
Table 3 in Annex). The EF estimation is computed based on the S-
SEBI model approach, assuming that the EF is the distance between
the pixel (i), associated with the o; value and LST; value (see Fig. 3),
and extreme temperature for wet (LT, q,)) and dry (LSTy,, ) areas
that are already defined (see Eq. (1)). Consequently, the LE could be
retrieved from the EF and available energy (AE), which corresponds
to the difference between the net radiation (Rn) and ground heat
flux (G) (see Egs. (2)—(4)). Eq. (2) represents the portion of available
energy allocated to evapotranspiration. Indeed, EF is an indicator of
the partition of the available energy between sensible heat flux (H) or
evapotranspiration, which is directly related to the water stress state
and thus the LST variations. In Allies et al. (2020), MODIS data are
used as inputs for E3S. For this aim, Allies et al. (2020) use a cloud
edge filtering step in the processing chain to avoid outlier pixels that
could distort the surface temperature/albedo (LST-a) scatterplot shape:

LSTyya) — LST,

EF; g1, = , @
i LSTdry(a,-) - LSTwet(a()

LE = EF % (Rn—-G), 2

R, = Rg(1 — a) + e(Ra — 6 LST?), 3)

where Rg is the incident short-wave solar radiation, a is the surface
albedo, ¢ is the emissivity of the surface, Ra is the incident atmospheric
radiation and ¢ is the Stefan-Boltzmann constant (5.67 10~8 W m™2
k™.

G =R, *(04-(033% NDVI)), “4)
(Kustas and Norman, 1999) where NDVI is the normalized difference
vegetation index.

In order to adapt to the Sahelian context, Allies et al. (2020) apply
a weighting scheme to identify appropriate EF methods, depending on
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Fig. 3. The relationship between the surface albedo, surface temperature and evapo-
rative fraction based on the S-SEBI method (Allies et al., 2020).

the stage of the seasonal cycle. In fact, the strong seasonality observed
in the Sahelian region leads in many cases to a lack of dry and wet pix-
els in wet and dry seasons, respectively. This, in turn, leads to incorrect
estimates of the dry and wet edges. To overcome this issue, Allies et al.
(2020) introduced additional edge determination algorithms denoted
as “dry methods” and “wet methods” in the E3S model (see Fig. 4).
“Dry methods” involve the determination of a theoretical wet edge
fixed at the minimal observed LST (LST,,,). These methods are used

in the dry season, when there is a lack of wet pixels within the image
that can be used to determine the wet edge accurately. In a similar
way, “wet methods” use a theoretical dry edge fixed at the maximal
observed LST (LST,,,,) in the wet season. During the transition period,
which is between the end of the wet season and the beginning of the
next dry season, the classical edge determination methods of EVASPA
are also used given the simultaneous presence of sufficient dry and wet
pixels during this period. In Allies et al. (2020), the MODIS LAI product
was used as a weighting variable to distinguish between the different
seasons. Indeed, the LAI is a reliable proxy for the surface water status.

2.3. Input data

» MODIS data: The model requires the LST and optical properties
of the surface cover as inputs. Thus, we use remotely sensed
data from the latest collection (6) of 1-km-resolution MODIS
TERRA/AQUA products, available at http://earthexplorer.usgs.
gov. The temporal 16-day composite series of the MODIS normal-
ized difference vegetation index (NDVI) (MOD13A2/MYD13A2
from the satellites TERRA and AQUA, respectively), daily LST,
surface emissivity (¢) and viewing angle (MOD11A1/MYD11A1
from TERRA and AQUA, respectively) and daily albedo («) series
(MCD43A3) with a spatial resolution of 500 m are used. These
data are acquired for our study period (2018-2021), at the res-
olution of the MODIS sensor of 1 km. Therefore, the temporal
interpolation of NDVI data and the spatial aggregation of albedo
data are performed in order to obtain daily information corre-
sponding to the satellite overpass and the same spatial resolution.
Mostly, the TERRA product is used. The AQUA product is used for
days when the TERRA product is not available.

ERA5-Land meteorological data: ERA5-Land Mufoz-Sabater et al.
(2021) climate reanalysis data are used to provide hourly global
radiation (Rg) and atmospheric radiation (Ra) time series at a
spatial resolution of 9 km to be used as inputs for E3S. ERA5-
Land is an enhanced global dataset for the land component of
the fifth generation of European ReAnalysis (ERA5) data. Indeed,
in comparison with previous ERA5 products, ERA5-Land involves
several updates to support land monitoring applications, mainly
by re-running its land surface scheme at a finer spatial resolution
based on ERAS5 forcing (from 31 km to 9 km) (Mufoz-Sabater
et al., 2021). The key advantage of using ERA5-Land is the tempo-
ral consistency and the long and continuous period of availability
of the data, from 1950 until now. Our meso-site (Fig. 1(a)) lies
across several ERA5 grid cells.
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Fig. 5. Analysis flowchart.

2.4. Automatic edge selection method: E3S new version

E3S New version is based on Allies et al. (2020)’s adaptation for the
weighting scheme and cloud edge filtering. Our purpose is to generalize
the native E3S method in order to allow it to be used without prior
knowledge of the study area characteristics and season allocation. For
this aim, sensitivity analyses will be particularly useful to (1) evaluate
the assumption of having sufficiently wet and dry pixels within the
same image and (2) implement a systematic selection for adapted
methods of EF estimation for different cases (see Fig. 5).

2.4.1. Heterogeneity assessment

One of the most important hypothesis behind contextual methods
is that the perceived LST heterogeneity covers the entire spectrum
of water stress conditions, from fully dry to fully wet. In order to
measure LST dispersion, we have used the difference between the
maximum and the minimum of the relative median absolute deviation
(MAD). The MAD computes the deviation of scores from the overall
median (Eq. (5)) to obtain the lowest and highest absolute distance to
be used as an estimation of the dispersion. This is widely used as a
robust measure of quantitative variable dispersion since it relies on the
median to estimate the distribution center (Arachchige et al., 2022).
Hence, it does not rely on the assumption that the LST samples follow
a normal distribution. Besides, MAD is known to be more resilient
to outliers (Chen and Liu, 2020), which makes it particularly useful
for identifying the maximum contrast needed to satisfy the method’s
assumption. Furthermore, the Relative MAD (MAD divided by the me-
dian) provides a scale-independent measure of dispersion rather than
an absolute difference, making it suitable for comparing LST variability
across different regions and time periods. A minimal relative MAD
threshold should ensure that the sufficient heterogeneity requirement
of E3S is met. Its determination is described in Section 2.4.3:

. |x; — median|
RelativeM AD = —————— ()

median

2.4.2. Selection of adapted edge determination method

For each image, if the heterogeneity assumption is validated, we
have to detect the positioning of the LST-a point cloud regarding the
limiting boundaries identified according to the different EF determi-
nation methods. This assessment is particularly useful for identifying
specific situations, making it possible to characterize the point cloud’s
behavior. For this aim, we calculated the derivative of the EF with
respect to LST,,,, denoted “d EF,,,”, and the derivative of the EF with
respect to LST,,,,, denoted “dEF,,,,” (Egs. (6) and (7), respectively).
Indeed, following Egs. (6) and (7), these derivatives tend toward zero
when the distance to the considered edge increases. This method thus
allows the detection of the general positioning of the point cloud with
respect to the edges and the selection of adequate edge determination
methods:

JdEF _ JEF _ LST — LSTwer (6)
T OLST,,  (LST,p, — LST,0?
LST,,, — LST
dEF oEF dry (7)

Y OLST ey (LSTypy = LST )

A homogeneously dry situation is observed when there are more hot
pixels than cold pixels; they are mainly stacked toward the dry edge,
as observed in Fig. 4a. With EF methods adapted to dry situations, the
points should also be far from the wet edge, that would be closer to
the theoretical wet edge than with unsuitable methods. This situation
is easily identified when “d EF,,,” for dry-adapted methods has a very
low value tending toward zero, with a simultaneously high value of
“dEFy,,,” tending toward (1/LSTy,, — LST,,). On the contrary, a
homogeneously wet situation is observed when LST — a points are
mainly stacked up on the wet edge, as observed in Fig. 4b. Points should
also be far from the dry edge with wet-adapted methods in this case.
It can thus be identified with high “dEF,,” values, tending toward
(1/LST,,,~LST,,,), and “d EF,,,” values tending toward zero for wet-
adapted methods. This difference of behavior between dry-adapted and
wet-adapted method regarding “dEF,,,” and “dEF,,,” should allow
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Fig. 6. Spatial variability of LST average according to the season over the different expanding windows (presented from 1 to 11).

for an identification of dry and wet situations and select only the
adapted methods. A sufficiently heterogeneous situation is identified
when we obtain simultaneously high “dEF,,,” and “dEF,,,” values,
indicating high variability around both dry and wet edges (see Fig. 4c).

2.4.3. Threshold definition

Thresholds must be determined (1) to evaluate the dispersion of the
LST-a scatterplot and (2) to discriminate among the different situations,
as shown in Fig. 4. For this aim, temporal and spatial analyses of our
study area were used:

+ Spatial analysis: Spatial analyses are performed using an expand-
ing window in order to sample the widest variety of thermal
heterogeneity levels possible in the study area. The objective is
to sample a rupture in heterogeneity levels, by taking advantage
of local knowledge on the study area. Indeed, estimating disper-
sion measures across expanding windows, ranging from a very
homogeneous sub-area to a highly heterogeneous one (see Fig.
6), is particularly useful to identify the possible range of relative
MAD values and set the threshold value just below the rupture
of homogeneity. In this study, 14 sub-areas are defined using a
10 km increment in window size. The position and size of the
windows is set to gradually increase the thermal heterogeneity
level of the scene. The homogeneity rupture is then induced
by the presence of wetlands, the Saloum delta, which provide
sufficient thermal contrast for robust E3S estimates. From this,
an adequate dispersion threshold to be used for heterogeneity
assessment can be identified.

Temporal analysis: The chronological variation of the derivatives
of the EF (using non-exceedance frequency) is very informative
for defining a specific behavior according to different water states
and therefore for choosing thresholds to be used to identify the
different situations mentioned in Section 2.4.2.

3. Results
3.1. Dispersion assessment

The dispersion coefficient (see Section 2.4.1) is computed according
to different sub-areas and for different seasons during our study period
(Fig. 7). The aim of this analysis is to identify which LST dispersion
value best identifies sufficient surface heterogeneity. Overall, the dis-
persion coefficient calculated from the first expanding windows (from
the 1st to the 8th sub-area, Fig. 6) presents a relatively steady variation

and lower values, not exceeding 2. However, beyond the 8th expanding
window, the dispersion coefficient increases sharply for the different
seasons and reaches values greater than 2. This means that a high LST
dispersion is observed when the 8th expanding window is reached.
The LST spatial variability observed in Fig. 6 strengthens our findings:
The LST is observed with no significant variation using the first sub-
areas in the dry or wet season. However, some colder and hotter pixels
are observed in the 8th sub-area, respectively, in Figs. 6(a) and 6(b).
Mainly, the coldest pixels observed in the dry season are induced by
the presence of the Saloum Delta, and the hottest pixels are induced by
the farming area (Fig. 1(b)). These pixels are able to provide sufficient
heterogeneity conditions in the scene. Consequently, for this study case,
if the dispersion coefficient is greater than 2, it can be assumed that the
LST dispersion is sufficiently heterogeneous, allowing the use of the E3S
model (see Appendix B.1 in the Annex).

3.2. Thresholds estimation for dry and wet situations detection

In order to accurately identify dry and wet situations observed in
Fig. 4, dEF,,, and dEF,, will be used as indicators to determine
the general position of the LST — « scatterplot with respect to the
wet and dry edge positions. As explained in Section 2.4.2, dry-adapted
and wet-adapted methods should have different behavior regarding
these derivatives indicators in wet and dry situations. For this purpose,
thresholds must be defined to distinguish the behavior of dry-adapted
and wet-adapted EF methods in both dry and wet situations and select
only the most suitable methods for the current situation. For that
purpose, the cumulative distributions of d EF,,, and d EF,,, for all EF
methods across the entire image are analyzed in typical dry and wet
situations. These distributions are presented in Fig. 8 for a typical day
from the dry season (March 9, 2018) (Figs. 8(a) and 8(b)) and for a
typical day from the wet season (September 19, 2018) (Figs. 8(c) and
8(d)). Lower derivative values mean that the distance between the point
cloud and the considered edge is relevant. Adversely, higher derivative
values mean that the points are mainly stacked toward the considered
edge, and there is a higher rate of change around this edge. Overall, Fig.
8 shows that d EF,,, and d EF,,, exhibit different behaviors depending
on the type of method used for edge estimation (i.e. dry, wet or
transition method, cf. Section 2.4.2) and the season. For the dry season,
results show that dEF,,, (Fig. 8(a)) and dEF,,, (Fig. 8(b)) estimated
from dry methods (black lines), i.e., using a theoretical wet edge in
order to reach the coldest pixel in the image, display different behavior
from dEF values estimated from other methods. On one hand, 80% of
the dEF,,,, values from adapted dry methods are very low (less than
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Table 1

Thresholds used to define the different LST — a scatterplot configuration.

dEF,,, > 0.03

adapted method for dry situation

dEF,,, <0.03
adapted method for wet situation

dEF,, <001

wet H ly dry situati

adapted method for dry situation omogeneously dry situation x

dEF,, > 0.055 . .
wet X Homogeneously wet situation

adapted method for wet situation

0.01), which indicates a large distance to the wet edge (Fig. 8(b)).
On the other hand, 50% of the dEF,,, values, also from dry methods,
present higher values, greater than 0.03, which highlights the shorter
distance to the dry edge (Fig. 8(a)). This situation could be identified as
a “homogeneously dry situation”, as explained in Section 2.4.2; dEF,,,,
presents very low values tending toward zero, with simultaneously
higher values of dEF,,,. However, 50% of the dEF,,, and dEF,,,
values obtained using other methods present higher values exceeding
0.05 in almost all cases, which hints at a well-scattered LST — «
scatterplot between the two estimated limiting edges, meaning that
the edges are closer to each other than they should be theoretically.
It indicates a typical dry situation, as shown in Fig. 4a, where dry
methods and other methods have a significantly different wet edge
position. Similarly, for the wet season, d EF,,, (Fig. 8(c)) and dEF,,,
(Fig. 8(d)) estimated from wet methods (orange lines), i.e., using a
theoretical dry edge in order to reach the hottest pixel in the image,
indicates a significantly different position of the wet edge than other
methods, showing a typical wet situation, as shown in Fig. 4b. Indeed,
50% of d EFy,, values obtained using wet methods present lower values
not exceeding 0.03, which indicates a great distance to the dry edge
(Fig. 8(c)). Meanwhile, 50% of dEF,,, values show higher values,
greater than 0.055 (Fig. 8(d)). This situation could be identified as a
“homogeneously wet situation” (see Section 2.4.2), with high dEF,,,
values and d EF,,, tending toward zero. Based on these findings, in this
work, we can use the already identified thresholds for these typical days
from the dry and wet seasons, mentioned also in Table 1, in order to
define the different situations shown in Fig. 4. More results to validate
the thresholds values identified are observed in the Annex (Appendix
B.2).

3.3. EF method selection

3.3.1. Simulation before and after method selection

In what follows, “ALL” and “E3S-V2” refer, respectively, to the
ET simulations using E3S with all the available methods and the
new version of E3S with the suggested automatic method selection.
“‘Obs” refers to in-situ measurements at the Niakhar flux station. “Obs”
are presented using an envelope corresponding to the minimal and
maximal values of the two eddy-covariance instruments (Fig. 9), while
the central value is their mean. The use of observation values derived

from two different gauging station is helpful to provide a realistic
representation of MODIS pixel. Indeed, using only the lowest station
for example, does not include the trees that characterize the observed
ecosystem. Error bars using the 25th, 50th and 75th percentile values
of “ALL” and “E3S-V2” are used to express the related uncertainties.

Overall, in Fig. 9, the “ALL” simulations overestimate ET compared
to “Obs” during the dry season and underestimate it during the wet
season (Fig. 9). However, using only selected methods, provided by
the “E3S-V2” simulations, leads to the correction of both the overes-
timation and underestimation and minimizes the dispersion initially
observed in the “ALL” simulations. Consequently, uncertainty linked to
the method ensemble is considerably reduced, providing ET estimation
that follows the ground truth estimates more closely. In the wet season,
few data are available for ET estimation due to the presence of clouds.
Nevertheless, on some days, where data are available, the method
selection step succeeded in improving the ET estimation. On the other
hand, at the beginning of the transition period, when the LST — «
scatterplot did not identify a “homogeneously dry situation” or a
“homogeneously wet situation”, all the EF methods correctly reproduce
“Obs”. However, at the end of the transition season, when vegetation
is sparser and the number of wet pixels decreases, the “E3S-V2” sim-
ulations underestimate ET compared to the “Obs” mean but remain
within the measurement interval. Indeed, the selection algorithm tends
to select methods adapted for the dry season during this period.

In order to analyze the spatial patterns of ET, maps of the seasonal
ET average corresponding to the “ALL” and “E3S-V2” simulations are
presented in Fig. 10. Figs. 10(a) and 10(b) show estimates for dry
seasons observed during the whole study period, while Figs. 10(d) and
10(e) show estimates for wet seasons. Figs. 10(c) and 10(f) show the
difference between “ALL” and “E3S-V2” in both cases. The results
for the dry season show that ET values from the “ALL” simulations
are overestimated compared to those of “E3S-V2”. Fig. 10(c) shows
positive differences all over the study area. Moreover, differences are
more pronounced in the coastal region, around the Saloum Delta and
in some cultivated zones. Indeed, these regions have the coldest pixels,
with relatively low temperature values (see Fig. 6(a)). As the true wet
edge cannot be identified correctly with methods unsuitable for the dry
season, the “ALL” simulations include overestimated wet edges. Con-
sequently, the EF will be significantly overestimated, leading to higher
ET rates, with differences exceeding 1 mm d~!. Smaller differences are
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found in crop ecosystems, which have higher temperatures due to the
presence of bare soil. Indeed, EF estimations for drier points are less
sensitive to the position of the wet edge (Eq. (7)), leading to smaller
differences in ET.

Conversely, the results for the wet season show that the “ALL”
simulations have slightly lower values than the “E3S-V2” simulations
on average. Unlike the dry season, the spatial patterns of the differ-
ences (Fig. 10(f)) are more homogeneous, with a relatively constant
difference of around 0.5 mm d~!. Differences are more visible in the
southeast part of the study area, with more intensive crop management
and forests. Lower differences are found for the coldest pixels, as their
EF is less sensitive to the estimation of the dry edge (see Eq. (6)).
Few zones yield higher differences (around 0.5 mm d™1) for the hottest
pixels, which are more sensitive to dry edge estimation.

3.3.2. Comparison with reference products

Comparisons with the native version of E3S used in Allies et al.
(2020) show that the E3S-V2 have conserved the initial performance
observed in the original version. Fig. 11(b) shows that E3S-V2 and the
native version have a similar variation when compared to simulations
with the mean ET from observations, mainly in the dry season. Because
of the use of thermal infrared information, the available data derived
from model simulations in the wet season are insufficient for compar-
ison. However, during the transition season, simulations from E3S-V2
follow the observations more closely, while ET from the native version
shows underestimation. Fig. 11(a) strengthens our findings; the E3S-V2
and native E3S simulations show high performances in comparison with
ET derived from measurements, with R-squared values exceeding 0.6

and relatively low RMSE values. Moreover, simulations from E3S-V2
fit the observations more closely, with a higher R? value (around 0.74)
and a lower RMSE value (around 0.47 mm d~') compared to the native
version of E3S, which presents a lower R? (around 0.64) and an RMSE
value of about 0.64 mm d~!. The E3S-V2 is not only able to conserve
the performance observed initially using the native version of E3S but
also reproduces the observations better.

Fig. 12 shows the comparison between E3S-V2 simulations with ET
values derived from other ET products, retrieved for the Niakhar pixel,
presenting good performances in the African continent and mainly in
the Sahel region (Trambauer et al., 2014; Etchanchu et al., 2025):
the ERA5-Land and GLEAM products (see Annex A.1). Overall, ET
values from the different products show comparable performances.
The ET time series from ERA5-Land show lower values mainly in the
dry season, in comparison with ET from Gleam product and “E3S-V2”
simulation. The two latter present mainly similar temporal variations
at local scale. This could explains the higher correlation value obtained
at mesoscale (Table 2), around 0.73, between “E3S-V2” and Gleam
product. However, lower R? value, around 0.63, is observed between
“E3S-V2” and ERA5 Land product (Table 2). Nevertheless, comparisons
at mesoscale in Fig. 13, show more differences between “E3S-V2”
and Gleam product (Fig. 13(a)), inducing relatively higher bias and
RMSE values, around 0.3 and 0.43 mm d~! respectively (Table 2).
Higher differences are also observed between “E3S-V2” and ERAS5 Land
product, mainly for some lower values (Fig. 13(b)), which leads to
higher bias and RMSE values around 0.43 and 0.64 mm d~! respectively
(see Table 2).

A spatial analysis is carried out to compare ET estimates from
“E3S-V2” with ET values from other models (the native version, the
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Table 2
Statistical indicators (Bias, R> and RMSE) on mean ET temporal series over the entire
area between “E3S-V2” simulations and the different ET products used for comparison:
Gleam and ERAS5 Land.

E3S-V2/Gleam E3S-V2/ERAS5 Land

Bias (mm d") 0.3 0.43
R? 0.73 0.63
RMSE (mm d~') 0.43 0.64

ERAS5-Land and GLEAM products). Firstly, an up-scaling procedure is
performed in order to be able to compare these different products
(see in Annex, Appendix A.3). Secondly, the R?, RMSE and bias scores
between each ET product and ET from E3S-V2 are computed for each

10

pixel and presented in Fig. 14 for the whole study period. The native
version and E3S-V2 simulation, which have the same spatial resolution
(kilometric scale), provide closer estimates over the whole study area.
Indeed, they have higher correlation, with an R? value around 0.7 over
almost the whole study area (see Fig. 14(a)). Moreover, Figs. 14(d) and
14(g) show very low RMSE and bias scores, about 0.5 and —0.5 respec-
tively in almost all the study area. However, differences become more
accentuated around the Saloum Delta and coastal pixels, exceeding
3mm d~! of RMSE and —3 mm of bias value. This means that ET values
from E3S native version, under-estimate ET values provided from E3S-
V2 in these regions. The comparison with ERA5-Land product, available
at a lower resolution than E3S-V2, shows more heterogeneous correla-
tion values (Fig. 14(b)). In fact, very low R? scores, lower than 0.4, are
observed in wetland regions and also in the North-West of the study
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area. Higher R? scores are observed in cultural regions. Nevertheless,
the RMSE and bias data indicate more homogeneous difference values,
nearly 0.5 mm d~! over the whole study zone. Larger differences are
observed in coastal pixels and mainly in wetland areas, exceeding,
for some pixels, 2 mm d~!. These differences could explain therefore
low RMSE and bias values performed at meso-scale and presented in
Table 2. Comparisons with the GLEAM products, which have the lower
spatial resolution, show mainly similar performances than ERA5 Land
at spatial scale. However, better correlation values than ERA5-land are
observed when using Gleam product, which consolidates the mesoscale
R? value observed in Table 2. Nevertheless, Figs. 14(f) and 14(i) show
the lower RMSE and bias values calculated in wetland areas, with
differences of around 1 mm d~! only. This means that E3S-V2 have
similar performances as Gleam product in wetland regions, which are
the more challenging zones to estimate.
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4. Discussion

The results of our work show the potential of the proposed method
to enhance the accuracy of ET estimation during the study period.
Indeed, the seasonality is well represented, with low evapotranspiration
during dry periods, high rates of evapotranspiration in the wet season
and variable rates that decrease gradually during the transition season.
Moreover, we have succeeded in significantly reducing the structural
uncertainties observed initially, i.e., before the method selection. Sim-
ulations are compared with observations provided from two different
gauging stations installed at our flux site. ET measurements show
a noticeable difference between both instruments (Fig. 9), explained
by their different measurement height. This latter involves different
footprint size, inducing different land use. This variability seems to
be representative of MODIS pixel mainly in transition period, where
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vegetation presents higher evolution dynamic. Indeed, ET from “E3S-
V2” is almost always within the observation envelope presenting the
higher and the lower ET measurement (Fig. 9).

The aim of this work is to generalize the native version of E3S
based mainly on local knowledge of the study area. The comparison
with the native version shows that the new proposed method conserved
the performance of the initial version of E3S, especially in the dry
and wet seasons. However, in the transition season, the new method
outperforms the initial version without using additional information.
Indeed, the native E3S version uses a weighting scheme over the
transition period, depending on the water availability, represented by
the vegetation canopy structure (LAI). The aim of this approach is
to reproduce the theoretical gradually evolving surface state in order
to choose appropriate EF methods according to the vegetation cycle.
However, the vegetation information almost always provides a delayed
response to the surface hydric state. Since the EF method selection
proposed in this work is based only on instantaneous information
derived from thermal and land surface properties, it accounts better for
the actual water availability. Moreover, the use of information provided
only from LST —«a makes the approach applicable even in areas where
there is no well-defined rainy season, without the need for prior local
information. The method used for EF selection in the native version of
E3S could be the reason for the systematic underestimation observed in
the transition period (see Fig. 11(b)). This could as well, explains the
high RMSE and bias values observed in wetland areas in comparison
with E3S-V2 simulations at spatial scale (see Figs. 14(d) and 14(g)).

E3S-V2 has a good agreement at local scale compared with other
products known as a reference in our study area (GLEAM and ERAS5-
Land) (Allies et al., 2020; Etchanchu et al., 2025). However, compar-
isons at mesoscale, show more discrepancies between E3S-V2 and ET
from other products, inducing relatively high RMSE and bias values.
According to spatial representation of statistical scores in Fig. 14, these
differences occur mainly in wetland, North-West and coastal regions.
Indeed, in the north-west of the study area, lower surface temperature
values than the rest of the area during the dry season and higher
temperature values in the wet season are observed in Fig. 6. This fact is
potentially related to topographic effects inducing shallower soil depth.
This leads in turn to lower water storage in the soil and therefore
to drier areas in wet season. In dry season, the higher altitude could
make this area colder. However, Gleam and ERA5 Land ET products
were unable to detect this specific behavior, unlike E3S-V2, that pro-
vides higher and lower ET rates respectively in dry and wet season
in this region (figures not shown). This explains consequently lower
correlation observed in Figs. 14(b) and 14(c) in the north-west region.
Differences in ET estimation using these different models might be
related to their different spatial resolution. Therefore, higher resolution
data (kilometric scale for our case) provide more accurate estimations
at spatial scale. Nevertheless, Gleam product presents comparable ET
estimation to E3S-V2 in wetland region unlike ERA5 Land product. This
could be related to the use of a different land surface model for ET
estimation in the ERA5-Land, which is unable to account for the water
supply from processes other than precipitation. On the contrary, ET
from E3S-V2 and Gleam product are more correlated since they rely
on remote observations to describe the surface states e.g., moisture
content or surface temperature for more realistic ET estimation. More-
over, such models may estimate fluxes using methods that need much
less knowledge of soil and vegetation characteristics than ERA5-Land.
Finally, small discrepancies observed in coastal regions are explained
by the low spatial resolution of GLEAM and ERA5 Land in comparison
with the MODIS products used as inputs for the E3S model.

Uncertainties are induced mainly by the EF method selection (Olioso
et al., 2023; Mwangi et al., 2024) when the limiting edges are over-
estimated or underestimated. This is particularly highlighted for ET
data estimation in Fig. 10. In fact, an insufficient number of cold
pixels, for instance, in homogeneously dry situations, is problematic
for correct wet edge estimation. Similarly, an insufficient number of
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hot pixels in a homogeneously wet situation induces the incorrect
estimation of the dry edge. Moreover, some consistent EF method
estimates are based on quantiles, which leads to the removal of extreme
“cold /hot” values and the loss of useful contrasting information that
in reality satisfies the contextual models’ assumptions. Consequently,
it is crucial to identify the specific scenes that require adapted EF
calculation methods. For this aim, “d EF,,,” and “dEF,,,” are found
to be powerful indicators that can be used to discriminate among these
different situations. Furthermore, one of the key advantages of using
the derivative as an indicator is its independence from LST absolute
values, which can vary significantly depending on climatic condi-
tions. Indeed, “dEF,,,” and “dEF,,~ characterize relative changes
based only on the distance observed to the limiting boundaries, rather
than the absolute temperature positioning. This property makes it a
valuable tool for identifying the sensitivity to the dry or cold edges
estimations, and therefore for identifying heterogeneity condition in
each case. Consequently, this method can also be consistent across
various climatic contexts, including warm arid environments, as well
as temperate and tropical zones. However, it may not be effective in
boreal climates throughout the year. Indeed, at very low LST values,
the thermal state is no longer driven by soil moisture conditions but
rather by phase changes (freezing and thawing). In addition, in these
regions, very low solar radiation and surface energy exchanges do
not generate sufficient surface contrast to satisfy the model’s assump-
tion. The method’s assumption is based as well on the assessment of
heterogeneity through LST dispersion measurement. A relative metric
was used for this purpose, which also contributes to the method’s
generalization. By providing a scale-independent measurement, the
relative MAD is not affected by the absolute range of temperatures,
allowing for comparisons across various regions or time periods, in-
cluding different seasons or climatic contexts. The relative MAD, along
with the indicators dEF,,, and d EF,,, plays complementary roles in
addressing the method’s assumptions. While relative MAD confirms the
method’s feasibility, ensuring that at least one of the EF method groups
works, the derivative values help to discard ineffective methods. This
two-step approach enhances the robustness of the overall methodology,
providing both reliability and applicability across different climatic and
environmental conditions.

However, the use of these indicators includes the definition of
thresholds to manage heterogeneity levels or identify situations. This
means that the method is mainly dependent on the efficiency of the
thresholds. In this study, the thresholds were calibrated on a single flux
measurement site, in an area characterized by a high level of land cover
heterogeneity and also by pronounced seasonal pattern. Results show
that seasonality is successfully reproduced based on a good recognition
of different situations. Nevertheless, since the method relies on thresh-
old determination, it is never completely free from threshold effects,
i.e., thresholds act as a tipping point mainly in transition periods,
which can sometimes lead to confusion in the situation’s identification.
Indeed, some confusions are observed, mainly between the wet and
transition periods or between the transition and dry periods (see Fig.
9). However, as shown in Fig. 9, the number of days with confusion is
very small compared to the total number of days in the corresponding
season. Furthermore, if confusion occurs between two situations, it
means that they produce fairly similar estimates, so the impact on
evapotranspiration estimation is not that significant. The efficiency of
the method is thus much greater than the confusions it causes. Never-
theless, the defined thresholds may not be applicable across all areas.
Therefore, a calibration phase is required, especially if the method
is applied in a study area with different climatic and heterogeneity
characteristics. For fine local scale applications, thresholds should be
recalibrated according to the eco-climatic zone. However, for a global
application, a more refined strategy may be needed to estimate gener-
alized thresholds on a larger geographic scale. Generalized thresholds
should then be calibrated using a large set of flux towers (i.e., Fluxnet).
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However, this generalization may come at the expense of ET estimation
accuracy on specific sites.

The use of high thermal spatial resolution data in our study area
will enable better surface heterogeneity estimation, which will help
detect more thermal contrast in the image. In this case, the threshold
defined for dispersion assessment, set at 2 for this study, could remain
the same, as the relative MAD, as explained above, is not influenced
by the absolute temperature range. It is only expected that relative
MAD should be less frequently lower than the threshold. Secondly, dry
and wet edges can be more easily identified when using satellite data
with higher spatial resolution. The different EF estimation methods
will likely produce very similar results, making method selection less
significant in this case. For this reason, contextual methods are known
to be more adapted with high spatial resolution data.

While the EF methods’ selection algorithm proposed in this study
appears to be very relevant with the S-SEBI contextual model, it also
seems promising to improve other contextual models, such as the
LST-VI triangle methods. Adapting the selection algorithm to these
triangle methods will probably need a recalibration of the selection
thresholds, particularly on dEF,,, and dEF,,,. It would then allow
for a reduction of the structural uncertainty in ensemble contextual
methods, such as the full EVASPA tool (Gallego-Elvira et al., 2013), and
bring more robust ET estimations in almost every climatic conditions.
Indeed, EF method selection represents the major source of uncertainty
in all contextual methods (Olioso et al., 2023; Mwangi et al., 2024).
Nevertheless, uncertainties are also induced by the inputs used to
constrain the model. Olioso et al. (2023), Mwangi et al. (2024) show
that contextual models are very sensitive to the global radiation and
atmospheric radiation used for Rn and subsurface soil heat flux (G)
estimation. The Rn and G components are computed independently
from EF estimation. Therefore, accumulated uncertainties from these
different variables (Rn, G and EF) could produce additional errors. The
analysis performed in this work is impacted by missing information
during the whole wet season. Indeed, satellite acquisition is constrained
by the presence of clouds. This represents a limiting factor in our study
area, which is characterized by a strong seasonal climatic contrast, with
the alternation of a dry season and a monsoon period. In other semi-arid
climatic contexts, this problem could be less important since the rainy
season is shorter and irregular (Allies et al., 2020). To derive seasonal
evapotranspiration, the gaps between satellite acquisitions need to be
filled in order to reconstruct days with missing ET data (Allies et al.,
2022; Delogu et al., 2021).

5. Conclusions

The present study introduces an innovative approach for the auto-
matic selection of adapted methods for EF estimation using an ensemble
contextual energy balance model called E3S (Allies et al., 2020). The
latter relies on a heterogeneity assumption in order to compute reliable
EF estimates, and therefore, it relies on an accurate estimation of
evapotranspiration rates. In Allies et al. (2020), EF estimation involves
a solid understanding of the study area in order to select an appropriate
method to use according to the season. This study proposes generalizing
and facilitating the application of the approach proposed in Allies
et al. (2020) by using a heterogeneity assessment based only on image
information. The derivative of the EF with respect to LST,,, and the
derivative of the EF with respect to LST,,,, denoted “dEF,,,” and
“dEF,,”, respectively, were calculated to identify the positioning of
LST —a regarding the wet and dry edges. Consequently, adapted meth-
ods for each situation could be identified independently from seasonal
or any other additional information. The proposed method succeeded
in reducing the structural uncertainties related to EF method selection
significantly. Hence, it tackled the major source of errors in contextual
methods. These latter are selected to be used for TRISHNA mission
(CNES/ISRO) (Lagouarde et al., 2018) ET estimation, since they use
a reduced number of inputs and have fewer uncertainty sources than
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single pixel methods. E3S-V2 method could be also a good candidate
algorithm for TRISHNA ET product.

E3S-V2 method was evaluated in this work using kilometric satellite
data from MODIS. Although the resolution might be too low to provide
sufficient thermal contrast in specific conditions, MODIS high temporal
resolution is very useful for the method implementation and evaluation.
Thermal information from higher-resolution data is expected to further
improve ET simulation by capturing more heterogeneity in satellite
images. Upcoming thermal Earth observation missions like TRISHNA,
LSTM (ESA, Koetz et al. (2019)) or SBG (NASA, Cawse-Nicholson et al.
(2021)) could lead to more accurate estimates of the surface water
deficit in semi-arid areas using this method.
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Fig. 15. Temporal variation of the dispersion coefficient calculated from expanding windows 2 and 14.

Appendix A. Method evaluation

A.1. Data for comparison

In order to evaluate “E3S-V2”, in-situ measurements and spatially
distributed variables other than inputs are also used for this purpose.

« In-situ measurements: Niakhar station (14.4958°N, 16.4536°W),
installed in 2018 by the IESOL Mixed International Laboratory
(Roupsard et al., 2020), provides half-hourly observations of the
climate evolution. The flux site provides observations on a typical
cropland under acacia trees (Faidherbia albida). The instrumen-
tation includes two eddy-covariance measurements at different
heights (at 4.5 m and 20 m), in order to monitor the entire
agroforestery plot and the underlying crop only. This gauging
station estimates the energy and carbon turbulent fluxes using a
LI-COR LI-7500 gas analyzer combined with a GILL WindMaster
3D sonic anemometer. Convective fluxes exchanged between the
surface and the atmosphere, the net radiation and the soil heat
flux are collected using different instruments at different levels
and used as the ground truth for the assessment of the E3S-
V2 simulations. For comparison purposes, we have computed
daily ET estimation from gap-filled LE measurements provided
initially at sub-daily scale. The gap-filling is performed using the
REddyProc R package (Wutzler et al., 2018). This method is based
on relating meteorological variables to ET on available periods in
order to define different meteorological classes. These latter are
then used to gap-fill ET series with the corresponding ET mean.

ET product from the GLEAM dataset: The global ET product from
the Global Land Evaporation Amsterdam Model (GLEAM) (Mi-
ralles et al., 2011), developed by the VU University of Amsterdam,
is available at a daily scale and at 0.25° of spatial resolution, and
it is used in our work for mesoscale comparison with ET E3S-
V2 simulations. Indeed, the GLEAM product has been deemed
a good reference for the African continent and in the Sahel
region (Trambauer et al., 2014). Moreover, in Etchanchu et al.
(2025), this product showed the best performance in comparison
with other available daily RS-ET products in semi-arid African
areas and at the regional scale. GLEAM products use a range
of independent remotely sensed observations to estimate daily
actual evapotranspiration based on the Priestley and Taylor (PT)
evaporation formula in combination with an evaporative stress
module derived from soil moisture (Moctar et al., 2020) and the
Gash analytical model of rainfall interception (Miralles et al.,
2011) in order to derive actual evaporation.
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+ ET product from ERA5-Land: The ET product provided by ERA5-
Land was also used for a mesoscale comparison with E3S-V2
simulations, since it showed a high performance in our study area
according to Etchanchu et al. (2025). Similarly to the meteoro-
logical products, the ET product is available at a 9 km spatial
resolution and at a daily temporal scale. ET is computed using
atmospheric forcing data from ERA5 and soil and vegetation
parameters (Mufoz-Sabater et al., 2021) in order to solve the
energy-water balance along a soil-plant-atmosphere interface
with the H-TESSEL model (Balsamo et al., 2009).

LAI data: We used the four-day LAI from the Combined MODIS
data (MCD15A3). This variable is used to simulate the initial E3S
version as a dynamic weighting scheme of ET estimates derived
from several EF methods.

A.2. Daily ET from instantaneous latent heat flux

For more interpretable hydrological estimates, “E3S-V2” method
is evaluated and compared to other ET products, using daily ET es-
timates rather than instantaneous estimates. Daily ET estimates are
extrapolated from instantaneous estimations (LE) to reconstruct hourly
variations using global radiation (Rg) data. Indeed, ET is assumed to
follow the same diurnal variation as the incoming global solar radiation
(Rg) on clear days (Delogu et al., 2012). Then, based on the “self-
preservation” hypothesis, which assumes that the ratio LE/Rg remains
fairly constant during daytime (Lhomme and Elguero, 1999; Delogu
et al., 2012), daily ET can be simply derived from the daily ETd/Rgd
ratio and the instantaneous estimate of LE and Rg at the time of the
satellite overpass (see Eq. (8)).

1 LE
—Rg, *
PR

where ET, is the daily evapotranspiration, usually expressed in mm
d~!, and Rg, is the cumulative daily global incoming solar radiation.
The LE and Rg; are estimates of these components at the time of the

satellite overpass (t), and 4 is the latent heat.

ET, = ®)

5

Rg,

A.3. Data aggregation

An up-scaling (data aggregation) procedure is needed to fill the
scale gap between the simulations from MODIS (E3S-V2) and the other
gridded products used for comparison. ET data from GLEAM and ERA5-
Land, which are available at a lower spatial resolution, can then be
compared to up-scaled (aggregated) simulations derived from MODIS
products, available initially at the kilometric scale. A simple averaging
approach is used for this work; it is often used for data aggregation
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Table 3

Methods of LST-albedo edge determination in E3S.

Science of Remote Sensing 11 (2025) 100229

Method Domain division Dry edge calculation Wet edge calculation Method type Reference

name

EF1 Linear regression obtained from Linear regression obtained from “Mixed method” Gallego-Elvira
20 intervals of same pixel density points corresponding to the points corresponding to the et al. (2013)

median of the 5% highest LST median of the 5% highest LST
values for each interval values for each interval

EF8 LST,,, “Dry method”

EF12 LST,,. EF1 “Wet method”

EF2 Removal of LST values with Linear regression obtained from Linear regression obtained from “Mixed method” Gallego-Elvira
lowest probability distribution. points corresponding to the points corresponding to the et al. (2013),
LST-albedo domain is divided into maximum LST value and albedo minimum LST value and albedo adapted from
20 intervals of the same pixel median for each interval median for each interval Tang et al.
density (2010)

EF9 LST,,, “Dry method”

EF13 LST,,,, “Wet method”

EF4 N intervals of 0.05 albedo value Linear regression obtained from Linear regression obtained from “Mixed method” Gallego-Elvira
between 0.05 and the first points corresponding to an points corresponding to an et al. (2013)
multiple greater than the exceedance frequency of 97.5% of exceedance frequency of 2.5% of
observed maximum albedo value LST values and albedo median LST values and albedo median

EF10 LST,,, “Dry method”

EF16 LST,,,, EF4 “Wet method”

EF7 N intervals of 0.05 albedo value Second-order polynomial obtained Second-order polynomial obtained “Mixed method” Gallego-Elvira
between 0.05 and the first from points corresponding to an from points corresponding to an et al. (2013)
multiple greater than the exceedance frequency of 97.5% of exceedance frequency of 2.5% of
observed maximum albedo value LST values and albedo median LST values and albedo median

EF11 LST,,, “Dry method”

EF14 LST,,,, EF7 “Wet method”

Split N intervals of 0.01 albedo value Linear regression obtained from Linear regression obtained from “Mixed method” Verstraeten et al.
between the minimum and points corresponding to the points corresponding to the (2005)
maximum albedo values in the median of 5% unique maximum median of 5% unique maximum
image LST values and albedo median LST values and albedo median

EF17 LST,,, “Dry method”

EF20 LST,,. Split “Wet method”

Inflex Linear regression obtained from N Linear regression obtained from “Mixed method” Adapted from
Split points (a > «;) corresponding to points corresponding to the Verstraeten et al.

the median of 5% unique median of 5% unique maximum (2005)
maximum LST values and albedo LST values and albedo median
median. A horizontal line defined
by the LST,,, value completes
the left part of the dry edge for
pixels with a < a;
EF19 LST,,, “Dry method”
EF18 Linear regression obtained from LST,,, “Dry method”

points corresponding to the
median of the 5% highest LST
values for each interval

schemes, since it preserves the mean value of the original image and
provides a better representation of the initial data values (Hong et al.,
2009; Sharma et al., 2016).

Appendix B. Method implementation

B.1. Dispersion coefficient validation

To validate the already defined dispersion coefficient in Section 3.1,
the temporal variations of this coefficient estimated using sub-area 2
and the whole study area (sub-area 14) during the study period are
compared (Fig. 15). Using sub-area 2, the dispersion is almost always
lower than 2, which means that there is insufficient dispersion for the
LST values observed in the utilized area. However, when using the
whole study area, which is characterized by sufficiently heterogeneous
conditions, the dispersion coefficient is always above the threshold
defined for dispersion assessment.

15

B.2. Thresholds estimation

The analysis of the temporal variability of dEF values validate the
thresholds identified in Section 3.2. Figs. 16(a) and 16(b) represent
50% of d EF,,, and d EF,,,, corresponding to the thresholds identified
above, using only the adapted methods for the dry and wet seasons.
Indeed, as observed above in Fig. 8, the median value of dEF is very
representative of dEF’s overall distribution, and using it will filter
out values with a very low frequency that could induce incorrect
interpretations. Fig. 16(a) shows that by using adapted methods for the
dry season, the dry season can be correctly identified. This is also true
for the wet season.

Data availability

Data will be made available on request.
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Fig. 16. Temporal variability of the medians of dEF,,, and dEF,, over the study
period (2018-2022) using adapted methods for the dry and wet seasons.
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