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de Recherche pour le Développement, 1919 route de Mende, 34293 Montpellier Cedex 5, France
d Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Paris, France
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A B S T R A C T

Fires across sub-Saharan Africa (SSA) are a dominant source of global carbon emissions, yet their true magnitude 
remains uncertain due to the limitations of coarse-resolution satellite products. In this study, we developed a 
high-resolution fire emission inventory prototype for SSA using active fire detections from the VIIRS sensor 
(375 m) and a top-down approach based on fire radiative power (FRP). Emissions were estimated through the 
integration of FRP to fire radiative energy (FRE), conversion to dry matter burned using biome-specific com
bustion coefficients, and application of emission factors for carbon dioxide. A parallel MODIS-based dataset was 
also produced using the same methodology to isolate sensor-specific effects. To evaluate detection and modelling 
differences, the VIIRS-based product (VIIRS-EM) was compared against six widely used global fire emission 
inventories. In addition, a subset of emissions from small fires (defined as FRP < 10 MW) was derived and 
assessed separately. Over the period 2013–2022, VIIRS-EM estimated average annual carbon emissions of 3.0 Pg 
C, which is 50–75 % higher than most MODIS-based inventories. Emission hotspots were identified in agricul
tural and savanna regions, particularly in West and Central Africa. Small fires contributed significantly to early 
and late fire-season emissions and revealed widespread underestimation in existing products. Our findings un
derscore the importance of high-resolution detection and FRP-based modelling for capturing the full extent of 
African fire activity. The VIIRS-EM inventory provides improved spatial and temporal resolution, with impli
cations for atmospheric composition modelling, greenhouse gas accounting, and regional fire policy 
development.

1. Introduction

Biomass burning plays a critical role in the global carbon cycle, ac
counting for approximately 5–10 % of annual carbon emissions [54]. 
Among all regions, sub-Saharan Africa (SSA) stands out as the most 
fire-active area globally, accounting for up to half of global fire-related 
carbon emissions [48]. Fire activity across SSA has profound implica
tions for atmospheric composition, terrestrial carbon stocks, regional air 
quality, and climate dynamics [27,35]. Despite its global importance, 
sub-Saharan Africa remains one of the regions with the highest un
certainties in fire emission estimates, due to detection limitations and 

modelling assumptions in existing inventories.
Estimating fire emissions from space typically relies on two main 

approaches: burned area (BA)-driven models and methods based on fire 
radiative power (FRP). BA-based inventories estimate emissions by 
combining mapped burn extent with assumptions about fuel load, 
combustion efficiency, and emission factors (EFs) [53,54]. While widely 
used, this method presents substantial limitations, particularly in re
gions dominated by small and low-intensity fires. Moderate-resolution 
satellites such as the Moderate-resolution Imaging Spectroradiometer 
(MODIS; 500–1000 m) often fail to detect short-lived fires or those 
occurring under cloud cover, in heterogeneous land cover, or with low 
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combustion energy [21,8]. These limitations are especially problematic 
in SSA, where many fires are fragmented or agriculturally driven. 
Several studies using higher-resolution datasets have demonstrated that 
small fires can account for over 40 % of total BA and increase regional 
fire carbon emissions by up to 80 % compared to standard MODIS-based 
products [48,51].

In addition to detection constraints, BA-based models are limited by 
their dependency on post-fire surface reflectance changes, which in
troduces delays and makes them unsuitable for near-real-time applica
tions. They also rely on static or regionally coarse assumptions about 
fuel availability and combustion efficiency, leading to considerable 
uncertainty when applied over large and diverse landscapes.

FRP-based methods offer an alternative approach by estimating 
emissions from the energy radiated by active fires, which is more 
directly related to fuel consumption. FRP is measured from thermal 
anomalies detected in satellite imagery and can be integrated over time 
to produce fire radiative energy (FRE). This approach, when combined 
with land cover–specific combustion coefficients and EFs, allows for the 
generation of spatially and temporally explicit emission estimates 1,3, 
60]. The Visible Infrared Imaging Radiometer Suite (VIIRS), onboard the 
Suomi-NPP satellite, provides active fire detections at 375 m resolution 
with improved sensitivity to low-FRP events compared to MODIS [37, 
52].

FRP-based approaches are especially relevant for operational and 
near-real-time applications. Because active fire data are available within 
hours of overpass, these methods can support air quality forecasting, 
smoke dispersion modelling, and fire management decisions [16,30]. 
Their ability to capture active combustion during the fire event makes 
them particularly suitable for regions where fire regimes are influenced 
by rapidly changing vegetation cover, land use activity, or meteoro
logical conditions, such as in SSA.

The primary objective of this study is to develop and evaluate a high- 
resolution, FRP-based fire emission inventory for SSA covering the 

period 2013–2022. The approach is based on active fire detections from 
VIIRS, with emissions estimated through the integration of FRP to FRE, 
conversion to dry matter burned using land cover–specific combustion 
coefficients, and application of biome-specific EFs. Emissions are 
computed at monthly intervals on a 0.1◦ spatial grid. A MODIS-based 
counterpart (MODIS-EM) was also produced using the same methodol
ogy to allow for sensor-consistent comparisons.

Special emphasis is placed on quantifying emissions from small fires, 
defined here as those with FRP values below 10 MW. Here we adopt an 
FRP-based definition (FRP < 10 MW), which characterizes intensity 
rather than BA. These low-intensity or sub-resolution events are often 
missed by traditional BA or FRP assimilation products but are prevalent 
in fragmented landscapes such as cropland and savanna mosaics [34]. 
To assess the representativeness of our VIIRS-based inventory prototype 
(VIIRS-EM), we compare it against six widely used global fire emission 
datasets: GFED4s, GFAS, QFED, FEER, FINN_modis, and FINN_viirs. The 
comparison focuses on spatial distribution, interannual trends, and 
seasonal dynamics, and includes an analysis of the relative bias associ
ated with small fire emissions.

2. Materials

2.1. Study area

This study focuses on SSA, defined as the continental region south of 
approximately 15◦ N (Fig. 1). The area includes a diversity of fire-prone 
ecosystems such as tropical savannas, shrublands, dry woodlands, 
grasslands, and agricultural mosaics [12,15,58]. SSA is a major 
contributor to global biomass burning emissions, with fires driven pri
marily by anthropogenic activities including land clearing, residue 
burning, and pasture management [4,50,65].

Fire activity in SSA is shaped by seasonal climate patterns, particu
larly the migration of the Intertropical Convergence Zone (ITCZ), which 

Fig. 1. Geographic extent of the study area covering sub-Saharan Africa with key ecological zones and political boundaries. The two subregions used for analysis, 
Northern Hemisphere Africa (NHAF) and Southern Hemisphere Africa (SHAF), are delineated for comparative purposes. based on MCD12Q1 (v6.1) for the year 2022 
at 500 m resolution, using the University of Maryland (UMD) classification scheme [17].
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controls the alternation between dry and wet seasons across hemi
spheres. In Northern Hemisphere Africa (NHAF), peak fire activity oc
curs from November to February, while in Southern Hemisphere Africa 
(SHAF), burning is most intense between May and September [27,49]. 
These opposing seasonal cycles result in asynchronous fire regimes. For 
analytical purposes, we distinguish between NHAF and SHAF based on 
their position relative to the equator.

Most fires in SSA are surface fires occurring in open or semi-open 
landscapes. Fire behaviour varies with vegetation structure, and fire 
temperature is generally lower in densely wooded areas where canopy 
closure suppresses surface fuel availability [33]. Both natural ignitions, 
such as lightning, and human interventions contribute to fire occurrence 
across the region. Fire use is strongly embedded in local land-use sys
tems. Communities across SSA rely on fire for multiple purposes, 
including land preparation, weed and pest control, post-harvest burning, 
and pasture regeneration [4,6]. These traditional practices influence 
ecosystem dynamics such as vegetation turnover, soil nutrient cycling, 
and species composition while also presenting challenges for fire man
agement in the context of land use intensification and climate variability 
[36,40].

SSA fire emissions influence regional air quality, atmospheric 
composition, and hydrological processes. Aerosols and trace gases 
released by biomass burning affect radiation balance, cloud formation, 
and precipitation. These interactions can create feedbacks that influence 
future fire activity [35]. Accurate characterization of fire dynamics in 
SSA is essential for improving emission estimates and informing regional 
land and fire management policies.

2.2. Active fires

Active fire detections are the primary data source for estimating FRP 
and subsequent emissions. We used two widely recognized satellite- 
based products used in operational fire monitoring systems such as 
EFFIS [9]: 

• MODIS Active Fires (MCD14ML, Collection 6): Provides 1 km reso
lution thermal anomalies from the Terra and Aqua satellites. This 
product has global coverage and a long temporal record but is known 
to underdetect small and low-intensity fires due to coarse resolution 
and sensor limitations [22].

• VIIRS Active Fires (VNP14IMG, Collection 1): Derived from the 
Suomi-NPP platform, this product offers enhanced spatial resolution 
(375 m at nadir) and improved sensitivity to low-FRP events, making 
it more suitable for capturing short-lived and fragmented fires [37, 
52]. The recently released Collection 2 of the VIIRS Active Fires 
product [20] provides further enhancements in fire detection, 
including improved cross-calibration between Suomi-NPP and 
NOAA-20, as well as refinements to the cloud/snow mask. However, 
these data were not yet available at the time of writing and were 
therefore not included in the present analysis. Therefore, all results 
presented here are based on Collection 1.

Both datasets were processed over the period 2013–2022 using a 
standardized pre-processing workflow. For MODIS, detections with a 
confidence level below 50 % were excluded. For VIIRS, we retained only 
detections classified as “nominal” or “high” confidence based on the 
categorical flags provided in the VNP14IMG product [44]. Duplicate 
observations arising from overlapping satellite overpasses were filtered 
to avoid redundancy. Fire detections were then spatially aggregated to a 
uniform grid of 0.1◦ resolution and temporally averaged at daily and 
monthly scales. Different perimeter delineation approaches for con
verting fire spots into BA or contiguous fire events can lead to significant 
differences in fire characterization [7]. Our choice of a standardized 
gridding workflow ensures methodological consistency with FRP-based 
emissions estimation. Additional quality control steps included the 
exclusion of detections not classified as vegetation fires. Specifically, 

only detections with Type = 0 (presumed vegetation fire) were retained, 
excluding known sources such as volcanoes (Type = 1), static land 
sources (Type = 2), and offshore events (Type = 3). This filtering is 
based on the hot spot type flags provided in the VIIRS and MODIS active 
fire products. The resulting filtered dataset provided the basis for FRP 
integration and was subsequently used to estimate emissions following 
the radiative energy methodology described in Section 3.

2.3. Ancillary data

Land cover classification was used to assign each fire detection to a 
fire type category, enabling the application of biome-specific combus
tion coefficients and EFs. We used the MODIS Land Cover Type product 
(MCD12Q1, Collection 6.1), based on the University of Maryland clas
sification scheme [17]. This product provides annual global land cover 
at 500 m resolution across 15 land cover classes. For each year of the 
study period (2013–2022), the corresponding annual land cover map 
was used to ensure temporal consistency with fire detection data.

Fire pixels were reclassified into generalized fire categories based on 
the correspondence between MODIS land cover classes and fire types 
defined by Akagi et al. [1]. These categories include savanna, cropland, 
tropical forest, shrubland, grassland, and temperate forest, among 
others. This reclassification allowed for consistent assignment of com
bustion parameters and reflects the variability in vegetation structure 
and fuel composition relevant to fire emissions (Table 1).

The combustion coefficient (α) represents the amount of dry matter 
burned (DMB) per unit of fire radiative energy (in kg MJ⁻¹) and varies by 
fire type. Values were selected from Akagi et al. [1] and range, for 
example, from 0.41 kg MJ⁻¹ for crop residue fires to 0.90 kg MJ⁻¹ for 
savanna fires. These coefficients were used to convert FRE to DMB as 
part of the emission modelling process described in Section 3.

Although alternative EF frameworks, such as those proposed by 
Vernooij et al. [56], offer dynamic emission factor models based on 
combustion phase or fire season, these were not applied in the current 
analysis. Instead, the static EFs from Andreae [3] were retained to 
ensure consistency and comparability with global emission inventories.

3. Methods

We implemented a satellite-based, top-down approach to estimate 
fire emissions in SSA using active fire detections from VIIRS and MODIS. 
Our methodology relies on FRP as the primary input and integrates 
standardized pre-processing, biome-specific combustion coefficients, 
and EFs application within a gridded framework. The method was used 
to generate two fire emission products: a VIIRS-based estimate (VIIRS- 
EM) and a MODIS-based counterpart (MODIS-EM), both using identical 
computational steps but different input sensors. This structure allows 
direct comparison of emission outcomes attributable to sensor 

Table 1 
Correspondence between MODIS land cover classes (MCD12Q1, Collection 6.1; 
UMD scheme) and fire type categories used for emissions modelling. Conversion 
factors (kg dry matter burned per MJ) are based on [1], and CO₂ emission factors 
(in g kg⁻¹ of dry matter burned) are taken from [3].

MODIS LULC class 
(UMD scheme)

Merged fire type 
category

Conversion factor 
(kg MJ⁻¹)

CO₂ EF (g 
kg⁻¹)

Woody savannas Savanna 0.90 1610
Savannas
Grasslands Grasslands 0.55 1660
Croplands Crop residue 0.41 1430
Evergreen broadleaf 

forests
Tropical forest 1.04 1630

Deciduous broadleaf 
forests

Mixed forests Temperate forest 0.62 1570
Closed shrublands Shrubland 0.45 1690
Open shrublands
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characteristics. In addition to generating full-resolution emissions, we 
defined a subset of VIIRS-EM restricted to detections with FRP below 
10 MW to isolate emissions from low-intensity fires typically missed by 
moderate-resolution systems. The VIIRS-EM dataset was compared 
against six widely used global fire emission inventories to assess dif
ferences in spatial patterns, total carbon emissions, and representation 
of small fires. A schematic representation of the full processing chain is 
presented in Fig. 2. We also computed annual totals of emissions for SSA 
and its subregions, including NHAF and SHAF, to evaluate decadal 
trends using a Mann–Kendall test and Sen’s slope estimator.

3.1. Computation of fire radiative energy and dry matter burned

We estimated fire emissions using a top-down approach based on 
FRP derived from VIIRS active fire detections. For each fire detection, 
instantaneous FRP values from day and night overpasses were processed 
to calculate FRE, which represents the total radiative output over the 
burning duration. FRE was computed by integrating FRP over time 
following the method introduced by [60], and is expressed in mega
joules (MJ) (Eq. 1).

The gridding process involved aggregating fire detections to a reg
ular 0.1◦ × 0.1◦ spatial grid, consistent with the resolution used for 
comparison against global fire emission inventories. Within each grid 

cell, FRP observations from both day and night detections were first 
averaged separately, then merged to derive a mean daily FRP value. This 
approach smooths sub-daily fluctuations and reduces noise from isolated 
short-duration detections, particularly in fragmented agricultural land
scapes. Fires detected in both overpasses are typically longer-lived or 
more intense, while those observed only once may reflect brief or low- 
FRP activity [52]. Averaging reduces potential overestimation from 
overlapping or redundant detections and improves spatial coherence in 
gridded FRE estimates. This value was then temporally integrated over 
the day to calculate daily FRE per grid cell. The integration step ag
gregates the instantaneous radiative flux from multiple fire detections, 
resulting in a spatially consistent and temporally resolved gridded 
dataset of FRE. This representation allows spatially explicit analysis of 
fire activity and facilitates emission comparisons with coarser-resolution 
products. 

FREi,j =
(

FRPday
i,j + FRPnight

i,j

)
× Δt (1) 

Where FRPday
i,j and FRPnight

i,j are the day and night FRP values (in MW) 
observed in grid cell (i,j), Δt and is the assumed duration of fire activity 
between overpasses, set to 12 h [30,62].

To convert FRE into biomass consumption, we applied land cover
–specific combustion coefficients (α), defined in kg of dry matter burned 

Fig. 2. Overview of the methodological workflow used to generate fire emission estimates for sub-Saharan Africa. The method produces two emission datasets: 
VIIRS-EM (based on VIIRS detections) and MODIS-EM (based on MODIS detections), both aggregated to a regular 0.1◦ spatial grid. In addition to generating full- 
resolution emissions, we defined a subset of VIIRS-EM restricted to detections with FRP below 10 MW to isolate emissions from low-intensity fires.
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per megajoule. These coefficients were assigned based on fire type 
classification derived from annual MODIS MCD12Q1 land cover maps, 
using the University of Maryland scheme [17]. Each fire pixel was 
matched to a generalized fire category following the typology in Akagi 
et al. [1], which includes savanna, cropland, grassland, shrubland, 
tropical forest, and others. Combustion coefficients ranged from 0.41 kg 
MJ⁻¹ for crop residue fires to 0.90 kg MJ⁻¹ for savannas. This stratifi
cation improves the accuracy of DMB estimation by accounting for 
biome-level variability in fuel type and combustion completeness.

In addition to VIIRS-based processing, we developed a parallel 
MODIS-based emission product (MODIS-EM) using the same FRP-to- 
biomass methodology. This version relies on 1 km MODIS active fire 
detections from the MCD14ML product and was designed to enable 
consistent comparison of emission estimates between sensors. MODIS- 
EM was processed using the same combustion coefficients, EFs, and 
aggregation steps described above.

3.2. Emission factor application and CO₂-to-C conversion

To estimate emissions from DMB, we applied fire-type–specific EFs 
from the global synthesis by Andreae [3]. EFs were expressed in grams of 
species emitted per kilogram of dry matter burned (g kg⁻¹). For this 
study, we focused exclusively on carbon dioxide (CO₂), which consti
tutes the majority of biomass combustion emissions. EFs values for CO₂ 
ranged from approximately 1450 to 1660 g kg⁻¹ , depending on fire 
type.

Following emission calculation, CO₂ totals were converted to 
elemental carbon (C) by applying a conversion factor of 3.67, repre
senting the molecular weight ratio between CO₂ and carbon. All emis
sions were expressed in mass of carbon and aggregated at monthly and 
0.1◦ spatial resolution to support spatial and temporal comparison with 
global inventories.

3.3. Identification and estimation of small fire emissions

Although our FRP-based method does not require fire size mapping, 
we performed a targeted classification to isolate emissions originating 
from small fires. These were defined strictly as fires with FRP below 
10 MW, following the nominal lower detection limit of the MODIS fire 
product [37,52]. This threshold is an intensity-based criterion and 
should not be confused with burned area. For context, such FRP values 
are typically associated with relatively low-intensity or short-duration 
fire events that may correspond to small burned patches (often <
100 ha), which are frequently omitted in moderate-resolution in
ventories [43].

All VIIRS fire pixels with FRP < 10 MW were flagged and processed 
using the same FRE-based emission method. The resulting dataset 
allowed for estimation of emissions from small fires at high spatial and 
temporal resolution. This subset of VIIRS-EM was used for evaluating the 
contribution of small fires across SSA and for computing the relative bias 
of six global fire emission inventories, as shown in Section 4.4. The 
spatial distribution and quantitative importance of these small fires are 
discussed in relation to the systematic underestimation observed in 
MODIS-based inventories, particularly in regions with fragmented 
agricultural and savanna landscapes.

3.4. Global fire emission inventories

We evaluated our VIIRS-based emission product against six global 
fire emission datasets commonly used in atmospheric and climate 
modelling (Table 2). These inventories represent a range of methodo
logical approaches, including FRP-based assimilation, burned-area 
models, and cluster-based fire detection aggregation.

(1) The Fire Energetics and Emissions Research (FEER) product is an 
FRP-based inventory developed by NASA that combines MODIS fire 
detections with regionally tuned emission coefficients [28]. (2) and (3) 

The Fire INventory from NCAR (FINN v2.5) was evaluated in two con
figurations: FINN_modis, which uses only MODIS active fires, and 
FINN_viirs, which integrates both MODIS and VIIRS detections. Both 
rely on spatial clustering of fire detections to estimate BA at ~1 km 
resolution. FINN_viirs includes more low-intensity fire events and 
consequently yields higher emission totals than the MODIS-only version 
[59]. (4) The Global Fire Assimilation System (GFAS) is an FRP-based 
emission system developed by the Copernicus Atmosphere Monitoring 
Service (CAMS). It assimilates MODIS FRP observations in near real time 
to estimate trace gas and aerosol emissions at a 0.1◦ resolution [30]. (5) 
The Global Fire Emissions Database version 4 s (GFED4s) is a 
burned-area-driven inventory that includes a correction factor to 
approximate emissions from small fires missed by coarse BA maps [54]. 
(6) The Quick Fire Emissions Dataset (QFED) is an FRP-based product 
tuned to reproduce satellite-derived aerosol optical depth patterns, often 
resulting in higher particulate emissions in regions with dense smoke 
[10].

At the time of writing, the versions presented in Table 2 reflect the 
most recent publicly available products. We acknowledge that most of 
these inventories are actively evolving, with ongoing efforts to improve 
their ability to represent small, fragmented fires. The comparisons made 
here are not intended as definitive performance rankings but rather to 
illustrate key differences in magnitude, spatial patterns, and methodo
logical assumptions relative to our high-resolution, FRP-based proto
type. This evaluation provides context for understanding how detection 
sensitivity and modelling choices influence fire emission estimates.

4. Results

4.1. Higher fire emissions than coarse-resolution models

Our VIIRS-EM inventory yields substantially higher fire emissions for 
SSA than most existing global emission products (Fig. 3). Over the 
2013–2022 period, the average annual carbon emission from VIIRS-EM 
is approximately 3.0 Pg C, equivalent to 11 100 Tg CO₂ yr⁻¹ . This is 
notably higher than the estimates from MODIS-era inventories. For 
example, GFED4s yields 0.93 Pg C yr⁻¹ , GFAS 0.74 Pg C yr⁻¹ , QFED 
0.84 Pg C yr⁻¹ , FEER 1.44 Pg C yr⁻¹ , and FINN_modis 1.37 Pg C yr⁻¹ . In 
contrast, the FINN_viirs inventory, which incorporates VIIRS detections 
in addition to MODIS, reports a higher value of 3.40 Pg C yr⁻¹ (about 
13 % above our VIIRS-EM).

These differences reflect a broader pattern: VIIRS-based approaches, 
which can detect smaller and shorter-lived fires, tend to produce higher 
fire emission totals than MODIS-only inventories. Across sub-regions, 
the gap between VIIRS-EM and other inventories varies widely, from 
as little as + 6 % (relative to FINN_viirs) to as much as + 78 % (relative 
to GFAS), highlighting the sensitivity of regional totals to detection 
capability and inventory design. In both NHAF and SHAF, VIIRS-EM 
exceeds most global inventories by large margins. For example, in 
NHAF, VIIRS-EM estimates 1.28 Pg C yr⁻¹ on average, compared to 0.65 

Table 2 
Global fire emission inventories used for comparison with the prototype VIIRS- 
based emissions developed in this study.

Inventory Abbrev. version Original spatial 
resolution

References

Fire Energetics and 
Emissions Research

FEER 1.0- 
g1.2

0.1◦ [28]

Fire INventory from 
NCAR

FINN_mod 2.5 ​ [59]
FINN_viirs ​ 1 km [59]

Global Fire 
Assimilation System

GFAS 1.2 0.1◦ [30]

Global Fire Emissions 
Database

GFED4s 4 s 2.5◦ [54]

Quick Fire Emissions 
Dataset

QFED 2.6 0.1◦ [10]
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Pg C yr⁻¹ for FEER, 0.67 Pg C yr⁻¹ for FINN_modis, 0.49 Pg C yr⁻¹ for 
GFED4s, and 0.37 Pg C yr⁻¹ for GFAS. The corresponding relative biases 
in NHAF, using VIIRS-EM as a baseline, are approximately − 49 % 
(GFED4s), − 51 % (FEER), − 65 % (QFED), − 68 % (GFAS), and − 48 % 
(FINN_modis). In SHAF, where total emissions are slightly higher, the 
biases are similarly large: GFAS underestimates SHAF by − 78 %, QFED 
by − 76 %, and GFED4s by − 70 %. FEER and FINN_modis are 53–58 % 
lower than VIIRS-EM. Only FINN_viirs approaches the high totals of 
VIIRS-EM, coming within 6 % in SHAF and 26 % in NHAF.

When aggregating over the entire SSA domain, VIIRS-EM exceeds all 
MODIS-based inventories, including QFED, GFAS, GFED4s, FEER, and 
FINN_modis. These gaps reflect limitations related to coarse spatial 
resolution and the omission of small fires. We note that we also gener
ated a MODIS-only version of our method (MODIS-EM), which yields 
intermediate results at 2.69 Pg C yr⁻¹ . This version is not shown in Fig. 3
for clarity, but it is informative. The higher estimate from MODIS-EM, 
relative to other MODIS-based inventories, demonstrates that method
ology also influences results. Our approach directly integrates FRP over 
time and applies biome-specific combustion and emission factors, rather 
than relying on BA (as in GFED and FEER) or data assimilation with 
aerosol constraints (as in GFAS and QFED). This allows MODIS-EM to 
capture more fire activity, particularly from small or short-lived burns 
that may be underrepresented in other models. The consistently lower 
totals from standard MODIS-based inventories highlight the importance 
of both detection resolution and modelling approach in estimating fire 
emissions.

A statistical analysis of the annual totals reveals a modest but sta
tistically significant decline in fire emissions over the 2013–2022 
decade, visible in most inventories including our VIIRS-EM. We estimate 
a decrease of approximately − 1 % per year in SSA fire carbon emissions, 
with a Sen’s slope of − 0.013 Pg C yr⁻¹ and a Mann–Kendall test indi
cating statistical significance at the 95 % confidence level (p < 0.05), 
consistent with long-term declines in BA reported by satellite-based 
studies ([64]; Y. [38]). Our high-resolution emissions remain system
atically higher than those from traditional MODIS-based inventories, 
indicating that a substantial portion of African fire activity has histori
cally been missed. This underestimation persists even in years that 
exhibit an overall decline, revealing a structural bias related to limited 

fire detection capability (Figs. 3a, 3b). These findings emphasize the 
importance of incorporating high-resolution sensors such as VIIRS into 
fire emissions estimation. Even when using identical methodology, the 
choice of satellite sensor leads to notable differences: VIIRS-EM totals 
are typically 10–15 % higher than MODIS-EM, and approximately 
50–75 % higher than conventional MODIS-based global inventories on 
average (Fig. 3c). In some cases, the differences reach a factor of three to 
four in absolute terms. Improving fire detection capacity can thus alter 
national and continental carbon budgets by 50–200 %, with direct 
consequences for climate modelling, emissions reporting, and mitigation 
planning.

4.2. Spatial distribution and hotspots

The spatial patterns in our VIIRS-EM inventory reveal concentrated 
fire emissions in a limited number of dominant regions across SSA 
(Fig. 4). The highest emission totals are observed along two broad lat
itudinal belts. The first is located in the northern tropical savannas of 
West and Central Africa (5–15◦ N), where regions such as northern 
Cameroon, southern Chad, the Central African Republic, South Sudan, 
and northern Democratic Republic of Congo exhibit dense fire activity. 
The second major hotspot is situated in the dry woodlands of Southern 
Hemisphere Africa (5–15◦ S), encompassing northern Angola, southern 
DRC, eastern Zambia, and northern Mozambique. These two zones 
correspond approximately to the Sudanian and Sahelian savannas in the 
north and the Miombo–Mopane woodlands in the south, both of which 
are subject to recurrent biomass burning during the dry season.

Elevated emissions also occur in parts of West Africa’s agricultural 
corridor (approximately 0–10◦ N, 0–10◦ W), where fragmented small
holder farming leads to extensive patch-burning of fields and fallow 
areas. In contrast, the humid equatorial forests of the Congo Basin 
(around 0–5◦ N, 15–30◦ E) show limited fire emissions. This is consistent 
with the bioclimatic suppression of fire in perhumid rainforests and 
relatively low fire use in these zones, apart from the forest–savanna 
boundary and areas undergoing deforestation. Similarly, hyper-arid 
regions such as the southern Sahara (approximately 15–25◦ N), the 
Horn of Africa (roughly 5–15◦ N, 35–50◦ E), and the Kalahari Desert 
(around 20–30◦ S, 15–25◦ E) exhibit minimal fire activity due to limited 

Fig. 3. Annual total fire carbon emissions over 2013–2022 for NHAF (a), SHAF (b), and SSA (c), comparing VIIRS-EM with six global emission inventories. Panels (a) 
and (b) show time series with shaded envelopes for VIIRS-EM variability and relative bias percentages for each inventory. Panel (c) summarizes the SSA mean over 
the full period, with bar height showing total emissions and overlaid labels showing average relative bias versus VIIRS-EM. Inventories based on MODIS active fire or 
burned area (GFED4s, GFAS, QFED, FEER, FINN_modis) are consistently lower than VIIRS-EM, while FINN_viirs (which also uses VIIRS detections) aligns more 
closely. Units: 1 Pg C = 1 000 Tg C = 10⁶ Gg C = 10⁹ Mg C = 10⁹ t C.
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continuous fuels.

4.3. Seasonal dynamics and contribution of small fires

Incorporating small fires not only increases total emissions but also 
alters the seasonal pattern of fire activity across SSA. Fire regimes in the 
region are strongly influenced by rainfall seasonality: Northern Hemi
sphere savannas typically burn between November and February (dry 
season), while Southern Hemisphere ecosystems experience peak fire 
activity between May and September. Coarse-resolution satellite data 
often depict a shortened fire season concentrated near the driest months, 
primarily capturing large, intense fires. In contrast, our high-resolution 
VIIRS-EM inventory reveals a more extended and temporally distributed 
pattern, with significant emissions during the early and late stages of the 
fire season. These periods tend to be dominated by smaller, short-lived 
burns that are underrepresented in coarse-resolution datasets.

Fig. 5 shows the monthly distribution of carbon emissions for NHAF 
and SHAF, comparing VIIRS-EM with MODIS-EM. In NHAF, VIIRS-EM 
emissions exceed those of MODIS-EM particularly during the early fire 
season (October–November) and again toward the end (March–April). 
During the mid-season peak (December–January), the two estimates 
converge more closely. In June, VIIRS-EM emissions are over 80 % 
higher than MODIS-EM, and in months such as July and August, dif
ferences exceed 140 %. These are periods when smaller fires may 
dominate but are poorly captured by MODIS. An exception occurs in 
December in NHAF, where MODIS-EM slightly exceeds VIIRS-EM by 
approximately 3 %. This may be due to differences in pre-processing: 
VIIRS-EM excludes all low-confidence detections (i.e., those not classi
fied as “nominal” or “high” in the VNP14IMG product), whereas MODIS- 
EM retains fires with confidence above 50 %. During transitional 
months like December, some lower-intensity fires may be filtered out by 
VIIRS while still passing the MODIS threshold, resulting in a rare month 
where MODIS detects slightly more fire activity.

In SHAF, the seasonal differences are especially pronounced at the 
onset of the fire season (February–April). In these early months, VIIRS- 
EM emissions exceed MODIS-EM by up to 69 %, reflecting the improved 
ability of VIIRS to detect low-intensity fires at the beginning of the dry 
season. During the peak fire months (July–August), both sensors detect a 
large number of fires, and their estimates converge more closely, 
although VIIRS-EM continues to report slightly higher emissions overall. 
The inclusion of small fires captured by VIIRS thus extends the effective 
fire season, adding a substantial volume of emissions during the months 
that precede and follow the main burning period.

A similar seasonal enhancement is observed when comparing the 
FINN inventories. FINN_viirs consistently reports 20–40 % higher 
emissions than FINN_modis across most months in both hemispheres. 
This difference highlights the effect of increased fire detection fre
quency, including additional nighttime and low-FRP events, even within 
a shared modelling framework.

This seasonal extension is particularly relevant for regional green
house gas inventories, as it indicates that conventional approaches likely 
underestimate fire emissions not only in magnitude but also in terms of 
combustion timing and seasonality. In Southern Africa, for example, 
VIIRS-EM detects considerable fire activity during April and May, prior 
to the main fire peak in July–September. This pattern suggests that the 
duration of the active fire season is longer than typically represented in 
existing emission inventories.

4.4. Inventory biases and discrepancies

To evaluate discrepancies across fire emission inventories, we ana
lysed the spatial distribution of relative bias between our VIIRS-EM 
small fire dataset (defined as FRP < 10 MW) and six widely used 
global fire products. The results are presented in Fig. 5, which highlights 
the relative differences at the pixel scale across SSA. These maps focus 
specifically on small fires, while full-inventory comparisons based on all 

Fig. 4. Spatial distribution of fire carbon emissions using VIIRS-EM for 2013–2022 across sub-Saharan Africa. VIIRS-EM, highlighting two major fire belts—the 
northern tropical savannas (~5–15◦N) and the southern dry woodlands (~5–15◦S). Units: 1 Pg C = 1 000 Tg C = 10⁶ Gg C = 10⁹ Mg C = 10⁹ t C.
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VIIRS-EM emissions are provided separately in Appendix Figure A1.
MODIS-era inventories consistently report lower emissions in regions 

dominated by low-FRP fires (Fig. 6), with mean biases ranging from 
− 76 % to − 34 %. 

• FINN_modis shows the strongest underestimation, with a mean 
relative bias of − 76.3 % and limited variability (standard deviation: 
27.4 %). Near-maximum underestimation (− 100 %) is observed 
across extensive zones. This reflects MODIS’s limited capacity to 

Fig. 5. Monthly fire carbon emissions and relative differences across NHAF and SHAF regions (average 2013–2022). (a–b) Comparison of monthly carbon emissions 
from VIIRS-EM and MODIS-EM in NHAF (a) and SHAF (b). Bars show MODIS-EM (base) with VIIRS-EM stacked above, and percentage labels indicate relative 
difference. (c–d) Same comparison for FINN_viirs and FINN_modis. Small fires detected by VIIRS add significantly to emissions during early and late fire-season 
months. December anomalies in NHAF may reflect detection filtering thresholds. Units: 1 Pg C = 1 000 Tg C = 10⁶ Gg C = 10⁹ Mg C = 10⁹ t C.

Fig. 6. Relative bias (%) of six global fire emission inventories compared to VIIRS-EM (small fires only, FRP < 10 MW), across sub-Saharan Africa for the period 
2013–2022. (right panel) Blue areas indicate where the inventory reports lower emissions than VIIRS-EM; red areas show higher estimates. Clear underestimation 
patterns are observed in key fire regions, particularly in West, Central, and Southern Africa. MODIS-based inventories (GFED4s, GFAS, QFED, FEER, FINN_modis) 
show widespread negative biases, while FINN_viirs— which includes VIIRS detections—shows better agreement with the VIIRS-EM reference. For comparison with 
the full VIIRS-EM dataset (not limited to small fires), see Appendix Figure A1. Units: 1 Pg C = 1 000 Tg C = 10⁶ Gg C = 10⁹ Mg C = 10⁹ t C.
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detect small, low-intensity fires, especially in fragmented land 
mosaics.

• GFAS exhibits a similarly high negative bias (mean: − 57.7 %; stan
dard deviation: 45.7 %), with strong underestimation in fire-active 
regions such as West Africa (Senegal, Mali, northern Côte d′Ivoire; 
approx. 10–15◦ N, 5–15◦ W), Central Africa (southern Chad, north
ern Central African Republic, northern DRC; approx. 5–10◦ N, 
15–30◦ E), and Southern Africa (Angola, northern Mozambique, 
eastern Zambia; approx. 10–20◦ S, 15–35◦ E).

• QFED shows similarly widespread underestimation, with relative 
biases in the range of − 60 % to − 80 % across large areas. Despite 
being tuned to match aerosol optical depth (AOD) observations, 
QFED remains limited by its reliance on MODIS FRP, which con
strains its ability to represent fine-scale and low-intensity burning.

• FEER and GFED4s present more moderate mean biases of − 38.9 % 
and − 33.7 %, respectively, but with high dispersion (standard de
viations > 50 %). Although GFED4s includes a small-fire correction, 
it does not fully resolve local fire variability. FEER occasionally ex
ceeds VIIRS-EM in regions with dense smoke (northern Angola), 
likely due to emission coefficients tuned using satellite-derived 
aerosol optical depth.

• In contrast, FINN_viirs, which includes VIIRS fire detections, aligns 
more closely with the small-fire VIIRS-EM reference. Its mean bias is 
only − 9.1 %, and the majority of grid cells fall within ±25 % devi
ation. Spatial patterns in FINN_viirs are more consistent with VIIRS- 
EM, highlighting the benefits of using high-resolution fire detection 
inputs.

These results demonstrate a systematic contrast between MODIS- 
based and VIIRS-based inventories. Products relying solely on MODIS 
data significantly underestimate emissions in regions with high densities 
of small fires, while VIIRS-based inventories (or those incorporating 
VIIRS data) offer better consistency with independent small-fire esti
mates. This distinction is particularly important in the savanna- 
agriculture transition zones of West, Central, and Southern Africa, 
where fire fragmentation is common and underdetection is widespread.

To explore whether the small-fire fraction alone explains these dis
crepancies, we conducted a binned scatter analysis (Figure A2, Appen
dix). The relationship between the relative bias and the proportion of 
FRP from small fires (FRP < 10 MW) is weak for all inventories, with 
coefficients of determination (R²) below 0.15. This suggests that while 
small fires contribute to underestimation, other factors such as region- 
specific combustion characteristics, fuel availability, and fire detection 
methodology also play a role.

5. Discussion

5.1. Magnitude gap between VIIRS-EM and legacy inventories

The higher total emissions reported by VIIRS-EM compared to other 
global fire emission inventories can be attributed to several comple
mentary factors, primarily related to fire detection capability, land use 
context, and methodological design. Although the technical differences 
between sensors are well established, the magnitude of the divergence 
observed in this study, often exceeding 50–75 % in annual totals, war
rants closer examination of the underlying causes.

One of the key factors is the improved detection of small, fragmented 
fires by VIIRS. Coarse-resolution sensors such as MODIS tend to miss 
short-duration or low-intensity fires, particularly those occurring in 
heterogeneous landscapes. These include savanna–cropland mosaics in 
West and Central Africa, where field-clearing or residue-burning prac
tices generate small but frequent fires that are below MODIS detection 
thresholds. As demonstrated in FireCCISFD20-based BA estimates [51], 
these fires can account for a substantial share of total fire activity in 
agricultural zones but are not represented in inventories relying on 
moderate-resolution BA mapping.

The spatial distribution of fire emissions observed in VIIRS-EM aligns 
with patterns identified in recent satellite-based atmospheric studies. 
Multiple research efforts have demonstrated the influence of biomass 
burning on trace gas concentrations, especially carbon monoxide (CO), 
as captured by instruments such as TROPOMI, MOPITT, and VIIRS. For 
instance, Griffin et al. [25] showed that FRP can be directly linked to CO 
column enhancements detected by TROPOMI, with regional differences 
reflecting vegetation type and fire regime. Similarly, [41] validated 
MOPITT CO retrievals using in situ AirCore profiles, highlighting how 
satellite observations capture tropospheric CO variability during active 
fire seasons.

In our study, VIIRS-EM emission hotspots often coincide with regions 
exhibiting high aerosol optical depth and elevated CO concentrations 
reported in prior literature. This spatial consistency supports the inter
pretation that coarse-resolution inventories may underestimate fire 
emissions in key fire-prone areas, particularly in agricultural and 
savanna mosaics. Recent multi-platform experiments such as FIREX-AQ 
[57] and global assessments by Kloss et al. [32] further confirm that 
large-scale fire activity contributes significantly to atmospheric trace gas 
loading and can lead to long-range pollutant transport.

Although our analysis does not directly assimilate satellite-based 
trace gas retrievals, the consistency between VIIRS-EM spatial patterns 
and satellite-observed atmospheric enhancements strengthens the case 
for using high-resolution fire emission datasets in air quality and climate 
modelling. This approach is also in line with recent calls to integrate 
observational data with emission modelling to better constrain fire- 
related impacts on atmospheric composition [13].

This spatial consistency supports the interpretation that coarse- 
resolution inventories may underestimate fire emissions in key fire- 
prone areas, particularly in agricultural and savanna mosaics. This is 
in line with findings by Garrigues et al. [19], who showed that BA–based 
products often fail to reproduce satellite-observed atmospheric pollutant 
loads over fragmented land-use regions. The limitations of MODIS FRP 
are also well documented. Studies such as Li et al. [37] demonstrated 
that MODIS underdetects low-FRP fires in Africa by a wide margin 
compared to VIIRS. This helps explain why FRP-assimilated products 
like GFAS or FRP-tuned inventories such as QFED continue to report 
significantly lower emissions, even in regions with high fire activity.

In parallel, declining BA trends in Africa over the last decade may 
partially obscure ongoing fire activity in inventory time series that rely 
solely on area-based metrics. This decline has been documented by 
several satellite-based studies [38,64,2] and is likely influenced by land 
use transitions, including agricultural expansion, intensification of land 
management, and the implementation of fire suppression policies. These 
processes reduce fuel continuity and limit the spread of large fires, 
particularly in savanna and agro-ecological regions where extensive 
burning was historically common [48,54].

In this context, an FRP-based approach like VIIRS-EM captures 
combustion events that are otherwise missed due to both resolution and 
conceptual limitations. By integrating satellite observations with land 
cover–specific combustion characteristics, VIIRS-EM provides a more 
temporally and spatially complete representation of fire emissions in 
SSA. This improves not only total emission quantification but also the 
spatial realism of inputs used in air quality and climate models.

5.2. Linking emission biases to biogeochemical and atmospheric 
consequences

5.2.1. Global greenhouse gas budgets
African fires represent a significant component of the global carbon 

cycle, yet they remain systematically underestimated in many current 
inventories. Our findings confirm that the omission of small fires and 
low-intensity burns in coarse-resolution satellite products has led to 
substantial underreporting of fire emissions in sub-Saharan Africa, with 
differences reaching 50–75 % in some datasets. While the immediate 
effect is a higher regional carbon total (3.0 Pg C yr⁻¹ in our VIIRS-EM 
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estimate), the broader implication is that global carbon cycle assess
ments relying on MODIS-era products likely miss a considerable portion 
of biospheric carbon fluxes.

Although much of the CO₂ emitted from fire is considered “biogenic” 
and assumed to be re-sequestered through post-fire regrowth, the 
magnitude of African fire emissions (approximately 11 000 Tg CO₂ yr⁻¹) 
suggests that any persistent bias can distort the baseline for land
–atmosphere carbon exchange. In regions where savannas and wood
lands are undergoing land-use change, this uncertainty becomes more 
consequential. Fire also interacts with vegetation recovery, and the 
reabsorption of carbon is neither immediate nor complete [45]. By 
refining estimates of the initial release phase, our inventory contributes 
to more accurate net ecosystem exchange calculations and reduces po
tential bias in climate feedback assessments.

Including small fires in emissions accounting improves regional es
timates and contributes to narrowing gaps in global CO₂ budgets. 
Coarse-resolution inventories often miss diffuse agricultural burning 
and low-intensity fires, which are especially relevant in African land
scapes. As fire emissions are increasingly used to constrain atmospheric 
inversion models and inform national greenhouse gas inventories, high- 
resolution products such as VIIRS-EM provide meaningful improve
ments. These enhancements are particularly relevant to global assess
ments led by initiatives such as the Global Carbon Project and to 
national reporting under the Paris Agreement, as reflected in the IPCC 
Sixth Assessment Report [18,29] .

5.2.2. Ecological feedbacks
Small fires also have ecological relevance. In savanna and agro- 

pastoral systems across sub-Saharan Africa, small fires, often ignited 
for land management, generate a mosaic burn pattern [34]. This 
patchwork reduces fuel continuity and may lower the probability or 
intensity of subsequent large wildfires [5]. Their omission from tradi
tional fire inventories affects not only total emissions but also the rep
resentation of fire–vegetation interactions in models. Earth system 
models that simulate vegetation dynamics and fire behaviour, such as 
those participating in the Fire Modeling Intercomparison Project (Fire
MIP; [47]), often operate at spatial resolutions too coarse to resolve 
small, patchy burns. This can result in overestimated fuel accumulation 
and delayed peak fire intensity if frequent early-season fires are not 
accounted for.

High-resolution satellite observations, such as those used in this 
study, indicate that although small fires increase cumulative carbon 
emissions, they also influence fire regime characteristics, including 
timing, recurrence, and combustion conditions. These fires tend to be 
more smouldering than flaming [14,61], which affects the CH₄ to CO₂ 
emission ratio and alters the vertical structure of smoke plumes.

Further development of fire models could integrate FRP-based ap
proaches like VIIRS-EM into dynamic fire–vegetation models to bench
mark more realistic fire size distributions [26], and better simulate trace 
gas partitioning, and feedback mechanisms. Such integration would 
improve emission estimates while enhancing the ecological realism of 
fire simulations in African landscapes. In addition to influencing vege
tation structure, repeated small fires may also affect regional climate by 
altering surface albedo and evapotranspiration [63], particularly in 
savanna–forest transition zones. These feedbacks are not well repre
sented in current coupled land–atmosphere models and merit further 
investigation.

5.2.3. Atmospheric chemistry and air quality
The accuracy of fire emission inventories directly affects the per

formance of atmospheric composition models. Our results indicate 
persistent underestimation of emissions across Africa. These biases can 
result in underprediction of pollutant concentrations in both regional 
and global chemical transport models. The VIIRS-EM inventory ad
dresses this issue by capturing early-season agricultural fires and 
spatially dispersed small burns that are dominant sources of CO and CH₄ 

but often remain undetected by MODIS-based datasets.
Improved representation of small fires enhances satellite data 

assimilation and model–observation consistency. Recent studies, 
including van der Velde et al. [55], have shown that using 
high-resolution BA data, such as Sentinel-2 at 20 m, can increase esti
mated fire emissions by up to 120 % in southern Africa. This adjustment 
leads to better alignment with satellite-based CO observations, partic
ularly those from TROPOMI, and reduces the bias in modelled CO col
umns by around 15 %. The FRP-based method used in this study, which 
does not rely on explicit BA mapping, achieves similar improvements. Its 
higher sensitivity allows it to capture fire activity that is often omitted in 
lower-resolution datasets.

Improved seasonal representation in VIIRS-EM, including emissions 
from the early and late dry season, also enhances the simulation of 
secondary pollutants. For example, ozone formation depends on the 
timing and spatial overlap of NOₓ and VOC emissions with sunlight 
exposure. If emissions are too narrowly distributed in time, models may 
misrepresent the chemical environment and underestimate surface 
ozone levels.

Aerosol-related effects are also substantial. Biomass burning in SSA 
contributes significantly to black carbon and organic aerosol loading, 
affecting visibility, radiative forcing, and cloud formation (X. [39]). 
Despite this, many atmospheric models underpredict aerosol optical 
depth during the fire season. VIIRS-EM, with its higher emission esti
mates and improved spatial and temporal resolution, may help reconcile 
model outputs with satellite-based AOD retrievals, especially in regions 
heavily influenced by fire plumes such as Angola, Zambia, and the 
central Congo basin. Vertical injection height of emissions, which varies 
with fire intensity and atmospheric stability, also influences the 
long-range transport of pollutants [24]. African fire plumes can reach 
the free troposphere, facilitating intercontinental transport to the 
Atlantic and South America. Improved quantification of injection pro
files remains a gap in current models. Multi-sensor validation using in
struments such as MOPITT (for CO), IASI (for NH₃), and CALIPSO (for 
aerosol vertical profiles) could provide additional constraints on fire 
plume characteristics. These observations would help validate model 
performance across trace gases and altitudes, particularly in regions 
where ground-based data are sparse.

The improved spatial and temporal fidelity of VIIRS-EM has direct 
implications for air quality forecasting, climate model aerosol forcing 
assessments, and satellite product validation. It provides a valuable step 
toward resolving persistent mismatches between modelled and observed 
trace gases and aerosols in one of the most fire-affected regions globally.

5.3. Toward improved climate reporting and policy

Accurate fire emission inventories are essential not only for 
advancing scientific understanding but also for supporting climate pol
icy, mitigation planning, and air quality governance. While the IPCC 
provides methodological guidance for distinguishing anthropogenic 
from natural fire emissions, final classification is determined at the na
tional level. In savanna-dominated regions such as sub-Saharan Africa, 
this distinction is often unclear, since many fires are intentionally set for 
agricultural or pastoral use but occur in ecosystems categorized as 
“natural” under some reporting protocols. Our results indicate that 
reliance on coarse-resolution MODIS-based products may contribute to 
systematic underestimation of fire emissions in both scientific evalua
tions and policy frameworks.

Although most countries do not yet report fire emissions separately, 
in part due to difficulties in tracking vegetation regrowth and assigning 
anthropogenic attribution, the growing integration of satellite-based 
inventories into global assessment systems and nationally determined 
contributions (NDCs) makes it increasingly important to address these 
uncertainties [42].

As climate transparency mechanisms such as the Global Stocktake 
[46], the Global Methane Pledge [23], and regional air quality 
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agreements evolve, the demand for spatially detailed and temporally 
consistent emission data continues to increase. Inventories such as 
GFED4s and GFAS, which omit large numbers of small and early-season 
fires, may be insufficient for informing mitigation strategies in countries 
where fire plays a central role in land use and ecosystem dynamics.

Our VIIRS-EM inventory helps address these gaps by providing 
emissions data with improved spatial resolution and seasonal structure. 
This enhances total carbon accounting and strengthens the capacity to 
track short-lived climate forcers such as methane and aerosols with 
greater accuracy. The inventory aligns with the goals of emerging 
climate-monitoring frameworks, which emphasize completeness, con
sistency, and transparency of emissions data.

Improved inventories also have value for co-benefits analysis. For 
example, more accurate estimates of fire-related methane and PM₂.₅ can 
inform assessments of public health risks, support early warning systems 
for smoke exposure, and guide policies that integrate land management 
with air quality objectives [31]. Countries experiencing agricultural 
expansion or land-use transitions may benefit from updated, 
high-frequency emission datasets such as those generated using VIIRS. 
These data enable monitoring at subnational scales with greater tem
poral and spatial granularity than earlier-generation products.

Fire emissions influence several components of the Earth system, 
including atmospheric composition, surface radiation balance, vegeta
tion dynamics, and precipitation regimes. In sub-Saharan Africa, smoke 
aerosols contribute to cloud modification, while trace gases such as 
carbon dioxide and ozone precursors affect both air quality and regional 
climate forcing. These interactions can create feedbacks that reinforce 
fire activity under certain environmental conditions.

By capturing a broader spectrum of fire activity, particularly small 
and early-season events, VIIRS-based products help reduce long- 
standing biases in regional carbon budgets. This is especially valuable 
for improving the accuracy of Earth system models and atmospheric 
inversion systems. Nonetheless, the relatively short duration of the 
VIIRS record limits its use for long-term climate trend analysis. A 
promising path forward is to calibrate or bias-correct MODIS-based FRP 
observations using the VIIRS overlap period, thereby extending high- 
resolution emission estimates further back in time while maintaining 
methodological consistency.

5.4. Uncertainties and further improvements

Although the VIIRS-EM inventory offers a refined and physically 
consistent estimate of fire emissions across SSA, several sources of un
certainty remain. Despite its improved spatial resolution and sensitivity 
compared to MODIS, the VIIRS sensor is still subject to detection limi
tations. Fires obscured by persistent cloud cover, burns beneath dense 
forest canopies, or very short-duration events may not be observed. To 
reduce these effects, the analysis excluded low-confidence fire de
tections and focused on fire signals persistent over multiple days. 
Nevertheless, undetected events may still occur, particularly in humid or 
densely vegetated regions where observational challenges remain even 
for high-resolution sensors. The inventory may also miss some fire ac
tivity captured by other methodologies such as FINN_viirs, which infers 
BA through clustering of active fire detections. These differences high
light the importance of both sensor sensitivity and methodological 
design in shaping total emissions. Recent work on active fire clustering 
and spatiotemporal dynamic modelling demonstrates the potential to 
enhance fire delineation for more accurate emissions estimation [11].

In addition, uncertainties persist in the conversion from FRP to 
biomass consumption. This study improved upon the common 
assumption of a fixed FRP-to-biomass ratio by applying land cover
–specific coefficients, following Akagi et al. [1]. However, these co
efficients are based on average combustion characteristics and may not 
fully reflect variability in fuel moisture, fire intensity, or landscape 
conditions. For instance, savanna fires in western and southern Africa 
may differ in combustion efficiency due to rainfall gradients or land use 

intensity, yet are assigned a uniform coefficient. Regional calibration or 
seasonally adjusted values could improve this aspect, particularly if 
supported by field measurements or inversion-based constraints. Despite 
these limitations, the approach used here represents a significant step 
toward reducing bias introduced by oversimplified combustion as
sumptions. Future versions of this inventory could take advantage of the 
VIIRS Active Fires Collection 2 [20], which not only improves detection 
sensitivity and reduces commission errors but also combines observa
tions from both Suomi-NPP and NOAA-20. The joint use of the two VIIRS 
platforms is expected to enhance temporal coverage and consistency, 
thereby providing a stronger observational basis for fire emissions 
estimates.

EFs are another source of uncertainty. This analysis used mean 
values per species and biome from Andreae [3], and where available, 
included ±1 standard deviation to represent within-biome variability. 
Trace gas yields can vary substantially depending on fire phase, fuel 
type, and combustion conditions. For species such as CH₄ and CO, 
variability in EFs is especially pronounced. Fires occurring earlier in the 
dry season tend to be more smouldering and release relatively more CH₄, 
whereas late-season fires are typically more flaming and produce pro
portionally more CO₂ [61]. Capturing this full combustion spectrum may 
require temporally resolved EFs. Ongoing field campaigns such as SA
FARI and AFCAM are expected to provide new data to refine 
African-specific EFs. Machine learning techniques for dynamic EF 
adjustment [56] may also offer a path forward to reduce this source of 
uncertainty.

Another source of uncertainty is the classification of land cover types 
used to assign combustion coefficients and LULC. The MODIS MCD12Q1 
product is subject to misclassification, particularly in ecotonal regions 
and agricultural mosaics. Errors in land cover assignment may affect the 
selection of biome-specific parameters and introduce spatially variable 
bias, especially where fire dynamics differ between natural vegetation 
and human-managed landscapes.

The threshold used to identify small fires (FRP < 10 MW) also in
troduces potential ambiguity. It is important to note that our definition 
of small fires is based on FRP, not BA, although low-FRP events often 
coincide with relatively small or short-lived burns. This value is based on 
the approximate detection limits of MODIS, and serves as a proxy for 
low-intensity and sub-resolution burns. However, some low-FRP de
tections may originate from the smouldering edges of larger fires, and 
conversely, some small but intense fires could exceed the threshold 
briefly. Future work could explore context-specific or adaptive thresh
olds to better isolate fine-scale fire activity, potentially improving 
attribution of emission discrepancies in fragmented landscapes.

Direct validation of the VIIRS-EM inventory was not performed in 
this study, which we recognize as a limitation. While our analysis 
demonstrates internal consistency and aligns with expected fire pat
terns, a rigorous evaluation against independent data remains an 
important next step. Validation with atmospheric observations remains 
an area for future improvement. Although this study did not directly 
compare emissions with satellite-derived CO columns (from TROPOMI 
or GOSAT), prior work has shown that including small fires enhances 
consistency with such data. For example, van der Velde et al. [55] found 
that adding small fires improved agreement between fire inventories 
and observed CO concentrations over Southern Africa. Future efforts 
could build on this by assessing whether spatial and seasonal emissions 
patterns align with trace gas retrievals, and by using such data to inform 
adjustments to FRP-to-biomass ratios or EF estimates in a constrained 
modelling framework.

Finally, although the VIIRS-EM approach is designed to be scalable, 
applying it outside SSA will require adjustments for local fire regimes, 
land cover distributions, and detection environments. As such, while the 
framework provides a valuable foundation for broader application, 
regional calibration will be essential to ensure reliability and accuracy in 
other parts of the world. It is important to emphasize that in this study, 
fire typologies were primarily used to assign land-cover–specific 
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combustion coefficients and EF, thereby ensuring biome-specific repre
sentativeness in global emission estimates. A detailed analysis of emis
sions by vegetation type lies beyond the scope of this paper but is the 
focus of ongoing work. Typologies are therefore revisited here only to 
situate the results within broader agro-climatic contexts rather than as 
explicit result categories.

6. Conclusion

This study presents a high-resolution fire emission inventory for SSA 
based on active fire detections from the VIIRS sensor and a top-down 
approach using FRP. The method enables the estimation of carbon 
emissions at 0.1◦ spatial resolution using consistent processing of sat
ellite data, land cover classification, and biome-specific emission pa
rameters. The resulting VIIRS-based emission dataset (VIIRS-EM) was 
evaluated alongside a MODIS-based counterpart (MODIS-EM) and six 
widely used global fire inventories.

Compared to existing MODIS-era products, VIIRS-EM yields signifi
cantly higher emission estimates across SSA, with average annual fire 
carbon emissions of 3.0 Pg C. These differences are primarily attributed 
to the improved detection of small, low-intensity fires by VIIRS. Such 
fires are common in agricultural and savanna landscapes and are typi
cally underrepresented in coarser-resolution BA products. Our results 
demonstrate that current global inventories systematically underesti
mate emissions by 50–75 % in many areas, particularly in regions with 
fragmented fire regimes. The additional MODIS-EM product confirms 
that sensor resolution and detection capability account for a large 
portion of these differences.

We further isolated and evaluated emissions from small fires using a 
threshold of FRP < 10 MW. These small fires contribute significantly to 
early and late dry-season emissions and explain much of the seasonal 
underrepresentation observed in existing inventories. By quantifying the 
contribution of small fires and comparing them with other datasets, our 
approach highlights the structural limitations of conventional in
ventories in capturing the full spectrum of fire activity in SSA.

The VIIRS-EM dataset provides enhanced spatial and temporal 
coverage of fire emissions, offering improvements in both carbon ac
counting and atmospheric modelling inputs. This refinement is partic
ularly valuable for air quality forecasting, satellite data assimilation, and 
the assessment of short-lived climate forcers. It also supports improved 
reporting and transparency under frameworks such as the Paris 
Agreement.

Nonetheless, several sources of uncertainty remain. These include 
sensor detection limits under cloudy conditions, variability in combus
tion efficiency across landscapes, and static EFs. While the current 
product focuses on carbon dioxide, the methodology can be extended to 
other species if adequate EFs are available. Future work should prioritize 
validation with atmospheric observations and explore opportunities to 
calibrate MODIS-era fire records using the VIIRS time series.

In conclusion, our findings reinforce the importance of high- 
resolution satellite data and FRP-based methods in improving the 
quantification of fire emissions in Africa. The VIIRS-EM inventory pro
totype represents a meaningful step toward reducing uncertainties in the 
regional fire carbon budget and contributes to more accurate integration 
of African fire dynamics in global climate assessments.
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Appendix

Fig. A1. Relative bias (%) of six global fire emission inventories compared to the full VIIRS-EM dataset (all fires), averaged over 2013–2022. Unlike Fig. 5, this 
comparison includes both large and small fires. Blue areas indicate underestimation relative to VIIRS-EM; red indicates overestimation. While small fire-dominated 
regions show strong bias, some inventories (e.g., FEER) show local overestimation in regions with frequent dense smoke, possibly due to AOD-based tuning. Units: 1 
Pg C = 1 000 Tg C = 10⁶ Gg C = 10⁹ Mg C = 10⁹ t C
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Fig A2. Scatterplots of relative bias (%) in carbon emissions versus small fire fraction (FRP < 10 MW) across SSA grid cells, for six global fire inventories compared to 
VIIRS-EM. Each panel displays binned point density (color scale) and the linear regression fit (black line). All relationships are weak, with R² ranging from 0.4 % to 
13.8 %. This indicates that while small fire prevalence is a relevant explanatory variable, it alone does not account for the full magnitude of inventory bias. Density 
values represent the relative abundance of grid cells in each bin

Data availability

Data will be made available on request.
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