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Abstract
Premise: Deep learning–based classification of herbarium images is hampered by
background heterogeneity, which introduces noise and artifacts that can potentially
mislead models and degrade their accuracy. Addressing these effects is essential to
enhance overall performance.
Methods:We introduce PlantSAM, an automated segmentation pipeline that integrates
YOLOv10 for plant region detection and the Segment Anything Model (SAM2) for
segmentation. YOLOv10 generates bounding box prompts to guide SAM2, enhancing
segmentation accuracy. Both models were fine‐tuned on herbarium images and eval-
uated using intersection over union (IoU) and Sørensen–Dice coefficient metrics.
Results: PlantSAM achieved state‐of‐the‐art segmentation performance, with an IoU of
0.94 and a Sørensen–Dice coefficient of 0.97. Incorporating segmented images into
classification models led to consistent performance improvements across five tested
botanical traits, with accuracy gains of up to 4.36% and F1 score improvements of 4.15%.
Conclusions: Our findings highlight the importance of background removal in
herbarium image analysis, as it significantly enhances classification performance by
enabling models to focus more effectively on the foreground plant structures.
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Plants are a cornerstone of Earth's biodiversity, playing a
critical role in ecosystem stability, carbon cycling, and the
regulation of atmospheric gases (Raven, 2019). However,
this biodiversity is under severe threat from accelerating
climate change and anthropogenic pressures (Soltis, 2017;
Besnard et al., 2018). Natural history collections, particu-
larly herbarium specimens, preserve centuries of plant data
and serve as valuable archives for tracking morphological
traits, species distribution, and long‐term environmental
changes (Meredith, 1996; Besnard et al., 2018; Younis
et al., 2020; Abdelaziz and Walid, 2022; Ariouat et al., 2023).

Large‐scale digitization initiatives have significantly
expanded access to these collections (Sweeney et al., 2018).
Institutions such as the National Museum of Natural
History (Muséum National d'Histoire Naturelle [MNHN])

in Paris now make millions of specimens publicly available
via platforms like ReColNat (https://www.recolnat.org/en/).
Additionally, broader aggregators such as GBIF (https://www.
gbif.org) provide centralized access to global biodiversity data
contributed by institutions worldwide. These digital resources
enable high‐throughput analyses of morphological traits such as
leaf size, shape, and organ presence (Zhang et al., 2022), while
also supporting research in crop quality (Jiang and Li, 2020),
disease classification (Borhani et al., 2022), and soil evolution
(Grasso, 2024). However, fully exploiting these vast datasets
requires robust automatic tools to extract descriptive morpho‐
anatomical information, including specimen‐specific traits such
as organ presence or conservation state (Dhaka et al., 2021).

In recent years, deep learning has emerged as a powerful
solution for such automated analyses (Dhaka et al., 2021;
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Sahraoui et al., 2023; Ariouat et al., 2023, 2025; Sklab
et al., 2024a, 2025a, 2025b). Leveraging advances in con-
volutional neural networks (CNNs) and Vision Transformers
(ViTs) (Lecun et al., 1998; Simonyan and Zisserman, 2015;
Szegedy et al., 2015; He et al., 2016; Krizhevsky et al., 2017;
Dosovitskiy et al., 2021), deep learning models have achieved
strong performance in image classification, object detection,
and segmentation (Krizhevsky et al., 2017; Dosovitskiy
et al., 2021). In botanical research, these methods have been
successfully applied to identify plant organs in herbarium
images (Mochida et al., 2018; Younis et al., 2020; Ariouat
et al., 2025), particularly for segmentation‐based tasks such as
leaf counting, organ detection, and trait extraction (Triki
et al., 2021; Fan et al., 2022; Weaver and Smith, 2023; Wilde
et al., 2023; Sklab et al., 2025a).

Nonetheless, herbarium images present unique chal-
lenges for deep learning–based models due to complex,
heterogeneous backgrounds and visual artifacts, including
labels, scale bars, handwritten annotations, overlapping
structures, and aging effects (Mochida et al., 2018; Sklab
et al., 2024a, 2025a, 2025b; Ariouat et al., 2025). Such noise
can lead models to learn spurious features, thereby reducing
their effectiveness in downstream tasks like species identi-
fication and trait classification (Hussein et al., 2020; White
et al., 2020; Triki et al., 2021; Fan et al., 2022). Isolating the
foreground plant structures (e.g., leaves, stems, flowers, and
fruits) from non‐plant elements is thus essential for im-
proving model accuracy and robustness (Ariouat
et al., 2025; Sklab et al., 2025a).

Various approaches have been proposed to address these
issues. Fan et al. (2022) applied UNet++ (Zhou et al., 2018)
with a ResNet50 backbone (He et al., 2016) to segment Ara-
bidopsis and tobacco leaves, showing good performance on
natural backgrounds but limited generalization to herbarium
images. Triki et al. (2022) developed a segmentation pipeline
based on coarse annotation masks assuming uniform
transparent backgrounds, which restricts its use on complex
specimens. White et al. (2020) employed Otsu's thresholding to
segment ferns, but their method focused on fronds and was not
extended to other organs. Hussein et al. (2020) and Lee et al.
(2025) introduced models targeting specific organs, such as
roots and leaves, without addressing full‐specimen segmenta-
tion. In parallel, object detection pipelines such as GinJinn
(Ott et al., 2020) and GinJinn2 (Ott and Lautenschlager, 2022)
have been designed to detect intact leaves or non‐plant com-
ponents using bounding boxes. Thompson et al. (2023) trained
a YOLOv5‐based model to detect annotations and scale bars,
achieving good generalization with minimal fine‐tuning.
However, these approaches generally lack pixel‐level precision
and remain limited in scope.

A recent effort by Sklab et al. (2025a) introduced
SIM‐Net, a multimodal network that combines CNN‐based
appearance features with 3D geometric cues inferred from
segmentation masks. While the approach improves robust-
ness in regard to background noise and occlusion, it relies
heavily on the availability of high‐quality masks and does not
solve the problem of generating them automatically at scale.

Traditional segmentation models (Hussein et al., 2020;
White et al., 2020; Triki et al., 2021, 2022; Fan et al., 2022;
Weaver and Smith, 2023; Wilde et al., 2023) also face diffi-
culties when confronted with the structural complexity and
visual variability of herbarium images. Recently, foundation
models such as the Segment Anything Model (SAM) (Kirillov
et al., 2023) and its enhanced version SAM2 (Ravi et al., 2024)
have emerged as powerful alternatives. These models leverage
large‐scale pretraining and prompt‐based segmentation to
generalize across domains (Zhang et al., 2023; Zhao
et al., 2023; Chen et al., 2024; Yin et al., 2024). SAM2, in
particular, incorporates architectural refinements and im-
proved prompt integration, making it more robust to the
ambiguous boundaries and intricate structures often seen in
herbarium sheets. Designed for promptable segmentation,
SAM2 generates masks based on user‐ or algorithm‐provided
prompts such as points, boxes, or coarse regions.

Despite their versatility, SAM and SAM2 face limitations
in botanical contexts. They require high‐quality prompts,
struggle with degraded contours and overlapping organs,
and lack scalability without domain‐specific fine‐tuning.
To overcome these challenges, Ariouat et al. (2025)
proposed a UNet‐based model with a ResNet101 backbone
(He et al., 2016), achieving high intersection over union
(IoU) scores on simplified binary background masks.
Yet, this approach proved less effective for specimens with
fine stems or densely packed structures.

In this work, we propose an automatic segmentation
pipeline, PlantSAM, which integrates YOLOv10
(Wang et al., 2024) for prompt generation with SAM2 for
high‐resolution plant segmentation. YOLOv10 provides
bounding box prompts that guide SAM2 in isolating plant
structures from the background. This design eliminates the
need for manual annotation and scales effectively across
large herbarium datasets. Our main contributions are as
follows: (i) we introduce a novel segmentation pipeline
tailored for herbarium specimens, combining object detec-
tion and promptable segmentation; (ii) we fine‐tune SAM2
on a curated dataset to handle domain‐specific challenges
such as background heterogeneity and complex plant
morphologies; (iii) we evaluate segmentation performance
using IoU and Sørensen–Dice metrics, showing significant
improvements over baseline models like UNet (Ariouat
et al., 2025) and standard SAM2; and (iv) we demonstrate
the impact of segmentation on trait classification, achieving
accuracy gains of up to 4.36% and F1 score improvements
of 4.15%. Finally, we incorporate our pipeline into a semi‐
automatic annotation tool, enabling expert‐guided mask
refinement to further enhance dataset quality and usability.

METHODS

Our proposed PlantSAM pipeline, as illustrated in Figure 1,
comprises four phases: patching, plant region detection with
YOLOv10, segmentation with SAM, and unpatching to
recombine the segmented patches into a complete image mask.
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We evaluated both versions of SAM integrated into our
pipeline: the first version (Kirillov et al., 2023), which we refer
to here as SAM1, and SAM2. We used both SAM1 and SAM2
in our experiments to compare their performance with that of
UNet (Ariouat et al., 2025). Although SAM2 consistently
outperformed SAM1 across all benchmarks, we retained
SAM1 in our experiments for comparative purposes. We
denote the pipeline using SAM1 as PlantSAM1, and the one
using SAM2 as PlantSAM2. When referring to the method
generically, we use PlantSAM, which encompasses both var-
iants based on the integration of YOLOv10 with SAM.

Image preprocessing and patching

Each herbarium image, typically around 4000 × 6000 pixels, is
divided into smaller patches to preserve fine structural details
and ensure efficient processing prior to segmentation. This
patching strategy mitigates resolution loss that occurs when
handling the entire image and reduces computational load.
The image patch generation procedure is shown in Box 1. We
begin by loading the image and applying a sequence of mor-
phological operations (specifically, erosion followed by dila-
tion) to refine the visual quality of the mask. This
preprocessing step addresses noise artifacts present in our

initial dataset, which included small, isolated pixel
clusters along the mask boundaries. These artifacts originated
from a previous segmentation pipeline that combined a UNet‐
based model with manual corrections (Ariouat et al., 2025).
We first use erosion to remove these spurious pixels while
preserving the core structure of the plant. We then apply
dilation to recover the slightly eroded edges, enhancing both
the clarity and completeness of the specimen contours.

Once preprocessing is complete, we use the image width
to determine the optimal patch size: 1024, 512, or 256 pixels.
This adaptive strategy allows us to balance the need for
contextual information (with larger patches) against the
risk of including irrelevant regions or losing resolution
(with smaller patches). Selecting the appropriate patch size is
crucial, as smaller patches help reduce background noise but
may exclude important context, whereas larger patches may
include too much irrelevant information, which can hinder
models like SAM that operate with a fixed resolution of
256 × 256 pixels. After patch extraction, we normalize each
patch to have zero mean and unit variance, ensuring that
the input distribution aligns with what the pre‐trained
SAM model expects. Finally, we apply standard data aug-
mentations, such as random flips and rotations, to improve
the model's generalization capacity and the robustness of the
segmentation.

F IGURE 1 The PlantSAM plant region detection and segmentation pipeline for herbarium images. Each image is divided into patches, processed by
YOLOv10 for plant region detection, and segmented by SAM. The segmented patches are then recombined to create a complete plant mask.
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Plant region detection with YOLOv10

In our pipeline, we use YOLOv10 to detect plant regions
within herbarium image patches, identifying component
regions such as leaves, stems, flowers, and fruits. After the
patching step, YOLOv10 processes each patch to produce
bounding boxes around the plant structures. The detection
process handles various challenges, such as overlapping
plant parts, background noise, and artifacts like labels, pins,
or aged paper textures. YOLOv10's bounding boxes effec-
tively capture the spatial extent of the plant regions while
minimizing false positives caused by background elements.
This capability is essential for ensuring better segmentation
in the subsequent step with SAM.

As illustrated in Figure 1, each image patch is processed
to generate bounding boxes that localize plant structures. The
number and size of these boxes vary depending on the
morphological complexity of the specimen. In patches con-
taining multiple distinct plant areas, YOLOv10 generates
several bounding boxes, enabling finer‐grained segmentation.
This multi‐region detection strategy facilitates the isolation of
individual plant components. To train YOLOv10, we used
the Plant Region Detection Dataset (Castanet et al., 2025b),
which we constructed specifically for this task based on a
previously published segmented herbarium image dataset
(Ariouat et al., 2025). To build this dataset, we first split the

segmented herbarium images into smaller patches, then
generated bounding boxes around the plant regions by
detecting contiguous non‐black pixel areas, as the back-
ground in the segmented images is uniformly black. This
process enables automated and consistent annotation. The
final dataset contains 19,078 image patches annotated with
bounding boxes, which are split into groups of 14,307 for
training, 3815 for validation, and 956 for testing.

Segmentation with SAM

We explored two types of prompts for guiding the seg-
mentation process: point prompts and bounding box
prompts. Initial experiments with point prompts proved
ineffective, primarily due to the absence of an automated
method for accurately placing them. In particular, distin-
guishing between positive points (placed on the plant) and
negative points (placed on the background) was challenging.
Additionally, maintaining a proper balance between positive
and negative points introduced further complexity. For
these reasons, we chose to focus on bounding box prompts.

The generated bounding boxes serve as input prompts
for the SAM models, which then generate segmentation
masks for each patch. The segmented patches are then re-
sized and reassembled to reconstruct the full‐resolution
segmentation of the original image. In our study, we
investigated two bounding box prompting strategies:

• Single‐box strategy: A single bounding box is generated to
enclose the entire plant structure within each patch, en-
compassing all visible plant regions. The box is created by
identifying the outermost non‐background pixels in the
mask, forming a rectangle around the complete specimen
(Figure 2A). This strategy is computationally efficient and
requires only one prompt per patch. However, it often
captures surrounding background areas, which may
introduce noise and reduce segmentation precision.

• Multi‐region strategy: This approach generates multiple
bounding boxes, each corresponding to a distinct con-
nected component within the patch. It isolates clusters of
connected foreground pixels more precisely, allowing
finer control over the segmentation (Figure 2B). By fo-
cusing on localized regions, this strategy minimizes
background inclusion and improves segmentation accu-
racy. However, it requires multiple prompts per patch,
increasing computational cost and processing time.

Morphological operations, such as erosion and dilation,
were applied to enhance mask quality by removing prob-
lematic residual pixels and ensuring more accurate detec-
tion of plant structures (Ariouat et al., 2025). We conducted
a comparative study on a set of 19 images selected as rep-
resentative of our dataset, and found that the multi‐region
strategy reduces background inclusion within bounding
boxes by approximately 10% compared to the single‐box
strategy (Figure 3). Therefore, we incorporated it into our

BOX 1 Image processing pipeline overview.

Objective

✔ Split a high‐resolution image into smaller patches after
basic morphological processing (erosion and dilation).

Inputs and Outputs

✔ Input: File path of the image to be processed.
✔ Output: A set of image patches extracted based on

image width.

Processing Steps

✔ Load the image from the specified path.
✔ Apply erosion to the image to reduce noise.
✔ Apply dilation to restore the main structures.
✔ Determine the width of the image.
✔ If the width is larger than 3 × 1024 pixels, split it into

1024‐pixel‐wide patches.
✔ If the width is larger than 3 × 512 pixels, split it into

512‐pixel‐wide patches.
✔ Otherwise, split it into 256‐pixel‐wide patches.

Return

✔ A list of patches corresponding to the size‐based split-
ting strategy.

4 of 14 | PLANTSAM: AN OBJECT DETECTION‐DRIVEN SEGMENTATION PIPELINE FOR HERBARIUM SPECIMENS



pipeline for better segmentation, particularly for complex or
noisy herbarium images.

To fine‐tune the SAM models, we used a curated
subset (Castanet et al., 2025b) of the segmentation dataset (Sklab

et al., 2024b) published in our previous work (Ariouat
et al., 2025); this original dataset was constructed using a semi‐
automatic pipeline combining morphology and deep learning.
The subset included 1476 herbarium specimen images from nine

F IGURE 2 Comparison of the boxing strategies used to generate prompts for segmentation. (A) The single‐box strategy encloses all plant parts in one
bounding box, potentially capturing noise. (B) The multi‐region strategy isolates separate plant structures with multiple boxes, leading to cleaner
segmentation masks.

F IGURE 3 Graph illustrating the comparison of segmentation between the multi‐region strategy and the single‐box strategy, based on the ratio of plant
area to bounding box area. Each value represents the average ratio across all bounding boxes identified within a given image, using a total of 19 images. The
multi‐region strategy achieves a higher average ratio (51.96%) compared to the single‐box strategy (42.01%), indicating improved segmentation performance
by reducing background noise.
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genera and two families, chosen for their high segmentation
quality based on visual inspection. We then generated heat
maps to reveal distinctive spatial distribution patterns of plant
structures on a herbarium sheet for each taxon. These heat
maps highlighted taxon‐specific traits such as density and sur-
face coverage (Figure 4). Each visualization was centered around
the largest specimen representative of the corresponding taxon.
By aggregating and normalizing the segmentation masks across
all images within a taxon, we produced color gradients revealing
the typical spatial positioning of plant structures on the her-
barium sheet. For instance, the heat map for Laurus exhibits a
centralized and dense spatial distribution, suggesting a compact
structure with plant elements predominantly clustered near the
center of the sheet. The heat map for Magnolia reveals a sim-
ilarly centralized and dense configuration, reflecting the com-
pact arrangement and large, broad leaves typical of this genus.
In contrast, Desmodium shows a broader and more dispersed
distribution on the herbarium sheet, consistent with its
branching morphology and scattered, smaller leaves.

The heat‐map patterns are corroborated by quantitative,
per‐taxon measures of plant coverage on herbarium sheets,
computed as the ratio of plant‐pixel count to total image‐pixel
count. We observed significant variation in coverage across
taxa, reflecting differences in plant morphological traits and
the arrangement of the specimen on the herbarium sheet
(Table 1). For instance, Magnolia exhibits the highest average
coverage (19.68%), consistent with its large, broad leaves and
compact structure. In contrast, Convolvulaceae has the lowest
coverage (7.12%), likely due to its more dispersed and slender

growth habit. Other taxa, such as Castanea and Monimiaceae,
show intermediate coverage levels, with values of 17.27% and
14.80%, respectively, illustrating the diversity in plant archi-
tecture present in the dataset. In some specimens, over 90% of
the image consists of background rather than plant material.
This finding quantitatively illustrates the challenge posed by
high background content in herbarium specimen images and
highlights the need for segmentation as a preprocessing step.
Removing the background ensures that downstream models
focus on relevant plant features.

Mask reconstruction

After processing all patches of an image, the segmented masks
were reassembled to create a complete plant mask. This step,
called “unpatching,” involves recombining the segmented
patches to restore the original spatial context of the specimen.
Reconstructed masks, adjusted for patching‐related padding
and refined using multi‐region prompts, improve segmenta-
tion quality by minimizing background noise and preserving
plant structures for downstream analysis.

RESULTS

We assessed the performance of the segmentation pipeline
under both ideal and non‐ideal conditions, focusing
on the comparison between UNet, SAM1, and SAM2. This

F IGURE 4 Heat maps of the plant taxa, generated by combining and normalizing their masks. These visualizations highlight spatial distribution
patterns, density, and surface coverage for each taxon.
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evaluation also considered the impact of combining
YOLOv10 with SAM models using two datasets: a curated
and annotated dataset representing ideal conditions and an
out‐of‐distribution (OOD) dataset (Castanet et al., 2025a)
featuring noisy and complex backgrounds.

Experimental setup

We fine‐tuned both SAM models (SAM1 and SAM2), as
well as UNet (Ariouat et al., 2025), on herbarium images
using the curated segmentation dataset (Castanet
et al., 2025b) and identical training conditions. To miti-
gate class imbalance during segmentation, we employed
the Sørensen–Dice loss as the objective function for
SAM1, SAM2, and UNet. All models were optimized
using the Adam optimizer with an initial learning rate of
10−5, reduced by a factor of 10−1 every 10 epochs, fol-
lowing a cosine annealing schedule. Training was con-
ducted on the curated dataset of 1476 herbarium
segmentation masks (Castanet et al., 2025a), with an 80/
20 split between the training and validation groups.
SAM1 and SAM2 were trained for up to 80 epochs with a
batch size of 1, while UNet (Ariouat et al., 2025) was
trained for a maximum of 100 epochs, with early stopping
based on validation Sørensen–Dice scores. YOLOv10 was
trained for 250 epochs on the plant region detection
dataset (Castanet et al., 2025b), which was split into
14,307 training images, 3815 for validation, and 956 for
testing. All input images were resized to 640 × 640 pixels.
The best‐performing YOLOv10 model achieved a mean

average precision (mAP) of 0.959 at an IoU threshold of
0.5. All training and evaluation were conducted on
NVIDIA A100 GPUs.

Segmentation performance

We evaluated the performance of our pipeline by comparing
PlantSAM1, PlantSAM2, and UNet through three comple-
mentary analyses: quantitative benchmarking with standard
metrics, generalization testing under challenging conditions,
and measuring the impact of segmentation on trait
classification.

Quantitative evaluation

Two primary metrics were used to quantitatively compare
the models across multiple plant taxa: IoU and
Sørensen–Dice coefficient.

• Intersection over union (IoU) measures the overlap
between the predicted segmentation mask and the
ground truth mask. It is defined as the ratio of the
intersection of these two masks to their union. A higher
IoU score indicates a greater degree of overlap, reflecting
more accurate segmentation.

∩

∪
IoU = Intersection(Predicted Mask Ground Truth Mask)

Union(Predicted Mask Ground Truth Mask)

TABLE 1 Comparison of segmentation performance across 11 plant taxa. For each taxon, we report the average plant and background coverage,
IoU and Sørensen–Dice scores obtained with the three models (UNet, PlantSAM1, and PlantSAM2), and their performance improvements (Δ1, Δ2) over
UNet. PlantSAM2 consistently achieves the best results across most taxa, especially for challenging cases with low plant coverage and complex
backgrounds.

Taxon
No. of
images

Coverage (%) IoU Sørensen–Dice score

Plant Background UNet PlantSAM1 Δ1 PlantSAM2 Δ2 UNet PlantSAM1 Δ1 PlantSAM2 Δ2

Magnolia 34 19.68 80.32 0.9497 0.9625 +1.28 0.9656 +1.59 0.9822 0.9769 −0.53 0.9836 +0.14

Castanea 36 17.27 82.73 0.9325 0.9394 +0.69 0.9425 +1.00 0.9772 0.9706 +0.66 0.9788 +0.16

Amborella 5 15.97 84.03 0.9005 0.9387 +3.82 0.9432 +4.27 0.9619 0.9662 +0.43 0.975 +1.31

Rubus 22 15.05 84.95 0.9185 0.9485 +3.00 0.9504 +3.19 0.9714 0.9711 −0.03 0.9798 +0.84

Litsea 17 14.17 85.83 0.9343 0.9299 −0.44 0.9357 +0.14 0.9766 0.9603 −1.63 0.9692 −0.74

Eugenia 40 10.88 89.12 0.9078 0.9275 +1.97 0.9324 +2.46 0.9668 0.9566 −1.02 0.9682 +0.14

Ulmus 53 10.87 89.13 0.8995 0.9360 +3.65 0.9386 +3.91 0.9654 0.96 −0.54 0.9729 +0.75

Desmodium 11 8.09 91.91 0.8337 0.9007 +6.70 0.9018 +6.81 0.941 0.9344 −0.66 0.9528 +1.18

Laurus 53 7.37 92.63 0.9420 0.9558 +1.38 0.9569 +1.49 0.9795 0.9752 −0.43 0.9817 +0.22

Convolvulaceae 25 7.12 92.88 0.8222 0.8698 +4.76 0.8789 +5.67 0.9381 0.9181 −2.00 0.9447 +0.66

Monimiaceae 37 14.8 85.20 0.9356 0.9506 +1.50 0.9531 +1.75 0.9775 0.9698 −0.77 0.9775 +0.00

Note: IoU = intersection over union.
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• Sørensen–Dice coefficient quantifies the overlap between
the predicted segmentation mask and the ground truth
mask. It is computed as twice the intersection divided by
the sum of the areas of both masks. The Sørensen–Dice
coefficient ranges from 0 to 1, where a higher value
indicates better segmentation performance.

Sørensen–Dice coefficient =
2 × Intersection

Area of predicted mask + Area of ground truth mask

We conducted the quantitative evaluation on a separate
test dataset of 333 herbarium images (Castanet
et al., 2025a). PlantSAM2 consistently outperformed both
PlantSAM1 and UNet, achieving an average IoU of 0.94
and a Sørensen–Dice coefficient of 0.97 (Table 1). Signif-
icant improvements were observed for taxa such as Con-
volvulaceae and Desmodium, with PlantSAM2 yielding IoU
gains of 5.67% and 6.81%, respectively, over UNet. In
contrast, performance gains were minimal for taxa like
Litsea, suggesting variability in boundary‐sensitive seg-
mentation performance. Notably, PlantSAM1 was out-
performed by UNet in nearly all cases with respect to the
Sørensen–Dice coefficient (Table 1). We observed a better
alignment between the segmentation masks generated by
our pipeline and the ground truth (Figure 5).

Generalization to challenging conditions

We evaluated the generalization capacity of the models under
challenging conditions using a distinct OOD dataset
(Castanet et al., 2025a) comprising 171 images. These images
included specimens with noisy or colored backgrounds,
intricate plant structures, and artifacts such as pins or over-
lapping components. The dataset featured a variety of
background textures and colors, including mosaic patterns
and yellow, pink, dark gray, and newspaper‐like backgrounds
(Figure 6). PlantSAM2 generated usable masks in over 75%
of cases (Table 2), even in the presence of thin armatures
(e.g., spines, prickles, or thorns) or colored backgrounds.
Usable masks are defined as outputs that, based on visual
evaluation, accurately capture plant structures with minimal
background inclusion or artifacts, preserving the fine details
necessary for downstream tasks such as species identification
or morphological analysis (see Figure 5 for an example). In
contrast, UNet struggled significantly under these conditions,
producing a higher proportion of unusable masks. These
failed segmentations were often caused by excessive back-
ground inclusion, missed plant components, or errors
introduced by overlapping structures or visual noise such as
pins (Figure 7A, B).

We further analyzed the proportion of best‐performing
masks for each condition. PlantSAM2 consistently out-
performed UNet in nearly all scenarios, with particularly
strong results in complex cases such as thin armatures

(73.08%) and long thin armatures (75%). For difficult
background colors such as yellow and gray, it achieved best‐
mask rates of 89.66% and 69.09%, respectively. In contrast,
UNet's performance remained limited, rarely exceeding 25%
across these conditions. PlantSAM2 also demonstrated high
robustness when handling artifacts such as pins, reaching a
success rate of 90.91%. The column labeled “None”
(Table 2) indicates instances where neither model suc-
ceeded, highlighting the persistent challenges in cases with
highly complex backgrounds, such as brown or gray paper.
These difficult cases often featured low contrast and poorly
defined plant contours that impaired segmentation
(Figure 7A, B). Nevertheless, PlantSAM2 reduced the pro-
portion of unusable masks by more than 50% compared to
UNet, confirming its superior generalization and resilience
across diverse and noisy scenarios.

These results should be interpreted with caution, as the
datasets used to compute IoU and Sørensen–Dice scores
were not perfect representations of ideal segmentation
masks. Although they closely approximated the ground
truth, we occasionally observed segmentation outputs from
PlantSAM2 that could be considered improvements over
the original annotations. Paradoxically, such enhancements
sometimes led to lower IoU scores, highlighting a limitation
of current evaluation metrics. To better account for these
discrepancies and gain a deeper understanding of Plant-
SAM's segmentation performance, we extended our analysis
to include classification‐based evaluation.

Impact of segmentation on classification

To investigate the impact of segmentation on deep learning
classification performance, we designed an experiment
using a trait‐annotated dataset comprising herbarium
images labeled for five botanical traits: armatures, fruits,
acuminate leaf tips, infructescence, and acute leaf bases.
Each image was processed using PlantSAM to generate
segmented versions, and we subsequently trained a
ResNet101 model on three variations of the dataset:
(i) unsegmented images (raw, with background), (ii) seg-
mented images (background removed), and (iii) segmented
cropped images (plant regions only).

A key challenge in classifying herbarium images lies in
the dominance of background over plant structures
(Figure 4). Non‐plant elements accounted for more than
90% of some images, increasing the risk of spurious corre-
lations (Table 1). Segmentation helped isolate the relevant
botanical content to mitigate this effect. Table 3 details the
distribution of images across the training and validation sets
for each trait. A further limitation of standard pipelines is
the compression of both plant structures and background
when resizing high‐resolution images to fixed input
dimensions (e.g., 224 × 224), which often leads to a loss of
fine morphological details. Cropping segmented images
helped preserve higher‐resolution features while eliminating
irrelevant regions. This preprocessing led to notable gains in
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classification accuracy and F1 score across all traits
(Table 4). The largest improvements were seen for fine‐scale
features such as armatures, with increases of 4.36% in
accuracy and 2.38% in F1 score. Cropped segmented images

consistently outperformed both raw and unprocessed
segmented images, confirming that background removal
improved the model's focus on informative regions. Overall,
segmentation enhanced both accuracy and robustness by

F IGURE 5 Illustration of the bounding box pipeline, showing the progression from the original image to the ground truth mask (GT Mask), bounding
box–based prompts (Box prompt), and the final segmentation output (Prediction).
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F IGURE 6 Examples of herbarium images with various background types, illustrating the diversity in texture and color found across the dataset. The
backgrounds include (A) slender leaves on a pale background, (B) aged paper, (C) yellow background, (D) pink background, (E) dark gray background, and
(F) Newspaper. This variability in background characteristics poses challenges for segmentation and highlights the importance of robust preprocessing and
model adaptability.

TABLE 2 Comparison of UNet and PlantSAM2 performance across various challenging conditions, highlighting PlantSAM2's overall superior
robustness in producing usable masks under visually complex scenarios. For each condition, we report (i) the number of analyzed images, (ii) the
percentage of usable masks, (iii) the percentage of unusable masks, and (iv) the percentage of best‐performing masks (categorized as best predicted by UNet,
PlantSAM2, or none).

Challenging condition No. of images

Usable masks (%) Unusable masks (%) Best‐performing masks (%)

UNet PlantSAM2 UNet PlantSAM2 UNet PlantSAM2 None

Blue background 11 0.00 9.09 90.91 54.55 9.09 72.73 18.18

Gray background 55 5.45 34.55 67.27 29.09 7.27 69.09 23.64

Yellow background 29 10.34 65.52 48.28 0.00 10.34 89.66 0.00

Brown background 15 0.00 26.67 100.0 53.33 20.0 46.67 33.33

Orange background 3 33.33 33.33 33.33 0.00 33.33 66.67 0.00

Pink background 5 0.00 0.00 40.0 40.0 60.0 40.0 0.00

Thin armatures 26 19.23 61.54 7.69 3.85 23.08 73.08 3.85

Long thin armatures 12 25.0 58.33 41.67 8.33 25.0 75.0 0.00

Long leaves 4 25.0 75.0 50.0 0.00 25.0 75.0 0.00

Pins 11 9.09 90.91 18.18 0.00 9.09 90.91 0.00
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enabling the model to extract more discriminative features
and reducing the influence of irrelevant visual noise.

Semi‐automatic annotation tool for refining
segmentation masks

Our pipeline demonstrates strong potential for integration
into a semi‐automatic annotation tool. While fully auto-
matic segmentation remains challenging for some cases, this
limitation can be addressed through a semi‐automatic
approach where users refine the masks by providing pre-
cise point prompts to SAM. We developed an application
that incorporated the PlantSAM2 pipeline, enabling the
semi‐automatic correction of masks initially deemed
unusable. This process relies on direct interaction with ex-
pert users who guide SAM2 to produce more accurate
segmentation results (Figure 7C). The application serves
two main purposes: correcting poor segmentations pro-
duced by the PlantSAM2 pipeline and enhancing the seg-
mentation of complex cases to expand the training dataset
for fine‐tuning the SAM2 model. Users can upload their
images, which are initially processed by PlantSAM2. The

images are then presented one by one, allowing users to
interact with specific regions by providing point prompts to
SAM2. This interaction transforms unusable masks into
usable ones.

DISCUSSION

In this work, we developed an automatic segmentation
pipeline tailored for herbarium specimens, leveraging object
detection techniques to integrate the strengths of the
Segment Anything Model (SAM) while addressing its lim-
itations. By combining SAM with YOLOv10, we created a
streamlined pipeline that significantly outperformed
traditional models like UNet. The results demonstrated
PlantSAM2's consistent superiority over both UNet
and PlantSAM1 in terms of segmentation accuracy (IoU
and Sørensen–Dice scores) and its ability to generalize to
challenging scenarios, such as colored backgrounds and
intricate plant regions.

Beyond segmentation, we demonstrated the substantial
impact of background removal on classification perform-
ance. By isolating plant structures and eliminating
irrelevant background elements, segmented images im-
proved the accuracy and F1 score of classification models
across all studied botanical traits. Additionally, the
segmentation‐based cropping strategy allowed for better
utilization of image resolution by focusing on relevant
plant regions, preventing the loss of fine morphological
details during preprocessing. These improvements
reinforce the importance of segmentation as a preproces-
sing step for deep learning applications in herbarium
image analysis.

This pipeline represents a technical improvement
while simultaneously providing practical advancements
in herbarium image processing. The integration of a

F IGURE 7 Examples illustrating segmentation limitations and refinements. (A) Original herbarium image with challenging conditions.
(B) Segmentation result showing an unusable mask due to poorly defined contours, low contrast, or inclusion of non‐plant elements. (C) Enhanced
segmentation using a point prompt in the developed application, where user interaction improves the quality of the mask by focusing on relevant regions.

TABLE 3 Distribution of images in the training and validation
datasets for the five studied traits for the classification downstream task.

Trait Training Validation

Armatures 1607 344

Fruits 1623 335

Leaves with acuminate tips 1479 305

Infructescence 1394 302

Leaves with an acute base 1219 256
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semi‐automatic annotation application empowered users to
efficiently refine masks, converting otherwise unusable
masks into usable ones with minimal manual intervention.
This approach could accelerate the image annotation pro-
cess, enabling the rapid generation of new datasets while
substantially reducing the time and labor typically required
for manual annotation.

In conclusion, the combination of SAM2 with an
object detection model and semi‐automatic refinement
tools has expanded the scope of treatable herbarium
images. Future extensions of this pipeline could include
adaptive prompts to further enhance segmentation in
challenging cases or multi‐modal techniques that inte-
grate textual and morphological data. These advance-
ments would support the development of increasingly
sophisticated tools for herbarium data analysis, fostering
broader applications in taxonomy, conservation biology,
and biodiversity research.
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