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Abstract:

Dengue fever, primarily transmitted worldwide by the mosquito Aedes aegypti, poses significant public health challenges in tropical
and subtropical regions. While effective vector control is crucial in the absence of reliable dengue vaccines, traditional control methods
face obstacles like mosquito resistance to insecticides and a very high cost. By combining geospatial data, including satellite imagery,
as descriptors, and entomological surveys as target variables in a Random Forest model, we predicted the number of potential mosquito
breeding sites, derived the associated environmental carrying capacity for larvae, and used the Arbocarto process-based model to
predict Ae.aegypti population densities in an urban region of French Guiana, South America. Our findings highlight that remote sensing
data may help predict the number of potential breeding sites over urban areas. Our simulations indicate higher mosquito densities in
urban residential areas and a strong spatial and temporal heterogeneity. These densities fluctuate according to intra-annual variations
in temperature and precipitation, with higher densities associated with intermediate housing. A comparison with the conventional
estimation of environmental carrying capacity for larvae in the current Arbocarto procedure highlights the advantages of our approach.
Our study demonstrates the utility of integrating remote sensing with predictive modeling to enhance vector surveillance and control
strategies, and provides a replicable approach for monitoring a dengue vector mosquito population in dynamic urban landscapes.

1. Introduction Lorenz et al., 2020). This study proposes a new approach based
on remote sensing to predict mosquito population dynamics on

Dengue virus is a mosquito-transmitted pathogen causing dengue
fever, a major public health issue in tropical and subtropical
regions. One of its main vectors, Aedes aegypti, thrives in urban
environments (Kolimenakis et al., 2021). In the absence of
effective vaccines for dengue, effective vector surveillance and
control strategies are key to prevent outbreaks. However, current
control methods which mainly rely on insecticide spreading and
mechanical elimination of breeding sites can lead to mosquito
resistance to insecticides, environmental pollution, and are very
costly in terms of time, human, and financial resources
(Weeratunga et al., 2017; Epelboin et al., 2018). Modeling the
spatial and temporal distribution of mosquito abundance can help
identify and prioritize areas to improve vector control and guide
policies. Process-based (or mechanistic) models have been
applied in different geographical contexts to study Aedes
mosquito population dynamics in time and space (Erguler et al.,
2016; Dickens et al., 2018; Tran et al., 2020; Bonnin et al., 2022).
French Guiana, a French overseas department located in South
America, faced multiple dengue outbreaks in the recent decades
(e.g., 2006, 2009-2010, 2013, 2020-2021) and an ongoing
outbreak that began in 2023. The sole vector of dengue in French
Guiana is Ae. aegypti. The potential risk of Ae. Albopictus
introduction in French Guiana further compounds the challenge
of vector-borne diseases, as highlighted by these recent outbreaks
(Epelboin et al., 2018). These events have encouraged local
vector control authorities to explore the potential of Ae. aegypti
population dynamics models to identify hotspots before and
during epidemics, at fine temporal and spatial scales. Remote
sensing can provide cost-effective and reproducible methods to
help characterize urban environments, for example, associated
with breeding sites (Machault et al., 2014; Bailly et al., 2021;
Teillet et al., 2024), or to estimate climatic variables associated
with the mosquito life cycle, mainly driven by temperature and
rainfall (Moreno-Madrifian et al., 2014; Richman et al., 2018;

Cayenne Island, French Guiana, through the prediction of the
number of potential Ae. aegypti breeding sites and process-based
modeling. This research is the first attempt to use remote sensing
and process-based modeling to predict mosquito populations
across cities of French Guiana.

2. Materials and Method
2.1 Study site
The study was conducted on Cayenne Island, French Guiana
(South America), a peninsula comprising the municipalities of

Cayenne, Matoury, and Remire-Montjoly (Figure 1).
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Figure 1: Study Site: (a) French Guiana located in South
America; (b) French Guiana neighboring countries and Cayenne
Island; (c) Municipalities of Cayenne, Rémire Montjoly, and
Matoury
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2.2 Data

Information on mosquitoes’ potential breeding sites (i.e., objects
such as flower pots, tires, or other containers with or without
water - those with water being either positive or negative to
larvae) was obtained from the Collectivité Territoriale de
Guyane’ (regional administration — CTG) for 2022. The number
of potential breeding sites, normalized by the number of
prospected locations, was computed onto a 200m resolution
square grid (Figure 2). Pléiades satellite image with a 0.5m
resolution panchromatic band and four 2m resolution spectral
bands (R, V, B, PIR) were acquired on July 20, 2022. A map of
buildings was provided by the ‘Institut national de I'information
géographique et forestiére’ (French national geographic institute
- IGN - BD TOPO® 2022) and a 1m resolution digital elevation
model (DEM) derived from a 2015 LiDAR acquisition was
provided by CTG. Mean daily temperatures and rainfalls (2021-
2024) at two weather stations within Cayenne Island were
obtained from Météo France. A cartographic atlas of urban types
produced in 2019 by the °‘Agence d'Urbanisme et de
Développement de la Guyane’ (urban planning agency in French
Guiana — AUDeG) provided an expert-based classification of the
urban landscapes of the study area (AUDeG, 2019).

2.3 Method

The ‘Arbocarto’ process-based model was used for modeling
mosquito populations (Tran et al., 2020; Marti et al., 2022). The
model is based on ordinary differential equations (ODE) that
formalize the respective aquatic and adult stages of the mosquito
life cycle. Transition functions from one stage to the next and
mortality rates are driven by daily rainfall and temperature.
‘Arbocarto’ was developed using the Ocelet language, dedicated
to the modeling of spatial dynamics and distributed under the free
license CECILL C (available at https://www.arbocarto.fr/). In
this study, Arbocarto was applied to a spatial division of the study
area defined by vector control services, to plan and implement
control actions. Corresponding spatial units are referred to
hereafter as operational spatial units (OSU). One of the key
elements of the model that allows its spatialization is the
environmental carrying capacity for larvae, which represents the
maximum number of larvae in a given spatial unit (KI). Kl is
estimated for each operational zone along with the daily
cumulative rainfall and mean temperature. As output, the model
predicts Ae. aegypti abundance per life cycle stage at a chosen
frequency and for each operational zone. In this study, Kl was
directly derived from the number of potential breeding sites,
which was predicted using remote sensing data and machine
learning.

Pléaides images were used to derive the Normalized Difference
Vegetation Index (NDVI), the Normalized Difference Water
Index (NDWI), and texture indices computed using the
FOTOTEX algorithm using Python’s package “fototex 1.5.9”
(Teillet et al.,, 2021). Urban vegetation was identified by
thresholding the NDVI (NDVI > 0.2) and vegetation height was
extracted by combining the resulting vegetation layer with the
DEM. Averages of these variables were computed over the 200m
grid cells. The building class area and the number of buildings
were also calculated over the grid cells. Calculations were
performed using QGIS software (v. 3.16). The landscape patch
index for vegetation was computed, using the R Stats software
(v.4.2.1) and R “landscapemetrics” package (Hesselbarth et al.,
2019).

A random forest (RF) model was built to predict the number of
potential breeding sites across all grid cells of the study area,
using the normalized number of potential breeding sites (target
variable) and geospatial variables (descriptive features) (Figure
2). The RF model was computed using the R ‘randomForest’
package (Segal, 2004). Gridded RF predictions of the normalized
number of potential breeding sites were then multiplied by the
number of buildings in order to obtain a total number of potential
breeding sites per grid cell. Then, each grid cell was cumulated
across OSU, proportionally to their surface area, and multiplied
by 10 (the average estimate of the maximum number of larvae
for each breeding site) to derive the environmental carrying
capacity (KI) per OSU. ‘Arbocarto’ was then applied, with
meteorological variables (the daily maximal and minimal
temperature and the daily cumulative rainfall) as complementary
input and at a daily time step.
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Figure 2: Methods for calculating environmental carrying
capacity (KI) and Ae. aegypti population densities.

Due to the lack of exploitable Ae.aegypti abundance data for
results validation, our results were compared to those provided
by the classical method for ‘Arbocarto’ implementation
(considered as the “reference method”). Those are based on an
expert-based classification of urban landscape and the empirical
(based on observed potential breeding site data) estimation of the
environmental carrying capacity by class (Figure 2). We used
urban types delivered by AUDeG and assigned a value of
environmental larval carrying capacity for each type of urban
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type based on the number of potential breeding sites and in
accordance with the expertise of French Guiana vector control
(Figure 3). The coefficient of determination (R?) and root mean
squared log error (RMSLE) were used to evaluate the predictions
of environmental carrying capacity between the reference
method and the machine learning-based method.
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Figure 3: Urban types (AUDeG, 2019) and associated values of
environmental carrying capacity (KI) from “reference method”

3.  Results
3.1 Potential breeding site predictions

The RF model showed a good fit between predicted and observed
potential breeding site values (R?>=0.90). Residential areas with
high building density had the highest predicted number of
potential breeding sites (>93 per grid cell), while commercial
areas had lower ones (<35). The majority of peri-urban areas with
isolated houses showed values between 0 and 62 (Figure 4a).

3.2 Environmental carrying capacity (KI)

The environmental carrying capacity (KI), when aggregated by
OSU, showed lower values in peri-urban and forest border areas,
especially in Matoury and Remire-Montjoly (Figure 4b). OSUs
in the center of Cayenne and within Matoury and Remire-
Montjoly municipalities showed higher carrying capacities,
ranging from 127 to 287 larvae per hectare. Hotspots (red values
higher than 287 larvae per hectare) can be identified in the center
of Cayenne and north of Matoury. A significant relationship was
observed between machine learning-based predictions and
reference method predictions over spatial units (R>= 0.82, p-
value < 0.001), showing a good agreement between the
environmental carrying capacity as estimated by the reference
method and by the machine learning-based approach (Figure 5a).
We observe a similar distribution of the environmental carrying
capacity for both methods (Figure 5b). However, despite similar
trends, Kl values obtained with the machine learning-based
method tend to be globally higher than those obtained using the
reference values, as shown by Figures Sb and Sc. The
significance of this observation was confirmed by a Wilcoxon
test, which indicates a significant difference between machine
learning-based predictions and reference method predictions (p-
value < 0.001)
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Figure 4: (a) Total number of potential breeding sites predicted
by the RF model; (b) Derived environmental carrying capacity
(KI) based on the total number of potential breeding sites per
grid cell, cumulated across operational spatial units (OSU)
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Figure 5: (a) Linear regression between the Kl predictions of the
machine learning-based method and those of the reference
method; (b) Distributions of Kl values as a function of the
estimation method; (c) Kl values per OSU predicted by the

reference method (red dots) ordered from the smallest to the
largest value, and Kl values predicted by RF (blue dots).

3.3 Spatial and temporal mosquito densities

Maps of predicted mosquito densities highlight a spatial and
temporal heterogeneity of Ae. aegypti populations on the study
site in 2023. The highest mosquito densities (Figure 6¢) are
located in Cayenne and in residential areas north of Matoury.
Outside of these hotspots, we observe a variability along the year
across the rest of the territory, with densities ranging between 100
and 1500 (Figure 6). On the Cayenne Island, relatively high
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values of mosquito densities (750 to 1000) can be observed until
mid-March, followed by an increase between April and May, and
a decrease in values from June and during the dry season. The
variations correspond to the season transitions, which are also
observed to a lesser extent in the results of the reference method
(Figure 6¢).

In Cayenne, the range of the number of adult mosquitoes per
hectare fluctuated between 183 and 4145, with an average of
1229. In Remire-Montjoly, the values varied between 132 to
4688, with an average of 1381. Finally, the mosquito estimated
densities ranged from 68 to 6822 per hectare in Matoury, with an
average of 1507. Our results tend to report higher average
mosquito densities for Cayenne, Remire-Montjoly, and Matoury
compared to the reference method.

By analyzing the composition of OSUs in terms of urban types,
Figure 7 shows that OSUs with the highest Ae. aegypti densities
per hectare (>1500) are predominantly composed of intermediate
housing, dense individual housing, and sparse individual
housing. For the lowest values (<250), OSUs are mainly
composed of other public facilities (e.g., the airport area) or
characterized by very high forest cover (e.g., two OSUs in
Remire-Montjoly). For intermediate density classes, the urban
composition is more diverse within OSUs (Figure 7).

4, Discussion

4.1 Potential breeding sites and derived environmental
carrying capacity

Our results revealed a very heterogeneous spatial distribution of
the observed potential breeding sites, with higher densities in
built-up surfaces and densely populated residential areas than in
commercial or peri-urban areas. This result is consistent with
other studies that explored the spatial distribution of Aedes
mosquitoes using remote sensing data in cities in Costa Rica
(Fuller et al., 2010) and Brazil (Arduino et al., 2020). Although
the RF model showed a high goodness of fit (R>=0.90) when
using the entire dataset, such a value suggests overfitting of the
model and a limited ability of the model to be transferred to other
contexts, as frequently shown for RF models (Kuhn and Johnson,
2013). However, our results could also be affected by a sampling
bias, since the entomological dataset used was not collected
specifically for the needs of this study but for immediate
operational purposes, resulting in over- or under-representation
of specific geographical areas (repeated visits to the same areas)
or particular environmental contexts. However, normalization by
the number of visits per grid cell helped reduce this bias in our
study. New approaches such as the ‘Uniform Sampling of
Sampling Effort” (USSE) could help improve the sampling effort
to minimize the effects of bias and gaps (Oliveira et al., 2024).
Sampling strategies could also be improved by using remote
sensing to determine optimal spatial repartition of sampling, such
as in Rodriguez Gonzalez et al. (2023). As required by the
process-based model used to estimate population densities, we
multiplied the total number of potential breeding sites by 10 to
obtain a maximum number of larvae. If this value was adapted
from previous work (Tran et al., 2013), the productivity of larvae
is known to vary according to seasons, types, and size of
containers (David et al., 2009; Qureshi et al., 2023). While
challenging, integrating these specific aspects could help
improve the models.

4.2 Methods for calculating environmental carrying
capacity

The similarity between our results and the reference method can
be explained by the fact that both methods are based on the same
dataset of observed potential breeding sites, as experts also based
their opinions on these data. The values predicted by the machine
learning-based method, which is globally higher, can be
explained by the fact that the expert-based classification used by
the reference method was created in 2019. Our method was
carried out using the 2022 Pléiades image which could be more
representative of the urban areas and conditions when the
entomological data were collected (January to December 2022).
The rapid development of urban areas in Cayenne Island could
explain some differences in urban cover and therefore in
predictions. The year of creation of the classification can
therefore be a factor in underestimating the Kl values of the
reference method. In addition, the expert-based classification of
urban types is heavily influenced by the way the urban
environment is perceived. By reducing the urban landscapes to
urban types, the local landscapes’ diversity could be reduced.
However, such an approach is simple to implement and the KI
values per urban type can be easily adjusted by entomological
experts to incorporate specific places with a high Kl value. Our
machine learning-based approach directly exploits images, which
improves the reproducibility of the method to estimate
environmental carrying capacity, even when potential breeding
sites data or fine scale urban types classification data are limited
in a given area. The main methodological innovation of the study
lies in the direct derivation of Kl from the number of potential
breeding sites using remote sensing data and machine learning.
Our method provides up-to-date environmental data at a fine-
scale resolution, which makes it possible to update forecasts for
different seasons or years. This makes our approach more
adaptable to changing urban landscapes and environmental
conditions, further justifying its potential for effective
surveillance and vector control strategy design.

4.3 Dynamics of Ae. aegypti population

This paper provides the first estimation of Ae. aegypti mosquito
densities at a fine spatial scale on Cayenne Island. Here, OSU’s
were defined based on human population distribution and to
facilitate routine entomological surveys. They therefore vary
widely in size, which could impact the results of our study. The
effects of scale and zoning are well documented and can have a
strong influence on effective analyses (Marceau, 1999; Bowman
et al., 2014). Other methods could be explored by considering
urban elements such as buildings and roads to divide urban space
into small and coherent units of analysis according to urban
landscapes where Ae. aegypti thrives (Schmidt et al., 2023;
Cebeillac, personal communication, 2024). The predictions show
that the inter-annual variability of mosquito densities is driven by
seasonal changes (Figure 6), which is explained by the process-
based model that is itself driven by temperature and precipitation.
This finding coincides with previous studies (Tran et al., 2013;
Bonnin et al., 2022). To our knowledge, no previous study has
described the spatial and temporal heterogeneities in Ae. aegypti
density at such a fine scale in French Guiana. Identifying
variations in mosquito densities throughout the year within OSUs
can provide a better understanding of dynamic patterns during
both epidemic and inter-epidemic periods. This can also help
prioritize vector control interventions in a context where such
control is challenging due to the significant time and human
resources required.
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The highest values of Ae. aegypti densities are in the most
urbanized OSUs, as also demonstrated in several studies in other
geographical contexts (Wimberly et al., 2020; Wilke et al., 2021).
While analyzing urban types that composed the urban areas, we
observe that OSUs with the highest mosquito densities are mostly
composed of ‘intermediate housing’. This urban type is
characterized by a moderate population density with moderate-
sized parcels, which may be regular or spontaneous, but is mainly
composed of houses with gardens of various sizes (AUDeG,
2019). This type of peri-urban housing offers favorable
conditions to the presence of Ae. aegypti due to the presence of
houses with gardens and vegetation, as well as a sufficient
population density that provides ample blood hosts for the
mosquitoes.

5. Conclusions

Monitoring and controlling mosquito-borne diseases is critical in
tropical areas. In French Guiana, a recent dengue outbreak in
2023 highlighted the need for operational mapping tools to
optimize the actions of vector control services. This study
demonstrates that a modeling approach based on the combination
of in-situ data on potential breeding sites, very-high resolution
remote sensing, machine learning, and process-based mosquito
population models can be effective at estimating vector
population over space and time. Such an approach helped provide
an overview of the 2023 situation and is replicable to both
epidemic and inter-epidemic periods. Although sampling biases
may have influenced the results, our results offer promising
prospects for improving the monitoring of vector populations and
optimizing control strategies. The use of remote sensing images
allows for continuous updates and better adaptability to changing
urban landscapes and environmental conditions, thus enhancing
the effectiveness of surveillance and vector control strategies.
This paper also raises questions about the choice of spatial units
to use for analyses, and highlights the need to use methods and
sampling protocols based on both demographical, geographical,
and environmental criteria. Insights to take these factors into
account have been highlighted and would make it possible to
enhance the effectiveness of vector control strategies in order to
mitigate the impact of arbovirus diseases.
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