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Abstract:  

 
Dengue fever, primarily transmitted worldwide by the mosquito Aedes aegypti, poses significant public health challenges in tropical 
and subtropical regions. While effective vector control is crucial in the absence of reliable dengue vaccines, traditional control methods 
face obstacles like mosquito resistance to insecticides and a very high cost. By combining geospatial data, including satellite imagery, 
as descriptors, and entomological surveys as target variables in a Random Forest model, we predicted the number of potential mosquito 
breeding sites, derived the associated environmental carrying capacity for larvae, and used the Arbocarto process-based model to 
predict Ae.aegypti population densities in an urban region of French Guiana, South America. Our findings highlight that remote sensing 
data may help predict the number of potential breeding sites over urban areas. Our simulations indicate higher mosquito densities in 
urban residential areas and a strong spatial and temporal heterogeneity. These densities fluctuate according to intra-annual variations 
in temperature and precipitation, with higher densities associated with intermediate housing. A comparison with the conventional 
estimation of environmental carrying capacity for larvae in the current Arbocarto procedure highlights the advantages of our approach. 
Our study demonstrates the utility of integrating remote sensing with predictive modeling to enhance vector surveillance and control 
strategies, and provides a replicable approach for monitoring a dengue vector mosquito population in dynamic urban landscapes. 
 

1. Introduction 

Dengue virus is a mosquito-transmitted pathogen causing dengue 
fever, a major public health issue in tropical and subtropical 
regions. One of its main vectors, Aedes aegypti, thrives in urban 
environments (Kolimenakis et al., 2021). In the absence of 
effective vaccines for dengue, effective vector surveillance and 
control strategies are key to prevent outbreaks. However, current 
control methods which mainly rely on insecticide spreading and 
mechanical elimination of breeding sites can lead to mosquito 
resistance to insecticides, environmental pollution, and are very 
costly in terms of time, human, and financial resources 
(Weeratunga et al., 2017; Epelboin et al., 2018). Modeling the 
spatial and temporal distribution of mosquito abundance can help 
identify and prioritize areas to improve vector control and guide 
policies. Process-based (or mechanistic) models have been 
applied in different geographical contexts to study Aedes 
mosquito population dynamics in time and space (Erguler et al., 
2016; Dickens et al., 2018; Tran et al., 2020; Bonnin et al., 2022). 
French Guiana, a French overseas department located in South 
America, faced multiple dengue outbreaks in the recent decades 
(e.g., 2006, 2009-2010, 2013, 2020-2021) and an ongoing 
outbreak that began in 2023. The sole vector of dengue in French 
Guiana is Ae. aegypti. The potential risk of Ae. Albopictus 
introduction in French Guiana further compounds the challenge 
of vector-borne diseases, as highlighted by these recent outbreaks 
(Epelboin et al., 2018). These events have encouraged local 
vector control authorities to explore the potential of Ae. aegypti 
population dynamics models to identify hotspots before and 
during epidemics, at fine temporal and spatial scales. Remote 
sensing can provide cost-effective and reproducible methods to 
help characterize urban environments, for example, associated 
with breeding sites (Machault et al., 2014; Bailly et al., 2021; 
Teillet et al., 2024), or to estimate climatic variables associated 
with the mosquito life cycle, mainly driven by temperature and 
rainfall (Moreno-Madriñán et al., 2014; Richman et al., 2018; 

Lorenz et al., 2020). This study proposes a new approach based 
on remote sensing to predict mosquito population dynamics on 
Cayenne Island, French Guiana, through the prediction of the 
number of potential Ae. aegypti breeding sites and process-based 
modeling. This research is the first attempt to use remote sensing 
and process-based modeling to predict mosquito populations 
across cities of French Guiana.  
 

2. Materials and Method 

2.1     Study site 

The study was conducted on Cayenne Island, French Guiana 
(South America), a peninsula comprising the municipalities of 
Cayenne, Matoury, and Remire-Montjoly (Figure 1). 
 

 
Figure 1: Study Site: (a) French Guiana located in South 

America; (b) French Guiana neighboring countries and Cayenne 
Island; (c) Municipalities of Cayenne, Rémire Montjoly, and 

Matoury 
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2.2     Data  

Information on mosquitoes’ potential breeding sites (i.e., objects 
such as flower pots, tires, or other containers with or without 
water - those with water being either positive or negative to 
larvae) was obtained from the ‘Collectivité Territoriale de 

Guyane’ (regional administration – CTG) for 2022. The number 
of potential breeding sites, normalized by the number of 
prospected locations, was computed onto a 200m resolution 
square grid (Figure 2). Pléiades satellite image with a 0.5m 
resolution panchromatic band and four 2m resolution spectral 
bands (R, V, B, PIR) were acquired on July 20, 2022. A map of 
buildings was provided by the ‘Institut national de l'information 

géographique et forestière’ (French national geographic institute 
- IGN - BD TOPO® 2022) and a 1m resolution digital elevation 
model (DEM) derived from a 2015 LiDAR acquisition was 
provided by CTG. Mean daily temperatures and rainfalls (2021-
2024) at two weather stations within Cayenne Island were 
obtained from Météo France. A cartographic atlas of urban types 
produced in 2019 by the ‘Agence d'Urbanisme et de 

Développement de la Guyane’ (urban planning agency in French 
Guiana – AUDeG) provided an expert-based classification of the 
urban landscapes of the study area (AUDeG, 2019). 
 
2.3     Method 

The ‘Arbocarto’ process-based model was used for modeling 
mosquito populations (Tran et al., 2020; Marti et al., 2022). The 
model is based on ordinary differential equations (ODE) that  
formalize the respective aquatic and adult stages of the mosquito 
life cycle. Transition functions from one stage to the next and 
mortality rates are driven by daily rainfall and temperature. 
‘Arbocarto’ was developed using the Ocelet language, dedicated 
to the modeling of spatial dynamics and distributed under the free 
license CECILL C (available at https://www.arbocarto.fr/). In 
this study, Arbocarto was applied to a spatial division of the study 
area defined by vector control services, to plan and implement 
control actions. Corresponding spatial units are referred to 
hereafter as operational spatial units (OSU). One of the key 
elements of the model that allows its spatialization is the 
environmental carrying capacity for larvae, which represents the 
maximum number of larvae in a given spatial unit (Kl). Kl is 
estimated for each operational zone along with the daily 
cumulative rainfall and mean temperature. As output, the model 
predicts Ae. aegypti abundance per life cycle stage at a chosen 
frequency and for each operational zone. In this study, Kl was 
directly derived from the number of potential breeding sites, 
which was predicted using remote sensing data and machine 
learning. 
 
Pléaides images were used to derive the Normalized Difference 
Vegetation Index (NDVI), the Normalized Difference Water 
Index (NDWI), and texture indices computed using the 
FOTOTEX algorithm using Python’s package “fototex 1.5.9” 
(Teillet et al., 2021). Urban vegetation was identified by 
thresholding the NDVI (NDVI > 0.2) and vegetation height was 
extracted by combining the resulting vegetation layer with the 
DEM. Averages of these variables were computed over the 200m 
grid cells. The building class area and the number of buildings 
were also calculated over the grid cells. Calculations were 
performed using QGIS software (v. 3.16). The landscape patch 
index for vegetation was computed, using the R Stats software 
(v. 4.2.1) and R “landscapemetrics” package (Hesselbarth et al., 
2019). 
 
 

A random forest (RF) model was built to predict the number of 
potential breeding sites across all grid cells of the study area, 
using the normalized number of potential breeding sites (target 
variable) and geospatial variables (descriptive features) (Figure 
2). The RF model was computed using the R ‘randomForest’ 
package (Segal, 2004). Gridded RF predictions of the normalized 
number of potential breeding sites were then multiplied by the 
number of buildings in order to obtain a total number of potential 
breeding sites per grid cell. Then, each grid cell was cumulated 
across OSU, proportionally to their surface area, and multiplied 
by 10 (the average estimate of the maximum number of larvae 
for each breeding site) to derive the environmental carrying 
capacity (Kl) per OSU. ‘Arbocarto’ was then applied, with 
meteorological variables (the daily maximal and minimal 
temperature and the daily cumulative rainfall) as complementary 
input and at a daily time step.  
 

 
Figure 2: Methods for calculating environmental carrying 

capacity (Kl) and Ae. aegypti population densities. 
 
Due to the lack of exploitable Ae.aegypti abundance data for 
results validation, our results were compared to those provided 
by the classical method for ‘Arbocarto’ implementation 
(considered as the “reference method”). Those are based on an 
expert-based classification of urban landscape and the empirical 
(based on observed potential breeding site data) estimation of the 
environmental carrying capacity by class (Figure 2). We used 
urban types delivered by AUDeG and assigned a value of 
environmental larval carrying capacity for each type of urban 
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type based on the number of potential breeding sites and in 
accordance with the expertise of French Guiana vector control 
(Figure 3). The coefficient of determination (R²) and root mean 
squared log error (RMSLE) were used to evaluate the predictions 
of environmental carrying capacity between the reference 
method and the machine learning-based method. 

 

Figure 3: Urban types (AUDeG, 2019) and associated values of 
environmental carrying capacity (Kl) from “reference method”  

 
3. Results  

3.1     Potential breeding site predictions 

The RF model showed a good fit between predicted and observed 
potential breeding site values (R²=0.90). Residential areas with 
high building density had the highest predicted number of 
potential breeding sites (>93 per grid cell), while commercial 
areas had lower ones (<35). The majority of peri-urban areas with 
isolated houses showed values between 0 and 62 (Figure 4a).  
 
3.2     Environmental carrying capacity (Kl) 

The environmental carrying capacity (Kl), when aggregated by 
OSU, showed lower values in peri-urban and forest border areas, 
especially in Matoury and Remire-Montjoly (Figure 4b). OSUs 
in the center of Cayenne and within Matoury and Remire- 
Montjoly municipalities showed higher carrying capacities, 
ranging from 127 to 287 larvae per hectare. Hotspots (red values 
higher than 287 larvae per hectare) can be identified in the center 
of Cayenne and north of Matoury. A significant relationship was 
observed between machine learning-based predictions and 
reference method predictions over spatial units (R²= 0.82, p-
value < 0.001), showing a good agreement between the 
environmental carrying capacity as estimated by the reference 
method and by the machine learning-based approach (Figure 5a). 
We observe a similar distribution of the environmental carrying 
capacity for both methods (Figure 5b). However, despite similar 
trends, Kl values obtained with the machine learning-based 
method tend to be globally higher than those obtained using the 
reference values, as shown by Figures 5b and 5c. The 
significance of this observation was confirmed by a Wilcoxon 
test, which indicates a significant difference between machine 
learning-based predictions and reference method predictions (p-
value < 0.001) 
 

 
Figure 4: (a) Total number of potential breeding sites predicted 
by the RF model; (b) Derived environmental carrying capacity 
(Kl) based on the total number of potential breeding sites per 
grid cell, cumulated across operational spatial units (OSU) 

 
Figure 5: (a) Linear regression between the Kl predictions of the 

machine learning-based method and those of the reference 
method; (b) Distributions of Kl values as a function of the 
estimation method; (c) Kl values per OSU predicted by the 

reference method (red dots) ordered from the smallest to the 
largest value, and Kl values predicted by RF (blue dots). 

 
3.3     Spatial and temporal mosquito densities 

Maps of predicted mosquito densities highlight a spatial and 
temporal heterogeneity of Ae. aegypti populations on the study 
site in 2023. The highest mosquito densities (Figure 6c) are 
located in Cayenne and in residential areas north of Matoury. 
Outside of these hotspots, we observe a variability along the year 
across the rest of the territory, with densities ranging between 100 
and 1500 (Figure 6). On the Cayenne Island, relatively high 
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values of mosquito densities (750 to 1000) can be observed until 
mid-March, followed by an increase between April and May, and 
a decrease in values from June and during the dry season. The 
variations correspond to the season transitions, which are also 
observed to a lesser extent in the results of the reference method 
(Figure 6c).  
 
In Cayenne, the range of the number of adult mosquitoes per 
hectare fluctuated between 183 and 4145, with an average of 
1229. In Remire-Montjoly, the values varied between 132 to 
4688, with an average of 1381. Finally, the mosquito estimated 
densities ranged from 68 to 6822 per hectare in Matoury, with an 
average of 1507. Our results tend to report higher average 
mosquito densities for Cayenne, Remire-Montjoly, and Matoury 
compared to the reference method.  
 
By analyzing the composition of OSUs in terms of urban types, 
Figure 7 shows that OSUs with the highest Ae. aegypti densities 
per hectare (>1500) are predominantly composed of intermediate 
housing, dense individual housing, and sparse individual 
housing. For the lowest values (<250), OSUs are mainly 
composed of other public facilities (e.g., the airport area) or 
characterized by very high forest cover (e.g., two OSUs in 
Remire-Montjoly). For intermediate density classes, the urban 
composition is more diverse within OSUs (Figure 7). 
 

4. Discussion 

4.1   Potential breeding sites and derived environmental 

carrying capacity 

Our results revealed a very heterogeneous spatial distribution of 
the observed potential breeding sites, with higher densities in 
built-up surfaces and densely populated residential areas than in 
commercial or peri-urban areas. This result is consistent with 
other studies that explored the spatial distribution of Aedes 

mosquitoes using remote sensing data in cities in Costa Rica 
(Fuller et al., 2010) and  Brazil (Arduino et al., 2020). Although 
the RF model showed a high goodness of fit (R²=0.90) when 
using the entire dataset, such a value suggests overfitting of the 
model and a limited ability of the model to be transferred to other 
contexts, as frequently shown for RF models (Kuhn and Johnson, 
2013). However, our results could also be affected by a sampling 
bias, since the entomological dataset used was not collected 
specifically for the needs of this study but for immediate 
operational purposes, resulting in over- or under-representation 
of specific geographical areas (repeated visits to the same areas) 
or particular environmental contexts. However, normalization by 
the number of visits per grid cell helped reduce this bias in our 
study. New approaches such as the ‘Uniform Sampling of 
Sampling Effort’ (USSE) could help improve the sampling effort 
to minimize the effects of bias and gaps (Oliveira et al., 2024). 
Sampling strategies could also be improved by using remote 
sensing to determine optimal spatial repartition of sampling, such 
as in Rodriguez Gonzalez et al. (2023). As required by the 
process-based model used to estimate population densities, we 
multiplied the total number of potential breeding sites by 10 to 
obtain a maximum number of larvae. If this value was adapted 
from previous work (Tran et al., 2013), the productivity of larvae 
is known to vary according to seasons, types, and size of 
containers (David et al., 2009; Qureshi et al., 2023). While 
challenging, integrating these specific aspects could help 
improve the models.  
 
 
 

4.2   Methods for calculating environmental carrying 

capacity 

The similarity between our results and the reference method can 
be explained by the fact that both methods are based on the same 
dataset of observed potential breeding sites, as experts also based 
their opinions on these data. The values predicted by the machine 
learning-based method, which is globally higher, can be 
explained by the fact that the expert-based classification used by 
the reference method was created in 2019. Our method was 
carried out using the 2022 Pléiades image which could be more 
representative of the urban areas and conditions when the 
entomological data were collected (January to December 2022). 
The rapid development of urban areas in Cayenne Island could 
explain some differences in urban cover and therefore in 
predictions. The year of creation of the classification can 
therefore be a factor in underestimating the Kl values of the 
reference method. In addition, the expert-based classification of 
urban types is heavily influenced by the way the urban 
environment is perceived. By reducing the urban landscapes to 
urban types, the local landscapes’ diversity could be reduced. 
However, such an approach is simple to implement and the Kl 
values per urban type can be easily adjusted by entomological 
experts to incorporate specific places with a high Kl value. Our 
machine learning-based approach directly exploits images, which 
improves the reproducibility of the method to estimate 
environmental carrying capacity, even when potential breeding 
sites data or fine scale urban types classification data are limited 
in a given area. The main methodological innovation of the study 
lies in the direct derivation of Kl from the number of potential 
breeding sites using remote sensing data and machine learning. 
Our method provides up-to-date environmental data at a fine-
scale resolution, which makes it possible to update forecasts for 
different seasons or years. This makes our approach more 
adaptable to changing urban landscapes and environmental 
conditions, further justifying its potential for effective 
surveillance and vector control strategy design.  
 
4.3     Dynamics of Ae. aegypti population  

 
This paper provides the first estimation of Ae. aegypti mosquito 
densities at a fine spatial scale on Cayenne Island. Here, OSU’s 
were defined based on human population distribution and to 
facilitate routine entomological surveys. They therefore vary 
widely in size, which could impact the results of our study. The 
effects of scale and zoning are well documented and can have a 
strong influence on effective analyses (Marceau, 1999; Bowman 
et al., 2014). Other methods could be explored by considering 
urban elements such as buildings and roads to divide urban space 
into small and coherent units of analysis according to urban 
landscapes where Ae. aegypti thrives (Schmidt et al., 2023; 
Cebeillac, personal communication, 2024). The predictions show 
that the inter-annual variability of mosquito densities is driven by 
seasonal changes (Figure 6), which is explained by the process-
based model that is itself driven by temperature and precipitation. 
This finding coincides with previous studies (Tran et al., 2013; 
Bonnin et al., 2022). To our knowledge, no previous study has 
described the spatial and temporal heterogeneities in Ae. aegypti 
density at such a fine scale in French Guiana. Identifying 
variations in mosquito densities throughout the year within OSUs 
can provide a better understanding of dynamic patterns during 
both epidemic and inter-epidemic periods. This can also help 
prioritize vector control interventions in a context where such 
control is challenging due to the significant time and human 
resources required. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-3-2024 
ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”, 4–8 November 2024, Belém, Brazil

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-539-2024 | © Author(s) 2024. CC BY 4.0 License.

 
542

https://www.zotero.org/google-docs/?eHHSNF
https://www.zotero.org/google-docs/?FUZfe5
https://www.zotero.org/google-docs/?ApV1MZ
https://www.zotero.org/google-docs/?ApV1MZ
https://www.zotero.org/google-docs/?TVLxtY
https://www.zotero.org/google-docs/?ZNDD4A
https://www.zotero.org/google-docs/?ZNDD4A
https://www.zotero.org/google-docs/?AMpuh3
https://www.zotero.org/google-docs/?61KfZL
https://www.zotero.org/google-docs/?dWhcpY
https://www.zotero.org/google-docs/?dWhcpY
https://www.zotero.org/google-docs/?dWhcpY
https://www.zotero.org/google-docs/?dWhcpY
https://www.zotero.org/google-docs/?eJlhDJ
https://www.zotero.org/google-docs/?eJlhDJ
https://www.zotero.org/google-docs/?eJlhDJ
https://www.zotero.org/google-docs/?eJlhDJ
https://www.zotero.org/google-docs/?eJlhDJ
https://www.zotero.org/google-docs/?eJlhDJ
https://www.zotero.org/google-docs/?eJlhDJ
https://www.zotero.org/google-docs/?of6sGE
https://www.zotero.org/google-docs/?of6sGE


 
Figure 6: Maps of predicted Ae. aegypti abundances using the ‘Arbocarto’ process-based model with Kl predictions and Kl from the 
reference method for January (secondary rainy season), March (secondary summer season), May (main rainy season) and September 

(main dry season) 2023 over Cayenne Island. 

Figure 7: Machine learning-based prediction of Ae. aegypti densities for May 2023 and urban types composition of each OSU
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The highest values of Ae. aegypti densities are in the most 
urbanized OSUs, as also demonstrated in several studies in other 
geographical contexts (Wimberly et al., 2020; Wilke et al., 2021). 
While analyzing urban types that composed the urban areas, we 
observe that OSUs with the highest mosquito densities are mostly 
composed of ‘intermediate housing’. This urban type is 
characterized by a moderate population density with moderate-
sized parcels, which may be regular or spontaneous, but is mainly 
composed of houses with gardens of various sizes (AUDeG, 
2019). This type of peri-urban housing offers favorable 
conditions to the presence of Ae. aegypti due to the presence of 
houses with gardens and vegetation, as well as a sufficient 
population density that provides ample blood hosts for the 
mosquitoes. 

 

5. Conclusions  

Monitoring and controlling mosquito-borne diseases is critical in 
tropical areas. In French Guiana, a recent dengue outbreak in 
2023 highlighted the need for operational mapping tools to 
optimize the actions of vector control services. This study 
demonstrates that a modeling approach based on the combination 
of in-situ data on potential breeding sites, very-high resolution 
remote sensing, machine learning, and process-based mosquito 
population models can be effective at estimating vector 
population over space and time. Such an approach helped provide 
an overview of the 2023 situation and is replicable to both 
epidemic and inter-epidemic periods. Although sampling biases 
may have influenced the results, our results offer promising 
prospects for improving the monitoring of vector populations and 
optimizing control strategies. The use of remote sensing images 
allows for continuous updates and better adaptability to changing 
urban landscapes and environmental conditions, thus enhancing 
the effectiveness of surveillance and vector control strategies. 
This paper also raises questions about the choice of spatial units 
to use for analyses, and highlights the need to use methods and 
sampling protocols based on both demographical, geographical, 
and environmental criteria. Insights to take these factors into 
account have been highlighted and would make it possible to 
enhance the effectiveness of vector control strategies in order to 
mitigate the impact of arbovirus diseases. 
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