
ICES Journal of Marine Science , 2025, Vol. 82, Issue 10, fsaf180 
https://doi.org/10.1093/icesjms/fsaf180 
Received: 11 June 2025; revised: 16 September 2025; accepted: 21 September 2025 
Original Article 

Meta-analysis of the role of zooplankton faecal pellets in

ocean carbon export flux
Margaux Perhirin 

1 ,* , Olivier Aumont2 , Frédéric Maps 

3 , Sakina-Dorothée Ayata1 ,4

1 Sorbonne Université, MNHN, CNRS, IRD, Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques, LOCEAN, 
F-75005 Paris, France
2 Laboratoire d’Océanographie Physique et Spatiale, LOPS, CNRS, Ifremer, IRD, UBO, Rue Dumont D’Urville, 29280 Plouzané, France
3 Département de Biologie and Québec-Océan, Université Laval, Takuvik Joint International Laboratory Université Laval-CNRS, 1045 avenue
de la Médecine, QC G1V 0A6 Québec, Canada
4 Institut Universitaire de France, 75005 Paris, France
∗Corresponding author. Sorbonne Université, MNHN, CNRS, IRD, Laboratoire d’Océanographie et du Climat: Expérimentations et Approches Numériques, 
LOCEAN, 4 place Jussieu, 75005 Paris, France. E-mail: margaux.perhirin@locean.ipsl.fr 

Abstract 

Faecal pellets of marine zooplankton play a key role in the biological carbon pump, i.e. all biologically mediated processes by which 

organic carbon produced by photosynthesis is stored in the ocean’s interior. Numerous factors (size and biomass of faecal pellets, 
composition and abundance of zooplankton, etc.) can affect the sinking rate of zooplankton faecal pellets and thus the efficiency of their 
export at depth. A number of quantitative studies of the role of zooplankton faecal pellets in the biological carbon pump have been 

conducted, focusing either on a region or a type of faecal pellets. These studies highlighted the large variability in the contribution 

of faecal pellets to carbon fluxes, ranging from 0% to 100%. Here, we used a meta-analysis approach to extract quantitative data on 

the size, biomass, and role of marine zooplankton faecal pellets in ocean carbon export from 197 scientific articles. Our study focused 

on the six most studied faecal pellet types (mixed, cylindrical, ellipsoidal, tabular, spherical, and drop-shaped). We showed that abun- 
dance and biomass fluxes of faecal pellets, as well as their contribution to particulate organic carbon fluxes, increased with ecosystem 

productivity, here approximated by surface chlorophyll- a concentration. Furthermore, the fluxes of marine zooplankton faecal pellets 
(both by abundance and biomass) were positively correlated, and the sampling location, rather than the type of faecal pellet, better 
explained this correlation. Additionally, sinking rates were strongly correlated with volume, length, and width of faecal pellets, for all 
faecal pellet types. Sinking rates did not vary with depth, although measurements become scarcer with depth. Our literature review 

highlights the crucial role of faecal pellets in the biological carbon pump and the need to study less known types of faecal pellets, such 

as ellipsoidal faecal pellets, and to measure multiple variables on the same samples. Finally, we recommend that modellers wishing to 

represent faecal pellets in global biogeochemical models choose a constant sinking rate with depth within the range of the quantitative 
values reported here. 
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Introduction

Marine zooplankton contribute considerably to the global 
carbon cycle within the Biological Carbon Pump (BCP). The 
BCP refers to all the biologically mediated processes that en- 
able organic carbon created by photosynthesis in the euphotic 
layer to be transferred to the depths of the oceans. Three main 

pathways are usually distinguished: the gravitational pump,
the migrant pump, and the mixing pump (Buesseler et al.
2008 , Siegel et al. 2023 ). The gravitational pump is the sinking 
of organic matter (faecal pellets, phytodetritus, carcasses, etc.) 
out of the euphotic layer under the effect of gravity (Boyd et al.
2019 ). The migrant pump transports organic carbon through- 
out the migration of some zooplankton species to depth on 

diel and seasonal timescales (Steinberg and Landry 2017 ). Fi- 
nally, the mixing pump is the export of organic carbon due to 

physical mixing (Stukel et al. 2017 ). The BCP is estimated to 

transfer ∼10 PgC every year to the interior of the ocean (Siegel 
et al. 2023 ) limiting the increase in carbon dioxide concentra- 
tion in the atmosphere. In the climate change context, it is par- 
ticularly important to better understand how the BCP works 
and how it may evolve in the future (Ratnarajah et al. 2023 ).
© The Author(s) 2025. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License
reuse, distribution, and reproduction in any medium, provided the original work
mong these pathways, the most important one is the gravita-
ional pump contributing to ∼60% of the total carbon export
Boyd et al. 2019 ). In this study, we will focus on the zoo-
lankton faecal pellets that are the main contributors to the
ravitational pump (Bisson et al. 2020 , Nowicki et al. 2022 )
nd whose contribution to POC fluxes has been reported to be
ighly variable (from 0% to 100%, reviewed in Turner 2015 ).
Since the first studies on zooplankton faecal pellets, one 

entral question remains: why is the faecal pellet contribu- 
ion to POC flux so variable? (Pilskaln and Honjo 1987 ).

any studies tried to answer this issue and several factors
ave been proposed to explain such variations. In particular,
aecal pellet roles in carbon fluxes can vary with space (Wil-
on et al. 2008 , Steinberg and Landry 2017 ) and time (Wexels
iser et al. 2002 , Wilson et al. 2013 , Cao et al. 2024 ). These
ariations may be the results of varying phytoplankton (Bien- 
ang 1980 , Frangoulis et al. 2001 , Liu and Wu 2016a , White
t al. 2018 ) or zooplankton (Grunewald et al. 2002 , Fran-
oulis et al. 2005 , Liszka et al. 2019 ) community structure
nd composition. Moreover, some zooplankton species feed 

n faecal pellets, either altering them (coprohexy: fragmenta- 
tional Council for the Exploration of the Sea. This is an Open Access
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
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Figure 1. Examples of images of zooplankton faecal pellets from the literature. The images are classified and framed by type of faecal pellet as defined 
in Table 1 . The colours and icons correspond to those used throughout the study: blue for cylindrical, black for mixed, dark pink for ellipsoidal, orange for 
spherical, brown for tabular, pale pink for drop-shaped, and grey for irregular, spiral, and amorphous faecal pellets. Each image has its own scale bar. a, d, 
and g from Laurenceau-Cornec et al. ( 2015 ); b, j, and k from Belcher et al. ( 2017 ); c from Cavan et al. ( 2015 ); e from Wilson et al. ( 2008 ); f and h from 

Durkin et al. ( 2021 ); i from Steinberg et al. ( 2023 ); l from M. Perhirin; m and n from Bruland and Silver ( 1981 ) and o from Wang et al. ( 2023 ). 
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ion in smaller/slower sinking particles; coprochaly: altering
he faecal pellet volume and density after the disruption of
he peritrophic membrane) or consuming them (coprophagy)
Lampitt et al. 1990 , Noji et al. 1991 ). Increased intercep-
ion and recycling of faecal pellets reduce the efficiency of
he carbon pump, leading to a decreased faecal pellet abun-
ance with depth (Sampei et al. 2004 , Durkin et al. 2021 ),
nd hence a decreased contribution to carbon export. In the
dealized framework of a model, Mayor et al. (2020) found
hat particle-associated copepods were even responsible for
1% of the annual flux attenuation of fast-sinking detritus,
he particle class representing zooplankton faecal pellets. 

Zooplankton communities are highly diverse, which also
mplies the production of a large variety of faecal pellets ( Fig.
 ). These different morphological characteristics can help to
istinguish faecal pellets in sediment traps or nets and infer
otential producers (Pasternak et al. 2000 , Wilson et al. 2013 ,
anno et al. 2015 ). Another common method to study fae-

al pellets is to incubate organisms in the lab and collect their
aecal pellets. Only a few studies have attempted to compile
nformation on faecal pellets and their role in the BCP (Turner
002 , 2015 , Steinberg and Landry 2017 ). From a more quan-
itative point of view, some studies gathered data for specific
egions only or a specific type of faecal pellets (Phillips et al.
009 , Atkinson et al. 2012 , Kim et al. 2024 ). More recently,
i et al. (2024) combined data on faecal pellet contribution to
OC flux from 18 locations in the global ocean. They found
 good correlation between marine primary production and
aecal pellet contribution to carbon export. 

Surprisingly, despite their diversity and potential role in car-
on export, zooplankton faecal pellets have received little at-
ention in modelling studies. Still, few modelling studies have
uantified faecal pellet role at the global scale and estimated
lobal budgets. For example, Clerc et al. (2023) and Luo et
l. (2024) included large faecal pellets produced, respectively,
y filter-feeding gelatinous macrozooplankton, and fish and
unicates, in global biogeochemical models. Serra-Pompei et
l. (2022) highlighted the major role of faecal pellets from
arge zooplankton at 1080 m, emphasizing their key role in
equestering carbon rather than only exporting it. At a more
ocal scale, Andersen and Nival (1988) modelled a Mediter-
anean ecosystem using data from one sediment trap. They
ighlighted the role of faecal pellets of copepods and salps
n the vertical flux of organic matter. Other modelling studies
ocused on specific behaviour of copepods and inferred their
mpact on carbon fluxes through the release of faecal pellets
t depth (Wallace et al. 2013 ) or via coprohexy/coprochaly
Mayor et al. 2020 ). Finally, using an individual-based model,
tamieszkin et al. (2015) studied the links between copepod
ize and community composition and faecal pellet export. 

In this context, the objectives of this study were to
1) exhaustively compile quantitative data related to the
orphology of zooplankton faecal pellets (length, width, vol-
me) and their role in carbon export (biomass and abundance
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flux, contribution to POC flux, sinking rate), and to (2) ex- 
plore potential global trends. Thanks to this meta-analysis, we 
wanted to (1) identify knowledge gaps and/or biases in litera- 
ture, (2) refine their role in global carbon export and eventu- 
ally identify global patterns, and (3) inform modellers, espe- 
cially on faecal pellet sinking rate. 

Materials and methods

Zooplankton faecal pellet scientific research
database

The research protocol of this study was inspired by the sys- 
tematic review guidelines (Collaboration for Environmental 
Evidence 2022 ) and focused on the contribution of recogniz- 
able zooplankton faecal pellets to carbon export. 

Articles were extracted from the literature July 4 of 2024 

because they contained either (‘zooplankton’ or ‘mesozoo- 
plankton’ or ‘copepod ∗’ or ‘salp ∗’ or ‘appendicularian ∗’ or 
‘larvacean ∗’ or ‘krill ∗’ or ‘amphipod ∗’) and (‘pellet ∗’ and 

(‘flux’ or “export’ or “POC’ or “length’ or ‘size’ or ‘vol- 
ume’ or ‘sinking’ or ‘faecal’ or ‘fecal’)) in their title or (‘zoo- 
plankton’ or ‘mesozooplankton” or ‘copepod ∗’ or ‘salp ∗’ or 
appendicularian ∗’ or ‘larvacean ∗’ or ‘krill ∗’ or “amphipod ∗’) 
and (‘pellet ∗’ and (‘flux’ or ‘export’ or ‘POC’ or ‘length’ 
or ‘size’ or ‘volume’ or ‘sinking’ or ‘faecal’ or “fecal’)) and 

(‘ocean’ or ‘marine’)) in their abstract from BibCNRS (a portal 
of the French National Center of Scientific Research for elec- 
tronic documentary resources, https://bib.cnrs.fr/) ( n = 530).
A personal database of scientific literature compiled by the 
first author was also used and 64 articles were added to the 
database. The resultant global database ( n = 594) included 

mostly scientific articles and a few book chapters. Titles and 

abstracts of this database were manually screened and clas- 
sified as � Good � ( n = 222) or � Bad � ( n = 372).
� Good � was assigned if the study focused on marine
zooplankton faecal pellets and contained quantitative val- 
ues on either the carbon content, the size, the sinking rate
of the faecal pellets, or their contribution to carbon flux.
If there was any doubt about the presence of quantitative
data, the rest of the text was briefly reviewed. The focus was
made on identifiable or recognizable zooplankton faecal pel- 
lets and not on the faecal aggregates or other types of sinking
particles.

Using BibCNRS as a research database gives access to the 
vast majority of scientific literature. Some articles may still be 
missing following this search. However, we believe that the 
extensive screening we did and the addition of our personal 
database of scientific articles have made it possible to study the 
vast majority of scientific articles dealing with zooplankton 

faecal pellet data. 
Among the 222 � Good � articles, 3 were reviews and 

11 modelling studies without novel measured data. For 11 

articles, the full manuscripts were not available online (grey 
literature or articles published before 1990), and were then 

discarded for the analyses. We checked that scientific articles 
used in the reviews were in our database. Modelling studies 
were analysed separately, see section Modelling studies be- 
low. Hence, quantitative data were extracted from 197 stud- 
ies, either digitized from figures (using the online application 

Plot Digitizer https://plotdigitizer.com/app ), from tables (us- 
ing the online tool Docsumo https://www.docsumo.com/free- 
tools/extract- tables- from- pdf- images ), or from the text itself. 
Two types of data were gathered. Data measured at one
ime and one place (for variables related to faecal pellet role
n POC flux) or measured on one faecal pellet (for variables
elated to morphology and biomass) are thereafter referred to 

s individual faecal pellet records. Averaged data (over time 
nd/or space for variables related to faecal pellet role in POC
uxes, or over multiple faecal pellets for variables related to
heir morphology and biomass) are thereafter referred to ag- 
regated faecal pellet records. The sample size for the aggre-
ated faecal pellet records was not often available; hence, the
ample size was not saved in the final dataset. 

dditional variables

n order to standardize the database and to be able to take into
ccount the information retrieved either on the shape of the
aecal pellets or on the taxa that produced them, a subset of 37
tudies, which already categorized faecal pellets and used to 

uild the faecal pellet database, were reviewed to associate the
aecal shape with zooplankton taxa ( Table 1 ). Some scientific
rticles also took into account the size (e.g. Ayukai and Hat-
ori 1992 ), the colour (e.g. Wilson et al. 2008 ), or the state
f deterioration (e.g. González et al. 1994a ) of zooplankton 

aecal pellets. However, since this information was not avail-
ble in all articles, we focused our standardization on shape
nly (mixed, cylindrical, ellipsoidal, spherical, tabular, drop- 
haped, irregular, spiral, amorphous, large, conical). Given the 
reat diversity in the morphology of faecal pellets and the nu-
erous factors that can affect it (Werner 2000 , Wilson et al.
008 ), this homogenization probably implies compromises in 

ethodologies, as faecal pellets produced by the same taxa un-
er different conditions may belong to different types of fae-
al pellet. For example, faecal pellets produced by amphipods 
ere described as brown (Matsuno et al. 2016 ), ellipsoidal

Carroll et al. 1998 ), or cylindrical (Wassmann et al. 2000 ,
erner 2000 , Wexels Riser et al. 2007 ). Brown type was not

etained in the standardization process. The cylindrical shape 
as still the most common description in the database, but the

llipsoidal shape might still be representative of amphipod fae- 
al pellets as written in Table 1 . Similarly, chaetognath faecal
ellets were described as ellipsoidal (Giesecke et al. 2010 ) or
rop-shaped (Dilling and Alldredge 1993 ). 
In the end, each data point was linked to a type of faecal pel-

et (represented hereafter by icons and colours) and, when pos-
ible, their most likely producers. Irregular, spiral, amorphous,
arge, and conical zooplankton faecal pellets appeared in less
han 5 scientific articles ( Table 1 ). Due to this low amount of
ata, these five types were not considered in the rest of the
tudy. 

In situ chlorophyll-a concentration ([Chl-a]) was measured 

n only 86 scientific articles (including 8 incubations or cul-
ures data) out of the 197 in the database. Hence, to ap-
roximate the productivity of all sampled ecosystems at the 
lobal scale, monthly climatology of surface chlorophyll- 
 concentration (L3 mapped product, 4 km, MODIS-Aqua 
cean Colour Data, https://oceandata.sci.gsfc.nasa.gov/l3/) 
as used. For data sampled during a month or less, the sam-
ling month and the location (latitude, longitude) were used 

o retrieve the chlorophyll-a concentration. For data sam- 
led during more than a month, averaged chlorophyll-a con- 
entration values at the location (latitude, longitude) were 
omputed. For 218 pairs of location and month out of 824,
hlorophyll-a concentration values were not available. All of 

https://bib.cnrs.fr/
https://plotdigitizer.com/app
https://www.docsumo.com/free-tools/extract-tables-from-pdf-images
https://oceandata.sci.gsfc.nasa.gov/l3/
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Table 1. Types of zooplankton faecal pellets used in this study, a list of most likely zooplankton producers based on the literature, synonyms that can be 
found in literature, references defining such shapes of zooplankton faecal pellets and number of scientific articles mentioning them. 

Type of faecal pellet Most likely producers 
Synonyms found in 

literature 
# of scientific articles 

mentioning it 

Cylindrical Large copepoda (Honjo and Roman 1978 , Bathmann et 
al. 1991 , Noji et al. 1991 , Accornero and Gowing 2003 , 
Sampei et al. 2009 , Kobari et al. 2010 , Cole et al. 2016 ) 

Long, filiform, 
strings 

131 

Euphausiaceae (González et al. 1994a , Belcher et al. 
2017 , Yang et al. 2019 ) 
Decapoda larvae (Matsuno et al. 2016 ) 
Amphipoda (Werner 2000 , Wexels Riser et al. 2007 ) 

Mixed Unidentified zooplankton NA 99 

Ellipsoidal Small and medium-sized copepoda (Nöthig and von 
Bodungen 1989 , González et al. 1994b ) 

Ovoid, oval, 
elliptical 

59 

Larvacea (González et al. 1994a , Matsuno et al. 2016 , 
Durkin et al. 2021 ) 
Barnacle larvae (Matsuno et al. 2016 ) 
Amphipoda (Carroll et al. 1998 ) 
Chaetognatha (Giesecke et al. 2010 ) 

Spherical Microzooplankton (Gowing and Silver 1985 ) Round 25 

Rhizaria (Gowing and Silver, 1985 ) 
Nauplii larvae (Pasternak et al. 2000 , Yoon et al. 2001 ) 
Protozoans (Gowing and Silver 1985 , Nöthig and von 
Bodungen 1989 , González 1992 ) 

Tabular Salpa (Caron et al. 1989 , Accornero et al. 2003 , Steinberg 
et al. 2023 ) 

Rectangular flakes, 
flakes 

22 

Drop-shaped Chaetognatha (Dilling and Alldredge 1993 ) NA 6 

Pyrosoma (Drits et al. 1992 ) 
Limacina helicina (Manno et al. 2010 ) 

Irregular Doliolida (Bruland and Silver 1981 , Koster et al. 2011 ) NA 4 

Spiral Carinaria sp. (Wilson et al. 2008 ) NA 4 
Pteropoda (Bruland and Silver 1981 ) 

Amorphous Unknown (Kobari et al. 2010 , Wang et al. 2023 ) NA 3 

Large Fishes (Accornero and Gowing 2003 , Durkin et al. 2021 ) NA 2 

Conical Clio sp. (Yoon et al. 2001 ) NA 1 

Shapes are ordered from the most frequently studied to the least. The colours and icons correspond to those used throughout the study: blue for cylindrical, 
black for mixed, dark pink for ellipsoidal, orange for spherical, brown for tabular, pale pink for drop-shaped, and grey for irregular, spiral, and amorphous 
faecal pellets, as in Fig. 1 
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hem were located close to the coast or in polar regions and
ere not considered in the study. Chlorophyll-a concentration

alues were then discretized into three categories: low produc-
ive regions ([Chl-a] < 0.1 mg m−3 ), moderate productive re-
ions (0.1 mg m−3 < [Chl-a] < 1 mg m−3 ) and high productive
egions (1 mg m−3 < [Chl-a]). 

The exact same procedure was applied to sea surface
emperature (SST, L3 mapped product, 4 km, MODIS-
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Aqua Sea Surface Temperature Data, https://oceandata.sci. 
gsfc.nasa.gov/l3/). SST data was not available for 93 locations.
Three categories were created: cold (SST < 5◦C), medium (SST 

between 5◦C and 15◦C), and warm (SST > 15◦C) waters. 
To standardize sampling locations, an ocean basin (Arc- 

tic, Northern Atlantic, Southern Atlantic, Indian, Pacific, and 

Southern Oceans and Mediterranean Sea) was assigned to 

each location based on latitudes and longitudes. The Arctic 
Ocean borders were defined by the 10◦C isotherm in July. The 
northern limit of the Southern Ocean was defined as 60◦S.
The Atlantic Ocean was separated into the Northern (lati- 
tude > 0◦) and the Southern (latitude < 0◦) Atlantic Ocean. 

Modelling studies

In the database, 11 articles used models to compute faecal pel- 
let fluxes, contribution to POC flux and/or abundances. The 
parameters related to faecal pellets (e.g. sinking rate, volume,
production rate) were retrieved from these studies. For each 

parameter, a type of faecal pellet was assigned. 
To supplement the model literature and focus on faecal pel- 

let sinking rates, a second query was done in Elicit: The AI 
Research Assistant ( https://elicit.com/). We asked ‘What is the 
sinking rate of detritus produced by zooplankton in biogeo- 
chemical models?’ and the 24 most pertinent scientific arti- 
cles were screened. Two were already present in our database.
Among the 22 others, most of them did not explicitly represent 
zooplankton faecal pellets but large detritus or fast-sinking 
particles. This search therefore mainly contributed to the dis- 
cussion on the representation of faecal pellets in models. 

Final datasets

The final dataset contained data about faecal pellet morphol- 
ogy and biomass (length in μm, width in μm, volume in μm3 ,
carbon content in μgC pellet−1 or in mgC mm−3 , density in
gC cm−3 ) and their role in POC flux (abundance fluxes in # 

m−2 d−1 and biomass fluxes in mgC m−2 d−1 , contribution to 

POC flux in %), along with their metadata (month, year, lat- 
itude in ◦N, longitude in ◦E, depth in m, type of faecal pellet,
ocean sampled, surface chlorophyll-a concentration in mgC 

m−3 , productivity level, sea surface temperature in ◦C, temper- 
ature category, sampling method, reference, DOI). Data were 
aggregated or individual faecal pellet records. This database 
was then filtered to extract samples for which several vari- 
ables had been measured (e.g. abundance and biomass flux,
sinking rate, and length). 

Model parameters related to faecal pellets were stored 

in another dataset containing parameter names, values, and 

units, and the reference from which they were extracted. 
The different datasets used in this study are available on 

Seanoe (Perhirin et al. 2025a ). 

Data analyses

A Kruskal–Wallis analysis (Kruskal and Wallis 1952 ) was used 

to test for the impact of the productivity level on the faecal pel- 
let contribution to POC flux and abundance/biomass fluxes.
It was followed by a Dunn pairwise test (Dunn 1961 ) with 

Bonferroni p-values correction for multiple comparisons, to 

assess the significance of the observed patterns (Dunn 1961 ).
The same procedure was applied to test the impact of the SST 

categories. 
The correlation between aggregated faecal pellet records of 

faecal abundance and biomass fluxes was tested using Spear- 
an’s correlation coefficients, with Bonferroni P -values cor- 
ection for multiple comparisons (Dunn 1961 ). The same 
ethodology was applied to aggregated faecal pellet records 
f faecal pellet sinking rates and volumes or lengths or widths.
he effect of faecal pellet type and the ocean basin on the rela-

ion between faecal pellet abundance and biomass fluxes was
valuated using linear models fitted to the individual records.
n the analyses, patterns were considered significant if P -values
ere lower than 0.01. 

umerical tools

ll statistical analyses were conducted in the programming 
nvironment R 4.3.1 (R Core Team 2021 ). The package tidy-
erse (Wickham et al. 2019 ) was used for data manipulations.
he packages sp (Pebesma and Bivand 2005 ) and lubridate

Grolemund and Wickham 2011 ) were used to manipulate 
oordinates and dates data, respectively. The packages RCol- 
rBrewer (Neuwirth 2022 ), ggplot2 (Wickham et al. 2021 ),
owplot (Wilke 2020 ), and ggimage (Yu 2023 ) were used to
roduce general graphics. The packages sf (Pebesma and Bi- 
and 2023 ), rnaturalearth (Massicotte et al. 2023 ), and rnat-
ralearthdata (South et al. 2024 ) were used to produce the
aps. The package corrplot (Wei et al. 2021 ) was used to com-
ute correlation coefficients. 

esults

atabase presentation

ata gathered in this meta-analysis covered almost the en- 
ire global ocean (78.00◦S to 88.83◦N and 177.61◦W to 

79.80◦E). Data were sampled between November 1967 and 

ay 2022. Summer, spring, and autumn were the most stud-
ed seasons (with data in 125, 98, and 87 scientific articles,
espectively), while winter was the least studied (49 scientific 
rticles). 

A majority of the scientific studies used sediment traps data
56%) and one-third (34%) incubation data. Among the other 
ethods, it is worth mentioning the use of imagery to study

aecal pellets (McDonnell and Buesseler 2010 , Katija et al.
017 , Fragoso et al. 2022 , Giménez et al. 2023 ) and an echo-
ounder (Røstad and Kaartvedt 2013 ). 

On average, 2.5 ± 1.4 (ranging from 1 to 6) variables were
easured in each study. Zooplankton faecal pellet flux (abun- 
ance and biomass together) was the most studied variable,
hile density was the least studied ( Fig. 2 ). Cylindrical faecal
ellets were the most studied type, with a minimum of 15 sci-
ntific articles per variable ( Fig. 2 ) reflecting the domination
f crustacean zooplankton at the global scale ( Table 1 ) (Drago
t al. 2022 ). On average, 1.7 ( ± 1.1, between 1 and 6) types
f faecal pellets and 2.7 ( ± 2.7, between 1 and 22) taxa were
tudied per scientific article. 

arbon fluxes of zooplankton faecal pellets

he contribution of zooplankton faecal pellets to POC flux 

panned the entire range from 0% to 100% and the median
ontribution was between 5% and 22%, depending on the 
roductivity of the ecosystem ( Fig. 3 b). Flux of zooplankton 

aecal pellets was on average about 1000–10 000 faecal pellets
−2 d−1 ( Fig. 3 c) and represented between 0.1 and 8 mgC
−2 d−1 ( Fig. 3 d). These values increased significantly with the 
roductivity of the ecosystem ( P < 0.0001 between each box-

https://oceandata.sci.gsfc.nasa.gov/l3/
https://elicit.com/
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Figure 2. Number of scientific articles containing data among the 8 quantitative variables used in this study. Colours represented the type of faecal 
pellets concerned: cylindrical (131 articles), mixed (99), ellipsoidal (59), tabular (25), spherical (22), and drop-shaped (6). 
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lot, except between low- and medium-productive regions in
aecal pellet abundance flux). 

For both aggregated and individual records, there were
ositive and strong correlations between the abundance
nd biomass of the zooplankton faecal pellet fluxes
 P < 0.0001; Fig. 4 b, c, and d). The two linear models
ested here on individual faecal pellet records were significant
 Fig. 4 a and c). However, the types of zooplankton faecal
ellets explained almost nothing (R2 = 0.04, P < 0.001; Fig.
 a), while the sampling location explained more of the
elationship between abundance and biomass zooplankton
aecal pellet fluxes (R2 = 0.430, P < 0.001; Fig. 4 c). This
as not the case for aggregated faecal pellet records ( Fig. 4 b

nd d). 
The contribution of zooplankton faecal pellets to POC

uxes was slightly more correlated to biomass fluxes than
o abundance fluxes (Supplementary Fig. S2 ). For individual
ecords, contribution to POC fluxes were low ( < 20%) when
aecal pellet abundance fluxes were below 500 # m−2 d−1 

Supplementary Fig. S2A ) or faecal pellet biomass fluxes were
elow 0.1 mgC m−2 d−1 (Supplementary Fig. S2C ). However,
or aggregated records, data was lacking. 

orphology of zooplankton faecal pellets and
inking rates

here were strong positive correlations between the sinking
ate and the size of zooplankton faecal pellets ( Fig. 5 ), in agree-
ent with previous studies who reported a relationship be-

ween volume and sinking rate of zooplankton faecal pellets
Smayda 1969 , Bruland and Silver 1981 ). The sinking rates
nd the density of faecal pellets were also correlated (Supple-
entary Fig. S3 ). It was not possible to compute the correla-
ion between the sinking rate and the carbon content of zoo-
lankton faecal pellets because not enough studies measured
oth variables ( n = 3). 

ertical profiles of zooplankton faecal pellet sinking
ate

inking rates reached an average of 100 m d−1 for all types
f faecal pellets, except for tabular ones that sank one order
f magnitude faster ( Fig. 6 ). There was almost no variation of
he sinking rate with depth. 

Model parameter values were within the range of observed
aecal pellet sinking rates. Sinking rates of tabular pellets were
xed at around 1000 m d−1 , matching with observed values
 Fig. 6 ) (Andersen and Nival 1988 , Clerc et al. 2023 ). For
ther types of faecal pellets, parameters representing sinking
ate were around 50–100 m d−1 (Andersen and Nival 1988 ,

ayor et al. 2020 , Countryman et al. 2022 , Clerc et al. 2023 ),
ence in the range of observed values for these types ( Fig. 6 ).
ere, in the model representing ellipsoidal faecal pellets, pro-

ucers were small copepods (Countryman et al. 2022 ). How-
ver, no study in our dataset measured the sinking rate of el-
ipsoidal faecal pellets. 

iscussion

his meta-analysis clarified the significant role of zooplank-
on faecal pellets in carbon fluxes. Their contribution to POC
uxes, as well as the intensity of their abundance and biomass
uxes, increased with the ecosystem productivity. We high-
ight biases in data related to zooplankton faecal pellets and

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf180#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf180#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf180#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf180#supplementary-data
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Figure 3. Geographical distribution of the contribution and flux data in the faecal pellet dataset (a). Surface chlorophyll-a concentration at each location 
was retrieved from the monthly climatology AquaMODIS Chl-a L3 product (4 km) and discretized in three productivity classes. Colours and shapes 
represent the three productivity classes, no data are represented by a star. Distribution of zooplankton faecal pellet contribution to POC flux (%, b), of 
zooplankton faecal pellet abundance flux (# m−2 d−1 , c) and biomass flux (mgC m−2 d−1 , d) for all locations and depending on the productivity class. 
Box-plots represented the distribution of individual faecal pellet records retrieved from figures and/or tables. Numbers of values used per box-plot are 
indicated in boxed text. Aggregated faecal pellets records obtained from the literature are shown as dots in the background, their numbers are indicated 
below the boxed text. Note the x-log10 axis in c and d. 
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make recommendations for experimentalists and modellers 
who wish to study zooplankton faecal pellets and their role 
in the carbon export. 

Faecal pellet database caveats

Despite the extended spatial coverage of the sampling loca- 
tions, data were still scarce for the gyres and at deep oceanic 
waters. There was a clear imbalance between the Northern 

and Southern hemispheres (shown for Flux and %POC flux 

data in Fig. 3 a). Winter was the least studied season, due to the 
difficulty to access some regions of the global ocean. Finally, it 
is important to note that most of the studies measuring indi- 
vidual characteristics and sinking rates of zooplankton faecal 
pellets were published more than 20 years ago. 
Although most of the data gathered here came from sedi-
ent traps, they have several biases. Because of the way they

re deployed, they do not allow for significant spatio-temporal 
esolution but this is counterbalanced by the large amount of
ata that has been gathered. They also might miss rare but
mportant export events such as the ones following blooms 
Miquel et al. 2015 ) and be affected by hydrodynamics, espe-
ially at shallow depths (Siegel et al. 2024 , Yu et al. 2001 ).
hey tend to underestimate flux and they have a bias towards

ntermediate-size particles (Buesseler et al. 2007 ). Moreover, in 

igh productivity environments, actively feeding zooplankton 

rganisms (called swimmers) can enter the traps and disaggre- 
ate the captured particles or produce new ones, thus affecting
he measured flux (Knauer et al. 1979 , Karl and Knauer 1984 ).
or all these reasons, it is important to keep in mind that data
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Figure 4. Relations between zooplankton faecal pellet abundance flux (# m−2 d−1 ) and carbon flux (mgC m−2 d−1 ). Individual faecal pellet records 
retrieved from figures and/or tables are shown in a and c. Aggregated faecal pellet records (mean ± standard deviation) obtained from the literature are 
shown in b and d. In the first row, points are coloured based on the type of zooplankton faecal pellets. In the second row, points are coloured based on 
the sampling location of zooplankton faecal pellets. Adjusted r-squared coefficients were computed to test the overall fit of the linear models with either 
the type of faecal pellets (a, adjusted R2 = 0.04, P < 0.0001) or the sampling location (c, adjusted R2 = 0.430, P < 0.0001) as explanatory categorical 
variables. Spearman correlation coefficients rho (computed only on aggregated faecal pellet records, standard deviations were not taken into account) 
are indicated in the top left corner of b/d. Note the log10 axes. 
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rom sediment traps might represent the lower range of flux
alues. 

ariability in faecal pellets contribution to POC
uxes

urface chlorophyll-a concentration explained part of the fae-
al pellets dynamics and their contribution to POC flux. This
rocess was already observed at a smaller scale in the Pacific
cean along the California coast (Dagg et al. 2014 ) and in

he Southern Atlantic Ocean (Giménez et al. 2023 ). In an Arc-
ic system, Darnis et al. (2024) also showed that faecal pellet
xport had increased following zooplankton-enhanced feed-
ng activity. Nevertheless, some ecosystems in low produc-
ivity regions were characterized by high abundance fluxes
f zooplankton faecal pellets ( > 5.105 # m−2 d−1 , Fig. 3 c).
hese data were sampled at BATS in the Sargasso Sea. This

ncreased faecal pellet flux was attributed to the arrival of
lanktonic organisms from higher trophic levels following a
hysico-chemical disturbance on the mesoscale (Goldthwait
nd Steinberg 2008 ). Similarly, there was a group of elevated
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Figure 5. Zooplankton faecal pellet sinking rate (mean ± standard deviation, m d−1 ) depending on zooplankton faecal pellet volume (mean ± standard 
deviation, n = 25, μm3 ; a), length (mean ± standard deviation, n = 29, μm; b), and width (mean ± standard deviation, n = 29, μm; c). Data are coloured 
based on the type of the faecal pellets. Spearman correlation coefficients rho (computed only on aggregated faecal pellet records, standard deviations 
were not taken into account) are respectively indicated in the top left corner of each subplot. In A, dashed lines represented linear published 
relationships between faecal pellet sinking rate and their volume (#1 = Coppock et al. ( 2019 ), #2 = Fowler and Small ( 1972 ), #3 = Frangoulis et al. ( 2001 ), 
#4 = Giesecke et al. ( 2010 ), #5 = Small et al. (), #6 = Wiebe et al. ( 1976 )). Diamonds indicated cylindrical pellets produced by euphausiids. Note the 
log10 axes. 
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biomass fluxes of zooplankton faecal pellets in low produc- 
tive regions ( > 100 mgC m−2 d−1 , Fig. 3 d). These data were 
sampled at ALOHA in the Pacific Ocean. This was attributed 

to the presence of detritivorous and carnivorous species in 

the mesozooplankton community (Wilson et al. 2008 ). Like- 
wise, data from South Georgia sampled in a high productiv- 
ity region presented low abundance flux of zooplankton fae- 
cal pellets (Belcher et al. 2017 ). These mismatches between 

productivity and faecal pellet fluxes may result from a tem- 
poral decoupling between primary production and the pro- 
duction of particles, especially because the faecal pellet pro- 
ducers considered in this study are not always primary con- 
sumers (e.g. chaetognatha, copepoda, etc.) as in Wilson et al.
(2008) . These mismatches might also result from discrepan- 
cies between chlorophyll-a concentration estimates from re- 
mote sensing and productivity. Moreover, surface chlorophyll- 
a concentration cannot reveal any potential high sub-surface 
chlorophyll-a maxima. 

Sea surface temperature may also account for part of this 
variability (Supplementary Fig. S1 ). In warm regions (mostly 
in the gyres) ecosystems tend to be oligotrophic and domi- 
nated by smaller zooplankton (Brun et al. 2016 ) leading to 

lower faecal pellet contribution and fluxes. In contrast, cold 

regions (mostly in the polar regions) host larger zooplankton 

species (Brun et al. 2016 ) productivity is restricted to the short 
polar summer period (Perrette et al. 2011 , Daase et al. 2021 ),
leading to intermediate faecal pellet contribution to the POC 

fluxes and faecal pellet fluxes. The highest faecal pellet contri- 
bution to the POC fluxes and faecal pellet fluxes was recorded 

in temperate regions. The influence of temperature on faecal 
pellet flux is indirect, acting primarily through temperature- 
driven changes in individual traits such as size (Brun et al.
2016 ), which influence faecal pellet production rates (Ayukai 
and Hattori 1992 ). 

Many other factors, not evaluated in this article, can be re- 
sponsible for variations of the zooplankton role in carbon ex- 
port. For example, zooplankton biomass (Gleiber et al. 2012 ) 
can impact faecal pellet fluxes. Moreover, zooplankton com- 
munity composition (Kobari et al. 2010 ) and the presence of 
migrators (González 1992 , Dagg et al. 2014 , Steinberg et al.
023 ) might also affect the intensity of faecal pellet fluxes.
ometimes, multiple factors can explain a large range of varia-
ions. For example, the presence of sea ice in the environment,
s well as the diet and the size of krill, affected the sinking
ourney of their faecal pellets (Cadée et al. 1993 ). 

ooplankton faecal pellet biomass and abundance
uxes

he positive relationship between abundance fluxes and 

iomass fluxes was already reported in regional studies (Car- 
oll et al. 1998 , Yang et al. 2019 , Li et al. 2024 ) and is now
onfirmed at the global scale. The types of faecal pellets de-
ned in this study were mostly related to their shape and to
he potential zooplankton producers ( Table 1 ), while sam-
ling locations were defined based on the ocean basin sam-
led. Thus sampling locations better integrate environmental 
ariability (e.g. temperature, community composition of phy- 
oplankton and zooplankton, etc.) and physical processes such 

s upwelling or monsoon phenomenon (Li et al. 2024 ). Hence,
he characteristics of faecal pellets possibly impacting flux in- 
ensity (e.g. density, size, etc.) might better be captured by the
ampling location ( Fig. 4 c and d) than by the faecal pellet types
lone ( Fig. 4 a and b). 

Abundance fluxes do not take into account the carbon con-
ent of zooplankton faecal pellets. As mentioned in Durkin et
l. (2021) , the weaker correlation between abundance fluxes 
nd contribution to POC fluxes might be explained by the
bundance of small faecal pellets contributing less than large
nes. Hence, abundance fluxes might not be a reliable variable
hen measured alone. 
In addition, zooplankton faecal pellet contribution to POC 

uxes might also be affected by variations in the contribution
f the other components of the POC such as phytodetritus,
arcasses, moults, or other types of marine snow. 

inking rate of zooplankton faecal pellets

abular faecal pellets were the largest, hence sank the fastest.
owever, only 10 scientific articles measured fluxes from tab- 
lar pellets ( Fig. 2 ) and their contribution to POC fluxes

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf180#supplementary-data
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as rarely high (Supplementary Fig. S2 ) (Manno et al. 2015 ,
écima et al. 2023 ) and often episodic, with low abundances

n the traps (Durkin et al. 2021 ). This might be explained by
wo main hypotheses. First, tabular faecal pellets do not have
eritrophic membranes compared to the cylindrical faecal pel-
ets produced by crustaceans (Bruland and Silver 1981 , Caron
t al. 1989 , González 1992 ), hence they might be unrecogniz-
ble due to biological and/or physical damage (aggregation
nd/or disaggregation) before or during sampling (González
992 , Gleiber et al. 2012 , Iversen et al. 2017 ). They can also
e a source of food for zooplankton (Doherty et al. 2021 ).
econd, salps, unlike krill, generally do not form groups of or-
anisms dense enough for their faecal pellets to appear in sed-
ment traps (Atkinson et al. 2012 ), even though such events
ay seldom be observed (Smith et al. 2014 ). Their heteroge-
eous distribution may further hamper their pellets’ sampling,
s well as their ability to perform extensive diel vertical migra-
ions, a trait shared with other zooplankton such as copepods
Bandara et al. 2021 ). 

Cylindrical faecal pellets can be produced by various zoo-
lankton taxa ( Table 1 ) of very different sizes (from small
alanoids to euphausiacea). This appeared in our data with
entropages typicus producing the smallest, hence slowest

inking faecal pellets, and krill the largest and fastest, fol-
owing the relationship between the sizes of the producers
nd their faecal pellets (Uye and Kaname 1994 , Kobari et al.
010 , Stamieszkin et al. 2015 ). Yet, some copepods produce
aecal pellets that sink as fast as the ones produced by krill,
espite their size difference. Thus, other factors than size char-
cteristics influenced the sinking rate of faecal pellets. One of
hem might be the density of the faecal pellets (Supplementary
ig. S3 ). Phytoplankton community composition might also

nfluence the sinking rate of faecal pellets via their potential
ffect on density (Bienfang 1980 , Frangoulis 2001 ), known as
he ballasting effect (Iversen and Ploug 2010 ). Furthermore,
ood quality may impact the sinking rate (Butler and Dam
994 ). Effect of diet on the sinking rate of faecal pellets was
ested with data gathered in this study. Due to the high vari-
bility in sinking rates between faecal pellets produced by dif-
erent taxa (Wexels Riser et al. 2007 , Wang et al. 2023 ) and
he low number of data, analyses were made only on krill and
cartia tonsa faecal pellets. It did not reveal a clear pattern on

he effect of diet on faecal pellet sinking rate (Supplementary
ig. S4 ). Finally, the digestion process might affect characteris-
ics of faecal pellets (Atkinson et al. 2012 , Liu and Wu 2016b ).

Faecal pellet carbon content is highly variable: with latitude
Gleiber et al. 2012 ), with diet (Urban-Rich et al. 1998 , Pauli et
l. 2021 ), and with season (Manno et al. 2015 , Li et al. 2022 ).
tkinson et al. (2012) showed that the sinking rate of krill fae-
al pellets was negatively correlated to their carbon content.
enschel and González ( 2019 a) and Wang et al. (2023) found

n inverse relationship between faecal pellet volumes and car-
on content while other studies found a positive relationship
Gleiber et al. 2012 , Li et al. 2022 , Steinberg et al. 2023 ). As
mphasized in Li et al. ( 2022 ), more studies should be done to
etter understand carbon content variation in various types of
aecal pellets and in different temporal and spatial conditions.
urthermore, a better understanding and/or quantification of
ariations in the carbon content of faecal pellets could clar-
fy the impact of zooplankton in carbon fluxes (Urban-Rich
t al. 1998 ). Further studies must study sinking rates of fae-
al pellets of zooplankton with a focus on understudied types
ellipsoidal, drop-shaped). 
epresenting zooplankton faecal pellets in models

ooplankton faecal pellets are not often explicitly represented
n models (Stukel et al. 2014 ). It is even rarer that their high
ariability is taken into account. However, when tabular fae-
al pellets are explicitly represented in global biogeochemical
odels, they increased carbon fluxes to the deep ocean and

n the oligotrophic gyres (Clerc et al. 2023 , Luo et al. 2024 ).
ence, a better representation might be essential to fully un-
erstand carbon export variability and efficiency. 
The significant positive correlation between sinking rate

nd size characteristics of zooplankton faecal pellets ( Fig. 5 )
ould be of great value to modellers. We recommend mod-
llers to take advantage of it, but in ocean biogeochemical
odels, this would be useful only when some zooplankton di-

ersity is represented. For example, it would be suitable in size-
esolved models such as the one in Serra-Pompei et al. (2020) .
his model focused on copepods and many faecal pellet size
lasses were also included each with a sinking rate defined
y size. One can imagine a similar model focusing on salps,
or which size can correspond to different species (Henschke
t al. 2016 ), or focusing on the entire zooplankton compart-
ent. Some models indirectly take into account the diet of

ooplankton by adjusting sinking rate according to the min-
ral fraction of the particles (Gehlen et al. 2006 , Laufkötter
t al. 2016 , Le Quéré et al. 2016 ). In individual-based models,
ollowing Stamieszkin et al. (2015) could be very promising,
.e. using the prosome length of copepods to predict faecal pel-
et volume and the resulting sinking rate. Sinking rates were in
he range of observed values (between 2.4 m d−1 and 221.3 m
−1 ).
In modelling studies, all model parameters representing

inking rate were constant with depth except in Kvale et al.
2023) ( Fig. 6 ), which assumed that the sinking rate of faecal
ellets increases with depth. This assumption is mostly based
n Berelson (2001) , who studied bulk particles from sediment
raps. However, the dataset gathered here for zooplankton fae-
al pellets did not confirm this assumption. Keeping sinking
ate constant might affect a few biogeochemical models that
epresent large or fast-sinking particles (including zooplank-
on faecal pellets among other types of particles) with an in-
reasing sinking rate with depth (Gehlen et al. 2006 , Karakuş
t al. 2021 ). Better estimates of sinking rates of zooplankton
aecal pellets might help to better quantify carbon export and
arbon transfer efficiencies (Karakuş et al. 2025 ). 

ecommendations for experimentalists and
odellers

rom our meta-analysis, we suggest the systematic collection
f the following variables from a representative subset of sed-
ment trap particles (or all particles, when possible): detailed
article types (including faecal pellet types), individual den-
ity and size (at least the major axis of each particle), and to-
al biomass. Efforts should also be made to acquire and make
vailable environmental data to better understand the state of
he ecosystem during sampling (e.g. chlorophyll-a concentra-
ion, phytoplankton functional groups, quality and quantity
f available food for zooplankton, etc.). For laboratory anal-
ses, we recommend concurrent measurement of as many vari-
bles as possible on both faecal pellets and their zooplankton
roducers. Ideally, both faecal pellet flux data (abundance and
iomass) and individual-scale data related to both their mor-
hology (length, width, or volume) and their biomass (carbon

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf180#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf180#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsaf180#supplementary-data
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Figure 6. Sinking rate (m d−1 ) of faecal pellets in function of depth (a) with a zoom in the 0–50 m layer (b). Data are coloured based on the type of faecal 
pellets. Box-plots represented the distribution of individual faecal pellet records retrieved from figures and/or tables per depth. Points and ranges 
represented aggregated faecal pellet records (mean ± standard deviation). Dashed lines represented parameters used in models explicitly representing 
faecal pellets (#1 = Kvale et al. ( 2023 ), #2 = Andersen & Nival ( 1988 ), #3 = Clerc et al. ( 2023 ), #4 = Countryman et al. ( 2022 ), #5 = Mayor et al. ( 2020 )). 
Note the x-log10 axis. 
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content or density) should be measured on the same faecal 
pellets, as was done in Gowing et al. ( 2001 ), Huskin et al.
( 2004 ), and Pauli et al. (2021) . Further studies should also ac- 
quire data on understudied types of zooplankton faecal pel- 
lets (e.g. ellipsoidal, drop-shaped) in order to gain a more 
comprehensive understanding of their role in carbon export.
In addition, efforts should be made to identify at least the type 
of faecal pellet sampled and avoid the “mixed type” category.
This should be facilitated by the use of sediment traps with 

polyacrylamide gel (Iversen et al. 2017 ) and the development 
of image-based methods to classify faecal pellets (Shatova et 
al. 2012 , O’Daly et al. 2024 ). The different types of faecal pel- 
lets should be identifiable in images acquired by recent devices 
like the Underwater Vision Profiler (UVP) thanks to their size,
shape and/or transparency (Steinberg et al. 2023 , Perhirin et 
al. 2025b ). Combined with good image resolution, the high 

acquisition rate of such devices can provide critical insights 
about the in situ morphology, the fine-scale vertical distribu- 
tion, and the association between the faecal pellets and the 
communities of zooplankton producers. This will contribute 
to a better estimation of the biogeochemical role of faecal pel- 
lets. 

This meta-analysis, and in particular the results reported 

in Fig. 4 , provides modellers with empirically derived bench- 
marks for parameterizing the range of faecal pellet abundance 
and biomass fluxes occurring in the global ocean. Figures 5 

and 6 also provide information on the best way to set up the 
model sinking parameter. For biogeochemical models whose 
role is to represent average behaviours of particles, we rec- 
ommend a parameter for sinking rate that does not vary with 

depth and to carefully choose its value depending on the types 
of zooplankton faecal pellets simulated. Sinking rates influ- 
ence primary production and surface phytoplankton concen- 
tration (Schmittner et al. 2005 ) when pellets are remineralized 
n the mixed layer. Thus, a good practice would be to systemat-
cally study the sensitivity of primary production, phytoplank- 
on biomass, and carbon export efficiency to prescribed faecal 
ellet sinking rates (as done in Countryman et al. 2022 , Clerc
t al. 2023 , Luo et al. 2024 ). Finally, for individual-based mod-
ls, resolving zooplankton diversity, we recommend a meticu- 
ous choice of the sinking rate parameter value depending on
he producing taxon or species and taking into account some
ariability due to zooplankton faecal pellet size variations. As
n Stamieszkin et al. (2015) , the size of the copepod can help
redict the size of the faecal pellet. 

onclusion

aecal pellet-related data were highly variable in terms of their
ole in carbon fluxes and their size characteristics, which, in
urn, influenced their sinking rates. This variability was partly 
inked to the productivity of the ecosystem and to the type
f faecal pellets but might also be explained by several other
actors (phytoplankton community composition, zooplank- 
on size, etc.). The understanding of zooplankton faecal pellet 
ynamics and their role in POC fluxes will be improved by
easuring the recommended set of variables and focusing fu- 

ure studies on understudied types of zooplankton faecal pel- 
ets. It will also allow the use of more accurate parameters to
epresent faecal pellets’ dynamics in both biogeochemical and 

ndividual-based models. 
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