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Fires across sub-Saharan Africa (SSA) are a dominant source of global carbon emissions, yet their true magnitude
remains uncertain due to the limitations of coarse-resolution satellite products. In this study, we developed a
high-resolution fire emission inventory prototype for SSA using active fire detections from the VIIRS sensor

:::;f;es (375 m) and a top-down approach based on fire radiative power (FRP). Emissions were estimated through the
VIIRS integration of FRP to fire radiative energy (FRE), conversion to dry matter burned using biome-specific com-
MODIS bustion coefficients, and application of emission factors for carbon dioxide. A parallel MODIS-based dataset was

also produced using the same methodology to isolate sensor-specific effects. To evaluate detection and modelling
differences, the VIIRS-based product (VIIRS-EM) was compared against six widely used global fire emission
inventories. In addition, a subset of emissions from small fires (defined as FRP < 10 MW) was derived and
assessed separately. Over the period 2013-2022, VIIRS-EM estimated average annual carbon emissions of 3.0 Pg
C, which is 50-75 % higher than most MODIS-based inventories. Emission hotspots were identified in agricul-
tural and savanna regions, particularly in West and Central Africa. Small fires contributed significantly to early
and late fire-season emissions and revealed widespread underestimation in existing products. Our findings un-
derscore the importance of high-resolution detection and FRP-based modelling for capturing the full extent of
African fire activity. The VIIRS-EM inventory provides improved spatial and temporal resolution, with impli-
cations for atmospheric composition modelling, greenhouse gas accounting, and regional fire policy
development.

Sub-Saharan Africa

1. Introduction modelling assumptions in existing inventories.

Estimating fire emissions from space typically relies on two main

Biomass burning plays a critical role in the global carbon cycle, ac-
counting for approximately 5-10 % of annual carbon emissions [54].
Among all regions, sub-Saharan Africa (SSA) stands out as the most
fire-active area globally, accounting for up to half of global fire-related
carbon emissions [48]. Fire activity across SSA has profound implica-
tions for atmospheric composition, terrestrial carbon stocks, regional air
quality, and climate dynamics [27,35]. Despite its global importance,
sub-Saharan Africa remains one of the regions with the highest un-
certainties in fire emission estimates, due to detection limitations and
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approaches: burned area (BA)-driven models and methods based on fire
radiative power (FRP). BA-based inventories estimate emissions by
combining mapped burn extent with assumptions about fuel load,
combustion efficiency, and emission factors (EFs) [53,54]. While widely
used, this method presents substantial limitations, particularly in re-
gions dominated by small and low-intensity fires. Moderate-resolution
satellites such as the Moderate-resolution Imaging Spectroradiometer
(MODIS; 500-1000 m) often fail to detect short-lived fires or those
occurring under cloud cover, in heterogeneous land cover, or with low
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combustion energy [21,8]. These limitations are especially problematic
in SSA, where many fires are fragmented or agriculturally driven.
Several studies using higher-resolution datasets have demonstrated that
small fires can account for over 40 % of total BA and increase regional
fire carbon emissions by up to 80 % compared to standard MODIS-based
products [48,51].

In addition to detection constraints, BA-based models are limited by
their dependency on post-fire surface reflectance changes, which in-
troduces delays and makes them unsuitable for near-real-time applica-
tions. They also rely on static or regionally coarse assumptions about
fuel availability and combustion efficiency, leading to considerable
uncertainty when applied over large and diverse landscapes.

FRP-based methods offer an alternative approach by estimating
emissions from the energy radiated by active fires, which is more
directly related to fuel consumption. FRP is measured from thermal
anomalies detected in satellite imagery and can be integrated over time
to produce fire radiative energy (FRE). This approach, when combined
with land cover—specific combustion coefficients and EFs, allows for the
generation of spatially and temporally explicit emission estimates 1,3,
60]. The Visible Infrared Imaging Radiometer Suite (VIIRS), onboard the
Suomi-NPP satellite, provides active fire detections at 375 m resolution
with improved sensitivity to low-FRP events compared to MODIS [37,
52].

FRP-based approaches are especially relevant for operational and
near-real-time applications. Because active fire data are available within
hours of overpass, these methods can support air quality forecasting,
smoke dispersion modelling, and fire management decisions [16,30].
Their ability to capture active combustion during the fire event makes
them particularly suitable for regions where fire regimes are influenced
by rapidly changing vegetation cover, land use activity, or meteoro-
logical conditions, such as in SSA.

The primary objective of this study is to develop and evaluate a high-
resolution, FRP-based fire emission inventory for SSA covering the
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period 2013-2022. The approach is based on active fire detections from
VIIRS, with emissions estimated through the integration of FRP to FRE,
conversion to dry matter burned using land cover—specific combustion
coefficients, and application of biome-specific EFs. Emissions are
computed at monthly intervals on a 0.1° spatial grid. A MODIS-based
counterpart (MODIS-EM) was also produced using the same methodol-
ogy to allow for sensor-consistent comparisons.

Special emphasis is placed on quantifying emissions from small fires,
defined here as those with FRP values below 10 MW. Here we adopt an
FRP-based definition (FRP < 10 MW), which characterizes intensity
rather than BA. These low-intensity or sub-resolution events are often
missed by traditional BA or FRP assimilation products but are prevalent
in fragmented landscapes such as cropland and savanna mosaics [34].
To assess the representativeness of our VIIRS-based inventory prototype
(VIIRS-EM), we compare it against six widely used global fire emission
datasets: GFED4s, GFAS, QFED, FEER, FINN_modis, and FINN_viirs. The
comparison focuses on spatial distribution, interannual trends, and
seasonal dynamics, and includes an analysis of the relative bias associ-
ated with small fire emissions.

2. Materials
2.1. Study area

This study focuses on SSA, defined as the continental region south of
approximately 15° N (Fig. 1). The area includes a diversity of fire-prone
ecosystems such as tropical savannas, shrublands, dry woodlands,
grasslands, and agricultural mosaics [12,15,58]. SSA is a major
contributor to global biomass burning emissions, with fires driven pri-
marily by anthropogenic activities including land clearing, residue
burning, and pasture management [4,50,65].

Fire activity in SSA is shaped by seasonal climate patterns, particu-
larly the migration of the Intertropical Convergence Zone (ITCZ), which
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Fig. 1. Geographic extent of the study area covering sub-Saharan Africa with key ecological zones and political boundaries. The two subregions used for analysis,
Northern Hemisphere Africa (NHAF) and Southern Hemisphere Africa (SHAF), are delineated for comparative purposes. based on MCD12Q1 (v6.1) for the year 2022
at 500 m resolution, using the University of Maryland (UMD) classification scheme [17].
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controls the alternation between dry and wet seasons across hemi-
spheres. In Northern Hemisphere Africa (NHAF), peak fire activity oc-
curs from November to February, while in Southern Hemisphere Africa
(SHAF), burning is most intense between May and September [27,49].
These opposing seasonal cycles result in asynchronous fire regimes. For
analytical purposes, we distinguish between NHAF and SHAF based on
their position relative to the equator.

Most fires in SSA are surface fires occurring in open or semi-open
landscapes. Fire behaviour varies with vegetation structure, and fire
temperature is generally lower in densely wooded areas where canopy
closure suppresses surface fuel availability [33]. Both natural ignitions,
such as lightning, and human interventions contribute to fire occurrence
across the region. Fire use is strongly embedded in local land-use sys-
tems. Communities across SSA rely on fire for multiple purposes,
including land preparation, weed and pest control, post-harvest burning,
and pasture regeneration [4,6]. These traditional practices influence
ecosystem dynamics such as vegetation turnover, soil nutrient cycling,
and species composition while also presenting challenges for fire man-
agement in the context of land use intensification and climate variability
[36,40].

SSA fire emissions influence regional air quality, atmospheric
composition, and hydrological processes. Aerosols and trace gases
released by biomass burning affect radiation balance, cloud formation,
and precipitation. These interactions can create feedbacks that influence
future fire activity [35]. Accurate characterization of fire dynamics in
SSA is essential for improving emission estimates and informing regional
land and fire management policies.

2.2. Active fires

Active fire detections are the primary data source for estimating FRP
and subsequent emissions. We used two widely recognized satellite-
based products used in operational fire monitoring systems such as
EFFIS [9]:

e MODIS Active Fires (MCD14ML, Collection 6): Provides 1 km reso-
lution thermal anomalies from the Terra and Aqua satellites. This
product has global coverage and a long temporal record but is known
to underdetect small and low-intensity fires due to coarse resolution
and sensor limitations [22].

VIIRS Active Fires (VNP14IMG, Collection 1): Derived from the
Suomi-NPP platform, this product offers enhanced spatial resolution
(375 m at nadir) and improved sensitivity to low-FRP events, making
it more suitable for capturing short-lived and fragmented fires [37,
52]. The recently released Collection 2 of the VIIRS Active Fires
product [20] provides further enhancements in fire detection,
including improved cross-calibration between Suomi-NPP and
NOAA-20, as well as refinements to the cloud/snow mask. However,
these data were not yet available at the time of writing and were
therefore not included in the present analysis. Therefore, all results
presented here are based on Collection 1.

Both datasets were processed over the period 2013-2022 using a
standardized pre-processing workflow. For MODIS, detections with a
confidence level below 50 % were excluded. For VIIRS, we retained only
detections classified as “nominal” or “high” confidence based on the
categorical flags provided in the VNP14IMG product [44]. Duplicate
observations arising from overlapping satellite overpasses were filtered
to avoid redundancy. Fire detections were then spatially aggregated to a
uniform grid of 0.1° resolution and temporally averaged at daily and
monthly scales. Different perimeter delineation approaches for con-
verting fire spots into BA or contiguous fire events can lead to significant
differences in fire characterization [7]. Our choice of a standardized
gridding workflow ensures methodological consistency with FRP-based
emissions estimation. Additional quality control steps included the
exclusion of detections not classified as vegetation fires. Specifically,
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only detections with Type = 0 (presumed vegetation fire) were retained,
excluding known sources such as volcanoes (Type = 1), static land
sources (Type = 2), and offshore events (Type = 3). This filtering is
based on the hot spot type flags provided in the VIIRS and MODIS active
fire products. The resulting filtered dataset provided the basis for FRP
integration and was subsequently used to estimate emissions following
the radiative energy methodology described in Section 3.

2.3. Ancillary data

Land cover classification was used to assign each fire detection to a
fire type category, enabling the application of biome-specific combus-
tion coefficients and EFs. We used the MODIS Land Cover Type product
(MCD12Q1, Collection 6.1), based on the University of Maryland clas-
sification scheme [17]. This product provides annual global land cover
at 500 m resolution across 15 land cover classes. For each year of the
study period (2013-2022), the corresponding annual land cover map
was used to ensure temporal consistency with fire detection data.

Fire pixels were reclassified into generalized fire categories based on
the correspondence between MODIS land cover classes and fire types
defined by Akagi et al. [1]. These categories include savanna, cropland,
tropical forest, shrubland, grassland, and temperate forest, among
others. This reclassification allowed for consistent assignment of com-
bustion parameters and reflects the variability in vegetation structure
and fuel composition relevant to fire emissions (Table 1).

The combustion coefficient (a) represents the amount of dry matter
burned (DMB) per unit of fire radiative energy (in kg MJ') and varies by
fire type. Values were selected from Akagi et al. [1] and range, for
example, from 0.41 kg MJ! for crop residue fires to 0.90 kg MJ™! for
savanna fires. These coefficients were used to convert FRE to DMB as
part of the emission modelling process described in Section 3.

Although alternative EF frameworks, such as those proposed by
Vernooij et al. [56], offer dynamic emission factor models based on
combustion phase or fire season, these were not applied in the current
analysis. Instead, the static EFs from Andreae [3] were retained to
ensure consistency and comparability with global emission inventories.

3. Methods

We implemented a satellite-based, top-down approach to estimate
fire emissions in SSA using active fire detections from VIIRS and MODIS.
Our methodology relies on FRP as the primary input and integrates
standardized pre-processing, biome-specific combustion coefficients,
and EFs application within a gridded framework. The method was used
to generate two fire emission products: a VIIRS-based estimate (VIIRS-
EM) and a MODIS-based counterpart (MODIS-EM), both using identical
computational steps but different input sensors. This structure allows
direct comparison of emission outcomes attributable to sensor

Table 1

Correspondence between MODIS land cover classes (MCD12Q1, Collection 6.1;
UMD scheme) and fire type categories used for emissions modelling. Conversion
factors (kg dry matter burned per MJ) are based on [1], and CO2 emission factors
(in g kg™ of dry matter burned) are taken from [3].

MODIS LULC class Merged fire type Conversion factor CO: EF (g
(UMD scheme) category (kg MJ™) kg™
Woody savannas Savanna 0.90 1610
Savannas
Grasslands Grasslands 0.55 1660
Croplands Crop residue 0.41 1430
Evergreen broadleaf Tropical forest 1.04 1630
forests
Deciduous broadleaf
forests
Mixed forests Temperate forest 0.62 1570
Closed shrublands Shrubland 0.45 1690

Open shrublands
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characteristics. In addition to generating full-resolution emissions, we
defined a subset of VIIRS-EM restricted to detections with FRP below
10 MW to isolate emissions from low-intensity fires typically missed by
moderate-resolution systems. The VIIRS-EM dataset was compared
against six widely used global fire emission inventories to assess dif-
ferences in spatial patterns, total carbon emissions, and representation
of small fires. A schematic representation of the full processing chain is
presented in Fig. 2. We also computed annual totals of emissions for SSA
and its subregions, including NHAF and SHAF, to evaluate decadal
trends using a Mann-Kendall test and Sen’s slope estimator.

3.1. Computation of fire radiative energy and dry matter burned

We estimated fire emissions using a top-down approach based on
FRP derived from VIIRS active fire detections. For each fire detection,
instantaneous FRP values from day and night overpasses were processed
to calculate FRE, which represents the total radiative output over the
burning duration. FRE was computed by integrating FRP over time
following the method introduced by [60], and is expressed in mega-
joules (MJ) (Eq. 1).

The gridding process involved aggregating fire detections to a reg-
ular 0.1° x 0.1° spatial grid, consistent with the resolution used for
comparison against global fire emission inventories. Within each grid
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cell, FRP observations from both day and night detections were first
averaged separately, then merged to derive a mean daily FRP value. This
approach smooths sub-daily fluctuations and reduces noise from isolated
short-duration detections, particularly in fragmented agricultural land-
scapes. Fires detected in both overpasses are typically longer-lived or
more intense, while those observed only once may reflect brief or low-
FRP activity [52]. Averaging reduces potential overestimation from
overlapping or redundant detections and improves spatial coherence in
gridded FRE estimates. This value was then temporally integrated over
the day to calculate daily FRE per grid cell. The integration step ag-
gregates the instantaneous radiative flux from multiple fire detections,
resulting in a spatially consistent and temporally resolved gridded
dataset of FRE. This representation allows spatially explicit analysis of
fire activity and facilitates emission comparisons with coarser-resolution
products.

FRE;; = (FRP{Y + FRPI") x At 6

Where FRPg;y and FRP’gght are the day and night FRP values (in MW)
observed in grid cell (i,j), At and is the assumed duration of fire activity
between overpasses, set to 12 h [30,62].

To convert FRE into biomass consumption, we applied land cover-
—specific combustion coefficients (), defined in kg of dry matter burned

Active fires

MODIS

/ MCD14ML / / VNP14IMG /

VIIRS o

h

Fire location
and filtering FRP

Thresholding

Land cover
data

Combustion

Daily
integral

coeficient
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—

!

Fire emissions

VIIRS-EM; MODIS-EM
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Fig. 2. Overview of the methodological workflow used to generate fire emission estimates for sub-Saharan Africa. The method produces two emission datasets:
VIIRS-EM (based on VIIRS detections) and MODIS-EM (based on MODIS detections), both aggregated to a regular 0.1° spatial grid. In addition to generating full-
resolution emissions, we defined a subset of VIIRS-EM restricted to detections with FRP below 10 MW to isolate emissions from low-intensity fires.
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per megajoule. These coefficients were assigned based on fire type
classification derived from annual MODIS MCD12Q1 land cover maps,
using the University of Maryland scheme [17]. Each fire pixel was
matched to a generalized fire category following the typology in Akagi
et al. [1], which includes savanna, cropland, grassland, shrubland,
tropical forest, and others. Combustion coefficients ranged from 0.41 kg
MJ! for crop residue fires to 0.90 kg MJ™' for savannas. This stratifi-
cation improves the accuracy of DMB estimation by accounting for
biome-level variability in fuel type and combustion completeness.

In addition to VIIRS-based processing, we developed a parallel
MODIS-based emission product (MODIS-EM) using the same FRP-to-
biomass methodology. This version relies on 1 km MODIS active fire
detections from the MCD14ML product and was designed to enable
consistent comparison of emission estimates between sensors. MODIS-
EM was processed using the same combustion coefficients, EFs, and
aggregation steps described above.

3.2. Emission factor application and CO2-to-C conversion

To estimate emissions from DMB, we applied fire-type-specific EFs
from the global synthesis by Andreae [3]. EFs were expressed in grams of
species emitted per kilogram of dry matter burned (g kg™). For this
study, we focused exclusively on carbon dioxide (CO2), which consti-
tutes the majority of biomass combustion emissions. EFs values for CO:
ranged from approximately 1450 to 1660 g kg™, depending on fire
type.

Following emission calculation, CO: totals were converted to
elemental carbon (C) by applying a conversion factor of 3.67, repre-
senting the molecular weight ratio between CO:z and carbon. All emis-
sions were expressed in mass of carbon and aggregated at monthly and
0.1° spatial resolution to support spatial and temporal comparison with
global inventories.

3.3. Identification and estimation of small fire emissions

Although our FRP-based method does not require fire size mapping,
we performed a targeted classification to isolate emissions originating
from small fires. These were defined strictly as fires with FRP below
10 MW, following the nominal lower detection limit of the MODIS fire
product [37,52]. This threshold is an intensity-based criterion and
should not be confused with burned area. For context, such FRP values
are typically associated with relatively low-intensity or short-duration
fire events that may correspond to small burned patches (often <
100 ha), which are frequently omitted in moderate-resolution in-
ventories [43].

All VIIRS fire pixels with FRP < 10 MW were flagged and processed
using the same FRE-based emission method. The resulting dataset
allowed for estimation of emissions from small fires at high spatial and
temporal resolution. This subset of VIIRS-EM was used for evaluating the
contribution of small fires across SSA and for computing the relative bias
of six global fire emission inventories, as shown in Section 4.4. The
spatial distribution and quantitative importance of these small fires are
discussed in relation to the systematic underestimation observed in
MODIS-based inventories, particularly in regions with fragmented
agricultural and savanna landscapes.

3.4. Global fire emission inventories

We evaluated our VIIRS-based emission product against six global
fire emission datasets commonly used in atmospheric and climate
modelling (Table 2). These inventories represent a range of methodo-
logical approaches, including FRP-based assimilation, burned-area
models, and cluster-based fire detection aggregation.

(1) The Fire Energetics and Emissions Research (FEER) product is an
FRP-based inventory developed by NASA that combines MODIS fire
detections with regionally tuned emission coefficients [28]. (2) and (3)

Geomatica 77 (2025) 100069

Table 2
Global fire emission inventories used for comparison with the prototype VIIRS-
based emissions developed in this study.

Inventory Abbrev. version Original spatial References
resolution

Fire Energetics and FEER 1.0- 0.1° [28]
Emissions Research gl.2

Fire INventory from FINN_mod 2.5 [59]
NCAR FINN_viirs 1km [59]

Global Fire GFAS 1.2 0.1° [30]
Assimilation System

Global Fire Emissions GFED4s 4s 2.5° [54]
Database

Quick Fire Emissions QFED 2.6 0.1° [10]
Dataset

The Fire INventory from NCAR (FINN v2.5) was evaluated in two con-
figurations: FINN_modis, which uses only MODIS active fires, and
FINN_viirs, which integrates both MODIS and VIIRS detections. Both
rely on spatial clustering of fire detections to estimate BA at ~1 km
resolution. FINN_viirs includes more low-intensity fire events and
consequently yields higher emission totals than the MODIS-only version
[59]. (4) The Global Fire Assimilation System (GFAS) is an FRP-based
emission system developed by the Copernicus Atmosphere Monitoring
Service (CAMS). It assimilates MODIS FRP observations in near real time
to estimate trace gas and aerosol emissions at a 0.1° resolution [30]. (5)
The Global Fire Emissions Database version 4s (GFED4s) is a
burned-area-driven inventory that includes a correction factor to
approximate emissions from small fires missed by coarse BA maps [54].
(6) The Quick Fire Emissions Dataset (QFED) is an FRP-based product
tuned to reproduce satellite-derived aerosol optical depth patterns, often
resulting in higher particulate emissions in regions with dense smoke
[10].

At the time of writing, the versions presented in Table 2 reflect the
most recent publicly available products. We acknowledge that most of
these inventories are actively evolving, with ongoing efforts to improve
their ability to represent small, fragmented fires. The comparisons made
here are not intended as definitive performance rankings but rather to
illustrate key differences in magnitude, spatial patterns, and methodo-
logical assumptions relative to our high-resolution, FRP-based proto-
type. This evaluation provides context for understanding how detection
sensitivity and modelling choices influence fire emission estimates.

4. Results
4.1. Higher fire emissions than coarse-resolution models

Our VIIRS-EM inventory yields substantially higher fire emissions for
SSA than most existing global emission products (Fig. 3). Over the
2013-2022 period, the average annual carbon emission from VIIRS-EM
is approximately 3.0 Pg C, equivalent to 11 100 Tg COz yr™' . This is
notably higher than the estimates from MODIS-era inventories. For
example, GFED4s yields 0.93 Pg C yr'!, GFAS 0.74 Pg C yr'', QFED
0.84Pg Cyr', FEER 1.44 Pg Cyr' , and FINN_modis 1.37 Pg Cyr . In
contrast, the FINN_viirs inventory, which incorporates VIIRS detections
in addition to MODIS, reports a higher value of 3.40 Pg C yr™' (about
13 % above our VIIRS-EM).

These differences reflect a broader pattern: VIIRS-based approaches,
which can detect smaller and shorter-lived fires, tend to produce higher
fire emission totals than MODIS-only inventories. Across sub-regions,
the gap between VIIRS-EM and other inventories varies widely, from
as little as 4 6 % (relative to FINN_viirs) to as much as 4 78 % (relative
to GFAS), highlighting the sensitivity of regional totals to detection
capability and inventory design. In both NHAF and SHAF, VIIRS-EM
exceeds most global inventories by large margins. For example, in
NHAF, VIIRS-EM estimates 1.28 Pg C yr™! on average, compared to 0.65
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Fig. 3. Annual total fire carbon emissions over 2013-2022 for NHAF (a), SHAF (b), and SSA (c), comparing VIIRS-EM with six global emission inventories. Panels (a)
and (b) show time series with shaded envelopes for VIIRS-EM variability and relative bias percentages for each inventory. Panel (c) summarizes the SSA mean over
the full period, with bar height showing total emissions and overlaid labels showing average relative bias versus VIIRS-EM. Inventories based on MODIS active fire or
burned area (GFED4s, GFAS, QFED, FEER, FINN_modis) are consistently lower than VIIRS-EM, while FINN_viirs (which also uses VIIRS detections) aligns more

closely. Units: 1 Pg C =1 000 Tg C =10° Gg C =10°Mg C =10°t C.

Pg C yr for FEER, 0.67 Pg C yr* for FINN_modis, 0.49 Pg C yr* for
GFED4s, and 0.37 Pg C yr! for GFAS. The corresponding relative biases
in NHAF, using VIIRS-EM as a baseline, are approximately —49 %
(GFED4s), —51 % (FEER), —65 % (QFED), —68 % (GFAS), and —48 %
(FINN_modis). In SHAF, where total emissions are slightly higher, the
biases are similarly large: GFAS underestimates SHAF by —78 %, QFED
by —76 %, and GFED4s by —70 %. FEER and FINN_modis are 53-58 %
lower than VIIRS-EM. Only FINN_ viirs approaches the high totals of
VIIRS-EM, coming within 6 % in SHAF and 26 % in NHAF.

When aggregating over the entire SSA domain, VIIRS-EM exceeds all
MODIS-based inventories, including QFED, GFAS, GFED4s, FEER, and
FINN_modis. These gaps reflect limitations related to coarse spatial
resolution and the omission of small fires. We note that we also gener-
ated a MODIS-only version of our method (MODIS-EM), which yields
intermediate results at 2.69 Pg C yr™! . This version is not shown in Fig. 3
for clarity, but it is informative. The higher estimate from MODIS-EM,
relative to other MODIS-based inventories, demonstrates that method-
ology also influences results. Our approach directly integrates FRP over
time and applies biome-specific combustion and emission factors, rather
than relying on BA (as in GFED and FEER) or data assimilation with
aerosol constraints (as in GFAS and QFED). This allows MODIS-EM to
capture more fire activity, particularly from small or short-lived burns
that may be underrepresented in other models. The consistently lower
totals from standard MODIS-based inventories highlight the importance
of both detection resolution and modelling approach in estimating fire
emissions.

A statistical analysis of the annual totals reveals a modest but sta-
tistically significant decline in fire emissions over the 2013-2022
decade, visible in most inventories including our VIIRS-EM. We estimate
a decrease of approximately —1 % per year in SSA fire carbon emissions,
with a Sen’s slope of —0.013 Pg C yr! and a Mann-Kendall test indi-
cating statistical significance at the 95 % confidence level (p < 0.05),
consistent with long-term declines in BA reported by satellite-based
studies ([64]; Y. [38]). Our high-resolution emissions remain system-
atically higher than those from traditional MODIS-based inventories,
indicating that a substantial portion of African fire activity has histori-
cally been missed. This underestimation persists even in years that
exhibit an overall decline, revealing a structural bias related to limited

fire detection capability (Figs. 3a, 3b). These findings emphasize the
importance of incorporating high-resolution sensors such as VIIRS into
fire emissions estimation. Even when using identical methodology, the
choice of satellite sensor leads to notable differences: VIIRS-EM totals
are typically 10-15 % higher than MODIS-EM, and approximately
50-75 % higher than conventional MODIS-based global inventories on
average (Fig. 3c). In some cases, the differences reach a factor of three to
four in absolute terms. Improving fire detection capacity can thus alter
national and continental carbon budgets by 50-200 %, with direct
consequences for climate modelling, emissions reporting, and mitigation
planning.

4.2. Spatial distribution and hotspots

The spatial patterns in our VIIRS-EM inventory reveal concentrated
fire emissions in a limited number of dominant regions across SSA
(Fig. 4). The highest emission totals are observed along two broad lat-
itudinal belts. The first is located in the northern tropical savannas of
West and Central Africa (5-15° N), where regions such as northern
Cameroon, southern Chad, the Central African Republic, South Sudan,
and northern Democratic Republic of Congo exhibit dense fire activity.
The second major hotspot is situated in the dry woodlands of Southern
Hemisphere Africa (5-15° S), encompassing northern Angola, southern
DRC, eastern Zambia, and northern Mozambique. These two zones
correspond approximately to the Sudanian and Sahelian savannas in the
north and the Miombo-Mopane woodlands in the south, both of which
are subject to recurrent biomass burning during the dry season.

Elevated emissions also occur in parts of West Africa’s agricultural
corridor (approximately 0-10° N, 0-10° W), where fragmented small-
holder farming leads to extensive patch-burning of fields and fallow
areas. In contrast, the humid equatorial forests of the Congo Basin
(around 0-5° N, 15-30° E) show limited fire emissions. This is consistent
with the bioclimatic suppression of fire in perhumid rainforests and
relatively low fire use in these zones, apart from the forest-savanna
boundary and areas undergoing deforestation. Similarly, hyper-arid
regions such as the southern Sahara (approximately 15-25° N), the
Horn of Africa (roughly 5-15° N, 35-50° E), and the Kalahari Desert
(around 20-30° S, 15-25° E) exhibit minimal fire activity due to limited
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Fig. 4. Spatial distribution of fire carbon emissions using VIIRS-EM for 2013-2022 across sub-Saharan Africa. VIIRS-EM, highlighting two major fire belts—the
northern tropical savannas (~5-15°N) and the southern dry woodlands (~5-15°S). Units: 1 Pg C =1 000 Tg C = 10° Gg C =10° Mg C = 10° t C.

continuous fuels.

4.3. Seasonal dynamics and contribution of small fires

Incorporating small fires not only increases total emissions but also
alters the seasonal pattern of fire activity across SSA. Fire regimes in the
region are strongly influenced by rainfall seasonality: Northern Hemi-
sphere savannas typically burn between November and February (dry
season), while Southern Hemisphere ecosystems experience peak fire
activity between May and September. Coarse-resolution satellite data
often depict a shortened fire season concentrated near the driest months,
primarily capturing large, intense fires. In contrast, our high-resolution
VIIRS-EM inventory reveals a more extended and temporally distributed
pattern, with significant emissions during the early and late stages of the
fire season. These periods tend to be dominated by smaller, short-lived
burns that are underrepresented in coarse-resolution datasets.

Fig. 5 shows the monthly distribution of carbon emissions for NHAF
and SHAF, comparing VIIRS-EM with MODIS-EM. In NHAF, VIIRS-EM
emissions exceed those of MODIS-EM particularly during the early fire
season (October-November) and again toward the end (March-April).
During the mid-season peak (December-January), the two estimates
converge more closely. In June, VIIRS-EM emissions are over 80 %
higher than MODIS-EM, and in months such as July and August, dif-
ferences exceed 140 %. These are periods when smaller fires may
dominate but are poorly captured by MODIS. An exception occurs in
December in NHAF, where MODIS-EM slightly exceeds VIIRS-EM by
approximately 3 %. This may be due to differences in pre-processing:
VIIRS-EM excludes all low-confidence detections (i.e., those not classi-
fied as “nominal” or “high” in the VNP14IMG product), whereas MODIS-
EM retains fires with confidence above 50 %. During transitional
months like December, some lower-intensity fires may be filtered out by
VIIRS while still passing the MODIS threshold, resulting in a rare month
where MODIS detects slightly more fire activity.

In SHAF, the seasonal differences are especially pronounced at the
onset of the fire season (February-April). In these early months, VIIRS-
EM emissions exceed MODIS-EM by up to 69 %, reflecting the improved
ability of VIIRS to detect low-intensity fires at the beginning of the dry
season. During the peak fire months (July—August), both sensors detect a
large number of fires, and their estimates converge more closely,
although VIIRS-EM continues to report slightly higher emissions overall.
The inclusion of small fires captured by VIIRS thus extends the effective
fire season, adding a substantial volume of emissions during the months
that precede and follow the main burning period.

A similar seasonal enhancement is observed when comparing the
FINN inventories. FINN_ viirs consistently reports 20-40 % higher
emissions than FINN_modis across most months in both hemispheres.
This difference highlights the effect of increased fire detection fre-
quency, including additional nighttime and low-FRP events, even within
a shared modelling framework.

This seasonal extension is particularly relevant for regional green-
house gas inventories, as it indicates that conventional approaches likely
underestimate fire emissions not only in magnitude but also in terms of
combustion timing and seasonality. In Southern Africa, for example,
VIIRS-EM detects considerable fire activity during April and May, prior
to the main fire peak in July-September. This pattern suggests that the
duration of the active fire season is longer than typically represented in
existing emission inventories.

4.4. Inventory biases and discrepancies

To evaluate discrepancies across fire emission inventories, we ana-
lysed the spatial distribution of relative bias between our VIIRS-EM
small fire dataset (defined as FRP < 10 MW) and six widely used
global fire products. The results are presented in Fig. 5, which highlights
the relative differences at the pixel scale across SSA. These maps focus
specifically on small fires, while full-inventory comparisons based on all



B. Ouattara et al. Geomatica 77 (2025) 100069

(a) VIIRS-EM and MODIS-EM (NHAF) (c) FINN_viirs and FINN_modis (NHAF)
+1% 3% +23%
+21%
0.15
G G +21%
on o
i, 02 +13% c +27%
5 5
; 2 0.104
2 2
E 299 E
1] @
5 019 +23% e < +22%
2 8 005/ +28%
m o
[&] o
+43%, +38%
+28% +30%
l +80%+136%147%+92% [ . T SO A o =
0.0 - — "= 0.00 i
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
(b) VIIRS-EM and MODIS-EM (SHAF) (d) FINN_viirs and FINN_modis (SHAF)
0.59 +17% +26%
+3% +220,
i (Rl e
8] +20% &)
£ & 02 i
S S
+5%
c c
S 93 S +21%
2 2
5 5
o 0.2 +31% Y
o o
G £
o o +33%
Q 0.1 *28% Q +24%,
+51%
+35%, +66% +67% +69% I +53% +31%, +34% +35% +32% a0 +38%
00 = = = = - 0o = = = W= . —
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fig. 5. Monthly fire carbon emissions and relative differences across NHAF and SHAF regions (average 2013-2022). (a-b) Comparison of monthly carbon emissions
from VIIRS-EM and MODIS-EM in NHAF (a) and SHAF (b). Bars show MODIS-EM (base) with VIIRS-EM stacked above, and percentage labels indicate relative
difference. (c-d) Same comparison for FINN_viirs and FINN_modis. Small fires detected by VIIRS add significantly to emissions during early and late fire-season
months. December anomalies in NHAF may reflect detection filtering thresholds. Units: 1 Pg C =1 000 Tg C =10° Gg C =10° Mg C =10°t C.

VIIRS-EM emissions are provided separately in Appendix Figure Al. e FINN_modis shows the strongest underestimation, with a mean

MODIS-era inventories consistently report lower emissions in regions relative bias of —76.3 % and limited variability (standard deviation:
dominated by low-FRP fires (Fig. 6), with mean biases ranging from 27.4 %). Near-maximum underestimation (—100 %) is observed
—76 % to —34 %. across extensive zones. This reflects MODIS’s limited capacity to
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Fig. 6. Relative bias (%) of six global fire emission inventories compared to VIIRS-EM (small fires only, FRP < 10 MW), across sub-Saharan Africa for the period
2013-2022. (right panel) Blue areas indicate where the inventory reports lower emissions than VIIRS-EM; red areas show higher estimates. Clear underestimation
patterns are observed in key fire regions, particularly in West, Central, and Southern Africa. MODIS-based inventories (GFED4s, GFAS, QFED, FEER, FINN_modis)
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detect small, low-intensity fires, especially in fragmented land
mosaics.

GFAS exhibits a similarly high negative bias (mean: —57.7 %); stan-
dard deviation: 45.7 %), with strong underestimation in fire-active
regions such as West Africa (Senegal, Mali, northern Céte d'Ivoire;
approx. 10-15° N, 5-15° W), Central Africa (southern Chad, north-
ern Central African Republic, northern DRC; approx. 5-10° N,
15-30° E), and Southern Africa (Angola, northern Mozambique,
eastern Zambia; approx. 10-20° S, 15-35° E).

QFED shows similarly widespread underestimation, with relative
biases in the range of —60 % to —80 % across large areas. Despite
being tuned to match aerosol optical depth (AOD) observations,
QFED remains limited by its reliance on MODIS FRP, which con-
strains its ability to represent fine-scale and low-intensity burning.
FEER and GFED4s present more moderate mean biases of —38.9 %
and —33.7 %, respectively, but with high dispersion (standard de-
viations > 50 %). Although GFED4s includes a small-fire correction,
it does not fully resolve local fire variability. FEER occasionally ex-
ceeds VIIRS-EM in regions with dense smoke (northern Angola),
likely due to emission coefficients tuned using satellite-derived
aerosol optical depth.

In contrast, FINN_viirs, which includes VIIRS fire detections, aligns
more closely with the small-fire VIIRS-EM reference. Its mean bias is
only —9.1 %, and the majority of grid cells fall within +25 % devi-
ation. Spatial patterns in FINN_viirs are more consistent with VIIRS-
EM, highlighting the benefits of using high-resolution fire detection
inputs.

These results demonstrate a systematic contrast between MODIS-
based and VIIRS-based inventories. Products relying solely on MODIS
data significantly underestimate emissions in regions with high densities
of small fires, while VIIRS-based inventories (or those incorporating
VIIRS data) offer better consistency with independent small-fire esti-
mates. This distinction is particularly important in the savanna-
agriculture transition zones of West, Central, and Southern Africa,
where fire fragmentation is common and underdetection is widespread.

To explore whether the small-fire fraction alone explains these dis-
crepancies, we conducted a binned scatter analysis (Figure A2, Appen-
dix). The relationship between the relative bias and the proportion of
FRP from small fires (FRP < 10 MW) is weak for all inventories, with
coefficients of determination (R?) below 0.15. This suggests that while
small fires contribute to underestimation, other factors such as region-
specific combustion characteristics, fuel availability, and fire detection
methodology also play a role.

5. Discussion
5.1. Magnitude gap between VIIRS-EM and legacy inventories

The higher total emissions reported by VIIRS-EM compared to other
global fire emission inventories can be attributed to several comple-
mentary factors, primarily related to fire detection capability, land use
context, and methodological design. Although the technical differences
between sensors are well established, the magnitude of the divergence
observed in this study, often exceeding 50-75 % in annual totals, war-
rants closer examination of the underlying causes.

One of the key factors is the improved detection of small, fragmented
fires by VIIRS. Coarse-resolution sensors such as MODIS tend to miss
short-duration or low-intensity fires, particularly those occurring in
heterogeneous landscapes. These include savanna—cropland mosaics in
West and Central Africa, where field-clearing or residue-burning prac-
tices generate small but frequent fires that are below MODIS detection
thresholds. As demonstrated in FireCCISFD20-based BA estimates [51],
these fires can account for a substantial share of total fire activity in
agricultural zones but are not represented in inventories relying on
moderate-resolution BA mapping.
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The spatial distribution of fire emissions observed in VIIRS-EM aligns
with patterns identified in recent satellite-based atmospheric studies.
Multiple research efforts have demonstrated the influence of biomass
burning on trace gas concentrations, especially carbon monoxide (CO),
as captured by instruments such as TROPOMI, MOPITT, and VIIRS. For
instance, Griffin et al. [25] showed that FRP can be directly linked to CO
column enhancements detected by TROPOMI, with regional differences
reflecting vegetation type and fire regime. Similarly, [41] validated
MOPITT CO retrievals using in situ AirCore profiles, highlighting how
satellite observations capture tropospheric CO variability during active
fire seasons.

In our study, VIIRS-EM emission hotspots often coincide with regions
exhibiting high aerosol optical depth and elevated CO concentrations
reported in prior literature. This spatial consistency supports the inter-
pretation that coarse-resolution inventories may underestimate fire
emissions in key fire-prone areas, particularly in agricultural and
savanna mosaics. Recent multi-platform experiments such as FIREX-AQ
[57] and global assessments by Kloss et al. [32] further confirm that
large-scale fire activity contributes significantly to atmospheric trace gas
loading and can lead to long-range pollutant transport.

Although our analysis does not directly assimilate satellite-based
trace gas retrievals, the consistency between VIIRS-EM spatial patterns
and satellite-observed atmospheric enhancements strengthens the case
for using high-resolution fire emission datasets in air quality and climate
modelling. This approach is also in line with recent calls to integrate
observational data with emission modelling to better constrain fire-
related impacts on atmospheric composition [13].

This spatial consistency supports the interpretation that coarse-
resolution inventories may underestimate fire emissions in key fire-
prone areas, particularly in agricultural and savanna mosaics. This is
in line with findings by Garrigues et al. [19], who showed that BA-based
products often fail to reproduce satellite-observed atmospheric pollutant
loads over fragmented land-use regions. The limitations of MODIS FRP
are also well documented. Studies such as Li et al. [37] demonstrated
that MODIS underdetects low-FRP fires in Africa by a wide margin
compared to VIIRS. This helps explain why FRP-assimilated products
like GFAS or FRP-tuned inventories such as QFED continue to report
significantly lower emissions, even in regions with high fire activity.

In parallel, declining BA trends in Africa over the last decade may
partially obscure ongoing fire activity in inventory time series that rely
solely on area-based metrics. This decline has been documented by
several satellite-based studies [38,64,2] and is likely influenced by land
use transitions, including agricultural expansion, intensification of land
management, and the implementation of fire suppression policies. These
processes reduce fuel continuity and limit the spread of large fires,
particularly in savanna and agro-ecological regions where extensive
burning was historically common [48,54].

In this context, an FRP-based approach like VIIRS-EM captures
combustion events that are otherwise missed due to both resolution and
conceptual limitations. By integrating satellite observations with land
cover-specific combustion characteristics, VIIRS-EM provides a more
temporally and spatially complete representation of fire emissions in
SSA. This improves not only total emission quantification but also the
spatial realism of inputs used in air quality and climate models.

5.2. Linking emission biases to biogeochemical and atmospheric
consequences

5.2.1. Global greenhouse gas budgets

African fires represent a significant component of the global carbon
cycle, yet they remain systematically underestimated in many current
inventories. Our findings confirm that the omission of small fires and
low-intensity burns in coarse-resolution satellite products has led to
substantial underreporting of fire emissions in sub-Saharan Africa, with
differences reaching 50-75 % in some datasets. While the immediate
effect is a higher regional carbon total (3.0 Pg C yr™! in our VIIRS-EM
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estimate), the broader implication is that global carbon cycle assess-
ments relying on MODIS-era products likely miss a considerable portion
of biospheric carbon fluxes.

Although much of the CO: emitted from fire is considered “biogenic”
and assumed to be re-sequestered through post-fire regrowth, the
magnitude of African fire emissions (approximately 11 000 Tg COz2 yr™')
suggests that any persistent bias can distort the baseline for land-
—atmosphere carbon exchange. In regions where savannas and wood-
lands are undergoing land-use change, this uncertainty becomes more
consequential. Fire also interacts with vegetation recovery, and the
reabsorption of carbon is neither immediate nor complete [45]. By
refining estimates of the initial release phase, our inventory contributes
to more accurate net ecosystem exchange calculations and reduces po-
tential bias in climate feedback assessments.

Including small fires in emissions accounting improves regional es-
timates and contributes to narrowing gaps in global CO: budgets.
Coarse-resolution inventories often miss diffuse agricultural burning
and low-intensity fires, which are especially relevant in African land-
scapes. As fire emissions are increasingly used to constrain atmospheric
inversion models and inform national greenhouse gas inventories, high-
resolution products such as VIIRS-EM provide meaningful improve-
ments. These enhancements are particularly relevant to global assess-
ments led by initiatives such as the Global Carbon Project and to
national reporting under the Paris Agreement, as reflected in the IPCC
Sixth Assessment Report [18,29] .

5.2.2. Ecological feedbacks

Small fires also have ecological relevance. In savanna and agro-
pastoral systems across sub-Saharan Africa, small fires, often ignited
for land management, generate a mosaic burn pattern [34]. This
patchwork reduces fuel continuity and may lower the probability or
intensity of subsequent large wildfires [5]. Their omission from tradi-
tional fire inventories affects not only total emissions but also the rep-
resentation of fire-vegetation interactions in models. Earth system
models that simulate vegetation dynamics and fire behaviour, such as
those participating in the Fire Modeling Intercomparison Project (Fire-
MIP; [47]), often operate at spatial resolutions too coarse to resolve
small, patchy burns. This can result in overestimated fuel accumulation
and delayed peak fire intensity if frequent early-season fires are not
accounted for.

High-resolution satellite observations, such as those used in this
study, indicate that although small fires increase cumulative carbon
emissions, they also influence fire regime characteristics, including
timing, recurrence, and combustion conditions. These fires tend to be
more smouldering than flaming [14,61], which affects the CHa to CO2
emission ratio and alters the vertical structure of smoke plumes.

Further development of fire models could integrate FRP-based ap-
proaches like VIIRS-EM into dynamic fire-vegetation models to bench-
mark more realistic fire size distributions [26], and better simulate trace
gas partitioning, and feedback mechanisms. Such integration would
improve emission estimates while enhancing the ecological realism of
fire simulations in African landscapes. In addition to influencing vege-
tation structure, repeated small fires may also affect regional climate by
altering surface albedo and evapotranspiration [63], particularly in
savanna—forest transition zones. These feedbacks are not well repre-
sented in current coupled land-atmosphere models and merit further
investigation.

5.2.3. Atmospheric chemistry and air quality

The accuracy of fire emission inventories directly affects the per-
formance of atmospheric composition models. Our results indicate
persistent underestimation of emissions across Africa. These biases can
result in underprediction of pollutant concentrations in both regional
and global chemical transport models. The VIIRS-EM inventory ad-
dresses this issue by capturing early-season agricultural fires and
spatially dispersed small burns that are dominant sources of CO and CHa
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but often remain undetected by MODIS-based datasets.

Improved representation of small fires enhances satellite data
assimilation and model-observation consistency. Recent studies,
including van der Velde et al. [55], have shown that using
high-resolution BA data, such as Sentinel-2 at 20 m, can increase esti-
mated fire emissions by up to 120 % in southern Africa. This adjustment
leads to better alignment with satellite-based CO observations, partic-
ularly those from TROPOMI, and reduces the bias in modelled CO col-
umns by around 15 %. The FRP-based method used in this study, which
does not rely on explicit BA mapping, achieves similar improvements. Its
higher sensitivity allows it to capture fire activity that is often omitted in
lower-resolution datasets.

Improved seasonal representation in VIIRS-EM, including emissions
from the early and late dry season, also enhances the simulation of
secondary pollutants. For example, ozone formation depends on the
timing and spatial overlap of NOx and VOC emissions with sunlight
exposure. If emissions are too narrowly distributed in time, models may
misrepresent the chemical environment and underestimate surface
ozone levels.

Aerosol-related effects are also substantial. Biomass burning in SSA
contributes significantly to black carbon and organic aerosol loading,
affecting visibility, radiative forcing, and cloud formation (X. [39]).
Despite this, many atmospheric models underpredict aerosol optical
depth during the fire season. VIIRS-EM, with its higher emission esti-
mates and improved spatial and temporal resolution, may help reconcile
model outputs with satellite-based AOD retrievals, especially in regions
heavily influenced by fire plumes such as Angola, Zambia, and the
central Congo basin. Vertical injection height of emissions, which varies
with fire intensity and atmospheric stability, also influences the
long-range transport of pollutants [24]. African fire plumes can reach
the free troposphere, facilitating intercontinental transport to the
Atlantic and South America. Improved quantification of injection pro-
files remains a gap in current models. Multi-sensor validation using in-
struments such as MOPITT (for CO), IASI (for NHs), and CALIPSO (for
aerosol vertical profiles) could provide additional constraints on fire
plume characteristics. These observations would help validate model
performance across trace gases and altitudes, particularly in regions
where ground-based data are sparse.

The improved spatial and temporal fidelity of VIIRS-EM has direct
implications for air quality forecasting, climate model aerosol forcing
assessments, and satellite product validation. It provides a valuable step
toward resolving persistent mismatches between modelled and observed
trace gases and aerosols in one of the most fire-affected regions globally.

5.3. Toward improved climate reporting and policy

Accurate fire emission inventories are essential not only for
advancing scientific understanding but also for supporting climate pol-
icy, mitigation planning, and air quality governance. While the IPCC
provides methodological guidance for distinguishing anthropogenic
from natural fire emissions, final classification is determined at the na-
tional level. In savanna-dominated regions such as sub-Saharan Africa,
this distinction is often unclear, since many fires are intentionally set for
agricultural or pastoral use but occur in ecosystems categorized as
“natural” under some reporting protocols. Our results indicate that
reliance on coarse-resolution MODIS-based products may contribute to
systematic underestimation of fire emissions in both scientific evalua-
tions and policy frameworks.

Although most countries do not yet report fire emissions separately,
in part due to difficulties in tracking vegetation regrowth and assigning
anthropogenic attribution, the growing integration of satellite-based
inventories into global assessment systems and nationally determined
contributions (NDCs) makes it increasingly important to address these
uncertainties [42].

As climate transparency mechanisms such as the Global Stocktake
[46], the Global Methane Pledge [23], and regional air quality
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agreements evolve, the demand for spatially detailed and temporally
consistent emission data continues to increase. Inventories such as
GFED4s and GFAS, which omit large numbers of small and early-season
fires, may be insufficient for informing mitigation strategies in countries
where fire plays a central role in land use and ecosystem dynamics.

Our VIIRS-EM inventory helps address these gaps by providing
emissions data with improved spatial resolution and seasonal structure.
This enhances total carbon accounting and strengthens the capacity to
track short-lived climate forcers such as methane and aerosols with
greater accuracy. The inventory aligns with the goals of emerging
climate-monitoring frameworks, which emphasize completeness, con-
sistency, and transparency of emissions data.

Improved inventories also have value for co-benefits analysis. For
example, more accurate estimates of fire-related methane and PMa.s can
inform assessments of public health risks, support early warning systems
for smoke exposure, and guide policies that integrate land management
with air quality objectives [31]. Countries experiencing agricultural
expansion or land-use transitions may benefit from updated,
high-frequency emission datasets such as those generated using VIIRS.
These data enable monitoring at subnational scales with greater tem-
poral and spatial granularity than earlier-generation products.

Fire emissions influence several components of the Earth system,
including atmospheric composition, surface radiation balance, vegeta-
tion dynamics, and precipitation regimes. In sub-Saharan Africa, smoke
aerosols contribute to cloud modification, while trace gases such as
carbon dioxide and ozone precursors affect both air quality and regional
climate forcing. These interactions can create feedbacks that reinforce
fire activity under certain environmental conditions.

By capturing a broader spectrum of fire activity, particularly small
and early-season events, VIIRS-based products help reduce long-
standing biases in regional carbon budgets. This is especially valuable
for improving the accuracy of Earth system models and atmospheric
inversion systems. Nonetheless, the relatively short duration of the
VIIRS record limits its use for long-term climate trend analysis. A
promising path forward is to calibrate or bias-correct MODIS-based FRP
observations using the VIIRS overlap period, thereby extending high-
resolution emission estimates further back in time while maintaining
methodological consistency.

5.4. Uncertainties and further improvements

Although the VIIRS-EM inventory offers a refined and physically
consistent estimate of fire emissions across SSA, several sources of un-
certainty remain. Despite its improved spatial resolution and sensitivity
compared to MODIS, the VIIRS sensor is still subject to detection limi-
tations. Fires obscured by persistent cloud cover, burns beneath dense
forest canopies, or very short-duration events may not be observed. To
reduce these effects, the analysis excluded low-confidence fire de-
tections and focused on fire signals persistent over multiple days.
Nevertheless, undetected events may still occur, particularly in humid or
densely vegetated regions where observational challenges remain even
for high-resolution sensors. The inventory may also miss some fire ac-
tivity captured by other methodologies such as FINN_viirs, which infers
BA through clustering of active fire detections. These differences high-
light the importance of both sensor sensitivity and methodological
design in shaping total emissions. Recent work on active fire clustering
and spatiotemporal dynamic modelling demonstrates the potential to
enhance fire delineation for more accurate emissions estimation [11].

In addition, uncertainties persist in the conversion from FRP to
biomass consumption. This study improved upon the common
assumption of a fixed FRP-to-biomass ratio by applying land cover-
—specific coefficients, following Akagi et al. [1]. However, these co-
efficients are based on average combustion characteristics and may not
fully reflect variability in fuel moisture, fire intensity, or landscape
conditions. For instance, savanna fires in western and southern Africa
may differ in combustion efficiency due to rainfall gradients or land use
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intensity, yet are assigned a uniform coefficient. Regional calibration or
seasonally adjusted values could improve this aspect, particularly if
supported by field measurements or inversion-based constraints. Despite
these limitations, the approach used here represents a significant step
toward reducing bias introduced by oversimplified combustion as-
sumptions. Future versions of this inventory could take advantage of the
VIIRS Active Fires Collection 2 [20], which not only improves detection
sensitivity and reduces commission errors but also combines observa-
tions from both Suomi-NPP and NOAA-20. The joint use of the two VIIRS
platforms is expected to enhance temporal coverage and consistency,
thereby providing a stronger observational basis for fire emissions
estimates.

EFs are another source of uncertainty. This analysis used mean
values per species and biome from Andreae [3], and where available,
included +1 standard deviation to represent within-biome variability.
Trace gas yields can vary substantially depending on fire phase, fuel
type, and combustion conditions. For species such as CHa and CO,
variability in EFs is especially pronounced. Fires occurring earlier in the
dry season tend to be more smouldering and release relatively more CHa,
whereas late-season fires are typically more flaming and produce pro-
portionally more CO: [61]. Capturing this full combustion spectrum may
require temporally resolved EFs. Ongoing field campaigns such as SA-
FARI and AFCAM are expected to provide new data to refine
African-specific EFs. Machine learning techniques for dynamic EF
adjustment [56] may also offer a path forward to reduce this source of
uncertainty.

Another source of uncertainty is the classification of land cover types
used to assign combustion coefficients and LULC. The MODIS MCD12Q1
product is subject to misclassification, particularly in ecotonal regions
and agricultural mosaics. Errors in land cover assignment may affect the
selection of biome-specific parameters and introduce spatially variable
bias, especially where fire dynamics differ between natural vegetation
and human-managed landscapes.

The threshold used to identify small fires (FRP < 10 MW) also in-
troduces potential ambiguity. It is important to note that our definition
of small fires is based on FRP, not BA, although low-FRP events often
coincide with relatively small or short-lived burns. This value is based on
the approximate detection limits of MODIS, and serves as a proxy for
low-intensity and sub-resolution burns. However, some low-FRP de-
tections may originate from the smouldering edges of larger fires, and
conversely, some small but intense fires could exceed the threshold
briefly. Future work could explore context-specific or adaptive thresh-
olds to better isolate fine-scale fire activity, potentially improving
attribution of emission discrepancies in fragmented landscapes.

Direct validation of the VIIRS-EM inventory was not performed in
this study, which we recognize as a limitation. While our analysis
demonstrates internal consistency and aligns with expected fire pat-
terns, a rigorous evaluation against independent data remains an
important next step. Validation with atmospheric observations remains
an area for future improvement. Although this study did not directly
compare emissions with satellite-derived CO columns (from TROPOMI
or GOSAT), prior work has shown that including small fires enhances
consistency with such data. For example, van der Velde et al. [55] found
that adding small fires improved agreement between fire inventories
and observed CO concentrations over Southern Africa. Future efforts
could build on this by assessing whether spatial and seasonal emissions
patterns align with trace gas retrievals, and by using such data to inform
adjustments to FRP-to-biomass ratios or EF estimates in a constrained
modelling framework.

Finally, although the VIIRS-EM approach is designed to be scalable,
applying it outside SSA will require adjustments for local fire regimes,
land cover distributions, and detection environments. As such, while the
framework provides a valuable foundation for broader application,
regional calibration will be essential to ensure reliability and accuracy in
other parts of the world. It is important to emphasize that in this study,
fire typologies were primarily used to assign land-cover—specific
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combustion coefficients and EF, thereby ensuring biome-specific repre-
sentativeness in global emission estimates. A detailed analysis of emis-
sions by vegetation type lies beyond the scope of this paper but is the
focus of ongoing work. Typologies are therefore revisited here only to
situate the results within broader agro-climatic contexts rather than as
explicit result categories.

6. Conclusion

This study presents a high-resolution fire emission inventory for SSA
based on active fire detections from the VIIRS sensor and a top-down
approach using FRP. The method enables the estimation of carbon
emissions at 0.1° spatial resolution using consistent processing of sat-
ellite data, land cover classification, and biome-specific emission pa-
rameters. The resulting VIIRS-based emission dataset (VIIRS-EM) was
evaluated alongside a MODIS-based counterpart (MODIS-EM) and six
widely used global fire inventories.

Compared to existing MODIS-era products, VIIRS-EM yields signifi-
cantly higher emission estimates across SSA, with average annual fire
carbon emissions of 3.0 Pg C. These differences are primarily attributed
to the improved detection of small, low-intensity fires by VIIRS. Such
fires are common in agricultural and savanna landscapes and are typi-
cally underrepresented in coarser-resolution BA products. Our results
demonstrate that current global inventories systematically underesti-
mate emissions by 50-75 % in many areas, particularly in regions with
fragmented fire regimes. The additional MODIS-EM product confirms
that sensor resolution and detection capability account for a large
portion of these differences.

We further isolated and evaluated emissions from small fires using a
threshold of FRP < 10 MW. These small fires contribute significantly to
early and late dry-season emissions and explain much of the seasonal
underrepresentation observed in existing inventories. By quantifying the
contribution of small fires and comparing them with other datasets, our
approach highlights the structural limitations of conventional in-
ventories in capturing the full spectrum of fire activity in SSA.

The VIIRS-EM dataset provides enhanced spatial and temporal
coverage of fire emissions, offering improvements in both carbon ac-
counting and atmospheric modelling inputs. This refinement is partic-
ularly valuable for air quality forecasting, satellite data assimilation, and
the assessment of short-lived climate forcers. It also supports improved
reporting and transparency under frameworks such as the Paris
Agreement.

Nonetheless, several sources of uncertainty remain. These include
sensor detection limits under cloudy conditions, variability in combus-
tion efficiency across landscapes, and static EFs. While the current
product focuses on carbon dioxide, the methodology can be extended to
other species if adequate EFs are available. Future work should prioritize
validation with atmospheric observations and explore opportunities to
calibrate MODIS-era fire records using the VIIRS time series.

In conclusion, our findings reinforce the importance of high-
resolution satellite data and FRP-based methods in improving the
quantification of fire emissions in Africa. The VIIRS-EM inventory pro-
totype represents a meaningful step toward reducing uncertainties in the
regional fire carbon budget and contributes to more accurate integration
of African fire dynamics in global climate assessments.
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Fig. Al. Relative bias (%) of six global fire emission inventories compared to the full VIIRS-EM dataset (all fires), averaged over 2013-2022. Unlike Fig. 5, this
comparison includes both large and small fires. Blue areas indicate underestimation relative to VIIRS-EM; red indicates overestimation. While small fire-dominated
regions show strong bias, some inventories (e.g., FEER) show local overestimation in regions with frequent dense smoke, possibly due to AOD-based tuning. Units: 1
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