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Abstract
Representation learning for entity alignment (EA) aims to identify entities in different knowledge graphs (KGs) that refer
to the same real-world object by comparing their embedding similarity. Although many EA models perform well on
synthetic benchmark datasets, this performance does not always transfer to real-world, incomplete, and domain-specific
data. A systematic comparison between synthetic benchmarks and original heterogeneous datasets is still limited. Many
EA models also restrict the alignment search space to validation entities, limiting coverage of real KG content. Within
this setting, our results show that embedding-based EA models continue to face generalization challenges in realistic
large-scale KG search spaces. We evaluate several competitive EA models-commonly tested on benchmarks such as
DBP15K-on multiple real-world heterogeneous datasets. The experiments reveal a performance decrease when moving
beyond synthetic benchmarks, indicating that current models do not fully capture the characteristics of real data. We
also analyze semantic similarity and profiling features of the datasets to help explain these differences. This study outlines
practical limitations of embedding-based EA methods and provides insights for developing approaches that better handle
the variability and complexity found in real-world KG alignment tasks.
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1 Introduction
Knowledge graphs (KGs) have emerged as powerful tools for a range of applications, including information retrieval,
question answering, and data federation (Ji et al., 2021). An entity in a KG refers to a distinct and identifiable concept,
which can be, for example, a concrete object, an abstract idea, or an event. Entities are represented as nodes, forming the
building blocks of the graph. The relationships between entities are modeled as edges, serving as connections that establish
associations or interactions between the nodes. These edges convey various meanings, representing attribute properties or
relation properties of the entities. Examples of attribute properties include “birth date,” “genre,” or “description,” and
examples of relation properties include “located in,” “established by,” or “worked with.” Based on the given definition
(Person1, birth date, “1989-09-30”) indicates an attribute triple, while (City1, located in, Country1) indicates a relation
triple.1 Essentially, the combination of entities and their interconnecting relationships forms a structured representation
of knowledge. Hence, KGs are designed in a way that facilitates storage, access, semantic understanding of data and
reasoning over it and are widely used in a variety of domains, including the Semantic Web in general (Bonatti et al.,
2019; Ryen et al., 2022; Villazón-Terrazas et al., 2020), cultural heritage (Achichi et al., 2018; Carriero et al., 2019; Dou
et al., 2018; Marchand et al., 2020), biomedicine (Ernst et al., 2015; Nicholson & Greene, 2020; Sanou et al., 2022; Unni
et al., 2022), sociology (Cao et al., 2020; Tchechmedjiev et al., 2019; Wang, Chen, et al., 2018), and data-driven industries
(Bader et al., 2020; Kejriwal et al., 2019).

As data comes from different sources, it is often scattered across multiple KGs, even if it conveys the same information,
leading to various challenges. One such challenge is identifying and matching entities from a source KG to their equiv-
alents in a target KG that represent the same real-world object (Ferrara et al., 2011)—a task known as entity alignment
(EA). EA in turn facilitates data integration, information retrieval, and entity disambiguation across diverse knowledge
sources (Achichi et al., 2019; Beretta et al., 2020; Saha et al., 2018; Zou, 2020).

We start by providing some terminology. We use the term KG heterogeneity in the sense of Achichi et al. (2019),
common in the fields of ontology and EA. In a nutshell, it concerns any difference in the expression of a given piece of
knowledge across two KGs (be it structural, syntactical, terminological, or other). Sticking to the data heterogeneity con-
cept provided in Achichi et al. (2019) and algebraic properties of the graphs, in this paper, we are interested in differences
in value and structural levels of the KGs in each dataset. The pair of KGs in the datasets might differ in the graph’s struc-
tural properties, such as size, degree distribution, etc. Also, each pair of aligned entities in two KGs may have descriptive
and data quality heterogeneities, following Achichi et al. (2019).

By dataset, we mean an EA dataset, which consists of a pair of KGs: a source and a target KG to be interlinked, together
with a reference alignment that helps evaluate or train the models. A reference (or seed) alignment is a manually curated
set of correspondences or alignments (often together with a confidence score) between entities across the two different
KGs. By unmatchable entities, we mean pairs of entities from the source and target KGs that are not to be aligned (i.e.,
they refer to different real-world entities).

We distinguish two main types of datasets. A synthetic benchmark dataset refers to a dataset that consists mostly of
KGs sampled from larger ones, following a motivation of having smaller KGs that mimic certain characteristics of the
real large KGs. Additionally, in machine learning applications, benchmark datasets could potentially be fully synthetic,
that is, entirely generated from scratch, not using a real KG as a starting point. Often in benchmark datasets the source
entities are matched with their corresponding counterparts in the target KG under the 1-to-1 assumption (meaning that
each source entity has exactly one match in the target graph).2 In this paper, we use the terms “benchmark dataset” and
“synthetic benchmark dataset” interchangeably. A real-world dataset, on the other hand, is one that is issued from a real-
world scenario and contains the unchanged KGs that are not sub-sampled from larger KGs under some conditions, such
as being sparse or dense, or retaining a similar degree distribution as the KGs they are sampled from.

For the purposes of this study, we categorize EA techniques into two main groups: embedding and non-embedding-
based methods. Non-embedding-based approaches apply user-crafted representations of entities and relations and align
the entities across the KGs based on similarity measures or logic axioms. This group of approaches prioritizes symbolic
reasoning, logical inferences, and linking specifications defined by domain experts to guide the alignment process (Zeng
et al., 2021). Embedding-based approaches, in contrast, automatically represent entities in a feature space and predict
alignments based on similarity metrics over the learned embeddings. Embedding refers to representing an object as a
vector in a continuous space based on a given number of constraints (e.g., close in meaning entities should have vectors
that live close to one another in the embedding space; Zeng et al., 2021). Following this paradigm, embedding-based EA
models commonly use an embedding and an alignment module. While the embedding module represents each KG entity
as a vector in a low-dimensional embedding space, the alignment module ensures that aligned entities are close together in
a unique embedding space or learns a mapping between KGs with respect to the reference alignment. During the model’s
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training phase, through iterative interactions between the embedding and alignment modules, all entities from both KGs
are embedded, and predictions are made regarding which entities are most likely to align.

Relying on non-embedding-based methods may be more suitable in scenarios dealing with sparse or small datasets, or
in situations where there is not a high variety of heterogeneities, such as predicate, class, or graph linking problems (as
defined by Salazar et al., 2023). Real-world datasets often do not meet these ideal conditions, and therefore, embedding-
based EA methods promise more efficiency, as they are flexible in cross-lingual scenarios, scalable to large KGs, and
globally consistent in representations across KGs.

This paper’s focus is on analyzing specifically the embedding-based EA models, with respect precisely to both synthetic
benchmark datasets and real-world datasets, as well as considering the different training and evaluation strategies and
model types. Hence, we add to several recent surveys and studies that investigate that question from a critical viewpoint
(Ardjani et al., 2015; Shvaiko & Euzenat, 2011; Zeng et al., 2021). For example, Bengio et al. (2013), Hamilton et al.
(2017), and Sun et al. (2017) analyze the performance of embeddings-based EA models and compare them regarding
their performance on benchmark datasets (Euzenat et al., 2013; Fanourakis, Efthymiou, Kotzinos, & Christophides, 2023;
Huang et al., 2022; Jiang et al., 2023; Sun et al., 2020; Zeng et al., 2021; Zhang et al., 2022). Previous research has
extracted more realistic EA benchmark datasets (Sun et al., 2020) from large knowledge bases such as DBpedia (Lehmann
et al., 2015). We enhance the work of the studies cited above by expanding the benchmarks with datasets containing a low
percentage of matchable entities to better reflect real-world scenarios, and evaluating the performance of two of the leading
embedding models (RDGCN and BERT-INT) when we include all entities in the target KG as alignment candidates during
the model evaluation. Furthermore, we include an in-depth discussion on the evaluation metrics that are commonly used
for the EA task, building on preliminary remarks found in Leone et al. (2022). As an overarching question, we consider
several recent EA embedding-based models having state-of-the-art performance on synthetic benchmark datasets and
analyze their capacities when they deal with heterogeneous real-world data. We show a considerable drop in performance
in the latter scenarios. To help understand this observation, on the one hand, we analyze and compare the real-world
and synthetic benchmark datasets with respect to a set of dataset profiling features (Ben Ellefi et al., 2018) studied and
applied for the EA task. On the other hand, we pair these observations with a look into the underlying nature of the
embedding-based models. Todorov (2019) observes that cutting-edge EA models did not address the particular properties
of data well because they prioritized genericity and automation. Indeed, the results of our study demonstrate that while
embedding-based models perform well on certain synthetic benchmark datasets, they struggle in real-world scenarios due
to insufficient consideration of the inherent characteristics and nature of the data. Finally, in order to be able to compare
the embedding-based models to methods from the non-embeddings group, we include in our analyses the DLinker system
(Happi Happi et al., 2022), for reasons explained in Section 3.

The main contributions of this analysis paper are:

– A novel look into and comparison of the frameworks of established EA methods having different embedding bases:
we propose a novel categorization of embedding-based EA methods based on their embedding approaches.

– A comparison of the features of synthetic benchmark and real-world datasets from aspects related to EA: although
it appears difficult to isolate a structure-related meta-feature which explains the performance of all methods on the
different datasets (because each method embeds the structure from a different aspect), we find that the semantic
similarity is the dataset meta-feature that correlates at the strongest with the performance of embedding-based EA
methods.

– A discussion of the commonly used evaluation metrics for the EA task: we explain how Hit@1 is equivalent to
precision and recall when under the 1-to-1 assumption in the validation set, and when and why each evaluation
metric should be applied.

– An analysis of the performance drop of EA methods on real-world datasets in comparison to their performance on
established synthetic benchmarks: we present shreds of evidence and probable reasons to explain the observed drop
in performance; we go beyond the 1-to-1 assumption during the model evaluation and investigate the performance
drop of the EA models using both Hit@1 and F1-score.

– Analysis of the different categories of embedding models with respect to synthetic and real-world datasets: we find
out interaction training models to be the best-performing category of EA methods on real-world large-scale data.

The paper is organized as follows: Section 2 summarizes related surveys and empirical studies on EA methods, posi-
tioning our work within that context. Section 3 outlines the key features of the embedding-based EA methods selected
for performance analysis. In Section 4, we compare several benchmark and real-world datasets, highlighting the greater
heterogeneity and complexity of the latter. Finally, Section 5 examines the performance of EA models on heterogeneous
real-world data and explores the reasons for their performance decline on these datasets.
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2 Related Work
This section provides an overview of surveys and related analytical studies that critically examine existing EA approaches,
with a particular focus on embedding-based methods. In line with the scope of the paper, specific alignment methods are
not discussed here.

Several studies have contributed to the understanding and advancement of KG embeddings (KGEs) and their applica-
tions, such as link prediction, KG completion and reasoning, and EA (Choudhary et al., 2021; Ji et al., 2021; Lu et al.,
2020; Sharma & Talukdar, 2018; Wang et al., 2017). While Sharma and Talukdar (2018) reveal sharp differences in the
geometry of embeddings produced by various KGE methods, Tran and Takasu (2019) introduce a multi-embedding inter-
action mechanism for analyzing KGE models such as DistMult (Zhang et al., 2019) and ComplEx (Trouillon et al., 2016).
The latter study unifies and generalizes these models, offering an intuitive perspective for their effective use. Luo et al.
(2022) introduce a scalable and open-source Python library for multisource KG embeddings. Supporting joint represen-
tation learning, it implements 26 KGE models and 16 benchmark datasets. Moreover, Cao et al. (2024) categorize the
existing KGE models based on representation spaces and discusses whether they have algebraic, geometric, or analytical
structures.

Several surveys and experimental studies have been conducted on methods for EA across KGs (Fanourakis, Efthymiou,
Kotzinos, & Christophides, 2023; Zhao, Jia, et al., 2020; Zhao, Zeng, et al., 2020). Broadly, these studies categorize EA
techniques into two main groups: embedding-based methods and traditional approaches (Sun et al., 2020; Zeng et al.,
2021; Zhang et al., 2022). Traditional EA methods rely on user-defined rules, Web Ontology Language reasoning, and/or
similarity computations based on symbolic features of entities. We refer to these as non-embedding-based methods.

Moving now the focus toward embedding-based methods, Sun et al. (2020) created an open-source toolkit, named
OpenEA. The authors discuss the characteristics and functionalities of embedding-based methods, highlighting how they
predict matching entities through nearest-neighbor searches among target entity embeddings. Two combination paradigms
are outlined: one encoding KGs in independent spaces and learning a mapping using seed alignment, and another rep-
resenting KGs in a unified space, considering highly similar embeddings for aligned entities. The study underscores
the incorporation of entity relations and attribute properties into embedding modules to enhance accuracy, categoriz-
ing relation embeddings into triple-based, path-based, and neighborhood-based groups. Attribute embedding, achieved
through correlation or literal methods, is also explored for improving entity similarity assessment. Fanourakis, Efthymiou,
Kotzinos, and Christophides (2023) present the meta-features of the OpenEA datasets, which adhere to the 1-to-1 assump-
tion, and explain the technical details of several embedding-based EA models. However, they do not include details
regarding the generation of the dataset’s meta-features, such as description similarity. In this work, we provide formulas
to compute the extracted meta-features, and we analyze the performance of EA models on both benchmark and real-world
datasets that do not follow the 1-to-1 assumption.

Zhang et al. (2022) analyze the performance of translational and graph neural network (GNN)-based EA methods with
respect to the seed alignment and dataset sizes, the use (or not) of attribute triples, the presence of multilingual data, and
the embedding size. They propose new benchmark datasets sampled from large-scale KGs such as Wikidata (Vrandečić
& Krötzsch, 2014) and Freebase (Bollacker et al., 2008) that do not fulfill the 1-to-1 assumption (40% and 75% of the
entities in every pair of KGs combined in the datasets do not have matches). The authors then tested several EA models
on the newly sampled dataset. However, one of the issues with this approach is the fact that the 1-to-1 assumption is not a
condition that only holds for the datasets, but also many EA models consider that constraint during the model evaluation.
Hence, even though Zhang et al. generate new data including not only 1 : 1 mappings, none of the non-matchable entities
are considered during the evaluation for some of the models they applied, such as MultiKE (Zhang et al., 2019) and
TransEdge (Sun et al., 2019), due to the nature of these models that only consider the alignment candidates from the
reference alignment. Similarly, Jiang et al. (2023) evaluate the performance of EA methods on newly generated, highly
heterogeneous KGs that differ in scale and structure, with fewer overlapping entities than benchmark datasets (sharing
60% and 25% of the entities). They introduced two more realistic datasets, ICEWS-WIKI and ICEWS-YAGO, which
were derived from knowledge bases with significantly different degree distributions. Although these new datasets deviate
from the typical 1-to-1 assumption, they tested EA methods such as graph convolutional network (GCN)-Align (Wang, Lv,
et al. 2018), RDGCN, and FuAlign (Wang et al., 2023) on sub-sampled heterogeneous datasets, overlooking the fact that
these methods do not account for non-matchable entities as candidates in the evaluation phase. In contrast to these studies
and building on these observations, we discuss in detail this search-space-related issue in our experiments in Section 5.3.2.

Zeng et al. (2021) provide a brief overview of research in EA, covering traditional methods, knowledge representa-
tion learning, and alignment based on representation learning in KGs. They conducted their research only on one single
dataset—DBP15K, which is a synthetic benchmark dataset holding the 1 : 1 assumption. They tested only two categories
of models: translational and GNN-based in the context of multilingualism. In contrast, our work covers a wider variety of
both datasets and models that differ in nature.
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Fanourakis, Efthymiou, Christophides, et al. (2023) explore indirect biases of EA methods due to structural diversity
in the KGs and introduce a sampling algorithm to generate challenging benchmark datasets by changing the properties of
the KGs. In that way, the authors assess EA methods’ robustness against such diversity. Modifications include changing
connectivity metrics such as “average node degree,” “max component size,” and “ratio of weakly connected components”
to control the level of structural heterogeneity of the generated datasets. In our work, we do not use a sampling algorithm;
instead, we experiment with EA methods having different design bases on widely used benchmark datasets and real-world
datasets.

Leone et al. (2022), provide a discussion on the evaluation metrics for EA for datasets that do not follow the 1-to-
1 assumption. To go beyond this assumption, the authors generate sub-sampled datasets whose KG sizes are different,
where each dataset variant includes about 30% unmatchable entities. In comparison to Leone’s study, in addition to the
fact that our real-world datasets are original and not obtained by sampling, the proportion of unmatchable entities for each
of our real-world datasets is more than 80% (KGs in Doremus and AgroLD on average have more than 87% and 82%
unmatchable entities, respectively). Furthermore, we report the Hit@k measures for the case that a 1-to-1 assumption does
not hold on our datasets to compare the model’s performance with the one reported in previous studies.

To sum up, our work builds on previous research by extending and refining key aspects of EA evaluation. In particular,
we study the performance of embedding-based EA methods with distinct representation learning principles on real-world
and benchmark datasets. In that, our study stands out for its attention to data quality considerations (Ben Ellefi et al.,
2018). While prior studies provide valuable insights into meta-features and sampling methods, we advance this by offering
explicit formulas for meta-feature extraction and testing EA models on both benchmark and real-world datasets that do
not follow the 1-to-1 assumption. Instead of generating sampled datasets, we focus on real-world original data with over
80% unmatchable entities, providing a more rigorous evaluation. In this way, our work continues and enhances existing
research, bringing new perspectives to real-world EA challenges.

3 Methods for EA via Representation Learning
Certain studies categorize embedding-based methods according to their use of semantic information to represent the
KGs (Wang et al., 2023), while others categorize them according to whether they use attribute or relation predicates for
embedding learning, their alignment modules (i.e., whether they embed both KGs in the same space or separately), or
their learning strategy (supervised, semi-supervised, or unsupervised; Fanourakis, Efthymiou, Kotzinos, & Christophides,
2023; Sun et al., 2020). Based on recent studies (Fanourakis, Efthymiou, Kotzinos, & Christophides, 2023; Jiang et al.,
2023; Sun et al., 2020; Wang et al., 2023; Zeng et al., 2021; Zhang et al., 2022) and our analysis, we propose to classify
the embedding-based EA models into four groups: (1) translational, (2) GNN-based, (3) graph transformers (GTs)-based,
and (4) interaction training models.

Several EA models, such as MTransE (Chen et al., 2017) and IPTransE (Zhu et al., 2017) have been designed by
using translational techniques such as TransE (Bordes et al., 2013) for KGE and EA across KGs (Sun et al., 2018).
A KG is usually represented as a directed graph, in which nodes refer to entities and edges refer to relations between
entities, or simply by a set of triples of the type ⟨head entity, relation, tail entity⟩. The translational model’s framework
embeds a relation predicate as a translation vector from a head to a tail entity. GNN-based methods, such as GCN-Align
(Wang, Lv, et al., 2018), RREA (Mao et al., 2020), and GMNN (Xu et al., 2019a) employ GNNs (Scarselli et al., 2008;
Wu et al., 2021; Zhou et al., 2020) to represent the graphs and link them. These models rely on the signature GNN
message-passing system to integrate the information of each entity’s neighbors. Inspired by the successful application
of the Transformer (Vaswani et al., 2017) model in representing sequences for the automatic translation task (Lin et al.,
2022), several works developed and applied the GTs model for representing graphs and their entities (Dwivedi & Bresson,
2020; Li et al., 2018; Müller et al., 2023; Nguyen et al., 2022; J. Zhang et al., 2020). Recently, models built on top of
Transformers have been developed specifically for the EA task (Cai et al., 2022; Trisedya et al., 2023), adopting the self-
attention mechanism from Transformers to represent entities. As a point of comparison between GNNs and Transformers,
we underline that Transformers use multi-head attention, treating the entire sequence as a local neighborhood, whereas
standard GNNs aggregate features from local nodes (Hussain et al., 2022). Applying Transformer architecture to GNNs, as
in the GTs approaches, is motivated by the need to overcome the issue of information dispersion between distant elements
in structural data (Chen et al., 2022). GTs address the limitations of traditional GNNs by leveraging Transformers’ ability
to capture long-term dependencies. By integrating GNNs and Transformers, GTs expand the receptive field of GNNs,
effectively utilize graph structure information, and establish a collaborative framework where each module reinforces the
other’s strengths (Min et al., 2022).

The final group of models we introduce (and that prior works categorize as “others”; Jiang et al., 2023) has a common
important characteristic: learning the embeddings of the two KGs simultaneously (Tang et al., 2020; Wang et al., 2023;
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Yang et al., 2020; Zeng et al., 2020). We refer to this group as the interaction training group. Unlike other methods that
embed entire KGs independently and then align entities, interaction training models do not need to embed entire KGs,
which makes their inference more adaptable to unseen data. Instead, these models embed pairs of entities from both
source and target KGs, simultaneously capturing interactions between the entities. This is done by comparing the entities’
features—using techniques such as aggregation or averaging—to generate interaction vectors, which are then embedded
through neural networks or similar techniques. The final predictions are based on a distance margin or threshold. If the
interaction embedding of a pair of entities belonging to the source and target KGs is measured to be above the threshold
(measured using the vector norms), then the entities are aligned together. The aim is to keep a marginal distance between
aligned entities with non-aligned ones. Interaction training methods might use translational or GNN or any other basic
model to initially embed the entities, but in contrast to the three other groups, these models can provide insights into the
correlation between the features of entities belonging to two KGs, whether they are aligned or not.

After analyzing many comparative studies on benchmark datasets, we decided to focus on this study on the following
recently proposed embedding-based EA methods, representative of each of the four groups outlined above: MultiKE
(translational model; Zhang et al., 2019), RDGCN (GNN-based model; Wu et al., 2019), i-Align (GT-based model;
Trisedya et al., 2023), and BERT-INT (interaction training model). We choose these established models because they
are scalable to run on real-world large KGs and have state-of-the-art performance on well-known benchmark datasets
(Jiang et al., 2023). We give more details on each of them in the following.

MultiKE considers the two distinct KGs to be aligned as one large KG. To connect these two KGs and augment the
number of relation triples, the method connects each entity in the source KG to the neighbors of its counterpart entity
in the target KG and vice versa by replacing the head and tail entities of each relation triple with their counterparts
in the reference alignment. To further enhance the relation triples, the method identifies matching relation and attribute
predicates by comparing their literal or relation embeddings and selecting those that exceed a similarity threshold. Once
the predicates are matched across the KGs, each relation is replaced by its counterpart, augmenting the relation triples
accordingly. Then, it represents each entity and relation using a variant of TransE. To generate the final EA predictions,
the model combines these representations with encoded local names of entities and predicates, which are then fed into a
convolutional neural network (Zhang et al., 2019).

BERT-INT begins by generating initial entity embeddings using a pre-trained BERT-based model, leveraging the enti-
ties’ descriptions or names/labels. It then constructs a similarity matrix based on the initial embeddings for each pair of
training entities. Next, the method creates a neighborhood similarity matrix to co-train each entity pair in the candidate set.
For training the interactions of the KGs’ structural embeddings, BERT-INT relies exclusively on the direct neighbors of
the entities. It is worth noticing that BERT-INT computes interactions between the attributes of entities being compared,
rather than simply aggregating attribute information. This approach can reduce the impact of noisy or irrelevant attribute
matches. The attribute–view interactions are processed in a unified way along with name/description and neighbor interac-
tions, contributing to the overall alignment decision. It then aggregates all the vectors obtained by the similarity matrices
to represent each pair of entities and finalizes the entity pair representations using a multi-layer perceptron.

RDGCN leverages the information of relations into entity representations employing a two-step process. First, a dual
relation graph is constructed based on the input KG (the context graph), which is nothing but the line graph of the context
graph.3 In the dual graph, each node represents a type of relation, and two nodes are connected together if they have a
common head or tail in the main KG. Then, a graph attention mechanism is applied to arouse reciprocal actions between
the two graphs. The resulting vertex representations in the context graph are fed to GCNs (Kipf & Welling, 2017) lay-
ers to capture the graph’s structural information through a message-passing system. In the last step, the obtained entity
representations are used for aligning pairs of entities.

i-Align uses two transformer-based architectures to represent the entities based on their graph structures and textual
attribute values. The model uses a graph encoder to aggregate the entities’ structural information which can also effec-
tively handle large KGs. The model’s other transformer obtains the interconnection between the entity attributes using the
embeddings of attribute keys and values as inputs. i-Align provides explanations of the alignment results in the form of a
set of the most influential attribute predicates and entity neighbors based on the attention weights of its two transformers.

We summarize the main properties of these four methods in Table 1, including their respective results in terms of
Hit@1 measure as reported in the original papers introducing these methods. As we can see, all methods report a Hit@1
of more than 88%, exceeding competing methods in the respective studies. MultiKE and i-Align have been evaluated on
the DBP_WD_100K (Sun et al., 2018) and DBP_YG_15K (Zhang et al., 2022) benchmark datasets, respectively, while
BERT-INT and RDGCN—on the DBP15K (Sun et al., 2017) dataset. All four methods use entity names for embedding
as an extra; i-Align utilizes the attribute predicate’s names and values in its embedding procedure. To use the maxi-
mum descriptive information of entities, BERT-INT employs the entity’s descriptions instead of their names when such
descriptions exist.
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Table 1. Comparison of Embedding-Based EA Methods.

Input Features

Method
KG Embedding
Approach

Best-Evaluated
Benchmark Dataset

Hit@1 on
Benchmark Dataset Relation Predicate Attribute Predicate Entity Name

MultiKE Translational DBP_WD_100K 0.918 Relation name Attr name/value Entity name
RDGCN GNN DBP15K 0.886 (on FR–EN) – – Entity name
i-Align Graph Transformer DBP_YG_15K 0.912 – Attr name/value Entity name
BERT-INT Interaction training DBP15K 0.992 (on FR–EN) Relation name Attr name/value Entity name/

description

Note. EA= entity alignment; KG= knowledge graph; GNN=graph neural network; FR–EN= French–English.

Finally, to be able to compare between non-embedding-based and embedding-based methods, we include in our analy-
ses DLinker (Happi Happi et al., 2022) as a representative method of the non-embedding-based group. The method applies
an average aggregation between the similarity measures derived from the instance objects calculated by the longest com-
mon subsequence algorithm. DLinker has a performance that is close to that of the best-performing system LogMap
(Jiménez-Ruiz & Cuenca Grau, 2011), on several OAEI4 entity linking tracks. Furthermore, because it is developed in this
paper’s authors team, having full control of the tool facilitates further experiments.

In the sequel, we move on to describing and comparing the datasets that we consider in this study, specifically in terms
of their different heterogeneity aspects.

4 Datasets and Their Heterogeneity Aspects
In this section, after giving a summary of the datasets we consider and motivating their choice, we study the degrees of
their heterogeneities using specific metrics, introduced below. The study showed these datasets to be diverse and highly
heterogeneous. Hence, we believe the analysis of the performance of the four chosen models (described above) on this
particular collection of datasets would give us adequate insights beyond the specific choice of datasets and models, and
in particular, for a better understanding of the challenges for the EA task when dealing with real-world, highly diverse
datasets.

4.1 Datasets
We proceed to present and analyze the chosen datasets, coming from the two groups identified in the introduction: synthetic
benchmark datasets and real-world datasets.

Benchmark Datasets. We consider DBP15K (Tang et al., 2020), which is a benchmark dataset that a significant num-
ber of state-of-the-art methods report their results on (Berrendorf et al., 2020; Zeng et al., 2021). DBP15K consists of
three pairs of KGs that differ in the used language (French, Japanese, and Chinese). We pick the French–English dataset
(DBP15KFR–EN) as a sample of the whole. Furthermore, we consider SPIMBENCH,5 the OAEI reference instance match-
ing dataset, which is much smaller than DBP15K but similar to it in several heterogeneity aspects that we will discuss
below. Additionally, we consider the ICEWS-WIKI and ICEWS-YAGO proposed in Jiang et al. (2023). They have the
particularity of having been generated from KGs having highly different degree distributions, hence mimicking graphs
from real-world scenarios. Hence, these two datasets are highly heterogeneous in structure as compared to DBP15KFR–EN
(for full comparison, we refer to Jiang et al., 2023), where the source and target KGs in each of these two datasets have
very different scales.

Real-World Datasets. Because heterogeneity of KGs has a broader meaning than linguistic differences (Achichi et al.,
2019) and also, benchmarks often present idealized scenarios with a limited set of relationships, controlled noise, and
specific characteristics (Fundulaki & Ngomo, 2016), we added to our investigation two real-world datasets: DOREMUS
(Achichi et al., 2018) and AgroLD (Larmande & Todorov, 2021) that differ from benchmarks in terms of the types of their
heterogeneity. DOREMUS is a real-world music-related dataset consisting of three interconnected datasets that describe
classical music works and the related events and entities. The data is multilingual with a majority of French text and comes
from catalogs and archives of three major French cultural institutions (Radio France, La Philharmonie de Paris, and the
French National Library; Lisena et al., 2018). AgroLD consolidates data relevant to the plant science community, including
crops such as rice, wheat, and Arabidopsis (Venkatesan et al., 2018). With approximately 900 million triples, AgroLD is
the result of annotating and integrating over 100 datasets from 15 diverse sources (Larmande & Todorov, 2021).



8 Semantic Web 17(1)

Table 2. Comparing Each Two KGs for Each Dataset (All Numbers Indicate Percentages Except for KG Sizes, Which Indicates the
Number of Entities).

Reference Alignment

Dataset JS Divergence
Max Difference in
Percentage of Nodes KG Sizes

Size
Similarity

Levenshtein
Normalized Similarity

EA Semantic
Similarity

DBP15KFR–EN 5.55 1.87 #S 19,661 98.3 60.1 90.5
#T 19,993

SPIMBENCH 4.41 2.45 #S 2,966 96.2 36.6 66.2
#T 3,082

ICEWS-WIKI 36.1 6.21 #S 11,047 69.78 – –
#T 15,831

ICEWS-YAGO 43.0 10.37 #S 26,863 83.9 – –
#T 22,555

DOREMUS 16.8 14.0 #S 2,057 92.8 30.3 46.6
#T 1,889

AgroLD 6.84 6.22 #S 96,117 53.6 19.6 56.6
#T 51,488

Note. KG= knowledge graph; JS= Jensen–Shannon; EA= entity alignment.

To get an idea of the extent to which the KGs in each dataset differ in scale, we show in Table 2 the sizes of the source
and target KG for each dataset (denoted by #S and #T, respectively). The remaining columns of the table will be introduced
and explained as we proceed in this section.

4.2 Evaluating the Heterogeneity of the Datasets
We start by taking a bird’s view on the datasets and showing the degree distribution of the underlying KGs, that is, the
undirected graphs in these datasets in Figure 1. We count the number of entities relative to their degrees and visualize this
for degrees up to the point where 90% of the nodes have a degree below that threshold. We also considered visualizing up
to the median or median unique degree. However, we believe it is not appropriate to plot up to these values, as the median
only represents the point at which 50% of the entities are below or equal, and fewer than five entities have the median
unique degree.

The figure shows that the number of nodes having the same degrees is similar in the pair of KGs in both DBP15K
and SPIMBENCH datasets, indicating similar degree distributions in these two datasets. However, this is not the case for
DOREMUS, AgroLD, ICEWS-WIKI, and ICEWS-YAGO, where we can see that the number of nodes having the same
degree is different across the KGs in each dataset.

To get a more in-depth understanding of the dataset heterogeneities, we proceed to compute three statistical and two
qualitative metrics for each pair of KGs in our datasets.

4.2.1 Jensen–Shannon (JS) Divergence. To statistically analyze the underlying distribution of degree sequences in each
pair of KGs, we opt for applying the JS divergence test. We found JS divergence or JS distance (Endres & Schindelin,
2003), a suitable statistical metric that captures the amount of overlap between two distributions by using a bi-directional
Kullback–Leibler (KL) divergence (Kullback & Leibler, 1951). KL divergence, defined in equation (1), measures how one
reference probability distribution P is different from a second probability distribution Q.

DKL(P||Q) =
∑

x

P(x) log
(

P(x)
Q(x)

)

. (1)

The JS divergence is a symmetrized and smoothed version of the KL divergence DKL(P||Q), defined as follows:

DJS(P||Q) = 1
2

DKL(P||M) + 1
2

DKL(Q||M), (2)

where M = (1∕2)(P+Q) is a mixture distribution of P and Q. JS divergence gives us a number in the range [0, 1], where the
higher the number, the more divergent the distributions. The results of our study on JS divergence are given in Table 2.6 For
each KG, we construct the empirical degree distribution by counting the frequency of each node degree and normalizing
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Figure 1. Degree distribution of each two knowledge graphs (KGs) for each dataset.

these counts into a probability vector. To make the two distributions comparable, we align them over the union of their
degree supports, filling missing degrees with zeros. We truncate at the smallest maximum degree for which only a single
node occurs in either KG to reduce noise from extreme tails. We then compute the JS distance between the two normalized
distributions. We notice that the degree distributions of KGs in DBP15KFR–EN and SPIMBENCH are less divergent than
their counterparts in DOREMUS and AgroLD, as well as that there is a much higher level of heterogeneity in the degree
distributions of the ICEWS-WIKI and ICEWS-YAGO datasets than in the other datasets. This is not surprising, since these
two datasets have been generated to mimic the JS ratios of ICEWS, YAGO, and WIKI KGs, which have very different
degree distributions.

4.2.2 Maximum Difference in Percentage of Nodes w.r.t. Node Degrees. To better recognize the differences in the KGs’
degree distributions, we calculate our second statistical metric, which measures the maximum difference in the percentage
of entities with respect to the degrees in each pair of KGs. By looking at the second column of Table 2, we can see that
the maximum difference in the percentage of the nodes across the KGs (w.r.t. the node degrees) in DOREMUS is much
higher than in all other datasets. This confirms the observation in Figure 1, showing that the percentage of entities having
the same degree in the two KGs varies less in the benchmark datasets (DBP15KFR–EN and SPIMBENCH), as compared to
the other datasets.
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4.2.3 Size Similarity. As a third statistical metric, we calculate the normalized difference between the number of entities
in every pair of KGs, so we can compute the similarity in the size of KGs using equation (3):

Size_similarity = 1 −
|s(KG1) − s(KG2)|

max(s(KG1), s(KG2))
, (3)

where s(KG) returns the size (i.e., number of nodes/entities) of a given KG. We divide the absolute value of the difference
in sizes of the KGs by the size of the larger KG. Table 2 shows that the size of the KGs in the benchmark datasets is
almost the same, while in real-world cases, the two KGs might include very different numbers of entities, as is the case for
the AgroLD dataset. The size similarity of 53.6% for AgroLD indicates that the size of one of its KGs is almost twice as
big as that of the other KGs. The two KGs in the AgroLD real-world dataset differ more strongly in scale even than their
counterparts in the two highly heterogeneous synthetically generated datasets of ICEWS-WIKI and ICEWS-YAGO.

Analyzing the results of the three statistical features (Table 2), in combination with observing the degree distributions
(Figure 1), reveals the higher level of structural heterogeneity in KGs of DOREMUS and AgroLD as compared to the two
synthetic benchmark datasets. Moreover, there is less JS distance between the degree distribution of KGs in benchmark
datasets in comparison with the other datasets. Furthermore, in all non-benchmark datasets, the ICEWS-YAGO dataset
contains KGs having the least overlaps in their degree distributions, and AgroLD is the dataset that includes KGs having
the most difference in scales.

Nevertheless, none of these three statistical metrics are indicators of the textual/lingual properties of the entities. We
therefore turn our attention to string-level features.

4.2.4 Normalized Levenshtein Similarity. In order to get a more enhanced understanding of how dataset heterogeneities
affect each model’s performance, we need a qualitative heterogeneity metric, especially for approaches such as BERT-INT,
MultiKE, and i-Align that use the textual attribute values of the entities. Even RDGCN, instead of random initialization,
uses a representation vector of the entity name as the entity’s initial embedding. In addition, since all four of the analyzed
methods have been trained in a supervised manner, they all use some part (30%) of the reference alignment as their training
data. Hence, the quality of data of the reference alignment affects the model’s performance directly. Hence, we explore
two qualitative metrics—one based on the Levenshtein similarity (in this subsection) and one based on the embeddings’
semantic similarity (in the following subsection).

As a first qualitative metric, we get an average over the Levenshtein normalized similarity of the attribute values for all
pairs of aligned entities in the reference alignment. Levenshtein, or edit distance, is originally a measure of the closeness of
two strings. It quantifies the minimum number of single-character edits (insertions, deletions, or substitutions) required to
transform one string into the other (Yujian & Bo, 2007). The resulting distance is always in the interval [0, 1]. The similarity
is computed by subtracting the normalized distance by 1. To analyze the quality of the data, we focus on the reference
alignment, and for the first step, we compute the average over the Levenshtein normalized similarity of the attribute values
of each pair of aligned entities (cf. results in Table 2).

Because minor variations in the input data do not affect the performance of the language models in embedding the texts
(Elekes et al., 2017; Heylen et al., 2008) and regarding the fact that in EA methods that utilize the attribute values of entities
(including three of our employed methods), a language model is used for initial embeddings of the entities (Shen et al.,
2022; Z. Zhang et al., 2020), we first lemmatized and stemmed all the words in each attribute value. Then, we compared all
attribute values for each pair of entities in the reference alignment, and we computed the maximum Levenshtein similarity
between each pair of attribute values and averaged all. Due to the multilingual nature of DBP15KFR–EN, we used Google
Translate to get the English version of the French KG.

The results of the Levenshtein measurements reported in Table 2 indicate that, despite possible translation errors in the
DBP15K French KG (Wu et al., 2019), the normalized Levenshtein similarity of aligned entities in the benchmark datasets
is higher than in the real-world datasets. This suggests that EA methods, particularly those relying on textual descriptions
of entities, may perform better on benchmark datasets. Since attribute triples are not included in the ICEWS-WIKI and
ICEWS-YAGO datasets, calculating the Levenshtein measure based on attribute values is not possible for these datasets.

4.2.5 Semantic Similarity. While the normalized Levenshtein similarity offers insights into the textual closeness of aligned
entities in each dataset, it primarily focuses on character-level differences and does not capture the semantic or contextual
similarities between entity pairs. Therefore, we further investigate the semantic similarity between the aligned entities in
the KGs.

As mentioned, approaches using the entity or predicate features as input usually utilize a language model to embed the
entities. The studies show that the performance of these methods is relevant to the quality of the initial embeddings (Sun
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Figure 2. Reduced-dimension BERT-based initial entity embeddings of SPIMBENCH (to the left) and DOREMUS (to the right).

et al., 2020; Wang et al., 2019). Hence, we want to measure the similarity of two aligned KGs (Traverso et al., 2016; Zhu
& Iglesias, 2016) based on initial embeddings of entities in the reference alignment. Because language models capture the
semantic similarity of words, we rely on the entity embeddings. We apply the well-known normalized Euclidean relative
distance over the pairs of entities of the reference alignment, which is a common choice (Fanourakis, Efthymiou, Kotzinos,
& Christophides, 2023), given as follows:

Semantic_similarity(KG1, KG2) = 1 − 1
s

s∑

i=0

f (di), (4)

where

di =
‖v(ei) − v(e′i)‖

‖
∑s

j=0 v(ei) − v(e′j)‖
, (5)

with s being the size of the set of seed alignments S = {(e0, e′0),… , (es, e′s)}, and v(ei)—the initial representation vector
of entity ei that has been obtained by a pre-trained multilingual BERT model over entity’s descriptions.7 The relative
distances di have been normalized using the MinMax scaler function f :

f (di) =
di − Min(di)

Max(di) − Min(di)
, i = 1,… , s. (6)

Notice that by definition, having a lower value of the EA semantic similarity for a dataset indicates a higher level of
semantic heterogeneity. The corresponding semantic similarities on our pairs of KGs in each dataset are reported in the
last column of Table 2. The similarities are calculated based on the initial embeddings of attribute values of the aligned
entities using the pre-trained BERT model. Note that this measurement is important when we analyze the performance
of the embedding-based EA models, which use the entities’ attribute values in their frameworks. As reflected by the
semantic similarity results, the real-world datasets have a higher degree of semantic heterogeneity in comparison to the
benchmark datasets. This confirms what we already observed with the help of the Levenshtein similarity, showing that
from both character-level and conceptual perspectives, aligned entities from the benchmark datasets have more similar
textual descriptions than those in real-world datasets.

To visualize how the semantic similarity in different synthetic benchmark and real-world datasets differs, we applied
t-distributed stochastic neighbor embedding (t-SNE; Van der Maaten & Hinton, 2008). t-SNE is a dimensionality reduc-
tion technique commonly used for visualizing high-dimensional data in lower-dimensional space, typically 2D or 3D.
In Figure 2, we visualize the entity embedding spaces of the SPIMBENCH and DOREMUS datasets that, according to
Table 2, are datasets with a low and a high level of EA semantic similarity, respectively.8
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The dark blue and red points represent the seed alignment of the KGs, while each entity in the seed alignment is con-
nected to its counterpart using grey lines. Looking at the grey lines that show the distance between the initial embeddings
of the entities in the reference alignment, one can easily recognize how far the entities are located in the DOREMUS
real-world dataset. In SPIMBENCH, only two aligned entities have a long distance, and for the other aligned samples,
the distance is much shorter than what we can see for the DOREMUS dataset. It is important to note that in Figure 2,
for the SPIMBENCH dataset, several red dots appear in the bottom-right corner, seemingly unlinked. In reality, they are
connected to nearly overlapping dark blue dots. The line between them is not visible because the initial embeddings of
the source and target entities are so similar that the connection line becomes imperceptible. Additionally, there are some
red dots located in the middle-left of the figure, surrounded by light-blue dots. These light-blue dots represent entities in
the source KG that have very similar initial embeddings but are not part of the seed alignment, meaning they do not have
a corresponding match in the target KG. The plots confirm the higher level of semantic heterogeneity in the real-world
DOREMUS dataset as compared to the benchmark dataset SPIMBENCH.

5 Comparative Analysis of the Embedding-Based Methods
In this section, we present the results of implementing and applying the selected EA models on the chosen datasets. We first
explain the challenges of using the models on real-world and less well-known benchmark datasets and how we overcome
these issues, this being part of the lessons learnt in this work. Next, we discuss the evaluation metrics employed by the
models and present the results of our experiments. Further on, we provide an overview of how the models perform on both
benchmark and real-world datasets. We also investigate how these performances relate to the dataset features in light of
the discussion in Section 4. Finally, we look into the inference capacities of the models when facing the full-scale graphs
(instead of their corresponding validation sets).

5.1 Datasets Preparation for Applying the EA Models
For each dataset, we have a file of the source KG, a file of the target KG, and a file containing the reference alignments
in XML, turtle, or Ntriples format. To feed the data to each model, we prepare a series of files following the naming
convention and formats required by each model, for example, json, pkl, txt, or other. In this process, we confronted
issues either related to the dataset design itself, for example, using blank nodes, or related to the model input’s design,
for example, when there is no instruction about the proper model input. Even with correctly formatted inputs, runtime
errors can still occur unexpectedly due to minor changes in the input data. This necessitates a thorough process of data
validation to ensure the models function correctly. Data validation in an ML pipeline ensures that training data is error-
free and accurate, preventing issues that could degrade model performance during deployment and safeguarding against
errors introduced during data processing (Polyzotis et al., 2018). Hence, we need to handle the data lifecycle of inputs to
each embedding-based EA model (Gudivada et al., 2017), and address as many problems as we face to prepare suitable
data. After writing the codes to prepare the proper input files for the four models that we use and validating them on the
different benchmark and real-world datasets, we share the codes on a GitHub page9 to pave the way for researchers to
benefit from employing these methods on their specific datasets. We included all the links to the original models on our
GitHub repository.

Note that, despite the high heterogeneity aspects of ICEWS-WIKI and ICEWS-YAGO, which make them more similar
to the real-world KGs, the only model that we employ for them is RDGCN. The reason is that these two datasets lack the
attribute triples, which are the essential features utilized by DLinker and the other three methods, and they only contain the
relation triples. We opted not to use additional datasets due to significant structural differences and limited accessibility.
The OpenEA datasets, for instance, were generated under the 1-to-1 assumption, omitting unmatched entities. In response
to this limitation, Leone et al. (2022) introduced new, more realistic datasets that do not follow this assumption, which
we could not access on their repository. While the sampling algorithm code is provided to regenerate the datasets, doing
so would result in datasets that differ from DOREMUS and AgroLD, as Leone’s datasets are derived from larger KGs,
whereas DOREMUS and AgroLD are not. Therefore, we chose not to use additional datasets to maintain consistency in
the real-world data analysis.

5.2 Evaluation Metrics
There are two commonly used families of evaluation metrics: (1) precision and recall (and the resulting F1-score) and (2)
Hit@k or, often, Hit@1. Traditionally, EA methods rely on metrics in (1), but the advent of embedding-based methods
has moved the focus to metrics of type (2), as they follow the common tradition in link prediction settings. We provide
definitions of the two types of metrics and discuss their commonalities and differences in what follows.
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We define precision, recall, and F1-score in the context of a classification problem: precision is the ratio of true positive
predictions to the total number of positive predictions made by the model. It measures the accuracy of the positive pre-
dictions made by the model. Recall is the ratio of true positive predictions to the total number of actual positive instances
in the dataset. It measures the model’s ability to identify all relevant instances. The F1-score is the harmonic mean of
precision and recall. It balances both precision and recall in one metric. The respective formulas are given as follows:

Precision = TP
TP + FP

; Recall = TP
TP + FN

; F1 − score = 2 × Precision × Recall
Precision + Recall

, (7)

where TP stands for true positive, that is, instances for which the model correctly predicted a positive label, FP stands
for false positive, and FN stands for false negative, that is, instances for which the model incorrectly predicted a negative
label. Hit@1, on the other side, is defined as:

Hit@1 =
Number of times the top-ranked prediction is correct

Total number of predictions
. (8)

A Hit@K, analogically, is recorded when the correct entity matching the ground truth appears within the top K positions
in the ranked list of predictions.

In this work, we make use of both types of metrics: Hit@k allows us to compare our results with the state-of-the-art EA
embedding-based methods, which mainly use this metric to report their performance. However, Leone et al. (2022) argue
that precision, recall, and F1-score better represent the performance of EA models. For that reason, we also report these
metrics regarding the models we employed on our datasets. We consider it worthwhile to go into more depth regarding the
similarities and differences of these two evaluation paradigms. The following discussion contributes to shedding light on
the cases when they are considered equivalent, and on those when one of the two types is to be used by preference. During
the validation phase of embedding-based EA methods, since the model generates a ranked list of candidates for each entity,
and given that the validation set adheres to the 1-to-1 assumption, the precision, recall, and F1-score are equivalent to
Hit@1 (Sun et al., 2020). Leone et al. (2022) mention that using the Hit@k metric for evaluating the model’s performance
is based on the unfair 1-to-1 assumption. However, this assumption does not hold in real-world EA datasets. Therefore, for
EA, evaluation metrics should be used that can take into account the case where no aligned entity is predicted for the given
input entity. Based on the similarity measures (or the predicted alignment probabilities) that the EA methods provide at
their last evaluation step, Leone et al. (2022) define an assignment module that matches a given entity in the source KG to
at most one entity in the target KG (do note that there could be no match for the given source entity). Then, precision and
recall are calculated based on their definitions in the field of information retrieval.

A question that might come to mind is why, under the 1-to-1 assumption, Hit@1 is equivalent to precision, recall,
and F1-score. While a few hints have been proposed in Sun et al. (2020) and in Appendix C of the technical report of
Leone et al. (2022), we believe that detailing into this claim contributes further to the discussion. Current EA methods
evaluate model performance on validation sets that include only positive samples, meaning pairs of corresponding entities,
which, as a direct consequence, satisfy the 1-to-1 assumption, that is, for every given entity el ∈ Source_KG included
in the validation set, there exists exactly one entity e′l ∈ Target_KG, where el ≡ e′l (el is the same as e′l). Suppose n
is the size of the validation set (by size, we mean the number of samples included in the validation set), and suppose
∀i, i = 1,… , n, in the validation set we have ei ≡ e′i . Hence, because the 1-to-1 assumption holds in the validation set, for
entity el ∈ Source_KG we have: ∀i|i ≠ l, el ≢ e′i , e′i ∈ Target_KG.

To show that the precision and recall (and the F1-score) are equal, based on the definitions, it is enough to show
FP = FN. Afterwards, if we show that the total number of the predictions (the denominator in the Hit@1 formula) equals
TP + FP, we have shown that Hit@1 equals both precision and recall. Suppose that the class of aligned and non-aligned
entities is the positive and negative classes, respectively. In Table 3, we formally define TP, FP, FN, and true negative (TN)
in the context of EA models that predict a ranked list for evaluating the model’s performance under the 1-to-1 assumption
in their validation set.

Considering Hit@1 as the final prediction by EA models, for each entity ei ∈ Source_KG included in the validation set,
the model prediction is either its correct match (TP), which is e′i , or a wrong match (FP), such as, e′j , j ≠ i in Target_KG,
and i, j ∈ 1,… , n. Hence, it is trivial that TP + FP equals the total number of predictions. Furthermore, while we don’t
have any trivial non-aligned predictions by the model, each Hit@1 implicitly gives us some non-aligned predictions. For
example, for a false negative, based on the definition, the model should predict that ei ≢ e′i for some i ∈ 1,… , n. While
the model never predicts a false negative explicitly, but each time that the model predicts that ei ≡ e′j where j indicates
any index other than i, the 1-to-1 assumption which has been met in the validation set implies that ei in Source_KG is not
aligned with any other entity than e′j in the Target_KG including the e′i . Hence, whenever the model predicts ei ≡ e′j|i ≠ j,
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Table 3. Defining TP, FP, TN, and FN for EA Models Based on Hit@1 Predictions, When the Validation Set of Size n is Free of the
Negative Samples and Meets the 1-to-1 Assumption, where i, j ∈ 1,… , n.

Actual/Predicted Aligned (P) Non-aligned (N) Implicitly Non-aligned (IN)

Aligned (P) TP: ei ≡ e′i FN: ei ≢ e′i ei ≡ e′j ,
|i ≠ j

Non-aligned (N) FP: ei ≡ e′j , TN: ei ≢ e′j , ei ≡ e′i
|i ≠ j |i ≠ j

Note. TP= true positive; FP= false positive; TN= true negative; FN= false negative; EA= entity alignment.

Table 4. Measured Evaluation Metrics of Analyzed EA Models on the Datasets (all Numbers Indicate Percentages). Following the
1-to-1 Assumption During the Models’ Evaluation, Hit@1 Equals the Precision, Recall, and F1-Score for Each Model.

Methods

BERT-INT RDGCN MultiKE i-Align DLinker

Hit@1 Hit@10 Hit@1 Hit@10 Hit@1 Hit@10 Hit@1 Hit@10 F1-score

Datasets DBP15KFR–EN 99.3 99.8 88.6∗ 95.7∗ 37.5 43.6 26.6 43.2 –
SPIMBENCH 82.4 82.4 77.7 94.7 57.1 57.1 75.0 86.5 70.2
ICEWS-WIKI – – 75.1 84.2 – – – – –
ICEWS-YAGO – – 68.3 80.8 – – – – –
DOREMUS 47.9 64.1 1.33 5.92 2.70 8.70 53.1 68.0 95.6
AgroLD 21.1 33.2 0.02 0.3 2.30 5.7 4.4 12.1 59.0

∗The reported numbers are derived from the original study.

which is a false positive, following the 1-to-1 assumption, it implicitly has predicted that ei ≢ e′i , which is a false negative.
Accordingly, FP = FN, and we have shown that precision equals the recall (and the F1-score). Furthermore, because the
number of times the top-ranked prediction is correct equals the TP, and as we have earlier shown, the denominator of the
precision and Hit@1 are equal, we can see that precision equals the Hit@1. As a result, all the aforementioned metrics are
equivalent whenever the 1-to-1 assumption has been met during the evaluation.

5.3 Evaluation Tasks and Analyses
5.3.1 Real-World Versus Benchmark Datasets. The comparative performance of the selected models on the collection
of chosen datasets is given in Table 4. For each dataset, the highest Hit@1 score is indicated in bold. Following the
discussion presented in Section 5.2, we compare the Hit@1 results of embedding-based models with DLinker, consider-
ing cases where the 1-to-1 assumption was met during the evaluation of embedding-based EA models on each dataset.
The best-performing method for each dataset is highlighted in bold. We can observe an overall drop in the performance
of embedding-based models when tested on real-world datasets, as compared to benchmark ones. In what follows, we
discuss the results of each of the models of interest in light of that global observation, while also considering the inter-
nal mechanisms of each of the models that differentiate them from one another and could provide insights into these
observations.

The performance of the BERT-INT model is strong on datasets such as DBP15K and SPIMBENCH, achieving high
Hit@1 rates (99.3% and 82.4%, respectively). However, its performance drops significantly on our real-world datasets
DOREMUS and AgroLD (Hit@1 rates of 47.9% and 21.1%, respectively). The reason for this drop is that BERT-INT
relies heavily on the quality and amount of textual information (entity descriptions), as observed in Table 1. Hence, datasets
with less textual and semantic similarity and fewer descriptive features, such as DOREMUS and AgroLD (Table 2), lead to
a decrease in its performance. This emphasizes the importance of high-quality data descriptions for BERT-INT’s success.

Observing the results of RDGCN (Table 4), we can see that its performance is more than 88% and 77% on DBP15K and
SPIMBENCH, respectively, and it also drops significantly in the real-world scenarios (close to 0% Hit@1). RDGCN relies
solely on graph structure and a GloVe word embedding10 on entity names (see Table 1). This, along with the statistical
metrics from Table 2, which highlight the greater structural heterogeneity of the real-world dataset, helps explain this
outcome. Since RDGCN is adaptable to different initial embeddings, we modified the initial embedding of the model to use
a multilingual pre-trained BERT model to generate the initial embeddings for entity names. This adjustment improved the
Hit@1 and Hit@10 scores on the dataset by only 0.4% and 6%, respectively. This modest improvement is likely due to the
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fact that most entity names are represented by IDs rather than meaningful text, which limits the impact of the embeddings.
We have uploaded the code for generating the initial embeddings with BERT using graphics processing units to our
GitHub repository. We also experimented with using BERT-based embeddings of the entities’ descriptions (used in BERT-
int) as the initial embeddings in RDGCN. To facilitate this, we implemented a method to create a dictionary of entities’
descriptions for any pair of given RDF graphs, which is available in our repository. This approach led to improvements in
the percentage of the Hit@1 scores across several datasets: 93.70 on DBP15k, 99.53 on Spimbench, 22.49 on DOREMUS,
and 7.21 on AgroLD. These represent enhancement percentages of 5.1%, 21.83%, 21.16%, and 7.19%, respectively. This
demonstrates that more informative initial embeddings significantly boost RDGCN’s performance.

Looking at Figure 1, we can see the long-tailed issue of AgroLD’s KGs. The long-tailed problem in graphs (Malekzadeh
Hamedani & Kaedi, 2019; Shi, 2013) is described as an issue where a small number of nodes have a substantial number
of neighbors, while the majority (referred to as tail nodes) have only a few neighbors (Liu et al., 2021). GNNs used in
RDGCN under-represent tail nodes during the training of the model and lead to a low-quality KGE (Liang et al., 2024),
and this can explain the drop in performance on this dataset for RDGCN. However, as we observe in Figure 1, SPIM-
BENCH also has a long tail problem, which does not appear to be an issue for RDGCN. We found two main differences
between SPIMBENCH and AgroLD that could explain the drop in performance from one to another of these methods.
(1) The number of common neighbors: In the SPIMBENCH dataset, many entities in the reference alignment share com-
mon neighbors. On average, 48% of the entities in the reference alignment, across its two KGs, have at least one common
neighbor with their linked entities. According to the results presented in Wang et al. (2024), a higher number of common
neighbors improves the efficiency of embeddings generated by GCNs for these entities. However, in the AgroLD KGs,
none of the linked entity pairs share a common neighbor. As Wang et al. (2024) demonstrated, the performance of GNN-
based graph embedding models, including GCNs, correlates more strongly with the number of common neighbors than
with node degrees. This suggests that the lack of common neighbors in AgroLD could negatively impact the performance
of the RDGCN model. (2) The KGs in AgroLD are bipartite: Giamphy et al. (2023) discuss how GNN-based graph embed-
ding of a large bipartite graph is difficult due to the challenge of merging heterogeneous node and graph-level information
while ensuring scalability to handle the graph’s increasing size. They also propose a list of available resources that per-
form better on bipartite graph embedding (but unfortunately, we found none of them working on the multi-relational graph
embedding, which is our case). Moreover, RDGCN uses word embedding models to produce the initial embeddings of the
entities using entity names. Because the names (which are the last part of the entity URIs by the model’s default) of the
musical works and the proteins/genes in DOREMUS and AgroLD have been defined by IDs in their respective ontologies,
the initial entity embeddings would not be able to guide the embedding module to a better result. All the aforementioned
observations can explain the low performance of RDGCN on DOREMUS (1.2% of Hit@1) and AgroLD (<1% of Hit@1).
Furthermore, the results of RDGCN on the ICEWS-WIKI and ICEWS-YAGO datasets suggest again the contribution of
the high-quality entity names to improving the model’s performance. As a result, these two datasets are structurally less
complex for the model compared to real-world datasets.

Although MultiKE outperforms several EA translational-based methods (Zhang et al., 2019) using a multi-view KGE
technique, this model overall performs the weakest among the employed embedding- and non-embedding-based models
on the selected datasets. Similar to its predecessors (Table 4), MultiKE’s performance also drops for DOREMUS and
AgroLD. Recall that we observe a higher level of structural and qualitative heterogeneities in these two real-world datasets
than in the benchmark datasets (Table 2). Hence, the fact that MultiKE relies on both the graph structure and textual
information of entities and their attributes (Table 1) can explain the gap in the performance of this model. Furthermore,
while DBP15K is less heterogeneous than the SPIMBENCH, we suspect the reason for the worse performance of MultiKE
on this dataset is the multilinguality that could not be handled using a pre-trained English word2vec model11 that MultiKE
is employing for the entities’ local name embeddings. To embed the French language in Doremus and DBP15K using
MultiKE, we were unable to use a pre-trained multilingual BERT model due to the method’s strong reliance on word2vec.
Instead, we added a French word2vec dictionary to the existing English one, which led to significant improvements in
MultiKE’s performance on the DOREMUS dataset. Specifically, Hit@1 increased to 30.7% and Hit@10 rose to 34.4%,
which seems reasonable given the predominance of French text in DOREMUS. However, the inclusion of this multilingual
collection significantly reduces MultiKE’s performance on DBP15K, with Hit@1 and Hit@10 dropping to 0.53% and
3.18%, respectively. This represents a decrease of 37% in Hit@1 and 40.4% in Hit@10. We believe this decline is due to
a lack of mappings between the French and English word vectors, which causes conflicts in the embeddings of the two
languages.

Finally, i-Align uses two transformer encoders for text and graph embeddings. As Table 4 shows, it performs better on
SPIMBENCH and DOREMUS (75.0% and 53.1% of Hit@1, respectively) as compared to DBP15K (26.6% of Hit@1),
and its performance drops significantly when it comes to AgroLD (4.4% of Hit@1). We suspect that the reason for the
model performing worse on DBP15K as compared to DOREMUS is the fact that only the first 10 characters of the attribute
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values were considered, while the rest of the sequence was ignored by the textual transformer-based encoder. Due to the
curse of multilinguality issue by transformers (Blevins et al., 2024; Pfeiffer et al., 2022) and inter-language competition for
the model parameters, it seems this limited amount of data may not suffice to train the same text transformer’s parameters.
Additionally, during our experiments, we discovered that reducing the length of textual properties of the entities in the
BERT-INT model can result in a significant reduction in performance by as much as 19%. This again illustrates the
importance of retaining the informative attribute descriptions included in the values.

As a baseline of non-embedding-based approaches, we used the DLinker method. Because this model fundamentally
finds the longest common subsequence in the descriptions of a pair of entities belonging to two different KGs, it does not
support EA on the multilingual dataset of DBP15KFR–EN. Moreover, by comparing the Hit@1 of the embedding-based EA
models (Table 4), DLinker is not the best-performing method on the SPIMBENCH, but it shows the top performance on
the real-world DOREMUS and AgroLD datasets.

Furthermore, since DLinker finds the alignments based on the greedy strategy of finding the longest common subse-
quence and ignoring the rest of structural or literal information, and since DLinker’s performance is significantly better
than the embedding-based methods, we can conclude that in cases where we have real-world data, taking the extra volume
of information into account does not help the quality of the embeddings but enforces more noise to them. Although this
conclusion holds for all categories of embedding-based EA methods, the translational and GNN-based methods, which
rely primarily on graph structure, introduce more noise into the embeddings. However, i-Align also embeds the graph
structures using a graph transformer to embed the local subgraphs containing the nodes that have high interconnectivity
with the given entities in two KGs. By comparing the performance of i-Align with RDGCN and MultiKE, we recognize
that using the transformer attention mechanism for local subgraph embedding propagates noise less than the GNN mes-
sage passing and translational systems in the more heterogeneous real-world cases (see results of these three methods on
and AgroLD datasets in Table 4). The other reason that i-Align has a better performance than the RDGCN and MultiKE
seems to be the fact that it relies more than those on the literals and textual properties of the entities, as we see that both
i-Align and BERT-INT perform better than the other methods for the real-world cases. Furthermore, by comparing the
performance of i-Align and BERT-INT on AgroLD, we can conclude that an interaction training method that uses almost
all textual properties of the entities is the best choice for the case where we have structurally and semantically heteroge-
neous large-scale KGs. Because the interaction training methods mostly rely on the comparison between the properties of
pairs of entities belonging to two KGs rather than comparing them as particles of the large KGs they belong to, we can
conclude that for doing an embedding-based EA task on real-world datasets, a local comparison of the given entities in
two KGs will guide the model to predict higher quality alignments.

Generalizability Assessment. Inspired by prior work on domain generalization (Fan et al., 2024; Gulrajani & Lopez-Paz,
2021), we examine the robustness of existing EA models by evaluating their performance on datasets that differ from
synthetic benchmarks in structure and semantic similarity levels. However, unlike these studies that focus on training on
one domain and testing on a different one, we investigate how well-established EA methods perform when applied to more
heterogeneous and less curated datasets, without altering their training or optimization procedures. To quantify this, we
compute the average Hit@1 on the real-world datasets DOREMUS and AgroLD. As shown in Table 4, BERT-INT reaches
an average Hit@1 of 34.5%, while i-Align, MultiKE, and RDGCN score 28.75%, 2.5%, and 0.675%, respectively. This
superior performance suggests that interaction-based models such as BERT-INT generalize more effectively to hetero-
geneous real-world scenarios compared to structure-dependent embedding models, although further investigation would
be needed to confirm their generalizability across other domains. Overall, our results show that even though embedding-
based models perform very well on some benchmark datasets (e.g., 99.3% of Hit@1 for BERT-INT on DBP15KFR–EN),
it seems that they overfit on the benchmark data.12 Consequently, using these models could lead to errors in producing
alignments in heterogeneous real-world datasets. Hence, we observed how dataset features presented in Table 2 together
with the results of our experiments in this section can justify the gap between the performance of the selected methods on
benchmark and real-world datasets.

5.3.2 Analyzing the Models’ Effectiveness of Inference. In this section, we focus on the capabilities of models in the inference
phase. As a common practice, under the 1-to-1 assumption, models such as RDGCN and BERT-INT consider only a subset
of the reference alignment as a validation set during the model evaluation, ignoring the rest of the space. That corresponds
to the subspace of dark-colored points in Figure 2 (reference alignments). Such under-representation of the search space
undermines the reliability of the reported results, as well as the efficiency of these methods in predicting correct alignments
beyond the validation set. Indeed, some real-world studies have removed the 1-to-1 assumption in dataset generation,
allowing for more complex scenarios with non-matchable entities. However, many EA models still only focus on data
that involves ground truth entities, sometimes even using only ground truth for training. As a result, these models fail to
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Figure 3. Illustration of the search (comparison) spaces of the EA models in the limited case (imposing the 1-to-1 assumption) and
in the extended case (entire graphs). n and m are the sizes of the source and target KGs, respectively. Note. EA= entity alignment;
KG=knowledge graph.

consider the non-matchable entities added to the dataset as candidates. This means the model’s performance remains the
same as if it were working under the 1-to-1 assumption, because it doesn’t effectively handle the additional non-matchable
data. In Figure 3, we illustrate the comparison space of EA models that impose the 1-to-1 assumption during evaluation.
In this context, the similarity matrix used to identify the top-ranked predictions is a square matrix, as depicted by the green
one in Figure 3. This matrix excludes comparisons between entities in the validation set and other entities in the KGs,
such as non-matchable entities and those utilized during training. Later in this section, when we extend the comparison
space—first to compare source-to-target and then to compare target-to-source, the results show a decrease in Hit@1. This
suggests that the best-predicted match in the extended comparison is not always the same as in the more restricted case.
Moreover, for certain entities in the validation set, their most likely alignment may actually be outside the validation set,
highlighting a lack of efficient embedding for these entities.

Therefore, in what follows, we assess the models’ performance on two versions of the datasets: (1) a limited validation
set scenario, and (2) an extended scenario where each source entity’s candidate search space includes a broader set of
entities from the target KG, rather than being restricted to only those in the validation set. In Figure 4, we visualized the
results of our experiments on the performance of BERT-INT and RDGCN. We utilized the repository provided by Leone
et al. (2022) to measure F1-score in the extended case. However, we encountered difficulties in replicating its original
performance when applied to the RDGCN method. As a result, we re-implemented its assignment module to ensure
accurate computation of these metrics. It is important to note that the module presented in Leone et al. (2022) excludes
the portion of the ground truth that had been seen during training as alignment candidates for the entities in the validation
set. In contrast, we applied a stricter condition: we considered all entities from the target KG (including the ground truth
entities used during training) as candidates for aligning with a given entity from the source KG in the validation set.
We make two main observations: although the Hit@1 measure decreases from the limited to the extended search space
case, this decrease is not significant. However, if we look at the F1-score, the situation is drastically different, where an
important drop in performance of the two models can be observed from the limited to the extended search space scenario.

As illustrated by the comparison between the blue and dark-green bars in Figure 4, there is a performance decline of
5.66% and 45.15%, as measured by Hit@1, for RDGCN on the DBP15KFR–EN and SPIMBENCH datasets, respectively,
when the search space is extended. This drop is of 0.5% and 4.3% for the same datasets, respectively, when it comes to
using BERT-INT. Due to RDGCN’s very low performance in the limited scenario, this is not surprising that extending the
candidates’ search space of DOREMUS and AgroLD causes Hit@1 of RDGCN to drop to zero. Furthermore, extending
this space on DOREMUS and AgroLD causes Hit@1 of BERT-INT to drop by 10.8% and 2.6%, respectively. However,
as Leone et al. (2022) pointed out, precision, recall, and F1-score are fairer metrics for evaluating EA tasks. To assess this,
we used their repository13 to test BERT-INT, and we re-implemented the assignment module to calculate these metrics
for RDGCN, by expanding the search space and removing the 1-to-1 assumption. Note that in Leone et al. (2022), the
candidates are chosen from both the validation set and non-matchable entities, not the entire KGs. The results of this
experiment are visualized in light-green bars of Figure 4.

Recall that Hit@1, as shown in Table 4, is equivalent to F1-score under the 1-to-1 assumption, that is, in the limited
search space case, while this equivalence does not hold anymore in the extended case. Comparing the blue and light-
green bars in Figure 4 shows that extending the candidates’ search space to include also the non-matchable entities in
the KGs causes the F1-score of RDGCN to drop by 12.6%, 72.6%, 1.33%, and 0.02% on DBP15KFR–EN, SPIMBENCH,
DOREMUS, and AgroLD, respectively. Similarly, BERT-INT’s performance is decreased by 27.9%, 77.4%, 46.2%, and
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Figure 4. Hit@1 and F1-score of BERT-INT and RDGCN models on the validation data, considering the candidate search space
limited to the reference alignment (shown in blue) or extended to the whole knowledge graph (KG) space (shown in green).

21.1% for the same datasets, respectively. Although we applied a stricter extension condition, looking at Figure 4, we can
see that for the vast majority of cases, Hit@1 is still higher than the F1-score of the models in the extended case. Since
the reduction in F1-score is more notable than the Hit@1, and since the assignment module in Leone et al. (2022) predicts
a pair of entities as an alignment only in the case that those entities are predicted as counterparts in source-to-target and
target-to-source predictions, our results suggest that these models have difficulty making symmetric predictions. These
results also show that embedding-based EA models still encounter generalizability issues and need improvements in order
to be able to find alignments in the realistic search space of the KGs.

6 Conclusion and Future Work
The objective of this work is to build upon and complement recent empirical studies in the field of embedding-based
EA (Fanourakis, Efthymiou, Christophides, et al., 2023; Fanourakis, Efthymiou, Kotzinos, & Christophides, 2023; Leone
et al., 2022; Sun et al., 2020; Zhang et al., 2022), offering a critical perspective on the different models and their limitations,
particularly in relation to the challenges posed by various types of datasets and the evaluation process. Therefore, we aim
for this study to open new methodological avenues, without focusing on proposing a new model.

We conducted an in-depth analysis of the features of several real-world datasets compared to popular benchmark
datasets. Also, we presented an empirical study analyzing the performance of embedding-based EA models beyond test
data and on real-world heterogeneous data. We observed that a number of EA embedding-based models, such as BERT-
INT and RDGCN with very strong performance for the task of EA on the well-known DBP15K dataset, suffer a drop in
performance on real-world data with heterogeneous textual properties. Hence, the results of our study shed light on the
benchmark overfitting issue of EA methods discussed in Roelofs (2019) and Todorov (2019), that is, the scenario where
the model is tuned excessively to perform well on specific benchmark datasets or evaluation metrics, at the expense of its
generalization ability to new, unseen real-world data.

It appears challenging to identify a single structure-related meta-feature that accounts for the performance drops of
all methods across different datasets, as each method captures the structure from a different perspective. Since, however,
heterogeneity is not just limited to diversity in size and degree distribution, we observed the semantic similarity over the
reference alignments to be well-correlated with the performance of EA models that employ a language model, helping
explain the performance issues. Then, by investigating the reasons for performance fluctuations of EA models regarding
the heterogeneities of real-world datasets, we found interaction training models better fit for driving the EA task in real-
world, especially large-scale scenarios. Although interaction training models showed promise on real-world data, we could
not conduct a deeper analysis of how they handle noise and ambiguity, due to time and resource constraints. We leave this
as an important direction for future work.

Most of the existing embedding-based EA methods simplify the inference process by considering the 1-to-1 assumption
(Zeng et al., 2021) and use just a limited portion of the embedding space for the evaluation. This seems to be neither fair nor
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practical when it comes to using them to discover unseen alignments. As a result, there is a need to go toward an inductive
learning EA approach, in which models are trained on pairs of entities from two aligned KGs to predict alignments between
unseen entities belonging to the same KGs, as well as matches between entities in other unseen KGs. By addressing this
challenge, we believe that EA models will be able to uncover a significantly larger number of alignments across different
pairs of KGs.
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Notes
1. While this work was conducted with KGs represented in the resource description format (RDF) format, the research is not restricted

to this paradigm and applies to property graphs as well.
2. Note that the 1 : 1 assumption is sometimes “imposed” by the models, while in many cases it is inherent to the benchmark datasets,

as is the case in the OpenEA datasets, discussed in detail below.
3. The line graph of an undirected graph G is another graph that represents the adjacencies between edges of G. The line

graph of the given graph G is constructed by making a node (vertex) instead of each edge in G. Then, for every two edges
in G that have a vertex in common, we make an edge between their corresponding vertices in the line graph of G. See
https://en.wikipedia.org/wiki/Line_graph.

4. https://oaei.ontologymatching.org/.
5. https://hobbit-project.github.io/OAEI_2022.html.
6. Note that the JS measurements have been multiplied by 100 to show the percentage.
7. https://huggingface.co/google-bert/bert-base-multilingual-cased.
8. Although the amount of semantic similarity for the DBP15K dataset is much higher than that of SPIMBENCH, we visualized

SPIMBENCH because it has much fewer entities, and this facilitates the visualization.
9. https://github.com/dace-dl-anr/Create_Input_Data_to_EA_Models.

10. https://nlp.stanford.edu/projects/glove/.
11. https://fasttext.cc/docs/en/english-vectors.html.
12. Benchmark overfitting, meant as models being too good on benchmark datasets and less so on unseen real-world ones (Todorov,

2019), is not to be confused with data overfitting of models while training.
13. https://github.com/epfl-dlab/entity-matchers.
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