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Abstract

Multimodal Deep Learning enhances decision-making by integrat-
ing diverse information sources, such as texts, images, audio, and
videos. To develop trustworthy multimodal approaches, it is es-
sential to understand how uncertainty impacts these models. We
propose LUMA, a unique multimodal dataset, featuring audio, im-
age, and textual data from 50 classes, specifically designed for
learning from uncertain data. It extends the well-known CIFAR
10/100 dataset with audio samples extracted from three audio cor-
pora, and text data generated using the Gemma-7B Large Language
Model (LLM). The LUMA dataset enables the controlled injection
of varying types and degrees of uncertainty to achieve and tai-
lor specific experiments and benchmarking initiatives. LUMA is
also available as a Python package including the functions for gen-
erating multiple variants of the dataset with controlling the di-
versity of the data, the amount of noise for each modality, and
adding out-of-distribution samples. A baseline pre-trained model is
also provided alongside three uncertainty quantification methods:
Monte-Carlo Dropout, Deep Ensemble, and Reliable Conflictive
Multi-View Learning. This comprehensive dataset and its tools are
intended to promote and support the development, evaluation, and
benchmarking of trustworthy and robust multimodal deep learning
approaches. We anticipate that the LUMA dataset will help the re-
search community to design more trustworthy and robust machine
learning approaches for safety critical applications. The code and
instructions for downloading and processing the dataset can be
found at: https://github.com/bezirganyan/LUMA.

CCS Concepts

« Computing methodologies — Computer vision; Natural lan-
guage processing; Probabilistic reasoning; Supervised learn-
ing; Uncertainty quantification; - Information systems —
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1 Introduction

In recent years, the use of Machine Learning and Deep Learning
has surged across various fields, driving advancements in data
analysis and decision-making. In domains such as healthcare, au-
tonomous driving, and finance, information is distributed across
multiple modalities including audio, video, text, and images. To bet-
ter understand the data and improve decision-making capabilities,
it is crucial for deep learning models to integrate diverse, multi-
modal sources of information. Multimodal Deep Learning (MDL)
addresses this need and improves the capabilities of uni-modal
networks [4, 19, 21, 34].

Another important consideration for deploying deep learning
models in safety critical fields is trustworthiness. Traditional deep
learning models are often overconfident in their predictions [1],
which can lead to catastrophic results in areas such as healthcare or
autonomous driving. Although various techniques for uncertainty
quantification have been proposed to measure the level of uncer-
tainty in data and model, this remains an open and challenging
area. More research and robust benchmarks are needed to advance
the field of uncertainty quantification in deep learning [17, 26].

In probabilistic modeling, uncertainty is usually divided into
aleatoric (data) and epistemic (model) uncertainties [14]. Aleatoric
uncertainty refers to the uncertainty in data due to inherent noise.
It is impossible to reduce the amount of aleatoric uncertainty with
additional data (hence, it is also often called irreducible uncertainty).
Epistemic uncertainty is the uncertainty in model parameters, due
to lack of data, hence, it can be reduced with additional data samples.
Epistemic uncertainty is also usually high for Out-of-distribution
(OOD) data, and is commonly used for OOD detection.

Multimodal uncertainty quantification (MUQ) is a relatively new
research area that adapts uncertainty quantification approaches to


https://github.com/bezirganyan/LUMA/
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multimodal deep learning problems, aiming to enhance the trust-
worthiness of these models [12]. Due to the unsupervised nature of
uncertainty quantification, where the exact extent of uncertainty
in the data and the model is unknown, analyzing and benchmark-
ing proposed MUQ methods is challenging. Current multimodal
datasets used for benchmarking state-of-the-art models in multi-
modal uncertainty quantification [8, 11, 12, 22, 35] lack the ability
to inject a controlled amount and various types of uncertainties for
each modality. This limitation hinders the comprehensive bench-
marking of MUQ techniques, which is essential for developing
trustworthy and robust multimodal deep learning approaches.

To address this challenge, we introduce LUMA (Learning from
Uncertain and Multimodal data), a multimodal dataset specifically
designed for benchmarking multimodal learning algorithms on un-
certain data. The dataset includes 101,000 images, 135,096 speech
audio recordings, and 62,875 text passages, amounting to approx-
imately 3 GB of data. Each modality is independently sourced,
reflecting real-world conditions where data is often collected under
different conditions and times. For example, in medical contexts,
diagnostic data from different modalities such as radiography, MRI,
and ECG/EEG are gathered asynchronously, leading to modality-
specific uncertainties. The modalities are carefully aligned, ensuring
that each text passage is related to the object in the correspond-
ing image, and each audio recording is the pronunciation of the
object label in the image. The provided Python toolkit allows the
injection of aleatoric and epistemic uncertainties in a controlled
and parameterized way into each modality specifically.

To summarize, our contributions are as follows:

(1) We propose LUMA!, a multimodal dataset specifically de-
signed for learning from uncertain data. It includes audio,
image, and textual modalities across 50 distinct classes. We
compiled the images from the CIFAR 10/100 dataset [18],
extracted, validated, and associated audio samples corre-
sponding to the CIFAR image class labels from three diverse
audio corpora [2, 15, 27], and generated the text modality
based on the class labels using the Gemma-7B Instruct [25]
Large Language Model (LLM). We also performed additional
bias analysis of the dataset. Each generated version of the
dataset consists of 600 data records per class (500 for training,
and 100 for testing) belonging to 42 classes, and 3,859 OOD
data points, belonging to the remaining 8 classes.

(2) We offer a Python package? that generates dataset samples
with varying levels of noise and uncertainty. The uncertainty
generator can effectively increase aleatoric uncertainty in
the data and epistemic uncertainty in the model.

(3) Finally, we provide baseline models including three different
uncertainty quantification methods (Monte-Carlo Dropout
[7], Deep Ensemble [20], Reliable Conflictive Multi-View
Learning [35]), to serve as a starting point for benchmarking.

2 Limitations of current Datasets for MDL
benchmarking

In practice, we often don’t know the extent of inherent uncertain-
ties in the data or how accurately they represent the real-world

!https://huggingface.co/datasets/bezirganyan/LUMA
Zhttps://github.com/bezirganyan/LUMA

3783

Grigor Bezirganyan, Sana Sellami, Laure Berti-Equille, and Sébastien Fournier

data space. This often makes it hard to evaluate how well uncer-
tainty quantification algorithms work. Moreover, deep learning
algorithms may behave differently under different amount of un-
certainties (i.e., the robustness to noise may vary). Thus, it may be
beneficial to inject additional amount of noise in the data, and ob-
serve the change in uncertainty metrics and the performance of the
models. Since approaches to quantify different types of uncertainty
vary, it is beneficial to have options for injecting various types of
uncertainties.

Several datasets are used in multimodal uncertainty quantifi-
cation settings. A notable line of work [8, 11, 12] has employed
datasets such as HandWritten3, CUBY, Scene15°, and Caltech101 .
These datasets typically extract different features from unimodal
sources to create a multi-view setup. While they have been instru-
mental, they primarily repurpose unimodal data for multimodal
tasks, underscoring the need for more comprehensive and inher-
ently multimodal datasets to better evaluate uncertainty in deep
learning models.

Furthermore, the current approaches that introduce uncertainty
in the data [8, 11, 12] add Gaussian noise to the views or the ex-
tracted features. While Gaussian noise does increase uncertainty, it
does not accurately reflect the noise that can be found in real-world
datasets and this process lacks fine-grained control over the type
of uncertainty being injected.

Additionally, how different modalities’ uncertainties interact
significantly impacts the overall multimodal uncertainty. When
both modalities encode redundant information, the total uncer-
tainty might not decrease. Conversely, conflicting information can
lead to increased uncertainty, while complementary information
can reduce it. A deeper understanding of these phenomena is cru-
cial. Fine-grained control over individual modalities’ uncertainties
opens the way for more theoretical research based on empirical
observations.

To better understand and analyze uncertain multimodal data, as
well as to debug and benchmark uncertainty quantification tech-
niques in the multimodal learning context, we propose a dataset
accompanied by an uncertainty generator package. This package
includes various techniques for injecting uncertainty, such as con-
trolling data diversity, adding different types of real-world noise,
randomly switching labels to their closest class, and injecting out-
of-distribution (OOD) data.

3 LUMA Dataset

In this section, we introduce LUMA, a dataset composed of an exten-
sible list of modalities including image, audio, and text modalities,
collected from various sources.

3.1 Image modality

For the image modality, our priority was to choose a relatively
simple yet well-known dataset, where we could have the option
to manually increase the degree of uncertainty. For that purpose,
we chose CIFAR-100 and CIFAR-10 [18] datasets since they are

Shttps://archive.ics.uci.edu/ml/datasets/Multiple+Features
*http://www.vision.caltech.edu/visipedia/CUB-200.html
Shttps://serre-lab.clps.brown.edu/resource/hmdb-a-largehuman-motion-database
®https://data.caltech.edu/records/mzrjg-6wc02
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Figure 1: Image collection pipeline

well-known datasets of small 32x32 images, with lots of baseline
models. 42 classes were chosen so that after aligning with the other
modalities, we would have at least 600 samples in each class per
modality. The threshold of 600 classes was selected based on the
number of images per class in the CIFAR-100 dataset. We took
another 8 classes, which had less than 600 samples after aligning
with other modalities, as OOD samples. In total, we took 25,200
images as train/test data, and 3,859 images as OOD data (see the
image collection pipeline in Figure 1).

Aside from the main dataset, as described in Section 3.4, another
priority was to understand the behaviors of models under different
levels of data diversity. To achieve this, we decided to sample 600
data points with different level of diversity from the bigger set
CIFAR-10/100. However, in CIFAR-100 dataset, there are no more
than 600 samples per class. We alleviated this issue with including
images generated with EDM Diffusion-based generative model’ [13].
We chose EDM-generated images, since the generated samples were
already available, and Zheng et al. [36] showed that augmenting
CIFAR-10 data with EDM-generated samples significantly improves
the classification accuracy.

3.2 Audio modality

For audio modality, the diversity of accent in the pronunciation was
an important factor to consider, and we collected samples, where
different people would pronounce the corresponding class label of
CIFAR 10/100 images. For this task, we used three audio/text parallel
corpora and extracted the desired audio segments. More specifically,
we used The Spoken Wikipedia [15], LibriSpeech [27], and Mozilla
Common Voice [2] corpora. The audio collection pipeline is shown
in Figure 2.

The Spoken Wikipedia is a collection of hundreds of hours of
phoneme-level aligned audio, where volunteer readers are reading
various Wikipedia articles. We used these alignments to extract
all the instances of audio segments that pronounced one of the
CIFAR-10/100 classes.

The LibriSpeech dataset is a corpus of 1,000 hours of English
speech, derived from audiobooks from the LibriVox® project, which
is a collection of public domain audiobooks. Unfortunately, Lib-
riSpeech doesn’t provide word-level alignment, hence, we used
force-aligned alignments® generated with the Montreal Forced
Aligner [24]. Similarly to The Spoken Wikipedia, we looked up the
"Retrieved generated samples from https:/github.com/wzekai99/DM-Improves-AT

8https://librivox.org/
“https://github.com/Corentin]/librispeech-alignments
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Figure 2: Audio collection, extraction and validation pipeline

CIFAR-10/100 labels in forced aligned textual data, and extracted
the corresponding audio segments.

The Mozilla Common Voice corpora, is a crowdsourced open-
source collection of voices by volunteer contributors from around
the world. Like LibriSpeech, Mozilla Common Voice also doesn’t
provide word-level alignments, hence, we again used forced aligned
alignments'’, and extracted the relevant audio samples.

73 additional recordings of pronunciations belonging to 4 classes
("roses", "telephone”, "whale", "wolf") were voluntarily contributed
by our colleagues, which were anonymized, trimmed, and added to
the dataset.

From these corpora, we used the following rule to extract the
samples. First, we extended our class label set with a superset that
also contains the plural forms of the words (i.e., for the audio track
“horse”, the audio track “horses” was added to the set), then we
iterated over all aligned transcripts, and for any word included in
the formed set, we extracted the corresponding audio sample. We
considered the plural forms, since we believe that an extra "s" or "es"
does not change the pronunciation of the words much. We did not
consider the plural forms if it requires audible changes to the word
root (i.e., mouse - mice). Since most of the audio data is collected
from forced alignments, it is possible to have misaligned audio
segments, which could introduce additional noise to the dataset.
Moreover, since part of the audio samples are from voluntary con-
tributions, there can be very noisy samples, which are hard to
interpret, or audio samples with a strong accent, which again can
be hard to interpret. To remove such extreme cases in audio sam-
ples, we performed an automatic validation of the samples. Then,
we filtered out the false negatives with manual validation for the
negative predictions.

The automatic validation was achieved with the OpenAI’s Whis-
per Large V3 model [29] for audio transcription, and transcribed
the extracted audio samples. If the transcription corresponded to
the class label (or its plural form), then we considered the sample
as valid. Otherwise, the sample was sent for manual validation.
Because of the huge output space of the Whisper Large V3 model,
the probability of false positives is quite low, so we did not per-
form a manual validation for positive predictions. To summarize,

WOhttps://github.com/JRMeyer/common-voice-forced-alignments
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Figure 3: Number of validated audio samples per class. We
will include the classes with higher than 600 samples as in-
distribution data, and others as out-of-distribution data.

we validated 130,069 out of 178,123 data samples with automatic
validation, and we performed a manual validation for the remaining
samples.

For manual validation, we decided to check only the classes,
which did not have more than 800 samples (to be able to sample
600 samples with different degrees of diversity, as described in
Section 3.4). Hence, we filtered 8,372 samples, and scheduled them
for manual labeling. We opted for Label Studio [31] to build the
labeling interface. The interface provided the audio sample, with
the prompt "Is the audio saying the word below? (An extra’s’ or ’es’
in the pronunciation is okay.)" and answer options of "Yes" or "No".
We asked our colleagues (M.Sc. and PhD students, and professors)
with advanced to fluent English knowledge to annotate the samples.

In total, we collected 2 annotations per sample, from 17 anno-
tators. We got 71.61% annotation agreement and accepted 5,027
samples, where both annotators confirmed the validity of the sam-
ple. Samples with conflicting annotations were rejected. Hence, we
took the 42 classes that had more than 600 validated samples (auto-
matically and manually) as training / test data, and the remaining 8
classes as OOD data. In total, the auto-validated and manually vali-
dated audio samples combined, LUMA has 135,096 audio samples.
The final distribution of audio data across classes can be seen in
Figure 3.

3.3 Text Modality

For text modality, the main constraint was that the text segments
had to talk about the label of the images. For that, we decided to
employ a generative model, and generate text segments about the
class label. We utilized Google’s Gemma-7B Instruct model [25] to
generate more than 1,200 texts samples per class, using 13 different
prompts. The 13 prompts are as follows:

"You are talking with your friend about some topic.
Use the word <word> in a sentence with your
friend. Use casual language. Tone: Casual /
Conversational, length: short",
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"You are the prime minister of the United Kingdom.
During a press conference you are asked a
question about <word>. Give a sentence from that
press conference mentioning the word <word>. Tone

Formal, length: medium",

"You are explaining a five year old child what the
word <word> means. Use very simple and
explanatory language, so the kid will understand
the meaning of the word <word>. Tone: Casual,
complexity: simple",

"Imagine you are writing a science fiction book.
Write a conversation from that book mentioning
the <word>.",

"You are the editor in a mainstream journal. Write a
sentence from a news article about a <word> in
your journal that mentions the word <word>.",

"You are a teenager writing a post in Facebook about
<word>. Write the post about the experience you
had with the <word>.",

"You are playing a word describing game with your
friend. The word is <word>, and you shall
describe it without mentioning the word itself,
so your friend will guess it. Explain it to him
clearly in a simple language.",

"Think of something else that shares similar
characteristics or functions with the <word>.
Draw comparisons or use analogies between that
other word and the <word>.",

"Place the word <word> within historical context. How

would you describe it in relation to its origins
, evolution, or significant historical events? Be
creative in your description.",

"Consider how the word '<word>' is depicted or
referenced in popular culture, literature, or
media. Describe it by referencing these cultural
elements.",

"Pretend you are a character who sees a <word> for
the first time in your life. Describe it from the

character's perspective, considering their
background, personality, and knowledge.",

"Write a 4 line small poem about the word <word>. Be
creative, and use casual tone for the poem.",

"You are a musician composing a song inspired by <
word>. Write the lyrics to the song, capturing
the mood, emotions, and imagery associated with <
word>. Use rhythm and melody to convey the
essence of <word> in your music."

The <word> was replaced with the class labels. Gemma-7B Instruct
was chosen, since according to their technical report [25], it out-
performs other open LLMs with similar size, in 11 out of 18 tasks.
Moreover, in our experiments, it provided responses that we found
more useful for our intended applications than those from Mistral-
7B [10].

To validate that the generated texts accurately represent the
labels, we masked all label occurrences in the text and fed the
masked text back into the Gemma-7B Instruct model, asking it to
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classify the text into one of the labels. Based on the prediction of
the model, if the prediction matched the ground truth label, we
accepted the sample as validated. In total, we accepted 55,953 text
samples.

After manually analyzing some of the generated texts, we noticed
that there were samples with offensive biases and stereotypes, such
as:

A woman is a grown-up person who has a soft,
nurturing personality. She usually takes care of
her family and friends, and sometimes works
outside the home. Women are strong and smart,
they can do many things that men can do.

A tool in a toolbox is an efficient and valuable
asset that aids in various tasks. Similarly, a
man is also a valuable asset to any group or
society. Just like a tool in a toolbox, a man's
capabilities are tailored to fulfill different
roles and functions, making him an essential
component of any endeavor.

Particularly, we noticed a lots of gender bias for classes "man”,
"woman", "boy" and "girl". To find the proportion of the biased
data, we asked the Gemma model to find out if the given text
contains gender, racial, religious, or cultural biases. We found out,
that indeed, the aforementioned 4 classes have a huge amount of
gender bias (See Figure 5). Our hypothesis is, that describing a man
or woman in an unbiased way is a challenging task for LLM models
(as well as for humans), which are trained on unbalanced data [16].
Although the model identified a high level of bias in these classes,
indicating a potential for LLM-based bias detection, we are unable
to assess how accurate or consistent these detections truly are.

Count of Bias Type per Label

woman
T man
L
s girl
boy
Ll T T T
0 5000 10000 15000
Count
Bias Type

Emm Other
Bmm Racial Bias

mmm Cultural Bias
B Gender Bias
BN No Bias

Figure 6: The amount of texts with different biases accord-
ing to Gemma-7B Instruct model, after reconstructing the
prompts for these 4 labels. Although there is still high
amount of bias, we can filter them out and still have enough
unbiased texts (more than 800 text passages per class).

To reduce the biases for the labels of man, woman, boy and girl,
we reconstructed the prompts to explicitly provide topics and key-
words with occupations, which will minimize the bias. The prompt
used is the following:
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Write two sentences with topic: <topic>, and keywords:
<keywordl1>, <keyword2>.

where <topic> was replaced with one of the following words:

‘factual’, ‘fiction’, ‘history’, ‘books’, ‘movies’, ‘philo-

sophical’, and <keyword1> with one of the following words: ‘man’,
‘woman’, ‘boy’, ‘girl’.<keyword2>was treated differently de-
pending on the label: For the term ‘man’, it was replaced with one

of the following words:
-
actor, king, scientist, doctor, wizard, duke, lord,

governor, prime minister, father, sorcerer,
waiter, chess, director, producer, uncle, singer

=

For the term woman, it was replaced with one of the following words:
~
actress, queen, scientist, doctor, witch, duchess,

lady, governor, prime minister, mother, sorcerer,
waitress, chess, director, producer, aunt,
singer

=

For the term boy, it was replaced with one of the following words:

kid, actor, prince, son, nephew, pupil, student,
singer

-

And for the term girl, it was replaced with one of the following
words:

kid, actress, princess, daughter, niece, pupil,
student, singer

We then performed another round of bias detection using the
Gemma model. While we found that a significant amount of bias
still exists, we identified enough unbiased texts (according to the
Gemma model) to include in the LUMA dataset. The number of
biased and unbiased texts after re-generating the data for these 4
classes can be found in Figure 6.

Since textual data was generated using an LLM, we recognize
that the dataset may contain factual inaccuracies, or biases, but
our aim is to offer a benchmark to study uncertainty quantification
in multimodal classification settings. LUMA shall not be used as a
source of knowledge or information.

3.4 Dataset compilation

Based on the collected samples from the 3 modalities (image, text,
audio), we first compiled a clean version of the dataset with min-
imal uncertainty. Our goal was to then provide tools that allow
uncertainty to be introduced on demand. We prioritized flexibility,
offering multiple options for controlling uncertainty through ad-
justable parameters such as data diversity, sample-level noise, label
corruption, and the injection of out-of-distribution (OOD) samples.

3.4.1 Data Diversity. With a fixed number of data points, increas-
ing the diversity of data enhances the information passed to the
model; thereby, it shall reduce the epistemic uncertainty. Con-
versely, when samples are concentrated at a single point in the
latent space, they encode less information, which shall lead to
greater epistemic uncertainty in areas where data is scarce (Figure
8). Hence, controlling the diversity of the data allows us to study
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Figure 7: t-SNE [33] visualization of audio data points from
class "man" (in gray), and sampled points with different di-
versity parameter k. The higher is the value of k, the more
concentrated (less diverse) the points are.

Figure 8: t-SNE [33] visualization of audio data points for all
classes, sampled with different diversity parameter k. With
higher k we have more concentrated samples, and more sep-
aration between classes. The diversity can similarly be con-
trolled for the other modalities.

the behavior of epistemic uncertainties under varying amounts of
information.

To control the diversity, we extract deep features from each
modality (Wav2Vec [3] for audio, BERT [5] for text and VGG-11
[30] for images), and compute the inverse distance of each sample
to the center (mean vector) of its class, raised to the power of k:

1
ﬁa 1 (1)
I 2]

where F represents the deep feature vectors extracted from the sam-
ples, C is the set of data indices belonging to the class, and | - | mea-
sures the cardinality of the set. Then, having the inverse distances,
we sample points from the categorical distribution x, ~ Cat(D). In
Eq. 1, k is the variable controlling the diversity. If k = 0 the sam-
pling is uniform. The bigger k, the higher probability of selection
will be applied to the samples closer to the center.

Having sufficient samples in image and text modalities, our bot-
tleneck was the number of samples in the audio modality. Since
in the 42 in-distribution classes, around 70% have more than 900
audio samples, we considered this enough for diversity control.

i =

eC,

3.4.2 Sample Noise. We want to have an option to inject a con-
trolled amount of noise into the data. This may reduce the informa-
tion in each data sample and increase the classification difficulty.
With our hypothesis, this may affect the aleatoric uncertainty de-
grees. This type of noise can also be very beneficial for estimating
the model’s robustness to noise. We apply different types of noise
to each modality.

For audio modality, we added background noise (Human non-
speech sounds, urban noises, animal sounds, natural soundscapes,
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etc.) from the ESC-50 dataset [28] to each sample, using the audio-
mentations!! library. The amount of the minimum and maximum
signal-to-noise ratio, as well as the proportion of the noisy data, is
set as a hyper-parameter.

For text modality, we utilize the nlpaug [23] library, to add
different types of noise. The user has the option to choose a subset
of noise types from: 1) Keyboard noise that simulates keyboard
distance error; 2) OCR noise that simulates OCR engine noise; 3)
Random character noise to insert, substitute, or delete random
characters; 4) Antonym noise to swap random words with their
antonyms; 5) Random word noise to insert, substitute, or delete
random words; 6) Spelling noise to add spelling mistakes according
to the spellingling mistake dictionary; and 7) Back-translation noise
to translate the text to another language, and then translate back
to English. The parameters of these noise types can be specified by
the user, and are transferred to the nlpaug library for adding the
specific type of noise.

For image modality, we added different types of noise sug-
gested and implemented by Hendrycks and Dietterich [9]. 15 per-
turbations are included such as: adding Gaussian noise, shot noise,
impulse noise, defocus blur, frosted glass blur, motion blur, zoom
blur, snow, frost, fog, changing the brightness, contrast, elasticity,
pixelating, and JPEG compressing. Additionally, common transfor-
mations such as cropping or skewing are not part of the default
set but can be easily applied by the user outside the framework if
needed.

3.4.3 Label Noise. Aleatoric uncertainty can also be introduced by
injecting label noise into the dataset, i.e., by randomly altering the
labels of certain samples. Since this type of uncertainty arises from
inherent noise in the data itself, it cannot be mitigated by increasing
the dataset size and thus directly contributes to the model’s aleatoric
uncertainty.

To inject label noise in a more structured manner, we randomly
select a subset of samples based on a user-defined probability. For
each selected sample, we compute its deep feature representation
using modality-specific encoders: Wav2Vec [3] for audio, BERT [5]
for text, and VGG-11 [30] for images. We then measure the sample’s
average distance to the five nearest samples from each class. The
sample is reassigned the label of the class with the lowest mean
distance, ensuring the new label is still semantically or perceptually
close to the original, thereby creating realistic label noise.

3.4.4 OOD Injection. 1deally, the models shall be uncertain on data
points from unknown distribution (i.e., distribution they haven’t
been trained on). In the literature, often the OOD samples are taken
from another dataset, which can simplify the problem, because such
samples are far from the training data. For this matter, we kept a
separate set of samples from the same dataset, but belonging to
classes that are not present in the training data, as OOD samples.

4 Baseline models with Uncertainty
Quantification

We develop baseline models with three different uncertainty quan-
tification algorithms, to serve as a starting point for other research
and benchmarking initiatives. For the sake of simplicity, we choose

https://github.com/iver56/audiomentations
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late fusion approaches, where we have classification networks for
each modality, and then fuse their decisions by simply averaging the
output logits. These baselines were selected to instantiate unimodal
and multimodal architectures, which can be trained on the dataset
and are not intended to serve as a comprehensive benchmark, nor
did we endeavor to achieve the best possible performance. The
architectures of the baseline models are depicted in Figure 9.

For the image modality, we used a simple convolutional neu-
ral network. For the audio modality, we extracted 128x128 mel-
spectrograms from padded audio samples, and used a convolutional
network for classification. For the text modality, we extracted the
BERT [6] embeddings for each token, and averaged them out, so
that we have one embedding per text passage. Then, we passed
the embedding through a simple feed-forward neural network to
get the predictions. As depicted in Figure 9, each model includes
two output heads: one for the prediction and the other for aleatoric
uncertainty, following the methodology outlined by Valdenegro-
Toro and Mori [32]. Then, to combine the aforementioned unimodal
networks into a multimodal architecture, we adopted the late fusion
approach. In the Monte Carlo Dropout and Deep Ensemble meth-
ods, we obtained the multimodal prediction by averaging the logits
from the final layers of the classifiers. For the Reliable Conflictive
Multi-View Learning (RCML) [35], we modified the output of the
last layer in each network to produce evidence, as described in [35],
and followed their methodology for combining the evidence.

The dropout probability is 0.3, with the deep ensemble compris-
ing 10 networks. Networks were trained for up to 300 epochs, with
early stopping after 10 epochs of no validation loss improvement.

4.1 Uncertainty Metrics

For uncertainty quantification, we implemented 3 approaches: Monte
Carlo Dropout (MCD) [7], Deep Ensemble (DE) [20], Reliable Con-
flictive Multi-View Learning (RCML) [35]. In Monte Carlo Dropout

and Deep Ensembles, we use the aleatoric entropy and the epis-
temic entropy as uncertainty measures, and follow Valdenegro-Toro

and Mori [32] for disentangling the aleatoric and epistemic uncer-
tainties. Hale (y | x) = entropy (pate (y | X)) and Hi(y | x) =

entropy (pEpi(y | X)), where pgp; and paj. are the probabilities ob-
tained according to [32]. For RCML [35], we measure the aleatoric

uncertainty with the expected entropy:

K
By P 1 1] == 3 % (0 a4 1) = Y o +1)), )
k=1 0
where a is the k-th concentration parameter of the Dirichlet distri-
bution, and y is the sum of all concentration parameters. i/ is the
digamma function. As a measure for epistemic uncertainty, we take
aﬁo, where N is the number of classes. We evaluate the measures of
accuracy and uncertainty of the models on the clean dataset, the
dataset with reduced diversity, the dataset with increased sample

noise, and the dataset with increased label noise'?.

4.2 Results

The results are summarized in Table 1. Since uncertainty is quanti-
fied differently in RCML than in MCD and DE, their values cannot

2For noise generation parameters, please refer to our GitHub page
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Table 1: Results for UQ with baseline models. The absolute values are reported for clean dataset, and changes in percentages
relative to clean dataset are reported for the noisy versions of LUMA dataset.

Method Clean Dataset Reduced Diversity Increased Label Noise Increased Sample Noise
Ale.  Epi Ale. Epi. Ale. Epi. Ale. Epi.
MCD Image 1.00 1.03 -15.73% -11.66% +59.20% +54.51% +4.44% +2.18%
MCD Audio 0.52 0.70 -5.54% +2.16% +96.63% +54.49%  +23.12% +14.40%
MCD Text 0.37 1.01 -3.91% -2.62% +93.59% +2.41% +64.96% -2.03%
MCD Multi. 0.26 0.78 -8.52% -1.21%  +122.44% +11.60%  +59.14% +9.89%
DE Image 1.45 1.40 -37.49% -8.54% -7.43% +0.24%  -18.46% -3.22%
DE Audio 0.56 0.99 -27.39% -3.34% +156.40% +50.43% +70.26% +34.41%
DE Text 0.42 1.01 +5.02% -6.15% +81.26% -0.51% +62.24% -7.11%
DE Multi.  0.31 0.82 -22.80% -3.40% +115.15% +20.62%  +45.97% +5.54%
RCML Multi. 1.99 0.43 +8.34% +16.16% +64.72% +106.16% +36.19% +58.21%
Table 2: OOD Detection AUC Values for Different Methods
MCD DE
Method RCML Multi.
Image Audio Text Multi. Image Audio Text Multi.
AUC 0.54 0.47 0.53 0.50 0.54 0.49 0.54 0.50 0.91
Prediction o ) EU Prediction
. o i Y I
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Figure 9: Network architectures used for image, audio and text modalities.

be directly compared, so the table reports the relative changes in
both types of uncertainty with respect to the clean dataset.

As we can observe in the table, in most cases, adding label and
sample noises effectively increases the epistemic and aleatoric un-
certainties. Interestingly, in most MCD and DE models, the uncer-
tainty decreases when they are trained on data with lower diversity.
This may indicate that these approaches fail to recognize data points
outside their training distribution, which we will further investigate
with the OOD detection task.

We evaluate AUC score for OOD detection based on the epistemic
uncertainty. The results are summarized in Table 2. We can see that
Monte Carlo Dropout and Deep Ensembles fail to provide epistemic
uncertainty values suitable for OOD detection in LUMA dataset,
with a poor performance of approximately 0.5 AUC value. On the
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other hand, the RCML achieves an outstanding AUC score of 0.91,
indicating that the epistemic uncertainty values quantified with
this method can be effectively used for OOD detection.

To further evaluate the qualities of the uncertainties of the differ-
ent models, we estimate the epistemic and aleatoric uncertainties
under different amounts of label noise. Ideally, we expect a good
uncertainty quantification algorithm to provide higher uncertainty
values for more noisy data. As we can see from Figure 10, only
RCML consistently raises the uncertainty estimates under increased
label noise, which again shows the higher quality of its uncertainty
estimates over the other baselines.

In Table 3, we present the classification accuracy measures for
the clean dataset and variations in accuracy under different types
of noise for the three baseline models across each modality. We
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Table 3: Classification accuracies for the clean dataset and variations in accuracy under different types of noise.

Model Clean Dataset Reduced Diversity Increased Label Noise Increased Sample Noise
Accuracy Difference in accuracy from the clean dataset
MCD Image 0.335 +0.058 -0.306 +0.019
MCD Audio 0.867 -0.025 -0.784 -0.155
MCD Text 0.965 -0.027 -0.864 -0.144
MCD Multi. 0.991 -0.010 -0.874 -0.063
DE Image 0.387 +0.066 -0.166 +0.019
DE Audio 0.912 -0.003 -0.809 -0.149
DE Text 0.973 -0.023 -0.864 -0.125
DE Multi. 0.996 -0.006 -0.849 -0.042
RCML Multi 0.973 -0.128 -0.833 -0.148

Aleatoric Uncertainty vs Label Noise
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Figure 10: Changes in uncertainty estimations under differ-
ent proportions of label noise (in percentages). The RCML
approach consistently increases both aleatoric and epistemic
uncertainties with increased label noise. In contrast, the MCD
and DE models sometimes fail to increase the corresponding
uncertainty estimations in this experiment.

observe that accuracy always decreases with increasing the label
noise, but reducing diversity and increasing sample noise may not
always decrease accuracy in the image modality.

In conclusion, the performance of Monte Carlo Dropout and
Deep Ensembles indicates a limitation in their suitability for OOD
detection in LUMA dataset. This suggests new avenues for fur-
ther exploratory research to leverage uncertainty estimation for
robust detection of out-of-distribution samples. Furthermore, the
observed disparities highlight the necessity for a comprehensive
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benchmarking effort on LUMA dataset, encompassing a broader
array of state-of-the-art methodologies.

5 Conclusion

In this paper, we propose LUMA, a multimodal dataset for learning
from uncertain and multimodal data. The dataset spans image, au-
dio, and text modalities, and is accompanied by a Python package
that allows users to generate customized versions with varying lev-
els and types of noise and uncertainty. To support future research,
we also provide a suite of baseline implementations for performance
comparison. The dataset can be easily extended with additional
modalities and augmented with more data samples. In the future,
we plan to include dependent modalities, enabling more compre-
hensive studies of uncertainty quantification as well as improved
applicability in information retrieval contexts. The open-source na-
ture of the data compilation pipeline and code for uncertainty and
noise generation facilitates the integration of new contributions
from the community to promote multimodal uncertainty studies
and benchmarking initiatives.
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