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ABSTRACT
The scientific concepts of soil threats (STs) and soil-related ecosystem services (SESs) are gaining importance and are fueling the 
debate on natural resources management and decision-making within the EU. The literature reports numerous assessments of 
individual STs and SESs at the European scale. However, a comprehensive overview of the patterns emerging from the relation-
ships between STs and SESs is still lacking, which restricts the ability to limit soil degradation and its impact on SESs. In this ar-
ticle, we provide an in-depth analysis of existing European maps for three STs (soil organic carbon loss, erosion, and compaction) 
and four SESs (climate regulation and carbon sequestration, hydrological control, biomass production, and erosion control) and 
the feasibility of combining them to study their relationships. At the EU-level, 37 maps for these STs and 17 for these SESs were 
encountered. With the notable exception of erosion, these maps differ considerably in their conceptualization of STs and SESs, 
and in the indicators, methods, and databases used to assess them. In the current situation, the combination of individual maps of 
STs and SESs to study their relationships is rarely possible. Besides these limitations, we identify possible combinations and pro-
vide recommendations aimed at improving the compatibility between different STs/SESs maps. We conclude that there is a need 
for a more robust framework for conceptualizing STs/SESs and for systematically and precisely specifying the chosen indicators.

1   |   Introduction

Approximately 60%–70% of soils are currently in poor health 
in the EU, resulting in an associated cost of €50 billion per 
year (Panagos et  al.  2024, 2018). Indeed, soils are affected by 
numerous threats (STs) that consist of “processes that could de-
grade (some of) the functions of soils and the services that soils 

provide” (Weninger et al. 2024). These services have been ad-
dressed in the literature under a large number of overlapping 
terms, such as soil ecosystem services (e.g., Pereira et al. 2018), 
soil-related ecosystem services (e.g., Paul et al. 2021), soil-based 
ecosystem services (e.g., Drobnik et al. 2018), soil contribution 
to ecosystem services (e.g., McBratney et  al.  2017) and have 
also been estimated to be worth $11.4 trillion at the global scale 
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(McBratney et al. 2017). In this study, we adopted the terminol-
ogy proposed by Paul et  al.  (2021), which defines soil-related 
ecosystem services (SESs) as the subset of ecosystem services 
provided by soils and their chemical, physical, and biological 
properties, processes, and functions.

The costs and benefits contribute, among other factors, to the 
growing attention to STs and SESs. As a consequence, research 
on STs and SESs at the EU level has increased considerably, as 
evidenced by the funding of numerous mapping projects over 
the last decade (Maes et al. 2020; Vihervaara et al. 2019; Vrebos, 
Staes, et al. 2018; Vrebos, Bampa, et al. 2018; Stolte et al. 2015; 
Zulian et al. 2014). This work has resulted in numerous map-
pings, sometimes with very different perspectives. Moreover, 
most of these studies have considered STs and SESs individually, 
although it is known that they exhibit complex relationships 
(Kiessé et al. 2024; Medina-Roldán et al. 2024; Obiang-Ndong 
et al. 2020). Understanding these relationships is important be-
cause they need to be considered when implementing remedi-
ation measures or designing management strategies to reduce 
soil degradation and ensure the provision of SESs. In this regard, 
studies have called for increased attention to developing theoret-
ical knowledge on the multiple relationships among ecosystem 
services (Carpenter et al. 2009; Bennett et al. 2009). Some rare 
studies have started exploring this approach by combining ex-
isting ST maps at EU extent, as was done recently for STs by 
Prăvălie et al. (2024).

In this work, we aimed to understand the causes of discrepan-
cies between existing European ST/SES maps and to assess the 
feasibility of constructing maps of several STs or SESs based on 
the existing individual ones. For this purpose, we selected three 
STs (soil organic carbon (SOC) loss, erosion, and compaction) 
and four SESs (climate regulation and carbon sequestration, 
hydrological control, biomass production, and erosion control), 
being considered the most important by stakeholders from 16 
European Member States (Foldal et al. 2022), and carried out a 
systematic literature review on how their estimation was con-
ducted focusing particularly on: (i) the indicators chosen for the 
different STs/SESs, an indicator being a single variable or a set of 
variables representative of the STs/SESs in question (Kandziora 
et al. 2013), (ii) the methods, and (iii) the databases used to esti-
mate the indicators. Based on our analysis, we propose combi-
nations of preferences (concept and indicator type) that can be 
used to determine ST/SES relationships and identify potentially 
combinable maps according to these criteria for the ST and SES 
considered.

2   |   Materials and Methods

2.1   |   Definition of the Selected STs and SESs

Several definitions and classifications for individual SES and 
ST exist in the literature. The definitions of the STs/SESs in-
cluded in this study are based on the main classifications of STs 
(Blum 2005) and SESs (CICES, Haines-Young and Potschin 2018), 
partly taken up by Paul et al. (2021) and their simplification pro-
posed by Weninger et al. (2024) and Foldal et al. (2022), for STs 
and SESs, respectively (Tables 1 and 2). These definitions were 
validated by stakeholders from 16 different EU countries, in-
cluding researchers, practitioners, policy-makers, farmers, and 
industry representatives (Weninger et al. 2024).

2.2   |   Literature Search

We conducted a systematic literature search following the 
ROSES framework (Haddaway et al. 2018). This search was per-
formed in Web of Science, Scopus, and Google Scholar on April 
25, 2024, with a query for each ST/SES considered (see Table S1 
for the exact queries). The queries were built based on two com-
ponents: (i) one common to all STs and SESs targeting mapping 
approaches with keywords such as “mapping” or “modelling” 
or “assessment” and for European to global extent (Table  S1); 
and (ii) the other specific to each of the STs and SESs consid-
ered with, for erosion for example, keywords such as “soil loss*”, 
“sediment loss*” or “erosion” for the ST erosion. These queries 
identified 1526 articles for STs and 1123 for SESs, respectively. 
The titles and abstracts of the identified articles were reviewed. 
Only articles whose title and abstract suggested the production 
of a map of at least one of the selected STs/SESs at the EU extent 
were retained (Figure 1). Then, a text analysis verified that the 
collected documents estimated and mapped a ST or a SES and 
removed the articles that had no direct relation to STs and/or 
SESs. Eight technical reports found in Google Scholar were also 
considered, five on SESs and three on STs. In total, we collected 
37 documents for STs and 17 for SESs.

Most of the documents contained the estimation of only one of 
the selected STs (≈85%) and SESs (≈60%). Finally, for the con-
sidered STs and SESs, we obtained 47 and 33 estimations/map-
pings, respectively (Table 3).

2.3   |   Information Extracted and Database Building

From each document, we extracted: (i) the STs and/or SESs 
considered, (ii) the indicators used for the different STs or SESs 
as well as (iii) the methods and (iv) databases used to estimate 
them. All this information was gathered in an Excel file sheet 
(Supporting Information). Both methods and databases were 
further classified.

Indeed, both ST and or SES indicators can be measured or 
estimated using expert knowledge or numerical modelling, 
aligning with previous classifications of these approaches 
(Montagne et al. 2025; Englund et al. 2017; Greiner et al. 2017; 
Andrew et al. 2015) (Table 4). We also included an “assessed 
by others” category to classify documents that did not assess 

Summary

• Analysis of the potential of ST/SES maps to be com-
bined to study their relationships.

• To be combined ST/SES maps need to share the same
conceptualization, indicator type and data.

• There is no agreement on soil ST/SES conceptual-
ization, indicators and assessment methods and data
sources.

• Criteria underlying the choice of indicators for STs/
SESs should be explained more systematically.
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the indicators themselves but adapted pre-existing maps of the 
considered indicators to reinterpret them within the STs/SESs 
framework.

At last, a vast variety of data sources is used for ST/SES assess-
ments. We have classified them, as Andrew et al. (2015), accord-
ing to the nature of the data (soil, climate, topography, land use 
and land cover (LULC), agricultural practices, biomass, and 
parent material data) but also by separating non-spatially ex-
haustive databases from spatially exhaustive ones. Non-spatially 
exhaustive databases contain discontinuous or discrete data that 
are measured in specific locations (e.g., LUCAS point measure-
ments). Spatially exhaustive databases contain data for contin-
uous areas offering complete spatial coverage (e.g., climate and 
EUROSTAT NUTS1 statistics).

3   |   Results: A Snapshot of the Existing 
Assessments at the European Extent of the Most 
Important STs/SESs

3.1   |   Indicators Used to Estimate STs and SESs at 
EU Extent

Numerous indicators were used for EU-wide mapping of the 
considered STs/SESs (Figures 2 and 3). For most of the consid-
ered STs/SESs, there is no consensus on the indicator to use, 
with the same indicator being used at best by two to five stud-
ies (Figures 2a,c and 3a,b,d). In the worst case, each study de-
fined its own indicator (e.g., for biomass production; Figure 3c). 
Erosion is a notable exception as it is estimated from soil loss 
by water in 61% of the cases (Figure 2b). This lack of consensus 
reflects the author's different preferences on at least one of the 
following five aspects:

1. The ST/SES used in the mapping assessment is either po-
tential (capacity) or actual (flow) (Tables 5 and 6).

2. Different parts of the ecosystem are considered when
assessing STs or SESs. This is very clear for SESs, as
seen for example for climate regulation and carbon se-
questration estimated either by considering only the soil

system (soil carbon storage), or by considering both the 
plant and soil systems (greenhouse gas (GHG) fluxes; 
Figure 3a). The same applies to biomass production, as-
sessed by the biomass production itself in five out of six 
cases (i.e., at the agroecosystem scale) or by the ability of 
the soil to produce biomass (Figure 3c) in the latter case. 
Finally, erosion control is assessed either by the presence 
of vegetation protecting the soil, or by erosion avoided 
as a result of the interaction between vegetation and soil 
(Figure 3d).

3. The STs are assessed at different steps of the Diver-
Pressure-State-Impact-Response (DPSIR) or different lev-
els of the cascade frameworks for SESs (Niemeijer and de
Groot 2008; Potschin-Young et al. 2018). This is particularly 
the case of soil compaction, assessed either by a balance
between pressure (stress) and state (soil strength), or by a
state alone (soil strength), or by the resulting compaction
accumulated over time (impact), or by the consequence of
compaction on yield (Figure 2c).

4. The indicators targeted specific, but different components
of a threat (erosion) or SES (hydrological control). Indeed,
hydrological control can consist of flood regulation (more
than half of the documents), drought, or excess water,
which are estimated using different indicators (Figure 3b).
Similarly, erosion results from several processes, such as
erosion by natural agents—primarily by water (diffused
or concentrated in rills and gullies, most studies), but also
wind erosion, or a combination of both (Figure 2b)—or by
soil management practices (two studies), such as tillage
(one study) and harvesting (one study). More rarely, some
studies consider a combination of natural and human pro-
cesses (Figure 2b).

5. The ST indicator characterises either the process consti-
tuting the threat or the resulting soil condition. As an
example, SOC loss was characterised by negative SOC
changes in five out of eight documents (i.e., SOC loss pro-
cess), while it was quantified as a SOC stock or content
(i.e., soil condition) in the remaining three documents
(Figure 2a).

Variability in preferences (described above) and associated indi-
cators results in very different assessments and maps for a given 
ST/SES, as demonstrated by the example of climate regulation 
and carbon sequestration estimated either by the GHG fluxes 
based on net ecosystem productivity (NEP) (Figure 4a; Paracchini 
et al. 2011) or by SOC stock (change in SOC, Figure 4b; Vrebos, 
Staes, et al. 2018). While high values of net ecosystem productivity 
and SOC storage are expected to indicate high levels of climate reg-
ulation and carbon sequestration, the two maps appear inverted, 
with areas of high storage in one being areas of low storage in the 
other. On the other hand, the same spatial structures are found in 
both maps (Figure 4a,b), which is less clear when examining the 
maps of potential and actual wind erosion (Figure 4c,d).

3.2   |   Methods Used to Assess ST/SES Indicators

Indicators can be calculated either based on point data and 
then spatialized (e.g., by spatial interpolation) or directly 

TABLE 2    |    Soil threats defined by Foldal et al. (2022).

ST name Definition of Foldal et al. (2022)

Soil organic 
carbon loss

Soil organic carbon loss is defined as a 
process of decreasing soil organic carbon 

stocks or content of specific soil layers.

Erosion Soil erosion is a soil degradation process 
consisting of the detachment, disintegration 

and transport of soil particles by erosive 
agents, such as water (water erosion), 

wind (wind erosion), ploughing (erosion 
by tillage) or ice (glacial erosion).

Compaction The densification and distortion of soil 
by which total and air-filled porosity are 

significantly reduced, causing deterioration 
or loss of one or more soil functions.
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FIGURE 1    |    PRISMA flow diagram illustrating the selection process adopted in the review. This flowchart was realized following Page 
et al. (2021). The authors pre-identified that only the first 100 records from Google Scholar would be screened, following guidance in Rethlefsen and 
Page (2022). WoS stands for Web of Science.

TABLE 3    |    Number of documents and date of the first publication for the considered STs/SESs.

ST/SES

First 
publication 

date

Total number of documents 
estimating/mapping the 

considered ST/SESa

Total number 
of documents 

analysed

ST Soil organic carbon loss 2014 8 37

Soil erosion 1991 31

Soil compaction 1991 8

SES Climate regulation and carbon sequestration 2002 9 17

Hydrological control 2011 7

Biomass production 2006 10

Erosion control 2012 7
aThe total number of STs/SESs is larger than the total number of documents for STs/SESs since one document may assess several STs/SESs.
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calculated on spatialized data. These two options correspond 
to what has been considered in the literature as mapping-
first or mapping-last approaches (Angelini et  al.  2023; Styc 
and Lagacherie 2019), although the two stages are sometimes 
intertwined. A critical analysis of spatialization methods, 
however, is beyond the scope of this paper as numerous re-
views on this topic already exist in the literature (Englund 
et al. 2017; Andrew et al. 2015; Malinga et al. 2015; Crossman 
et al. 2013; Martínez-Harms and Balvanera 2012). Therefore, 
we only considered here the methods used to estimate indica-
tors without considering the spatialisation step. In some cases, 
the indicators were estimated in previous studies and reinter-
preted with the ST/SES framework; the assessment method 
was therefore not considered in this section. Consequently, 
the methods used were only analysed for 34 ST and 21 SES 
indicators, respectively (Figure 5).

ST/SES indicators were primarily estimated (using statis-
tical, rule-based, and process-based modelling) and, to a 
lesser extent, using expert knowledge or direct measurements 
(Figure  5). Indeed, only three of the four SESs considered 
(climate regulation and carbon sequestration, biomass pro-
duction, and erosion control) and only one ST (erosion) were 
sometimes directly measured, while this was never the case 
for SOC loss, compaction, and hydrological control at the 
EU extent (Figure  5). SES indicators were mainly obtained 
through modelling approaches, including rule-based and 
process-based modelling, but also statistical modelling to a 
lesser extent (Figure 5).

Nevertheless, the frequency of use of the different assess-
ment methods varies considerably among STs/SESs. Climate 
regulation and carbon sequestration, as well as hydrological 
control, were mainly assessed using process-based models, 
erosion using statistical models, and biomass production 

using rule-based models (Figure 5). The other STs and SESs, 
namely erosion control, SOC loss, and compaction, were as-
sessed using a wider range of methods (Figure  5). Such dif-
ferences in the assessment methods used for different STs and 
SESs are likely due to a legacy of past research efforts that 
eventually resulted in the emergence of “easier” or even “nat-
ural” methods, as already observed by Czúcz et al. (2020) for 
indicator selection. This is undoubtedly the case for assess-
ments of biomass production dominated by rule-based models 
(e.g., Tóth et  al.  2013) and sheet and rill erosion mainly ob-
tained by statistical models (i.e., RUSLE), whose development 
dates back several decades, or sometimes even a century, for 
the assessment of soil suitability for agricultural production 
(Figure 5). Similarly, the considerable efforts made to mecha-
nistically model the dynamics of SOC or soil water fluxes ex-
plain why process-based models are so often used to assess 
SOC loss, climate regulation, and carbon sequestration, or hy-
drological control (Figure 5).

When different methods were used to assess the same ST or 
SES, they were generally used to estimate different indicators. 
This is particularly the case for the compaction assessment 
for which rule-based models have been used to assess the soil 
strength (Houšková and Montanarella 2008; Jones et al. 2003), 
process-based models to assess the balance between stress and 
soil strength (Lamandé et  al.  2018; Schjønning et  al.  2015), 
expert knowledge to assess the actual state of compaction 
(Oldeman et al. 1991), and statistical models to assess the con-
sequences of soil compaction (Sonderegger and Pfister  2021; 
Stoessel et al. 2018). Furthermore, rule-based modelling, as a 
static approach (Greiner et al. 2017), has been mainly used to 
estimate potential ST/SES indicators (Tables  5 and 6), while 
process-based modelling, as a dynamic approach (Greiner 
et al. 2017), has often been used to assess processes and con-
sequently actual STs or SESs. Statistical modelling is a simple 

TABLE 4    |    Classification of the methods used to estimate the STs/SESs.

Type of method Used when Categories Principle

Expert knowledge Compensate for 
the absence of 
empirical data

Approach relying on an accumulated 
expertise and biophysical knowledge to infer 

the potential distribution of STs/SESs.

Numerical modelling When numerical 
data are available

Rule-based models The expertise and biophysical knowledge 
are used to create decision rules to assess 

semi-quantitative ST/SES indicators 
(Burkhard and Maes 2017).

Statistical and 
empirical approaches

These types of approaches range from 
statistical relationships between known 

explanatory variables (soil properties and 
climate; Wainwright and Mulligan 2012) 
to empirical equations as the well-known 

Revised Universal Soil Loss Equation 
(RUSLE; Burkhard and Maes 2017).

Process-based models A mechanistic approach that simulates 
the biophysical processes occurring in 

the soil ecosystem to estimate STs/SESs 
(Wainwright and Mulligan 2012).
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alternative to estimate actual STs and SESs, especially for 
water erosion (Figure  2b) or for erosion control (avoided soil 
loss; Figure 3d).

3.3   |   Sources of Information

The previous analysis highlighted the importance of data for ST/
SES indicator assessments. Thus, we analyzed the data sources 
used for the different ST/SES indicators.

3.3.1   |   Types of Data Used to Assess the Different 
ST/SES Indicators

The type of data used depends on the ST/SES and on the indica-
tor considered, as well as on the method chosen to assess them. 
Soil data are used in all assessments for most of the STs and SESs 
considered, with the notable exceptions of some assessments 
of erosion control and biomass production (Figure 6). Climate 
and LULC data are also used in the calculation of most ST/SES 
indicators, with the exception of some indicators of biomass 

FIGURE 2    |    ST indicators: (a) SOC loss; (b) erosion; (c) compaction. The colours in each graph represent different groups of indicators. NSL stands 
for net soil loss by water; GE for gully erosion, LT for loss by tillage, LH for loss by harvest, LWW for loss by water and wind, LWT for loss by water and 
tillage, TSLE for total soil loss by erosion, CE for consequences of erosion. References associated with each indicator are reported in the Supporting 
Information (Table S2).
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production and soil compaction (the indicators “consequences 
of compaction on yield”—Sonderegger and Pfister 2021; Stoessel 
et  al.  2018—and “balance between stress and strength”—
Lamandé et  al.  2018; Schjønning et  al.  2015; Figure  2c—
which are based solely on soil data and agricultural practices). 
Topography and agricultural practices data are mainly used to 
estimate erosion, but also, to a lesser extent, climate regulation 
and carbon sequestration for agricultural practices. Biomass 
data have been mainly used to estimate biomass production 

(Figure 6). Finally, parent material data have been used in one 
case for hydrological control (Trombetti et al. 2015).

3.3.2   |   Sources of Data

For each data type (soil, climate, LULC, topography, agricul-
tural practices, and biomass), different sources were used in the 
ST/SES assessments (Figure  7). The vast majority of datasets 

FIGURE 3    |    SES indicators: (a) Climate regulation and carbon sequestration; (b) hydrological control; (c) biomass production; (d) erosion control. 
The colours in each figure represent different groups of indicators. CRCS stands for climate regulation and carbon sequestration, NPPpot for poten-
tial net primary production, SSBP for soil suitability to biomass production, and ECAP for energy content of agricultural productions. References 
associated with each indicator are reported in the Supporting Information (Table S3).
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used are spatially exhaustive (Figure 7), with the exception of 
SPADE and LUCAS datasets for soil and land cover.

For soil data (Figure  7a), the spatially exhaustive ESDAC 
European Soil Database is the most frequently used to assess the 
STs and SESs considered, with the exception of biomass produc-
tion and erosion control, which were most often estimated using 
the FAO Global Soil Database (FAO/IIASA/ISRIC/ISS-CAS/
JRC 2009). This is likely because these latter assessments were 
conducted in Eastern European countries and published in 2012 
(Schulp et al. 2012; Figure 7a), when these countries were not yet 
included in the European Soil Database. Two other spatially ex-
haustive soil databases, SoilGrids and Open Landmark, are reg-
ularly used, especially for recent global assessments, replacing 
the FAO Soil Database, which is no longer used in recent work. 
Finally, 30% of the ST/SES assessments, mainly those based on 
process-based modelling, used point measurements databases 
such as LUCAS Soil or SPADE, depending on the type of data 
needed (e.g., bulk density was not available in LUCAS Soil before 
2019). LUCAS Soil is also used for gully erosion (Borrelli, Poesen, 
et al. 2022), as it is the only database providing this information.

For climate data (Figure 7b), three of the six data sources were 
most frequently used: the JRC European Climate Database (no-
tably MARS), the most frequently used from 2000 to 2017; the 
European Climate Assessment and Dataset (E-OBS), which 
began its use in 2015 and is currently the most widely used. 
The Climate Research Unit (CRU) database is typically used in 
global-scale studies (Poeplau and Dechow 2023) or when Eastern 
European countries, not fully included in E-OBS until recently, 
are considered (Schulp et al. 2012), as well as in studies published 
before 2015. Additionally, WorldClim data have been used for sce-
narios in global-scale analyses (Borrelli, Ballabio, et al. 2022).

For LULC (Figure  7c), 11 databases were used; one of them is 
non-spatially exhaustive (LUCAS), but provides information on 
crop types (Lugato et  al.  2018). The CORINE land cover data-
base is one of the most widely used. However, for assessment and 
mapping at the global scale (Padarian et al. 2022) and/or covering 
Eastern European countries (Schulp et  al.  2012), recently inte-
grated into CORINE land cover, the GlobCover database has been 
preferred, especially for the assessment of erosion control. The 
databases are also sometimes used in combination: CORINE land 
cover with Eurostat (Panagos et al. 2020; Panagos et al. 2015) or 
FAOSTAT with MODIS–MOD13A2 (Borrelli et al. 2017; Borrelli, 
Lugato, et al. 2016; Borrelli, Panagos, et al. 2016). Finally, remote 
sensing data from different satellites (SPOT, LANDSAT, NOAA 
AVHRR, MODIS–MOD13A2) are also used, especially for SOC 
loss (Poeplau and Dechow 2023; Padarian et al. 2022).

For topography (Figure 7d), four of the six identified data sources 
are used more frequently: the Shuttle Radar Topography Mission 
(SRTM), the European Digital Elevation Model (EU-DEM), the 
Global 30 Arc-Second Elevation (GTOPO30), and its derivative, 
the Global 30 s Arc-Second Hydrologic One Kilometre Elevation 
(HYDRO1k). GTOPO30 has been used to assess STs only in 
Eastern European countries (Schulp et al. 2012), or at the global 
level in its most recent version (Global Multi-resolution Terrain 
Elevation Data 2010, GMTED2010) (Padarian et  al.  2022). 
HYDRO1k specifically provides topographically derived data-
sets, including streams and drainage basins, needed in some of P
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the erosion assessments (Le Bissonnais et al. 2002) and hydro-
logical control (Stürck et al. 2014) indicators.

The MAPSPAM, EUROSTAT, and FAOSTAT databases are the 
most used for estimating agricultural practices and biomass 
(Figure 7e,f). In addition to these three main databases, CAPRI 
model outputs are also used for biomass estimation (Figure 7f).

4   |   Discussion: Analysis of the Potential of 
Existing ST/SES Estimations at the EU Extent for 
Building ST/SES Relationships

Most existing work has considered STs (≈85%) and SESs (≈60%) 
individually, and those assessing more than two STs/SESs have 
not examined their relationships, although, as mentioned in the 

FIGURE 4    |    Impact of the choice of indicator on the ST/SES maps. Upper row—impact of the part of the ecosystem considered when assessing 
the SES “climate regulation and carbon sequestration”: (a) GHG fluxes using net ecosystem productivity focusing on the soil–plant system (data from 
Paracchini et al. 2011, Data sources: ESDAC); (b) SOC stock (change in SOC) focusing only on the soil system (Data sources: Vrebos Dirk). Lower 
row—Mapping potential versus actual ST indicator for wind erosion (Data sources: ESDAC): (c) actual (data from Borrelli, Lugato, et al. 2016), (d) 
potential (data from Borrelli et al. 2014).
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introduction, STs and SESs are known to have complex relation-
ships (Kiessé et al. 2024; Medina-Roldán et al. 2024; Obiang-Ndong 
et  al.  2020) that often involve trade-offs and synergies (Bennett 
et al. 2009). Thus, knowledge of these relationships could guide the 
adaptation of remediation measures or the design of management 
strategies aimed at reducing soil degradation and ensuring SES sup-
ply. Yet, to the best of our knowledge, only one study has assessed 
the co-occurrence of STs at the EU level (Prăvălie et al. 2024), and 
the interactions between SESs have been largely neglected.

As we have seen, existing EU-wide assessments of STs and SESs 
present a wide variety of ST/SES indicators, with different combi-
nations of preferences, assessment methods, and databases used as 
input data. For example, an average of four indicators is currently 
mapped at the EU level for each of the most important STs and 
SESs, resulting in very different maps for a given ST or SES.

Currently, defining EU-wide ST/SES relationships based on 
the reuse of pre-existing maps of individual ST and SES faces 
a number of challenges and pitfalls due to the wide variety of 
preferences observed in the literature. Mapping ST/SES relation-
ships based on existing individual ST/SES maps at the EU level 
requires careful selection of compatible indicators, assessment 
methods, and databases, as outlined below.

4.1   |   Selection of the Indicators Used to Make 
the ST/SES Relationships

Ecological indicators have long been recognised as boundary 
objects (Turnhout  2009). This means that indicators are not 

only purely objective science-based tools useful for assessing 
objects of interest such as STs or SESs, but also the vectors of 
selective preferences about what STs and SESs are or should 
be (Turnhout 2009). Regarding SESs, their indicators can rep-
resent the soil system itself, the soil–plant system, or integrate 
elements from the socio-ecosystem (Table  6). The focus on a 
particular component of the preferences combination gov-
erning STs among risk, process, soil state, or impact (Table 5; 
Niemeijer and de Groot 2008), or the process of delivering SESs 
between capacity or flow (Van Oudenhoven et al. 2012), is also 
part of these preferences. Reflecting specific combinations of 
preferences, different indicators of the same ST/SES are not 
systematically interchangeable. Therefore, before establishing 
ST/SES relationships, indicators must be carefully selected to 
ensure the compatibility of preferences specific to each indi-
cator. Such a selection, far from simple because the preference 
systems associated with the indicators are often insufficiently 
explicit, if not simply false (Czúcz et al. 2020), is further com-
plicated by its dependence on the type of relationships to be 
constructed.

In the case of multi-ST or multi-SES relationships, each par-
ticular combination of preferences is likely to be of interest. 
However, for a given relationship, all indicators must share 
the same combination of preferences. Given the current state 
of knowledge at the European scale, such complete alignment 
of preferences cannot be achieved for SESs (Table 6) and for 
STs only if sensitivity or the actual soil condition is consid-
ered (Table 5). As a result, it is not surprising that the EU-wide 
studies of ST/SES relationships mixed indicators reflecting 
several combinations of preferences. For instance, Prăvălie 

FIGURE 5    |    Methods used to assess ST and SES indicators at EU extent from 1990 to 2022. Numbers in brackets represent the number of assess-
ments encountered in the literature for each ST/SES.
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et al. (2024) mixed pressure indicators for aridity; process in-
dicators for water and wind erosion, soil organic carbon loss, 
vegetation decline, or groundwater decline; current soil condi-
tion indicators for salinization, acidification, and trace metal 
and metalloid pollution; risk or sensitivity indicators for com-
paction and pesticide pollution; and finally, a combination of 
process and condition indicators for nutrient imbalances. A 
further step could also be to map soils that are either (i) suscep-
tible to degradation (risk indicators); (ii) currently threatened 
(process indicators); or (iii) degraded (condition indicators). 
Reusing existing ST/SES maps would be facilitated if the com-
bination of preferences underlying each indicator were clearly 
explained in the published documents. In addition, there are 
two to five times more SES indicators in the literature than 
those used at the European level (Czúcz et al. 2020; Boerema 
et al. 2016). Therefore, there is significant room for improve-
ment in the various types of ST and SES assessments at the 
European level, which could address the current limitations in 
the development of ST/SES relationship studies, particularly 
for SESs.

In the case of a single ST or SES, characterising the relation-
ships between indicators that differ only in one of the prefer-
ences mentioned above (Tables 5 and 6) is of great interest, as 

demonstrated by comparing the potential (capacity) and the ac-
tual (flow) supply of SES (all other preferences being similar) to 
assess the sustainability (when the flow is lower than the capac-
ity) or the unsustainability (when the flow is higher than the ca-
pacity) of the SES uptake (Baró et al. 2016; Schröter et al. 2014). 
At the EU level, the study of such relationships is rare and mainly 
limited to the comparison of the potential and actual supply of a 
few SESs, such as biomass production (Mayer et al. 2021; Schulp 
et  al.  2012) or erosion control (Rendon et  al.  2022; Trombetti 
et al. 2015; Schulp et al. 2012). Based on the existing EU-wide 
SES maps, the comparison of the potential and the actual supply 
could be extended to the regulation of climate and carbon se-
questration by comparing the technical potential of SOC storage 
(Lugato, Bampa, et al. 2014; Vleeshouwers and Verhagen 2002) 
with the actual SOC storage (De Rosa et  al.  2023; Lugato 
et al. 2018; Vrebos, Staes, et al. 2018; Vrebos, Bampa, et al. 2018) 
or to hydrological control by comparing the water storage capac-
ity (Trombetti et  al.  2015; Schulp et  al.  2012) with subsurface 
water flow (Liquete et al. 2011; Paracchini et al. 2011). For STs, 
various comparisons of sensitivity, process, condition, or impact 
indicators for SOC loss, erosion, and compaction are, at least 
partially, feasible (Figure 2) and could be helpful to identify sit-
uations where soils are simultaneously sensitive, threatened, or 
degraded.

FIGURE 6    |    Type of data used in the literature for the evaluation of the considered STs and SESs at the EU extent. The number of indicators as-
sessed in the considered documents using the different data types is reported in brackets (indicators assessed by expert knowledge or “assessed by 
others” were excluded from this analysis).
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FIGURE 7    |     Legend on next page.
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4.2   |   Rigorous Examination of the Method 
Employed to Estimate the Indicators

The different methodologies used to quantify STs/SESs, often 
closely linked to specific indicators, have specific advantages 
and limitations. Expert knowledge can be a very effective 
method to provide an overview of multiple STs/SESs in space, 
while process-based modelling is necessary to understand 
how management influences STs/SESs or to predict the con-
sequences of unprecedented climate or management scenarios 
(Grêt-Regamey et  al.  2015; Schröter et  al.  2016). However, the 
assessment methods also have specific and sometimes mutually 
exclusive areas of application. Measurement-based assessments, 
although regularly requested, are not feasible for every ST and 
SES. As shown in our study, measurements have only been 
used for a limited number of indicators for erosion (Borrelli, 
Poesen, et al. 2022—Gully; Cerdan et al. 2010), erosion control 
(Trombetti et al. 2015), and climate regulation and carbon se-
questration (De Rosa et al. 2023). With the exception of erosion 
control, process-based models have been proven particularly 
popular in studies to quantify ST/SES indicators. While these 
models are effective in assessing various SESs in deep, homo-
geneous, and well-drained soils, they are not effective in mar-
ginal soils characterised by significant waterlogging, extreme 
acidity, or strong textural differentiation (Choquet et al. 2021). 
In contrast, rule-based models have been shown to be usable for 
a wider variety of soil conditions, but at the cost of increased 
uncertainty (Choquet et al. 2021).

While combining methodologies can be an effective approach 
to increase the diversity of STs/SESs incorporated into relation-
ships, it also entails additional limitations and uncertainties 
specific to each methodology used. Such combinations of lim-
itations and uncertainties are problematic because the condi-
tions for which the available methodologies perform well and 
the uncertainties associated with such methodologies are rarely 
known due to the lack of comparative and validation studies.

4.3   |   Alignment of Datasets for a Given Type 
of Data

As with methods, the choice of input data used has a significant 
impact on ST/SES maps (Ellili-Bargaoui et al. 2023; Scammacca 
et  al.  2023; Bagstad et  al.  2018). Thus, when jointly assessing 
STs/SESs, indicators should ideally be estimated from the same 
database for a given data type. Our review of the datasets used to 
assess available ST/SES indicators has shown that this is rarely, 
and even then, only partially, the case. For STs, the assess-
ment of (i) SOC loss by Hijbeek et al. (2017); (ii) soil erosion by 
Kirkby et al. (2008), van der Knijff et al. (2000) or Podmanicky 
et al. (2011); and finally, (iii) soil compaction by Jones et al. (2003) 
is all based on the ESDAC and JRC MARS datasets for soil and 

climate data respectively (Table 7). However, none of these in-
dicators have been assessed using the same database for LULC 
and topography (Table 7). Not all SES considered have ever been 
assessed with a similar dataset (Table 8), except for those that 
were assessed by the same authors. This is, for example, the 
case of Schulp et al. (2012) for climate regulation and carbon se-
questration, biomass production and erosion control, or Vrebos, 
Staes, et  al.  (2018), Vrebos, Bampa, et  al.  (2018), and Vrebos 
et al. (2019) for climate regulation and carbon sequestration and 
hydrological control (Table 8).

In recent years, intensive work has been carried out to compare 
existing soil databases and assess the impact of their use on 
the assessment of soil indicators in order to identify solutions 
to manage this diversity, through the use of transfer or scoring 
functions to obtain comparable values (Froger et al. 2024; Cornu 
et al. 2023). While this work has the merit of raising the question 
of the origin of the data on the results produced and of propos-
ing some initial solutions, it only concerns the harmonisation 
of different soil databases to assess unmeasured soil properties. 
This is a much simpler problem than the assessment of ST/SES 
indicators requiring the combination of different types of data, 
each likely to have multiple origins/sources (Cornu et al. 2023).

4.4   |   Shaping the Future of Studies on ST/SES 
Interactions at the EU Extent

Although limited, the set of ST/SES maps currently available 
at the European level offers several opportunities for combi-
nations. Some of them have already been exploited, such as 
the simple addition of the soil loss due to different types of ero-
sion to assess the total soil loss by erosion (Borrelli, Panagos, 
et al. 2022). Others still await exploration, such as the compar-
ison of different ST/SES components. However, due to the lack 
of a set of indicators sharing a common preference combination 
(Section 4.1), a proper characterisation of ST/SES relationships 
is generally impossible. Several complementary steps can be pro-
posed to develop such approaches.

In the short term, European ST/SES maps could be recomputed 
using similar input data. Thus, for instance, the recalculation of 
potential SOC stocks of Lugato, Panagos, et al. (2014), based on 
JRC-MARS climate data rather than CRU data (Table 7), would 
allow for fully aligning input data (ESDAC for soil, JRC-MARS 
for climate and CORINE for LULC) of a first set of indicators for 
the three most important STs for stakeholders, using the poten-
tial SOC stocks by Lugato, Panagos, et al. (2014), the soil loss by 
water by Podmanicky et al. (2011), and the dynamic soil strength 
by Jones et al. (2003) (Table 8).

Improving the consistency of methodologies used is much more 
complex, as no model integrating a realistic representation of 

FIGURE 7    |    Databases used in the assessment of STs/SESs for: (a) soil, (b) climate, (c) LULC, (d) topography, (e) agricultural practices and (f) 
biomass. The numbers in brackets refer to ST/SES assessments by data type (see Figure 6). Colours indicate dataset type: Blue = spatially exhaustive, 
green = point data, brown = literature, white = no source information. SL = SOC Loss; E = Erosion; C = Compaction; CRCS = Climate Regulation and 
Carbon Sequestration; HC = Hydrological Control; BP = Biomass Production; EC = Erosion Control.
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soils is currently available to quantify a wide range of SESs on 
land uses ranging from forest to arable land (Choquet et al. 2021). 
Two complementary and non-exclusive approaches could be 
considered depending on the diversity of STs/SESs and land uses 
to be considered. Several models specifically dedicated to the as-
sessment of individual ST/SES could be combined, provided that 
these models are of similar complexity (a set of rule-based, sta-
tistical, or process-based models) to better control the usage con-
ditions, benefits, and uncertainties specific to each method type 
(Choquet et al. 2021). Such an approach is unavoidable because 
most STs, but also some SESs, such as erosion control, can only 
be modelled using specific tools. As most STs and SESs have 
been mapped at the EU level using all different method types 
(Figure 5), this approach seems relatively quick and easy to im-
plement. A second approach would be to map and characterise 
the relationships of several STs or SESs using a single model. 
Such an approach has already been applied at the local (Ellili-
Bargaoui et  al.  2021), regional (Choquet et  al.  2021; Obiang-
Ndong et al. 2020), and national levels (Therond et al. 2017), but 
rarely at the EU level (Vrebos, Staes, et al. 2018; Vrebos, Bampa, 
et al. 2018; Vrebos et al. 2019). While effective in terms of meth-
odological consistency, this type of approach is, so far, limited to 
arable land, a narrow but relevant set of SESs including biomass 
production, hydrological control, as well as climate regulation 
and carbon sequestration. In this type of approach, the consid-
eration of other land uses and a broader range of STs/SESs is a 
more distant objective that will require the development of spe-
cific modelling capacities (Choquet et al. 2021).

Finally, the EU-wide mapping of new ST/SES indicators would 
allow the analysis of the ST/SES relationship based on sets of 
indicators sharing consistent representations (or combinations 
of preferences). Regarding STs, a pressing need concerns the 
assessment of the degree of compaction (soil condition) and of 
its evolution over time (process). The integration of bulk density 
in most national soil databases in EU countries, sometimes for 
years (Cornu et al. 2023), its (partial) integration in the LUCAS 
Soil database from the 2018 campaign (Orgiazzi et al. 2018), and 
potentially in the future Soil Monitoring Law are all tools that 
could support the mapping of this indicator (i.e., soil compac-
tion expressed as a variation in bulk density change). Regarding 
SESs, the most advanced type of indicators is defined at the 
soil–plant system level (Table  6), which is consistent with the 
emerging definition of SESs as the subset of ecosystem services 
directly controlled by soil properties, processes, or functions 
(Paul et  al.  2021). According to Table  6, two main indicators 
need to be developed to obtain a comprehensive set of indicators 
at the soil–plant system level: (i) a capacity indicator for climate 
regulation and carbon sequestration and (ii) a flow (actual) in-
dicator for biomass production. The former should reflect the 
capacity of the soil–plant system to store carbon. Among other 
possibilities, it could be based, for the plant compartment, on 
the net primary productivity of the plant cover that would pre-
vail in the absence of human intervention (Mayer et  al.  2021) 
and, for the soil compartment, on the assessment of the soil or-
ganic carbon sequestration potential (Chen et al. 2018; Angers 
et  al.  2011). The latter should reflect the total amount of be-
low- and aboveground biomass produced, rather than just the 
harvested fraction. It could be assessed, for example, by the 
net primary productivity of the currently prevailing vegetation 
(Mayer et al. 2021; Haberl et al. 2014).ST
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It is difficult to precisely assess, from existing studies, which 
harmonisation step (input data, methods or a consistent set of 
indicators) will have the greatest impact on the quality of the 
assessment of the ST/SES relationships. However, a trade-off 
probably exists between ease of implementation and impact on 
the quality of these relationships. The harmonisation of input 
data, which is relatively easy to implement but will probably 
have a more limited impact than harmonisation of methods or 
improvement of indicator consistency (in terms of preferences), 
will have a deeper impact but are more difficult to implement.

5   |   Conclusions

This research aimed to assess the feasibility of reusing exist-
ing EU-wide ST or SES maps to characterise relationships be-
tween the three STs and four SESs, considered most important 
by stakeholders from 16 European countries. Despite the first 
EU-wide ST or SES maps being published decades ago, the pos-
sibilities of developing studies on ST/SES relationships from 
the combination of existing maps are limited by the number of 
available EU-wide maps. They are also limited by the heteroge-
neity of the conceptualisation of each ST/SES, the combination 
of preferences used to define the different indicators, the meth-
ods and the input data used to assess them, all of which have 
an impact on the levels of ST/SES and their spatial distribution.

Despite these limitations, the set of currently available maps 
offers several possibilities for combinations, notably (i) for SES, 
a more systematic characterisation of the interactions between 
the capacity and the flow of each SES, in order to assess the 
(un)sustainability of the uptake of each SES, and (ii) for STs, a 
combination of sensitivity, process and state indicators, in order 
to identify situations where soils are simultaneously sensitive, 
threatened, or degraded by a particular threat. The characterisa-
tion of the relationships between several SESs or STs, with a bet-
ter harmonisation of indicators, methods, and input data, will 
require several stages of development, ranging from the recalcu-
lation of already existing indicators with similar input data for 
the development and mapping of new indicators. Although dif-
ficult, improving the consistency of input data, methodologies, 
and indicators is essential to limit methodological biases in the 
assessment of ST/SES relationships and, ultimately, to decision-
making for the management of STs and SESs. For instance, 
managing threatened but not degraded soils requires preventive 
actions, while managing degraded soils (whether threatened or 
not) requires remediation actions. In the meantime, we urge the 
community to systematically specify the combination of pref-
erences considered for each indicator to identify the need for 
developing new indicators and to facilitate the selection of co-
herent sets of indicators.
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