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Abstract

Understanding the processes that maintain coral assemblages is of crucial impor-
tance given increasing rates of coral mortality on reefs globally. Here, we compared
relationships among distribution patterns of recruit, juvenile, and adult corals with
distinct life history traits to determine the contribution of early life stages to the struc-
ture of adult assemblages at Toliara, southwest Madagascar. Results highlighted

a marked spatio-temporal variability in the abundance of all life stages within and
between major reef habitats. Indications of stock-recruitment relationships (where the
adults drive the abundance of early life stages) were found for Acroporidae, whereas
Poritidae and its dominant genus Porites were likely regulated by recruitment-
limitation mechanisms (where early life stages drive the abundance of adults), with
significant correlations between the abundance of juveniles and those of adults of
the subsequent years. We found stronger links between all life stages for Pocillopo-
ridae, indicative of both recruitment-limitation and stock-recruitment relationships. In
contrast, no significant correlations were recorded for the category of ‘other’ families,
which is likely the result of mixing taxa with different life history traits. In fact, positive
correlations between juveniles and adults were found for Galaxea, Cycloseris, and
Pavona genera, which made up the ‘other’ category. The discrepancies of regulation
processes among coral taxa highlighted here suggest implementing conservation
actions that benefit all life stages. Maintaining the biomass of herbivorous fishes and
invertebrates to control algal biomass can benefit coral recruitment and decrease
mortality of early life stages and adult colonies. Our results also suggest that sites on
the outer slope and on patch reefs, which show higher recruitment rates and abun-
dance of adult colonies, could be considered as recruitment hotspots.
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1. Introduction

Coral reefs are crucial ecosystems in terms of biodiversity and productivity. They
protect coastlands and provide goods and services that contribute to the well-being
of ~850 million people from more than 100 countries [1,2]. However, coral reefs are
threatened by large-scale disturbances and local stressors, such as thermally induced
bleaching events, cyclones, extracting activities, coastal development, algal blooms,
and predators and disease outbreaks, that have increased in frequency and severity
in the last five decades [3—8]. Scleractinian corals, the primary framework builders of
the reef ecosystem and key components of coral reef health and diversity, have been
particularly affected with, for example, severe decline of coral cover and abundance,
and reduced coral growth, fecundity and recruitment [9—13]. This degradation of coral
communities and reef habitats has also caused phase shifts in community structure,
with the replacement of corals by algae or other non-reef-building benthic organisms,
challenging the ecological function and the goods and services of reef ecosystems
[8,14]. As recovery of coral assemblages following disturbances is mainly driven by
the settlement of new larval recruits, the widespread mortalities of corals are also chal-
lenging the maintenance and resilience of several coral reefs worldwide [15—-19].
Corals, like many other marine invertebrates, have a complex bipartite life cycle,
which includes a pelagic larval phase followed by a sessile benthic phase for most
species. Corals have complex reproductive strategies that differ among coral taxa as
well as among regions and habitats within the same taxa [11]. Broadcast spawners,
the dominant reproductive mode in corals, release large quantities of gametes into
the water column for external fertilization and development, occurring seasonally and
generally once a year, while brooders produce fewer offspring, with several spawning
events per year for some species [11]. Most corals require several years of benthic
life to become sexually mature adults [20—-22]. Consequently, the recruitment phase
includes the recruit (corals a few weeks/months old, less than 1cm in diameter, diffi-
cult to see with the naked eye) and the juvenile (corals typically aged at least 1 year,
1< <5cm) stages [23—25]. The presence of recruits largely reflect the variability
in larval supply, whereas juveniles tend to represent successive cohorts and reflect
the short-term history of settlement combined with early post-settlement mortality
[20,22,26]. Recruitment is a critical process in the spatial patterns and dynamics of
Several extrinsic physico-chemical factors such as light intensity, sedimentation,
substrate characteristics, and water quality may affect coral recruitment patterns
[25,29-32]. Hydrodynamic patterns also play a key role in coral recruitment pro-
cesses, as strong regional currents likely facilitate larval dispersal and connectiv-
ity among local and regional populations, and their subsequent recruitment rates
[30,31]. In addition, biotic interactions such as predation, allelopathy, and competition
with algae also influence the growth and survivorship of small corals [33,34]. Chemi-
cal cues from organisms such as crustose coralline algae may enhance settlement of
some coral larvae [35—41]. For most coral species, post settlement mortality is gen-
erally high until colonies reach an adequate size to withstand competition with other
benthic organisms and predation by corallivores [20,42,43].
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The contribution of early recruits and post-settlement events on the structure and dynamics of adult populations gen-
erally varies among coral taxa with contrasting life history strategies, though spatial variation arises at multiple scales in
relation to site-specific environmental conditions, notably the intensity of spatial competition and predation [23,43—45].

A positive correlation between spatial distribution of recruits/juveniles and adults is considered an indication of either
recruitment-limitation relationships, where early life stages drive the abundance of adults, or stock-recruitment relation-
ships, where the adults drive the abundance of recruits [44,46—48]. In contrast, dissimilarities between recruits and adults
likely suggest that patterns established at settliement may be modified by variable post-settlement mortality through
competition and predation, or can reflect the contrasting effects of environmental stressors on these distinct life stages
[9,49,50]. Supporting data for stock-recruitment or recruitment-limitation relationships, or alternative models with a pre-
dominance of predation-competition have been proposed for various coral reefs [20,27,51-59]. However, most of these
studies have either compared recruits and adults, or juveniles and adults; few have analyzed all three stages (but see
[20,45]), thus limiting our understanding of mechanisms of population regulation for organisms such as corals with long
and complex life cycles [43,60].

With ~2400 km? of coral reefs along 1400 km of coastline, Madagascar is a hotspot of biodiversity in the South West-
ern Indian Ocean (SWIO). These reefs, and particularly those on the southwest coast, provide an important source of
food and income for human populations. Coral reefs surrounding the island have been confronted by several large-scale
disturbances, most notably the bleaching events of 1998 and 2015-2016, along with local stressors such as sedimenta-
tion, overfishing and gleaning activities [61,62]. A decline in coral cover and abundance has been documented in the last
50 years, with coral cover decreasing from ~50% in the 1960s to 5% in the 1980s [61-63]. Though recent advances have
been made on characterizing the spatial distribution of coral assemblages at local and regional scales [63—66], including
information on juveniles [59,67—70] and recruits [71,72], the regulation of local coral populations through the combined
analysis of the three main life stages (recruits, juveniles, and adults) remains unexplored. This type of information is not
only crucial to better understand population maintenance and dynamics [15,17,73,74], but also to determine appropriate
conservation measures urgently needed for these reefs.

To examine population regulation processes in the region of Toliara, we collected a comprehensive and original data
set comparing coral abundance of the three life stages among and within major reef habitats over three consecutive
years. In Botosoamananto et al. [72], we examined the spatial and temporal patterns of coral recruitment. Here, we com-
pared relationships among distribution patterns of recruit, juvenile, and adult corals with distinct life history traits to deter-
mine the contribution of early life stages to the structure of adult assemblages. Implications of our results for conservation
and management of these reefs are also discussed.

2. Materials and methods
2.1. Study area

This study was conducted in the Toliara region, southwest Madagascar, including the Great Reef of Toliara (GRT), one of
the largest reef complexes of the region. The region has two main seasons: the austral summer from October to March
is a warm season with occasional rains and tropical cyclones, and the austral winter between April to September corre-
sponds to the cooler and dry season [75]. Sea surface temperature falls to 18°C during the winter season and rises to
30°C during the warm season. Coral bleaching associated with El Nifio events occurred in 1998—1999 and 2015-2016,
causing substantial damage to several reefs of the region. Cyclones are less frequent in the southwest coast compared
to the eastern coast of Madagascar or to other regions in the SWIO, and the last major cyclone, Haruna, passed 120 km
north of Toliara in February 2013 [59] with no reported significant impacts on the GRT. Outbreaks of the coral predator
Acanthaster spp. have not been reported in recent years on the GRT. Dominant winds are from southwest direction. The
total annual rainfall is~400 mm. Two main rivers, Fiherenana in the north and Onilahy in the south, contribute the high
sedimentation discharge in the region [75].
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2.2. Sampling strategy

Ten study stations were located between the village of Ifaty in the north and the village of Sarodrano in the south,

on the three major reef habitats: four stations on patch reefs (PR1 to PR4), two stations on the inner slope (IS1 and
IS2), and four stations on the outer slope (OS1 to OS4). Station codes are abbreviated as follows: the first two letters
represent the habitats (PR: patch reefs, IS: inner slope, and OS: outer slope) and the number specifies each station.
Stations were located between 7 and 12 m in depth to match those that were established to survey the diversity, abun-
dance, and cover of adult coral assemblages (see Botosoamananto et a. [65] for more information on station locations).
Each station represents an area of ~100 m? that includes recruitment tiles and belt-transects for juvenile and adult coral
sampling.

Recruits were sampled using 11 x 11 x 1 cm unglazed terracotta tiles attached horizontally to the substratum with a
stainless-steel mounting plate [76,77]. At each station, 20 tiles were deployed for a period of four months (October to Jan-
uary) for three consecutive years (2018—2019, 2019-2020, and 2020—-2021). At retrieval, tiles were plunged into a bleach
solution and rinsed in freshwater to remove all living tissues and sand. In the laboratory, recruits were counted and identi-
fied at the family level. At this stage of development, only three families (Acroporidae, Pocilloporidae, Poritidae) could be
distinguished, and all other recruits were compiled into a category named ‘other’ recruits (S1 Fig in S1 File) [78]. Recruits
that were too damaged to be identified with certainty were not categorized as they represented <4% of the recruits, but
were however added in the overall recruitment counts (all categories pooled). See Botosoamananto et al. [72] for further
details on sampling of coral recruits.

Abundance of juvenile (1<@<5cm) and adult (& =5cm) corals at the genus level was estimated at each station
between July and August each year from 2018 through 2020. At each station, three randomly replicated belt-transects of
10 m2 (10x 1 m), laid parallel to depth contours and separated by 1 m [20] were used to sample coral colonies. All juve-
nile and adult colonies visible without removing sand, debris or other organisms, and with >50% of their living tissue area
contained within each belt-transect were recorded without time limitation by the same observer at all stations. See Botoso-
amananto et al. [65] for further details on sampling of adult corals.

This study was designed and carried out with the agreement and permission of the University of Toliara and the Mada-
gascan Ministry of Higher Education and Research (MESupReS).

2.3. Data analysis

Spatial and temporal variation in the abundance of recruit, juvenile, and adult colonies were explored using a negative
binomial error structured Generalized Linear Mixed Model (GLMM), with nested fixed factors such as years, habitats
within years, and stations within habitats. We used the Ime4 package [79] in R [80] for our analyses. We conducted sepa-
rate analyses for recruits, juveniles, and adults of the five categories (all taxa, Acroporidae, Pocilloporidae, Poritidae, and
‘other’ taxa). Our final model with stations nested within habitats as random factors was selected based on Akaike Infor-
mation Criterion (AIC).

Since the data did not meet the assumption for parametric tests, Spearman rank correlations were used to analyze
the relationships between recruit, juvenile, and adult abundances. Separate analyses were conducted for all taxa, Acro-
poridae, Pocilloporidae, Poritidae, and ‘other’ taxa. We calculated correlations between abundance of recruits and of the
following year’s (year+ 1) abundance of juveniles (e.g., recruits 2018-2019 with juveniles 2019) and of adults of year+2
(e.g., recruits 2018—2019 and adults 2020) to examine potential recruitment-limitation relationships. We also calculated
correlations between abundance of adults and abundance of recruits of the following reproductive season (e.g., adults
2019 with recruits 2019-2020) and abundance of juveniles of years+1 and + 2 (e.g., adults 2018 with juveniles 2019 and
juveniles 2020) for potential stock-recruitment relationships. To examine such relationships at a finer taxonomic scale than
families, we also calculated the Spearman rank correlations between abundance of juveniles and adults of the eight domi-
nant genera. All analyses were performed in R 4.1.0 [80].
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3. Results
3.1. Variation in the abundance of coral colonies

Recruit assemblages (all stations/years pooled) were dominated by Acroporidae (45.5%) and Pocilloporidae (45.0%),
whereas the relative abundance was much lower for Poritidae (1.9%) and ‘other’ recruits (3.6%). A total of 1715 recruits
were recorded during the three years of the study, and abundance of recruits was higher in 2018-2019 (6.27 £0.59
recruits.tile™, mean+ SE, representing 219.20 recruits.m?), compared to 2019-2020 (2.71 £0.33 recruits.tile™!, represent-
ing 94.75 recruits.m?), and 2020—2021 (4.47 £0.77 recruits.tile™, representing 156.30 recruits.m?; S1 and S4 Tables in S1
File). Recruitment rates were variable among habitats and stations, with slightly higher recruit abundance on patch reefs
(5.35+0.70 recruits.tile”"), compared to the outer slope (4.49+0.42 recruits.tile”') and the inner slope (3.09+0.39 recruits.tile™;
Fig 1, S1 Table in S1 File). A higher value of recruit abundance was recorded at station PR2 in 2020—2021, whereas station
PR4 was characterized by lower recruitment rates compared to other patch reef stations, with no significant temporal trend.
At stations PR1 and PR3, the decrease in recruitment rates between 2018—2019 and 2019-2020 was followed by a return to
initial values in 2020-2021. Except station 1S2, inner and outer slope stations also showed a decrease in recruitment rates
between 2018-2019 and 2019-2020, followed by a slight increase in 2020-2021, except at OS3.

A total of 38 and 45 genera were recorded for juvenile and adult corals, respectively, and a significant variation of
generic richness was found among habitats and stations, while no significant temporal variation was recorded (S2 Fig,
S2 to S5 Tables in S1 File). Juvenile and adult assemblages were dominated by eight genera that contributed to 63.2%
of the total colonies recorded: Acropora (16.3%), Seriatopora (9.7%), Porites (8.4%), Pocillopora (6.7%), Galaxea (6.3%),
Cycloseris (5.8%), Pavona (5.3%), and Montipora (4.7%). During the three years, a total of 5522 juvenile (representing
62.04 +5.03 colonies.10 m2) and 12323 adult (138.46 £9.29 colonies.10 m2) colonies were recorded.
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Fig 1. Spatial and temporal variation of the mean abundance of coral recruits at the 10 stations located on the three major habitats, for the
five categories (all taxa pooled, Acroporidae, Pocilloporidae, Poritidae, and ‘other’ taxa). Error bars represent standard error.

https://doi.org/10.1371/journal.pone.0329546.9001

PLOS One | https://doi.org/10.1371/journal.pone.0329546  August 21, 2025 5/18



https://doi.org/10.1371/journal.pone.0329546.g001

PLO\Sﬁ\\.- One

Mean colony abundance of both juvenile and adult assemblages was highly variable among habitats and stations, for
all categories of corals (all taxa pooled, Acroporidae, Pocilloporidae, Poritidae, and ‘other’ taxa; Figs 2 and 3, S2, S3, S6
and S7 Tables in S1 File). The highest mean juvenile and adult abundances were recorded at the outer slope (84.45+9.61
colonies.10 m2 and 159.37 + 16.72 colonies.10 m, respectively), notably at stations OS3 for juveniles and OS2 and OS3
for adults, while the lowest values were found at the inner slope (45.27 £11.10 colonies.10 m™2 and 150.44 +19.20 colo-
nies.10 m2 for juveniles and adults, respectively), notably at station PR4. For juvenile corals, an increase in abundance
was recorded the third year (2020) at the outer slope, whereas for adults, abundance values were highest in 2019 at all
stations except PR4.

3.2. Relationships between recruit, juvenile, and adult corals

The relative abundance of the three life stages varied among families (Fig 4), with the highest proportion of recruits being
for Pocilloporidae (10.1% of Pocilloporidae across life stages) and Acroporidae (9.6%), compared to Poritidae (1.2%) and
‘other’ taxa (0.8%) for which recruits represent a very low proportion of total colonies. The proportion of juveniles also
differed among coral families, with a higher contribution for Pocilloporidae (25.6%), but with less variability between Acrop-
oridae (15.4%), Poritidae (11.5%), and ‘other’ taxa (12.2%). The proportion of adults in the local assemblages was slightly
higher for Poritidae (87.3%) and ‘other’ taxa (87.0%), compared to Acroporidae (75.0%) and Pocilloporidae (64.3%).
When looking at relationships between the three life stages for specific years (Table 1, S3-S7 Figs in S1 File), no signif-
icant correlations were recorded between abundance of recruits and juveniles for all taxa pooled, Acroporidae, Poritidae,
and ‘other’ taxa, or between recruits and adults for Poritidae and ‘other’ taxa, or between juveniles and adults for ‘other’
taxa. For all taxa pooled, a significant correlation was recorded between abundance of adults in 2018 and recruits in
2018-2019, indicative of a potential stock-recruitment relationship. Such relationships were also signaled for Acroporidae,
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Fig 2. Spatial and temporal variation of the mean abundance of juvenile corals at the 10 stations located on the three major habitats, for the
five categories (all taxa pooled, Acroporidae, Pocilloporidae, Poritidae, and ‘other’ taxa). Error bars represent standard error.

https://doi.org/10.1371/journal.pone.0329546.9002
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Fig 3. Spatial and temporal variation of the mean abundance of adult corals at the 10 stations located on the three major habitats, for the five
categories (all taxa pooled, Acroporidae, Pocilloporidae, Poritidae, and ‘other’ taxa). Error bars represent standard error.

https://doi.org/10.1371/journal.pone.0329546.9003
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Fig 4. Relative abundance (%) of recruit, juvenile and adult colonies for each of the five categories (all taxa pooled, Acroporidae, Pocillopori-
dae, Poritidae, and ‘other’ taxa). Mean of the three years and the 10 stations.

https://doi.org/10.1371/journal.pone.0329546.9004

with positive and significant correlations between adults in 2018 and recruits in 2018—2019 and between adults in 2018
and juveniles in 2020, and for Pocilloporidae, with correlations between adults in 2018 and recruits in 2018—2019, adults
in 2020 and recruits in 2020-2021, and adults in 2018 and juveniles in 2019. Recruitment-limitation relationships were
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Table 1. Correlations between abundance of recruit, juvenile, and adult colonies for the five categories of corals (all taxa, Acroporidae, Pocil-

loporidae, Poritidae, and ‘other’ taxa).

Recruits Juveniles
2018-19 2019-20 2020-21 2018 2019 2020
P P (4 P P P P P P P P P
All taxa
Juveniles 2019 0.34 ns
Juveniles 2020 0.15 ns -0.11 ns
Adults 2018 0.82 0.35 ns 0.16 ns
Adults 2019 0.52 ns 0.50 ns -0.16 ns
Adults 2020 0.18 ns 0.06 ns 0.44 ns 0.36 ns
Acroporidae
Juveniles 2019 0.35 ns
Juveniles 2020 0.62 ns 0.48 ns
Adults 2018 0.69 0.58 ns 0.63
Adults 2019 0.21 ns 0.42 ns 0.28 ns
Adults 2020 0.12 ns -0.40 ns 0.50 ns 0.41 ns
Pocilloporidae
Juveniles 2019 0.69
Juveniles 2020 0.40 ns 0.31 ns
Adults 2018 0.63 0.78 0.47 ns
Adults 2019 0.60 ns 0.91 0.48 ns
Adults 2020 0.69 0.85 0.62 0.68
Poritidae
Juveniles 2019 0.13 ns
Juveniles 2020 0.01 ns 0.07 ns
Adults 2018 -0.05 ns 0.46 ns 0.47 ns
Adults 2019 -0.17 ns 0.79 0.39 ns
Adults 2020 -0.09 ns 0.00 ns 0.64 0.39 ns
Other taxa
Juveniles 2019 0.16 ns
Juveniles 2020 -0.01 ns -0.05 ns
Adults 2018 0.25 ns 0.15 ns 0.33 ns
Adults 2019 0.20 ns 0.22 ns 0.06 ns
Adults 2020 -0.10 ns 0.09 ns 0.23 ns 0.38 ns
Only meaningful correlations that may represent potential stock-recruitment, recruitment-limitation, and predation-competition relationships are pre-
sented (e.g., there is no ecological sense to calculate a correlation between recruits recorded in October 2018 — January 2019 and adults recorded in
July-August 2019). Spearman rank correlation coefficients (p) and the associated p-values (ns: p>0.05;
“ p<0.05;
1 p<0.01;
“*: p<0.001) are given.
https://doi.org/10.1371/journal.pone.0329546.t001
suggested by positive and significant correlations between recruits in 2018-2019 and adults in 2020 for Pocilloporidae,
and between juveniles in 2018 and adults in 2019 and 2020 for Pocilloporidae and Poritidae (Table 1).

Relationships between juvenile and adult abundances of the eight dominant coral genera confirm the weak relation-
ships among juveniles and adults for Acroporidae, with only one significant correlation between adults in 2019 and juve-
niles in 2020 for Montipora (Table 2, S8-S16 Figs in S1 File). For Pocilloporidae, we recorded significant correlations
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Table 2. Correlation between abundance of juvenile and adult corals of the overall assemblage (all genera pooled) and for the eight dominant
genera (Acropora, Montipora, Pocillopora, Seriatopora, Galaxea, Porites, Cycloseris, and Pavona).

Juveniles
2018 2019 2020
[ p [ p P p
All genera
Adults 2018 0.35 ns 0.16 ns
Adults 2019 0.50 ns -0.16 ns
Adults 2020 0.40 ns 0.36 ns
Acroporidae
Acropora
Adults 2018 0.55 ns 0.48 ns
Adults 2019 0.07 ns -0.26 ns
Adults 2020 0.24 ns 0.30 ns
Montipora
Adults 2018 -0.16 ns 0.26 ns
Adults 2019 0.00 ns 0.67 -
Adults 2020 0.60 ns 0.21 ns
Pocilloporidae
Pocillopora
Adults 2018 0.14 ns 0.33 ns
Adults 2019 0.42 ns 0.39 ns
Adults 2020 0.54 ns 0.05 ns
Seriatopora
Adults 2018 0.87 0.72
Adults 2019 0.97 0.76
Adults 2020 0.88 0.95
Poritidae
Porites
Adults 2018 0.53 ns 0.10 ns
Adults 2019 0.75 - 0.31 ns
Adults 2020 0.74 . 0.54 ns
Other taxa
Galaxea
Adults 2018 0.80 ” 0.82
Adults 2019 0.82 - 0.84
Adults 2020 0.89 0.76
Cycloseris
Adults 2018 0.70 : 0.84
Adults 2019 0.57 ns 0.61 ns
Adults 2020 0.77 - 0.66
Pavona
Adults 2018 0.37 ns 0.47
Adults 2019 0.08 ns 0.29 ns
Adults 2020 0.06 ns 0.47 ns

Only meaningful correlations that may represent potential stock-recruitment, recruitment-limitation, and predation-competition relationships are pre-
sented. Spearman rank correlation coefficients (p) and the associated p-values (ns: p>0.05;

* p<0.05;
“ p<0.01;
“*: p<0.001) are given.

https://doi.org/10.1371/journal.pone.0329546.t002
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between all combination of juveniles and adults for Seriatopora, with no such correlation recorded for Pocillopora. For Por-
itidae, the significant correlation between juveniles in 2018 and adults in 2019 and 2020 is largely driven by Porites, the
only dominant genera of this family. For ‘other’ taxa, we recorded positive correlations between all combinations of years
for juveniles and adults Galaxea, and for some years for Cycloseris and Pavona, although no correlations were recorded
when pooling these three genera and the other 30 that composed the category ‘other’ taxa (Table 1).

4. Discussion
4.1. Spatio-temporal patterns of coral assemblages

Our results underline the marked spatial variability in the abundance of the three benthic life stages of coral assemblages
within and between major reef habitats of the Great Reef of Toliara (GRT) region. Abundances of recruits, juveniles, and
adults were higher at several stations of patch reefs, whereas lower values were generally recorded along the inner slope.
This strong spatial heterogeneity of corals is consistent with patterns recorded at reefs elsewhere in the world, where
marked variation of abundance, together with other coral descriptors such as cover, diversity, and size-structure are
geneity is likely resulting from the marked variability of the environmental conditions and anthropogenic stressors in the
GRT [65]. Previous studies have highlighted higher fishing efforts, notably using destructive practices such as mosquito
net trawl, beach seine, coral-turning fishing, or fishing by poisoning, as well as higher sedimentation on the inner slope

of the GRT [75,85-87]. Overfishing and sedimentation also impact the patch reefs and the outer slope in this area, but to
a lesser extent the coral assemblages, likely due to the higher hydrodynamic and greater depths in these habitats com-
pared to the inner slope [65]. Moreover, higher cover of turf and macroalgae at inner slopes likely reduce the abundance
of corals through spatial competition [65]. The higher diversity and cover of coral assemblages recorded along the outer
slopes and patch reefs are also explained by the more favorable environmental conditions along these sites [65]. For coral
recruits, the importance of benthic components on the spatial patterns has also been largely documented [33,36,38,39].
On the GRT, cover of algae and other living taxa such as sponges have been identified as important drivers of the spa-
tial patterns of coral recruitment [72]. The higher cover of algae on the inner slopes likely inhibits larval settlement and
increases the post-settlement mortality. Moreover, macroalgae have negative physical effects on early life stages of corals
through abrasion, shading, and smothering [88]. In contrast, higher hydrodynamic and water circulation, present along
outer slopes and patch reefs, creates more favorable conditions for coral recruitment [20,49]. However, these potential
controlling environmental factors of the spatial variability of coral assemblages should be more closely examined, for
example through dedicated water quality monitoring surveys in the GRT. Such environmental surveys will not only improve
our understanding of the spatial patterns and dynamics of coral assemblages and other reef communities, but will also
help identify which threats to prioritize reducing for better conservation and management of these reefs.

Our survey also highlighted a marked interannual variation in the abundance of recruit, juvenile, and adult coral colo-
nies. However, the temporal patterns differed between the three life stages. Recruits were most abundant during the first
year of the study (2018-2019), whereas highest abundances for adults were generally recorded in 2019, and in 2020 for
juveniles. The interannual changes in coral assemblages are often associated with either large-scale disturbances, such
as cyclones, thermally induced bleaching events, or predator outbreaks, or to local stressors, such as sudden deterio-
ration of substrate composition or water quality [10,25,31]. For coral recruitment, a large part of the temporal variability
is also linked to variation in fecundity of adult colonies, which is driven by seasonal and interannual changes in climatic
and oceanographic conditions [9,30,44]. However, during the study period, no such disturbances or stressors can be
associated with the observed temporal changes in coral abundance. Elevated sea surface temperatures (~31°C) were
recorded in January and February 2020 [72], but caused neither a significant reduction in recruitment rates the following
year (October 2020-January 2021) nor a decrease in juvenile and adult corals the following months (July—August 2020).
Rigorous data collection on other potential drivers of the temporal changes in the abundance coral assemblages, such as
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interannual variation in sedimentation discharges by the two main rivers, should be pursued and examined to determine
influence.

4.2. Regulation of coral assemblages

Similar to studies of coral reefs in other regions, our results identify discrepancies among families and genera for pop-
ulation regulation processes within the same area, likely due to differences in life history traits and strategies such as
overall coral assemblages (all taxa pooled), the links between spatial variation of the three life stages (recruits, juveniles,
and adults) were weak, with only one significant correlation between abundance of adult corals and recruits in the follow-
ing reproductive season suggesting a stock-recruitment relationship. This lack of strong and consistent correlation likely
results from the mixing of various coral taxa with contrasting life history traits and population dynamics, but may also
reflect the contrasting effects of various environmental stressors on these distinct life stages [9,49,50].

For Acroporidae, indications of stock-recruitment relationships were found, with the abundance of adults correlated with
those of recruits and juveniles of subsequent years, with no evidence recorded for recruitment-limitation relationships (i.e.,
when early life stages drive the abundance of adults). The juvenile-adult relationship was restricted to Montipora, whereas
no significant correlation was recorded for Acropora, the other dominant genus of this family. The limited positive correla-
tions between early life stages and adults may be partially explained by the high rate of asexual reproduction through
fragmentation in this family, which may mask potential recruitment-limitation relationships, by increasing the number of
adult colonies on the reef without sexual reproduction [90,91].

In contrast, we recorded indications of recruitment-limitation relationships for Poritidae corals and its dominant genus
Porites, although restricted to significant correlations between the abundance of juvenile stages and those of adults of the
subsequent years. The lack of positive correlations between recruits and other life stages may be explained by the repro-
ductive strategies of this taxa, as most Porites species are brooders that release fewer offspring compared to broadcast
spawners corals, such as Acropora. Moreover, the extended period of reproduction and spawning of Porites in the SWIO
region [92,93], which dilutes the larval pool over long periods of the year is likely a large contributor to the low abundance
of Poritidae recruits on our recruitment tiles, immersed for four months [72]. As most Poritidae corals are characterized
by relatively lower mortality rates and higher resistance to environmental stressors after reaching a certain size [91], our
results suggest that most juvenile colonies also grow into the adult stage in reef habitats of the Toliara region.

For Pocilloporidae, we found strong correlations between all three life stages, indicative of both recruitment-limitation
and stock-recruitment relationships, that are likely driven by Seriatopora. This family is generally characterized by high
recruitment rates and relatively low mortality rates, except during occasional acute stressors such as bleaching events
[91], which may explain the correlation between the abundance of early life stages and adult colonies. Moreover, the posi-
tive correlations between early life stages and adult colonies may also result from self-seeding occurring at the local scale
[54,94]. In fact, the most abundant species of Pocilloporidae in the reefs of Toliara include brooders Pocillopora damicor-
nis, Seriatopora hystrix, and Stylophora pistillata, which release larvae with short competency periods that often settle
near their parents [95,96].

On the other hand, no significant correlations were recorded between life stages for the category ‘other’, which is
again likely the result of mixing various families with different life history traits and variable tolerance to environmental
stressors. In fact, the positive correlations between juveniles and adults recorded for Galaxea, Cycloseris, and Pavona,
the three dominant genera which make up this ‘other’ families category, clearly indicate that this latter category contains
coral taxa with contrasting life history strategies. For those coral taxa that failed to show significant positive correlations
between early life stages and adult corals, we may assume that the differential post-settlement events are sufficiently
strong to distort the pattern established at settlement [24,97-99]. Asexual reproduction through colony fragmentation at
our study sites, likely frequent for branching corals, may also mask the association between recruits and adults [27,100].
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The relationship between recruits and adults may also break down for coral taxa with long larval duration in large open
systems where advection tends to mix larvae from natal and distant reefs, a likely case for Acropora corals that are mostly
broadcast spawners with long-dispersal larvae [44,101]. Such lack of correlation between early life stages and adult col-
onies may also reflect the contrasting habitat preferences and the differential effects of environmental stressors on these
distinct life stages [58,81,99,100].

Our results have provided some indication of mechanisms of population regulation, that are not only important for a bet-
ter understanding of the structure and dynamics of coral assemblages, but also for the implementation of appropriate con-
servation actions. However, this study is based on correlation analyses, and further sampling and field experiments should
be conducted to rigorously examine the ultimate causes of the relationships between spatial variation in the abundance
of the three life stages of corals. For example, assessment of stock-recruitment relationships should be complemented by
monitoring fecundity, density-dependent interactions, and early post-settlement mortality events within local coral popula-
tions. Data on reproduction modes and connectivity patterns should also be collected to better examine mechanisms of
population regulation, data which are also necessary to estimate recovery capacities and improve conservation actions
[102—-106]. Moreover, as these relationships may fluctuate with time, the present study should be complemented by a
long-term interannual study on the demography of coral assemblages [107].

4.3. Implications for conservation strategies

The discrepancies of regulation processes among coral families and genera highlighted here call for conservation
actions that include all benthic life stages, rather than specific actions targeting one phase of the coral life cycle. Conser-
vation strategies incorporating life-history processes are likely to be more successful than those based on promoting the
abundance of adult corals alone [24]. Thus, the outcomes of this survey suggest implementing conservation actions to
increase the settlement rates of coral larvae, reduce early post-settlement mortality, and reduce local threats that affect
the health of coral colonies, notably the growth and fecundity of adult colonies. Although some of these actions may be
more selective and effective for one life stage, most are in fact beneficial to all coral life stages, as well as other reef
communities.

In the context of coral reefs of Toliara, fishing activities are particularly intense, and their management should be a
priority [87]. Conservation actions to maintain the biomass and diversity of herbivorous fishes and invertebrates at a suffi-
cient level to control algal biomass is one of the most effective means to promote coral recruitment by offering more ade-
quate substrate for coral larvae to settle [73,108,109]. Reducing algal biomass will also decrease, for both early life stages
and adult colonies, mortality caused by spatial competition, abrasion, and allelopathy with fleshy algae [33,110,111].
Destructive fishing methods should also be urgently addressed, as this is the main cause of habitat degradation in the
Toliara region [69,86,112]. Practices such as gleaning, mosquito net trawl, and fishing by poisoning, that have direct and
indirect negative effects on all coral life stages, should be banned, with alternative income-generating activities, such as
aquaculture, proposed to local fishermen [87,113,114].

Local environmental conditions can also be improved by conservation measures regarding land use [115,116], with
specific actions to reduce nutrients and sediment loads from the two main rivers, the Fiherenana and Onilahy [86,112].
These actions will benefit overall coral assemblages, as both early life stages and adult colonies are sensitive to increas-
ing levels of sedimentation and nutrients [34,117], and other reef communities.

Given limited human and financial resources, managers are generally constrained to select the most effective areas to
protect and the critical periods to minimize stressors. Our results suggest that sites on the outer slope and on patch reefs,
which show higher recruitment rates and abundance and cover of adult colonies, could be considered as recruitment
hotspots [65,72] to prioritize for protection. Our results also suggest that austral summer, when most corals finalize their
gametogenesis and spawn, and when larvae settle and start their benthic life [72], is a critical period when all conserva-
tion measures mentioned prior should be particularly reinforced.
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However, as coastal human population is largely dependent on reef resources in Madagascar, these conservation mea-
sures should be designed and implemented with the strong involvement of end-users through, for example, Locally Marine
Managed Areas, which have proven their effectiveness in the Malagasy context, and with the development of alternative
sources of income, such as sea cucumber and seaweed farming [113,114,118—120]. Our results, by examining regulation
processes of coral assemblages in the region of Toliara, may serve as an important baseline against which future distur-
bances and recovery trajectories can be measured, and for improving conservation strategies of these highly vulnerable
coral reefs.
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