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ABSTRACT

The scientific concepts of soil threats (STs) and soil-related ecosystem services (SESs) are gaining importance and are fueling the
debate on natural resources management and decision-making within the EU. The literature reports numerous assessments of
individual STs and SESs at the European scale. However, a comprehensive overview of the patterns emerging from the relation-
ships between STs and SESs is still lacking, which restricts the ability to limit soil degradation and its impact on SESs. In this ar-
ticle, we provide an in-depth analysis of existing European maps for three STs (soil organic carbon loss, erosion, and compaction)
and four SESs (climate regulation and carbon sequestration, hydrological control, biomass production, and erosion control) and
the feasibility of combining them to study their relationships. At the EU-level, 37 maps for these STs and 17 for these SESs were
encountered. With the notable exception of erosion, these maps differ considerably in their conceptualization of STs and SESs,
and in the indicators, methods, and databases used to assess them. In the current situation, the combination of individual maps of
STs and SESs to study their relationships is rarely possible. Besides these limitations, we identify possible combinations and pro-
vide recommendations aimed at improving the compatibility between different STs/SESs maps. We conclude that there is a need
for a more robust framework for conceptualizing STs/SESs and for systematically and precisely specifying the chosen indicators.

1 | Introduction

Approximately 60%-70% of soils are currently in poor health
in the EU, resulting in an associated cost of €50billion per
year (Panagos et al. 2024, 2018). Indeed, soils are affected by
numerous threats (STs) that consist of “processes that could de-
grade (some of) the functions of soils and the services that soils

provide” (Weninger et al. 2024). These services have been ad-
dressed in the literature under a large number of overlapping
terms, such as soil ecosystem services (e.g., Pereira et al. 2018),
soil-related ecosystem services (e.g., Paul et al. 2021), soil-based
ecosystem services (e.g., Drobnik et al. 2018), soil contribution
to ecosystem services (e.g., McBratney et al. 2017) and have
also been estimated to be worth $11.4 trillion at the global scale

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2025 The Author(s). European Journal of Soil Science published by John Wiley & Sons Ltd on behalf of British Society of Soil Science.

European Journal of Soil Science, 2025; 76:¢70215
https://doi.org/10.1111/ejss.70215

1 of 24


https://doi.org/10.1111/ejss.70215
https://doi.org/10.1111/ejss.70215
https://orcid.org/0000-0002-4712-5703
https://orcid.org/0000-0003-4735-4618
https://orcid.org/0000-0001-8964-1194
https://orcid.org/0000-0002-8184-5632
https://orcid.org/0000-0002-1065-8004
https://orcid.org/0000-0001-6703-9645
https://orcid.org/0000-0003-3346-0874
https://orcid.org/0000-0002-9511-9826
https://orcid.org/0000-0002-8915-5601
https://orcid.org/0000-0001-5317-0933
mailto:
https://orcid.org/0000-0002-2433-5898
mailto:sophie.cornu@inrae.fr
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fejss.70215&domain=pdf&date_stamp=2025-10-22

Summary

« Analysis of the potential of ST/SES maps to be com-
bined to study their relationships.

+ To be combined ST/SES maps need to share the same
conceptualization, indicator type and data.

« There is no agreement on soil ST/SES conceptual-
ization, indicators and assessment methods and data
sources.

» Criteria underlying the choice of indicators for STs/
SESs should be explained more systematically.

(McBratney et al. 2017). In this study, we adopted the terminol-
ogy proposed by Paul et al. (2021), which defines soil-related
ecosystem services (SESs) as the subset of ecosystem services
provided by soils and their chemical, physical, and biological
properties, processes, and functions.

The costs and benefits contribute, among other factors, to the
growing attention to STs and SESs. As a consequence, research
on STs and SESs at the EU level has increased considerably, as
evidenced by the funding of numerous mapping projects over
the last decade (Maes et al. 2020; Vihervaara et al. 2019; Vrebos,
Staes, et al. 2018; Vrebos, Bampa, et al. 2018; Stolte et al. 2015;
Zulian et al. 2014). This work has resulted in numerous map-
pings, sometimes with very different perspectives. Moreover,
most of these studies have considered STs and SESs individually,
although it is known that they exhibit complex relationships
(Kiessé et al. 2024; Medina-Roldan et al. 2024; Obiang-Ndong
et al. 2020). Understanding these relationships is important be-
cause they need to be considered when implementing remedi-
ation measures or designing management strategies to reduce
soil degradation and ensure the provision of SESs. In this regard,
studies have called for increased attention to developing theoret-
ical knowledge on the multiple relationships among ecosystem
services (Carpenter et al. 2009; Bennett et al. 2009). Some rare
studies have started exploring this approach by combining ex-
isting ST maps at EU extent, as was done recently for STs by
Pravilie et al. (2024).

In this work, we aimed to understand the causes of discrepan-
cies between existing European ST/SES maps and to assess the
feasibility of constructing maps of several STs or SESs based on
the existing individual ones. For this purpose, we selected three
STs (soil organic carbon (SOC) loss, erosion, and compaction)
and four SESs (climate regulation and carbon sequestration,
hydrological control, biomass production, and erosion control),
being considered the most important by stakeholders from 16
European Member States (Foldal et al. 2022), and carried out a
systematic literature review on how their estimation was con-
ducted focusing particularly on: (i) the indicators chosen for the
different STs/SESs, an indicator being a single variable or a set of
variables representative of the STs/SESs in question (Kandziora
et al. 2013), (ii) the methods, and (iii) the databases used to esti-
mate the indicators. Based on our analysis, we propose combi-
nations of preferences (concept and indicator type) that can be
used to determine ST/SES relationships and identify potentially
combinable maps according to these criteria for the ST and SES
considered.

2 | Materials and Methods
2.1 | Definition of the Selected STs and SESs

Several definitions and classifications for individual SES and
ST exist in the literature. The definitions of the STs/SESs in-
cluded in this study are based on the main classifications of STs
(Blum 2005) and SESs (CICES, Haines-Young and Potschin 2018),
partly taken up by Paul et al. (2021) and their simplification pro-
posed by Weninger et al. (2024) and Foldal et al. (2022), for STs
and SESs, respectively (Tables 1 and 2). These definitions were
validated by stakeholders from 16 different EU countries, in-
cluding researchers, practitioners, policy-makers, farmers, and
industry representatives (Weninger et al. 2024).

2.2 | Literature Search

We conducted a systematic literature search following the
ROSES framework (Haddaway et al. 2018). This search was per-
formed in Web of Science, Scopus, and Google Scholar on April
25, 2024, with a query for each ST/SES considered (see Table S1
for the exact queries). The queries were built based on two com-
ponents: (i) one common to all STs and SESs targeting mapping
approaches with keywords such as “mapping” or “modelling”
or “assessment” and for European to global extent (Table S1);
and (ii) the other specific to each of the STs and SESs consid-
ered with, for erosion for example, keywords such as “soil loss*”,
“sediment loss*” or “erosion” for the ST erosion. These queries
identified 1526 articles for STs and 1123 for SESs, respectively.
The titles and abstracts of the identified articles were reviewed.
Only articles whose title and abstract suggested the production
of a map of at least one of the selected STs/SESs at the EU extent
were retained (Figure 1). Then, a text analysis verified that the
collected documents estimated and mapped a ST or a SES and
removed the articles that had no direct relation to STs and/or
SESs. Eight technical reports found in Google Scholar were also
considered, five on SESs and three on STs. In total, we collected
37 documents for STs and 17 for SESs.

Most of the documents contained the estimation of only one of
the selected STs (~85%) and SESs (~60%). Finally, for the con-
sidered STs and SESs, we obtained 47 and 33 estimations/map-
pings, respectively (Table 3).

2.3 | Information Extracted and Database Building

From each document, we extracted: (i) the STs and/or SESs
considered, (ii) the indicators used for the different STs or SESs
as well as (iii) the methods and (iv) databases used to estimate
them. All this information was gathered in an Excel file sheet
(Supporting Information). Both methods and databases were
further classified.

Indeed, both ST and or SES indicators can be measured or
estimated using expert knowledge or numerical modelling,
aligning with previous classifications of these approaches
(Montagne et al. 2025; Englund et al. 2017; Greiner et al. 2017;
Andrew et al. 2015) (Table 4). We also included an “assessed
by others” category to classify documents that did not assess
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TABLE 2 | Soil threats defined by Foldal et al. (2022).

ST name Definition of Foldal et al. (2022)

Soil organic
carbon loss

Soil organic carbon loss is defined as a
process of decreasing soil organic carbon
stocks or content of specific soil layers.

Erosion Soil erosion is a soil degradation process
consisting of the detachment, disintegration
and transport of soil particles by erosive
agents, such as water (water erosion),
wind (wind erosion), ploughing (erosion

by tillage) or ice (glacial erosion).

The densification and distortion of soil
by which total and air-filled porosity are
significantly reduced, causing deterioration
or loss of one or more soil functions.

Compaction

the indicators themselves but adapted pre-existing maps of the
considered indicators to reinterpret them within the STs/SESs
framework.

At last, a vast variety of data sources is used for ST/SES assess-
ments. We have classified them, as Andrew et al. (2015), accord-
ing to the nature of the data (soil, climate, topography, land use
and land cover (LULC), agricultural practices, biomass, and
parent material data) but also by separating non-spatially ex-
haustive databases from spatially exhaustive ones. Non-spatially
exhaustive databases contain discontinuous or discrete data that
are measured in specific locations (e.g., LUCAS point measure-
ments). Spatially exhaustive databases contain data for contin-
uous areas offering complete spatial coverage (e.g., climate and
EUROSTAT NUTSI statistics).

3 | Results: A Snapshot of the Existing
Assessments at the European Extent of the Most
Important STs/SESs

3.1 | Indicators Used to Estimate STs and SESs at
EU Extent

Numerous indicators were used for EU-wide mapping of the
considered STs/SESs (Figures 2 and 3). For most of the consid-
ered STs/SESs, there is no consensus on the indicator to use,
with the same indicator being used at best by two to five stud-
ies (Figures 2a,c and 3a,b,d). In the worst case, each study de-
fined its own indicator (e.g., for biomass production; Figure 3c).
Erosion is a notable exception as it is estimated from soil loss
by water in 61% of the cases (Figure 2b). This lack of consensus
reflects the author's different preferences on at least one of the
following five aspects:

1. The ST/SES used in the mapping assessment is either po-
tential (capacity) or actual (flow) (Tables 5 and 6).

2. Different parts of the ecosystem are considered when
assessing STs or SESs. This is very clear for SESs, as
seen for example for climate regulation and carbon se-
questration estimated either by considering only the soil

system (soil carbon storage), or by considering both the
plant and soil systems (greenhouse gas (GHG) fluxes;
Figure 3a). The same applies to biomass production, as-
sessed by the biomass production itself in five out of six
cases (i.e., at the agroecosystem scale) or by the ability of
the soil to produce biomass (Figure 3c) in the latter case.
Finally, erosion control is assessed either by the presence
of vegetation protecting the soil, or by erosion avoided
as a result of the interaction between vegetation and soil
(Figure 3d).

3. The STs are assessed at different steps of the Diver-
Pressure-State-Impact-Response (DPSIR) or different lev-
els of the cascade frameworks for SESs (Niemeijer and de
Groot 2008; Potschin-Young et al. 2018). This is particularly
the case of soil compaction, assessed either by a balance
between pressure (stress) and state (soil strength), or by a
state alone (soil strength), or by the resulting compaction
accumulated over time (impact), or by the consequence of
compaction on yield (Figure 2c).

4. The indicators targeted specific, but different components
of a threat (erosion) or SES (hydrological control). Indeed,
hydrological control can consist of flood regulation (more
than half of the documents), drought, or excess water,
which are estimated using different indicators (Figure 3b).
Similarly, erosion results from several processes, such as
erosion by natural agents—primarily by water (diffused
or concentrated in rills and gullies, most studies), but also
wind erosion, or a combination of both (Figure 2b)—or by
soil management practices (two studies), such as tillage
(one study) and harvesting (one study). More rarely, some
studies consider a combination of natural and human pro-
cesses (Figure 2b).

5. The ST indicator characterises either the process consti-
tuting the threat or the resulting soil condition. As an
example, SOC loss was characterised by negative SOC
changes in five out of eight documents (i.e., SOC loss pro-
cess), while it was quantified as a SOC stock or content
(i.e., soil condition) in the remaining three documents
(Figure 2a).

Variability in preferences (described above) and associated indi-
cators results in very different assessments and maps for a given
ST/SES, as demonstrated by the example of climate regulation
and carbon sequestration estimated either by the GHG fluxes
based on net ecosystem productivity (NEP) (Figure 4a; Paracchini
et al. 2011) or by SOC stock (change in SOC, Figure 4b; Vrebos,
Staes, et al. 2018). While high values of net ecosystem productivity
and SOC storage are expected to indicate high levels of climate reg-
ulation and carbon sequestration, the two maps appear inverted,
with areas of high storage in one being areas of low storage in the
other. On the other hand, the same spatial structures are found in
both maps (Figure 4a,b), which is less clear when examining the
maps of potential and actual wind erosion (Figure 4c,d).

3.2 | Methods Used to Assess ST/SES Indicators

Indicators can be calculated either based on point data and
then spatialized (e.g., by spatial interpolation) or directly

4 of 24

European Journal of Soil Science, 2025



Identification

(

Screening

Identification of studies via databases and registers for STs and SESs

-

J

Records identified from:

ST: Scopus =719, WoS =707,

Google Scholar = 100

SES: Scopus = 789, WoS = 234,
Google Scholar = 100

Total records screened:

Records removed before
screening: Duplicated records

ST (n = 325)
SES (n=127)

ST (n= 1201)
SES (n = 996)

Reports screened:

Y

Records excluded after title
check

ST (n= 1095)
SES (n=916)

ST (n = 106)
SES (n = 80)

v

Included

—

Reports screened:

v

Y

Records excluded after abstract
check

ST (n=64)
SES (n=45)

ST (n=42)
SES (n = 35)

Studies included in review:

ST (n=37)
SES (n=17)

Reports excluded after full text
screening:

ST:

*No specific ST addressed

(n=15)

SES:

*Indicators not related to SES

(n=7)

*Focus on non-soil-related SES

(n=28)

+Lack of quantitative

assessment of indicators (n = 3)

FIGURE 1 | PRISMA flow diagram illustrating the selection process adopted in the review. This flowchart was realized following Page

et al. (2021). The authors pre-identified that only the first 100 records from Google Scholar would be screened, following guidance in Rethlefsen and
Page (2022). WoS stands for Web of Science.

TABLE 3 | Number of documents and date of the first publication for the considered STs/SESs.

First Total number of documents Total number
publication estimating/mapping the of documents
ST/SES date considered ST/SES? analysed
ST Soil organic carbon loss 2014 8 37
Soil erosion 1991 31
Soil compaction 1991 8
SES Climate regulation and carbon sequestration 2002 9 17
Hydrological control 2011 7
Biomass production 2006 10
Erosion control 2012 7
2The total number of STs/SESs is larger than the total number of documents for STs/SESs since one document may assess several STs/SESs.
European Journal of Soil Science, 2025 50f24



TABLE 4 | Classification of the methods used to estimate the STs/SESs.

Type of method Used when

Categories

Principle

Expert knowledge Compensate for
the absence of

empirical data

When numerical
data are available

Numerical modelling

Statistical and
empirical approaches

Process-based models

Rule-based models

Approach relying on an accumulated
expertise and biophysical knowledge to infer
the potential distribution of STs/SESs.

The expertise and biophysical knowledge
are used to create decision rules to assess
semi-quantitative ST/SES indicators
(Burkhard and Maes 2017).

These types of approaches range from
statistical relationships between known
explanatory variables (soil properties and
climate; Wainwright and Mulligan 2012)
to empirical equations as the well-known
Revised Universal Soil Loss Equation
(RUSLE; Burkhard and Maes 2017).

A mechanistic approach that simulates
the biophysical processes occurring in
the soil ecosystem to estimate STs/SESs
(Wainwright and Mulligan 2012).

calculated on spatialized data. These two options correspond
to what has been considered in the literature as mapping-
first or mapping-last approaches (Angelini et al. 2023; Styc
and Lagacherie 2019), although the two stages are sometimes
intertwined. A critical analysis of spatialization methods,
however, is beyond the scope of this paper as numerous re-
views on this topic already exist in the literature (Englund
et al. 2017; Andrew et al. 2015; Malinga et al. 2015; Crossman
et al. 2013; Martinez-Harms and Balvanera 2012). Therefore,
we only considered here the methods used to estimate indica-
tors without considering the spatialisation step. In some cases,
the indicators were estimated in previous studies and reinter-
preted with the ST/SES framework; the assessment method
was therefore not considered in this section. Consequently,
the methods used were only analysed for 34 ST and 21 SES
indicators, respectively (Figure 5).

ST/SES indicators were primarily estimated (using statis-
tical, rule-based, and process-based modelling) and, to a
lesser extent, using expert knowledge or direct measurements
(Figure 5). Indeed, only three of the four SESs considered
(climate regulation and carbon sequestration, biomass pro-
duction, and erosion control) and only one ST (erosion) were
sometimes directly measured, while this was never the case
for SOC loss, compaction, and hydrological control at the
EU extent (Figure 5). SES indicators were mainly obtained
through modelling approaches, including rule-based and
process-based modelling, but also statistical modelling to a
lesser extent (Figure 5).

Nevertheless, the frequency of use of the different assess-
ment methods varies considerably among STs/SESs. Climate
regulation and carbon sequestration, as well as hydrological
control, were mainly assessed using process-based models,
erosion using statistical models, and biomass production

using rule-based models (Figure 5). The other STs and SESs,
namely erosion control, SOC loss, and compaction, were as-
sessed using a wider range of methods (Figure 5). Such dif-
ferences in the assessment methods used for different STs and
SESs are likely due to a legacy of past research efforts that
eventually resulted in the emergence of “easier” or even “nat-
ural” methods, as already observed by Czucz et al. (2020) for
indicator selection. This is undoubtedly the case for assess-
ments of biomass production dominated by rule-based models
(e.g., Toth et al. 2013) and sheet and rill erosion mainly ob-
tained by statistical models (i.e., RUSLE), whose development
dates back several decades, or sometimes even a century, for
the assessment of soil suitability for agricultural production
(Figure 5). Similarly, the considerable efforts made to mecha-
nistically model the dynamics of SOC or soil water fluxes ex-
plain why process-based models are so often used to assess
SOC loss, climate regulation, and carbon sequestration, or hy-
drological control (Figure 5).

When different methods were used to assess the same ST or
SES, they were generally used to estimate different indicators.
This is particularly the case for the compaction assessment
for which rule-based models have been used to assess the soil
strength (HouSkova and Montanarella 2008; Jones et al. 2003),
process-based models to assess the balance between stress and
soil strength (Lamandé et al. 2018; Schjonning et al. 2015),
expert knowledge to assess the actual state of compaction
(Oldeman et al. 1991), and statistical models to assess the con-
sequences of soil compaction (Sonderegger and Pfister 2021;
Stoessel et al. 2018). Furthermore, rule-based modelling, as a
static approach (Greiner et al. 2017), has been mainly used to
estimate potential ST/SES indicators (Tables 5 and 6), while
process-based modelling, as a dynamic approach (Greiner
et al. 2017), has often been used to assess processes and con-
sequently actual STs or SESs. Statistical modelling is a simple
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SOC loss

cxate of soj/

FIGURE2 | STindicators: (a) SOC loss; (b) erosion; (c) compaction. The colours in each graph represent different groups of indicators. NSL stands
for net soil loss by water; GE for gully erosion, LT for loss by tillage, LH for loss by harvest, LWW for loss by water and wind, LWT for loss by water and
tillage, TSLE for total soil loss by erosion, CE for consequences of erosion. References associated with each indicator are reported in the Supporting

Information (Table S2).

alternative to estimate actual STs and SESs, especially for
water erosion (Figure 2b) or for erosion control (avoided soil
loss; Figure 3d).

3.3 | Sources of Information
The previous analysis highlighted the importance of data for ST/

SES indicator assessments. Thus, we analyzed the data sources
used for the different ST/SES indicators.

3.3.1 | Types of Data Used to Assess the Different
ST/SES Indicators

The type of data used depends on the ST/SES and on the indica-
tor considered, as well as on the method chosen to assess them.
Soil data are used in all assessments for most of the STs and SESs
considered, with the notable exceptions of some assessments
of erosion control and biomass production (Figure 6). Climate
and LULC data are also used in the calculation of most ST/SES
indicators, with the exception of some indicators of biomass
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FIGURE3 | SESindicators: (a) Climate regulation and carbon sequestration; (b) hydrological control; (c) biomass production; (d) erosion control.
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associated with each indicator are reported in the Supporting Information (Table S3).

production and soil compaction (the indicators “consequences
of compaction on yield”—Sonderegger and Pfister 2021; Stoessel
et al. 2018—and “balance between stress and strength”—
Lamandé et al. 2018; Schjenning et al. 2015; Figure 2c—
which are based solely on soil data and agricultural practices).
Topography and agricultural practices data are mainly used to
estimate erosion, but also, to a lesser extent, climate regulation
and carbon sequestration for agricultural practices. Biomass
data have been mainly used to estimate biomass production

(Figure 6). Finally, parent material data have been used in one
case for hydrological control (Trombetti et al. 2015).

3.3.2 | Sources of Data
For each data type (soil, climate, LULC, topography, agricul-

tural practices, and biomass), different sources were used in the
ST/SES assessments (Figure 7). The vast majority of datasets
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(Trombetti et al. (2015))

Note: The indicators are classified according to the combination of preferences used (provider and component). The indicators were classified according to the combination of preferences at two levels: The first level considered the
provider (i.e., soil system, the soil-plant system, or the socio-ecosystem), while the second considered the component that represents the specific aspect of the service (i.e., capacity and flow) (Van Oudenhoven et al. 2012).

used are spatially exhaustive (Figure 7), with the exception of
SPADE and LUCAS datasets for soil and land cover.

For soil data (Figure 7a), the spatially exhaustive ESDAC
European Soil Database is the most frequently used to assess the
STs and SESs considered, with the exception of biomass produc-
tion and erosion control, which were most often estimated using
the FAO Global Soil Database (FAO/ITASA/ISRIC/ISS-CAS/
JRC 2009). This is likely because these latter assessments were
conducted in Eastern European countries and published in 2012
(Schulp et al. 2012; Figure 7a), when these countries were not yet
included in the European Soil Database. Two other spatially ex-
haustive soil databases, SoilGrids and Open Landmark, are reg-
ularly used, especially for recent global assessments, replacing
the FAO Soil Database, which is no longer used in recent work.
Finally, 30% of the ST/SES assessments, mainly those based on
process-based modelling, used point measurements databases
such as LUCAS Soil or SPADE, depending on the type of data
needed (e.g., bulk density was not available in LUCAS Soil before
2019). LUCAS Soil is also used for gully erosion (Borrelli, Poesen,
et al. 2022), as it is the only database providing this information.

For climate data (Figure 7b), three of the six data sources were
most frequently used: the JRC European Climate Database (no-
tably MARS), the most frequently used from 2000 to 2017; the
European Climate Assessment and Dataset (E-OBS), which
began its use in 2015 and is currently the most widely used.
The Climate Research Unit (CRU) database is typically used in
global-scale studies (Poeplau and Dechow 2023) or when Eastern
European countries, not fully included in E-OBS until recently,
are considered (Schulp et al. 2012), as well as in studies published
before 2015. Additionally, WorldClim data have been used for sce-
narios in global-scale analyses (Borrelli, Ballabio, et al. 2022).

For LULC (Figure 7c), 11 databases were used; one of them is
non-spatially exhaustive (LUCAS), but provides information on
crop types (Lugato et al. 2018). The CORINE land cover data-
base is one of the most widely used. However, for assessment and
mapping at the global scale (Padarian et al. 2022) and/or covering
Eastern European countries (Schulp et al. 2012), recently inte-
grated into CORINE land cover, the GlobCover database has been
preferred, especially for the assessment of erosion control. The
databases are also sometimes used in combination: CORINE land
cover with Eurostat (Panagos et al. 2020; Panagos et al. 2015) or
FAOSTAT with MODIS-MOD13A2 (Borrelli et al. 2017; Borrelli,
Lugato, et al. 2016; Borrelli, Panagos, et al. 2016). Finally, remote
sensing data from different satellites (SPOT, LANDSAT, NOAA
AVHRR, MODIS-MOD13A2) are also used, especially for SOC
loss (Poeplau and Dechow 2023; Padarian et al. 2022).

For topography (Figure 7d), four of the six identified data sources
are used more frequently: the Shuttle Radar Topography Mission
(SRTM), the European Digital Elevation Model (EU-DEM), the
Global 30 Arc-Second Elevation (GTOPO30), and its derivative,
the Global 30s Arc-Second Hydrologic One Kilometre Elevation
(HYDRO1k). GTOPO30 has been used to assess STs only in
Eastern European countries (Schulp et al. 2012), or at the global
level in its most recent version (Global Multi-resolution Terrain
Elevation Data 2010, GMTED2010) (Padarian et al. 2022).
HYDRO1k specifically provides topographically derived data-
sets, including streams and drainage basins, needed in some of
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FIGURE 4 | Impact of the choice of indicator on the ST/SES maps. Upper row—impact of the part of the ecosystem considered when assessing

the SES “climate regulation and carbon sequestration”: (a) GHG fluxes using net ecosystem productivity focusing on the soil-plant system (data from
Paracchini et al. 2011, Data sources: ESDAC); (b) SOC stock (change in SOC) focusing only on the soil system (Data sources: Vrebos Dirk). Lower
row—Mapping potential versus actual ST indicator for wind erosion (Data sources: ESDAC): (c) actual (data from Borrelli, Lugato, et al. 2016), (d)
potential (data from Borrelli et al. 2014).

the erosion assessments (Le Bissonnais et al. 2002) and hydro-
logical control (Stiirck et al. 2014) indicators.

The MAPSPAM, EUROSTAT, and FAOSTAT databases are the
most used for estimating agricultural practices and biomass
(Figure 7e,f). In addition to these three main databases, CAPRI
model outputs are also used for biomass estimation (Figure 7f).

4 | Discussion: Analysis of the Potential of
Existing ST/SES Estimations at the EU Extent for
Building ST/SES Relationships

Most existing work has considered STs (~85%) and SESs (~60%)
individually, and those assessing more than two STs/SESs have
not examined their relationships, although, as mentioned in the
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FIGURES5 | Methods used to assess ST and SES indicators at EU extent from 1990 to 2022. Numbers in brackets represent the number of assess-

ments encountered in the literature for each ST/SES.

introduction, STs and SESs are known to have complex relation-
ships (Kiessé et al. 2024; Medina-Roldan et al. 2024; Obiang-Ndong
et al. 2020) that often involve trade-offs and synergies (Bennett
et al. 2009). Thus, knowledge of these relationships could guide the
adaptation of remediation measures or the design of management
strategies aimed at reducing soil degradation and ensuring SES sup-
ply. Yet, to the best of our knowledge, only one study has assessed
the co-occurrence of STs at the EU level (Pravilie et al. 2024), and
the interactions between SESs have been largely neglected.

As we have seen, existing EU-wide assessments of STs and SESs
present a wide variety of ST/SES indicators, with different combi-
nations of preferences, assessment methods, and databases used as
input data. For example, an average of four indicators is currently
mapped at the EU level for each of the most important STs and
SESs, resulting in very different maps for a given ST or SES.

Currently, defining EU-wide ST/SES relationships based on
the reuse of pre-existing maps of individual ST and SES faces
a number of challenges and pitfalls due to the wide variety of
preferences observed in the literature. Mapping ST/SES relation-
ships based on existing individual ST/SES maps at the EU level
requires careful selection of compatible indicators, assessment
methods, and databases, as outlined below.

4.1 | Selection of the Indicators Used to Make
the ST/SES Relationships

Ecological indicators have long been recognised as boundary
objects (Turnhout 2009). This means that indicators are not

only purely objective science-based tools useful for assessing
objects of interest such as STs or SESs, but also the vectors of
selective preferences about what STs and SESs are or should
be (Turnhout 2009). Regarding SESs, their indicators can rep-
resent the soil system itself, the soil-plant system, or integrate
elements from the socio-ecosystem (Table 6). The focus on a
particular component of the preferences combination gov-
erning STs among risk, process, soil state, or impact (Table 5;
Niemeijer and de Groot 2008), or the process of delivering SESs
between capacity or flow (Van Oudenhoven et al. 2012), is also
part of these preferences. Reflecting specific combinations of
preferences, different indicators of the same ST/SES are not
systematically interchangeable. Therefore, before establishing
ST/SES relationships, indicators must be carefully selected to
ensure the compatibility of preferences specific to each indi-
cator. Such a selection, far from simple because the preference
systems associated with the indicators are often insufficiently
explicit, if not simply false (Czucz et al. 2020), is further com-
plicated by its dependence on the type of relationships to be
constructed.

In the case of multi-ST or multi-SES relationships, each par-
ticular combination of preferences is likely to be of interest.
However, for a given relationship, all indicators must share
the same combination of preferences. Given the current state
of knowledge at the European scale, such complete alignment
of preferences cannot be achieved for SESs (Table 6) and for
STs only if sensitivity or the actual soil condition is consid-
ered (Table 5). As a result, it is not surprising that the EU-wide
studies of ST/SES relationships mixed indicators reflecting
several combinations of preferences. For instance, Prdvilie
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sessed in the considered documents using the different data types is reported in brackets (indicators assessed by expert knowledge or “assessed by

others” were excluded from this analysis).

et al. (2024) mixed pressure indicators for aridity; process in-
dicators for water and wind erosion, soil organic carbon loss,
vegetation decline, or groundwater decline; current soil condi-
tion indicators for salinization, acidification, and trace metal
and metalloid pollution; risk or sensitivity indicators for com-
paction and pesticide pollution; and finally, a combination of
process and condition indicators for nutrient imbalances. A
further step could also be to map soils that are either (i) suscep-
tible to degradation (risk indicators); (ii) currently threatened
(process indicators); or (iii) degraded (condition indicators).
Reusing existing ST/SES maps would be facilitated if the com-
bination of preferences underlying each indicator were clearly
explained in the published documents. In addition, there are
two to five times more SES indicators in the literature than
those used at the European level (Czucz et al. 2020; Boerema
et al. 2016). Therefore, there is significant room for improve-
ment in the various types of ST and SES assessments at the
European level, which could address the current limitations in
the development of ST/SES relationship studies, particularly
for SESs.

In the case of a single ST or SES, characterising the relation-
ships between indicators that differ only in one of the prefer-
ences mentioned above (Tables 5 and 6) is of great interest, as

demonstrated by comparing the potential (capacity) and the ac-
tual (flow) supply of SES (all other preferences being similar) to
assess the sustainability (when the flow is lower than the capac-
ity) or the unsustainability (when the flow is higher than the ca-
pacity) of the SES uptake (Baro et al. 2016; Schroter et al. 2014).
Atthe EU level, the study of such relationships is rare and mainly
limited to the comparison of the potential and actual supply of a
few SESs, such as biomass production (Mayer et al. 2021; Schulp
et al. 2012) or erosion control (Rendon et al. 2022; Trombetti
et al. 2015; Schulp et al. 2012). Based on the existing EU-wide
SES maps, the comparison of the potential and the actual supply
could be extended to the regulation of climate and carbon se-
questration by comparing the technical potential of SOC storage
(Lugato, Bampa, et al. 2014; Vleeshouwers and Verhagen 2002)
with the actual SOC storage (De Rosa et al. 2023; Lugato
et al. 2018; Vrebos, Staes, et al. 2018; Vrebos, Bampa, et al. 2018)
or to hydrological control by comparing the water storage capac-
ity (Trombetti et al. 2015; Schulp et al. 2012) with subsurface
water flow (Liquete et al. 2011; Paracchini et al. 2011). For STs,
various comparisons of sensitivity, process, condition, or impact
indicators for SOC loss, erosion, and compaction are, at least
partially, feasible (Figure 2) and could be helpful to identify sit-
uations where soils are simultaneously sensitive, threatened, or
degraded.
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FIGURE 7 | Databases used in the assessment of STs/SESs for: (a) soil, (b) climate, (c) LULC, (d) topography, (e) agricultural practices and (f)
biomass. The numbers in brackets refer to ST/SES assessments by data type (see Figure 6). Colours indicate dataset type: Blue =spatially exhaustive,
green =point data, brown =literature, white =no source information. SL=SOC Loss; E = Erosion; C = Compaction; CRCS = Climate Regulation and

Carbon Sequestration; HC = Hydrological Control; BP = Biomass Production; EC = Erosion Control.

4.2 | Rigorous Examination of the Method
Employed to Estimate the Indicators

The different methodologies used to quantify STs/SESs, often
closely linked to specific indicators, have specific advantages
and limitations. Expert knowledge can be a very effective
method to provide an overview of multiple STs/SESs in space,
while process-based modelling is necessary to understand
how management influences STs/SESs or to predict the con-
sequences of unprecedented climate or management scenarios
(Grét-Regamey et al. 2015; Schrdter et al. 2016). However, the
assessment methods also have specific and sometimes mutually
exclusive areas of application. Measurement-based assessments,
although regularly requested, are not feasible for every ST and
SES. As shown in our study, measurements have only been
used for a limited number of indicators for erosion (Borrelli,
Poesen, et al. 2022—Gully; Cerdan et al. 2010), erosion control
(Trombetti et al. 2015), and climate regulation and carbon se-
questration (De Rosa et al. 2023). With the exception of erosion
control, process-based models have been proven particularly
popular in studies to quantify ST/SES indicators. While these
models are effective in assessing various SESs in deep, homo-
geneous, and well-drained soils, they are not effective in mar-
ginal soils characterised by significant waterlogging, extreme
acidity, or strong textural differentiation (Choquet et al. 2021).
In contrast, rule-based models have been shown to be usable for
a wider variety of soil conditions, but at the cost of increased
uncertainty (Choquet et al. 2021).

While combining methodologies can be an effective approach
to increase the diversity of STs/SESs incorporated into relation-
ships, it also entails additional limitations and uncertainties
specific to each methodology used. Such combinations of lim-
itations and uncertainties are problematic because the condi-
tions for which the available methodologies perform well and
the uncertainties associated with such methodologies are rarely
known due to the lack of comparative and validation studies.

4.3 | Alignment of Datasets for a Given Type
of Data

As with methods, the choice of input data used has a significant
impact on ST/SES maps (Ellili-Bargaoui et al. 2023; Scammacca
et al. 2023; Bagstad et al. 2018). Thus, when jointly assessing
STs/SESs, indicators should ideally be estimated from the same
database for a given data type. Our review of the datasets used to
assess available ST/SES indicators has shown that this is rarely,
and even then, only partially, the case. For STs, the assess-
ment of (i) SOC loss by Hijbeek et al. (2017); (ii) soil erosion by
Kirkby et al. (2008), van der Knijff et al. (2000) or Podmanicky
etal. (2011); and finally, (iii) soil compaction by Jones et al. (2003)
is all based on the ESDAC and JRC MARS datasets for soil and

climate data respectively (Table 7). However, none of these in-
dicators have been assessed using the same database for LULC
and topography (Table 7). Not all SES considered have ever been
assessed with a similar dataset (Table 8), except for those that
were assessed by the same authors. This is, for example, the
case of Schulp et al. (2012) for climate regulation and carbon se-
questration, biomass production and erosion control, or Vrebos,
Staes, et al. (2018), Vrebos, Bampa, et al. (2018), and Vrebos
et al. (2019) for climate regulation and carbon sequestration and
hydrological control (Table 8).

In recent years, intensive work has been carried out to compare
existing soil databases and assess the impact of their use on
the assessment of soil indicators in order to identify solutions
to manage this diversity, through the use of transfer or scoring
functions to obtain comparable values (Froger et al. 2024; Cornu
et al. 2023). While this work has the merit of raising the question
of the origin of the data on the results produced and of propos-
ing some initial solutions, it only concerns the harmonisation
of different soil databases to assess unmeasured soil properties.
This is a much simpler problem than the assessment of ST/SES
indicators requiring the combination of different types of data,
each likely to have multiple origins/sources (Cornu et al. 2023).

4.4 | Shaping the Future of Studies on ST/SES
Interactions at the EU Extent

Although limited, the set of ST/SES maps currently available
at the European level offers several opportunities for combi-
nations. Some of them have already been exploited, such as
the simple addition of the soil loss due to different types of ero-
sion to assess the total soil loss by erosion (Borrelli, Panagos,
et al. 2022). Others still await exploration, such as the compar-
ison of different ST/SES components. However, due to the lack
of a set of indicators sharing a common preference combination
(Section 4.1), a proper characterisation of ST/SES relationships
is generally impossible. Several complementary steps can be pro-
posed to develop such approaches.

In the short term, European ST/SES maps could be recomputed
using similar input data. Thus, for instance, the recalculation of
potential SOC stocks of Lugato, Panagos, et al. (2014), based on
JRC-MARS climate data rather than CRU data (Table 7), would
allow for fully aligning input data (ESDAC for soil, JRC-MARS
for climate and CORINE for LULC) of a first set of indicators for
the three most important STs for stakeholders, using the poten-
tial SOC stocks by Lugato, Panagos, et al. (2014), the soil loss by
water by Podmanicky et al. (2011), and the dynamic soil strength
by Jones et al. (2003) (Table 8).

Improving the consistency of methodologies used is much more
complex, as no model integrating a realistic representation of
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Biomass
MapSPAM
MapSPAM

Agricultural
Practices
MAPSPAM
MAPSPAM

Topography

LULC
Corine Land Cover
Corine Land Cover

Climate data
JRC-MARS

SOIL data
ESDAC
ESDAC
SPADE
ESDAC
OpenL

andMap.org

CGIAR-CSI

References
Houskova and
Montanarella (2008)
Jones et al. (2003)
Lamandé et al. (2018)
Schjenning et al. (2015)
Sonderegger and Pfister (2021)
Stoessel et al. (2018)

Indicator
Soil strength
Balance
between stress
and strength
Consequences
of compaction
on yield

(Continued)

ST
Compaction

bGlobal Soil Data collection: Hengl et al. (2018); ISRIC; USDA National Cooperative Soil Characterisation Database, Africa Soil Profiles Database, LUCAS.

aRemote sensing data of different satellite sources (SPOT, LANDSAT, NOAA AVHRR, MODIS-MOD13A2).
CESA Climate Change Initiative time series at 300 m.

¢European LULC datasets: CORINE-Eurostat, FAOSTAT and MODIS-MOD13A2 datasets.

dHYDE v3.2: History Database of the Global Environment.
fLiterature compilation.

eMODIS-derived vegetation indices.

TABLE 7

soils is currently available to quantify a wide range of SESs on
land uses ranging from forest to arable land (Choquet et al. 2021).
Two complementary and non-exclusive approaches could be
considered depending on the diversity of STs/SESs and land uses
to be considered. Several models specifically dedicated to the as-
sessment of individual ST/SES could be combined, provided that
these models are of similar complexity (a set of rule-based, sta-
tistical, or process-based models) to better control the usage con-
ditions, benefits, and uncertainties specific to each method type
(Choquet et al. 2021). Such an approach is unavoidable because
most STs, but also some SESs, such as erosion control, can only
be modelled using specific tools. As most STs and SESs have
been mapped at the EU level using all different method types
(Figure 5), this approach seems relatively quick and easy to im-
plement. A second approach would be to map and characterise
the relationships of several STs or SESs using a single model.
Such an approach has already been applied at the local (Ellili-
Bargaoui et al. 2021), regional (Choquet et al. 2021; Obiang-
Ndong et al. 2020), and national levels (Therond et al. 2017), but
rarely at the EU level (Vrebos, Staes, et al. 2018; Vrebos, Bampa,
et al. 2018; Vrebos et al. 2019). While effective in terms of meth-
odological consistency, this type of approach is, so far, limited to
arable land, a narrow but relevant set of SESs including biomass
production, hydrological control, as well as climate regulation
and carbon sequestration. In this type of approach, the consid-
eration of other land uses and a broader range of STs/SESs is a
more distant objective that will require the development of spe-
cific modelling capacities (Choquet et al. 2021).

Finally, the EU-wide mapping of new ST/SES indicators would
allow the analysis of the ST/SES relationship based on sets of
indicators sharing consistent representations (or combinations
of preferences). Regarding STs, a pressing need concerns the
assessment of the degree of compaction (soil condition) and of
its evolution over time (process). The integration of bulk density
in most national soil databases in EU countries, sometimes for
years (Cornu et al. 2023), its (partial) integration in the LUCAS
Soil database from the 2018 campaign (Orgiazzi et al. 2018), and
potentially in the future Soil Monitoring Law are all tools that
could support the mapping of this indicator (i.e., soil compac-
tion expressed as a variation in bulk density change). Regarding
SESs, the most advanced type of indicators is defined at the
soil-plant system level (Table 6), which is consistent with the
emerging definition of SESs as the subset of ecosystem services
directly controlled by soil properties, processes, or functions
(Paul et al. 2021). According to Table 6, two main indicators
need to be developed to obtain a comprehensive set of indicators
at the soil-plant system level: (i) a capacity indicator for climate
regulation and carbon sequestration and (ii) a flow (actual) in-
dicator for biomass production. The former should reflect the
capacity of the soil-plant system to store carbon. Among other
possibilities, it could be based, for the plant compartment, on
the net primary productivity of the plant cover that would pre-
vail in the absence of human intervention (Mayer et al. 2021)
and, for the soil compartment, on the assessment of the soil or-
ganic carbon sequestration potential (Chen et al. 2018; Angers
et al. 2011). The latter should reflect the total amount of be-
low- and aboveground biomass produced, rather than just the
harvested fraction. It could be assessed, for example, by the
net primary productivity of the currently prevailing vegetation
(Mayer et al. 2021; Haberl et al. 2014).
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It is difficult to precisely assess, from existing studies, which
harmonisation step (input data, methods or a consistent set of
indicators) will have the greatest impact on the quality of the
assessment of the ST/SES relationships. However, a trade-off
probably exists between ease of implementation and impact on
the quality of these relationships. The harmonisation of input
data, which is relatively easy to implement but will probably
have a more limited impact than harmonisation of methods or
improvement of indicator consistency (in terms of preferences),
will have a deeper impact but are more difficult to implement.

5 | Conclusions

This research aimed to assess the feasibility of reusing exist-
ing EU-wide ST or SES maps to characterise relationships be-
tween the three STs and four SESs, considered most important
by stakeholders from 16 European countries. Despite the first
EU-wide ST or SES maps being published decades ago, the pos-
sibilities of developing studies on ST/SES relationships from
the combination of existing maps are limited by the number of
available EU-wide maps. They are also limited by the heteroge-
neity of the conceptualisation of each ST/SES, the combination
of preferences used to define the different indicators, the meth-
ods and the input data used to assess them, all of which have
an impact on the levels of ST/SES and their spatial distribution.

Despite these limitations, the set of currently available maps
offers several possibilities for combinations, notably (i) for SES,
a more systematic characterisation of the interactions between
the capacity and the flow of each SES, in order to assess the
(un)sustainability of the uptake of each SES, and (ii) for STs, a
combination of sensitivity, process and state indicators, in order
to identify situations where soils are simultaneously sensitive,
threatened, or degraded by a particular threat. The characterisa-
tion of the relationships between several SESs or STs, with a bet-
ter harmonisation of indicators, methods, and input data, will
require several stages of development, ranging from the recalcu-
lation of already existing indicators with similar input data for
the development and mapping of new indicators. Although dif-
ficult, improving the consistency of input data, methodologies,
and indicators is essential to limit methodological biases in the
assessment of ST/SES relationships and, ultimately, to decision-
making for the management of STs and SESs. For instance,
managing threatened but not degraded soils requires preventive
actions, while managing degraded soils (whether threatened or
not) requires remediation actions. In the meantime, we urge the
community to systematically specify the combination of pref-
erences considered for each indicator to identify the need for
developing new indicators and to facilitate the selection of co-
herent sets of indicators.
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