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A B S T R A C T

Study region: Casamance, Gambia and Senegal rivers basins in West Africa
Study focus: The challenges in accessing reliable rainfall and hydrometric gauge data in Africa, 
gridded precipitation products (satellite, reanalysis, and in situ) provide exciting opportunities for 
hydrological studies. However, these products are indirect measurements and this requires hy
drological validation of these products in relation to ground observations in order to guarantee 
their relevance and reliability. This study assesses the ability of twenty-three gridded precipita
tion products to develop monthly (GR2M) and daily (GR4J) rainfall-runoff models to simulate 
streamflows in the Senegal, Gambia, and Casamance river basins. The Kling-Gupta Efficiency 
(KGE) and Percentage Bias (PBIAS) metrics were used to evaluate catchment rainfall and 
discharge derived from the 23 products against in situ observations of rainfall and streamflow.
New hydrological insights for the region: Multi-source datasets, integrating satellite, reanalysis, and 
in situ observations, provide better performance for streamflow simulation at both monthly and 
daily time steps. Among the evaluated products, IMERGDF emerges as the most reliable, followed 
by MSWEP, GPCP, and TAMSAT. Conversely, CPC, which relies on interpolated ground data, 
exhibited unexpectedly poor performance. These findings highlight the remarkable performance 
of certain datasets including at a daily time step, establishing their ability to simulate runoff in 
poorly gauged catchments. In the event of inaccessibility or unavailability of observed data, the 
best products of this study can be used for hydrological applications in Senegal’s main 
hydrosystems.

1. Introduction

In the context of climate variability and change, long-term hydro-climatic datasets are essential to characterise water resources 
(Van De Giesen et al., 2014; Nkiaka et al., 2017; Brocca et al., 2020; Qquenta et al., 2023) and support adequate management and 
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allocation of surface waters (Dörfliger and Perrin, 2011). According to the World Meteorological Organization (WMO), in 2019, only 
22 % of rainfall stations in Africa met the requirements of the Global Climate Observing System (GCOS), compared to 57 % in 2011 
(State of the Climate in Africa, 2019). Furthermore, in Senegal, the hydrometric network is outdated and provides limited spatial 
coverage (Faye, 2017). The deterioration of the observation network results in reduced data availability, while existing time series are 
short, fragmented, and difficult to exploit in hydrological studies (Bodian et al., 2016; Faye, 2017). These constraints are further 
compounded by difficulties in accessing daily rainfall in situ data, which are managed by meteorological services and remain costly for 
the academic community (Panthou et al., 2014; Bodian et al., 2016; Faty et al., 2018; Tramblay et al., 2021; Kouakou et al., 2023).

To overcome the challenges related to the availability and accessibility of ground-based observations, gridded precipitation 
products offer new opportunities for hydrological studies (Thiemig et al., 2013; Ashouri et al., 2015). However, precipitation estimates 
derived from satellites, reanalysis, and in situ datasets (interpolated observed data) are indirect measurements subject to spatial and 
temporal uncertainties (Maggioni et al., 2016; Maggioni and Massari, 2018; Satgé et al., 2020). Consequently, these gridded datasets 
require rigorous evaluation against observed data if they are to be applied in operational circumstances. Two main evaluation ap
proaches exist: comparisons with in situ rainfall and hydrological assessments.

Several studies (Dembélé and Zwart, 2016; Satgé et al., 2020; Goudiaby et al., 2024) have directly compared gridded rainfall 
datasets with observed ground-based measurements in West Africa. For instance, Dembélé and Zwart (2016) assessed the reliability of 
7 products (ARC 2.0, CHIRPS, PERSIANN, RFE 2.0, TAMSAT, TARCAT, and TRMM) in Burkina Faso. Similarly, Satgé et al. (2020)
evaluated the performance of 23 gridded precipitation products in West Africa, including ARC-2, CHIRPS v.2, CMORPH, GSMaP, 
MSWEP, PERSIANN, TAMSAT, TMPA, WFDEI, MERRA-2, and ERA-Interim. The work of Goudiaby et al. (2024) focused on a direct 
comparison of 23 gridded precipitation products against field data, specifically for the Casamance, Gambia, and Senegal river basins. 
In general, these authors have shown that the reliability of satellite rainfall varies in time and space due to the complexity of the West 
African rainfall regime. Product performance depends on the analysis time step, the density and quality of reference stations, local 
climatic and topographical conditions, and the estimation methods and correction algorithms used. Products tend to overestimate light 
rainfall and underestimate extreme events, partly due to time differences between the times when ground measurements are tacken 
and the times when the observation satellites pass overhead.

For hydrological validation, various authors (Stisen and Sandholt, 2010; Gosset et al., 2013; Casse et al., 2015; Bodian et al., 2016; 
Gascon, 2016; Poméon et al., 2017; Bâ et al., 2018; Dembélé et al., 2020; Faty et al., 2018; Kouakou et al., 2023) have used 

Fig. 1. Location of the Casamance, Gambia and Senegal river basins: (a) localities and spatial altitude distributions; and (b) sub-basins studied, 
hydrometric and rain gauge stations used, and main infrastructures.
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hydrological models to assess the ability of gridded precipitation products to simulate streamflows, including in West African river 
basins. For example, Gosset et al. (2013) evaluated the ability of 9 products (PERSIANN, CMORPH, TRMM, TMPA 3B42, GSMaP, RFE, 
CPC, EPSAT, and GPCP-1DD) to simulate streamflows in Niger and Benin using the SCS (Soil Conservation Service) method and GR4J 
model, respectively. Similarly, Casse et al. (2015) analyzed the potential of 6 products (CPC, RFE2, TRMM 3B42v7, TRMM 3B42RT, 
CMORPH, and PERSIANN) for flood forecasting in Niamey (Niger) using the ISBA model. These 2 studies show that the products can 
satisfactorily simulate daily flows in some West African basins, reproducing daily flow dynamics using hydrological models such as 
SCS, GR4J and ISBA, confirming their usefulness for hydrological modelling in the region.

In Senegal river basin, Stisen and Sandholt (2010) applied the MIKE SHE model to evaluate 5 products (CMORPH, CCD, CPC-FEW 
v2, TRMM 3B46 v6, and PERSIANN) for flow simulations in the Bafing Makana, Gourbassi, and Oualia catchments. Bodian et al. 
(2016) also used TRMM with the GR4J model to simulate flows in Bafing Makana. Similarly, Faty et al. (2018) used CHIRPS, TRMM 
3B42v7, and PERSIANN-CDR as input data for GR4J to analyze the rainfall-runoff relationship in the Gambia basin.

Studies on rainfall validation have generally shown good agreement between gridded and observed precipitation data. Similarly, 
hydrological validation studies have demonstrated that gridded precipitation products can reasonably reproduce streamflow dynamics 
in West Africa. Furthermore, many studies assess only a limited number of gridded rainfall products and these must be compared 
against field observations across catchments and climatic zones.

To address these gaps, this study investigates the 23 most promising gridded precipitation products against 8 hydrometric stations 
across West Africa catchments. The hydrological evaluation of gridded precipitation data is performed at daily and monthly time steps 
with the GR2M and GR4J global conceptual models, in order to simulate streamflows in eight sub-catchments of the Senegal, Gambia, 
and Casamance river basins.

2. Data, tools and methods

2.1. Study area

This study focuses on eight catchments within the three major hydrosystems of Senegal (Fig. 1b; Table 2). In the Senegal River 
basin, five hydrometric stations are exploited: Bafing Makana, Daka Saïdou, Kidira, Gourbassi, and Oualia. On the Gambia River basin 
two stations are considered, Mako and Kédougou, and one station, Kolda in the Casamance River basin. These hydrometric stations are 
not influenced by dams (Fig. 1b), ensuring natural hydrological conditions for analysis.

The watershed boundaries were delineated using Shuttle Radar Topography Mission (SRTM) data with a 30 m spatial resolution, 
provided by NASA (Farr et al., 2007). From a climatic perspective, the study area spans three biogeographical zones: the Sahelian 
(<750 mm/year), Sudanian (750–<1200 mm/year), and Guinean (≥ 1200 mm/year) zones (Fig. 1). The rainfall regime varies ac
cording to these climatic domains, with a rainy season lasting between three and six months and a dry season lasting between six and 
nine months (Descroix et al., 2015; Faye, 2018; Ndiaye, 2021).

Fig. 2. Inventory of daily rainfall data collected from the three hydrosystems. The color of each tile represents the percentage of missing data, with a 
gradient ranging from dark green (no gaps) to dark brown (total data unavailability).
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2.2. Hydroclimatic data time series

This study relies on daily records of observed rainfall, gridded precipitation datasets, observed streamflow data, and gridded 
maximum and minimum temperature records, which are used to calculate potential evapotranspiration.

2.2.1. Observed rainfall data
The daily rainfall data used in this study were collected from the national meteorological services of Senegal, Mali, Guinea, and 

Table 1 
Characteristics of the twenty-three selected gridded precipitation products.

Data sets Full product name Data 
sources

Types Available 
period

Spatial 
resolution

Temporal 
resolution

References

ARC v2.0 Africa Rainfall Estimate Climatology 
v2.0

IS, S Satellite 1983-P 0.1◦x0.1◦ Daily (Novella and Thiaw, 
2013)

CHIRP v2.0 Climate Hazards Group InfraRed v2.0 S, R Satellite 1981-P 0.05◦ Daily (Funk et al., 2015)
CHIRPS v2.0 Climate Hazard group InfraRed 

Precipitation with Stations v2.0
IS, S, R Satellite 1981-P 0.05◦ Daily (Funk et al., 2015)

MSWEP v2.2 Multi-Source Weighted-Ensemble 
Precipitation V2.2

IS, S, R Satellite 1979-P 0.1◦x0.1◦ 3 h (Beck, Wood, et al., 
2019; Beck, Pan, 
et al., 2019)

TAMSAT v3.0 Tropical Applications of Meteorology 
using SATellite and ground-based 
observations v.3

IS, S Satellite 1983-P 0.0375◦x0.0375◦ Daily (Tarnavsky et al., 
2014; Maidment 
et al., 2017))

GPCP-1DD 
v1.2

Global Precipitation Climatology 
Project 1-Degree Daily Combination 
v1.2

IS, S Satellite 1997-P 1◦x1◦ Daily (Huffman et al., 
2001)

PERSIANN Precipitation Estimation from 
Remotely Sensed Information using 
Artificial Neural Networks

S Satellite 2000-P 0.25◦x0.25◦ 6 h (Hsu et al., 1997; 
Sorooshian et al., 
2000)

PERSIANN- 
CDR v1r1

Precipitation Estimation from 
Remotely Sensed Information using 
Artificial Neural Networks Climate 
Data Record

IS, S Satellite 1983-P 0.25◦x0.25◦ Daily (Ashouri et al., 
2015)

PERSIANN- 
CCS

PERSIANN-Cloud Classification 
System

S Satellite 2003-P 0.4◦x0.4◦ Daily (Hong et al., 2004)

PERSIANN- 
PDIR- 
NOW

PERSIANN-Dynamic Infrared Rain 
Rate near real-time

​ Satellite 2000-P 0.4◦x0.4◦ Daily (Nguyen et al., 
2020)

PERSIANN- 
CCS-CDR

PERSIANN-Cloud Classification 
System- Climate Data Record

IS, S Satellite 1983-P 0.4◦x0.4◦ Daily (Sadeghi et al., 
2021)

CMORPH- 
CRT v1.0

Climate Prediction Center MORPHing 
technique bias corrected v1.0

IS, S Satellite 1998–2019 0.25◦x0.25◦ Daily (Joyce et al., 2004; 
Xie et al., 2007)

RFE v2.0 Climate Prediction Center African 
Rainfall Estimate

IS, S Satellite 2001-P 0.1◦x0.1◦ Daily (Xie and Arkin, 
1996; Herman et al., 
1997)

IMERGDE 
v06

Integrated Multi-satellitE Retrievals 
for GPM (IMERG) Early

IS, S Satellite 2000-P 0.1◦x0.1◦ Daily (Huffman et al., 
2020)

IMERGDL 
v06

Integrated Multi-satellitE Retrievals 
for GPM (IMERG) Late

IS, S Satellite 2000-P 0.1◦x0.1◦ Daily (Huffman et al., 
2020)

IMERGDF 
v06

Integrated Multi-satellitE Retrievals 
for GPM (IMERG) Final

IS, S Satellite 2000-P 0.1◦x0.1◦ Daily (Huffman et al., 
2020)

MERRA-2 Modern-Era Retrospective Analysis 
ForResearch and Applications 2

IS, S, R Reanalysis 1980-P 0.5◦x0.5◦ Hourly (Gelaro et al., 2017; 
Reichle et al., 2017)

ERA5 European Centre for Mediumrange 
Weather Forecasts ReAnalysis 5 
(ERA5)

R Reanalysis 1979-P 0.25◦x0.25◦ Hourly (Hersbach et al., 
2018)

EWEMBI v1.1 EartH2Observe, WFDEI and ERA- 
Interim data Merged and Bias- 
corrected for ISIMIP (EWEMBI)

IS, R Reanalysis 1979–2016 0.5◦x0.5◦ Daily (Lange, 2016)

PGF v3 Princeton University Global 
Meteorological Forcing

IS, R Reanalysis 1979–2016 0.25◦x0.25◦ Daily (Sheffield et al., 
2006)

WFDEI-CRU WATCH Forcing Data ERAInterim 
(WFDEI) corrected using Climatic 
Research Unit (CRU)

IS, R Reanalysis 1979–2018 0.5◦x0.5◦ 3 h/Day (Weedon et al., 
2014)

WFDEI-GPCC WATCH Forcing Data ERAInterim 
(WFDEI) corrected using Global 
Precipitation Climatology Centre

IS, R Reanalysis 1979–2016 0.5◦x0.5◦ 3 h/Day (Weedon et al., 
2014)

CPC v.1 Climate Prediction Center unified v.1 IS In situ 1979-P 0.5◦x0.5◦ Daily (Xie et al., 2007; 
Chen et al., 2008)

In the data source column, IS refers to In situ, S to Satellite, and R to Reanalysis. In the available period column, P indicates Present.
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Gambia. These data are stored in the databases of the Organization for the Development of the Senegal River (in French, Organisation 
pour la Mise en Valeur du fleuve Sénégal (OMVS)) and the Organization for the Development of the Gambia River (in French, 
Organisation pour la Mise en Valeur du fleuve Gambie (OMVG)).

Fig. 2 provides an inventory of the collected data, which includes 137 stations, distributed as follows: 34 stations in the Casamance 
basin, 29 in the Gambia basin, and 74 in the Senegal basin. The quality and duration of these datasets vary between basins, with 
noticeable inconsistencies in data availability. Additionally, many stations exhibit significant data gaps in recent years due to chal
lenges in updating the databases maintained by OMVS and OMVG.

2.2.2. Gridded precipitation data
The characteristics of the gridded precipitation datasets used in this study, along with their corresponding references, are presented 

in Table 1. These same datasets have already undergone point-to-pixel evaluation against rainfall gauges in the study by Goudiaby 
et al. (2024).

2.2.3. Observed hydrological data
In Senegal’s major basins, flow measurements at hydrometric stations are carried out by national hydrological services. Water 

levels are measured by means of limnimetric scales or automatic recorders, such as limnigraphs, thalimeters, pressure or float sensors. 
The gauging required to establish rating curves (head-flow relationships) is often carried out using acoustic current meters (ADCP). 
These curves are regularly updated to estimate continuous flow series. However, as Faye (2017) points out, measurements often have 
gaps and uncertainties due to equipment malfunctions, the low frequency of gauging and the logistical constraints of station 
maintenance.

In this study, daily discharge data for the various catchments were obtained from the Directorate of Water Resources Management 
and Planning (in French, Direction de la Gestion et de la Planification des Ressources en Eau (DGPRE)) for the Gambia and Casamance 
basins and from the OMVS for the hydrometric stations in the Senegal basin. The available time series cover different periods 
depending on the station, between 1952 and 2015. Fig. 3 provides an inventory of the collected streamflow data by gauging stations. It 
highlights the incomplete and discontinuous nature of the datasets, particularly at some stations before the 1960s and extending into 
the late 2010s.

2.2.4. Potential evapotranspiration data
Potential evapotranspiration (PET) is calculated using maximum and minimum temperature data from the National Centers for 

Environmental Prediction (NCEP) reanalysis (NCEP; https://downloads.psl.noaa.gov/Datasets/ncep.reanalysis/Dailies/surface_ 
gauss/, last accessed June 17, 2023) provided by the National Oceanic and Atmospheric Administration (NOAA).

The daily NCEP reanalysis dataset extends from 1948 to the present, providing a long-term dataset for climate studies. The tem
poral depth of NCEP data allows the calculation of evapotranspiration for the studied basins since the 1950s, ensuring consistency with 
the observed rainfall time series and enabling the simulation of basin streamflows over extended periods. Temperature data were 
selected because they generally exhibit stronger correlations with observed measurements, unlike other variables produced by 

Fig. 3. Inventory of daily hydrological data collected from the eight stations used. The color of each tile represents the percentage of missing data, 
with a gradient ranging from dark green (no gaps) to dark brown (total data unavailability).
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reanalysis (Ndiaye et al., 2021). The coordinates of the stations shown in Fig. 1b were used to extract maximum and minimum 
temperature data, which were then used to compute PET.

The temperature-based method of (Droogers and Allen, 2002) is used to calculate potential evapotranspiration (PET) using 
maximum and minimum temperature data extracted from the rain station coordinates (Fig. 1b). This method was selected for its 
simplicity and proven performance in estimating PET in the Senegal basin (Ndiaye et al., 2021). Additionally, the hydrologic models 
used in this study are less sensitive to PET errors (Andréassian et al., 2004; Oudin, 2004). In this context, a simple method based on 
temperature or solar radiation can produce simulation results comparable to those of a more complex method requiring multiple 
climatic variables (Oudin, 2004; Ndiaye et al., 2024). The mathematical formulation of this method is expressed as follows: 

PET = 0.0025 × (T + 16.8) × (Tmax − Tmin)0.5
× Ra 

where T is the mean temperature, Tmax is the maximum temperature, Tmin is the minimum temperature, and Ra is the extraterrestrial 
radiation, determined based on the station’s positional parameters (latitude and altitude).

2.2.5. Hydrologic models
Several types of hydrological models—physical, distributed, semi-distributed, and conceptual—are available in the literature. The 

choice of an appropriate model depends on the study context, input variables, data availability, and model performance (Flores et al., 
2021). Physical models require multiple input variables, many of which are often unavailable in the West African context, limiting 
their applicability. In contrast, global conceptual models require fewer data inputs, making them more suitable for this study. 
Consequently, we selected the Génie Rural (GR) global conceptual models, developed by the Institut National de Recherche Agron
omique et de l′Environnement (INRAE). These models require only rainfall and PET as inputs and their ability to simulate runoff in 
West African catchments has been demonstrated in several studies (Le Lay, 2006; 2011; 2014; Amoussou et al., 2014; Nnomo, 2016; 
Bodian et al., 2018; Faty et al., 2018; Kodja, 2018; Koubodana et al., 2021; Ndiaye et al., 2024). A detailed description of these models 
(Fig. 4) can be found in Mouelhi et al. (2006) for GR2M and Perrin et al. (2003) for GR4J. GR2M is a monthly time-step model with two 
parameters: X1, production reservoir capacity (mm) and X2, underground exchange coefficient (mm). Whereas GR4J is a daily 
time-step model with four parameters: X1, production reservoir capacity (mm); X2, underground exchange coefficient (mm); X3, 
one-day routing reservoir capacity (mm) and X4, HU1 unit hydrograph base time (days). In this study, we used the versions of these 
models implemented in the AirGR package under R (Delaigue et al., 2019).

Fig. 4. Conceptual diagrams of the GR2M model (Mouelhi et al., 2006) and the GR4J model (Perrin et al., 2003).
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2.3. Methods

Fig. 5 summarizes the overall methodology used in this study, which is structured into four key stages. First, observed and gridded 
rainfall and PET are interpolated across the 8 catchments. Secondly, the 23 gridded rainfall values per catchment are compared with 
observed data. Thirdly, hydrological models are calibrated and cross-validated using both ground-based and gridded rainfall data. 
Finally, streamflows are simulated using gridded rainfall over different periods based on the parameter sets obtained in the previous 
step.

Mean observed rainfall and mean PET per catchment are calculated using the Inverse Distance Weighted squared (IDW) method 
(Tomczak, 1998; Bodian et al., 2012, 2020). The interpolated basin rainfall is computed using the IDW method in two ways: first, by 
extracting values at the coordinates of rainfall gauges in Fig. 1b, and secondly, by extracting values from the centroid coordinates of the 
grid cells.

The spatially averaged gridded rainfall values are then compared with the average observed rainfall, and the best-performing 
products are selected for hydrological modeling. The GR4J and GR2M models are initially calibrated and validated with observed 
data, followed by calibration with gridded rainfall datasets. The optimal parameter sets obtained from cross-validation are subse
quently used to simulate basin streamflows using gridded rainfall. A detailed description of each methodological step is provided in the 
following sections.

2.3.1. Calculation of catchment rainfall and PET
Based on the inventory of rainfall gauge data (Fig. 2), a selection of stations per catchment was made to interpolate rainfall for each 

basin. Seven stations for the Bafing, six for the Falémé, eleven for the Bakoye, seven for the Mako, and eight for the Casamance at Kolda 
were selected (Fig. 1b and Fig. 2). In total, thirty-nine stations with time series spanning 1950–2019, and data gaps ranging from 0 % to 
80 % (Fig. 2), were used to calculate observed rainfall averages for the various sub-basins using the Inverse Distance Weighted (IDW) 
method. For gridded precipitation datasets, spatial averages were calculated using the IDW method in two ways. The first approach 
involved extracting values at the coordinates of rainfall gauges in Fig. 1b, here defined as Gridded Products Extracted from Ground 
Station Coordinates (GPEGSC) (Fig. 1b). The second approach, Gridded Products Extracted from Grid Centroid Coordinates (GPEGCC), 
extracted values from the centroid coordinates of the grid cells (Table 2 and Fig. 6). The choice of GPEGCC was motivated by the need 
to generate a evenly distributed rainfall grid at the basin scale, given the low density of ground stations. Table 2 presents the number of 
centroids corresponding to each spatial resolution as a function of basin size, while Fig. 6 illustrates the spatial distribution of centroids 
for the Oualia basin, the largest in terms of surface area. Additionally, the average PET for each basin was calculated using the IDW 
method.

2.3.2. Comparison of catchment rainfall from gridded datasets and observed data
To compare catchment rainfall interpolated from gridded rainfall and observed rainfall, the gridded products were classified into 

Fig. 5. Diagram illustrating the overall methodology used in this study.
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groups based on the temporal depth of their time series. Five groups were defined in Appendix A: group 1 (1984–2019), group 2 
(1998–2019), group 3 (2000–2019), group 4 (2001–2019), and group 5 (2003–2019). This temporal classification takes into account 
the fact that satellite data present a variety of time series, as do the flow series specific to each basin. Here, the average precipitation of 
the basins is compared, but the rest of the assessment is based on hydrological modelling. It was therefore necessary to work on series 
of the same length to ensure consistency between the two stages of the analysis. Thus, these evaluation periods (Fig. 7) vary across the 
basins depending on the overlap between the observed rainfall series and the corresponding gridded products.

The Kling-Gupta Efficiency (KGE, Gupta et al., 2009) and percentage bias (PBIAS) were used as evaluation criteria. These metrics 
were calculated using the hydroGOF package in R (Zambrano-Bigiarini, 2024). To facilitate the visualization of results in heatmaps, the 
optimal values of KGE (1) and PBIAS (0) were taken as reference points. Values of KGE ≤ -1.5 and PBIAS ≥ 100 or ≤ -100 were 
rounded to − 1.5, 100, and − 100, respectively, for consistency in representation. Additionally, the classification by Thiemig et al. 
(2013) was applied to interpret product performance. According to these authors, performance is considered good when KGE is greater 
than or equal to 0.75, average when KGE is between 0.75 and 0.5, and poor when KGE is below 0.5.

The KGE and PBIAS values calculated from catchment rainfall against observed rainfall on a daily scale are presented in Figs. 8 and 
9. Using the GPEGSC approach, the best-performing products include TAMSAT, IMERGDF, PERSIANN-CDR, MSWEP, GPCP, and 
CHIRPS, with KGE values ranging from 0.53 to 0.65 and generally low percent biases. These same products maintain good performance 

Table 2 
Number of centroids used per spatial resolution for each watershed.

Grids Surface 
(Km2)

0.0375◦ 0.04◦ 0.05◦ 0.1◦ 0.25◦ 0.5◦ 0.625◦x0.5◦ 1◦

Basins

Bafing Makana 22420 1516 1338 860 212 48 19 17 8
Daka Saïdou 15061 1008 889 579 146 33 12 12 5
Kidira 28516 1870 1644 1052 259 54 17 16 6
Gourbassi 15681 1065 935 610 168 33 12 11 5
Oualia 87931 5895 5173 3304 812 149 44 40 14
Mako 10569 759 666 424 121 28 9 10 4
Kédougou 7609 554 495 326 91 22 8 8 4
Kolda 3652 260 247 146 45 11 6 4 2

Fig. 6. Coordinates of grid centroids at different spatial resolutions for the Oualia basin.
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using the GPEGCC approach, with KGE values ranging from 0.47 to 0.66 and relatively low estimation biases.
Analysis of Figs. 10 and 11 shows that the best products at the monthly time step are broadly similar to those identified at the daily 

scale, except for CHIRPS with GPEGCC. For GPEGSC, KGE values increase and range from 0.53 to 0.94, with relatively low estimation 
biases (Fig. 10). For GPEGCC, KGE values range from 0.39 to 0.94, with bias percentages indicating a slight underestimation (Fig. 11).

Given the small difference in values between both interpolation approaches, using a single grid for further analysis is justified. 
Considering the number of products with a monthly KGE value > 0.75 across all basins, GPEGSC is slightly superior (45 vs. 43). This is 
coherent with the fact that GPEGSC employs the same density of rainfall observations as observed data. However, GPEGCC performs 
better in four out of eight basins, with one basin showing equal performance. Importantly, GPEGCC by employing a denser network of 
rainfall observations is expected to provide a more accurate estimate of the catchment rainfall. Accordingly, GPEGCC was selected for 
hydrological modeling.

The final objective of this analysis was also to identify the most reliable gridded precipitation products for hydrological modeling. 

Fig. 7. Periods used to evaluate interpolated gridded rainfall against observed rainfall for each basin, for the five gridded rainfall product groups.

Fig. 8. Comparison of catchment rainfall at the daily time step using GPEGSC and observed data. The colors of the product names on the Y-axis 
correspond to the product groups defined in Fig. 7 and Appendix A.
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The selection criterion adopted—excluding any product with a negative KGE across all basins and time steps—resulted in a selection of 
fifteen products out of the twenty-three initially evaluated. The selected products—TAMSAT, PERSIANN-CDR, GPCP, MSWEP, 
IMERGDF, CHIRPS, CMORPH-CRT, CHIRP, CPC, PCCS-CDR, RFE, PERSIANN-PDIR, PERSIANN, and PERSIANN-CCS—stand out for 
their performance and relatively low estimation errors.

2.3.3. Calibration and cross-validation of models
In hydrological modeling, selecting appropriate calibration and validation periods is crucial to ensure the representativeness and 

robustness of the model under different climatic conditions. In this study, the choice was guided by the Standardized Precipitation 
Index (SPI) of observed mean rainfall and basin flow indices, ensuring that both wet and dry years were included in the selected periods 
(Fig. 12).

To achieve this, specific calibration and validation periods were defined for each basin within the period 1984–2015, considering 
the differences in the lengths of data series for rainfall, PET, and streamflow. These periods were preceded by a two-year model 

Fig. 9. Comparison of catchment rainfall at the daily time step using GPEGCC and observed data.

Fig. 10. Comparison of catchment rainfall at the monthly time step using GPEGSC and observed data.
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initialization phase. The models were calibrated on period 1 and validated on period 2, and then the process was reversed and repeated 
using both observed rainfall (Fig. 12) and gridded rainfall (Fig. 13).

The KGE was used as the objective function to optimize model parameters. Cross-validation allowed the identification of the best 
parameter sets governing the rainfall-runoff relationship for each catchment (Bodian et al., 2016).

Finally, these parameters were then applied to flow simulations using gridded precipitation data (GPEGCC) to evaluate their ability 
to reproduce observed streamflows. The KGE and the PBIAS are used to quantify the accuracy of the simulations.

2.3.4. Flow simulation with gridded rainfall datasets
Model calibration and cross-validation using observed and gridded rainfall data allow for the determination of model parameters 

that best capture the rainfall-runoff relationship. These parameters are then applied to flow simulations using gridded rainfall 
products. The objective is to evaluate the capacity of gridded rainfall datasets as input data for hydrological models and to assess their 
ability to simulate streamflows in the studied basins compared to ground-based observations. The KGE and the PBIAS are used to 

Fig. 11. Comparison of catchment rainfall at the monthly time step using GPEGCC and observed data.

Fig. 12. Variation in annual rainfall and streamflow SPIs for the eight basins studied. The green dashed line indicates the calibration and validation 
periods for each basin.
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quantify the accuracy of the simulations.

3. Results

3.1. Analysis of model performance in calibration/cross-validation with observed and gridded rainfall data

Fig. 14 presents the performance of the models during calibration and cross-validation with observed rainfall data. The models 
demonstrate robust performance in calibration across all studied basins, with KGE values generally exceeding 0.75 and PBIAS values 
remaining below 10 % including at the daily time step (GR4J). A modest deterioration in model performance is observed during 
validation (KGE > 0.6), particularly for the Oualia basin, where the decline is more pronounced.

Fig. 15 and Appendix B display the results of model calibration and cross-validation using GPEGCC. During calibration, the models 

Fig. 13. Calibration and cross-validation periods for models using gridded rainfall, classified by rainfall dataset group and basin.

Fig. 14. Model performance in calibration and cross-validation with observed rainfall data. The order of Period 1 and Period 2 follows the cali
bration sequence.
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satisfactorily reproduce observed streamflows at the Bafing Makana, Daka Saïdou, Kidira, Gourbassi, Mako, and Kédougou stations, 
with KGE values generally above 0.75 and PBIAS values often below 10 %. During validation, model performance declines across these 
six basins but remains high for several products including at the daily time step. KGE remain above 0.5 for 6–10 products and above 
0.75 in several basins with TAMSAT, IMERGDF, GPCP, and MSWEP. Results are highest at Bafing Makana and Daka Saidou which are 
the 2 basins with the most complete hydrometric time series (Fig. 3). With GR4J, KGE values decline for a handful of additional 
products but no systematic decline is observed. PBIAS values indicates a tendency toward underestimation.

The results for the other two basins (Oualia and Kolda) exhibit rather unusual behavior in both calibration and validation. The KGE 
values in calibration are lower than those observed for the six other basins, with values generally falling in the range 0.75–0.5. During 
validation, KGE values fall drastically below 0.5, accompanied by high PBIAS values in these basins. Only 1–2 products achieve a KGE 
above 0.5 and only at the monthly scale. PBIAS values reveal an overestimation in Oualia and an underestimation in Kolda.The 
calibration parameters that yield the best results in validation—both with observed rainfall data and GPEGCC—are subsequently used 
to simulate streamflows in the studied basins using GPEGCC.

3.2. Simulation of flows with gridded rainfall datasets using parameters obtained in calibration/validation

The model parameter sets that best capture the rainfall-runoff relationship in cross-validation with observed and gridded data were 
used to simulate streamflows over the entire period of available data for each product and each basin. Fig. 16 presents the KGE and 
PBIAS values of the simulations compared to observed streamflows. Analysis of this figure indicates that the parameters obtained using 
gridded rainfall (GPEGCC) then produce the most accurate simulations with gridded datasets, in contrast to those derived from 
observed data. This highlights the importance of (re-)calibrating the rainfall-runoff models with the gridded rainfall datasets.

Moreover, the parameters obtained from GPEGCC consistently yield the best simulations, though performance varies across basins 
depending on the type of model used. In the Kidira and Gourbassi basins, KGE values range from 0.52 to 0.96, with estimation errors 
generally below 10 %. In the Bafing basin, KGE values range from 0.52 to 0.96, with estimation errors ranging from − 28.7–50.2 %.

In the Gambia basin, at the Mako and Kédougou stations, the parameters obtained with GPEGCC result in the best simulations, with 
KGE values between 0.52 and 0.92. However, simulation errors indicate that GPEGCC underestimates streamflows at Mako and 
Kédougou. For the Bakoye basin at Oualia, the simulations are relatively accurate, though the products also tend to underestimate 
flows. In contrast, for the Kolda basin, the products do not perform well in simulation.

Hydrographs are employed to translate the numerical performance of individual precipitation datasets in reproducing the hy
drological dynamics across the 8 basins. Fig. 17 and Appendix C reveal that the IMERGDF, MSWEP, GPCP, and TAMSAT precipitation 
products, which exhibit relatively high KGE values in simulation, successfully reproduce the general shape of the observed hydro
graphs across the studied watersheds. These products effectively capture the amplitiude and timing of peak flows, demonstrating an 
overall agreement with observed trends. However, in several basins the peak flows occurs up to 1 month earlier and with several 
products estimate an earlier start of the hydrological season. In some catchments low-flow conditions are overestimated, likely due to 
hydrological model calibration and their high sensitivity to low rainfall, which results in higher simulated streamflows during dry 
periods. Conversely, peak flows are underestimated by certain products, partly as a result of rainfall underestimation (Fig. 11) 
especially during intense localized precipiation events, as well as model calibration which may underestimate the watershed’s 

Fig. 15. Model performance in calibration (Period 1) and validation (Period 2) using gridded rainfall (GPEGCC).
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hydrological response to intense rainfall. These findings emphasize that, while the selected precipitation products effectively repro
duce hydrological dynamics on a broad scale, their ability to capture hydrological extremes, even more so at the daily time step, must 
be further investigated.

The average performance of each precipitation product was calculated based on the mean KGE values obtained from all model 
simulations per basin (Fig. 18). Analysis of Fig. 18 indicates that the ranking of products varies across basins, reflecting differences in 
their respective performances. However, some products demonstrate consistent reliability, frequently ranking in either the top or 
bottom half across multiple basins. Overall, IMERGDF, which integrates in situ, satellite, and reanalysis data, emerges as the best- 
performing product considering its consistently high KGE values across basins and time steps. It is followed closely by MSWEP, 
GPCP, and TAMSAT, all of which are composite products combining in situ and satellite data. In contrast, among the multi-source 

Fig. 16. GPEGCC performance in simulation using model parameters obtained in calibration and cross-validation: (A) Observed rainfall and (B) 
GPEGCC-derived rainfall.

Fig. 17. Monthly mean hydrographs of streamflows simulated using GPEGCC with the GR2M model. The asterisk (*) indicates the best-performing 
precipitation products.
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products, PCCS-CDR and PERSIANN-PDIR exhibit the lowest performance.

4. Discussion

The results led to evaluating the performance of 15 widely used precipitation gridded datasets against streamflow from 8 basins in 
West Africa at both daily and monthly time scales. Despite difficulties in a couple of basins, several of the products provided 
encouraging results when used with GR2M and GR4J hydrological models. The four best products (IMERGDF, TAMSAT, MSWEP and 
GPCP) produced mean KGE above 0.75. The highest-performing products in this study exhibit different spatial resolutions (ranging 
from 0.0375◦ to 1◦), suggesting that spatial resolution does not have a decisive impact on their performance in hydrological modelling. 
Streamflow simulation is however not directly influenced by spatial resolution, as long as mean rainfall over the basin is accurately 
estimated (Nkiaka et al., 2017). The quality, density, and spatial distribution of the observation network therefore play a greater role, 
as they directly influence the accuracy of basin-wide rainfall estimates. Here, using the same station network to interpolate both 
observed and gridded rainfall over the catchments improved partially the agreement between rainfall estimates. However, basin-wide 
rainfall assessments remain uncertain in the absence of dense rainfall networks and it is recommended to use GPEGCC to increase both 
the number and spatial distribution of rainfall values exploited (Villarini et al., 2008; Levin et al., 2023). The poor performance of the 
CPC product in this study may be linked to the low density of ground stations and the quality of the raw data used to construct it. For 
instance, only 12 out of 200 operational rainfall stations in Mali transmit reports via the Global Telecommunication System (GTS) 
(Nicholson et al., 2003).

The global conceptual models applied here consider the entire watershed as a homogeneous unit, averaging the hydrological 
balance without explicitly incorporating spatial variations in hydrological processes or input data. This simplification may reduce the 
relevance of spatialized precipitation inputs, such as the gridded rainfall centroids used in this study. The hydrological models used in 
this study also introduce uncertainties. Discrepancies between simulated and observed flows can stem from both model and input data 
uncertainties (Kingumbi, 2006; Kingumbi et al., 2007; Bodian et al., 2016). Flow measurements may also contain errors due to gaps in 
observation records, inaccuracies in rating curves, or missing data periods. Depending on the size and complexity of the watershed, 
hydrological model performance assessments may therefore be misleading (Dembélé et al., 2020). The poor performance of the Kolda 
and Oualia basins can be partly attributed such modelling difficulties. In the Kolda basin, the quality of hydrometric data is notably a 
limiting factor. In fact, the Kolda station began malfunctioning in 2008, contributing to data uncertainty and potential model per
formance degradation. The length of data records may then play a role here as for certain products less than 5 years were available to 
calibration/validation in the Kolda catchment.

In contrast, the largest Oualia basin (87000 km2) spans a vast area covering multiple climatic zones and land uses, producing a 
complex hydrological response which may explain the limited model performance, already observed in Ndiaye et al. (2024). Con
trasting rainfall regimes within different parts of the basin introduce uncertainties in precipitation spatialization and evapotranspi
ration estimates, affecting the consistency of hydrological simulations. For instance, a model may accurately capture hydrological 
dynamics in one region of the basin but fail in other areas with distinct climatic conditions, resulting in over- or underestimations of 
total basin runoff. These two basins are also those with the lowest annual module. When runoff is low, uncertainties in precipitation, 
evapotranspiration, and internal hydrological processes become more significant, leading to deterioration in simulation performance 

Fig. 18. Classification of products according to their performance in GPEGCC basin simulation.
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(Trudel et al., 2017; Dallaire et al., 2021).
Overall, our results indicate strong agreement between satellite precipitation estimates and ground observations for 15 out of 23 

products. These findings confirm the growing potential of gridded precipitation products identified by Gosset et al. (2013) on 
AMMA-CATCH sites, Casse et al. (2015) on the Niger basin, Bodian et al. (2016) on Bafing Makana, Faty et al. (2018) on the Gambia 
basin, and Kouakou et al. (2023) on West and Central Africa. The most valid precipitation products in this study combine in situ and 
satellite data. Similar findings were reported by Kouakou et al. (2023) in West and Central Africa, underscoring the importance of in 
situ observations. Poméon et al. (2017) also demonstrated the high performance of composite datasets in West Africa. Gascon (2016)
found that bias-corrected precipitation products were more robust than raw ones, including in the Senegal River basin (Stisen and 
Sandholt, 2010). Conversely, Bâ et al. (2018) noted that bias-corrected PERSIANN-CDR did not improve hydrological simulations. 
Here bias corrected precipitation products (including CMORPH-CRT) provided acceptable performance (KGE>0.5 in many basins but 
proved below other products.

5. Conclusion

This research aimed to evaluate the suitability of twenty-three gridded precipitation products in rainfall-runoff across eight 
catchments in West Africa, including five sub-basins of the Senegal River (Bafing Makana, Daka Saïdou, Kidira, Gourbassi, and Oualia), 
two of the Gambia River (Mako and Kédougou), and one of the Casamance River (Kolda). Two approaches (GPEGSC and GPEGCC) 
were used to interpolate mean gridded rainfall over each catchment and compare with observed rainfall. The GR2M and GR4J hy
drological models were then applied to assess the capacity of fifteen shortlisted products to simulate observed streamflows at monthly 
and daily time steps.

The best parameter sets from cross-validation were employed to simulate streamflows and the model performance was assessed 
using the Kling-Gupta Efficiency (KGE) and Percentage Bias (PBIAS) criteria.

The results demonstrate that composite precipitation products (integrating multiple data sources) yield here the most accurate 
streamflow simulations. Specifically, the IMERGDF dataset yielded the most accurate simulations, followed by MSWEP, GPCP, and 
TAMSAT. Conversely, the in situ CPC product performed poorly for hydrological modeling of Senegal’s major river systems. Pa
rameters obtained using gridded precipitation data (GPEGCC) produced better simulations than those derived from observed rainfall 
data, highlighting the importance of (re-)calibrating hydrological models with gridded datasets. Gridded precipitation products 
performed particularly well in Bafing Makana but exhibited weaker performance in Kolda and Oualia where low flows, catchment size 
and data quality introduced greater modelling difficulties.

Given the limited availability and restricted access to observed rainfall data, especially in West Africa, our findings suggest that 
IMERGDF, MSWEP, GPCP, and TAMSAT offer valuable alternatives for hydrological simulations. This research also highights the lower 
performance of several products, which must therefore be subject to additional bias corrections and research to be employed in the 
climatic context of the Casamance, Gambia, and Senegal River basins. Future research could explore calibration/validation techniques 
over different time windows to determine the minimum length of hydrological data required for accurate hydrological simulations. 
This is essential for gridded precipation datasets to support reconstructing streamflow time series in poorly gauged or ungauged basins, 
enhancing our understanding of water resources in regions with increasing water demand.
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Amoussou, E., Tramblay, Yves, Totin, Henri S.V., Mahé, Gil, Camberlin, P., 2014. Dynamique et modélisation des crues dans le bassin du Mono à Nangbéto (Togo/ 
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Descroix, L., Djiba, S., Sané, T., & Tarchiani, V. (2015). Eaux et sociétés face au changement climatique dans le bassin de la Casamance: Actes de l’Atelier scientifique 
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term daily satellite-based rainfall dataset for operational monitoring in Africa. Sci. Data 4 (1), 170063. https://doi.org/10.1038/sdata.2017.63.
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