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Abstract

This article presents an innovative procedure that combines advanced quality control
(QC) methods with machine learning (ML) techniques to produce reliable, continuous,
high-resolution meteorological data. The approach was applied to hourly air temperature
records from six automatic weather stations located around Lake Titicaca in the Altiplano
region of South America. The raw dataset contained time gaps, inconsistencies, and out-
liers. To address these, the QC stage employed Interquartile Range, Biweight, and Local
Outlier Factor (LOF) statistics, resulting in a clean dataset. Two gap-filling methods were
implemented: a spatial approach using time series from nearby stations and a temporal
approach based on each station’s time series and selected variables from the ERA5-Land
reanalysis. Several ML models were also employed in this process: Random Forest (RF),
Support Vector Machine (SVM), Stacking (STACK), and AdaBoost (ADA). Model perfor-
mance was evaluated on a validation subset (30% of station data). The RF model achieved
the best results, with R? values up to 0.9 and Root Mean Square Error (RMSE) below
1.5 °C. The spatial approach performed best when stations were strongly correlated, while
the temporal approach was more suitable for locations with low inter-station correlation
and high local variability. Overall, the procedure substantially improved data reliability
and completeness, and it can be extended to other meteorological variables.

Keywords: Titicaca Lake; air temperature; quality control; machine learning; gap-filling;
data consistency

1. Introduction

Temporal high-resolution climate data introduces significant challenges to maintain-
ing the consistency and reliability of climate records [1,2]. Consequently, rigorous data

Sensors 2025, 25, 7165

https://doi.org/10.3390/s25237165


https://doi.org/10.3390/s25237165
https://doi.org/10.3390/s25237165
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2938-4936
https://orcid.org/0000-0002-0526-1467
https://orcid.org/0000-0003-4324-5772
https://orcid.org/0000-0003-3662-6876
https://orcid.org/0000-0003-3612-1309
https://orcid.org/0009-0002-0251-0007
https://orcid.org/0000-0003-1665-2700
https://orcid.org/0009-0007-2503-5778
https://doi.org/10.3390/s25237165
https://www.mdpi.com/article/10.3390/s25237165?type=check_update&version=1

Sensors 2025, 25, 7165

2 of 20

quality control (QC) procedures are indispensable, both to safeguard data integrity and to
ensure the reliability of downstream applications such as numerical weather prediction,
hydrometeorological early warning systems, drought monitoring, and climate-informed
decision-making [3-7]. While a wide range of QC methodologies have been developed,
varying in scope and complexity, their applicability is not uniform across climatic regions
or dataset structures. Such limitations are particularly acute in regions like the Central
Andes, where the spatial density of Automatic Weather Stations (AWS) remains limited.

Temporal consistency tests are applied to individual time series or, where data avail-
ability and spatial representativeness permit, across neighboring series [8-11]. While basic
statistical measures (e.g., histograms, standard deviation, autocorrelation) describe data
variability and aid in outlier detection, Quality Control (QC) procedures specifically iden-
tify anomalies arising from sensor malfunctions, transmission errors, or even valid extreme
climatic events [10,12,13]. Station-specific QC is therefore critical in remote regions, where
a lack of neighboring stations precludes spatial consistency checks [14].

Commonly used outlier detection algorithms—such as Interquartile Range (IQR),
Biweight, and Local Outlier Factor (LOF)—are effective for non-normally distributed
data [15]. These are supplemented by additional consistency tests, including range checks,
persistence analysis, and step-change detection [16-20].

Quality-controlled time series require gap-filling for continuity [19]. After verifying
that inconsistencies have been properly addressed, machine learning (ML) algorithms are
increasingly used for this task. ML algorithms excel at capturing the nonlinear relation-
ships inherent in complex climatic systems [21,22]. By integrating these physically relevant
predictors, the models significantly enhance the representativeness and statistical reliability
of the gap-filled dataset, surpassing the capabilities of traditional interpolation meth-
ods [23]. This robust output is crucial for subsequent hydro-climatic analysis and extreme
event detection.

Since 2016, a network of AWS has been deployed along the shores of Lake Titicaca in
the Altiplano of South America to provide continuous meteorological records, including
hourly average air temperature (T,;). Ensuring the robustness and temporal consistency of
these records necessitates the implementation of a well-structured workflow and robust
procedures. Recent studies show that global climate change is affecting the Altiplano,
particularly through decreased seasonal precipitation and increased thermal variability,
which threaten the water balance of the Lake Titicaca basin [24]. These trends highlight the
critical need for robust quality-controlled climatic data.

This study primarily aims to generate consistent time-series datasets of hourly T,;,
from continuous automatic data-logger records, while also establishing a methodology for
gap-filling in T,;, observations around Lake Titicaca. The approach integrates temporal
and spatial analyses, supported by auxiliary ERA5-Land reanalysis datasets and machine
learning (ML) models. The workflow includes the following: (i) raw data unification from
all automatic weather stations, recorded at different sampling intervals; (ii) the application
of three robust quality-control (QC) procedures to enhance data quality and reliability;
(iii) consistency tests (CT); (iv) the implementation of four ML techniques for synthetic T,;,
dataset generation, followed by gap-filling to ensure complete consistency.

2. Study Area and Automatic Monitoring

Lake Titicaca, shared by Peru and Bolivia, is situated in the northern Altiplano
(14-17° S, 71-68°> W). It has a 57,000 km? watershed averaging 4000 m.a.s.l. in eleva-
tion [25,26]. With a surface area of 8500 km?, it is South America’s largest lake and
significantly modulates the regional climate due to its size and altitude.
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The regional semi-arid climate features a short rainy season (December—March) and a
prolonged dry season (April-November), with a mean annual air temperature of ~7 °C and
diurnal shore fluctuations from —1.5 to 20 °C [27]. The lake’s surface water temperature
averages 4 °C higher than the daytime air temperature [25]. Northwest—southeast winds
dominate, influencing evaporation, water mixing, and the transport of nutrients and
pollutants [28-30].

These distinctive climatic features result from the complex interaction between atmo-
spheric dynamics, regional geography, and the lake itself, creating a microclimate.

3. Data and Methods
3.1. Data
3.1.1. T,

A high-resolution automatic weather monitoring network was recently established
around Lake Titicaca, consisting of six stations installed between 2016 and 2022 (Table 1,
Figure 1). On the Bolivian side, three stations—Isla-Luna-B, the lakeshore station Huatajata-
B, and the lacustrine station Boya-HidroMet-B—are operated by the Instituto de Hidrdulica
e Hidrologia and the Observatorio Permanente del Lago Titicaca (La Paz). Three stations
on the Peruvian side—Puno-P, lllpa-P, and Ilave-Peru—are operated by SENAMHI-Peru.
The spatial distribution of these stations is shown in Figure 1. With the exception of the
Huatajata-B and Boya-HidroMet-B stations, which are proximal (4.5 km apart), inter-station
distances range from 80 to 250 km.

Table 1. Geographic coordinates and instrumentation details.

Stations

Latitud Altitud Technical Description
(m.a.s.l.)

Isla de Luna,
Bolivia
(Isla-Luna-B)

69° 03’ 44.28" W 16° 02 50.92" S 3812

Campbell Scientific CSRAWS, Logan (Utah), USA.
Equipped with rain gauge (TE525WS-L) [31], probe for
RH/T (CS215) [32], anemometer (A100R) [33], wind vane
(W200P) [33], pyranometer (SP1100) [34].

Huatajata,
Bolivia
(Huatajata-B)

68° 41’ 50.81" W 16° 12/ 41.09” S 3831

Campbell Scientific CSRAWS, Logan (Utah), USA.
Equipped with rain gauge (TE525WS-L) [31], probe for
RH/T (CS215) [32], anemometer (A100R) [33], wind vane
(W200P) [33], pyranometer (SP1100) [34].

Vaisala WXT520, Vantaa, Finland [Vaisala, 2019]. Equipped

.Boya— with rain gauge (OTT Pluvio2) [35], sensors for RH/dew
HidroMet gaug
Bolivia / 68° 40’ 26.76" W 16° 14’ 23.28" S 3811 point/air temperature (HMP110, HMP155) [36],
(Boya-H-B) anemometers (WA15, WMT52, WMT?703) [37],
4 pyranometer (Li-200R) [38].
Vaisala WXT520, Vantaa, Finland [Vaisala, 2019]. Equipped
Puno, Peru o nnt I o ra/ I with rain gauge (OTT Pluvio2) [35], sensors for RH/dew
(Puno-P) 70700743567 W 157497 34.687 5 3820 point/air temperature (HMP110, HMP155) [36],
anemometers (WA15, WMT52, WMT703) [37]
Vaisala WXT520, Vantaa, Finland [Vaisala, 2019]. Equipped
Ilpa, Peru o At I o Ant I with rain gauge (OTT Pluvio2) [35], sensors for RH/dew
(Ilpa-P) 70°04747.28"W 157407512475 3827 point/air temperature (HMP110, HMP155) [36],

anemometers (WA15, WMT52, WMT?703) [37]

Ilave, Pera
(Have-P)

69° 37/ 33.24" W 16° 05 17.52" S 3837

Vaisala WXT520, Vantaa, Finland [Vaisala, 2019]. Equipped
with rain gauge (OTT Pluvio2) [35], sensors for RH/dew
point/air temperature (HMP110, HMP155) [36],
anemometers (WA15, WMT52, WMT703) [37]
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Figure 1. Titicaca Lake basin with automatic climate monitoring stations. The orange line indicates
the Bolivian border, and the blue line outlines the Titicaca basin.

The monitoring network includes stations in lacustrine, littoral, and inland environ-
ments. Significant differences in mean hourly air temperature (T,;.) were observed between
these stations, attributable to the distinct thermal properties of their surroundings. Inland
stations (e.g., Illpa-P, llave-P) exhibited rapid heating and cooling due to the relatively
high thermal conductivity of land surfaces. In contrast, the lacustrine station (Boya-H-B)
demonstrated attenuated temperature fluctuations, consistent with the high heat capacity
of water. A shoreline station (Isla-Luna-B) displayed intermediate thermal behavior.

The raw data contained errors and inconsistencies, such as duplicate records and
heterogeneous sampling intervals (5, 15, 60 min), resulting from differing data acqui-
sition protocols between the operating institutions. To ensure consistency, all records
were resampled to a common hourly time step. Custom Python scripts, developed
using version 3.10, were created to standardize the database by generating regular
hourly time series. The resulting homogeneous dataset spans from 13 September
2019, 00:00 to 7 April 2022, 13:00 for four stations, and from 1 May 2020, 00:00 to
7 April 2022, 13:00 for the remaining two.

3.1.2. ERAA5-Land Hourly Dataset

Missing air temperature (T,;,) data were reconstructed using ECMWEF ERA5-Land
reanalysis data as a secondary source. This dataset provides hourly atmospheric variables
atan 11 km spatial resolution and is widely employed for quality control and climatological
analysis [39,40]. The ERA5-Land variables utilized included air temperature (1,;,), precip-
itation (PP), evaporation (Ew), relative humidity (Rh), solar radiation (Gr), wind speed
(Ws), and potential evaporation (Pe). While ERA5-Land may not fully resolve localized
diurnal cycles or high-frequency variability, its integration with quality-controlled in situ
observations improves T;;, estimates.

To address spatial and temporal gaps, we applied traditional spatial interpolation
techniques, including linear correlation regression (LR), and tested their findings using
machine learning (ML) models (RF, SVM, STACK, and ADA.). These models evaluated the
correlation between T,;, time series across stations and used auxiliary variables from the
ERAS5-Land reanalysis dataset.
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Each model was trained and validated using both Raw and Clean datasets. This pro-
cess included separate stages of calibration, testing, and final validation to
ensure robustness.

3.2. Methods

We employed a multi-step methodology to generate a consistent, homogenous hourly
T,ir dataset for the Lake Titicaca region, as summarized in Figure 2. The flowchart outlines
the sequential stages of data processing, quality control, and gap-filling performed prior to
model evaluation and validation.

pER

f@@
cod B ERE

-

Clean Data
Temporal-Based models Spatial-Based models
Y ¥
Tran - Test Train - Test

Y v v Y
gg SE% AD% STAEKRF

Figure 2. Air temperature modeling framework flowchart.

3.2.1. Quality Control of T,
Robust QC Analysis

Outliers were detected using three non-parametric statistical techniques: The In-
terquartile Range (IQR) [9,41], Biweight, and Local Outlier Factor (LOF) methods [42—44].
These techniques were selected for their ability to detect outliers without requiring assump-
tions about the data distribution. To maximize reliability and minimize false positives, a
conservative approach was adopted: a data point was classified as an outlier only upon
consensus from all three methods. Global outliers were identified through an analysis
of the complete temporal record for each station [45-47]. A consistency test (CT) with
predefined magnitude thresholds was also applied to identify persistent faults indicative
of sensor malfunction.

Based on the quality control (QC) and CT results, two dataset versions were generated:
a complete raw data version retaining all original measurements, and a clean data version
with all identified outliers and faulty readings removed.
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Interquartile Range (IQR)

This approach efficiently mitigates the influence of distribution tails while preserving
information about extreme events, ensuring that these phenomena do not disproportion-
ately affect statistical estimates. It is widely used in climate data quality control because
the IQR is robust against outliers. While some identified outliers may represent erroneous
data that can be removed or treated as missing, others are physically meaningful [48].
This balance allows retention of important extreme-event information while reducing the
likelihood of bias. This method is particularly suitable for environmental data, which often
exhibit non-normal and skewed distribution [49].

In this study, extreme values were trimmed using predefined thresholds:
Pout75 = q 75 + k- IQR, Pout25 = q;,5 — k:IQR, where q; ;5 and q ,5 are the third and
first quartiles, and IQR is the interquartile range. Following Tukey [50], we set k = 3 to
identify extreme outliers.

Biweight Approach

This method employs a robust statistical approach, using the median and the me-
dian absolute deviation (MAD) to redefine traditional measures of central tendency and
dispersion, reducing sensitivity to outliers [51]. Data points are weighted based on their
proximity to the median, with weights symmetrically decreasing as a function of their
Median Absolute Deviation (MAD)-scaled distance [52], minimizing the influence of ex-
treme observations [52]. Potential outliers are classified by their biweight Z-scores; values
exceeding 3, 4, or 5 standard deviations are assigned escalating flags to indicate increas-
ing levels of suspicion. This stratified system facilitates the prioritization and review of
anomalous data.

Observations were normalized using a scaling constant. Consistent with the estab-
lished literature, which recommends values of C between 6 and 9 [51], a value of C =7.5 was
initially tested. Subsequent sensitivity analyses indicated that C = 7.1 yielded stable and
statistically consistent results, and was therefore adopted for the final implementation [17].

Local Outlier Factor (LOF)

The Local Outlier Factor (LOF) algorithm is a non-parametric, unsupervised method
for identifying local outliers. Its core principle is the detection of points with a local density
significantly lower than that of their nearest neighbors, making it particularly effective
for heterogeneous datasets with uneven cluster densities [44,53]. The algorithm operates
by calculating a continuous anomaly score (the LOF) for each point based on the relative
density of its k-nearest neighbors, typically using Euclidean or Manhattan distance [45].
This score provides a nuanced measure of deviation, allowing for the distinction between
weak and strong outliers rather than applying a binary classification [54].

Consistency Test of T,;,

To complement robust outlier identification, we performed a comprehensive consis-
tency check on the hourly air temperature (T,;,) data, implementing four specific tests as
recommended by established methods [16-20]:

1.  Range Test: It identifies and removes all T,;, values that fall outside the acceptable
range based on long-term observational data. The thresholds for this test, defined as
TLOW and THIGH, were derived from the DECADE database [55], which contains
extensive historical Tj;, records from a conventional weather network which has been
monitoring the Lake Titicaca region since 1972.
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2. Step Test: It checks the excess movement between consecutive hourly T;;, values at
1-, 2-, 3-, 6-, and 12-h intervals against limits of 4, 7, 9, 15, and 25 °C, respectively, to
identify unrealistic rates of change.

3. Persistence Test (Flat Line Test): A series of identical values over a
three-hour window—indicative of sensor malfunction—was flagged, a duration se-
lected due to the high intra-diurnal T,;, variability at this latitude.

3.2.2. Gap-Filling of T,
Gap-Filling on Linear Correlation Regression

Meteorological data gap-filling commonly employs linear correlation regression (LR)
or the normal ratio method, which require high correlation with a proxy station [56]. To
select the most suitable stations for imputation, pairwise R? and RMSE were first calculated
using both the raw and cleaned datasets, allowing identification of the best candidate
stations. Among the six stations considered, only Huatajata-B and Boya-H-B exhibited
sufficient spatial correlation. The other stations, located over 50 km away, were excluded
due to low correlations. However, proximity alone is insufficient; topographic and climatic
heterogeneity must also be considered to ensure reliable imputations [57-59].

Gap-Filling on ML Models

We employed four machine learning (ML) algorithms known for their effectiveness
in modeling complex, nonlinear climate relationships: Support Vector Machine (SVM),
Random Forest (RF), AdaBoost (ADA), and Stacking (STACK) [23,60,61]. Environmen-
tal variables from the ERA5-Land reanalysis database (T/,;,, Pp, Ew, Ws, Wd, and Pe)
were used. These variables are commonly accepted as an influential predictor in many
hydrometeorological modeling activities [39,40,62,63].

e  Support Vector Machine (SVM): Implemented with a polynomial kernel of degree 3, a
penalty parameter C = 1, and a kernel coefficient of 1 [64].

e Random Forest (RF): This ensemble method aggregates predictions from multiple
decision trees trained on random subsets of data and features, reducing variance
and improving generalization. The model was configured with 90 and 100 trees, a
maximum tree depth of 9, 6 samples to split an internal node, and a maximum of
3 features per split.

o AdaBoost (ADA): This iterative ensemble method combines weak learners by increas-
ing the weight of misclassified instances, effectively reducing bias. The set-up used
80 estimators with a learning rate of 1.0, an approach proven effective for environmen-
tal regression tasks [65,66].

e  Stacking (STACK): This advanced ensemble technique integrates the predictions of
base models (SVM and RF in this study) using a meta-model to generate a final, refined
prediction, leveraging the strengths of each constituent algorithm.

Model Training and Evaluation

To evaluate the gap-filling performance of the Machine Learning (ML) models and
Linear Correlation Regression (LR), the dataset was partitioned into a 70% training set
and a 30% independent (validation) test set, a standard practice in environmental
modeling [67,68]. This hold-out validation scheme assessed the models’ ability to gen-
eralize to unseen data. The analysis was conducted under two data quality scenarios to
determine the impact of preprocessing: (1) raw data: the original, unprocessed time series;
(2) clean-data: the time series after quality control (Section 3.2.1).

Model performance was evaluated on the validation set using three statistical met-
rics: the coefficient of determination (R?), which quantifies the proportion of variance in
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observed temperature values explained by the model; root mean squared error (RMSE),
the typical magnitude of prediction error (°C), and bias, the average systematic over- or
under-estimation of temperature values by the model. These indicators provide a gen-
eral view of predictive accuracy, error magnitude, and systematic deviation, respectively.
Their calculation followed standard formulations (Equations (1)=(3)), where y;, ;, and ¥;
represent the observed, predicted, and mean values, respectively.

1)

4. Results

The data in Table 2 is a very detailed description of every T,;, time series from our
six different weather stations from the perspective of quality control. This table explains
the coverage period of the data in each station, the percentage of data per station that was
not captured, the total records of the captured raw data, the number of outliers detected,
and the results after some basic tests of consistency. As seen in Table 2, the completeness
of the raw data among the stations was varied, mainly based on the availability of data.
Particularly, the highest percentages of missing data were seen in the Illpa-P and Boya-H-B
stations, 5.87 and 7.73 percent, respectively. The rest of the stations, on the other hand,
depicted little to no significant missing data, and the degree of data completeness relating
to T, measurements was very high.

Table 2. Summary of outliers and erroneous values from integral analysis.

Weather Monitoring Network

Description Huatajata-B~ Boya-H-B  Isla-luna-B Puno-P Illpa-P Ilave-P
2019-09- 2019-09- 2019-09- 2019-09- 2020-05- 2020-05-
Record period 13T00 13T00 13T00 13T00 01T00 01T00
2022-04- 2022-04- 2022-04- 2022-04- 2022-04- 2022-04-
07T13 07T13 07T13 07T13 07T13 07T13
Gaps, % 0.00 7.73 0.00 0.30 5.87 0.09
raw data records 22,502 20,763 22,502 22,435 15,962 16,942
Outlier values from raw data 143 200 265 229 156 190
(0.77%) (0.96%) (1.18%) (1.02%) (0.98%) (1.12%)
Consistency tests *
Range test Tlow < Tair < Thigh 0 0 0 0 0 10
Persistency test ThTh-1Th-2Th-3 0 0 0 4 7 3
Step test ITh-Th-11 <4 171 1 3 210 953 359
I Th-Th-21 <7 20 0 0 35 1109 392
ITh-Th-31 <9 4 0 0 20 1291 543
| Th-Th-61 <15 0 0 0 7 1046 244
ITh-Th-121 <25 0 0 0 0 25 0
Erroneous values from consistency tests 187 001 003 252 2803 1098
(0.831%) (0.005%) (0.013%) (1.123%) (17.560%) (6.481%)
Overlapping values with outliers 9 - - 18 32 20
clean data 22,142 20,562 22,234 21,944 13,003 15,654

* The values obtained from the persistency test and the step test were not considered for the time serial clean data.
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4.1. QC Analysis and Consistency Test
4.1.1. Interquartile Range, Biweight, and LOF

To determine outliers in the hourly T, three means of quality control were put in
place by looking at the six time series that were obtained from the weather stations; these
were the Interquartile Range (IQR), Biweight, and the Local Outlier Factor (LOF). A data
point was only identified as an outlier when it emerged as such in at least two of these
methods. The determined outliers reflect T,;, values that did not align with the normal
hourly distribution and were removed from the raw data. The summary of these outlier
values can be seen in Table 2. The most outlying point’s decile was established in Isla-
Luna-B (1.18%), and was 265 units removed from other T,;, data points. The smallest
percentage was recorded in Huatajata-B (0.77%), which had 143 T,;, changes in values that
were extracted out of the raw data.

4.1.2. Consistency Test Values

A number of consistency tests were carried out to check the validity and conciseness of
the T,;, time series data; in particular, aiming at faulty values, outliers, and time-sequential
uniformity among all stations. These tests were as follows: 1: range test; 2: persistency
test; 3: varying time lag step tests (1, 2, 3, 6, and 12 h). No violations were observed in
the range test except in Illpa-P, which had 10 occurrences. The sensitivity of the step tests
was, however, higher for detecting inconsistencies, especially in Illpa-P and Ilave-P. As an
example, the 1-h step test marked out 5.97 and 2.12 percent of the values at these stations as
discrepant, respectively. On the contrary, the results obtained for Boya-H-B and Isla-Luna-B
demonstrated little inconsistency (0.005% and 0.013%, respectively), which supports the
effectiveness of the 1-h step test in identifying sudden and possibly erroneous changes
in temperature. After these quality control (QC) and consistency testing (CT) activities,
we came up with a clean data T,;, set of data for each station. The statistical outliers were
eliminated using robust techniques, i.e., Interquartile Range, Biweight, and Local Outlier
Factor, to create the quality-controlled dataset (QC). ST-data—The additional data from the
registered data points linked to the sharp and temporary changes in temperature detected
in the course of the step tests were rejected. The processed datasets were performed
more carefully, thus providing a more useful base from which later examination may be
performed, such as data gap estimation and filling.

4.1.3. Station-Specific Data Quality Observations

Table 2 shows that there is a large disparity between the quality of data presented by
different AWS. These differences are due to variations in maintenance frequency, sensor
types, or protocols used during the data recording process. For example, Huatajata-B and
Isla-Luna-B exhibited no missing data and very low error rates, whereas Illpa-P showed
the highest percentage of errors in the consistency tests (17.56%) with a data omission rate
of 5.87%. The reduction in step test errors with extended time lags (2-12 h) was particularly
notable at Illpa-P and Ilave-P, especially at shorter time lags. This may be attributed to
a trend-breaking slip in temperature and possible intermittent sensor failures or a local
microclimate anomaly. The low overlap rate between the outliers and the results of the
consistency tests suggests that these two methods identify different types of data issues.
However, it remains insufficiently explored how locally applicable these types of errors are.

4.2. Gap-Filling Performance
4.2.1. Spatial Gap-Filling Approach of T;,

This technique for gap filling is the traditional one, wherein the proxy solutions are
applied by using the linear correlation regression (LR) to relatively analyze the temporal
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series at neighboring stations [56]. Table 3 shows that the combination of pairwise compar-
isons among the six raw data series that exhibits the highest coefficient of determination
(R?) [69] is the correlation between these series, as the measured R? is equal to 0.96 and the
corresponding RMSE averages out to 5.49 °C. These findings imply that a few T,;, time
series may be gap filled with the simple LR model (especially those where R? is near to
0.90). Tables 3 and 4 compare the spatial models that have a high correlation (R? up 0.96)
with some of the AWS around Lake Titicaca, which makes the use of spatial interpolation
ideal as the main method for gap filling. Although the linear regression model (LR-Spatial)
provides satisfactory results, the Random Forest model (RF-Spatial) presents high values of
R? and low RMSE in all stations, especially with preprocessed clean data. This means that
the nonlinear or complicated temperate combinations will not be represented satisfactorily
by linear regression, and more benefits are likely to be identified using machine learning
models such as RF-Spatial [22].

Table 3. R? and RSME values for all time series of T,;, raw data.

Huatajata-B Boya-H-B  Isla-Luna-B  Illpa-P Ilave-P  Puno-P

Boya-H-B 0.89/1.70
Isla-Luna-B 0.84/2.23 0.79/1.89
Nllpa-P 0.90/3.76 0.85/4.65 0.74/5.49
Ilave-P 0.91/2.20 0.87/2.94 0.79/3.66 0.96/2.31
Puno-P 0.88/1.83 0.81/2.35 0.84/2.36 0.89/3.68 0.92/2.06 0.92/2.06

Table 4. RZ and RMSE values when using LR and RF models at spatial scale.

Huatajata-B Boya-H-B Isla-Luna-B Illpa-P Ilave-P Puno-P

Raw-

Clean- Raw- Clean- Raw- Clean- Raw- Clean- Raw- Clean- Raw- Clean-

data data data data data data data data data data data data
R?/
LR-Spatial 0.901 0.916 0.825 0.840 0.792 0.818 0.939 0.950 0.952 0.957 0.892 0.933
RF-Spatial 0.913 0.923 0.844 0.858 0.815 0.829 0.945 0.952 0.956 0.959 0.911 0.939
RMSE/
LR-Spatial 1.142 1.122 1.071 1.069 1.035 0.991 1.581 1.488 1.077 1.059 1.335 1.084
RF-Spatial 1.065 1.071 1.011 1.007 0.978 0.963 1.497 1.457 1.034 1.035 1.217 1.033

The results of two spatial gap-filling models, LR-Spatial (Linear Regression Spatial),
and RF-Spatial (Random Forest Spatial) are presented on Figure 3 and Table 4 using raw
data and clean data. The predictive performance of clean data is quite high, particularly
with the RF-Spatial model. Using clean data, the range of RMSE (Root Mean Square
error) was 0.978 °C at Isla-Luna-B and 1.497 °C at Illpa-P, and RF-Spatial always beats
LR-Spatial. At the Huatajata-B station, RF-Spatial achieved an R? of 0.923 as compared
t0 0.916 and RMSE 1.071 as compared to 1.122 in degrees Celsius. The minimum RMSE
was 0.963 °C recorded at Isla-Luna-B with RF-Spatial. The beneficial feature of data
preprocessing is obvious, since in most cases where raw data and clean data were compared,
there was an undoubtedly higher level of correctness in the results obtained from the
clean data. This shows that intensive quality control before modeling is warranted [70].
Moreover, at other stations such as Isla-Luna-B and Ilave-P, the RMSE decreases significantly
(0.1-0.2 °C) between LR-Spatial and RF-Spatial with clean data, underlining the added
value of machine learning in spatial air temperature (T;,) analysis.
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Figure 3. Pairwise comparisons between ERA5 reanalysis data and cleaned temperature observations
for each station. Each subplot displays the relationship for one station, with corresponding coefficients
of determination (R?) and Root Mean Square Errors (RMSE) shown within the plots.

4.2.2. Temporal Gap-Filling Approaches on T,;,

Temporal gap-filling of air temperature (1;;,) was assessed based on the performance
of different machine learning algorithms (Random Forest (RF), Support Vector Machine
(SVM), AdaBoost (ADA), and a Stacked Ensemble Model (STACK)) alongside SVD-DE.
These models were trained on raw data as well as quality-controlled data (clean data), and
the data was divided into training and testing parts. The training set had a mean of 9.71 °C
(SD: 3.43 °C, range: —2.81 °C to 21.37 °C) and the testing set had nearly the same statistics
(mean: 9.70 °C, SD: 3.40 °C, range: —2.25 °C to 19.90 °C). The statistical similarity of the
subsets provided a reliable evaluation of the model.

RF performed the best, or among the best overall among all the stations with the
highest R? and the lowest RMSE in terms of training with clean data. The best performance
was observed at the Illpa-P station, with R? of 0.951 and RMSE of 1.422 °C. In contrast, the
lowest was observed at the Isla-Luna-B station, with R? of 0.810 and RMSE of 0.985 °C, see
Figure 4. These findings remind us of the significance of preprocessing the data, since the
accuracy of the models increased greatly after preprocessing. RF turned out to be the most
reliable algorithm used in T,;, gap filling, especially when quality-controlled data were
used to train it.

Although ERA5 was an effective auxiliary dataset, it was not effective as a gap filler
in the Lake Titicaca region at all. Figure 3 shows very low values of R* compared to clean
data, which implies an insignificant agreement. It was found that ERA5 had systematic
biases (over- or under-estimation) in some of the AWS stations, and performance varied
spatially depending on the closeness to the lake, topography of the area, and elevation
level. Also, Figures 5 and 6 indicate that ERA5 has difficulty reconstructing the diurnal
temperature patterns, especially in the early morning and late afternoon.

Finally, Table 5 provides the evaluation indicators of the machine learning models
used by the Titicaca stations, with the ERA5-Land variables. In total, all tested models,
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including SVM, RE, ADA, and STACK, demonstrated a good level of accuracy in terms
of the relatively low value of the RMSE and high values of R?. Interestingly enough, the
R? value of Random Forest was highest, meaning that it had a better ability to capture
nonlinear dynamics of temperatures. AdaBoost was also good in terms of bias reduction,
which was evident in their lower RMSE levels. The general improvement of performance to
all models when the ERA5-Land variables are used testifies to the importance of performing
multi-source data assimilation, further proving why it has become so essential in enhancing
temperature modeling.
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Figure 4. Comparison between observed and predicted T,;, generated by the spatial and temporal
analysis, based on the clean-data dataset.
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Table 5. Comparison of (a) R? and (b) RMSE performance metrics for Random Forest (RF), Support
Vector Machine (SVM), AdaBoost (ADAB), and Stacking (STACK-RF) models across different model
scenarios on the testing dataset.

Huatajata-B Boya-H-B Isla-Luna-B Illpa-P Ilave-P Puno-P
Rawdata  Cleandata Rawdata Cleandata Rawdata Cleandata Rawdata Cleandata Rawdata Cleandata Rawdata Cleandata
RZ
RF 0.876 0.883 0.830 0.837 0.793 0.810 0.944 0.951 0.938 0.946 0.908 0917
SVM 0.794 0.808 0.755 0.762 0.741 0.753 0.887 0.891 0.883 0.895 0.860 0.867
ADAB 0.807 0.830 0.736 0.757 0.702 0.735 0.898 0.920 0.883 0.907 0.846 0.876
STACK 0.874 0.881 0.828 0.835 0.791 0.806 0.943 0.949 0.937 0.945 0.906 0915
RMSE
RF 1.197 1.158 1.001 0.974 1.040 0.985 1.446 1422 1173 1.100 1.155 1.098
SVM 1.540 1.485 1.200 1.178 1.164 1124 2.056 2113 1.605 1.536 1422 1.385
ADAB 1.491 1.396 1.247 1.189 1.249 1.165 1.952 1.810 1.607 1452 1.492 1.336
STACK 1.207 1.169 1.005 0.979 1.046 0.995 1.464 1441 1.182 1111 1.169 1.105
Table 6 offers the values of bias between the model types, ERA5, RF-Spatial, and
RF-Temporal, compared to the clean data at various meteorological stations. ERA5 displays
much greater values of bias (varying between —1.260 and 1.251), which points to the rates of
over- and under-estimations between individual stations. In sharp contrast, the RF-Spatial
and RF-Temporal machine learning models have much lower bias. The bias of RF-Spatial
is between —0.064 and 0.047, whereas the RF-Temporal model’s range of bias is between
—0.076 and 0.013. These findings are very indicative of the fact that Random Forest models
perform better in terms of bias reduction compared to ERA5.
Table 6. Bias values, compared to the clean data across several meteorological stations.
Clean Data Huatajata-B Boya-H-B Isla-Luna-B Illpa-P Ilave-P Puno-P
ERA5 —1.021 —0.998 —1.224 1.251 —0.678 —1.260
RF-Spatial —0.033 —0.030 0.012 —0.006 0.047 —0.064
RF-Temporal —0.076 —0.046 0.013 —0.054 —0.032 0.005

5. Discussion

The combined use of global (IQR, Biweight) and local (LOF) outlier detection methods
improves sensitivity to different types of anomalies. Each method responds to distinct data
characteristics. Global methods focus on overall climatological distributions, while local
methods assess deviations relative to nearby observations.

Requiring a data point to be flagged by all three methods significantly reduced false
positives and improved detection reliability; however, this criterion may also increase false
negatives, meaning that real anomalies may be overlooked if they are not consistently
detected by all algorithms. This conservative approach emphasizes robustness and con-
fidence in the identified outliers but may miss extreme values that are only captured by
a specific method. Nevertheless, given the objective of ensuring high data quality data
for subsequent analyses, this strategy represents a deliberate choice that prioritizes de-
tection reliability over the exhaustive identification of all possible anomalies [71]. This
limitation is inherent to multi-method approaches and highlights the importance of using
complementary evaluation metrics to assess detection performance more comprehensively.

Moreover, the gap-filling evaluation showed that the RF model achieved bet-
ter results compared to the other tested algorithms, particularly when applied to
clean data (see Table 5). These results highlight the importance of data quality, as
both spatial and temporal gap-filling performance improved significantly after remov-
ing outliers and inconsistencies. In spatial RF based on inter-station correlations,
a reduced dispersion was observed at stations like Huatajata-B, Isla-Luna-B, Ilave-
P, and Puno-P, likely due to sthe trong correlations between neighboring stations
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(see Table 4). In contrast, the temporal RF model yielded better results for stations like
Boya-H-B and Illpa-P where local meteorological variability and data scarcity limited the
effectiveness of spatial interpolation.

Both gap-filling approaches, spatial (based on data from nearby stations) and temporal
(based on the station’s own time series), showed high performances, with R? values consis-
tently above 0.8 and RMSE close to 1 °C. This represents a substantial improvement over
ERAS5, which showed larger errors (~2 °C) and lower correlations, see Figure 3. The spatial
approach generally yielded better results, with higher R* and lower RMSE compared to
the temporal approach. For example, in Huatajata-B, R? increased to 0.923 and RMSE
decreased from 1.158 to 1.071. In contrast, Illpa-P showed minimal variation between
methods (R? from 0.951 to 0.952; RMSE from 1.422 to 1.457).

In the spatial approach, the homogeneity of the observed data and the availability of
nearby stations are key factors. In contrast, the temporal approach leverages the extensive
coverage of ERAS data to provide stability in areas with sparse station networks. Both
methods show good statistical performance for gap filling. Figure 4 shows the comparison
of T,;, estimates from two Random Forest models: (a) spatial (RF-Spatial); and (b) temporal
(RF-Temporal). These results support the use of a hybrid approach, applying spatial
models where nearby stations show strong correlations, and temporal models where such
correlations are weak or station data are limited.

Figure 5 presents annual hourly boxplots (0-23 h) comparing observed temperatures
(clean data) with predictions from spatial and temporal models for each AWS. The models,
particularly Random Forest (RF), accurately replicate hourly variations, including medians
and interquartile ranges, effectively capturing the diurnal variability critical for representing
extreme events. Discrepancies are more pronounced between 00:00 and 11:00 (likely due
to thermal inversions or lack of solar radiation) and 18:00-23:00 (with higher sensitivity
in land-based stations). Both spatial and temporal models significantly outperform ERAS5,
which exhibits substantial biases and poor adaptation to local hourly variability (see also
Figure 6). These discrepancies are likely due to ERA5’s inability to account for fine-scale
atmospheric processes and local environmental factors, which are crucial in accurately
capturing temperature fluctuations at these times. Figures 5 and 6 provide a detailed
side-by-side comparison of the observed and predicted Tj;, through hourly boxplots for
all stations (Huatajata-B, Boya-B, Isla-Luna-B, lllpa-P, Ilave-P, and Puno-P). The predicted
distributions closely match the observed data (clean data), with similar interquartile ranges
and median values across most hours. The RF-based spatial analysis excels at replicating
the diurnal cycle, including amplitude, maxima, and minima. In contrast, ERAS fails to
reproduce observed distributions, particularly during early morning (00:00-11:00) and late
afternoon/evening (18:00-23:00), underscoring the need for complementary tools or ERA5
data refinement.

The comparison between the observed data and ERAS reveals significant biases, see
Table 6, particularly in capturing temperature variation. In contrast, machine learning
models effectively address these biases by integrating high-resolution ERA5-Land data
with ground-based observations. This approach results in improved predictions that
closely align with the observed temperature distributions (Figures 5 and 6), highlighting
the advantage of machine learning models in reducing the discrepancies inherent in ERAS5,
particularly in data-scarce regions.

Shapiro-Wilk normality tests and visual analysis (Figures 5 and 6) reveal ERA5's
inability to capture the true distribution shape, displaying biased patterns at specific hours:
Huatajata-B: Hours 9, 13-14, 18-20, and 22:00, Boya-H-B: 9:00-21:00, Isla-Luna-B: 7:00-17:00,
NIpa-P: 15:00-20:00, llave-P: 9:00-17:00, Puno-P: 12:00-18:00. The lower bias in the machine
learning models (Table 6), can be attributed to their ability to capture local patterns and
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temporal trends that ERA5 fails to grasp. These biases highlight ERA5’s limitations in
representing local hourly dynamics, reinforcing the superiority of the developed models.

The temperature estimation models (especially RF) demonstrate high sensitivity to
input data quality, with notable improvements after rigorous quality control. The close
alignment between the predicted and observed distributions, both visually and statistically,
validates the success of the data-cleaning and modeling process. The results advocate
for refined approaches over direct ERA5-Land use, as the models provide more realistic
predictions with representative distributions.

6. Conclusions

A comprehensive procedure for the quality control and gap filling of hourly tempera-
ture data from six automatic weather stations (AWS) in the Lake Titicaca region is described
and applied to observations spanning from 2019 to 2022. The quality control phase identi-
fied statistical outliers using the Interquartile Range, Biweight, and Local Outlier Factor
methods. In addition, range, step, and persistency tests were applied to detect further
inconsistencies. The quality control process resulted in the removal of 0.005% (Boya-H-B)
to 17.56% (Illpa-P) of the raw data, yielding a clean dataset.

Gap-filling with a temporal approach was carried out using four machine learning
algorithms (Random Forest, Support Vector Machine, Stacking, and AdaBoost, with 70%
of the ground-based hourly temperature observations and ERA5-Land data used for the
training. Random Forest was the most efficient algorithm, with validation metrics show-
ing bias between —0.076 and 0.013 °C, RMSE between 0.98 and 1.45 °C, and R? between
0.81 and 0.95. In the spatial approach, RF also outperformed the linear correlation re-
gression based on nearby stations, with the bias of that model being between —0.03 and
0.047 °C, RMSE between 0.96 and 1.5 °C, and R? between 0.81 and 0.96. The spatial ap-
proach was more effective in networks with strong interstation correlations, while the
temporal approach performed better for stations with weak correlations and higher local
variability. These results suggest a selective strategy could be effective: applying spa-
tial models where nearby stations are correlated, and a temporal approach where such
references are lacking.
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