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Abstract

To date less than 5% of shark species have nuclear reference genomes, despite next-generation sequencing advances. 
Particularly for threatened shark species, there is a lack of reliable genomes which are crucial in facilitating research and con
servation applications. We assembled the first nuclear reference genome of the endangered grey reef shark (Carcharhinus 
amblyrhynchos) using long-read PacBio HiFi and Omni-C sequencing to reach chromosome-level contiguity (36 pseudochro
mosomes; 2.9 Gbp) and high completeness (94% complete BUSCOs). BRAKER3 annotated 16,505 protein-coding genes 
after masking repetitive elements which accounted for 59% of the genome. We identified potential X and Y sex chromosomes 
on pseudochromosomes 36 and 57, respectively. The quality and completeness of the draft genome of C. amblyrhynchos will 
enable researchers to investigate genetic variations and adaptations specific to this species as well as across other Carcharhinus 
spp., opening new venues for comparative genomics and advancing conservation genetic applications.
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Significance
Stemming from an ancient vertebrate lineage, sharks present an interesting evolutionary study system. A third of shark 
species face extinction, yet critical genomic resources necessary for research and conservation remain scarce. To address 
this gap, we assembled and annotated the first chromosome-level nuclear reference genome of the threatened grey reef 
shark (Carcharhinus amblyrhynchos) at high completeness. This genome will help advance studies in evolution, phylo
genetics, adaptation, and conservation, offering insights not only for this species but for wider elasmobranch and ver
tebrate research.
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Introduction
Sharks belong to the cartilaginous fish (class Chondrichthyes), 
one of the oldest vertebrate lineages which emerged over 
400 million years ago, encompassing a diverse array of 

taxa such as sharks, rays, skates, and chimaeras. Having 
lived through five mass extinction events, sharks now face 
unprecedented rates of population declines due to habitat 
loss and overfishing (Dulvy et al. 2014, 2021). According to 
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the IUCN Red List, nearly one-third of shark and ray species 
are currently classified as threatened (Critically Endangered, 
Endangered, or Vulnerable; Pacoureau et al. 2021), with 
some families, such as Carcharhinidae (requiem sharks), ex
hibiting even higher proportions—up to 68%—of threa
tened species.

The grey reef shark (Carcharhinus amblyrhynchos) is one 
of the most widespread requiem sharks in the Indo-Pacific. 
C. amblyrhynchos has high reef fidelity (Heupel et al. 2010; 
Papastamatiou et al. 2018), with rather rare long-range mi
grations (usually under 100 km), primarily undertaken by 
males (Bonnin et al. 2019). Their unique life history and habi
tat association has led to relatively high levels of genetic 
population structure compared with other shark species 
(Cortés 2000; Robbins 2006; Bernard et al. 2021). 
Ecologically, C. amblyrhynchos occupies a unique niche, re
presenting up to 50% of higher-order predator biomass 
on some reefs (Friedlander et al. 2014) and preying on un
usually large prey for its size (Barley et al. 2020). However, 
life history traits such as slow growth, late sexual maturity, 
and long lifespan make the species particularly susceptible 
to overexploitation (Stevens et al. 2000). Some populations 
in the Indian Ocean and western Pacific have declined by 
more than 90% (Graham et al. 2010), raising concerns 
about inbreeding and loss of genetic diversity, reducing their 
evolutionary potential (Frankham et al. 2002) and long-term 
viability of remaining populations (Sherman et al. 2023).

Genomic tools are increasingly being used in conserva
tion to monitor genetic diversity, population connectivity, 
and inbreeding risk (Allendorf et al. 2013). In fisheries man
agement, these approaches have informed conservation 
strategies and facilitated the restoration of many commer
cially important fish stocks, such as Pacific salmon (Waples 
1995). The development of high-quality reference gen
omes is a critical step in enabling such analyses. Advances 
in long-read sequencing technologies, such as Pacific 
Biosciences (PacBio), producing lager sequence overlap 
and lower fragmentation (Lang et al. 2020) and chromatin 
conformation capture techniques, such as Hi-C and 
Omni-C, now allow for the generation of chromosome- 
level genome assemblies in a relatively affordable and rapid 
manner (Dudchenko et al. 2017).

Reliable genomes may be useful representatives of 
whole species to infer key conservation genomic statistics 
such as levels of heterozygosity, inbreeding, and demo
graphic history. Reference genomes are key to most genetic 
studies commonly relying on low and mid coverage whole 
genome sequences, which need to be aligned to a species- 
specific reference genome (Lou et al. 2021). Reference as
semblies significantly improve accuracy of various other 
analyses such as for local adaptations and provide a cru
cial baseline resource for nonmodel species, such as gen
etic data-deficient marine organisms (Oleksiak and Rajora 
2020).

Despite potentially severe genetic consequences of critical 
shark population declines, only a few fisheries include assess
ment of population genetics (Ovenden et al. 2010), with 
genetic diversity and demographic history having been inves
tigated in only about a tenth of shark species to date 
(Domingues et al. 2018). Contiguous high-quality genomes, 
allowing population and species-specific genetic assess
ments and genomic comparisons (Shafer et al. 2015), are 
currently available for less than 5% of shark species (23 spe
cies as of July 2025), due to the lack of quality samples and 
their large, repetitive genomes (Pearce et al. 2021). Within 
the Carcharhinidae, only three nuclear reference genomes 
exist to date: the Oceanic whitetip shark (Carcharhinus long
imanus; Feldheim and Pirro 2023, unpublished), the lemon 
shark (Negaprion brevirostris; Baeza et al. 2024) and the 
great blue shark (Prionace glauca; Li 2024, unpublished).

Nevertheless, high-throughput sequencing and genome 
assembly projects like the Squalomix project (https://github. 
com/Squalomix/info/) have produced increasing numbers 
of shark and ray genomes (Stanhope et al. 2023; 
Yamaguchi et al. 2023; Baeza et al. 2024; Mayeur et al. 
2024; Lee et al. 2025) and drastically expanded compara
tive genomics (Kuraku 2021). Due to their antiquity, 
Chondrichthyes are an interesting study system on the ori
gins and evolution of genes (Marra et al. 2019), as well as a 
range of morphologies and life history traits such as jaws 
(Yu et al. 2008), the cerebellum (Sugahara et al. 2017), 
and oviparity (Nakaya et al. 2020). Sex determination in 
elasmobranchs has been relatively poorly understood com
pared with other clades (Yamaguchi et al. 2023). Recent 
findings suggest that sharks and rays have the oldest sex 
chromosomes among vertebrates, originating around 300 
My ago, and express a unique dosage-dependent sex deter
mination mechanism involving distinct molecules from 
other vertebrates (Niwa et al. 2025). Most studied elasmo
branchs have highly differentiated XY chromosomes, al
though other systems such as XX/XO in Potamotrygon sp. 
(De Souza Valentim et al. 2013) and possibly ZZ/ZW in 
Hypanus americanus (Schwartz and Maddock 2002) might 
be confirmed as more Chondrichthyan karyotypes are in
vestigated. To address the pressing need for shark gen
omic resources, we present the first assembled and 
annotated nuclear reference genome of the grey reef 
shark and identify potential sex chromosomes, the first 
within Carcharhinidae, which will hopefully aid conserva
tion applications and wider evolutionary research.

Results and Discussion

Assembly

Three PacBio Revio Cells produced 90 Gb of sequence in 
7,864,402 reads. The primary contig assembly generated 
by hifiasm contained 2,276 contigs with an N50 6.3 Mb, 
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an L50 of 126 contigs with 44% GC content after purging 
of duplicates (Table S1). The genome size estimate based 
on 21 kmers by Genomescope of 2.67 Gb from the contig 
assembly (Fig. S1) was similar to the final scaffolded assem
bly size of 2.9 Gb.

The Omni-C library used for scaffolding the contigs pro
duced 511,721,951 read pairs of which 68.13% were 
high-quality pairs, with 31.66% of pairs mapping >10 kb 
apart. 23.57% were low quality, and 8.3% unmapped. 
After duplicate (24.14%) removal, Omni-C sequences 
amounted to a coverage of 23.5X. The proximity ligation li
braries greatly improved the assembly quality, as YaHS 
joined the contigs into 1,520 scaffolds (Table S1), with an 
increased N50 of 90.6 Mb spanning 12 scaffolds, while 
90% of the genome was covered in 36 pseudochromosomes 
(N95 = 276 Mb; L95 = 94; Fig. 1). Although the chromosome 
number of C. amblyrhynchos is currently not known, a hap
loid chromosome number of at least 36 is close to the ex
pected range (n = 38 to 45) for Carcharhinidae according 
to karyotype studies (Stingo and Rocco 2001) and the same 
as in Triakis scyllia belonging to the Carcharhiniformes 
(Table S2; Asahida and Ida 1989; Uno et al. 2020). 
Assembly integrity was further evaluated through presence 
of the canonical telomeric repeat sequence AACCCT, a re
verse complimented and string rotated equivalent to the 
chordate repeat TTAGGG, identified by the tidk “explore” 
function (v.0.2.65, Brown et al. 2025). The telomeric repeat 
was found at the ends in 32 out of the 36 pseudochromo
somes, with 19 showing repeats on both ends (Table S3).

BUSCO results indicated a high degree of complete 
BUSCOS when compared with the vertebrata lineage data
set, finding 93.6% of the 3,354 genes, while 2.2% were 
complete and duplicated, 3.8% were missing, and 2.6% 
fragmented (Table 1, Table S2, Fig. S2). A generated 
Omni-C density map of the final scaffolded assembly indi
cated high contiguity (Fig. S3).

Annotation

The repeat content identified with RepeatMasker 
amounted to 1.73 Gb (59.33% of the genome) and was 
rich in long interspersed nuclear element (LINE) retrotran
sposons, comprising about 45% of the genome, the major
ity of which were of the L2, CR1 and Rex type (Fig. S3, 
Table S4). According to sequence divergence, LINEs experi
enced recent expansion waves at around 7% to 8% and 
10% to 13% divergence (Fig. S4b). LTRs covered 5.88%, 
while only 1.58% were DNA transposons, of which the 
Tourist and Harbinger types were the most common (Fig. 
S4). The proportion of repetitive regions is within the ex
pected range from 33% to 68% among sharks 
(Table S2). Overall, our results are in agreement with previ
ously published studies showing that the repeat content of 
sharks is rich in LINE retrotransposons, which have the 

highest transposable element (TE) activity in more recent 
times (Fig. S4b; Hara et al. 2018; Marra et al. 2019; 
Zhang et al. 2020; Tan et al. 2021; Stanhope et al. 2023).

BRAKER3 inferred 21,372 proteins encoded by 16,505 
genes with an average length of 52,698 bp (ranging 126 
to 2,321,391 bp; Table S5). BLAST hits against the 
Uniprot SwissProt database functionally annotated 88% 
(14,602) of the dataset. This annotation yielded a relatively 
low number of predicted genes compared with related spe
cies annotations, which varied from 24,000 to 55,000 genes 
(Table S2), due to the suboptimal amount of RNA-seq evi
dence provided for model training. As obtaining tissue for 
endangered sharks is difficult, we had to rely on limited pub
lished RNA-seq from a different grey reef shark individual. 
Accordingly, the annotated assembly yielded a satisfactory, 
although slightly lower BUSCO completeness score of 
86.5% (67.7% single, 18.8% duplicated, Table 1). An in
crease in duplicated copies is expected for annotated assem
blies due to multiple protein sequences included per gene. 
Our score is similar (Wagner et al. 2023) and lower than 
some recent high-quality assemblies which generated tran
scriptome evidence (e.g. Mayeur et al. 2024; Niwa et al. 
2025). We hope this annotation will provide a starting refer
ence point for future studies.

Sex Chromosome Identification

Cytogenetic studies have identified heteromorphic XY sex 
chromosomes in sharks, with the Y being around one-third 
of the size of the X (Uno et al. 2020). In line with the expect
ation that the X chromosome should have reduced male se
quencing coverage, while the Y chromosome should have 
low female coverage, we identified a 2-fold female to 
male depth ratio on pseudochromosome 36 (17.3 Mb) con
sistent with its hemizygous state in males and diploid state 
in females (Fig. 1b, Fig. S5). The smaller pseudochromo
some 57 (1.5 Mb) exhibited both near 0 f/m coverage 
and depth ratios (Fig. 1b). Thus, we can assume a XY sex de
termination system in the grey reef shark with 36 to be the 
X chromosome (Fig. 1c) and 57 the Y chromosome (Fig. 1d). 
While no telomere sequences were identified on pseudo
chromosome 36, both ends of pseudochromosome 57 en
tailed high numbers of AACCCT repeats (Table S3). The first 
4.7 Mb of the X chromosome is likely a pseudoautosomal 
region (PAR), which was assembled from a singular contig 
and showed significantly higher heterozygosity of quality- 
filtered SNPs (not shown) compared with the rest of the X 
chromosome in males (t-test: t291820 = −155.6, P < 2.2e−16).

Materials and Methods

Library Preparation and Sequencing

PacBio and Omni-C genomic sequences were generated 
from dorsal fin tissue of two different male grey reef sharks, 
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(a)

(b) (c)

(d)

Fig. 1. Genome assembly summary and sex chromosome identification. (a) Genome assembly statistics, from the outer to inner circles: lengths of 36 pseu
dochromosomes are shown as numbered bars, dotted with locations of identified telomere repeats; line graphs of guanine-cytosine (GC) content in 100 kb 
nonoverlapping windows; gene density plots in 100 kb nonoverlapping windows; and transposable elements (TE). The inner circle shows genes with con
served order between pseudochromosomes. (b) Female to male sequencing coverage and mapping depth ratios for six males and females from the 
Maldives, Ningaloo, and Rowley Shoals, with near 0 coverage on the putative Y chromosome and two-fold depth ration on the X chromosome expected 
in a XY system. Mapping depths, standardized by whole genome depth in 20 kb nonoverlapping windows, are shown for the 18 individuals on pseudochro
mosome 36 (c) and pseudochromosome 57 (d).
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one from New Caledonia, Noumea, and one from the 
Southern Maldives, respectively, as tissue from the first in
dividual did not provide enough high molecular weight 
DNA to cover both sequencing library preparations. The 
New New Caledonian individual was caught in 2016 as 
per Boussarie et al. (2022) under a permit from the 
Southern Province of New Caledonia (permits no. 
479-2016/ARR/DENV and no. 2093-2016/ARR/DENV); the 
individual from the Maldives was obtained by this study in 
the Gaafu Dhaalu Atoll in 2024 under a permit from the 
Ministry of Fisheries, Marine Resources and Agriculture of 
the Maldives (permit no. NRP2023/44). Genomic DNA 
was extracted from alcohol-preserved tissue samples using 
a salting out protocol as per Momigliano et al. 2017. PacBio 
library preparation and sequencing was performed by 
the Centre for PanorOmic Sciences (Hong Kong). Briefly, 
quantity and integrity of the DNA sample was confirmed 
by Qubit and Pulse field gel electrophoresis before being 
fragmented to appropriate sizes. DNA fragments were 
damage-repaired, end-repaired, and A-tailed. The SMRTbell 
library was produced by ligating universal hairpin adapters 
onto double-stranded DNA fragments. The library was 
checked with Qubit for quantification on a Femto Pulse 
System (Agilent) for size distribution detection. Quantified li
braries were pooled and sequenced on PacBio Revio system 
in 3 Revio Cells amounting to around 4 million paired-end 
reads containing 96 Gb of raw data.

Omni-C libraries with 570 bp inserts were prepared with 
the Dovetail Omni-C kit and Omni-C proximity Ligation 
Assay (v.1.0, Dovetail Genomics, Scotts Valley, USA) accord
ing to the manufacturer’s protocol and sequenced on an 

Illumina NovaSeq 6000 PE150 (Novogene, Hong Kong) as 
pair-end 2×150 bp runs, generating 153.5 Gb of raw data.

Genome Assembly

We assembled the grey reef shark genome following the 
Vertebrate Genomes Project (VGP) assembly pipeline 
(Larivière et al. 2024). Remnant adapter sequences from 
the PacBio HiFi dataset were removed with BBTools 
(Bushnell 2014; BBDuk with the parameters ktrim = r k =  
23 mink = 11 hdist = 1 tpe tbo). Reads were assembled 
into haplotype assemblies of primary and alternate contigs 
using hifiasm (v.0.19.8; Cheng et al. 2021) with light pur
ging (-l 1 -k 21). Duplications, repeats and contig overlaps 
were removed with purge dups (v.1.2.5; Guan et al. 
2020) and minimap2 (v.2.26; Li 2018) using presets for 
HiFi data (-x map-hifi) from the primary assembly and added 
to the alternate assembly.

Scaffolding

FastQC confirmed high quality of fastq reads which 
were mapped separately with bwa mem (Li 2013) accord
ing to the Omni-C pipeline by Dovetail (https://omni-c. 
readthedocs.io/en/latest/index.html). Valid Omni-C ligation 
junctions were identified using pairtools (v. 1.1.0; Open2C 
et al. 2024), parsed with a minimal MAPQ of “5unique” for 
reporting unrescuable walks, and a maximum inter align
ment gap of 30. Pairs were sorted in scaffold order, and 
marked duplicates removed from downstream analyses. 
The assembly genome was scaffolded with YaHS (v.1.2.; 
Zhou et al. 2023) with presets. Generated Omni-C contacts 

Table 1 Grey reef shark assembly statistics and comparison to published assemblies of the closest species

Statistic Primary contig Scaffolded assembly Annotation Other assemblies

Number of reads (Mb) 7.9 511.7 … 79.3a, 109.5b, 340.4d

Coverage (X) 19 23.5 … 10a, 24b, 35c, 30 to 45d

Contigs/scaffolds 2,276 1,520 … 96,185a, 68,774b, 239c, 1,658d

Total contig/scaffold length (Gb) 2.9 2.9 … 2.29 to 2.58a, 2.68b, 3.23c, 2.77d

N50 (Mb) 6.2 90.6 … 92.9a, 93.5b, 109.8c, 89.8d

L50 126 12 … 11a,b,c,d

N90 (Mb) 0.75 17.3 … -
L90 644 36 … -
GC content (%) 43.98 43.98 … 42.5a,b,c,d

BUSCO scores (%) Complete 93.2 93.6 86.5 94.2d

Single-copy Single copy 91.1 91.4 67.7 -
Duplicate Duplicate 2.1 2.2 18.8 -
Fragmented Fragmented 2.9 2.6 2.3 -
Missing Missing 3.9 3.8 11.2 -
Protein-coding genes - - 16,505 26,110d

Proportion with functional 
annotation (%)

- - 88 -

Repeat content (%) - - 59 50a, 52d

Statistics of the primary contigs, scaffolded assembly, and annotation are compared with available Carcharhinidae reference genomes: aNegaprion brevirostris (lemon 
shark; Baeza et al. 2024), bCarcharhinus longimanus (oceanic whitetip shark; Feldheim and Pirro 2023, unpublished), cPrionace glauca (great blue shark; Li, 2024, 
unpublished), and closely related dSphyrna mokarran (great hammerhead shark; Stanhope et al. 2023).
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with Juicer (v.1.9.9; Lander and Lieberman Aiden 2016) 
were visualized in JuiceBox and checked for major misassem
blies. None of the contigs or scaffolds were contaminated 
with either adapter or foreign species sequences according 
to an NCBI Foreign Contamination Screen (FCS; Astashyn 
et al. 2024).

Telomere Identification

To identify telomeres, we used the TeloExplorer function 
of quarTeT (v1.2.5, Lin et al. 2023), which utilizes the 
“explore” and “search” functions of the Telomere 
Identification Toolkit (https://github.com/tolkit/telomeric- 
identifier) to identify repetitive telomere units and then 
search the unit string in the ends of pseudochromosomes 
with a minimum repeat number of 50.

Genome Annotation

De novo repeat element libraries were built with 
RepeatModeler (v.2.0.5; Flynn et al. 2020) and LTRStruct 
(v.2.9.5) for the scaffolded assembly (from contigs >  
500 kb) and six other shark species (see Table S7 for acces
sion numbers). The program repclassifier (v.1.1; https:// 
github.com/darencard/GenomeAnnotation/blob/master/ 
repclassifier) was run iteratively using newly annotated 
known elements from our reference assembly to classify 
more unknown elements in three rounds; one round with re
peat families from the curated Dfam database (v.3.8; Storer 
et al. 2021) for ancestors of C. amblyrhynchos (72 elements), 
a second round against newly classified known elements 
(353 additional classified elements), a third round against 
known elements from a consensus library of the six related 
shark species, which added another 213 known elements.

The genome was serially annotated and masked with 
RepeatMasker (v.4.1.6, Smit et al. 2015) in four rounds: 
simple repeats (-a -e ncbi -noint -xsmall); known repeats 
from the curated C. amblyrhynchos Dfam database; de 
novo grey repeats from reference species identified by 
RepeatModeler; unknown grey reef shark specific repeats 
from RepeatModeler (-a -e ncbi -nolow). The combined re
peat libraries were then used to mask the genome and repeat 
compositions from combined analysis of all RepeatMasker 
rounds were summarized with ProcessRepeats. For gene pre
diction, the parts of genome sequences detected as repeats 
are soft-masked with the options -nolow -xsmall.

Genes were predicted in BRAKER3 (version 3.0.8; Stanke 
et al. 2008) with GeneMark-ETP (Gabriel et al. 2024) using 
AUGUSTUS v.3.3.3 trained models with RNA and protein 
evidence. Since we did not perform RNA sequencing, we 
used published C. amblyrchynhos retina RNA-seq from 
NCBI (accession number SRR2146929). The protein evi
dence consisted of 374 Carcharhinidae proteins (NCBI 
search: (txid7805[organism:exp]) NOT mitochondrion), 
proteins from other shark species Rhincodon typus 

(36,827), Chiloscyllium punctatum (33,501), Scyliorhinus 
torazame (27,605), accessed from NCBI October 2024; 
the well annotated Callorhinchus milii (GenBank accession 
GCF_000165045.2) and the OrthoDB Vertebrata database 
(Kuznetsov et al. 2023). Genes were functionally annotated 
with AGAT (v.1.4.1; Dainat 2024) based on BLAST hits 
against the UnipotKB/SwissProt database (accessed February 
2025) and filtered for a minimum length of 30 encoded ami
no acids, as per Weber et al. 2020, which removed 17 genes. 
Collinear gene blocks with conserved order between chromo
somes were identified with MCScanX (v.1.0, Wang et al. 
2012) using default parameters.

Genome Size Estimation and Quality Assessment

k-mer counts from the PacBio HiFi reads were generated 
with meryl for k = 18,19,20,21,22,23,31 (https://github. 
com/marbl/meryl). We then applied GenomeScope 2.0 
(Ranallo-Benavidez et al. 2020) to the k-mer databases to 
estimate genome features including genome size, hetero
zygosity, and repeat content, with k = 21 producing the 
best assembly (Fig. S1). Genome quality and completeness 
were assessed with BUSCO (v.5.6.1; Manni et al. 2021) 
using the vertebrate and the actinopterygii ortholog data
bases, with the vertebrate database providing better re
sults. We evaluated base level accuracy (QV) and k-mers 
using the previously generated meryl database and merq
ury (version 1.0; Rhie et al. 2020) generating spectral plots 
which confirmed successful removal of false duplicates 
(Fig. S6). Assembly statistics were calculated with gfastats 
(v1.3.6; Formenti et al. 2022) and QUAST (v.5.2.0; 
Mikheenko et al. 2023).

Identification of Sex Chromosomes

Sex chromosome identification was performed using whole 
genome sequences from six male and six female grey reef 
sharks from three populations, the Southern Maldives 
(Gaafu Dhaalu atoll, see previous methods), Ningaloo 
reef, and Rowley Shoals reef in Australia. The Australian 
samples were collected in 2013 and 2014 as described by 
Momigliano et al. (2015) under a permit from the 
Western Australia Department of Environment and 
Conservation (permit number: CE003632). DNA was ex
tracted using a salting out protocol as per Momigliano 
et al. 2017 and sequenced at 10 ×  by Novogene, Hong 
Kong SAR on a NovaSeq X Plus PE150 sequencing platform 
(see Table S6 for sample information). Reads were mapped 
to the reference assembly using bwa mem (v.0.7.17), 
samtools (v.1.16.1; Danecek et al. 2021), and GATK for in
del realignment (v.3.8; McKenna et al. 2010). Read depths 
and coverages across chromosomes and average female- 
to-male ratios were calculated with bamdst (https:// 
github.com/shiquan/bamdst) in 20 kb windows. A read 
depth ratio of 2 and coverage ratio of 1 was expected to 
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indicate the presence of a X chromosome, consistent with 
the hemizygous state of the X, while female-to-male cover
age and depth ratios of near 0 would be expected for the Y 
chromosome. For the potential sex chromosomes read 
depths standardized by whole genome depth were plotted.

Supplementary Material
Supplementary material is available at Genome Biology and 
Evolution online.
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