
PLOS One | https://doi.org/10.1371/journal.pone.0331031  November 7, 2025 1 / 24

 

 OPEN ACCESS

Citation: Belghali Z, Monga O, Klai M, 
Abdelwahed EH, Druoton L, Pot V, et al. (2025) 
Geometric modelling of 3D pore space using 
curve skeleton: Application to computational 
microbiology of soil organic matter 
mineralization. PLoS One 20(11): e0331031. 
https://doi.org/10.1371/journal.pone.0331031

Editor: Jeevithan Elango, UCAM: Universidad 
Catolica San Antonio de Murcia, CHINA

Received: November 6, 2024

Accepted: August 8, 2025

Published: November 7, 2025

Copyright: © 2025 Belghali et al. This is an 
open access article distributed under the terms 
of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, 
and reproduction in any medium, provided the 
original author and source are credited.

Data availability statement: Data + codes 
are available on the following Github site: 
https://github.com/belghali/Computational-
microbiology-of-soil-Use-of-the-concept-of-
curve-skeleton-.

RESEARCH ARTICLE

Geometric modelling of 3D pore space using 
curve skeleton: Application to computational 
microbiology of soil organic matter 
mineralization

Zakaria Belghali 1,2, Olivier Monga1,2*, Mouad Klai 2, El Hassan Abdelwahed2, 
Lucie Druoton3, Valérie Pot4, Philippe C. Baveye 5

1  IRD, UMMISCO, Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, 
Bondy, France, 2  Faculty of Sciences Semlalia, Department of Mathematics, Cadi Ayyad University, 
Marrakech, 3  Laboratoire LIB, Université de Bourgogne Europe, Avenue Alain Savary, Dijon, 4  UMR 
1402, ECOSYS, INRAe, Saclay, France, 5  Saint Loup Research Institute, 7 rue des chênes, La Grande 
Romelière, Saint Loup Lamairé, France 

* Olivier.Monga@ird.fr

Abstract 

Recent advances in 3D X-ray Computed Tomography (CT) sensors have stimulated 

research efforts to unveil the extremely complex micro-scale processes that control 

the activity of soil microorganisms. Classical methods for the numerical simulation of 

biological dynamics using meshes of voxels, such as the Lattice Boltzmann Method 

(LBM), tend to require long computation times. The use of more compact geomet-

rical representations of the pore space can drastically decrease the computational 

cost of simulations. Recent research has introduced basic analytic volume primitives 

to define piece-wise approximations of the pore space to simulate drainage, diffu-

sion, and microbial mineralization of organic matter in soils. Such approaches work 

well but a drawback is that they give rise to significant approximation errors caused 

by imposing a priori shapes to represent the pores. In the present article, another 

alternative is proposed, where pore space is described by means of geometrically 

relevant connected subsets of voxels (regions) regrouped on the basis of the curve 

skeleton (3D medial axis). The curve skeleton has been adopted to characterize 

3D shapes in various fields (e.g., medical imaging, material sciences, etc.). The few 

publications that have used it in the context of soils have dealt exclusively with the 

determination of pore throats. This technique is used mostly to describe shape and 

not to partition it into connected subsets like in the present work. Here, the pore 

space is partitioned by using the branches of the curve skeleton, then an Attributed 

Relational Graph (ARG) is created in order to simulate numerically the microbial min-

eralization of organic matter, including the diffusion of by-products. Each node of the 

ARG is attached to an element of the partition (pore) and each arc to an adjacency 

relationship between pores (connectivity). The graph is valuated in the sense that the 
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attributes related both to geometry and dynamic are linked to nodes and arcs. This 

new representation can be used for graph-based simulations, which are different 

from voxel-based simulations.

1  Introduction

Soils worldwide contain a very large stock of organic matter, whose mineraliza-
tion by micro-organisms has the potential to have a sizeable impact, positive or 
negative as the case may be, on the amount of greenhouse gases released to the 
atmosphere, and therefore on climate change [1,2]. Over the last four decades, the 
importance of soils in that context has prompted a very significant research effort 
on the description and prediction of the fate of organic matter in subsurface envi-
ronments. Initially, the modelling component of that effort focused on the develop-
ment of black-box models like Century or RothC, in which the metabolic activity of 
microorganisms was described simply via first-order kinetic equations, without a 
detailed accounting of the growth and spatial distribution of the biomass [3,4]. After 
the turn of the century, it became clear that much more attention needed to be paid 
to where in the soil pores the micro-organisms were located relative to the organic 
matter they fed on [5,6]. Fortunately, concomitant technical advances in X-ray com-
puted tomography (CT) enabled researchers to routinely obtain three dimensional 
gray scale pictures of soils at progressively increasing resolutions, from which, after 
the development of suitable thresholding algorithms [7–11], binary images could be 
obtained, providing micro-scale information on the geometry and topology of soil 
pores in which the microorganisms reside. Over the last decade, this information, 
complemented by a range of other micro-scale (microscopic and spectroscopic) 
measurements [6,12], has stimulated extensive research on modeling the soil 
microbial processes [7–10,13–18].

One of the key hurdles that researchers have faced in the computational micro-
biology of soil organic matter mineralization is related to the sheer size of the image 
files that result from CT scans, with numbers of voxels in the dozen of millions (up 
to hundreds for some data) and upward for the highest attainable resolutions. The 
Lattice Boltzmann Method (LBM), which is generally the method of choice to describe 
the movement of water and the diffusion of nutrients in the pore space of soils, is 
very accurate [10,19] but requires computers with very large memories and is very 
demanding in CPU time with currently available computer technologies. Some efforts 
have been devoted toward the development of advanced computer vision and com-
putational geometry tools in order to obtain better, less memory-intensive representa-
tions of the pore space [15,16,20–22]. These tools aim to provide compact, intrinsic, 
and relevant geometrical representations from the original set of voxels, which can 
lead to a considerable speeding up of the numerical simulation algorithms. Unlike 
older pore network models, which are based on an idealized pore space represen-
tation, the more recent methods take into account the exact geometry of the pore 
space as revealed by 3D CT images.
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An alternative consists of defining an intrinsic analytic piece-wise approximation of the pore space using basic vol-
ume primitives. A drawback of most analytic approaches lays in the a priori choice of given geometric primitives. Within 
a pore network modelling context, a well-known algorithm is the Maximal Ball algorithm [23–25]. It consists of identifying 
the maximal spheres contained in the pore space and then approximating the volume by a subset of the spheres. This 
algorithm has been modified by Dong and Blunt [24], who proposed a faster way to determine the set of maximal balls. 
In their approach, the network representing the pore space is composed of balls and cylinders associated with pores and 
throats. The biological simulation is then performed using this network. Another scheme alternative is to approximate the 
pore space with an optimal subset of maximal spheres and cylinders [10,14,16,18,20,26]. This optimal set is derived from 
the minimum set of balls (in a cardinal sense) recovering the λ-skeleton. Afterward, a numerical simulation of microbial 
mineralization is performed using the ball network [14,17,27].

Recently, several authors have proposed using more sophisticated geometrical primitives such as ellipsoids and gener-
alized cylinders. For instance, the algorithm described by Kemgue and Monga [15,28] includes two steps. First, maximal 
spheres are clustered using the k-means partitioning method. Afterward, each cluster is approximated with a primitive. 
Finally, an optimal region-growing stage allows one to reduce the number of primitives. Regarding air-water interface 
extraction, a pore space representation with spheres or ellipsoids gives good results. Within other application contexts, 
including in medicine, several publications also deal with complex volume shape modelling using sophisticated primitives 
like ellipsoids [12,13,22,29–34]. Unfortunately, the experience shows that these approaches cannot easily be extended to 
the pore space geometrical modelling in soils due to the higher shape complexity in these systems.

Nevertheless, a drawback of the approximation methods using geometric primitives is that, to be computationally 
advantageous relative to the LBM, they provide only a somewhat crude representation of the convoluted geometry of the 
pore space, which cannot be fully represented due to the comparative simplicity and compactness of spheres, for exam-
ple. One of the main problems is the loss of voxels at the edges of the pore space. Practically, this loss of voxels lies in 
the range 5% to 20% of the pore space depending on the data (see [15]).

An alternative to using geometrical primitives consists of partitioning the soil pore space into connected subsets of 
voxels computed on the basis of the curve skeleton. In two dimensions, the so-called medial axis (2D curve skeleton) of 
a shape is defined as the locus of the centers of maximal inscribed disks. By definition, a disk is maximal if it is not strictly 
included in another disk inside the shape. In three dimensions, things are a little more complicated. The medial surface 
(3D surface skeleton) corresponds to the center of the maximal inscribed balls.. This medial surface is often referred to 
as the surface skeleton and the process of obtaining it is termed the “skeletonization” of a geometrical shape [35,36]. 
These different concepts (2D and 3D medial axis) have been widely used in computational geometry since Blum’s land-
mark paper [35], and one can find in the literature various ways to compute the surface skeleton, depending on the initial 
description of the shape: the triangular mesh, subset of voxels in a 3D image, point cloud sampling the boundary of the 
shape and so on. For instance, regarding shapes represented with a set of voxels in a 3D image, Xia and Tucker [37] 
computed a distance map to the shape boundary by solving the Eikonal equation with the Fast-Marching method. This 
distance map gives, for each voxel in the shape, the geodesic distance (i.e., the length of the shortest path inside the 
shape) to the boundary of the shape. The voxels of the surface skeleton are then extracted with the Laplacian of this map. 
Melkemi [38] and Amenta et al. [39] describe the Power Crust algorithm, which approaches the medial axis of a point 
cloud sampling the shape boundary. The surface skeleton can also be approximated using the 3D Delaunay Triangulation 
of a finite set of points forming a discretization (sampling) of the shape boundary. The set of the centers of the “Delaunay” 
spheres circumscribed to the Delaunay tetrahedra, and included within the shape, gives an approximation of the skeleton 
[16,20,40].

The sensitivity of the surface skeleton to little changes in the shape boundary is a drawback for several applications. 
There has been a tendency in the literature to invoke more robust, less sensitive approaches than the surface skeleton 
to address various tasks such as animation, motion tracking, shape recognition and analysis. When the details of the 
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selected shape are irrelevant, the surface skeleton is simplified using the hierarchical removal of small maximal spheres. 
Such strategies are related to the notion of λ-skeleton [41], which presents undeniable interest in a number of contexts. 
However, in the type of situation that concerns us, small maximal spheres can be filled with water, and thus diffusion 
processes can take place in such pores. Therefore, one should exercise caution when simplifying the computation of the 
surface skeleton in porous media and soils in particular.

Although the surface skeleton provides a sound foundation for skeletonization efforts, experience has shown that 
another type of skeleton, the curve skeleton, which is a 1D manifold rather than a 2D one, is much easier to take into 
account for modeling purposes. This is the main reason why the curve skeleton has been widely used for the representa-
tion of geometrical shape [42–44]. Several definitions have been proposed for this second type of skeleton, which is alter-
natively referred to as a “curve” or “curvilinear” skeleton in the literature. It can be defined as a 1-dimensional subset of 
the surface skeleton, fulfilling a supplementary condition, like the singularity of the Hessian of the distance map. There are 
other definitions based on morphological operators, like erosion and homotopic thinning. Several discrete or continuous 
curve skeleton extraction methods have been proposed in the fields of discrete geometry and shape analysis. To this end, 
[24] describes a “homotopic thinning” algorithm. Zwettler et al. [45] adapted this algorithm in the specific case of tubular 
surfaces representing blood vessels for medical diagnostics. Sobiecki et al. [46,47] compared the different methods for 
computing curve skeletons. They give a comparison of voxel-based methods with mesh contraction-based methods. Both 
are controlled by geometrical criteria such as the homotopy, the thickness, and the preservation of details. The use of the 
curve skeleton to segment 3D shapes is easy to illustrate and implement, but it has been explored only recently. Reniers 
and Telea [44,48] segmented the shape according to the critical points of the curve skeleton. The critical points were 
defined as triple cross road points, i.e., belonging to at least three branches of the curve skeleton. The curve skeleton is 
then segmented using the geodesic distances (length of the shortest paths inside the volume) of the critical points to the 
boundaries. Following the same principle, Brunner and Brunnett [26] presented a mesh partitioning algorithm combining 
the voxelization and the homotopic thinning. On that basis, they considered shapes for which the curve skeleton is rela-
tively simple. However, that is generally not the case in soils.

Indeed, in the earth sciences, Lindquist and Venkatarangan [49] use the medial axis (3D curve skeleton) in order to 
analyze the spatial distribution of pores in geological materials. Using this approach, Youssef et al. [21] address the quan-
titative 3D characterization of the pore space of real rocks within the context of petroleum extraction. The authors compare 
the results of the measurements with those of simulations for various porous media like sands and carbonates. Their work 
illustrates the nice geometric properties of the curve-skeleton to model complex shapes within other contexts than soil 
science.

Then, the curve skeleton based representation of the pore space ensures the inclusion of all voxels present in the 
pore space [35,42,43], and can be used to model the microbial mineralization of organic matter in soils. Earlier work [14] 
uses also attributed relational graphs to represent pore space but the nature of the graph is different in this study. Subse-
quently, following the methodology described in [18], we compare the modelling results obtained via this new approach 
with those produced by the classical Lattice-Boltzmann method. The difference of the present research with the one of 
[17] lies in the geometric representation of the pore space, which is quite different. In [17] the pore space was described 
thanks to an optimal ball network approximating pore space. In the present work, we represent it with a partition derived 
from the curve skeleton. We address implicitly the issue of connectivity by using the adjacency graph of the curve skeleton 
based regions. These regions define a complete partition of the pore space and therefore by definition no pore space con-
nectivity is lost. This new representation is more compact and also more precise because, by design, it does not involve 
approximation errors. Its increased compacity allows to decrease computing time by a ratio of ten to twenty (depending on 
the data).

In this general context, the objective of the present article is to describe the partitioning of the soil pore space into con-
nected subsets of voxels computed on the basis of the curve skeleton. We outline the computation of the curve skeleton, 
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the partitioning of the curve skeleton into simple branches, the building of the graph representing the pore space, the 
method used to compute the overall conductance of a soil sample, and how we validate the choice of a time step for 
an implicit numerical scheme using an explicit numerical scheme. The region-based model is then used to simulate the 
process of microbial mineralization in soils, and is compared to the predictions of models based on geometric primitives. 
Lastly, we discuss future avenues for research.

2  Methods and approaches

2.1  Summary

In the present work, we used both binary and gray images. This segmentation was computed and facilitated by the use of 
classical image processing algorithms (Median filtering, Otsu method…) [34]. Typically, the pore space voxel-based repre-
sentation encompasses dozen and even hundreds millions of voxels (see Figs 1a, 1b, 2, S1 Fig).

We deal with the geometrical modelling of pore space from voxels based description and its application to biological 
dynamics simulation. In the first step, we compute the curve skeleton of this set of voxels [50] (see Fig 1c). In the sec-
ond step, we segment the curve skeleton into the maximal simple branches (see Fig 1d). In the third step, we identify 

Fig 1.  Top left: 2D cross-section of the sandy loam soil (dataset 1, voxels; where the voxels associated with the pore space are colored in 
black (of the whole image). Top middle: perspective view of a small part of the whole pore space. Top right: perspective view of the corresponding 
curve skeleton. Bottom left: segmentation of the curvilinear skeleton into simple branches; zoom on some simple branches (18508 simple branches in 
total). Bottom right: cross section of the partitioning of the pore space based on the curve skeleton where each color is attached to a region.

https://doi.org/10.1371/journal.pone.0331031.g001

https://doi.org/10.1371/journal.pone.0331031.g001
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for each voxel the simple branch that is the closest in an Euclidean distance sense. Afterward, we attach to each 
simple branch the corresponding set of voxels. In the fourth step, we label (i.e., partition) the pore space into con-
nected sets of voxels (regions) (see Figs 1e, 3, 4, S2, S4 Fig). In the fifth step, we build an attributed adjacency graph 
of regions from the partition where each node is attached to a set of connected voxels corresponding to a pore (see 
Fig 5). Finally, we use this pore space representation to carry out the numerical simulation of microbial mineralization, 
as shown in Figs 6, 7, 8, S3, S5 Fig. In section 2.2 we describe the geometric modelling method of the pore space by 
means of the curve skeleton. Section 2.3 presents the framework for using the geometric modelling to simulate micro-
bial decomposition.

Fig 2.  Left: perspective view of the pore space. Right: 2D cross section of Fontainebleau sand (dataset 3, low porosity, 512× 512× 512; 
4.5µm× 4.5µm× 4.5µm); pore space voxels are colored in black (42% of the whole image).

https://doi.org/10.1371/journal.pone.0331031.g002

Fig 3.  Fitting of the ball and curve skeleton models; left figure (a): A zoom-in of the 3D projection of a portion of the partitioned image 
depicted in Fig 1. The 3D projection shows better than the 2D images (Fig 1) how the partitioned pore regions are connected. Each color corre-
sponds to a region attached to a simple branch of the curve skeleton.; right figure (b): balls labeled with the corresponding region.

https://doi.org/10.1371/journal.pone.0331031.g003

https://doi.org/10.1371/journal.pone.0331031.g002
https://doi.org/10.1371/journal.pone.0331031.g003
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2.2  Geometrical modelling of the pore space using curve skeleton

2.2.1  Computation of the curve skeleton.  Let S be the set of voxels forming the pore space. Let B be the surface 
border of S. We assume without loss of generality that S is connected. If it is not the case, we work separately on each 
connected component of S. We compute the curve skeleton of S by means of successive erosions using the homotopic 
thinning algorithm [51].

We define the distance transform DT
S
 for a three dimensional set of voxels S∊ R3 with boundary points B:

	 DTs(x ∈ S) = miny∈B | | x – y | |	 (1)

Next, in mathematical terms, the definition of the curve skeleton, known as Medial axis MA
S
, is:

	 MAs = {x∈S | ∃ (f1, f2, f3) ∈ B3, f1 ̸= f2 ̸= f3; // f1 – x // = // f2 – x // = // f3 – x // = DTs(x)}	 (2)

As mentioned in [21,50,51], at each stage of the erosion process, voxel (i,j,k) is deleted if the following conditions hold:

•	 (i,j,k) lies on B (S boundary), i.e., at least one of its 26 neighbors lies outside S.

•	 (i,j,k) is not an ending point (an ending point has only one neighbor), regarding the 26-neighborhood.

•	 (i,j,k) removal does not modify the Euler characteristics (topological condition) [52].

•	 (i,j,k) removal does not modify the number of connected components (topological condition).

Fig 4.  Illustration of the two biggest balls where the micro-organisms are located (dataset 3) for the microbial decomposition simulation (2D 
cross sections); up left: the biggest ball colored by the parts of the regions which intersect it; up right: the (entire) regions intersecting the 
biggest ball; bottom left: the second biggest ball colored by the parts of the regions which intersect it; bottom right: the regions intersecting 
the second biggest ball. Round 85% of the ten biggest regions are included within the two biggest balls. https://free3d.com/.

https://doi.org/10.1371/journal.pone.0331031.g004

https://free3d.com/
https://doi.org/10.1371/journal.pone.0331031.g004
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The Euler characteristic is a topological invariant that is preserved when computing the curve skeleton (see references 
[25,52]). The skeleton is computed from a volume that has a number of connected components, a number of cavities, and 
a number of holes. Euler’s characteristic is a topological feature that depends on these three values. When the volume 
is discretized by a set of voxels, there is an equivalent definition using the number of vertices, edges, faces, and octants, 
as outlined in [25]. Ensuring that this characteristic remains invariant through the skeletonization algorithm helps control, 
for example, the prevention of introducing holes into the skeleton or increasing the number of connected components by 
progressively thinning the volume.

This erosion process (thinning) is iterated until the fixed point is reached (idempotence). The homotopic thinning 
algorithm is robust and works for any shape represented by voxels, even for disconnected B with connected S (volume 
shape with holes). By construction, the curve skeleton thickness is one voxel. In general, the curve skeleton of a given 
shape is unique, but some very symmetric shapes can have several curve skeletons, for instance the cube [0 9]3minus 
the concentric cube [3 6]3. For these cases, the homotopic thinning algorithm comes up with a curve skeleton depending 

Fig 5.  Schematic representation of the main steps from gray images to the corresponding graph of the segmented regions.

https://doi.org/10.1371/journal.pone.0331031.g005

https://doi.org/10.1371/journal.pone.0331031.g005
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Fig 6.  Simulation results for diffusion only (data set 1) used to calibrate the overall conductance to be used in later simulations. The X-axis 
displays the number of planes within the image (512 planes in total), whereas the Y-axis displays the total mass of organic matter within each plane. 
At the start, 100 µg of carbon were introduced within the first two planes. The total simulation time was 1.783 hours. The optimal value of the diffusive 
overall conductance coefficient was determined to be equal to 0.35, with an intercorrelation of 0.9818. We notice that after 1.783 hours only the 300 first 
planes were reached.

https://doi.org/10.1371/journal.pone.0331031.g006

Fig 7.  Comparison of different simulations of the microbial mineralization for dataset 1 over a total simulation time of 5 days. The Y axis 
displays the mass of several components of the system expressed as a percentage of the total initial carbon mass. Simulations were carried out in the 
“curve skeleton” method with a diffusive conductance coefficient equal to 0.35.

https://doi.org/10.1371/journal.pone.0331031.g007

https://doi.org/10.1371/journal.pone.0331031.g006
https://doi.org/10.1371/journal.pone.0331031.g007
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on implementation details, like the order in which boundary voxels of S(B) are considered. Such cases are unlikely when 
modelling natural shapes such as soils.

2.2.2  Extraction of the pores: Partitioning of the curve skeleton into simple branches.  We propose to segment 
the curve skeleton in order to extract the pore network.

The curve skeleton is represented by a set of voxels connected. Neighboring voxels are linked by a face, an edge, or a 
point, we use the 26-connectivity.

In the curve skeleton, there are three different kinds of voxels:

•	 Ending voxels are the nodes with only one neighbor.

•	 Simple voxels are the nodes with exactly two neighbors.

•	 Interior voxels are the nodes with more than two neighbors.

A branch is a maximal set of connected simple voxels. Ending voxels and interior voxels are located at the extremity 
of branches. Interior voxels lie at the interconnection between branches. Fig 1.c shows an example of skeleton represen-
tation. We segment it into a set of branches using a straightforward algorithm. Thus, we get a set of branches forming a 
partition of the curve skeleton.

2.2.3  Building of the graph representing pore space.  Afterward, each voxel of S is associated with the nearest 
branch of the curve skeleton in the sense of Euclidean distance. The result is a partition of S composed of regions forming 
a practically connected set of voxels. In very uncommon cases, where the set of voxels attached to a branch would not 
form a connected component, one can split it into connected sets. Another way of tackling this problem would be to use 
the geodesic distance instead of the Euclidean one, as proposed in [27,53]. By this way, the pore space can be partitioned 
into connected sets of voxels corresponding to a single branch of the curve skeleton. The partitioning of S is directly 

Fig 8.  Comparison of the simulations of microbial mineralization for dataset 3 (low sand porosity) using the ball based MOSAIC program and 
the novel approach introduced here, based on the partitioning of the pore voxels on the basis of the curve skeleton. The simulations extended 
over 5 days and were carried out in the “curve skeleton” method with a diffusive conductance coefficient equal to 0.35 for the curve skeleton method and 
0.6 for the balls method. The initial masses (micro-organisms, dissolved organic matter) and also the diffusion coefficient were adjusted according to the 
image resolution. X-axis and Y-axis represents respectively time expressed in hours and the masses expressed in percentage of the total initial masses. 
Solid line curves and dotted line curves correspond respectively to the curve skeleton model and to the balls model. Dark blue curves, green curves, red 
curves, light blue curves correspond respectively to microorganisms, dissolved organic matter (DOM), carbon dioxide (CO2), slow organic matter (SOM). 
Same as for dataset 1 the microbial degradation model take into account DOM and SOM but not FOM.

https://doi.org/10.1371/journal.pone.0331031.g008

https://doi.org/10.1371/journal.pone.0331031.g008
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defined by the nearest sets attached to the branches. The graph of regions defining the pore network is built as follows. 
Each node of the graph is attached to a region (pore) corresponding to a branch of the curve skeleton. Each arc of G is 
attached to a pair of neighboring regions.

The adjacency relationships are computed by building a 3D image L(i,j,k) where each voxel is attached to the label of 
the region where it is included. In case of (i,j,k) does not belong to S, L(i,j,k) is set to 0. The arcs of G and the area of the 
contact surfaces between adjacent regions (pores) are determined by means of a one-pass scanning. For each voxel 
(i,j,k) of S we look for the three neighbors: (i + 1,j,k), (i,j + 1,k), (i,j,k + 1) and for each neighbor belonging to S, we update 
the graph adjacencies (arcs) and the areas of the contact surfaces (arc features) by looking to the values of the label 
image (L). If the two labels are the same, we do nothing. If the two labels are different, we eventually create a new arc in 
the graph and increment the area of the contact surfaces between the two regions (Fig 5).

This algorithm finds all neighboring relationships between regions and all the corresponding areas of the contact sur-
faces. It is used because not all edges of G can be created considering only the branches of the curve skeleton. Indeed, 
some regions may share a common boundary surface although their branches do not have a common interior node. 
Neglecting regions adjacencies, as was done in [26], could be a significant drawback for many applications. For instance, 
in the case of diffusion simulations, it would imply that flows would transit only along branches of the curve skeleton.

2.3  Simulation framework: Microbial mineralization of the organic matter including diffusion processes from the 
graph of regions

2.3.1  Principle.  From the geometric modelling stage (see 2.2) we get an adjacency valuated relational graph such 
that:

•	 Each node is attached to a connected set of voxels (region, pore) corresponding to a branch of the curve skeleton; we 
associate to each node the coordinates of the inertia center of the set of voxels and its volume (number of voxels).

•	 Each arc is attached to an adjacency relationship between two regions (pores); we associate to each arc the area of the 
contact surface between the two corresponding regions (pores).

Afterward, we use the graph G, representing the pore space, to simulate microbial mineralization. The global scheme 
of the numerical simulation is the same as the one described in [17]. The principle is to discretize the process in time and 
to successively implement transformation and diffusion processes. The diffusion processes are implemented by means of 
the implicit numerical scheme (see 2.3.4). The computational cost is roughly proportional to the number of graph nodes.

As mentioned in the sequel, the explicit scheme is used for validating the time step of the implicit scheme. Indeed, the 
choice of using an implicit scheme or an explicit scheme depends on the data. Practically, it is better (in terms of com-
putational cost) to use an explicit scheme for very small time steps (less than one second) and better to use an implicit 
scheme for larger time steps (more than a few seconds). In our experiments, the time step is 30 seconds that makes 
implicit scheme be much more efficient.

However, the geometrical representation of the pore space is different than in previous approaches. The authors in [17] 
described the pore space by the minimal set of balls covering the surface skeleton. The drawback of that approach is that 
a part of the pore space (typically 15%) is lost due to the piecewise approximation errors. The geometrical representation 
adopted in the present article covers completely the set of voxels corresponding to the pore space. In particular, we get 
the exact values for the contact surface areas between two pores.

Insofar as microbial growth is concerned, we apply the model described in [18]. We split the diffusion process from the 
transformation (reaction) process and we implement sequentially the two processes. The basic reason is that a parallel 
implementation would imply the use of too small time steps that would increase considerably the computational cost. 
Moreover, only the diffusion process can be implemented using a backward Euler numerical scheme (implicit numerical 
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scheme). Practically, we use the same time step (enough small, around 30 seconds) for diffusion and transformation 
(reaction) processes as in [8,10,14,17].

2.3.2  Model equations.  The Partial Differential Equations (PDE) model equation are as follow:

	




dx1i (t)
dt = –ρ.x1i (t) – µ.x1i (t)

+
vDOM .x2i (t)
KDOM +x2i (t)

.x1i (t)
dx2i (t)
dt = Dc.∆(x2i (t)) + β.µ .x1i (t) –

vDOM.x
2
i (t)

KDOM + x2i (t)
.x1i (t)

+ vSOM.x3i (t) + vFOM.x4i (t)
dx3i (t)
dt = (1 – β)µ .x1i (t) – vSOM.x3i (t)

dx4i (t)
dt = –vFOM.x4i (t)
dx5i (t)
dt = ρ.x1i (t) 	 (3)

where x1i (t), x
2
i (t), x

3
i (t), x

4
i (t), x

5
i (t) are respectively the masses of MB (Microbial Biomass), DOM (Dissolved Organic 

Matter), SOM (Solid Organic Matter), FOM (Fresh Organic Matter), CO
2
 (Carbon Dioxide) for the node i  of the graph at 

time t (within the next subsection: xji(t) = bj); ρ is the; µ is the mortality rate; vDOM  and KDOM are respectively the maximum 
growth rate of MB and the constant of half saturation of DOM; Dc is the diffusion coefficient of DOM in water; β is the pro-
portion of MB returning to DOM (the other fraction (1 – β) returns to SOM); vFOMand vSOM the hydrolysis rate of FOM and 
SOM; ∆(x2i (t)) the Laplacian of the DOM (diffusion term). We notice that in the results section, the initial FOM and SOM 
masses were set to 0 (no FOM).

In our implementation we use a splitting scheme for transport and reaction terms and different technical solutions for 
the subproblems.

2.3.3  Transformation process (microbial decomposition) discretization.  Let us define the set of biological 
parameters at a graph node (b1, b2, b3, b4, b5) where: b1 is the microbial biomass, b2 is the mass of dissolved organic 
matter (DOM), b3 is the mass of soil organic matter (SOM), b4 is the mass of fresh organic matter (FOM), b5 is the mass 
of carbon dioxide. If v  is the volume of the primitive attached to the node then c= b2v  is the concentration of DOM within 
the region attached to the node. DOM comes from the decomposition of SOM (slow decomposition) and of the FOM (fast 
decomposition). The microorganisms grow by assimilating DOM, and end up producing carbon dioxide. Afterward, a part 
of the biomass is transformed into SOM and DOM (mortality process).

For each region attached to a graph node, we get:

	





b1(t+ δt) = b1(t) – ρb1(t) δt – µ b1(t) δt+
vDOM c
κb+ c b1(t) δt

b2(t+ δt) = b2(t) + ρm µ b1(t) δt –
vDOM c
κb+ c b1(t) δt+ vSOM b3(t) δt+ vFOM b4(t) δt

b3(t+ δt) = b3(t) + (1 – ρm) µ b1(t) δt – vSOM b3(t) δt
b4(t+ δt) = b4(t) – vFOM b4(t) δt
b5(t+ δt) = b5(t) + ρ b1(t) δt 	 (4)

where ρ is the respiration rate, µ the mortality rate, ρm the proportion of MB returning to DOM (the other fraction returns to 
SOM), vFOMand vSOMthe decomposition rate of FOM and SOM, vDOMand κb respectively the maximum growth rate of MB 
and constant of half saturation of DOM.

In the simulations, following [17,34], we do not consider the FOM pool (the FOM mass is set to 0) but only DOM and 
SOM (SOM mass is set initially to 0).

2.3.4  Diffusion process discretization: Euler forward (explicit) and backward (implicit).  The diffusion processes 
are implemented by means of Euler backward (implicit) or forward (explicit) schemes.
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The implicit numerical scheme is formulated as follows. We note: Θij = Dc
sij
dij
δt  where Dc,sij , dij,δt are respectively the 

diffusion coefficient, the area of the contact surface between node (region, pore) i and j, the distance between the two 
inertia centers of regions i and j, and δt the discretization time step.

If we denote by ci, vi,Ni, ϑ (Ni), respectively, the concentration at node i , the volume of the node i , the node i  and the 
neighbor of the node Ni, the relationship between concentrations at successive iterations can be expressed as follows:
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

c1
c2
...

cp
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· · · 0
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. . .
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0 · · · 1
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...
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...
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
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	 (5)

where cki =
(
1+ 1

vi

∑
Nj∈ ϑ(Ni)

Θij

)
ck+1
i – 1

vi

∑
Nj∈ ϑ(Ni)

Θijc
k+1
j , p is the number of regions (graph nodes), k is the iteration 

number (t = t
0 +

 kδt; t
0
 is the initial time).

We solve the above system with help of the conjugate gradient method. We can check the pertinence of the time step 
value for the implicit numerical scheme using the explicit numerical scheme. In a previous paper, we proposed to imple-
ment an implicit numerical scheme using directly the graph of Monga et al. [42]. In the present article, we use a matrix rep-
resentation yielding substantial computational gain. For the explicit numerical scheme, with the same calculation scheme 
as in section 2.3.2, we get:
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cp
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where ck+1
i =

(
1 – 1

vi

∑
Nj∈ ϑ(Ni)

Θij

)
cki +

1
vi

∑
Nj∈ ϑ(Ni)

Θijckj , p is the number of regions (graph nodes), k is the iteration 
number (t = t

0 +
 kδt; t

0
 is the initial time).

The drawback of the explicit numerical scheme is that it requires very small time steps to avoid negative values. Thus, 
we use it only to check the validity of the time step of the implicit numerical scheme.

  2.3.5  Diffusive overall conductance computation: by comparison with voxel based scheme 
When Fick flows are defined between two regions, we must multiply them with a coefficient ∝i,j called diffusive overall 

conductance, following [17]. In order to define ∝i,j, we calibrate them by comparison with the diffusion simulation using the 
balls network and LBM. Practically, we find that we can set ∝i,j to a constant value α. Therefore, the equation correspond-
ing to Fick flow becomes:

	
Fi,j =∝i,j

–DcSi,j∆cijδt
di,j 	 (7)

The calibration principle is to adjust such a manner that the diffusion using the curve skeleton-based pore network 
description fits with the ones provided by the Lattice-Boltzmann Model (LBM) and the balls network methods. Practically, 
we define diffusion benchmarks and optimize the correlation between the outputs. In this way we find out that setting ∝i,j 
to the constant value 0.35 allows good fitting results.

The most precise way to define the diffusive conductance coefficient would be to compute it for each pair of adjacent 
regions. The principle would be to run diffusion process using a voxel representation in order to make it fit with regions 
representation.
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We will explore this scheme in a forthcoming paper. However, when the sizes and shapes of the regions are relatively 
comparable, a mean value of the diffusive conductance coefficient can be used, at least for same geometric model (balls, 
curve skeleton based regions), without altering too much the precision of the results.

2.4  Modelling scenarios

2.4.1  Data.  We use four different data sets (see Table 1) in the simulations and present results for two (datasets 1 
and 3). The scenarios included jointly diffusion and degradation, which are simulated using the region graph following 
[17], based on the ball network. The first dataset, already used by Monga et al. [17,42], consists of an image of a sandy 
loam soil (sand, silt, clay: 71%, 19% and 10% soil mass, respectively) from the Bullion Field, an experimental site situated 
at the James Hutton Institute in Invergowrie (Scotland). A detailed description of the soil samples and of the methods 
used to produce CT images can be found in [51]. Data sets 2 and 3 consist of two CT images of quartz sand obtained 
in the Fontainebleau forest, corresponding respectively to high and low porosities. The size of these 3D CT images is 

512× 512× 512 and the resolution 4.5µm× 4.5µm× 4.5µm, and their porosities are 57% and 42% respectively [44]. The 
fourth dataset is a Carbonado Diamond downloaded from the Digital Rocks portal. It is found only in placer deposits and 
Mesoproterozoic meta conglomerates in Bahia, Brazil [54].

Data sets 2,3,4 were chosen for testing computationally the model on various pore space structures. Indeed, our car-
bon turnover scenarios were realistic for data set 1 but somehow artificial (proof for concept) for datasets 2,3,4.

2.4.2  Calibration of diffusion processes in the graph.  In order to use our geometrical representation for the 
(numerical) simulation of diffusion processes, we calibrate it by comparison with other approaches following the scheme 
described in section 2.3 (Monga et al. [17]). Here, the goal of the calibration phase is to define the value of the diffusive 
overall conductance ∝i,j.

To carry out this calibration, we introduce a given mass of organic matter (100 µg) into the first two planes at the inlet 
end of the simulated domain. We stress that, in the case of this simulation, no transformation processes were imple-
mented. We use the molecular diffusion coefficient of DOM in water of 6.73 10−6 cm2 s-1. After short time period (1.8 
hours), we compare the simulation results of the diffusion process through different cross-sections within the system using 
the two geometrical representations of the pore space: ball-based (MOSAIC) already calibrated using LBM [17], and 
region-based (approach of the present paper). For the voxel-based approach, the Lattice Boltzmann Method was used to 
simulate diffusion processes. For the balls- and regions-based approaches, as explained below, graph updating allows to 
simulate diffusion.

Table 1.  Comparative table about the characteristics of the different datasets.

Dataset 1 Dataset 2 Dataset 3 ‍Dataset 4

‍Type Sandy loam soil High porosity quartz sand Low porosity quartz sand Porous polycrystalline diamond

Dimensions 512 x 512 x 512 512 x 512 x 512 512 x 512 x 512 ‍480 x 480 x 480

Resolution 24 µm 4.5 µm 4.5 µm ‍1 µm

Pore space
in voxels

22720090 74766570 57350410 ‍8496505

Pore space ratio 17% 57% 42% ‍7.68%

Number of regions 18508 69342 68090 ‍68995

Number of balls 191583 582064 478191 ‍273190

Adjacencies for regions 61806 307059 280008 192551

Adjacencies for balls 647409 1671656 1950209 619384

Global Connectivity Indicator (regions) 3.34 4.42 4.11 3.52

https://doi.org/10.1371/journal.pone.0331031.t001

https://doi.org/10.1371/journal.pone.0331031.t001
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2.4.3  Simulation of the microbial transformation.  To simulate the microbial mineralization of organic matter, the 
biological parameters that Monga et al. [18] considered for Arthrobacter sp. 9R were taken for DOM degradation with 9.6 
day -1 for the maximum growth rate, 0.001 gC g-1 for the constant of half-saturation, 0.2 day -1 for the respiration rate, 0.5 
day -1 for the mortality rate and 0.55 for the portion of microbial biomass that returns to DOM. A rate of 0.001 day -1 for the 
mineralization rate of SOM.

For dataset 1, we put 5.2 107 bacteria (0.18 µg biomass) divided into 1000 spots (each spot corresponding to 5.2 104 
bacteria) in the pore space, and a mass of DOM of 0. 2895 mgC in the pore space corresponding to the concentration 
of 0.13 mgC/g soil [22]. We initially set the masses of FOM and SOM to 0. Due to the transformation processes imple-
mented, the FOM mass sticks to 0 and SOM is created due to micro-organisms mortality. Details of the calculation are 
provided in reference [22].

For datasets 2,3, and 4, comparison was carried out simply with MOSAIC, involving the network of spherical balls, 
since the latter has already been compared favorably to the simulations with the LBM method [10]. The biological param-
eters and the initial masses of micro-organisms and DOM were the same as for dataset 1 up to the resolution change 
(biomass: dataset 1: 0.18 µg, dataset 3: 0.001 µg), and the Dissolved Organic Matter (organic matter: dataset 1: 0. 2895 
mgC, dataset 3: 0.001979 mgC) was likewise, at first, distributed homogeneously in the pore space. We put two spots of 
micro-organisms in the two biggest balls, with a radius of 27 and 30 voxels, respectively, considered in the Mosaic ball-
based simulations.

We point out that, for our chosen examples as in most cases, the simulation results will be identical for long periods 
(months, years, centuries…) but not for shorter periods (days, weeks...). Indeed, in the tested scenarios, DOM was not 
renewed through hydrolysis of FOM (Fresh Organic Matter). After enough time, the whole microbial and organic matter 
masses will be transformed into carbon dioxide. Also, in the case where the pore space is not completely connected, bits 
of organic matter can stay in some locations if not accessible by micro-organisms.

2.4.4  Relevance of the spatialization of the dynamics.  Let us now discuss the interest about spatializing precisely 
the model. Practically the dynamics can be very different depending on the pore space geometric structure and on 
the initial location of the micro-organisms and the organic matter. Theoretically (see PDE system of section 2.3.3) the 
biological dynamics is governed by the mesh (graph) describing the pore space (especially the pore connectivity) and by 
the initial conditions (placement of the materials at starting time). Of course, when dealing with real soils (like in the data 
of the present paper), its influence is much more important than in the case of reworked soil. An efficient way to evaluate 
the impact of the soil heterogeneity, is to compare the curves describing the dynamics with spatialization and without 
spatialization. We simulate the corresponding ODE-based model without spatialization (OD model), which considers 
only transformation processes without diffusion, applied to the total masses of different compounds. We then compare 
it to the spatialized (3D) model, where transformation and diffusion processes are applied to the same initial amount 
of microorganisms distributed using 1000 bacterial clusters of varying sizes. This patchiness, influenced by cell growth 
mechanisms and environmental constraints, aligns with observations made by Nunan et al. [33]. The DOM mass is 
homogeneously distributed (i.e., the same concentration in all regions).

3  Results

3.1  Geometrical modelling of the pore space

Regarding computational cost and memory requirements, the segmentation effort of the curve skeleton based method can 
be split into:

•	 Computation of the curve skeleton

•	 Segmentation of the curve skeleton into simple branches

•	 Partition of the pore space using the maximal simple branch.
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Practically these three steps need less computational effort than the approximation schemes based on geometrical 
primitives (balls, ellipsoids, generalized cylinders…). The memory requirements of the two approaches are close.

The geometrical modelling of the pore space using the approach based on the curve skeleton (see section 2.2) was 
performed for each of the four images considered, when performed on a regular midrange laptop computer (AMD Ryzen 
5 5500U, 8 Gigabytes RAM). The different computing times for the four data sets were, respectively, 61 seconds (data set 
1, sandy loam soil), 124 seconds (data set 2, Fontainebleau quartz high porosity), 101 seconds (data set 3; Fontainebleau 
quartz low porosity), and 48 seconds (dataset 4, porous polycrystalline diamond). In terms of the associated demand of 
CPU time, one should note that this geometrical modelling has to be performed only once before simulating processes 
within the porous materials, including the various biological dynamics scenarios.

It is relatively straightforward to illustrate graphically on the 2D cross sections how the resulting partitioning looks, when 
each partitioned pore region is depicted with a different color (Fig 1e). However, the connections existing between the dif-
ferent regions are more evident when one zooms-in in 3D inside a portion of the image (Fig 3). This zooming-in highlights 
the compacity and the coherence of the pore regions.

In Figs 1e, 3, 4 and S2, the colors correspond to the set of voxels attached to one subset forming a region that is the 
closest voxels to simple branches. In the microbial calculation, every colored subset is represented by its inertia center, 
its volume, (and the micro-organisms and organic matter masses). The areas of the contact surfaces are attached to the 
graph edges. We also keep a label image allowing to get back to all voxels forming a region.

We also calculated the values of the Global Connectivity Indicator (CGI) defined by the ratio number of arcs/number of 
nodes for both geometrical models (balls, regions). For data set 1 we got 18508 regions (pores) and 61806 arcs (adjacen-
cies). The ball network included 191583 balls and 647409 arcs. Therefore the GCI was 3.34 for curve skeleton model and 
3.38 for balls model, which are close values. For data set 3 we got 68090 regions (pores) and 280008 arcs (adjacencies). 
The ball network included 478191 balls and 1950209 arcs. Thus the GCI was 4.11 for curve skeleton model and 4.08 for 
balls model, which are also close values. The above computation of GCI demonstrated the good concordance of balls 
model and curve skeleton model regarding the degree of connectivity.

3.2  Calibration of diffusion processes

In order to calibrate the diffusion processes taking into account the graph, we use the method described in section 2.4.2. 
The comparison of the different depth-concentration profiles obtained after adjustment of the conductance with the region-
based approach with those resulting from the Mosaic-based approach (itself already compared in the past with the LBM 
method) suggests that an optimal fit of these different methods is obtained by setting ∝i,j to a constant value, equal to 0.35 
(Fig 6). The reason is that when the pore shapes are relatively homogeneous the diffusive overall conductance can be 
considered as constant. In forthcoming research, we shall propose a way to compute it for each pair of connected regions, 
which is more precise but also more costly in term of computing time.

3.3  Modelling of microbial mineralization including diffusion processes

We use the framework described in section 2.3. As mentioned, the computational cost is roughly proportional to the num-
ber of graph nodes which is the number of balls for the ball based method. In most cases, the number of regions provided 
by the curve skeleton-based method is much lower (ratio of 1/10–1/20).

The computational cost of the diffusion phase is roughly proportional to the number of nodes of the geometrical prim-
itive graph. For data set 1, using the geometrical modelling scheme described by Monga et al. [20], 191583 balls are 
involved in the description of the pore space. The use of the curve skeleton-based algorithm described here results in the 
identification of 18508 regions. Thus, the computing time for the diffusion simulation is divided by a ratio of approximately 
ten. For dataset 3, we obtained 478191 balls and 72691 regions, yielding a ratio of 7. For dataset 4, we obtained 407055 
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balls and 45386 regions, yielding a ratio of 9. For dataset 2, we obtained 2376261 balls and 259299 regions, yielding a 
ratio of 9 (see Table 1).

The microbial mineralization of organic matter is described as the second step of a two-step sequence, the first step 
involving the diffusion of dissolved organic molecules, which is described using an implicit numerical scheme.

For dataset 1, we compare the results obtained by using the skeleton-based pore network graph with the ones obtained 
under identical conditions in an earlier publication [17] via the use of LBM and MOSAIC (Fig 7). Although there are some 
small numerical differences between the curves obtained with these different methods, their overall similarity is particularly 
noteworthy, given the large differences in computing times they require. On the personal computer that we used for the 
calculations, the computing time (CPU) for the LBM approach was several days; the Mosaic ball-based approach took 
20 minutes, and the new method, based on partitioning the pore space with the curve skeleton, yielded its result in one 
minute.

In the specific case of dataset 2–4 these balls correspond roughly to the volume of the 10 biggest regions when using 
the curve skeleton-based approach. To be precise, 192 regions are included in the two biggest balls but about 85% of the 
ten biggest regions are included within the two biggest balls. It is due to the fact that the biggest spheres are positioned 
in the middle of the pore where the regions ends. Therefore, to enable a comparison between the two different simulation 
methods, we placed in these regions the same biomass as in the two largest balls in the Mosaic simulations (see Fig 4). 
We also adjust the diffusion coefficient of carbon (DOM) in water (dataset 1: 100k voxel2/day, dataset 3: 2500k voxel2/
day). We keep the same values for the diffusive conductive coefficients (0.35 for the curve skeleton model, 0.6 for the 
balls model).

Simulation results for the data set 3 (Fig 8) show that the different curves are close for the two methods, in spite of 
considerable differences in the time required for computation. The simulations took 1 hour of CPU time with the Mosaic 
approach, versus merely one minute with the curve skeleton-based model. The results in Fig 8 also demonstrate that the 
diffusive overall conductance coefficient does not need (at least for these datasets) to be updated when changing data-
sets. Similar agreements between the two simulation methods were obtained for data sets 2 and 4 (see section 8: “sup-
plementary material”), as well as a comparable 10-fold speeding up of the time needed for completion.

3.4  Spatialization relevance: Comparison with ODE model

In order to show the relevance of the dynamics spatialization we use the scheme described in section 2.4.4.
The comparison shows that the simulation results of the ODE model differ significantly from those of the 3D model, at 

least when the localization of micro-organisms is not random (see Figs 9, 10). This is expected, as micro-organisms in the 
ODE model have complete access to the total DOM, leading to exponential growth. Once the DOM is fully consumed, 
the microorganisms begin to die and are subsequently transformed into DOM and SOM. We notice that the low value of 
the decomposition rate of SOM set to 0.001 day-1, explains why DOM drops to 0 although MB and SOM are positive. The 
biomass recycling into DOM and the low transformation rate of SOM into DOM are almost entirely taken up and respired 
by the biomass. We ran the ODE simulation of Fig 9 over much longer periods of time and after about 30 years, DOM, 
MB and SOM converge to zero while almost all the initial masses were transformed into CO

2
. Interestingly, we observed 

that the scenario with a random localization of microorganisms produced results close to those of the ODE model (without 
spatialization).

In our second experiment, we conducted two simulations using the 3D region-based model, each with different spa-
tial distributions of the same initial amount of microorganisms, the first distribution is the same as the first experiment, 
and in the second distribution, we choose random spots of microorganisms. The results demonstrate that the place-
ment of microorganisms within the pore space significantly influences the system behavior. The results are shown in 
Figs 9, 10.
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4  - Discussion

This work brings the following outcomes:

•	 Curved skeleton, already used to model complex shapes within various contexts, can also be employed for pore space 
geometric representation in soil science.

•	 Such curve skeleton based pore space representation allows to speed up hugely the computational cost of microbial 
decomposition simulation.

•	 Biological dynamic simulation schemes using three different geometric representations of pore space (voxels, balls, 
regions) provide similar results but with very different computing times (up to 1/10000 for voxels versus regions).

Its main limitations are:

•	 Calibration of the diffusion coefficient (diffusive conductive coefficient) is needed when switching from one geometric 
representation to another one

•	 Time steps for Euler numerical schemes for both transformation and diffusion processes are defined on an ad hoc basis. 
Practically, enough small time steps are chosen.

•	 Preprocessing steps on grey level CT images can differently remove noise and therefore introduce slight differences in 
the resulted segmented pore space that can be large enough to lead to different outputs of the physical models [11].

The possible and future scenarios and perspectives are:

•	 Complementary developments could be carried out to avoid the diffusion coefficient calibration. Indeed the diffusion is 
implemented by computing the flow (first Fick law) between two adjacent primitives using the same diffusion coefficient 

Fig 9.  Comparison of 3D and 0D (non-spatialized) models for microbial decomposition. For this specific simulation, we set Vsom = 0, that explains 
why DOM drops to 0 although MB and SOM are positive.

https://doi.org/10.1371/journal.pone.0331031.g009

https://doi.org/10.1371/journal.pone.0331031.g009
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for any pair of adjacent pores. Therefore the calculation of the diffusive conductive coefficients depending on the specific 
pore shapes could both escape any calibration and also improve the precision of the simulation.

•	 The determination of optimal (maximal) time steps in Euler numerical schemes for both transformation and diffusion 
processes could also be explored. Practically we took time steps such that the result is stable when decreasing it.

•	 Pore space changes along the dynamic could be taken into account during the simulation process

•	 The stability of our biological model when using different segmented image outputs (resulting from different preprocess-
ing steps) could be investigated and quantified.

•	 Machine Learning (ML) techniques (Deep Learning, Conventional Neural Network…), instead of computational geome-
try, could provide pore space partition. Within this context, the main issue would be to get enough training data (massive 
data) for the ML system. Practically, as far as we know, no available data bases provides enough data yet.

Fig 10.  Comparison of different spatializations for the 3D model.  The principle of our method consists of segmenting the curve skeleton into simple 
branches, and afterward attaching to each simple branch a connected set of points. The result is a partition of the pore space, which can be represented 
by an attributed relational graph. In this graph, each node corresponds to a pore, and each arc to an adjacency between a couple of pores. We show 
that this geometrical representation of the pore space can be used directly to simulate the microbial mineralization dynamics including diffusion and 
transformation processes. We assess the soundness of the approach by comparison with other methods that have been developed and used in the past 
in the same context. A possible drawback of the novel approach, compared with geometrical primitives-based modeling, is that each pore is defined 
by a set of connected voxels with no explicit geometric properties. On the other hand, the advantages of the pore space modeling based on the curve 
skeleton are fourfold. It does not impose specific shapes for a pore as do primitive-based modeling methods, involving balls or ellipsoids. It defines an 
exact piece-wise representation of the pore space, without losing any part of it, since it is based strictly on a partitioning of the pore space into distinct 
regions. On the other hand, the computations on the basis of the curve skeleton use reduced information attached to the valuated graph (inertia center, 
region size, contact surface) that is the limitation of this framework. When implementing diffusion processes, it involves an exact computation of the area 
of the contact surfaces between adjacent regions. Finally, the number of nodes (pores) is much less than the ball network used in a previous work. To 
maximize the advantages and minimize the drawbacks, it might be possible in the future to implement hybrid geometric modeling algorithms using both 
skeletonization and geometric primitives.

https://doi.org/10.1371/journal.pone.0331031.g010

https://doi.org/10.1371/journal.pone.0331031.g010
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Compared to other schemes using piece wise approximation by geometrical primitives (balls, ellipsoids, generalized 
cylinders…), this method avoids approximation errors because defining an exact partition of the pore space, without 
imposing a priori shapes to the pores. In particular, the borders between the regions are straightforward defined. Also 
the number of graph nodes (corresponding to regions) is less than when using primitives, yielding a more compact 
representation.

In this work, we assume implicitly that the pore space partition, computed from the curve skeleton, fits reasonably with 
micro-organisms habitats. We consider the regions as “biological units”. Practically, we do not obtain very large regions 
due to the generally tormented shapes of pore space. For data set 1 (image resolution: 24µm x 24µm x 24µm), the max-
imum region size is 15521 voxels (round 0.27 mm3) and the median value 1180 voxels (round 0.016 mm3). For dataset 3 
(image resolution: 4.5µm x 4.5µm) the maximum region size is 20466 voxels (round 0.002 mm3) and the median value 484 
voxels (round 0.00004 mm3).

5  Conclusion

The key result of the present article is the demonstration that the use of the curve skeleton to partition the pore space in 
3D micro CT (Computed Tomography) images of soil samples, followed by the use of this partition for the simulation of the 
microbial mineralization of soil organic matter, leads to considerably shorter computing times. As far as we are aware, this 
use of the curve skeleton to represent complex volume shapes is the first in the context of soils. The method has been 
used in other disciplines in the past, like medicine, material sciences, chemical engineering, and in the analysis of porous 
media (e.g., carbonate rocks) but never to speed up the otherwise extremely lengthy simulations needed to describe the 
fate of organic matter in soils subjected to environmental change.

Supporting information

S1 Fig.  Top left: 2D gray scale image of the sand high porosity (dataset 2). Top right: Corresponding binary image. 
Bottom left perspective view of a part of the pore space. Top right: perspective view of the corresponding curve skeleton.
(TIF)

S2 Fig.  Corresponding segmented regions of the sand high porosity (data set 2) and the ball network within the 
same part of the whole 3D image. 
(TIF)

S3 Fig.  Comparison of the simulations of microbial mineralization for dataset 2 (sand high porosity) using the 
ball based MOSAIC program and the novel approach introduced here, based on the partitioning of the pore 
voxels on the basis of the curve skeleton. The simulations extended over 5 days and were carried out in the “curve 
skeleton” method with a diffusive conductance coefficient equal to 0.35 for the curve skeleton method and 0.6 for the balls 
method. The initial masses (micro-organisms, dissolved organic matter) and also the diffusion coefficient were adjusted 
according to the image resolution. X-axis and Y-axis represents respectively time expressed in hours and the masses 
expressed in percentage of the total initial masses. Solid line curves and dotted line curves correspond respectively to the 
curve skeleton model and to the balls model. Dark blue curves, green curves, red curves, light blue curves correspond 
respectively to microorganisms, dissolved organic matter (DOM), carbon dioxide (CO

2
), soil organic matter (SOM). Same 

as for dataset 1 the microbial degradation model take into account DOM and SOM but not FOM.
(TIF)

S4 Fig.  Top left: 2D gray scale image of the carbonate rock dataset. Top right: Corresponding binary image. Bottom 
left: perspective view of a part of the pore space. Bottom right: perspective view of the corresponding curve skeleton.
(TIF)

http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0331031.s001
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0331031.s002
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0331031.s003
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0331031.s004


PLOS One | https://doi.org/10.1371/journal.pone.0331031  November 7, 2025 21 / 24

S5 Fig.  Comparison of simulations of microbial mineralization for dataset 4 (carbonate rock) using the ball based 
MOSAIC program and the novel approach introduced here, based on the partitioning of the pore voxels on the 
basis of the curve skeleton. The simulations extended over 5 days and were carried out in the “curve skeleton” method 
with a diffusive conductance coefficient equal to 0.35 for the curve skeleton method and 0.6 for the balls method. The ini-
tial masses (micro-organisms, dissolved organic matter) and also the diffusion coefficient were adjusted according to the 
image resolution. X-axis and Y-axis represents respectively time expressed in hours and the masses expressed in per-
centage of the total initial masses. Solid line curves and dotted line curves correspond respectively to the curve skeleton 
model and to the balls model. Dark blue curves, green curves, red curves, light blue curves correspond respectively to 
microorganisms, dissolved organic matter (DOM), carbon dioxide (CO

2
), soil organic matter (SOM). Same as for dataset 1 

the microbial degradation model take into account DOM and SOM but not FOM.
(TIF)

S6 Fig.  Convergence of the simulation method (transformation + diffusion). We present the biological dynamics 
curves obtained for different time steps for dataset 1. Up figure: kinetic for DOM, CO

2
, SOM, Biomass (left to right and up 

to bottom) when using different discretization time steps δt (time steps are expressed in seconds).
(TIF)

S7 Fig.  Convergence of the diffusion method (dataset 1). The meaning of the curves is the same as in Fig 7. The 
X-axis displays the number of planes within the image (512 planes in total), whereas the Y-axis displays the total mass 
of organic matter within each plane. At the start, 100 µg of carbon were introduced within the first two planes. The total 
simulation time was 1.783 hours. We implemented the diffusion process using Euler backward scheme (implicit scheme) 
with different decreasing discretization time steps in order to show the convergence in time. We display the curves show-
ing the total amount of matter for each planar cross section (z-planes) after the diffusion process. Upper left: discretization 
time step (implicit Euler scheme) was set to 1.783h; the red curve corresponds to the ball network and the blue one to 
the curve skeleton based network. Up right: same as up left but where the discretization time step was set to 30s. Bottom 
left: curves obtained using the curve skeleton based network for decreasing time steps; we see the convergence of the 
process. time step = 1.783h, 0.90h, 30s…0.13s. The convergence is approximately reached when time step is set to 30s. 
Bottom right: same as bottom left but with zooming in some areas.
(TIF)
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