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Abstract

Faecal pellets of marine zooplankton play a key role in the biological carbon pump, i.e. all biologically mediated processes by which
organic carbon produced by photosynthesis is stored in the ocean’s interior. Numerous factors (size and biomass of faecal pellets,
composition and abundance of zooplankton, etc.) can affect the sinking rate of zooplankton faecal pellets and thus the efficiency of their
export at depth. A number of quantitative studies of the role of zooplankton faecal pellets in the biological carbon pump have been
conducted, focusing either on a region or a type of faecal pellets. These studies highlighted the large variability in the contribution
of faecal pellets to carbon fluxes, ranging from 0% to 100%. Here, we used a meta-analysis approach to extract quantitative data on
the size, biomass, and role of marine zooplankton faecal pellets in ocean carbon export from 197 scientific articles. Our study focused
on the six most studied faecal pellet types (mixed, cylindrical, ellipsoidal, tabular, spherical, and drop-shaped). We showed that abun-
dance and biomass fluxes of faecal pellets, as well as their contribution to particulate organic carbon fluxes, increased with ecosystem
productivity, here approximated by surface chlorophyll-a concentration. Furthermore, the fluxes of marine zooplankton faecal pellets
(both by abundance and biomass) were positively correlated, and the sampling location, rather than the type of faecal pellet, better
explained this correlation. Additionally, sinking rates were strongly correlated with volume, length, and width of faecal pellets, for all
faecal pellet types. Sinking rates did not vary with depth, although measurements become scarcer with depth. Our literature review
highlights the crucial role of faecal pellets in the biological carbon pump and the need to study less known types of faecal pellets, such
as ellipsoidal faecal pellets, and to measure multiple variables on the same samples. Finally, we recommend that modellers wishing to
represent faecal pellets in global biogeochemical models choose a constant sinking rate with depth within the range of the quantitative

values reported here.
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Introduction

Marine zooplankton contribute considerably to the global
carbon cycle within the Biological Carbon Pump (BCP). The
BCP refers to all the biologically mediated processes that en-
able organic carbon created by photosynthesis in the euphotic
layer to be transferred to the depths of the oceans. Three main
pathways are usually distinguished: the gravitational pump,
the migrant pump, and the mixing pump (Buesseler et al.
2008, Siegel et al. 2023). The gravitational pump is the sinking
of organic matter (faecal pellets, phytodetritus, carcasses, etc.)
out of the euphotic layer under the effect of gravity (Boyd et al.
2019). The migrant pump transports organic carbon through-
out the migration of some zooplankton species to depth on
diel and seasonal timescales (Steinberg and Landry 2017). Fi-
nally, the mixing pump is the export of organic carbon due to
physical mixing (Stukel et al. 2017). The BCP is estimated to
transfer ~10 PgC every year to the interior of the ocean (Siegel
et al. 2023) limiting the increase in carbon dioxide concentra-
tion in the atmosphere. In the climate change context, it is par-
ticularly important to better understand how the BCP works
and how it may evolve in the future (Ratnarajah et al. 2023).

Among these pathways, the most important one is the gravita-
tional pump contributing to ~60% of the total carbon export
(Boyd et al. 2019). In this study, we will focus on the zoo-
plankton faecal pellets that are the main contributors to the
gravitational pump (Bisson et al. 2020, Nowicki et al. 2022)
and whose contribution to POC fluxes has been reported to be
highly variable (from 0% to 100%, reviewed in Turner 2015).

Since the first studies on zooplankton faecal pellets, one
central question remains: why is the faecal pellet contribu-
tion to POC flux so variable? (Pilskaln and Honjo 1987).
Many studies tried to answer this issue and several factors
have been proposed to explain such variations. In particular,
faecal pellet roles in carbon fluxes can vary with space (Wil-
son et al. 2008, Steinberg and Landry 2017) and time (Wexels
Riser et al. 2002, Wilson et al. 2013, Cao et al. 2024). These
variations may be the results of varying phytoplankton (Bien-
fang 1980, Frangoulis et al. 2001, Liu and Wu 2016a, White
et al. 2018) or zooplankton (Grunewald et al. 2002, Fran-
goulis et al. 20035, Liszka et al. 2019) community structure
and composition. Moreover, some zooplankton species feed
on faecal pellets, either altering them (coprohexy: fragmenta-
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Figure 1. Examples of images of zooplankton faecal pellets from the literature. The images are classified and framed by type of faecal pellet as defined
in Table 1. The colours and icons correspond to those used throughout the study: blue for cylindrical, black for mixed, dark pink for ellipsoidal, orange for
spherical, brown for tabular, pale pink for drop-shaped, and grey for irregular, spiral, and amorphous faecal pellets. Each image has its own scale bar. a, d,
and g from Laurenceau-Cornec et al. (2015); b, j, and k from Belcher et al. (2017); ¢ from Cavan et al. (2015); e from Wilson et al. (2008); f and h from
Durkin et al. (2021); i from Steinberg et al. (2023); | from M. Perhirin; m and n from Bruland and Silver (1981) and o from Wang et al. (2023).

tion in smaller/slower sinking particles; coprochaly: altering
the faecal pellet volume and density after the disruption of
the peritrophic membrane) or consuming them (coprophagy)
(Lampitt et al. 1990, Noji et al. 1991). Increased intercep-
tion and recycling of faecal pellets reduce the efficiency of
the carbon pump, leading to a decreased faecal pellet abun-
dance with depth (Sampei et al. 2004, Durkin et al. 2021),
and hence a decreased contribution to carbon export. In the
idealized framework of a model, Mayor et al. (2020) found
that particle-associated copepods were even responsible for
81% of the annual flux attenuation of fast-sinking detritus,
the particle class representing zooplankton faecal pellets.
Zooplankton communities are highly diverse, which also
implies the production of a large variety of faecal pellets (Fig.
1). These different morphological characteristics can help to
distinguish faecal pellets in sediment traps or nets and infer
potential producers (Pasternak et al. 2000, Wilson et al. 2013,
Manno et al. 2015). Another common method to study fae-
cal pellets is to incubate organisms in the lab and collect their
faecal pellets. Only a few studies have attempted to compile
information on faecal pellets and their role in the BCP (Turner
2002,20135, Steinberg and Landry 2017). From a more quan-
titative point of view, some studies gathered data for specific
regions only or a specific type of faecal pellets (Phillips et al.
2009, Atkinson et al. 2012, Kim et al. 2024). More recently,
Liet al. (2024) combined data on faecal pellet contribution to
POC flux from 18 locations in the global ocean. They found

a good correlation between marine primary production and
faecal pellet contribution to carbon export.

Surprisingly, despite their diversity and potential role in car-
bon export, zooplankton faecal pellets have received little at-
tention in modelling studies. Still, few modelling studies have
quantified faecal pellet role at the global scale and estimated
global budgets. For example, Clerc et al. (2023) and Luo et
al. (2024) included large faecal pellets produced, respectively,
by filter-feeding gelatinous macrozooplankton, and fish and
tunicates, in global biogeochemical models. Serra-Pompei et
al. (2022) highlighted the major role of faecal pellets from
large zooplankton at 1080 m, emphasizing their key role in
sequestering carbon rather than only exporting it. At a more
local scale, Andersen and Nival (1988) modelled a Mediter-
ranean ecosystem using data from one sediment trap. They
highlighted the role of faecal pellets of copepods and salps
in the vertical flux of organic matter. Other modelling studies
focused on specific behaviour of copepods and inferred their
impact on carbon fluxes through the release of faecal pellets
at depth (Wallace et al. 2013) or via coprohexy/coprochaly
(Mayor et al. 2020). Finally, using an individual-based model,
Stamieszkin et al. (20135) studied the links between copepod
size and community composition and faecal pellet export.

In this context, the objectives of this study were to
(1) exhaustively compile quantitative data related to the
morphology of zooplankton faecal pellets (length, width, vol-
ume) and their role in carbon export (biomass and abundance



Meta-analysis of the role of zooplankton faecal pellets

flux, contribution to POC flux, sinking rate), and to (2) ex-
plore potential global trends. Thanks to this meta-analysis, we
wanted to (1) identify knowledge gaps and/or biases in litera-
ture, (2) refine their role in global carbon export and eventu-
ally identify global patterns, and (3) inform modellers, espe-
cially on faecal pellet sinking rate.

Materials and methods

Zooplankton faecal pellet scientific research
database

The research protocol of this study was inspired by the sys-
tematic review guidelines (Collaboration for Environmental
Evidence 2022) and focused on the contribution of recogniz-
able zooplankton faecal pellets to carbon export.

Articles were extracted from the literature July 4 of 2024
because they contained either (‘zooplankton’ or ‘mesozoo-
plankton’ or ‘copepods’ or ‘salpx’ or ‘appendicularians’ or
‘larvaceans’ or ‘krill¥’> or ‘amphipod*’) and (‘pellet+’ and
(“flux’ or “export’ or “POC’ or “length’ or ‘size’ or ‘vol-
ume’ or ‘sinking’ or ‘faecal’ or ‘fecal’)) in their title or (‘zoo-
plankton’ or ‘mesozooplankton” or ‘copepods’ or ‘salpx’ or
appendicularian%’ or ‘larvaceanx’ or ‘krillx’ or “amphipodx’)
and (‘pelletx’ and (‘flux’ or ‘export’ or ‘POC’ or ‘length’
or ‘size’ or ‘volume’ or ‘sinking’ or ‘faecal’ or “fecal’)) and
(‘ocean’ or ‘marine’)) in their abstract from BibCNRS (a portal
of the French National Center of Scientific Research for elec-
tronic documentary resources, https://bib.cnrs.fr/) (n = 530).
A personal database of scientific literature compiled by the
first author was also used and 64 articles were added to the
database. The resultant global database (7 = 594) included
mostly scientific articles and a few book chapters. Titles and
abstracts of this database were manually screened and clas-
sified as <« Good > (n = 222) or « Bad >» (n = 372).
<« Good >»> was assigned if the study focused on marine
zooplankton faecal pellets and contained quantitative val-
ues on either the carbon content, the size, the sinking rate
of the faecal pellets, or their contribution to carbon flux.
If there was any doubt about the presence of quantitative
data, the rest of the text was briefly reviewed. The focus was
made on identifiable or recognizable zooplankton faecal pel-
lets and not on the faecal aggregates or other types of sinking
particles.

Using BibCNRS as a research database gives access to the
vast majority of scientific literature. Some articles may still be
missing following this search. However, we believe that the
extensive screening we did and the addition of our personal
database of scientific articles have made it possible to study the
vast majority of scientific articles dealing with zooplankton
faecal pellet data.

Among the 222 « Good >> articles, 3 were reviews and
11 modelling studies without novel measured data. For 11
articles, the full manuscripts were not available online (grey
literature or articles published before 1990), and were then
discarded for the analyses. We checked that scientific articles
used in the reviews were in our database. Modelling studies
were analysed separately, see section Modelling studies be-
low. Hence, quantitative data were extracted from 197 stud-
ies, either digitized from figures (using the online application
Plot Digitizer https://plotdigitizer.com/app), from tables (us-
ing the online tool Docsumo https://www.docsumo.com/free-
tools/extract-tables-from-pdf-images), or from the text itself.

Two types of data were gathered. Data measured at one
time and one place (for variables related to faecal pellet role
in POC flux) or measured on one faecal pellet (for variables
related to morphology and biomass) are thereafter referred to
as individual faecal pellet records. Averaged data (over time
and/or space for variables related to faecal pellet role in POC
fluxes, or over multiple faecal pellets for variables related to
their morphology and biomass) are thereafter referred to ag-
gregated faecal pellet records. The sample size for the aggre-
gated faecal pellet records was not often available; hence, the
sample size was not saved in the final dataset.

Additional variables

In order to standardize the database and to be able to take into
account the information retrieved either on the shape of the
faecal pellets or on the taxa that produced them, a subset of 37
studies, which already categorized faecal pellets and used to
build the faecal pellet database, were reviewed to associate the
faecal shape with zooplankton taxa (Table 1). Some scientific
articles also took into account the size (e.g. Ayukai and Hat-
tori 1992), the colour (e.g. Wilson et al. 2008), or the state
of deterioration (e.g. Gonzalez et al. 1994a) of zooplankton
faecal pellets. However, since this information was not avail-
able in all articles, we focused our standardization on shape
only (mixed, cylindrical, ellipsoidal, spherical, tabular, drop-
shaped, irregular, spiral, amorphous, large, conical). Given the
great diversity in the morphology of faecal pellets and the nu-
merous factors that can affect it (Werner 2000, Wilson et al.
2008), this homogenization probably implies compromises in
methodologies, as faecal pellets produced by the same taxa un-
der different conditions may belong to different types of fae-
cal pellet. For example, faecal pellets produced by amphipods
were described as brown (Matsuno et al. 2016), ellipsoidal
(Carroll et al. 1998), or cylindrical (Wassmann et al. 2000,
Werner 2000, Wexels Riser et al. 2007). Brown type was not
retained in the standardization process. The cylindrical shape
was still the most common description in the database, but the
ellipsoidal shape might still be representative of amphipod fae-
cal pellets as written in Table 1. Similarly, chaetognath faecal
pellets were described as ellipsoidal (Giesecke et al. 2010) or
drop-shaped (Dilling and Alldredge 1993).

In the end, each data point was linked to a type of faecal pel-
let (represented hereafter by icons and colours) and, when pos-
sible, their most likely producers. Irregular, spiral, amorphous,
large, and conical zooplankton faecal pellets appeared in less
than 5 scientific articles (Table 1). Due to this low amount of
data, these five types were not considered in the rest of the
study.

In situ chlorophyll-a concentration ([Chl-a]) was measured
in only 86 scientific articles (including 8 incubations or cul-
tures data) out of the 197 in the database. Hence, to ap-
proximate the productivity of all sampled ecosystems at the
global scale, monthly climatology of surface chlorophyll-
a concentration (L3 mapped product, 4 km, MODIS-Aqua
Ocean Colour Data, https://oceandata.sci.gsfc.nasa.gov/13/)
was used. For data sampled during a month or less, the sam-
pling month and the location (latitude, longitude) were used
to retrieve the chlorophyll-a concentration. For data sam-
pled during more than a month, averaged chlorophyll-a con-
centration values at the location (latitude, longitude) were
computed. For 218 pairs of location and month out of 824,
chlorophyll-a concentration values were not available. All of
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Table 1. Types of zooplankton faecal pellets used in this study, a list of most likely zooplankton producers based on the literature, synonyms that can be
found in literature, references defining such shapes of zooplankton faecal pellets and number of scientific articles mentioning them.

Synonyms found in

# of scientific articles

Type of faecal pellet Most likely producers literature mentioning it
Cylindrical Large copepoda (Honjo and Roman 1978, Bathmann et Long, filiform, 131
al. 1991, Noji et al. 1991, Accornero and Gowing 2003, strings
Sampei et al. 2009, Kobari et al. 2010, Cole et al. 2016)
\ Euphausiaceae (Gonzélez et al. 1994a, Belcher et al.
2017, Yang et al. 2019)
Decapoda larvae (Matsuno et al. 2016)
Amphipoda (Werner 2000, Wexels Riser et al. 2007)
Mixed Unidentified zooplankton NA 99
C——
Ellipsoidal Small and medium-sized copepoda (Nothig and von Ovoid, oval, 59
Bodungen 1989, Gonzélez et al. 1994b) elliptical
" Larvacea (Gonzélez et al. 1994a, Matsuno et al. 2016,
Durkin et al. 2021)
Barnacle larvae (Matsuno et al. 2016)
Amphipoda (Carroll et al. 1998)
Chaetognatha (Giesecke et al. 2010)
Spherical Microzooplankton (Gowing and Silver 1985) Round 25
& Rhizaria (Gowing and Silver, 1985)
Nauplii larvae (Pasternak et al. 2000, Yoon et al. 2001)
Protozoans (Gowing and Silver 1985, Nothig and von
Bodungen 1989, Gonzalez 1992)
Tabular Salpa (Caron et al. 1989, Accornero et al. 2003, Steinberg Rectangular flakes, 22
et al. 2023) flakes
Drop-shaped Chaetognatha (Dilling and Alldredge 1993) NA 6
Pyrosoma (Drits et al. 1992)
Limacina belicina (Manno et al. 2010)
Irregular Doliolida (Bruland and Silver 1981, Koster et al. 2011) NA 4
Spiral Carinaria sp. (Wilson et al. 2008) NA 4
Pteropoda (Bruland and Silver 1981)
Amorphous Unknown (Kobari et al. 2010, Wang et al. 2023) NA 3
Large Fishes (Accornero and Gowing 2003, Durkin et al. 2021) NA 2
Conical Clio sp. (Yoon et al. 2001) NA 1

Shapes are ordered from the most frequently studied to the least. The colours and icons correspond to those used throughout the study: blue for cylindrical,
black for mixed, dark pink for ellipsoidal, orange for spherical, brown for tabular, pale pink for drop-shaped, and grey for irregular, spiral, and amorphous

faecal pellets, as in Fig. 1

them were located close to the coast or in polar regions and
were not considered in the study. Chlorophyll-a concentration
values were then discretized into three categories: low produc-
tive regions ([Chl-a] < 0.1 mg m~3), moderate productive re-

gions (0.1 mg m~3 < [Chl-a] < 1 mgm~
regions (1 mg m~3 < [Chl-a]).

The exact same procedure was applied to sea surface
temperature (SST, L3 mapped product, 4 km, MODIS-

3) and high productive
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Aqua Sea Surface Temperature Data, https://oceandata.sci.
gsfc.nasa.gov/13/). SST data was not available for 93 locations.
Three categories were created: cold (SST < 5°C), medium (SST
between 5°C and 15°C), and warm (SST > 15°C) waters.

To standardize sampling locations, an ocean basin (Arc-
tic, Northern Atlantic, Southern Atlantic, Indian, Pacific, and
Southern Oceans and Mediterranean Sea) was assigned to
each location based on latitudes and longitudes. The Arctic
Ocean borders were defined by the 10°C isotherm in July. The
northern limit of the Southern Ocean was defined as 60°S.
The Atlantic Ocean was separated into the Northern (lati-
tude > 0°) and the Southern (latitude < 0°) Atlantic Ocean.

Modelling studies

In the database, 11 articles used models to compute faecal pel-
let fluxes, contribution to POC flux and/or abundances. The
parameters related to faecal pellets (e.g. sinking rate, volume,
production rate) were retrieved from these studies. For each
parameter, a type of faecal pellet was assigned.

To supplement the model literature and focus on faecal pel-
let sinking rates, a second query was done in Elicit: The Al
Research Assistant (https://elicit.com/). We asked “What is the
sinking rate of detritus produced by zooplankton in biogeo-
chemical models?” and the 24 most pertinent scientific arti-
cles were screened. Two were already present in our database.
Among the 22 others, most of them did not explicitly represent
zooplankton faecal pellets but large detritus or fast-sinking
particles. This search therefore mainly contributed to the dis-
cussion on the representation of faecal pellets in models.

Final datasets

The final dataset contained data about faecal pellet morphol-
ogy and biomass (length in um, width in um, volume in pm?3,
carbon content in ugC pellet~! or in mgC mm~3, density in
gC cm~3) and their role in POC flux (abundance fluxes in #
m~2 d~! and biomass fluxes in mgC m~2 d~', contribution to
POC flux in %), along with their metadata (month, year, lat-
itude in °N, longitude in °E, depth in m, type of faecal pellet,
ocean sampled, surface chlorophyll-a concentration in mgC
m~3, productivity level, sea surface temperature in °C, temper-
ature category, sampling method, reference, DOI). Data were
aggregated or individual faecal pellet records. This database
was then filtered to extract samples for which several vari-
ables had been measured (e.g. abundance and biomass flux,
sinking rate, and length).

Model parameters related to faecal pellets were stored
in another dataset containing parameter names, values, and
units, and the reference from which they were extracted.

The different datasets used in this study are available on
Seanoe (Perhirin et al. 2025a).

Data analyses

A Kruskal-Wallis analysis (Kruskal and Wallis 1952) was used
to test for the impact of the productivity level on the faecal pel-
let contribution to POC flux and abundance/biomass fluxes.
It was followed by a Dunn pairwise test (Dunn 1961) with
Bonferroni p-values correction for multiple comparisons, to
assess the significance of the observed patterns (Dunn 1961).
The same procedure was applied to test the impact of the SST
categories.

The correlation between aggregated faecal pellet records of
faecal abundance and biomass fluxes was tested using Spear-

man’s correlation coefficients, with Bonferroni P-values cor-
rection for multiple comparisons (Dunn 1961). The same
methodology was applied to aggregated faecal pellet records
of faecal pellet sinking rates and volumes or lengths or widths.
The effect of faecal pellet type and the ocean basin on the rela-
tion between faecal pellet abundance and biomass fluxes was
evaluated using linear models fitted to the individual records.
In the analyses, patterns were considered significant if P-values
were lower than 0.01.

Numerical tools

All statistical analyses were conducted in the programming
environment R 4.3.1 (R Core Team 2021). The package tidy-
verse (Wickham et al. 2019) was used for data manipulations.
The packages sp (Pebesma and Bivand 2005) and lubridate
(Grolemund and Wickham 2011) were used to manipulate
coordinates and dates data, respectively. The packages RCol-
orBrewer (Neuwirth 2022), ggplot2 (Wickham et al. 2021),
cowplot (Wilke 2020), and ggimage (Yu 2023) were used to
produce general graphics. The packages sf (Pebesma and Bi-
vand 2023), rnaturalearth (Massicotte et al. 2023), and rnat-
uralearthdata (South et al. 2024) were used to produce the
maps. The package corrplot (Wei et al. 2021) was used to com-
pute correlation coefficients.

Results

Database presentation

Data gathered in this meta-analysis covered almost the en-
tire global ocean (78.00°S to 88.83°N and 177.61°W to
179.80°E). Data were sampled between November 1967 and
May 2022. Summer, spring, and autumn were the most stud-
ied seasons (with data in 125, 98, and 87 scientific articles,
respectively), while winter was the least studied (49 scientific
articles).

A majority of the scientific studies used sediment traps data
(56%) and one-third (34%) incubation data. Among the other
methods, it is worth mentioning the use of imagery to study
faecal pellets (McDonnell and Buesseler 2010, Katija et al.
2017, Fragoso et al. 2022, Giménez et al. 2023) and an echo-
sounder (Restad and Kaartvedt 2013).

On average, 2.5 + 1.4 (ranging from 1 to 6) variables were
measured in each study. Zooplankton faecal pellet flux (abun-
dance and biomass together) was the most studied variable,
while density was the least studied (Fig. 2). Cylindrical faecal
pellets were the most studied type, with a minimum of 135 sci-
entific articles per variable (Fig. 2) reflecting the domination
of crustacean zooplankton at the global scale (Table 1) (Drago
et al. 2022). On average, 1.7 (& 1.1, between 1 and 6) types
of faecal pellets and 2.7 (& 2.7, between 1 and 22) taxa were
studied per scientific article.

Carbon fluxes of zooplankton faecal pellets

The contribution of zooplankton faecal pellets to POC flux
spanned the entire range from 0% to 100% and the median
contribution was between 5% and 22%, depending on the
productivity of the ecosystem (Fig. 3b). Flux of zooplankton
faecal pellets was on average about 1000-10 000 faecal pellets
m~2 d~! (Fig. 3c) and represented between 0.1 and 8 mgC
m~2 d~! (Fig. 3d). These values increased significantly with the
productivity of the ecosystem (P < 0.0001 between each box-
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Figure 2. Number of scientific articles containing data among the 8 quantitative variables used in this study. Colours represented the type of faecal
pellets concerned: cylindrical (131 articles), mixed (99), ellipsoidal (59), tabular (25), spherical (22), and drop-shaped (6).

plot, except between low- and medium-productive regions in
faecal pellet abundance flux).

For both aggregated and individual records, there were
positive and strong correlations between the abundance
and biomass of the zooplankton faecal pellet fluxes
(P < 0.0001; Fig. 4b, ¢, and d). The two linear models
tested here on individual faecal pellet records were significant
(Fig. 4a and c). However, the types of zooplankton faecal
pellets explained almost nothing (R? = 0.04, P < 0.001; Fig.
4a), while the sampling location explained more of the
relationship between abundance and biomass zooplankton
faecal pellet fluxes (R> = 0.430, P < 0.001; Fig. 4c). This
was not the case for aggregated faecal pellet records (Fig. 4b
and d).

The contribution of zooplankton faecal pellets to POC
fluxes was slightly more correlated to biomass fluxes than
to abundance fluxes (Supplementary Fig. S2). For individual
records, contribution to POC fluxes were low (<20%) when
faecal pellet abundance fluxes were below 500 # m=2 d~!
(Supplementary Fig. S2A) or faecal pellet biomass fluxes were
below 0.1 mgC m~2 d~! (Supplementary Fig. S2C). However,
for aggregated records, data was lacking.

Morphology of zooplankton faecal pellets and
sinking rates

There were strong positive correlations between the sinking
rate and the size of zooplankton faecal pellets (Fig. 5), in agree-
ment with previous studies who reported a relationship be-
tween volume and sinking rate of zooplankton faecal pellets
(Smayda 1969, Bruland and Silver 1981). The sinking rates
and the density of faecal pellets were also correlated (Supple-

mentary Fig. S3). It was not possible to compute the correla-
tion between the sinking rate and the carbon content of zoo-
plankton faecal pellets because not enough studies measured
both variables (7 = 3).

Vertical profiles of zooplankton faecal pellet sinking
rate

Sinking rates reached an average of 100 m d~! for all types
of faecal pellets, except for tabular ones that sank one order
of magnitude faster (Fig. 6). There was almost no variation of
the sinking rate with depth.

Model parameter values were within the range of observed
faecal pellet sinking rates. Sinking rates of tabular pellets were
fixed at around 1000 m d~!, matching with observed values
(Fig. 6) (Andersen and Nival 1988, Clerc et al. 2023). For
other types of faecal pellets, parameters representing sinking
rate were around 50-100 m d~! (Andersen and Nival 1988,
Mayor et al. 2020, Countryman et al. 2022, Clerc et al. 2023),
hence in the range of observed values for these types (Fig. 6).
Here, in the model representing ellipsoidal faecal pellets, pro-
ducers were small copepods (Countryman et al. 2022). How-
ever, no study in our dataset measured the sinking rate of el-
lipsoidal faecal pellets.

Discussion

This meta-analysis clarified the significant role of zooplank-
ton faecal pellets in carbon fluxes. Their contribution to POC
fluxes, as well as the intensity of their abundance and biomass
fluxes, increased with the ecosystem productivity. We high-
light biases in data related to zooplankton faecal pellets and
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make recommendations for experimentalists and modellers
who wish to study zooplankton faecal pellets and their role
in the carbon export.

Faecal pellet database caveats

Despite the extended spatial coverage of the sampling loca-
tions, data were still scarce for the gyres and at deep oceanic
waters. There was a clear imbalance between the Northern
and Southern hemispheres (shown for Flux and %POC flux
data in Fig. 3a). Winter was the least studied season, due to the
difficulty to access some regions of the global ocean. Finally, it
is important to note that most of the studies measuring indi-
vidual characteristics and sinking rates of zooplankton faecal
pellets were published more than 20 years ago.

Although most of the data gathered here came from sedi-
ment traps, they have several biases. Because of the way they
are deployed, they do not allow for significant spatio-temporal
resolution but this is counterbalanced by the large amount of
data that has been gathered. They also might miss rare but
important export events such as the ones following blooms
(Miquel et al. 2015) and be affected by hydrodynamics, espe-
cially at shallow depths (Siegel et al. 2024, Yu et al. 2001).
They tend to underestimate flux and they have a bias towards
intermediate-size particles (Buesseler et al. 2007). Moreover, in
high productivity environments, actively feeding zooplankton
organisms (called swimmers) can enter the traps and disaggre-
gate the captured particles or produce new ones, thus affecting
the measured flux (Knauer et al. 1979, Karl and Knauer 1984).
For all these reasons, it is important to keep in mind that data
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from sediment traps might represent the lower range of flux
values.

Variability in faecal pellets contribution to POC
fluxes

Surface chlorophyll-a concentration explained part of the fae-
cal pellets dynamics and their contribution to POC flux. This
process was already observed at a smaller scale in the Pacific
Ocean along the California coast (Dagg et al. 2014) and in
the Southern Atlantic Ocean (Giménez et al. 2023). In an Arc-

tic system, Darnis et al. (2024) also showed that faecal pellet
export had increased following zooplankton-enhanced feed-
ing activity. Nevertheless, some ecosystems in low produc-
tivity regions were characterized by high abundance fluxes
of zooplankton faecal pellets (>5.10° # m~2 d~!, Fig. 3c).
These data were sampled at BATS in the Sargasso Sea. This
increased faecal pellet flux was attributed to the arrival of
planktonic organisms from higher trophic levels following a
physico-chemical disturbance on the mesoscale (Goldthwait
and Steinberg 2008). Similarly, there was a group of elevated
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biomass fluxes of zooplankton faecal pellets in low produc-
tive regions (>100 mgC m~2 d~', Fig. 3d). These data were
sampled at ALOHA in the Pacific Ocean. This was attributed
to the presence of detritivorous and carnivorous species in
the mesozooplankton community (Wilson et al. 2008). Like-
wise, data from South Georgia sampled in a high productiv-
ity region presented low abundance flux of zooplankton fae-
cal pellets (Belcher et al. 2017). These mismatches between
productivity and faecal pellet fluxes may result from a tem-
poral decoupling between primary production and the pro-
duction of particles, especially because the faecal pellet pro-
ducers considered in this study are not always primary con-
sumers (e.g. chaetognatha, copepoda, etc.) as in Wilson et al.
(2008). These mismatches might also result from discrepan-
cies between chlorophyll-a concentration estimates from re-
mote sensing and productivity. Moreover, surface chlorophyll-
a concentration cannot reveal any potential high sub-surface
chlorophyll-a maxima.

Sea surface temperature may also account for part of this
variability (Supplementary Fig. S1). In warm regions (mostly
in the gyres) ecosystems tend to be oligotrophic and domi-
nated by smaller zooplankton (Brun et al. 2016) leading to
lower faecal pellet contribution and fluxes. In contrast, cold
regions (mostly in the polar regions) host larger zooplankton
species (Brun et al. 2016) productivity is restricted to the short
polar summer period (Perrette et al. 2011, Daase et al. 2021),
leading to intermediate faecal pellet contribution to the POC
fluxes and faecal pellet fluxes. The highest faecal pellet contri-
bution to the POC fluxes and faecal pellet fluxes was recorded
in temperate regions. The influence of temperature on faecal
pellet flux is indirect, acting primarily through temperature-
driven changes in individual traits such as size (Brun et al.
2016), which influence faecal pellet production rates (Ayukai
and Hattori 1992).

Many other factors, not evaluated in this article, can be re-
sponsible for variations of the zooplankton role in carbon ex-
port. For example, zooplankton biomass (Gleiber et al. 2012)
can impact faecal pellet fluxes. Moreover, zooplankton com-
munity composition (Kobari et al. 2010) and the presence of
migrators (Gonzalez 1992, Dagg et al. 2014, Steinberg et al.

2023) might also affect the intensity of faecal pellet fluxes.
Sometimes, multiple factors can explain a large range of varia-
tions. For example, the presence of sea ice in the environment,
as well as the diet and the size of krill, affected the sinking
journey of their faecal pellets (Cadée et al. 1993).

Zooplankton faecal pellet biomass and abundance
fluxes

The positive relationship between abundance fluxes and
biomass fluxes was already reported in regional studies (Car-
roll et al. 1998, Yang et al. 2019, Li et al. 2024) and is now
confirmed at the global scale. The types of faecal pellets de-
fined in this study were mostly related to their shape and to
the potential zooplankton producers (Table 1), while sam-
pling locations were defined based on the ocean basin sam-
pled. Thus sampling locations better integrate environmental
variability (e.g. temperature, community composition of phy-
toplankton and zooplankton, etc.) and physical processes such
as upwelling or monsoon phenomenon (Li et al. 2024). Hence,
the characteristics of faecal pellets possibly impacting flux in-
tensity (e.g. density, size, etc.) might better be captured by the
sampling location (Fig. 4c and d) than by the faecal pellet types
alone (Fig. 4a and b).

Abundance fluxes do not take into account the carbon con-
tent of zooplankton faecal pellets. As mentioned in Durkin et
al. (2021), the weaker correlation between abundance fluxes
and contribution to POC fluxes might be explained by the
abundance of small faecal pellets contributing less than large
ones. Hence, abundance fluxes might not be a reliable variable
when measured alone.

In addition, zooplankton faecal pellet contribution to POC
fluxes might also be affected by variations in the contribution
of the other components of the POC such as phytodetritus,
carcasses, moults, or other types of marine snow.

Sinking rate of zooplankton faecal pellets

Tabular faecal pellets were the largest, hence sank the fastest.
However, only 10 scientific articles measured fluxes from tab-
ular pellets (Fig. 2) and their contribution to POC fluxes
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was rarely high (Supplementary Fig. S2) (Manno et al. 2015,
Décima et al. 2023) and often episodic, with low abundances
in the traps (Durkin et al. 2021). This might be explained by
two main hypotheses. First, tabular faecal pellets do not have
peritrophic membranes compared to the cylindrical faecal pel-
lets produced by crustaceans (Bruland and Silver 1981, Caron
et al. 1989, Gonzélez 1992), hence they might be unrecogniz-
able due to biological and/or physical damage (aggregation
and/or disaggregation) before or during sampling (Gonzélez
1992, Gleiber et al. 2012, Iversen et al. 2017). They can also
be a source of food for zooplankton (Doherty et al. 2021).
Second, salps, unlike krill, generally do not form groups of or-
ganisms dense enough for their faecal pellets to appear in sed-
iment traps (Atkinson et al. 2012), even though such events
may seldom be observed (Smith et al. 2014). Their heteroge-
neous distribution may further hamper their pellets’ sampling,
as well as their ability to perform extensive diel vertical migra-
tions, a trait shared with other zooplankton such as copepods
(Bandara et al. 2021).

Cylindrical faecal pellets can be produced by various zoo-
plankton taxa (Table 1) of very different sizes (from small
calanoids to euphausiacea). This appeared in our data with
Centropages typicus producing the smallest, hence slowest
sinking faecal pellets, and krill the largest and fastest, fol-
lowing the relationship between the sizes of the producers
and their faecal pellets (Uye and Kaname 1994, Kobari et al.
2010, Stamieszkin et al. 2015). Yet, some copepods produce
faecal pellets that sink as fast as the ones produced by krill,
despite their size difference. Thus, other factors than size char-
acteristics influenced the sinking rate of faecal pellets. One of
them might be the density of the faecal pellets (Supplementary
Fig. S3). Phytoplankton community composition might also
influence the sinking rate of faecal pellets via their potential
effect on density (Bienfang 1980, Frangoulis 2001), known as
the ballasting effect (Iversen and Ploug 2010). Furthermore,
food quality may impact the sinking rate (Butler and Dam
1994). Effect of diet on the sinking rate of faecal pellets was
tested with data gathered in this study. Due to the high vari-
ability in sinking rates between faecal pellets produced by dif-
ferent taxa (Wexels Riser et al. 2007, Wang et al. 2023) and
the low number of data, analyses were made only on krill and
Acartia tonsa faecal pellets. It did not reveal a clear pattern on
the effect of diet on faecal pellet sinking rate (Supplementary
Fig. S4). Finally, the digestion process might affect characteris-
tics of faecal pellets (Atkinson et al. 2012, Liu and Wu 2016b).

Faecal pellet carbon content is highly variable: with latitude
(Gleiber et al. 2012), with diet (Urban-Rich et al. 1998, Pauli et
al. 2021), and with season (Manno et al. 2015, Li et al. 2022).
Atkinson et al. (2012) showed that the sinking rate of krill fae-
cal pellets was negatively correlated to their carbon content.
Menschel and Gonzilez (2019a) and Wang et al. (2023) found
an inverse relationship between faecal pellet volumes and car-
bon content while other studies found a positive relationship
(Gleiber et al. 2012, Li et al. 2022, Steinberg et al. 2023). As
emphasized in Li et al. (2022), more studies should be done to
better understand carbon content variation in various types of
faecal pellets and in different temporal and spatial conditions.
Furthermore, a better understanding and/or quantification of
variations in the carbon content of faecal pellets could clar-
ify the impact of zooplankton in carbon fluxes (Urban-Rich
et al. 1998). Further studies must study sinking rates of fae-
cal pellets of zooplankton with a focus on understudied types
(ellipsoidal, drop-shaped).

Perhirin et al.

Representing zooplankton faecal pellets in models

Zooplankton faecal pellets are not often explicitly represented
in models (Stukel et al. 2014). It is even rarer that their high
variability is taken into account. However, when tabular fae-
cal pellets are explicitly represented in global biogeochemical
models, they increased carbon fluxes to the deep ocean and
in the oligotrophic gyres (Clerc et al. 2023, Luo et al. 2024).
Hence, a better representation might be essential to fully un-
derstand carbon export variability and efficiency.

The significant positive correlation between sinking rate
and size characteristics of zooplankton faecal pellets (Fig. 5)
could be of great value to modellers. We recommend mod-
ellers to take advantage of it, but in ocean biogeochemical
models, this would be useful only when some zooplankton di-
versity is represented. For example, it would be suitable in size-
resolved models such as the one in Serra-Pompei et al. (2020).
This model focused on copepods and many faecal pellet size
classes were also included each with a sinking rate defined
by size. One can imagine a similar model focusing on salps,
for which size can correspond to different species (Henschke
et al. 2016), or focusing on the entire zooplankton compart-
ment. Some models indirectly take into account the diet of
zooplankton by adjusting sinking rate according to the min-
eral fraction of the particles (Gehlen et al. 2006, Laufkotter
et al. 2016, Le Quéré et al. 2016). In individual-based models,
following Stamieszkin et al. (2015) could be very promising,
i.e. using the prosome length of copepods to predict faecal pel-
let volume and the resulting sinking rate. Sinking rates were in
the range of observed values (between 2.4 m d~! and 221.3 m
d-1).

In modelling studies, all model parameters representing
sinking rate were constant with depth except in Kvale et al.
(2023) (Fig. 6), which assumed that the sinking rate of faecal
pellets increases with depth. This assumption is mostly based
on Berelson (2001), who studied bulk particles from sediment
traps. However, the dataset gathered here for zooplankton fae-
cal pellets did not confirm this assumption. Keeping sinking
rate constant might affect a few biogeochemical models that
represent large or fast-sinking particles (including zooplank-
ton faecal pellets among other types of particles) with an in-
creasing sinking rate with depth (Gehlen et al. 2006, Karakus
et al. 2021). Better estimates of sinking rates of zooplankton
faecal pellets might help to better quantify carbon export and
carbon transfer efficiencies (Karakus et al. 2025).

Recommendations for experimentalists and
modellers

From our meta-analysis, we suggest the systematic collection
of the following variables from a representative subset of sed-
iment trap particles (or all particles, when possible): detailed
particle types (including faecal pellet types), individual den-
sity and size (at least the major axis of each particle), and to-
tal biomass. Efforts should also be made to acquire and make
available environmental data to better understand the state of
the ecosystem during sampling (e.g. chlorophyll-a concentra-
tion, phytoplankton functional groups, quality and quantity
of available food for zooplankton, etc.). For laboratory anal-
yses, we recommend concurrent measurement of as many vari-
ables as possible on both faecal pellets and their zooplankton
producers. Ideally, both faecal pellet flux data (abundance and
biomass) and individual-scale data related to both their mor-
phology (length, width, or volume) and their biomass (carbon
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Figure 6. Sinking rate (m d~") of faecal pellets in function of depth (a) with a zoom in the 0-50 m layer (b). Data are coloured based on the type of faecal
pellets. Box-plots represented the distribution of individual faecal pellet records retrieved from figures and/or tables per depth. Points and ranges

represented aggregated faecal pellet records (mean + standard deviation). Dashed lines represented parameters used in models explicitly representing
faecal pellets (#1 = Kvale et al. (2023), #2 = Andersen & Nival (1988), #3 = Clerc et al. (2023), #4 = Countryman et al. (2022), #5 = Mayor et al. (2020)).

Note the x-log10 axis.

content or density) should be measured on the same faecal
pellets, as was done in Gowing et al. (2001), Huskin et al.
(2004), and Pauli et al. (2021). Further studies should also ac-
quire data on understudied types of zooplankton faecal pel-
lets (e.g. ellipsoidal, drop-shaped) in order to gain a more
comprehensive understanding of their role in carbon export.
In addition, efforts should be made to identify at least the type
of faecal pellet sampled and avoid the “mixed type” category.
This should be facilitated by the use of sediment traps with
polyacrylamide gel (Iversen et al. 2017) and the development
of image-based methods to classify faecal pellets (Shatova et
al. 2012, O’Daly et al. 2024). The different types of faecal pel-
lets should be identifiable in images acquired by recent devices
like the Underwater Vision Profiler (UVP) thanks to their size,
shape and/or transparency (Steinberg et al. 2023, Perhirin et
al. 2025b). Combined with good image resolution, the high
acquisition rate of such devices can provide critical insights
about the in situ morphology, the fine-scale vertical distribu-
tion, and the association between the faecal pellets and the
communities of zooplankton producers. This will contribute
to a better estimation of the biogeochemical role of faecal pel-
lets.

This meta-analysis, and in particular the results reported
in Fig. 4, provides modellers with empirically derived bench-
marks for parameterizing the range of faecal pellet abundance
and biomass fluxes occurring in the global ocean. Figures 5
and 6 also provide information on the best way to set up the
model sinking parameter. For biogeochemical models whose
role is to represent average behaviours of particles, we rec-
ommend a parameter for sinking rate that does not vary with
depth and to carefully choose its value depending on the types
of zooplankton faecal pellets simulated. Sinking rates influ-
ence primary production and surface phytoplankton concen-
tration (Schmittner et al. 2005) when pellets are remineralized

in the mixed layer. Thus, a good practice would be to systemat-
ically study the sensitivity of primary production, phytoplank-
ton biomass, and carbon export efficiency to prescribed faecal
pellet sinking rates (as done in Countryman et al. 2022, Clerc
etal.2023, Luo et al. 2024). Finally, for individual-based mod-
els, resolving zooplankton diversity, we recommend a meticu-
lous choice of the sinking rate parameter value depending on
the producing taxon or species and taking into account some
variability due to zooplankton faecal pellet size variations. As
in Stamieszkin et al. (2015), the size of the copepod can help
predict the size of the faecal pellet.

Conclusion

Faecal pellet-related data were highly variable in terms of their
role in carbon fluxes and their size characteristics, which, in
turn, influenced their sinking rates. This variability was partly
linked to the productivity of the ecosystem and to the type
of faecal pellets but might also be explained by several other
factors (phytoplankton community composition, zooplank-
ton size, etc.). The understanding of zooplankton faecal pellet
dynamics and their role in POC fluxes will be improved by
measuring the recommended set of variables and focusing fu-
ture studies on understudied types of zooplankton faecal pel-
lets. It will also allow the use of more accurate parameters to
represent faecal pellets’ dynamics in both biogeochemical and
individual-based models.
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