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 A B S T R A C T

Water scarcity and the inter-annual variability of water resources in semi-arid areas are limiting factors for 
agricultural production. The characterization of plant water use, together with water stress, can help us to 
monitor the impact of drought on agrosystems and ecosystems, especially in the Sahel region. Indeed, this 
region is identified as a "hot spot" for climate change. In-situ measurements often are insufficient for accounting 
for spatial variability at large scales (> 100 km) due to the scarcity of gauge networks. To tackle this issue, 
remotely sensed evaporation is often used. In this study, estimates using thermal infrared and visible data 
from MODIS/TERRA and AQUA are used. Spatially distributed estimates of the daily actual evapotranspiration 
(ETd) are simulated using the EVASPA S-SEBI Sahel (E3S) ensemble contextual method over a mesoscale area 
(145x145 km) in central Senegal. E3S uses a set of different methods in order to identify the dry and wet edges 
of the surface temperature/albedo scatterplot and therefore estimate the evaporative fraction (EF). However, 
contextual approaches assume the simultaneous presence of sufficient fully wet and fully dry pixels within 
the same satellite image. This assumption of heterogeneity does not always hold, especially in the Sahel, 
which is characterized by the alternation of dry and wet seasons due to the monsoon-influenced climate. To 
tackle this issue, E3S uses different sets of methods depending on the season, based on local knowledge. The 
present study thus aims at generalizing the approach by proposing a new version of E3S called "E3S-V2". This 
latter allows an automatic detection of different heterogeneity conditions. Therefore, a sensitivity analysis 
examining the effect of using different EF estimation methods over different spatial coverages was performed. 
It made it possible to identify relevant normalized indicators to determine the heterogeneity level, as well as 
to discriminate among the most adapted EF determination methods for each situation. From this analysis, an 
automated procedure of method selection according to the heterogeneity conditions is proposed. A local-scale 
evaluation was performed using eddy-covariance measurements in the Senegal Groundnut Basin. A spatialized 
evaluation was also performed using GLEAM and ERA5-Land, which are proven reference ETd products over 
the area. "E3S-V2" simulations yield comparable performances with in-situ and reference products in our study 
area.
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1. Introduction

In semi-arid areas, water scarcity and the inter-annual variability of 
water resources are critical for natural and anthropic ecosystems (Nor-
ton et al., 2016). Indeed, these areas are extremely vulnerable to
climatic changes and the modification of rainfall regimes (Panthou 
et al., 2018), including longer dry periods and more intense rainfall
events (Trenberth, 2011). Ongoing climate changes intensify the evap-
orative demand; this is linked to a continuous increase in temperatures, 
which could lead to more frequent periods of drought (Vogt et al.,
2018) and impact the hydrological cycle drastically (Ragab and Prud-
homme, 2002). In fact, in semi-arid areas, more than 80% of the annual
available water is lost through evapotranspiration (Chehbouni et al.,
2008). This constitutes a serious threat given the limited water supply 
in these regions. In addition, a growing population, irrigation and live-
stock rearing, among other things, are increasing water consumption 
and affecting water availability. Therefore, an important issue in these 
countries is to provide accurate estimates of surface water deficits in a
spatially distributed manner for water planning and management.

As evapotranspiration (ET) is a key factor for scarce water resources 
management, its estimation is critical. Direct measurements of turbu-
lent heat fluxes could be performed for an accurate ET estimation. 
However, measurements are not able to account for the spatial variabil-
ity of this variable in some regions, e.g., less developed countries, that 
are scarcely gauged. The growing number of spatial ET products offer 
an interesting alternative for addressing these issues. These products 
are generated using a wide range of methods, including empirical 
equations (e.g., the FAO56 method for the separate estimation of soil 
evaporation and crop transpiration, neural network approaches or data
fusion), land surface models (LSMs), energy balance models or interpo-
lated in-situ measurements. In Etchanchu et al. (2025), a comparison 
of 20 available ET products in the Sahel was conducted at both the 
local scale, using in-situ measurements, and mesoscale (100 × 100
km). The results revealed that, currently, there is no product that 
simultaneously combines a good spatio-temporal resolution (e.g., <1
km, <daily) and good performance. Energy balance models can be a
useful tool because they allow spatial ET estimates at various space–
time resolutions. These methods rely mainly on solving the surface 
energy budgets (Anderson and Kustas, 2008), which are expressed as a
function of the land surface temperature (LST) acquired from remote 
sensing (RS) data, making it possible to determine the latent heat 
flux (LE). The LST can thus be used as a signature of the partition of 
available energy toward higher sensible (dry conditions) or latent (wet 
conditions) heat flux values (Sheffield and Wood, 2012). RS data in 
the thermal infrared (TIR) domain (3–15 μm) are therefore particularly 
informative for assessing water availability and thus for adjusting water 
requirements (Boulet et al., 2007).

TIR-based methods can be divided into two families: contextual 
and single-pixel methods (Chirouze et al., 2014). Contextual methods 
include all approaches based on the thermal contrast (hot/dry and
cold/wet pixels) using the synchronous information of several pixels
of a given image in order to compute a relative estimation of the water 
stress level at the satellite overpass (Bastiaanssen et al., 1998; Allen 
et al., 2007; Carlson, 2007; Roerink et al., 2000). Single-pixel methods, 
on the other hand, mostly solve the surface energy budget for each pixel
independently from the others (Lagouarde and Boulet, 2016). The latter 
are more adapted to uniform landscapes with homogeneous vegetation 
and surface water conditions. Moreover, they can be more adapted to
the use of low-resolution data that could cover many individual plots 
with different land-use in the same pixel (Chirouze et al., 2014). Nev-
ertheless, unlike contextual approaches, single-pixel methods (Boulet 
et al., 2015; Norman et al., 1995; Su, 2002) are more sensitive to
absolute errors in surface temperature estimates. Indeed, contextual 
methods require less meteorological data as input, which reduces the 
number of uncertainty sources and facilitates operational applications. 
2 
Contextual methods such as the Simplified Surface Energy Balance In-
dex (S-SEBI) (Roerink et al., 2000) or the LST-VI triangle model (Jiang
and Islam, 1999) are widely used due to their simple mechanism, lower 
data input requirements and appropriate performance (Chirouze et al., 
2014; Jiang and Islam, 2001; Tang and Li, 2017; Carlson and Petropou-
los, 2019). These methods assume that the differences in the LST are
induced only by the evaporative cooling effect, ranging between the dry
(hottest pixel) and wet (coldest pixel) boundaries, where ET is assumed 
to be, respectively, null (unavailability of soil moisture) and at potential 
ET (Tang et al., 2010). Consequently, for each pixel, the evaporative 
fraction (EF) can be estimated relative to its position between these 
two boundaries (Tang et al., 2010; Carlson, 2007; Zhu et al., 2020).
The applicability and accuracy of these methods is limited mainly by
two aspects. First, this approach assumes the presence of a sufficient 
heterogeneity between dry and wet pixels within the same image at
the time of acquisition (Lagouarde and Boulet, 2016). This can be prob-
lematic when the conditions are quite homogeneous, e.g., immediately 
after rain events or during a dry season (Tang et al., 2010). Second, 
this method depends significantly on the correct identification of the 
dry and wet edges in the LST-VI space (Zhu et al., 2020). Indeed, the 
definition of the limiting edges of the EF determines the magnitude and
frequency distributions of EF estimates significantly (Long and Singh, 
2013). Moreover, the inappropriate selection of these two boundaries 
can induce the consistent overestimation or underestimation of the EF,
which leads to unrealistic ET estimation (Long and Singh, 2013). A
correct determination of the true dry and wet edges is thus critical, as 
it remains the main source of uncertainty in these approaches (Olioso 
et al., 2015).

In general, model boundaries are defined empirically from the im-
age information using linear regressions or theoretically using different 
energy balance models. The wet edge, for example, is not always easy 
to identify due to cloud pixels (Carlson et al., 1995), which can produce 
anomalously low values of temperature. In order to simplify the proce-
dure, the wet edge is generally identified by using the lowest observed 
clear pixel surface temperature in the image scene (Jiang and Islam, 
2001) or by directly using the air temperature (Zhang et al., 2008;
Liang et al., 2011) or the surface temperature of a water body (Zhang
et al., 2008) and/or a well-irrigated agricultural area (Carlson, 2007).
For the dry edge, most methods use scatterplots to fit it, which can 
lead in many cases to errors. Indeed, in some regions, a triangular 
(or trapezoidal) shape does not form well, so the dry edge cannot be 
easily identified. Second, the temperature of the observed dry edge is 
generally lower than that of the true dry edge (Liang et al., 2011).
Consequently, in some studies, such as Zhang et al. (2008) or Liang 
et al. (2011), the dry edge is identified using a surface energy balance 
method to define the true driest bare soil and the true driest full-cover 
vegetation. However, resolving the energy balance equation usually 
requires complex parameterization and additional meteorological mea-
surements, which constrain the generalization of the method and its 
operational applications (Carlson, 2007; Tang et al., 2010; Zhu et al., 
2020). A variety of empirical algorithms are proposed for contextual 
method users for dry edge identification. Jiang and Islam (2003) apply
a correction parameter to re-scale the EF and account for different 
water stress conditions at the dry edge: from 0 on bare soil to 1 on
full vegetation cover when root zone soil water is not stressed. This 
method provides satisfactory results when no water stress conditions 
in the root zone occur at the observed dry edge (Jiang and Islam, 
2003). In other studies, such as Tang et al. (2010), it is considered 
that when using satellite remote sensors, the dry edge (high LST
pixels) is easily identified compared to the wet edge in arid and semi-
arid regions. Therefore, in these regions, the observed dry edge from 
the satellite remote sensors can represent the true dry edge. The EF
is then determined using a water stress correction parameter (Jiang
and Islam, 2003). However, the surface temperatures at the observed 
wet edge may be higher than at the true wet edge, which can lead
therefore to EF overestimation. Thus, Tang et al. (2010) propose a
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method more adapted for arid and semi-arid climate regions to estimate 
the highest surface temperature at each fraction cover interval and
subsequently determine both the dry and wet edges. In the same 
context, a contextual method was applied efficiently in the Sahelian 
climate in Allies et al. (2020). In this study, the authors have used 
the EVASPA S-SEBI Sahel (E3S) algorithm adapted from the EVASPA 
tool (Gallego-Elvira et al., 2013) to obtain more reliable results in these 
semi-arid regions characterized by the alternation of a dry season and
a monsoon period. E3S is an approach that derives ET estimates from
a dynamic weighting scheme of ET estimates derived from several EF
methods used in previously cited studies. Indeed, it was proven in 
different studies, mainly for ET estimation, that it is usually better to
use an ensemble estimation than any single method in order to consider 
seasonal and climatic variations (Mueller et al., 2013; Ershadi et al.,
2014). However, methods should be weighted according to different 
sites and seasons in order to enable more realistic estimation. In Allies 
et al. (2020), method selection was performed using fixed dates for the 
wet, dry and transition season, without taking the actual hydric state of 
the surface into account. It also used an empirical approach to assign 
weights between methods based on the Leaf Area Index (LAI) time 
series during the transition season. Their study demonstrates that this 
approach consistently outperforms both non-ensemble and unweighted 
ensemble methods. However, their methodology relies on in-situ exper-
tise specific to their study area in Southwest Niger, West Africa. As a
result, it cannot be easily generalized to other regions without sufficient 
knowledge of local conditions, making application on other regions 
or at large scale challenging. To address this limitation, the authors 
propose weight allocation through objective statistical techniques, such 
as Bayesian Model Averaging (BMA). However, the frequent lack of 
ground ET measurements often limits the training of such statistical 
methods. The aim of this study is to develop a new method, based on
the same concept but offering more robust and generalized estimation 
of wet and dry situations regardless of prior local knowledge about 
precipitation regimes or vegetative state. This approach will aid in 
generating more accurate ET estimations with E3S adapted to the actual 
hydroclimatic conditions of the satellite acquisitions and in limiting the 
high uncertainty inherent to the determination of wet and dry edges in 
these situations.

The new approach is based on a sensitivity analysis of the EF with 
respect to the position of dry and wet edges in order to discriminate 
adequate EF calculation methods that should be used. The new E3S
version is tested in a Sahelian agropastoral area in central Senegal. The
objective of this work is therefore twofold: (1) Perform a homogeneity 
assessment (thermal contrast) regarding surface conditions in the same 
image, and (2) develop an automatic algorithm to select adequate 
empirical methods for the definition of dry and wet edges for each 
detected case.

2. Materials and methods

2.1. Study area

The study was conducted in a meso-site (140 × 140 km) region 
in Senegal, West Africa (13.78◦N to 15◦N; 15◦W to 17.09◦W; Fig. 
1(a)), referred to as ‘‘Senegal center’’ in the study. The site exten-
sion corresponds approximately to a Sentinel 2 tile size, which is a
good compromise to obtain sufficient heterogeneity and to satisfy the 
hypothesis of constant climatic behavior as well.

The region is characterized by a tropical semi-arid climate and by
the strong temporal and spatial variability of rainfall, with episodic 
droughts and frequent crop failures (Kizito et al., 2006). The climate 
is characterized by a rainy season that lasts from June to October 
and a dry season that lasts from November to May, as presented in 
the temperature/rainfall ratios graph (Fig.  2). The total annual rainfall
in this region is low and highly variable, with less rainfall mainly 
during the early part of the wet season (Roupsard et al., 2020). The
 

3 
annual rainfall average is about 585 mm per year over the 1991–2020
period according to in-situ measurements from Fatick station. The mean 
annual temperature oscillates around 27.7 ◦C and fluctuates between 
a maximum average of 35 ◦C in the month of May and a minimum 
of 15 ◦C in the month of January. Most of the area is covered by
agro-pastoral plots and Croplands (groundnut, millet, sorghum, cowpea 
and watermelon), mostly subsistence farming, as part of the Senegal 
Groundnut Basin (see Fig.  1(b)). Agroforestry is often practiced in this 
area, which also includes protected natural reserves (Thies and Ban-
dia). The study area is characterized by considerable ecosystemic and
hydrologic variability, mainly due to the presence of the Saloum Delta,
including mangrove forests. This latter induces different biodiversity 
dimensions and wide heterogeneous characteristics. The Faidherbia-
flux measurement site (Roupsard et al., 2020), in the Niakhar locality, 
referred to as ‘‘Niakhar’’ later in this study (Fig.  1(a)), provides two dif-
ferent instruments for flux measurement positioned at different heights 
(4.5 m and 20 m). Therefore, depending on the nearby vegetation type 
and height, mainly agroforestry plot with millet/groundnut rotation 
from the groundnut basin, different aerodynamic characteristics are
observed at this site.

2.2. EVASPA S-SEBI Sahel (E3S)

EVASPA S-SEBI Sahel (E3S) was developed by Allies et al. (2020)
as an adaptation for the Sahelian context. E3S is based on the S-SEBI 
contextual method (Roerink et al., 2000) and the EVapotranspiration 
Assessment from SPAce (EVASPA) tool (Gallego-Elvira et al., 2013).
In the S-SEBI and E3S models, dry and wet temperatures are retrieved 
according to albedo values (𝛼) using a scatterplot of the surface tem-
perature and albedo (Fig.  3). However, EVASPA generates an ensemble 
of ET estimates and the associated uncertainties from the combination 
of several methods for edge identification.

E3S involves 18 algorithms for wet and dry edge determination (see 
Table  3 in Annex). The EF estimation is computed based on the S-
SEBI model approach, assuming that the EF is the distance between 
the pixel (i), associated with the 𝛼𝑖 value and 𝐿𝑆𝑇𝑖 value (see Fig.  3),
and extreme temperature for wet (𝐿𝑆𝑇𝑤𝑒𝑡(𝛼𝑖)) and dry (𝐿𝑆𝑇𝑑𝑟𝑦(𝛼𝑖)) areas 
that are already defined (see Eq.  (1)). Consequently, the LE could be 
retrieved from the EF and available energy (AE), which corresponds 
to the difference between the net radiation (Rn) and ground heat 
flux (G) (see Eqs.  (2)–(4)). Eq.  (2) represents the portion of available 
energy allocated to evapotranspiration. Indeed, EF is an indicator of 
the partition of the available energy between sensible heat flux (H) or 
evapotranspiration, which is directly related to the water stress state 
and thus the LST variations. In Allies et al. (2020), MODIS data are
used as inputs for E3S. For this aim, Allies et al. (2020) use a cloud 
edge filtering step in the processing chain to avoid outlier pixels that 
could distort the surface temperature/albedo (LST-𝛼) scatterplot shape: 

𝐸𝐹𝐿𝑆𝑇𝑖 ,𝛼𝑖 =
𝐿𝑆𝑇𝑑𝑟𝑦(𝛼𝑖) − 𝐿𝑆𝑇𝑖

𝐿𝑆𝑇𝑑𝑟𝑦(𝛼𝑖) − 𝐿𝑆𝑇𝑤𝑒𝑡(𝛼𝑖)
, (1)

𝐿𝐸 = 𝐸𝐹 ∗ (𝑅𝑛 − 𝐺), (2)

𝑅𝑛 = 𝑅𝑔(1 − 𝛼) + 𝜖(𝑅𝑎 − 𝜎𝐿𝑆𝑇 4), (3)

where Rg is the incident short-wave solar radiation, 𝛼 is the surface 
albedo, 𝜖 is the emissivity of the surface, 𝑅𝑎 is the incident atmospheric 
radiation and 𝜎 is the Stefan–Boltzmann constant (5.67 10−8 W m−2

 k−4). 
𝐺 = 𝑅𝑛 ∗ (0.4 − (0.33 ∗ 𝑁𝐷𝑉 𝐼)), (4)

(Kustas and Norman, 1999) where NDVI is the normalized difference 
vegetation index.

In order to adapt to the Sahelian context, Allies et al. (2020) apply
a weighting scheme to identify appropriate EF methods, depending on
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Fig. 1. Study area and land-use data from Copernicus 2019.
 

 

 
 

 

 

 
 
 

 

 

 

 

Fig. 2. Maximal (red) and minimal (yellow) temperature and precipitation (blue) at 
Fatick (1991–2020). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 3. The relationship between the surface albedo, surface temperature and evapo-
rative fraction based on the S-SEBI method (Allies et al., 2020).

the stage of the seasonal cycle. In fact, the strong seasonality observed 
in the Sahelian region leads in many cases to a lack of dry and wet pix-
els in wet and dry seasons, respectively. This, in turn, leads to incorrect 
estimates of the dry and wet edges. To overcome this issue, Allies et al.
(2020) introduced additional edge determination algorithms denoted 
as ‘‘dry methods’’ and ‘‘wet methods’’ in the E3S model (see Fig.  4).
‘‘Dry methods’’ involve the determination of a theoretical wet edge
fixed at the minimal observed LST (𝐿𝑆𝑇 ). These methods are used 
𝑚𝑖𝑛

4 
in the dry season, when there is a lack of wet pixels within the image 
that can be used to determine the wet edge accurately. In a similar 
way, ‘‘wet methods’’ use a theoretical dry edge fixed at the maximal
observed LST (𝐿𝑆𝑇𝑚𝑎𝑥) in the wet season. During the transition period, 
which is between the end of the wet season and the beginning of the 
next dry season, the classical edge determination methods of EVASPA 
are also used given the simultaneous presence of sufficient dry and wet 
pixels during this period. In Allies et al. (2020), the MODIS LAI product 
was used as a weighting variable to distinguish between the different 
seasons. Indeed, the LAI is a reliable proxy for the surface water status.

2.3. Input data

• MODIS data: The model requires the LST and optical properties 
of the surface cover as inputs. Thus, we use remotely sensed 
data from the latest collection (6) of 1-km-resolution MODIS
TERRA/AQUA products, available at http://earthexplorer.usgs.
gov. The temporal 16-day composite series of the MODIS normal-
ized difference vegetation index (NDVI) (MOD13A2/MYD13A2
from the satellites TERRA and AQUA, respectively), daily LST,
surface emissivity (𝜖) and viewing angle (MOD11A1/MYD11A1
from TERRA and AQUA, respectively) and daily albedo (𝛼) series 
(MCD43A3) with a spatial resolution of 500 m are used. These 
data are acquired for our study period (2018–2021), at the res-
olution of the MODIS sensor of 1 km. Therefore, the temporal 
interpolation of NDVI data and the spatial aggregation of albedo
data are performed in order to obtain daily information corre-
sponding to the satellite overpass and the same spatial resolution.
Mostly, the TERRA product is used. The AQUA product is used for 
days when the TERRA product is not available.

• ERA5-Land meteorological data: ERA5-Land Muñoz-Sabater et al.
(2021) climate reanalysis data are used to provide hourly global 
radiation (Rg) and atmospheric radiation (Ra) time series at a
spatial resolution of 9 km to be used as inputs for E3S. ERA5-
Land is an enhanced global dataset for the land component of 
the fifth generation of European ReAnalysis (ERA5) data. Indeed, 
in comparison with previous ERA5 products, ERA5-Land involves 
several updates to support land monitoring applications, mainly 
by re-running its land surface scheme at a finer spatial resolution 
based on ERA5 forcing (from 31 km to 9 km) (Muñoz-Sabater 
et al., 2021). The key advantage of using ERA5-Land is the tempo-
ral consistency and the long and continuous period of availability 
of the data, from 1950 until now. Our meso-site (Fig.  1(a)) lies 
across several ERA5 grid cells.

http://earthexplorer.usgs.gov
http://earthexplorer.usgs.gov
http://earthexplorer.usgs.gov
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Fig. 4. LST-𝛼 scatterplot configuration during the dry season (a), the wet season (b) and the transition period (c) (Allies et al., 2020).
Fig. 5. Analysis flowchart.
 

 

 
 
 

 
 

 

 

 

 
 

 

2.4. Automatic edge selection method: E3S new version

E3S New version is based on Allies et al. (2020)’s adaptation for the 
weighting scheme and cloud edge filtering. Our purpose is to generalize 
the native E3S method in order to allow it to be used without prior 
knowledge of the study area characteristics and season allocation. For 
this aim, sensitivity analyses will be particularly useful to (1) evaluate 
the assumption of having sufficiently wet and dry pixels within the 
same image and (2) implement a systematic selection for adapted
methods of EF estimation for different cases (see Fig.  5).

2.4.1. Heterogeneity assessment
One of the most important hypothesis behind contextual methods 

is that the perceived LST heterogeneity covers the entire spectrum 
of water stress conditions, from fully dry to fully wet. In order to
measure LST dispersion, we have used the difference between the 
maximum and the minimum of the relative median absolute deviation 
(MAD). The MAD computes the deviation of scores from the overall
median (Eq.  (5)) to obtain the lowest and highest absolute distance to
be used as an estimation of the dispersion. This is widely used as a
robust measure of quantitative variable dispersion since it relies on the 
median to estimate the distribution center (Arachchige et al., 2022).
Hence, it does not rely on the assumption that the LST samples follow
a normal distribution. Besides, MAD is known to be more resilient 
to outliers (Chen and Liu, 2020), which makes it particularly useful 
for identifying the maximum contrast needed to satisfy the method’s 
assumption. Furthermore, the Relative MAD (MAD divided by the me-
dian) provides a scale-independent measure of dispersion rather than 
an absolute difference, making it suitable for comparing LST variability 
across different regions and time periods. A minimal relative MAD
threshold should ensure that the sufficient heterogeneity requirement 
of E3S is met. Its determination is described in Section 2.4.3: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑀𝐴𝐷 =
|𝑥𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛|

𝑚𝑒𝑑𝑖𝑎𝑛
. (5)
5 
2.4.2. Selection of adapted edge determination method
For each image, if the heterogeneity assumption is validated, we

have to detect the positioning of the LST-𝛼 point cloud regarding the 
limiting boundaries identified according to the different EF determi-
nation methods. This assessment is particularly useful for identifying 
specific situations, making it possible to characterize the point cloud’s 
behavior. For this aim, we calculated the derivative of the EF with 
respect to 𝐿𝑆𝑇𝑑𝑟𝑦, denoted ‘‘𝑑𝐸𝐹𝑑𝑟𝑦’’, and the derivative of the EF with 
respect to 𝐿𝑆𝑇𝑤𝑒𝑡, denoted ‘‘𝑑𝐸𝐹𝑤𝑒𝑡’’ (Eqs.  (6) and (7), respectively). 
Indeed, following Eqs.  (6) and (7), these derivatives tend toward zero 
when the distance to the considered edge increases. This method thus 
allows the detection of the general positioning of the point cloud with 
respect to the edges and the selection of adequate edge determination 
methods: 

𝑑𝐸𝐹𝑑𝑟𝑦 =
𝜕𝐸𝐹

𝜕𝐿𝑆𝑇𝑑𝑟𝑦
=

𝐿𝑆𝑇 − 𝐿𝑆𝑇𝑤𝑒𝑡

(𝐿𝑆𝑇𝑑𝑟𝑦 − 𝐿𝑆𝑇𝑤𝑒𝑡)2
, (6)

𝑑𝐸𝐹𝑤𝑒𝑡 =
𝜕𝐸𝐹

𝜕𝐿𝑆𝑇𝑤𝑒𝑡
=

𝐿𝑆𝑇𝑑𝑟𝑦 − 𝐿𝑆𝑇

(𝐿𝑆𝑇𝑑𝑟𝑦 − 𝐿𝑆𝑇𝑤𝑒𝑡)2
. (7)

A homogeneously dry situation is observed when there are more hot 
pixels than cold pixels; they are mainly stacked toward the dry edge, 
as observed in Fig.  4a. With EF methods adapted to dry situations, the 
points should also be far from the wet edge, that would be closer to 
the theoretical wet edge than with unsuitable methods. This situation 
is easily identified when ‘‘𝑑𝐸𝐹𝑤𝑒𝑡’’ for dry-adapted methods has a very
low value tending toward zero, with a simultaneously high value of 
‘‘𝑑𝐸𝐹𝑑𝑟𝑦’’ tending toward (1∕𝐿𝑆𝑇𝑑𝑟𝑦 − 𝐿𝑆𝑇𝑤𝑒𝑡). On the contrary, a
homogeneously wet situation is observed when 𝐿𝑆𝑇 − 𝛼 points are
mainly stacked up on the wet edge, as observed in Fig.  4b. Points should 
also be far from the dry edge with wet-adapted methods in this case. 
It can thus be identified with high ‘‘𝑑𝐸𝐹𝑤𝑒𝑡’’ values, tending toward 
(1∕𝐿𝑆𝑇𝑑𝑟𝑦−𝐿𝑆𝑇𝑤𝑒𝑡), and ‘‘𝑑𝐸𝐹𝑑𝑟𝑦’’ values tending toward zero for wet-
adapted methods. This difference of behavior between dry-adapted and
wet-adapted method regarding ‘‘𝑑𝐸𝐹 ’’ and ‘‘𝑑𝐸𝐹 ’’ should allow 
𝑑𝑟𝑦 𝑤𝑒𝑡
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Fig. 6. Spatial variability of LST average according to the season over the different expanding windows (presented from 1 to 11).
 

 

 

 
 
 
 

 

 
 

for an identification of dry and wet situations and select only the 
adapted methods. A sufficiently heterogeneous situation is identified 
when we obtain simultaneously high ‘‘𝑑𝐸𝐹𝑤𝑒𝑡’’ and ‘‘𝑑𝐸𝐹𝑑𝑟𝑦’’ values, 
indicating high variability around both dry and wet edges (see Fig.  4c).

2.4.3. Threshold definition
Thresholds must be determined (1) to evaluate the dispersion of the 

LST-𝛼 scatterplot and (2) to discriminate among the different situations, 
as shown in Fig.  4. For this aim, temporal and spatial analyses of our 
study area were used:

• Spatial analysis: Spatial analyses are performed using an expand-
ing window in order to sample the widest variety of thermal 
heterogeneity levels possible in the study area. The objective is 
to sample a rupture in heterogeneity levels, by taking advantage 
of local knowledge on the study area. Indeed, estimating disper-
sion measures across expanding windows, ranging from a very 
homogeneous sub-area to a highly heterogeneous one (see Fig. 
6), is particularly useful to identify the possible range of relative 
MAD values and set the threshold value just below the rupture 
of homogeneity. In this study, 14 sub-areas are defined using a
10 km increment in window size. The position and size of the 
windows is set to gradually increase the thermal heterogeneity 
level of the scene. The homogeneity rupture is then induced 
by the presence of wetlands, the Saloum delta, which provide 
sufficient thermal contrast for robust E3S estimates. From this, 
an adequate dispersion threshold to be used for heterogeneity 
assessment can be identified.

• Temporal analysis: The chronological variation of the derivatives 
of the EF (using non-exceedance frequency) is very informative 
for defining a specific behavior according to different water states 
and therefore for choosing thresholds to be used to identify the 
different situations mentioned in Section 2.4.2.

3. Results

3.1. Dispersion assessment

The dispersion coefficient (see Section 2.4.1) is computed according 
to different sub-areas and for different seasons during our study period 
(Fig.  7). The aim of this analysis is to identify which LST dispersion 
value best identifies sufficient surface heterogeneity. Overall, the dis-
persion coefficient calculated from the first expanding windows (from 
the 1st to the 8th sub-area, Fig.  6) presents a relatively steady variation 
6 
and lower values, not exceeding 2. However, beyond the 8th expanding
window, the dispersion coefficient increases sharply for the different 
seasons and reaches values greater than 2. This means that a high LST
dispersion is observed when the 8th expanding window is reached. 
The LST spatial variability observed in Fig.  6 strengthens our findings: 
The LST is observed with no significant variation using the first sub-
areas in the dry or wet season. However, some colder and hotter pixels
are observed in the 8th sub-area, respectively, in Figs.  6(a) and 6(b).
Mainly, the coldest pixels observed in the dry season are induced by
the presence of the Saloum Delta, and the hottest pixels are induced by
the farming area (Fig.  1(b)). These pixels are able to provide sufficient 
heterogeneity conditions in the scene. Consequently, for this study case, 
if the dispersion coefficient is greater than 2, it can be assumed that the 
LST dispersion is sufficiently heterogeneous, allowing the use of the E3S 
model (see Appendix  B.1 in the Annex).

3.2. Thresholds estimation for dry and wet situations detection

In order to accurately identify dry and wet situations observed in 
Fig.  4, 𝑑𝐸𝐹𝑑𝑟𝑦 and 𝑑𝐸𝐹𝑤𝑒𝑡 will be used as indicators to determine 
the general position of the 𝐿𝑆𝑇 − 𝛼 scatterplot with respect to the 
wet and dry edge positions. As explained in Section 2.4.2, dry-adapted 
and wet-adapted methods should have different behavior regarding 
these derivatives indicators in wet and dry situations. For this purpose, 
thresholds must be defined to distinguish the behavior of dry-adapted 
and wet-adapted EF methods in both dry and wet situations and select 
only the most suitable methods for the current situation. For that 
purpose, the cumulative distributions of 𝑑𝐸𝐹𝑑𝑟𝑦 and 𝑑𝐸𝐹𝑤𝑒𝑡 for all EF
methods across the entire image are analyzed in typical dry and wet 
situations. These distributions are presented in Fig.  8 for a typical day
from the dry season (March 9, 2018) (Figs.  8(a) and 8(b)) and for a
typical day from the wet season (September 19, 2018) (Figs.  8(c) and
8(d)). Lower derivative values mean that the distance between the point 
cloud and the considered edge is relevant. Adversely, higher derivative 
values mean that the points are mainly stacked toward the considered 
edge, and there is a higher rate of change around this edge. Overall, Fig. 
8 shows that 𝑑𝐸𝐹𝑑𝑟𝑦 and 𝑑𝐸𝐹𝑤𝑒𝑡 exhibit different behaviors depending 
on the type of method used for edge estimation (i.e. dry, wet or 
transition method, cf. Section 2.4.2) and the season. For the dry season, 
results show that 𝑑𝐸𝐹𝑑𝑟𝑦 (Fig.  8(a)) and 𝑑𝐸𝐹𝑤𝑒𝑡 (Fig.  8(b)) estimated 
from dry methods (black lines), i.e., using a theoretical wet edge in 
order to reach the coldest pixel in the image, display different behavior 
from dEF values estimated from other methods. On one hand, 80% of 
the 𝑑𝐸𝐹  values from adapted dry methods are very low (less than 
𝑤𝑒𝑡
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Fig. 7. LST dispersion according to expanding windows and seasons.
Table 1
Thresholds used to define the different 𝐿𝑆𝑇 − 𝛼 scatterplot configuration.
 𝑑𝐸𝐹𝑑𝑟𝑦 > 0.03 𝑑𝐸𝐹𝑑𝑟𝑦 < 0.03  
 adapted method for dry situation adapted method for wet situation 
 𝑑𝐸𝐹𝑤𝑒𝑡 < 0.01 Homogeneously dry situation  7  
 adapted method for dry situation  
 𝑑𝐸𝐹𝑤𝑒𝑡 > 0.055  7 Homogeneously wet situation  
 adapted method for wet situation  
 

 

 
 

 
 

 

 

 

 
 

 

 
 

 

 

 
 

 
 
 

 

0.01), which indicates a large distance to the wet edge (Fig.  8(b)).
On the other hand, 50% of the 𝑑𝐸𝐹𝑑𝑟𝑦 values, also from dry methods, 
present higher values, greater than 0.03, which highlights the shorter 
distance to the dry edge (Fig.  8(a)). This situation could be identified as
a ‘‘homogeneously dry situation’’, as explained in Section 2.4.2; 𝑑𝐸𝐹𝑤𝑒𝑡
presents very low values tending toward zero, with simultaneously 
higher values of 𝑑𝐸𝐹𝑑𝑟𝑦. However, 50% of the 𝑑𝐸𝐹𝑤𝑒𝑡 and 𝑑𝐸𝐹𝑑𝑟𝑦
values obtained using other methods present higher values exceeding 
0.05 in almost all cases, which hints at a well-scattered 𝐿𝑆𝑇 − 𝛼
scatterplot between the two estimated limiting edges, meaning that 
the edges are closer to each other than they should be theoretically. 
It indicates a typical dry situation, as shown in Fig.  4a, where dry
methods and other methods have a significantly different wet edge
position. Similarly, for the wet season, 𝑑𝐸𝐹𝑑𝑟𝑦 (Fig.  8(c)) and 𝑑𝐸𝐹𝑤𝑒𝑡
(Fig.  8(d)) estimated from wet methods (orange lines), i.e., using a
theoretical dry edge in order to reach the hottest pixel in the image,
indicates a significantly different position of the wet edge than other 
methods, showing a typical wet situation, as shown in Fig.  4b. Indeed,
50% of 𝑑𝐸𝐹𝑑𝑟𝑦 values obtained using wet methods present lower values 
not exceeding 0.03, which indicates a great distance to the dry edge
(Fig.  8(c)). Meanwhile, 50% of 𝑑𝐸𝐹𝑤𝑒𝑡 values show higher values, 
greater than 0.055 (Fig.  8(d)). This situation could be identified as a
‘‘homogeneously wet situation’’ (see Section 2.4.2), with high 𝑑𝐸𝐹𝑤𝑒𝑡
values and 𝑑𝐸𝐹𝑑𝑟𝑦 tending toward zero. Based on these findings, in this 
work, we can use the already identified thresholds for these typical days
from the dry and wet seasons, mentioned also in Table  1, in order to
define the different situations shown in Fig.  4. More results to validate 
the thresholds values identified are observed in the Annex (Appendix
B.2).

3.3. EF method selection

3.3.1. Simulation before and after method selection
In what follows, ‘‘ALL’’ and ‘‘E3S-V2’’ refer, respectively, to the 

ET simulations using E3S with all the available methods and the 
new version of E3S with the suggested automatic method selection.
‘‘‘Obs’’ refers to in-situ measurements at the Niakhar flux station. ‘‘Obs’’
are presented using an envelope corresponding to the minimal and
maximal values of the two eddy-covariance instruments (Fig.  9), while
the central value is their mean. The use of observation values derived
 

7 
from two different gauging station is helpful to provide a realistic 
representation of MODIS pixel. Indeed, using only the lowest station 
for example, does not include the trees that characterize the observed 
ecosystem. Error bars using the 25th, 50th and 75th percentile values 
of‘‘ALL’’ and ‘‘E3S-V2’’ are used to express the related uncertainties.

Overall, in Fig.  9, the ‘‘ALL’’ simulations overestimate ET compared 
to ‘‘Obs’’ during the dry season and underestimate it during the wet 
season (Fig.  9). However, using only selected methods, provided by
the ‘‘E3S-V2’’ simulations, leads to the correction of both the overes-
timation and underestimation and minimizes the dispersion initially 
observed in the ‘‘ALL’’ simulations. Consequently, uncertainty linked to 
the method ensemble is considerably reduced, providing ET estimation 
that follows the ground truth estimates more closely. In the wet season, 
few data are available for ET estimation due to the presence of clouds. 
Nevertheless, on some days, where data are available, the method 
selection step succeeded in improving the ET estimation. On the other 
hand, at the beginning of the transition period, when the 𝐿𝑆𝑇 − 𝛼
scatterplot did not identify a ‘‘homogeneously dry situation’’ or a
‘‘homogeneously wet situation’’, all the EF methods correctly reproduce
‘‘Obs’’. However, at the end of the transition season, when vegetation 
is sparser and the number of wet pixels decreases, the ‘‘E3S-V2’’ sim-
ulations underestimate ET compared to the ‘‘Obs’’ mean but remain 
within the measurement interval. Indeed, the selection algorithm tends 
to select methods adapted for the dry season during this period.

In order to analyze the spatial patterns of ET, maps of the seasonal 
ET average corresponding to the ‘‘ALL’’ and ‘‘E3S-V2’’ simulations are
presented in Fig.  10. Figs.  10(a) and 10(b) show estimates for dry
seasons observed during the whole study period, while Figs.  10(d) and
10(e) show estimates for wet seasons. Figs.  10(c) and 10(f) show the 
difference between ‘‘ALL’’ and ‘‘E3S-V2’’ in both cases. The results 
for the dry season show that ET values from the ‘‘ALL’’ simulations 
are overestimated compared to those of ‘‘E3S-V2’’. Fig.  10(c) shows 
positive differences all over the study area. Moreover, differences are
more pronounced in the coastal region, around the Saloum Delta and
in some cultivated zones. Indeed, these regions have the coldest pixels,
with relatively low temperature values (see Fig.  6(a)). As the true wet 
edge cannot be identified correctly with methods unsuitable for the dry
season, the ‘‘ALL’’ simulations include overestimated wet edges. Con-
sequently, the EF will be significantly overestimated, leading to higher 
ET rates, with differences exceeding 1 mm d−1. Smaller differences are
 



N. Farhani et al. Science of Remote Sensing 11 (2025) 100229 
Fig. 8. Empirical cumulative density functions of 𝑑𝐸𝐹𝑑𝑟𝑦 and 𝑑𝐸𝐹𝑤𝑒𝑡 for typical dry and wet days (March 7, 2018, and September 19, 2018, respectively).  (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)
 

 

 

 

 

 

 

 
 

 

 
 

found in crop ecosystems, which have higher temperatures due to the 
presence of bare soil. Indeed, EF estimations for drier points are less 
sensitive to the position of the wet edge (Eq.  (7)), leading to smaller
differences in ET.

Conversely, the results for the wet season show that the ‘‘ALL’’
simulations have slightly lower values than the ‘‘E3S-V2’’ simulations 
on average. Unlike the dry season, the spatial patterns of the differ-
ences (Fig.  10(f)) are more homogeneous, with a relatively constant 
difference of around 0.5 mm d−1. Differences are more visible in the 
southeast part of the study area, with more intensive crop management 
and forests. Lower differences are found for the coldest pixels, as their 
EF is less sensitive to the estimation of the dry edge (see Eq.  (6)).
Few zones yield higher differences (around 0.5 mm d−1) for the hottest 
pixels, which are more sensitive to dry edge estimation.

3.3.2. Comparison with reference products
Comparisons with the native version of E3S used in Allies et al.

(2020) show that the E3S-V2 have conserved the initial performance 
observed in the original version. Fig.  11(b) shows that E3S-V2 and the 
native version have a similar variation when compared to simulations 
with the mean ET from observations, mainly in the dry season. Because 
of the use of thermal infrared information, the available data derived
from model simulations in the wet season are insufficient for compar-
ison. However, during the transition season, simulations from E3S-V2 
follow the observations more closely, while ET from the native version 
shows underestimation. Fig.  11(a) strengthens our findings; the E3S-V2 
and native E3S simulations show high performances in comparison with 
ET derived from measurements, with R-squared values exceeding 0.6
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and relatively low RMSE values. Moreover, simulations from E3S-V2 
fit the observations more closely, with a higher 𝑅2 value (around 0.74)
and a lower RMSE value (around 0.47 mm d−1) compared to the native 
version of E3S, which presents a lower 𝑅2 (around 0.64) and an RMSE
value of about 0.64 mm d−1. The E3S-V2 is not only able to conserve 
the performance observed initially using the native version of E3S but 
also reproduces the observations better.

Fig.  12 shows the comparison between E3S-V2 simulations with ET
values derived from other ET products, retrieved for the Niakhar pixel, 
presenting good performances in the African continent and mainly in 
the Sahel region (Trambauer et al., 2014; Etchanchu et al., 2025):
the ERA5-Land and GLEAM products (see Annex A.1). Overall, ET
values from the different products show comparable performances. 
The ET time series from ERA5-Land show lower values mainly in the 
dry season, in comparison with ET from Gleam product and ‘‘E3S-V2’’
simulation. The two latter present mainly similar temporal variations 
at local scale. This could explains the higher correlation value obtained 
at mesoscale (Table  2), around 0.73, between ‘‘E3S-V2’’ and Gleam
product. However, lower 𝑅2 value, around 0.63, is observed between
‘‘E3S-V2’’ and ERA5 Land product (Table  2). Nevertheless, comparisons 
at mesoscale in Fig.  13, show more differences between ‘‘E3S-V2’’
and Gleam product (Fig.  13(a)), inducing relatively higher bias and
RMSE values, around 0.3 and 0.43 mm d−1 respectively (Table  2).
Higher differences are also observed between ‘‘E3S-V2’’ and ERA5 Land 
product, mainly for some lower values (Fig.  13(b)), which leads to 
higher bias and RMSE values around 0.43 and 0.64 mm d−1 respectively 
(see Table  2).

A spatial analysis is carried out to compare ET estimates from
‘‘E3S-V2’’ with ET values from other models (the native version, the 
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Fig. 9. Comparison of LE simulations using ‘‘ALL’’ and ‘‘E3S-V2’’, with the LE from ‘‘Obs’’, using different in-situ measurements at the Niakhar station pixel. 

Fig. 10. ET seasonal average data using ‘‘ALL’’ and ‘‘E3S-V2’’ simulations during the wet and dry seasons over the whole of the study period.
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Fig. 11. Comparison of ET (mm/day) from ‘‘E3S-V2’’ simulations with ET from the native E3S method (Allies et al., 2020) and the mean ET from observations (a, b) at locale 
scale (Niakhar pixel).
Fig. 12. Temporal variation of ET from ‘‘E3S-V2’’ and reference ET products in the study area: Gleam and ERA5 Land, retrieved for the Niakhar pixel.
Fig. 13. Comparison of mean ET (mm/day) over the area between ‘‘E3S-V2’’ simulations and reference ET products in the study area: Gleam and ERA5 Land.
 

 

Table 2
Statistical indicators (Bias, 𝑅2 and RMSE) on mean ET temporal series over the entire 
rea between ‘‘E3S-V2’’ simulations and the different ET products used for comparison: 
leam and ERA5 Land.

 E3S-V2/Gleam E3S-V2/ERA5 Land 
 Bias (mm d−1) 0.3 0.43  
 𝑅2 0.73 0.63  
 RMSE (mm d−1) 0.43 0.64  

ERA5-Land and GLEAM products). Firstly, an up-scaling procedure is 
performed in order to be able to compare these different products 
(see in Annex, Appendix  A.3). Secondly, the 𝑅2, RMSE and bias scores 
between each ET product and ET from E3S-V2 are computed for each 
10 
pixel and presented in Fig.  14 for the whole study period. The native 
version and E3S-V2 simulation, which have the same spatial resolution 
(kilometric scale), provide closer estimates over the whole study area.
Indeed, they have higher correlation, with an 𝑅2 value around 0.7 over 
almost the whole study area (see Fig.  14(a)). Moreover, Figs.  14(d) and
14(g) show very low RMSE and bias scores, about 0.5 and −0.5 respec-
tively in almost all the study area. However, differences become more 
accentuated around the Saloum Delta and coastal pixels, exceeding 
3 mm d−1 of RMSE and −3 mm of bias value. This means that ET values 
from E3S native version, under-estimate ET values provided from E3S-
V2 in these regions. The comparison with ERA5-Land product, available 
at a lower resolution than E3S-V2, shows more heterogeneous correla-
tion values (Fig.  14(b)). In fact, very low 𝑅2 scores, lower than 0.4, are
observed in wetland regions and also in the North-West of the study 
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Fig. 14. Statistical indicators (Bias, R2 and RMSE) data calculated using simulated ET from E3S-V2 and ET derived from different products: ERA5-Land, GLEAM and E3S native 
version, at spatial scale. Niakhar station is located in the data.
 

 

 
 

 

 

area. Higher 𝑅2 scores are observed in cultural regions. Nevertheless,
the RMSE and bias data indicate more homogeneous difference values, 
nearly 0.5 mm d−1 over the whole study zone. Larger differences are
observed in coastal pixels and mainly in wetland areas, exceeding, 
for some pixels, 2 mm d−1. These differences could explain therefore 
low RMSE and bias values performed at meso-scale and presented in 
Table  2. Comparisons with the GLEAM products, which have the lower 
spatial resolution, show mainly similar performances than ERA5 Land
at spatial scale. However, better correlation values than ERA5-land are
observed when using Gleam product, which consolidates the mesoscale 
𝑅2 value observed in Table  2. Nevertheless, Figs.  14(f) and 14(i) show 
the lower RMSE and bias values calculated in wetland areas, with 
differences of around 1 mm d−1 only. This means that E3S-V2 have 
similar performances as Gleam product in wetland regions, which are
the more challenging zones to estimate.
11 
4. Discussion

The results of our work show the potential of the proposed method 
to enhance the accuracy of ET estimation during the study period. 
Indeed, the seasonality is well represented, with low evapotranspiration 
during dry periods, high rates of evapotranspiration in the wet season 
and variable rates that decrease gradually during the transition season. 
Moreover, we have succeeded in significantly reducing the structural 
uncertainties observed initially, i.e., before the method selection. Sim-
ulations are compared with observations provided from two different 
gauging stations installed at our flux site. ET measurements show 
a noticeable difference between both instruments (Fig.  9), explained
by their different measurement height. This latter involves different 
footprint size, inducing different land use. This variability seems to 
be representative of MODIS pixel mainly in transition period, where 
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vegetation presents higher evolution dynamic. Indeed, ET from ‘‘E3S-
V2’’ is almost always within the observation envelope presenting the 
higher and the lower ET measurement (Fig.  9).

The aim of this work is to generalize the native version of E3S 
based mainly on local knowledge of the study area. The comparison 
with the native version shows that the new proposed method conserved 
the performance of the initial version of E3S, especially in the dry
and wet seasons. However, in the transition season, the new method 
outperforms the initial version without using additional information. 
Indeed, the native E3S version uses a weighting scheme over the 
transition period, depending on the water availability, represented by
the vegetation canopy structure (LAI). The aim of this approach is 
to reproduce the theoretical gradually evolving surface state in order 
to choose appropriate EF methods according to the vegetation cycle. 
However, the vegetation information almost always provides a delayed
response to the surface hydric state. Since the EF method selection 
proposed in this work is based only on instantaneous information 
derived from thermal and land surface properties, it accounts better for 
the actual water availability. Moreover, the use of information provided
only from 𝐿𝑆𝑇 −𝛼 makes the approach applicable even in areas where 
there is no well-defined rainy season, without the need for prior local
information. The method used for EF selection in the native version of 
E3S could be the reason for the systematic underestimation observed in 
the transition period (see Fig.  11(b)). This could as well, explains the 
high RMSE and bias values observed in wetland areas in comparison 
with E3S-V2 simulations at spatial scale (see Figs.  14(d) and 14(g)).

E3S-V2 has a good agreement at local scale compared with other 
products known as a reference in our study area (GLEAM and ERA5-
Land) (Allies et al., 2020; Etchanchu et al., 2025). However, compar-
isons at mesoscale, show more discrepancies between E3S-V2 and ET
from other products, inducing relatively high RMSE and bias values. 
According to spatial representation of statistical scores in Fig.  14, these 
differences occur mainly in wetland, North-West and coastal regions. 
Indeed, in the north-west of the study area, lower surface temperature 
values than the rest of the area during the dry season and higher 
temperature values in the wet season are observed in Fig.  6. This fact is 
potentially related to topographic effects inducing shallower soil depth. 
This leads in turn to lower water storage in the soil and therefore 
to drier areas in wet season. In dry season, the higher altitude could
make this area colder. However, Gleam and ERA5 Land ET products 
were unable to detect this specific behavior, unlike E3S-V2, that pro-
vides higher and lower ET rates respectively in dry and wet season 
in this region (figures not shown). This explains consequently lower 
correlation observed in Figs.  14(b) and 14(c) in the north-west region. 
Differences in ET estimation using these different models might be 
related to their different spatial resolution. Therefore, higher resolution 
data (kilometric scale for our case) provide more accurate estimations 
at spatial scale. Nevertheless, Gleam product presents comparable ET
estimation to E3S-V2 in wetland region unlike ERA5 Land product. This 
could be related to the use of a different land surface model for ET
estimation in the ERA5-Land, which is unable to account for the water 
supply from processes other than precipitation. On the contrary, ET
from E3S-V2 and Gleam product are more correlated since they rely 
on remote observations to describe the surface states e.g., moisture 
content or surface temperature for more realistic ET estimation. More-
over, such models may estimate fluxes using methods that need much 
less knowledge of soil and vegetation characteristics than ERA5-Land.
Finally, small discrepancies observed in coastal regions are explained
by the low spatial resolution of GLEAM and ERA5 Land in comparison 
with the MODIS products used as inputs for the E3S model.

Uncertainties are induced mainly by the EF method selection (Olioso
et al., 2023; Mwangi et al., 2024) when the limiting edges are over-
estimated or underestimated. This is particularly highlighted for ET
data estimation in Fig.  10. In fact, an insufficient number of cold 
pixels, for instance, in homogeneously dry situations, is problematic 
for correct wet edge estimation. Similarly, an insufficient number of 
12 
hot pixels in a homogeneously wet situation induces the incorrect 
estimation of the dry edge. Moreover, some consistent EF method 
estimates are based on quantiles, which leads to the removal of extreme
‘‘𝑐𝑜𝑙𝑑∕ℎ𝑜𝑡’’ values and the loss of useful contrasting information that 
in reality satisfies the contextual models’ assumptions. Consequently, 
it is crucial to identify the specific scenes that require adapted EF
calculation methods. For this aim, ‘‘𝑑𝐸𝐹𝑑𝑟𝑦’’ and ‘‘𝑑𝐸𝐹𝑤𝑒𝑡’’ are found 
to be powerful indicators that can be used to discriminate among these 
different situations. Furthermore, one of the key advantages of using 
the derivative as an indicator is its independence from LST absolute 
values, which can vary significantly depending on climatic condi-
tions. Indeed, ‘‘𝑑𝐸𝐹𝑑𝑟𝑦’’ and ‘‘𝑑𝐸𝐹𝑤𝑒𝑡’’ characterize relative changes 
based only on the distance observed to the limiting boundaries, rather 
than the absolute temperature positioning. This property makes it a
valuable tool for identifying the sensitivity to the dry or cold edges 
estimations, and therefore for identifying heterogeneity condition in 
each case. Consequently, this method can also be consistent across 
various climatic contexts, including warm arid environments, as well
as temperate and tropical zones. However, it may not be effective in 
boreal climates throughout the year. Indeed, at very low LST values, 
the thermal state is no longer driven by soil moisture conditions but 
rather by phase changes (freezing and thawing). In addition, in these 
regions, very low solar radiation and surface energy exchanges do 
not generate sufficient surface contrast to satisfy the model’s assump-
tion. The method’s assumption is based as well on the assessment of 
heterogeneity through LST dispersion measurement. A relative metric 
was used for this purpose, which also contributes to the method’s 
generalization. By providing a scale-independent measurement, the 
relative MAD is not affected by the absolute range of temperatures, 
allowing for comparisons across various regions or time periods, in-
cluding different seasons or climatic contexts. The relative MAD, along 
with the indicators 𝑑𝐸𝐹𝑑𝑟𝑦 and 𝑑𝐸𝐹𝑤𝑒𝑡 plays complementary roles in 
addressing the method’s assumptions. While relative MAD confirms the 
method’s feasibility, ensuring that at least one of the EF method groups 
works, the derivative values help to discard ineffective methods. This 
two-step approach enhances the robustness of the overall methodology, 
providing both reliability and applicability across different climatic and
environmental conditions.

However, the use of these indicators includes the definition of 
thresholds to manage heterogeneity levels or identify situations. This 
means that the method is mainly dependent on the efficiency of the 
thresholds. In this study, the thresholds were calibrated on a single flux
measurement site, in an area characterized by a high level of land cover 
heterogeneity and also by pronounced seasonal pattern. Results show 
that seasonality is successfully reproduced based on a good recognition 
of different situations. Nevertheless, since the method relies on thresh-
old determination, it is never completely free from threshold effects, 
i.e., thresholds act as a tipping point mainly in transition periods, 
which can sometimes lead to confusion in the situation’s identification. 
Indeed, some confusions are observed, mainly between the wet and
transition periods or between the transition and dry periods (see Fig. 
9). However, as shown in Fig.  9, the number of days with confusion is 
very small compared to the total number of days in the corresponding 
season. Furthermore, if confusion occurs between two situations, it 
means that they produce fairly similar estimates, so the impact on
evapotranspiration estimation is not that significant. The efficiency of 
the method is thus much greater than the confusions it causes. Never-
theless, the defined thresholds may not be applicable across all areas. 
Therefore, a calibration phase is required, especially if the method 
is applied in a study area with different climatic and heterogeneity 
characteristics. For fine local scale applications, thresholds should be 
recalibrated according to the eco-climatic zone. However, for a global 
application, a more refined strategy may be needed to estimate gener-
alized thresholds on a larger geographic scale. Generalized thresholds 
should then be calibrated using a large set of flux towers (i.e., Fluxnet). 
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However, this generalization may come at the expense of ET estimation 
accuracy on specific sites.

The use of high thermal spatial resolution data in our study area
will enable better surface heterogeneity estimation, which will help
detect more thermal contrast in the image. In this case, the threshold 
defined for dispersion assessment, set at 2 for this study, could remain
the same, as the relative MAD, as explained above, is not influenced 
by the absolute temperature range. It is only expected that relative 
MAD should be less frequently lower than the threshold. Secondly, dry
and wet edges can be more easily identified when using satellite data
with higher spatial resolution. The different EF estimation methods 
will likely produce very similar results, making method selection less 
significant in this case. For this reason, contextual methods are known 
to be more adapted with high spatial resolution data.

While the EF methods’ selection algorithm proposed in this study 
appears to be very relevant with the S-SEBI contextual model, it also 
seems promising to improve other contextual models, such as the 
LST-VI triangle methods. Adapting the selection algorithm to these 
triangle methods will probably need a recalibration of the selection 
thresholds, particularly on 𝑑𝐸𝐹𝑑𝑟𝑦 and 𝑑𝐸𝐹𝑤𝑒𝑡. It would then allow
for a reduction of the structural uncertainty in ensemble contextual 
methods, such as the full EVASPA tool (Gallego-Elvira et al., 2013), and
bring more robust ET estimations in almost every climatic conditions. 
Indeed, EF method selection represents the major source of uncertainty 
in all contextual methods (Olioso et al., 2023; Mwangi et al., 2024).
Nevertheless, uncertainties are also induced by the inputs used to
constrain the model.  Olioso et al. (2023), Mwangi et al. (2024) show 
that contextual models are very sensitive to the global radiation and
atmospheric radiation used for Rn and subsurface soil heat flux (G)
estimation. The Rn and G components are computed independently 
from EF estimation. Therefore, accumulated uncertainties from these 
different variables (Rn, G and EF) could produce additional errors. The
analysis performed in this work is impacted by missing information 
during the whole wet season. Indeed, satellite acquisition is constrained 
by the presence of clouds. This represents a limiting factor in our study 
area, which is characterized by a strong seasonal climatic contrast, with 
the alternation of a dry season and a monsoon period. In other semi-arid 
climatic contexts, this problem could be less important since the rainy
season is shorter and irregular (Allies et al., 2020). To derive seasonal 
evapotranspiration, the gaps between satellite acquisitions need to be 
filled in order to reconstruct days with missing ET data (Allies et al., 
2022; Delogu et al., 2021).

5. Conclusions

The present study introduces an innovative approach for the auto-
matic selection of adapted methods for EF estimation using an ensemble 
contextual energy balance model called E3S (Allies et al., 2020). The
latter relies on a heterogeneity assumption in order to compute reliable
EF estimates, and therefore, it relies on an accurate estimation of 
evapotranspiration rates. In Allies et al. (2020), EF estimation involves 
a solid understanding of the study area in order to select an appropriate 
method to use according to the season. This study proposes generalizing 
and facilitating the application of the approach proposed in Allies 
et al. (2020) by using a heterogeneity assessment based only on image 
information. The derivative of the EF with respect to 𝐿𝑆𝑇𝑑𝑟𝑦 and the 
derivative of the EF with respect to 𝐿𝑆𝑇𝑤𝑒𝑡, denoted ‘‘𝑑𝐸𝐹𝑑𝑟𝑦’’ and
‘‘𝑑𝐸𝐹𝑤𝑒𝑡’’, respectively, were calculated to identify the positioning of 
𝐿𝑆𝑇 −𝛼 regarding the wet and dry edges. Consequently, adapted meth-
ods for each situation could be identified independently from seasonal 
or any other additional information. The proposed method succeeded 
in reducing the structural uncertainties related to EF method selection 
significantly. Hence, it tackled the major source of errors in contextual 
methods. These latter are selected to be used for TRISHNA mission 
(CNES/ISRO) (Lagouarde et al., 2018) ET estimation, since they use 
a reduced number of inputs and have fewer uncertainty sources than 
13 
single pixel methods. E3S-V2 method could be also a good candidate 
algorithm for TRISHNA ET product.

E3S-V2 method was evaluated in this work using kilometric satellite 
data from MODIS. Although the resolution might be too low to provide 
sufficient thermal contrast in specific conditions, MODIS high temporal 
resolution is very useful for the method implementation and evaluation. 
Thermal information from higher-resolution data is expected to further 
improve ET simulation by capturing more heterogeneity in satellite 
images. Upcoming thermal Earth observation missions like TRISHNA, 
LSTM (ESA, Koetz et al. (2019)) or SBG (NASA, Cawse-Nicholson et al.
(2021)) could lead to more accurate estimates of the surface water 
deficit in semi-arid areas using this method.
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Fig. 15. Temporal variation of the dispersion coefficient calculated from expanding windows 2 and 14.
 

 

 

 

 

 

 

 

 

 
 
 

 
 

 

 

 

 

 

Appendix A. Method evaluation

A.1. Data for comparison

In order to evaluate ‘‘E3S-V2’’, in-situ measurements and spatially
distributed variables other than inputs are also used for this purpose.

• In-situ measurements: Niakhar station (14.4958◦N, 16.4536◦W),
installed in 2018 by the IESOL Mixed International Laboratory
(Roupsard et al., 2020), provides half-hourly observations of the 
climate evolution. The flux site provides observations on a typical
cropland under acacia trees (Faidherbia albida). The instrumen-
tation includes two eddy-covariance measurements at different 
heights (at 4.5 m and 20 m), in order to monitor the entire 
agroforestery plot and the underlying crop only. This gauging 
station estimates the energy and carbon turbulent fluxes using a
LI-COR LI-7500 gas analyzer combined with a GILL WindMaster 
3D sonic anemometer. Convective fluxes exchanged between the 
surface and the atmosphere, the net radiation and the soil heat 
flux are collected using different instruments at different levels 
and used as the ground truth for the assessment of the E3S-
V2 simulations. For comparison purposes, we have computed 
daily ET estimation from gap-filled LE measurements provided
initially at sub-daily scale. The gap-filling is performed using the 
REddyProc R package (Wutzler et al., 2018). This method is based
on relating meteorological variables to ET on available periods in 
order to define different meteorological classes. These latter are
then used to gap-fill ET series with the corresponding ET mean.

• ET product from the GLEAM dataset: The global ET product from
the Global Land Evaporation Amsterdam Model (GLEAM) (Mi-
ralles et al., 2011), developed by the VU University of Amsterdam, 
is available at a daily scale and at 0.25◦ of spatial resolution, and
it is used in our work for mesoscale comparison with ET E3S-
V2 simulations. Indeed, the GLEAM product has been deemed
a good reference for the African continent and in the Sahel
region (Trambauer et al., 2014). Moreover, in Etchanchu et al.
(2025), this product showed the best performance in comparison 
with other available daily RS-ET products in semi-arid African 
areas and at the regional scale. GLEAM products use a range 
of independent remotely sensed observations to estimate daily
actual evapotranspiration based on the Priestley and Taylor (PT)
evaporation formula in combination with an evaporative stress 
module derived from soil moisture (Moctar et al., 2020) and the 
Gash analytical model of rainfall interception (Miralles et al.,
2011) in order to derive actual evaporation.
14 
• ET product from ERA5-Land: The ET product provided by ERA5-
Land was also used for a mesoscale comparison with E3S-V2 
simulations, since it showed a high performance in our study area
according to Etchanchu et al. (2025). Similarly to the meteoro-
logical products, the ET product is available at a 9 km spatial 
resolution and at a daily temporal scale. ET is computed using 
atmospheric forcing data from ERA5 and soil and vegetation 
parameters (Muñoz-Sabater et al., 2021) in order to solve the 
energy–water balance along a soil–plant–atmosphere interface 
with the H-TESSEL model (Balsamo et al., 2009).

• LAI data: We used the four-day LAI from the Combined MODIS
data (MCD15A3). This variable is used to simulate the initial E3S 
version as a dynamic weighting scheme of ET estimates derived 
from several EF methods.

A.2. Daily ET from instantaneous latent heat flux

For more interpretable hydrological estimates, ‘‘E3S-V2’’ method 
is evaluated and compared to other ET products, using daily ET es-
timates rather than instantaneous estimates. Daily ET estimates are
extrapolated from instantaneous estimations (LE) to reconstruct hourly 
variations using global radiation (Rg) data. Indeed, ET is assumed to 
follow the same diurnal variation as the incoming global solar radiation 
(Rg) on clear days (Delogu et al., 2012). Then, based on the ‘‘self-
preservation’’ hypothesis, which assumes that the ratio LE/Rg remains 
fairly constant during daytime (Lhomme and Elguero, 1999; Delogu 
et al., 2012), daily ET can be simply derived from the daily ETd/Rgd 
ratio and the instantaneous estimate of LE and Rg at the time of the 
satellite overpass (see Eq.  (8)). 

𝐸𝑇𝑑 = 1
𝜆
𝑅𝑔𝑑 ∗ 𝐿𝐸

𝑅𝑔𝑡
, (8)

where 𝐸𝑇𝑑 is the daily evapotranspiration, usually expressed in mm 
d−1, and 𝑅𝑔𝑑 is the cumulative daily global incoming solar radiation. 
The LE and 𝑅𝑔𝑡 are estimates of these components at the time of the 
satellite overpass (t), and 𝜆 is the latent heat.

A.3. Data aggregation

An up-scaling (data aggregation) procedure is needed to fill the 
scale gap between the simulations from MODIS (E3S-V2) and the other 
gridded products used for comparison. ET data from GLEAM and ERA5-
Land, which are available at a lower spatial resolution, can then be 
compared to up-scaled (aggregated) simulations derived from MODIS
products, available initially at the kilometric scale. A simple averaging 
approach is used for this work; it is often used for data aggregation 
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Table 3
Methods of LST-albedo edge determination in E3S.
 Method 
name

Domain division Dry edge calculation Wet edge calculation Method type Reference  

 EF1
20 intervals of same pixel density

Linear regression obtained from 
points corresponding to the 
median of the 5% highest LST 
values for each interval

Linear regression obtained from 
points corresponding to the 
median of the 5% highest LST 
values for each interval

‘‘Mixed method’’ Gallego-Elvira 
et al. (2013)

 

 EF8 𝐿𝑆𝑇𝑚𝑖𝑛 ‘‘Dry method’’  
 EF12 𝐿𝑆𝑇𝑚𝑎𝑥 EF1 ‘‘Wet method’’  
 EF2 Removal of LST values with 

lowest probability distribution. 
LST-albedo domain is divided into 
20 intervals of the same pixel 
density

Linear regression obtained from 
points corresponding to the 
maximum LST value and albedo 
median for each interval

Linear regression obtained from 
points corresponding to the 
minimum LST value and albedo 
median for each interval

‘‘Mixed method’’ Gallego-Elvira 
et al. (2013), 
adapted from 
Tang et al. 
(2010)

 

EF9 𝐿𝑆𝑇𝑚𝑖𝑛 ‘‘Dry method’’  
 EF13 𝐿𝑆𝑇𝑚𝑎𝑥 ‘‘Wet method’’  
 EF4 N intervals of 0.05 albedo value 

between 0.05 and the first 
multiple greater than the 
observed maximum albedo value

Linear regression obtained from 
points corresponding to an 
exceedance frequency of 97.5% of 
LST values and albedo median

Linear regression obtained from 
points corresponding to an 
exceedance frequency of 2.5% of 
LST values and albedo median

‘‘Mixed method’’ Gallego-Elvira 
et al. (2013)

 

 EF10 𝐿𝑆𝑇𝑚𝑖𝑛 ‘‘Dry method’’  
 EF16 𝐿𝑆𝑇𝑚𝑎𝑥 EF4 ‘‘Wet method’’  
 EF7 N intervals of 0.05 albedo value 

between 0.05 and the first 
multiple greater than the 
observed maximum albedo value

Second-order polynomial obtained 
from points corresponding to an 
exceedance frequency of 97.5% of 
LST values and albedo median

Second-order polynomial obtained 
from points corresponding to an 
exceedance frequency of 2.5% of 
LST values and albedo median

‘‘Mixed method’’ Gallego-Elvira 
et al. (2013)

 

 EF11 𝐿𝑆𝑇𝑚𝑖𝑛 ‘‘Dry method’’  
 EF14 𝐿𝑆𝑇𝑚𝑎𝑥 EF7 ‘‘Wet method’’  
 Split N intervals of 0.01 albedo value 

between the minimum and 
maximum albedo values in the 
image

Linear regression obtained from 
points corresponding to the 
median of 5% unique maximum 
LST values and albedo median

Linear regression obtained from 
points corresponding to the 
median of 5% unique maximum 
LST values and albedo median

‘‘Mixed method’’ Verstraeten et al. 
(2005)

 

 EF17 𝐿𝑆𝑇𝑚𝑖𝑛 ‘‘Dry method’’  
 EF20 𝐿𝑆𝑇𝑚𝑎𝑥 Split ‘‘Wet method’’  
 Inflex

Split
Linear regression obtained from N 
points (𝛼 > 𝛼𝑖) corresponding to 
the median of 5% unique 
maximum LST values and albedo 
median. A horizontal line defined 
by the 𝐿𝑆𝑇𝑚𝑎𝑥 value completes 
the left part of the dry edge for 
pixels with 𝛼 < 𝛼𝑖

Linear regression obtained from 
points corresponding to the 
median of 5% unique maximum 
LST values and albedo median

‘‘Mixed method’’ Adapted from 
Verstraeten et al. 
(2005)

 

 EF19 𝐿𝑆𝑇𝑚𝑖𝑛 ‘‘Dry method’’  
 EF18 Linear regression obtained from 

points corresponding to the 
median of the 5% highest LST 
values for each interval

𝐿𝑆𝑇𝑚𝑖𝑛 ‘‘Dry method’’  
 

 
 
 
 

 

schemes, since it preserves the mean value of the original image and
provides a better representation of the initial data values (Hong et al., 
2009; Sharma et al., 2016).

Appendix B. Method implementation

B.1. Dispersion coefficient validation

To validate the already defined dispersion coefficient in Section 3.1,
the temporal variations of this coefficient estimated using sub-area 2
and the whole study area (sub-area 14) during the study period are
compared (Fig.  15). Using sub-area 2, the dispersion is almost always
lower than 2, which means that there is insufficient dispersion for the 
LST values observed in the utilized area. However, when using the 
whole study area, which is characterized by sufficiently heterogeneous 
conditions, the dispersion coefficient is always above the threshold 
defined for dispersion assessment.
15 
B.2. Thresholds estimation

The analysis of the temporal variability of dEF values validate the 
thresholds identified in Section 3.2. Figs.  16(a) and 16(b) represent 
50% of 𝑑𝐸𝐹𝑑𝑟𝑦 and 𝑑𝐸𝐹𝑤𝑒𝑡, corresponding to the thresholds identified 
above, using only the adapted methods for the dry and wet seasons. 
Indeed, as observed above in Fig.  8, the median value of dEF is very
representative of dEF’s overall distribution, and using it will filter 
out values with a very low frequency that could induce incorrect 
interpretations. Fig.  16(a) shows that by using adapted methods for the 
dry season, the dry season can be correctly identified. This is also true 
for the wet season.

Data availability

Data will be made available on request.
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Fig. 16. Temporal variability of the medians of 𝑑𝐸𝐹𝑑𝑟𝑦 and 𝑑𝐸𝐹𝑤𝑒𝑡 over the study 
eriod (2018–2022) using adapted methods for the dry and wet seasons.
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