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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Drought is a multifaceted phenomenon, 
described by a comprehensive set of 
features

• Six yearly drought facets capture 
drought impact on major agro- 
environmental sectors under Mediterra
nean conditions

• Drought features are asynchronous, 
making it unlikely for all to be negative 
(minimal impact) or positive (harmful 
impact) across climatic years

• Six keystone features, each with func
tional significance, provide a synthetic 
drought impact assessment index
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A B S T R A C T

Drought is a keystone constraint with far-reaching implications for agro-environmental threats. Yet, drought 
indices are mostly hydro-meteorological or agricultural, obscuring evidence of the key role agro-ecosystem di
versity plays in buffering the consequences of regional climatic variability. We then question how contrasted 
drought facets could differentially drive the functioning of agro-ecosystems, and whether the interannual 
asynchrony of these facets might prevent multi-crisis events. Here, we examine how a multifaceted character
ization of yearly drought events differentially relates to key agro-environmental sectors and test how these 
drought facets synchronize over Lebanon, a Middle Eastern drought-prone country grappling with socio- 
economic and political crises. Using parsimonious multiple linear regression (MLR) models, we captured the 
combined functional roles of six yearly drought facets (duration, onset, offset, drying rate, peak drought day, and 
mean intensity of episodic rainfall pulses) on major agro-environmental sectors, including winter wheat yield, 
tree-ring radial growth, and area burned by wildfires. Delayed drought offset and faster spring soil moisture 
drying rates appeared more closely associated to increased burned areas (R2 = 0.25), while drought onset and 
autumn rainfall pulses from the previous year were negatively linked to winter wheat yield (R2 = 0.12), and tree 
radial growth switched from a control by drought onset and to duration with increasing altitude (R2 = 0.33). The 
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observed asynchrony in agro-environmental response to climate variability over the 1960–2020 period appears 
to buffer the occurrence of concomitant extremes, a pattern that we could relate to the asynchrony in their 
controlling drought facets. By demonstrating the functional role of each drought facet, we conclude on the ef
ficiency of a compound functionally-sound drought facets index for synchronous agro-environmental climate 
crisis warning.

1. Introduction

Globally, an increasing frequency of natural hazards has been 
observed and documented over the last three decades, encompassing 
extreme weather events, such as heat waves, floods, wildfires, and 
droughts (Dixon et al., 2019; Krichen et al., 2023; Seneviratne et al., 
2021). Drought, originating from an extended period of precipitation 
levels falling below the historical average for a particular region and 
timeframe, stands out as one of the most impactful hydro-climatic 
phenomena, affecting all aspects of society and environment (Wilhite 
and Pulwarty, 2017). Drought then represents a major disruptor of 
terrestrial ecosystem functioning, leading to significant agro- 
environmental threats (Hoover et al., 2020). These threats, defined as 
the negative impacts on the sustainability, productivity, and resilience 
of agricultural systems and their surrounding environments, occur 
irrespective of whether these systems are located in arid, semi-arid, or 
humid regions (Kmoch et al., 2024; Vicente-Serrano et al., 2020).

Drought is, however, a multi-disciplinary concept, typically classi
fied into four types: meteorological drought (instigated by precipitation 
deficits), agricultural drought (often related to soil moisture depletion in 
the rooting zone), hydrological drought (water shortage in streams or 
storages), and socio-economic drought (imbalance between water sup
ply and demand) (Haile et al., 2020; Wilhite and Glantz, 1985). These 
globally recognized categories capture, to a certain extent, the intricate 
nature of drought propagating through the entire hydrological cycle, 
with the assessment of each drought type relying on specific indices 
(Ndayiragije and Li, 2022). Although all drought indices are based on 
climatic variables, each index allows the quantification of different di
mensions of drought in both time and space (Vicente-Serrano et al., 
2012; Zargar et al., 2011). While certain indices rely on anomalies of a 
single climatic variable (such as precipitation or evapotranspiration) 
across different time scales, others, more complex, combine multiple soil 
hydrological processes (Seneviratne et al., 2021; Yihdego et al., 2019).

More recently, agricultural drought was extended to its ecological 
dimension to capture its impacts on the key functions of terrestrial 
ecosystems (Crausbay et al., 2017; Sadiqi et al., 2022; Vicente-Serrano 
et al., 2020). Some recent regional-to-global studies have identified 
robust relationships between the interannual variability of drought 
indices and key response variables in agro-ecosystems, such as tree-ring 
radial growth (Alfaro-Sánchez et al., 2018; Bhuyan et al., 2017; Gao 
et al., 2018; Gazol et al., 2017; Proutsos and Tigkas, 2020), forest growth 
and mortality (Allen et al., 2010, 2015; Choat et al., 2018; Lempereur 
et al., 2015), forest fires (Andrade and Bugalho, 2023; Barbero et al., 
2019; Coscarelli et al., 2021; Lahaye et al., 2018; Turco et al., 2017; 
Vissio et al., 2023), and yield of major global crops (Leng and Hall, 2019; 
Lesk et al., 2016; Matiu et al., 2017; Peña-Gallardo et al., 2018; Santini 
et al., 2022). Each anomaly in agro-ecosystem functioning can lead to 
socio-ecologically-related agro-environmental threats, such as reduced 
wood production and carbon sequestration, forest and human infra
structure losses, or food insecurity, surpassing the response capacities of 
developing countries when happening concomitantly.

Some of these studies suggest that agro-environmental threats are 
multifactorial and respond to multiple facets of drought (Gao et al., 
2018; Santini et al., 2022; Turco et al., 2017). Indeed, the interannual 
variability in climate variables can lead to contrasted agro- 
environmental responses, supporting the idea that the use of a single 
drought index (e.g., annual precipitation anomaly) might highly hide 
the complexity of drought impacts on natural and agro-ecosystems. Yet, 

most of these key findings about drought effects have relied on multi- 
scalar drought indices such as the Standardized Precipitation Index 
(SPI, McKee et al., 1993) and the Standardized Precipitation Evapo
transpiration Index (SPEI, Vicente-Serrano et al., 2010). While both 
indices allow drought to be analyzed at multiple temporal scales, the 
minimum temporal window required for their calculation is one month. 
This restriction limits the temporal resolution of the analysis, omitting 
rainfall pulses and relying on local anomalies to a standard period hardly 
comparable between regions. There is, in turn, an increasing debate on 
drought characterization among ecologists (Slette et al., 2019), 
including limitations in the use of standardized precipitation index 
(Zang et al., 2020), associated with a lack of functional meaning of these 
meteorological or hydrological indices to ecological functions and pro
cesses. For instance, annual tree-ring increment has been widely 
assessed with seasonal precipitation and temperature while underlying 
processes of tree growth under water limitations respond to a soil water 
deficit threshold (drought onset) preventing cell turgor for elongation 
(Lempereur et al., 2015; Zribi et al., 2016). Ruffault et al. (2013) illus
trated that, in the Mediterranean region, for a given regional climate and 
temporal trend, drought features such as onset, offset, and duration can 
produce contrasted local patterns.

These results thus questions how various agro-environmental threats 
might be linked to specific drought facets differentially responding to 
climate variability, and that some years might combine multiple 
extreme facet values as an integrated index for synchronous crisis. Dif
ferential drought features have been shown to affect socio-economic and 
environmental sectors in Europe (Blauhut et al., 2016), while Kukal and 
Irmak (2018) illustrate how co-occurring intra-sectorial impacts, as 
annual yields across crop types in the central US, differentially respond 
to a similar regional interannual climate variability and trend.

Here, we use the recently developed tool DFEAT (Drought FEature 
Assessment Tool) (Elias et al., 2024) to characterize yearly drought 
facets based on a daily generic soil water balance model over a hydro
logical year using the Keetch-Byram Drought Index (KBDI) (Keetch and 
Byram, 1968). Our aim is to i) test how each drought feature might 
differentially impact major agro-environmental functions and processes 
(wheat production, tree radial growth, and areas burned by wildfires) 
and ii) investigate the synchronies of these drought features anomalies 
as an integrated compound index for multi-agro-environmental crisis 
warning. We performed this analysis at the national level over Lebanon, 
a Middle Eastern country encompassing a gradient of summer-dry cli
mates from Mediterranean-humid to arid, and recently under socio- 
political instability threatening food production (Kharroubi et al., 
2021), ecosystems sustainability, and wildfire danger (Majdalani et al., 
2022). More specifically, we seek to investigate which pairs of drought 
features (including drought onset, offset, duration, drying rate, peak 
drought day, and the mean intensity of rainfall pulses) exert a significant 
influence on key agro-environmental functions, and whether they syn
chronize or buffer each other across the 1960–2020 period. Our results 
will help to promote efficient national-level warning systems of 
concomitant drought-related agro-environmental threats that could 
worsen the socio-political instability of the country.

2. Materials and methods

2.1. Study area

The study area covers the national territory of Lebanon (10,452km2), 
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a Mediterranean drought-prone country, located between 33◦–35◦N and 
35◦–37◦E on the Eastern shore of the Mediterranean Sea (Fig. 1a). Even 
though Lebanon has limited geographic extent, yet it encompasses a 
diverse physiography, composed of two parallel mountainous chains 
‘Mount-Lebanon’ and ‘Anti-Lebanon’ extending from southwest to 
northeast with an average altitude of 1400 m and 1050 m, respectively 
(Shaban, 2020). The highest point, Kornet el-Sawda, located in the 
western Mount-Lebanon range, reaches an elevation of 3088 m, the 
highest crest in the Middle-East region. Both mountainous chains are 
separated by the ‘Bekaa Valley’, where most of the country's agricultural 
lands are located (Jomaa et al., 2019; Lemenkova, 2022) (Fig. 1b). 
Among the main cultivated field crops, winter wheat and potatoes 
occupy the largest areas of the valley's cultivated arable lands (Nasrallah 
et al., 2019). In contrast, most of Lebanon's forests are aggregated over 
the ‘Mount-Lebanon’ mountain range. According to the most recent land 
use/cover type map of the country (LULC) (CNRS-L., 2019), the vege
tation composed of forests, shrublands, and grasslands covers approxi
mately 33.33 % (348,440 ha) of the Lebanese territory, including 87.8 % 
of forests and shrublands and 12.18 % of grasslands (Fig. 1c). Along the 
littoral zone and on the western slope of Mount-Lebanon, several 
coniferous (cedar, cypress, fir, juniper, and pine) and deciduous (carob 
tree, oaks, and pistachio tree) forests have developed (Hajar et al., 
2010). Forest fires, which affect an average of 1500 ha of forests each 
year (Majdalani et al., 2022), pose a significant threat to the highly 
urbanized coastal zone interspersed with natural areas. The ecological 
significance of Lebanon's forests is rooted in the cultural value of Cedrus 
libani, the emblematic species of the country, which occupies a mere 
0.86 % (1135 ha) of Lebanon's total forest cover. Additionally, these 
forests hold economic importance through wood production, which 
supports rural populations (Sattout et al., 2007).

Lebanon's diverse topography gives rise to a wide range of biocli
matic zones, largely driven by rainfall variability. Precipitation, which 
occurs predominantly between October and March, varies significantly 
across the country, from over 1000 mm annually in the northern coastal 
areas to <200 mm in the arid eastern regions (Jomaa et al., 2019). In 
particular, >95 % of the rainfall is concentrated in the winter months, 

particularly December and January. As a result of the unevenly 
distributed precipitation, Lebanon experiences a sharp climatological 
gradient, with relatively humid to sub-humid conditions along the 
coastal plains transitioning to arid conditions in the interior and eastern 
parts of the country (Haddad et al., 2014; Shaban et al., 2019). Leb
anon's climate is also marked by prolonged warm and dry summers, 
extending from June to October, which lead to seasonal drought, with 
September typically being the driest month of the year (Kobrossi et al., 
2021). The average annual temperature ranges between 14 ◦C in winter 
and 27 ◦C in summer in the coastal zone, with an average of 21 ◦C. In 
contrast, in the mountainous regions, the average annual temperature is 
below 12 ◦C (Shaban, 2020).

2.2. Yearly drought features characterization from daily soil moisture 
time series

For the multifaceted drought characterization, we relied on a pre
viously developed automated tool, the Drought FEature Assessment Tool 
(DFEAT), to extract yearly drought features over a hydrological year 
(Elias et al., 2024). These features are derived from the Keetch-Byram 
Drought Index (KBDI; Keetch and Byram, 1968), representing the soil 
water deficit to field capacity (in mm), based on a simplified water- 
balance model simulating daily soil water loss (depletion) per day, 
and widely used in drought assessment studies (Andrade and Bugalho, 
2023; Dimitrakopoulos and Bemmerzouk, 2003; Ganatsas et al., 2011; 
Nogueira et al., 2017). Despite it simple formulation, the KBDI index has 
been tested in diverse hydro-climatic regions, demonstrating a fair 
ability to replicate live fuel moisture content in certain Mediterranean 
shrub species (Dimitrakopoulos and Bemmerzouk, 2003; Ruffault et al., 
2018). It has also shown a strong correlation with observed surface soil 
moisture under Mediterranean conditions (Ganatsas et al., 2011), and 
has been employed in agricultural research studies (Salehnia et al., 
2018). Yet, Elias et al. (2024) acknowledged some limitations in the 
KBDI approach, which assumes an arbitrary soil depth and a type of soil. 
They also discussed the limitations of temperatures-based evapotrans
piration estimates within the KBDI and similar drought indices.

Fig. 1. (a) Location of Lebanon within the Mediterranean basin; (b) Digital Elevation Model (DEM) (adapted from ASTER GDEM Version 3) and major topographies; 
(c) Distribution of forests/shrublands, grasslands, field crops, rivers, and lakes (adapted from CNRS-L., 2019).
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Accordingly, based on three soil desiccation thresholds (25 %, 50 %, 
and 75 % of the 200 mm field capacity, representing low, moderate, and 
extreme drought propagation levels, respectively) which were selected 
for their potential implications for agro-environmental threats, DFEAT 
extracts 19 yearly drought features related to the onset and offset tim
ings, duration, severity, peak drought days, and the soil drying/rewet
ting rates (Elias et al., 2024). We considered the 25 % threshold (or 
KBDI-50) as an index of full soil profile refilling aiming at detecting 
multi-year drought without winter soil deep drainage, as a major in
formation in ground water recharge (Reinecke et al., 2021). The 50 % 
(KBDI-100) and 75 % (KBDI-150) thresholds correspond to the 
maximum and minimum critical thresholds of plant water stress iden
tified across biomes globally (Fu et al., 2024). Also, both thresholds 
affect vegetation functioning through stomatal closure and the subse
quent plant transpiration and carbon assimilation (Granier et al., 1999), 
or tree growth through disruption of cell turgescence in Mediterranean 
forests (Lempereur et al., 2017). We proposed the two thresholds to 
cover various plant water use strategies (Klein, 2014) and soil texture 
(Saxton and Rawls, 2006). We acknowledge more drastic thresholds of 
90 % might be of interest, but Elias et al. (2024) illustrated the high 
correlation between thresholds.

This tool has been recently applied and tested across Lebanon (Elias 
et al., 2024), using daily temperature and precipitation data from the 
open-source ERA5-Land climate dataset, downloaded at a 9 km spatial 
resolution (Muñoz-Sabater et al., 2021). This initial application of 
DFEAT over the Lebanese territory uncovered three different Mediter
ranean soil moisture dynamics or drought types: the Mediterranean 
typical dynamic (MED), the Humid mountainous Dynamic (HMED), and 
the Dry dynamic with multi-year drought occurrence (DRY-MED). These 
types were classified based on soil moisture desiccation patterns in 
relation to the country's climatic gradient.

In addition, preliminary analysis revealed inherent dependencies 
among many of the extracted drought features, which led to the final 
consideration of only six uncorrelated keystone features: drought 
duration for the moderate drought level, soil moisture drying rate, peak 
drought day occurrence, drought timings (onset and offset), and the 
mean intensity of rainfall pulses (Elias et al., 2024). Table 1 presents a 
brief definition of each of the six retained drought features. Together, 
these six features encapsulate the full development stages of drought 
events (Fig. 2). Accordingly, in this study, we have focused on these 
specific features due to their potential implications for understanding 
the multifaceted nature of drought and its threats to Lebanon's agro- 
environmental sectors.

Finally, we have combined these six drought features (DF) with a 
lagged version of each one-by-one year (DF n-1), acknowledging that 
eco-physiological processes of a given year can result from previous 
year's drought (Gao et al., 2018; Santini et al., 2022; Turco et al., 2017). 
We ended up with 12 drought features, six for each coincident drought 

year, and six for the lagged ones.

2.3. Yearly information on agro-environmental threats

2.3.1. Winter wheat yield
Durum wheat, the strategic cereal crop of Lebanon (Abi Saab et al., 

2019a; Nasrallah et al., 2018), was selected in our study to quantify the 
implications of interannual drought variability on key rainfed agricul
tural systems across the country. In Lebanon, wheat accounts for 
approximately 70 % of the total cultivated cereal area (45,000 ha), with 
around 30,000 ha of wheat fields out of the total cultivated land area of 
223,000 ha, half of which are irrigated (Verner et al., 2018). Wheat yield 
is defined as the ratio of production over the harvested area. Annual 
wheat production (hectogram) and area (hectares) were obtained at the 
country level, from 1961 to 2019, from the Food and Agriculture Or
ganization of the United Nations (FAO) (available at http://faostat.fao. 
org/default.aspx). The wheat calendar in Lebanon exhibits a well- 
defined sequence of phenological stages: sowing in October–No
vember, germination and further growth through winter, flowering in 
spring (April–May), and grain filling (maturity) and harvest in 
June–July (Nasrallah et al., 2018, 2019). This timeframe enables a 
focused consideration of drought features that may directly impact 
winter wheat yield both during and in the lead-up to its growing season. 
Features that provide information outside the range of the growing 
season (from sowing to harvest) were not included in the analysis. This 
exclusion applies to drought duration, offset, Peak KBDI DOY, and 
coincident year rainfall pulses mean intensity, which correspond to the 
period after winter wheat harvest. The same applies to the lagged 
drought features (DF n-1), where only Peak KBDI DOY (n-1), drought 
offset (n-1), and rainfall pulses mean intensity (n-1) were considered, as 
they correspond to the period when the wheat is sown.

The presence of a unit root (i.e., presence of trend or seasonal 
pattern) on the wheat yield time series was tested, using the Augmented 
Dickey-Fuller test (ADF, Dickey and Fuller, 1979). Using this test, the 
null hypothesis could not be rejected, indicating that the wheat yield 
time series is not-stationary, and does not have a constant variance over 
time. This result could be attributed to advances in agricultural tech
nology and improved management practices (Peña-Gallardo et al., 
2019). Also, the serial correlation of wheat yields time series was 
analyzed based on their autocorrelation functions (ACF), which showed 
a significant autocorrelation for time lags of up to 15 years (Fig. 3a).

In order to remove bias introduced by non-climate factors and to 
account for autocorrelation in the wheat yield time series, we fitted an 
Autoregressive Integrated Moving Average function with structure 
(0,1,2) using the ‘auto-arima’ function from the ‘forecast’ R-cran pack
age (Hyndman et al., 2020). The detrended wheat yields (Fig. 3.b) are 
considered in further analysis as more suitable indicator of the inter
annual variability in wheat production. Finally, to extract drought fea
tures over the area covered by the crop, we utilized the delineated field 
crops area derived from the LULC map (CNRS-L., 2019), which was 
resampled at 9 km resolution to match the spatial resolution of the cli
matic dataset used for this study (section 2.2).

2.3.2. Tree-ring data
To investigate the forest tree growth productivity response to 

drought features, we utilized six tree-ring chronologies encompassing 
the period 1960–2002, developed from six sites in Lebanon at six 
different altitudes (Touchan et al., 2005, 2014). Each chronology was 
constructed based on several trees, typically >10, of the same species 
growing in the same site. Five of the six tree-ring chronology sites belong 
to Cedrus libani, while one site belongs to Abies cilicica. Lebanon cedar 
(Cedrus libani) is a drought tolerant conifer of the Pinaceae family which 
is distributed along a wide altitudinal range (600–2300 m above sea 
level) in Turkey, Lebanon, and Syria (Güney et al., 2015), and is a 
protected species with high cultural value in Lebanon (Sattout et al., 
2007). Abies cilicica is an endemic fir species native to the mountains of 

Table 1 
Major drought features issued from DFEAT and their corresponding definitions 
and units (Elias et al., 2024).

Drought Features Definition

Moderate Drought 
Duration

Number of days spanning between moderate drought onset 
and offset days of the year

Drying rate Maximum daily soil water losses during drought 
development stage (mm/day)

Peak KBDI DOY Day of the year (DOY) when KBDI reaches its peak severity 
value

Moderate Drought 
Offset

Day of the year (DOY) marking the end of the moderate 
drought level; when soil moisture is recovered to 50 % of its 
total available water content

Moderate Drought 
Onset

Day of the year (DOY) marking the onset of the moderate 
drought level; when soil lost 50 % of its total available 
water content

Rainfall pulses Mean 
Intensity

Mean intensity (in mm) of episodic rainfall pulses events 
occurring at the end of the dry season
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the Eastern Mediterranean region. It is found in three primary distri
bution areas in Turkey, Syria, and Lebanon (Mount-Lebanon Range) 
(Beridze et al., 2021). The species is at risk in its lower elevation habitats 
due to the aridization of local climates (Aussenac, 2002) and is classified 
as a near-threatened species in Lebanon where fir forests mark their 
southernmost geographic range (Awad et al., 2014).

The tree-ring data was downloaded from the International Tree-Ring 
Data Bank (ITRDB), (accessed online at http://www.ncdc.noaa.gov/ 
paleo/treering.html). The processing of tree-ring width measurements 
and the full methodology are detailed in Touchan et al. (2005). The 
national distribution of these different sites offers the opportunity to 
study drought features impacts on tree-ring width growth following an 
altitudinal aridity and temperature gradient. Table 2 presents additional 
information on each site.

2.3.3. Forest and Shrubland burned areas
As a major environmental threat, we used the annual wildland 

burned area data obtained from remotely sensed data over Lebanon 
from Majdalani et al. (2022). The fire data cover the 1984–2019 period, 
including 2302 fires burning an estimated total area of 53,306 ha, with a 
mean yearly value of 1500 ha burned/year in Lebanon (Fig. 4a). The fire 
season extends over a protracted period, ranging from June to 

November (Majdalani et al., 2022).
The Burned Area (BA) time series was checked for trend stationarity 

using the KPSS test (Kwiatkowski et al., 1992), which did not provide 
sufficient evidence to reject the null hypothesis, indicating that the BA 
time series is trend stationary (Fig. 4b). However, marked year-to-year 
oscillations are present in the BA time series. First, we normalized the 
positively skewed BA by applying a logarithmic transformation (y =
log10 (BA)) for the normality requirement, as verified by the Shapiro- 
Wilk test. Then, the time series of log10 (BA) was further detrended to 
minimize the influence of slowly changing factors such as the gradual 

Fig. 2. The six retained drought features over Lebanon: Moderate Drought Duration (orange horizontal arrows), Drying Rate (red line), Peak KBDI DOY (red vertical 
arrow), Moderate Drought Offset (orange circle), Moderate Drought Onset (orange circle), and Rainfall Pulses Mean Intensity (small blue vertical flashes). KBDI time 
series (black line) and fitted seasonal dynamic (light grey line) are represented.

Fig. 3. (a) Autocorrelation Function (ACF) diagrams for the wheat yields time series for the period 1961–2019; (b) Autocorrelation Function (ACF) diagrams of 
residuals from the ARIMA (0,1,2). Blue dashed lines indicate the 95 % confidence intervals.

Table 2 
Site information for tree-ring width chronologies, including site name, the 
dominant tree species at the study sites, the elevation above sea level, latitude, 
and longitude.

Site Name Species Elevation (m) Latitude (◦) Longitude (◦)

Wadi Balat Abies cilicica 1170 34.47 36.23
Herch Ehden Cedrus libani 1640 34.3 35.98
Bsharri Cedrus libani 1940 34.23 36.03
Arz Jaj Cedrus libani 1780 34.13 35.82
Barouk Cedrus libani 1775 34.68 35.68
Maaser Al Shouf Cedrus libani 1700 33.67 35.69
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increase in fire management and land-use changes, following similar 
approaches used in modeling drought-fire relationships. Finally, the fire 
occurrence map was resampled at 9 km spatial resolution to match the 
spatial resolution of the climatic dataset used for this study (section 2.2) 
and extract climate variables over each pixel burned at least once.

2.4. Statistical analyses

To perform correlations between pixel-level drought features and 
national-level agro-environmental information, the weighted mean of 
drought features was calculated for wheat fields and burned areas, with 
relative weights being the surface of each land cover in each 9 km 
climate pixel over Lebanon. For tree-ring chronologies, a pixel-based 
evaluation was conducted, as the data on tree-ring width measure
ments is available for six specific locations precisely located by their 
latitude and longitude coordinates.

To estimate the impacts of coincident drought features (current 
summer drought conditions) and their lagged values by one year 
(antecedent drought conditions) on the previously mentioned key agro- 
environmental variables, we performed a Multiple Linear Regression 
model (MLR), an empirical method widely used in drought impact 
assessment studies (Belhadj-Khedher et al., 2020; Bhuyan et al., 2017; 
Bouras et al., 2021; Turco et al., 2017; Vissio et al., 2023). This data- 
driven statistical method links yearly values of burned areas, wheat 
yields, and tree radial growth taken as dependent variables with the 
selected drought features (independent or predictor variables) (Eq. 1): 

Y = β0 + β1X1 + β2X2 + βnXn + ε (1) 

where Y is the predicted value of the dependent variables, β0 is the y- 
intercept when all the independent variables are zero, β1 and β2 are the 
regression coefficients that represent the sensitivities of Y to the inde

pendent variables X1 and X2 presented here by the six retained drought 
features. ε is a stochastic noise term that captures all other (neglected) 
factors that influence the dependent variables (Y) other than X1 and 
X2 (Tranmer and Elliot, 2008).

We limited our analysis to test the importance of all possible com
binations for only two explanatory variables (pairs of drought features). 
Accordingly, we fitted all possible models (i.e., in-sample models) with 
the combination of two selected predictors at each time (2 predictors out 
of 12) aiming to identify the maximum correlation values among all the 
models evaluated. The goodness of fit of the developed models was 
estimated using the coefficient of determination (R2) as an indication of 
the explained variance and was considered statistically significant for p- 
values <0.05. Additionally, to identify the best statistically significant 
models, we computed the minimum Akaike information criterion (AIC) 
value among all the developed models (Akaike, 1974), using the ‘per
formance’ R-cran package, providing utilities for computing measures to 
evaluate models quality and fit (Lüdecke et al., 2021). The AIC measures 
the goodness of a statistical model based on a trade-off between its ac
curacy (that is, the explained variance) and its complexity (that is, the 
number of free parameters). Following this criterion, the model with the 
lowest AIC is preferred. The retained models presented and discussed in 
Sections 3 and 4 where those residuals satisfy the hypothesis of 
normality, zero autocorrelation, and constant variance (i.e., homosce
dasticity tested using the Breusch-Pagan test, using the ‘bptest’ function 
from the ‘lmtest’ R-cran package) (Schmidt and Finan, 2018; Verran and 
Ferketich, 1987; Zeileis and Hothorn, 2002).

To get a more nuanced understanding into the uncertainty sur
rounding the coefficient estimates (regression model slopes) and R2 

values of our retained significant models, we leveraged a bootstrap 
resampling technique. This approach utilizes the “pairs (random x)” 
method, which resamples pairs of observations (encompassing both the 
dependent and all independent variables) from the original dataset for 

Fig. 4. (a) Fire frequency map, and (b) yearly burned area (ha) over the forest and shrub cover in Lebanon (1984–2019) (adapted from Majdalani et al., 2022).
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each model, with replacement (Davison and Hinkley, 1997). This iter
ative process is repeated over 1000 replicates, generating bootstrap 
samples that faithfully replicate the dependence structure within the 
variables, and was implemented using the “boot” R-cran package (Canty 
and Ripley, 2017). Subsequently, the model is refitted on these resam
pled datasets. By treating the observed data as a singular realization of 
the underlying process, our bootstrap approach enables us to construct 
numerous hypothetical replications of the same process.

The results are presented in regression plots using the ‘Corrplot’ R- 
cran package (Wei et al., 2021), wherein the upper half of the plots, the 
circle color and size represent the strength of multiple R2 values for each 
constructed model, reflecting the correlation between two independent 
variables (X1 from rows and X2 from columns) in relation to the targeted 
agro-environmental variables. The diagonal line in the upper half rep
resents the correlation between a single independent variable (drought 
feature) and the targeted agro-environmental variables. Asterisks indi
cate significant p-value levels: * < 0.05, ** < 0.01, *** < 0.001. In the 
lower half of the plots, the numeric values represent the Akaike Infor
mation Criterion (AIC).

Heat maps were produced to illustrate synchronicity phases between 
the six selected drought features using the ‘ggplot2’ package in R 
(Wickham et al., 2016).

All the statistical analyses were performed in R 4.3.1 statistical 
environment (Core Team, 2021).

3. Results

3.1. Burned area / drought assessment

To identify the key drought features potentially affecting the inter
annual BA variability in Lebanon, we created a regression plot pre
senting all potential explained variances (R2) and AIC values between 
the detrended log10 (BA) and the combination of different drought 
features pairs (Fig. 5). Since both the dependent and independent var
iables are in standardized forms, the model's slope coefficient values 
indicate the extent of change in standard deviations.

The overall examination of the constructed Drought-BA regression 
plot reveals higher explained variance (R2) using multiple regressions 
incorporating pairs of features compared to simple regressions utilizing 
individual drought features as explanatory variables. For instance, for 
one potential predictor's response (i.e., the diagonal line of the upper 
regression plot), drought offset, taken as the predictor, explains 15 % 
(R2 = 0.15) of the annual BA with a significant p-value of 0.02. Simi
larly, drought duration appears to be significantly correlated to BA (p- 
value = 0.04), although with a lower explained variance than drought 
offset (R2 = 0.11). Both linear models, with positive bootstrapped slope 
coefficients, reveal that when drought duration increases or ends later in 
the season, the area burned is larger.

Our regression plot also demonstrates that incorporating pairs of 
drought features could improve the explanatory power compared to 
single explanatory variables. This is exemplified by the MLR model 
combining drying rate and drought offset of the same year (i.e., 

Fig. 5. Relationships between the six selected drought features and their lagged values by one year (n-1) with the detrended log10(BA). The color value and circle 
size in the upper diagonal cells are proportional to the range of the explained variance (R2). Large circles colored with dark red are models with higher explained 
variance compared to others, which are colored with sequential shades from yellow to orange. Significant codes for p-values: 0.001 as ‘***’, 0.01 as ‘**’, 0.05 as ‘*’, 
and non-significant as ‘’. The lower half of the diagonal provides the AIC numerical values for each developed model, using a sequential color scale from dark blue 
(highest AIC value) to very pale blue (lowest AIC value).
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coincident drought year), which achieved the highest explained vari
ance (R2 = 0.25, p-value = 0.008). The 95 % confidence interval (CI) for 
the R2, obtained via bootstrapping, ranges from 0.10 (lower CI bound) to 
0.42 (higher CI bound). We conclude that both features synergistically 
act as positive explanators to the interannual variability of BAs. Other 
MLR models, with R2 ~ 0.20 and featuring similar 95 % CI ranges for R2, 
along with two statistically significant predictors, also appear in the 
regression plot and are summarized in Table 3.

Among others, drought duration combined either with the drying 
rate, the peak drought day of the coincident, or the peak drought day of 
the previous year, is statistically significant, with an explained variance 
of 0.23, 0.22, and 0.21 respectively. As secondary explanators, mean 
intensity of autumn rainfall pulses (RP⋅I mean, model 5) and earlier peak 
drought appear negatively correlated with BA, confirming the effec
tiveness of episodic rainfall pulses events at the end of the dry season in 
reducing burned area.

We'll note that a delayed peak drought day of the antecedent year 
(Peak KBDI DOY n-1, model 3 and 6) also leads to reduced BA in the year 
n. Taken together, the statistical analysis reported here points out that 
same-summer drought conditions exert a dominant influence on the 
areas burned by fires compared to the less influential association 
observed with antecedent drought conditions (n-1).

3.2. Wheat yield /drought relationship assessment

We investigated the relationship between drought features and 
wheat yield over the selected drought features matching the crop 
calendar.

Two statistically significant models (with p-values <0.05) capture 
the impact of coincident (year n) and antecedent (year n-1) drought 
features on wheat yields (Fig. 6). The first model includes the previous 
year autumn rainfall pulses (RP. I. Mean n-1) and the coincident year soil 
moisture drying rate occurring in spring during the growing period as 
the explanatory variables. The second model includes the previous year 
autumn rainfall with the current year drought onset as the explanatory 
variables. High daily drying rate (i.e., soil moisture depletion) and late- 
season drought onset during the growing season are negatively linked to 
wheat yield, hence causing harvest losses. However, in both models, the 
previous year autumn rainfall pulses intensity appears highly valuable 
for the sowing period, as increased rainfall pulses in year n-1 lead to 
greater wheat yields in the next year (year n). Both models exhibit an 
explained variance of 0.12 (p-value <0.05), with a 95 % CI ranging from 
0.01 (lower CI bound) to 0.28 (higher CI bound).

3.3. Tree ring / drought assessment along altitudinal gradient

We investigate here the tree-ring and drought relationship for the six 
sampling sites covering an altitudinal transect ranging from Wadi Balat 
(1170 m above sea level (asl)) to Bsharri (1940 m asl). Accordingly, six 
regression plots between pairs of drought features and tree-ring width 
chronologies are produced for each site (Figs. 7 a-f).

Wadi Balat (WB) and Herch Ehden (HE) sites (Fig. 7a, b), which are 
situated at the lowest altitudes compared to the other sites (Table 2), 
share approximately similar responses to drought features, more 
particularly regarding drought onset, which has the most statistically 
significant influence (HE p-value = 0.0002, and p-value = 0.0001 for 
WB) on the tree-ring growth of Abies cilicica and Cedrus libani, when 
considered alone as the single explanatory variable. The late-season 
drought onset reveals a positive association with tree-ring radial 
growth (R2 = 0.3), while an early drought onset is negatively associated 
with tree-ring growth. In both sites, the 95 % CI for the bootstrapped 
explained variance ranges between 0.10 and 0.50. As a secondary 
explanatory factor, drought duration appears more statistically signifi
cant at the WB site (p-value = 0.004), exhibiting a higher explained 
variance (R2 = 0.19) compared to the HE site (R2 = 0.10), which shows 
less statistical significance (p-value = 0.04). Both sites highlight the 
negative association between longer drought duration (and accordingly 
drought severity) and decreased tree radial growth.

When both dimensions (duration and onset) are combined in a single 
model, the lowest site (WB) shows the highest statistically significant 
explained variance (R2 = 0.33, p-value = 0.0004) compared to the HE 
site (R2 = 0.28 and p-value = 0.001). At both sites, the explained vari
ance is mostly dominated by drought onset, with a minor contribution of 
drought duration. We will note that other drought features do not have 
the same meaningful difference at the two sites (WB and HE). For 
instance, late-season rainfall pulses (RP. I. Mean) combined with 
drought onset of the same year are statistically significant in both sites, 
but only positively associated with tree-ring growth at the WB site. 
Interestingly, both sites have the same pattern of positive and statisti
cally significant association (p-value = 0.0005) between the previous 
year's drought onset (Mod. onset n-1) and the current year's drought 
onset, which explains 32 % of tree-rings variability, where 95 % CI for 
bootstrapped R2 ranges between 0.15 and 0.50.

When transitioning to a slightly higher altitude at the Maaser Al 
Shouf site (1700 m asl), drought duration becomes the most influential 
and statistically significant feature (p-value = 0.0006) negatively 
explaining 25 % (R2 = 0.25) of tree-ring variability (95 % CI ranges 
between 0.10 and 0.46), while drought onset appears less statistically 
significant in affecting tree radial growth (p-value = 0.01, R2 = 0.14). 
However, at this site, it is noteworthy to mention that drought duration 
also appears highly statistically significant (p-value <0.01) when com
bined with all the coincident and antecedent season drought features, 
with a statistical explained variance varying between 0.25 and 0.30 
(Fig. 7c).

At the Barouk site (1775 m asl), with lower explained variance (R2 =

0.12) and statistical significance (p-value = 0.03), drought duration is 
still the most influential feature on tree-ring growth when taken alone or 
even when combined with the previous year drought duration (R2 =

0.18, p-value = 0.02) or onset (R2 = 0.20, p-value = 0.01) (Fig. 7d).
At the Arz Jaj site (1780 m asl), one pair of drought features previous 

year drought onset (Mod. onset n-1) and mean rainfall pulses intensity 
(RP. I. mean n-1), positively and significantly explains 33 % (R2 = 0.33) 
of tree-ring growth of the next year (Fig. 7e).

Finally, at the highest elevated site (Bsharri at 1940 m asl), drought 
duration and offset remain statistically significant (p-value = 0.01) 
when taken alone as predictors, but with a low explained variance (R2 
= 0.12). However, when both are combined with the peak drought day 
of the previous season (Peak KBDI DOY n-1), the explained variance 
increases by 8 % (R2 = 0.20) with approximately the same significance 
level (Fig. 7f).

Table 3 
Performance of the best significant MLR models, developed between pairs of 
drought features and detrended log10 (BA). Rows report the predictors used in 
the developed model (Predictor 1 and Predictor 2), the slope coefficient of each 
predictor (Slope 1 and Slope 2), the model explained variance (Multiple R2), and 
p-value significance levels.

Model Predictor 1 Slope 
1

Predictor 2 Slope 
2

Multiple 
R2

p- 
value

1 Mod. 
Duration

0.31 Drying rate 0.25 0.23 0.015

2 Mod. 
Duration

0.22 Peak KBDI 
DOY

0.13 0.22 0.017

3 Mod. 
Duration

0.22 Peak KBDI 
DOY (n-1)

- 0.13 0.21 0.02

4 Peak KBDI 
DOY

0.11 Mod. Offset 0.17 0.22 0.017

5 Peak KBDI 
DOY

0.15 RP. I. Mean - 0.24 0.18 0.03

6 Mod. Offset 0.18 Peak KBDI 
DOY (n-1)

- 0.13 0.23 0.014
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We conclude here on the progressive switch of drought feature 
contribution to tree radial growth from drought onset at lower altitudes 
to drought duration at higher altitudes.

3.4. Yearly drought features synchrony patterns across bio-climatic 
regions of Lebanon

We could previously show that agro-environmental variables are 
related to different combinations of drought facets. In turn, at the na
tional level, we question here how to provide a synthetic yearly drought 
impact assessment index. Here, we analyzed how our key impactful 
drought features might be correlated and thus synchronized, so that 
some years could be qualified as hydrologically harmful for agro- 
environmental services when concomitant positive (or drier) drought 
features anomalies occur.

We can infer from Fig. 8 that drought features are hardly all 
concomitantly negative. This result suggests that, during climatically 
similar years, certain drought facets can have contrasting (positive or 
negative) asynchronous impacts on fire, plant growth or crop yield. We 
observed this pattern consistently across all bioclimatic zones of 
Lebanon. When summing up DF anomalies in an integrated drought 
feature severity index (DFSI) we could better capture particular years as 
1998, 2007, 2008, 2010, and 2013 with the highest positive values, as a 
result of synchronous positive values in most drought feature (e.g., the 
synchronous harmful effect of drought duration, onset, offset, and 
rainfall pulses mean intensity concomitating in the year 2008). 

Additionally, we show an asynchronized pattern between the yearly 
calculated DFSI and precipitation anomalies across all bioclimatic zones, 
which indicates that relying solely on standardized precipitation indices 
may not fully capture the variability across the six functionally-targeted 
drought features considered in this study, nor the full spectrum of their 
associated agro-environmental threats. Drought features variability 
across bioclimatic zones aren't solely driven by precipitation amount, 
even if precipitation is the primary driver of soil drought, and depend 
more on an interplay of interactive factors, such as their temporal dis
tribution and the daily temperature fluctuation. Yet, drought features 
are mostly not synchronized across the three studied bioclimatic zones 
covering the Lebanese territory, so that concomitant agro- 
environmental threats are relatively rare over our ecologically diverse 
region, as illustrated in Fig. 9.

4. Discussion

4.1. Agro-environmental functional meaning of yearly drought features

Our results reveal that the interannual variability of BA in Lebanon 
from 1984 to 2019 is predominantly and significantly correlated with 
both the rate of soil moisture depletion during drought onset and the 
timing of drought offset at the end of the dry season. It is noteworthy to 
mention that this MLR model explained variance (R2 = 0.25) remains 
lower compared to other national and regional studies, which report 
values ranging from 0.40 to 0.80 of explained variability over the 

Fig. 6. Relationships between drought conditions prior (sowing period, year n-1) to the wheat growing season and drought conditions along the wheat growing 
season (year n) with the winter wheat yields. The color value and circle size in the upper diagonal cells (sequential colors from bright yellow to darker orange) are 
proportional to the range of the explained variance (R2). Significant codes for p-values: 0.001 as ‘***’, 0.01 as ‘**’, 0.05 as ‘*’, and non-significant as ‘’. The lower half 
of the diagonal provides the AIC numerical values for each developed model, using a sequential color scale from dark blue (highest AIC value) to very pale blue 
(lowest AIC value).
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Fig. 7. Relationships between drought conditions prior and along the tree ring growing season with tree-ring width. The color value and circle size in the upper 
diagonal cells (sequential colors from light yellow to dark green) are proportional to the range of the explained variance (R2). Significant codes for p-values: 0.001 as 
‘***’, 0.01 as ‘**’, 0.05 as ‘*’, and non-significant as “. The lower half of the diagonal provides the AIC (here AIC/10 for space limitation) numerical values for each 
developed model, using a sequential color scale from dark blue (highest AIC value) to very pale blue (lowest AIC value).
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Mediterranean basin due to drought assessment using the SPEI index 
(Turco et al., 2017), although the most drought-prone southern Medi
terranean countries experienced low to no-correlation in these analyses. 
In Lebanon, this lower explained variance may be due to the close 
relationship between BA variability and other anthropogenic factors, as 

noted by Majdalani (2023) and Mhawej et al. (2016, 2017). Addition
ally, the number of heat waves during the dry season might contribute 
more importantly than the considered drought features when drought is 
recurrent (Belhadj-Khedher et al., 2020; Ruffault et al., 2020). A faster 
drying rate of soil moisture during the drought development stage (i.e., 

Fig. 8. Heat maps illustrating the time series of the standardized yearly extracted drought features (Drought Duration, Onset, Offset, Peak Drought Day, Drying Rate, 
and Rainfall Pulses Mean Intensity), their summation as a Drought Features Severity Index (DFSI), precipitation anomalies, and interannual synchronization patterns 
across the country's different drought-type regions: a) coastal MED (upper heat map), b) mountainous HMED (middle heat map), and c) arid DRY-MED (lower heat 
map). Harmful drought conditions are depicted in shades of red, while conditions with minimal or no impact are shown in shades of blue.

Fig. 9. Time series (in scaled values) over the 1960–2020 period of forests and shrubs burned areas (red), winter wheat annual yields (orange), and tree-ring 
chronology at two sites: Wadi Balat (lowest altitude, green) and Bsharri (highest altitude, dark green).
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spring and early summer seasons), in response to reduced or less intense 
spring precipitation and rising temperatures, could rapidly deplete soil 
moisture content, due to increasing atmospheric evaporative demand, 
leaving the herbaceous layer more flammable due to less water content 
in their leaves and tissues (Cardil et al., 2019; Jacobson et al., 2022; 
Turco et al., 2019; Westerling et al., 2006). Concomitantly, a delayed 
drought offset (i.e., during the months of October and November), 
contributes to prolonged and severe soil desiccation conditions. This 
extends the window of opportunity for more wildfires to occur during 
these two months (Majdalani et al., 2022; Richardson et al., 2022; Sal
loum and Mitri, 2014). Majdalani et al. (2022) specifically identified 
October and November as the peak fire months for the Lebanese Medi
terranean forests and shrublands, a particular case within the Mediter
ranean basin, where summer months experience high air relative 
humidity while autumn experience drier air conditions. The delayed 
appearance of autumnal precipitations has also been evidenced in other 
Mediterranean areas (Cayan et al., 2022; Goss et al., 2020; Luković et al., 
2021; Swain, 2021), extending fire-prone periods and leading to a larger 
cumulated burned area over the year. However, drought duration or 
severity might be more of a reliable index in other areas (Carvalho et al., 
2021; Urbieta et al., 2015).

Regarding agricultural production, mostly located in the eastern part 
of the country in the Bekaa valley, we identified contrasted drought 
features occurring during the crop calendar and affecting the annual 
yield of winter wheat. Our analysis reveals that wheat yield of a 
particular year n is affected by drought conditions at the different stages 
of crop establishment. The key time periods are: October–December of 
the previous year (year n-1) when sowing starts and January–June of the 
current year (year n) during the growth and maturation. Our findings 
infer that an adequate soil moisture during the sowing period, captured 
by the significant contribution of rainfall pulses of year n-1, is essential 
for successful germination and seedling establishment (Bouras et al., 
2020; Latiri et al., 2010; Pook et al., 2009; Wang et al., 2016), while a 
prolonged soil desiccation of year n-1 due to delayed or insufficient 
autumn rainfall can hinder germination and root growth (Latiri et al., 
2010; Peña-Gallardo et al., 2019; Yu et al., 2018). We also found that 
accelerated drying rates of soil moisture of year n coincide with insuf
ficient spring rainfall, particularly during April and May (Páscoa et al., 
2017; Tigkas and Tsakiris, 2015). This deficiency falls short of meeting 
the water demands of wheat crops during critical developmental stages 
when the photosynthetic activity peaks, surpassing earlier growth pha
ses (Karam et al., 2009). In addition, our findings concur with previous 
ones showing that drought onset occurring during the end of the 
growing season (May and June), coinciding with the grain filling period, 
constraint wheat production in the Mediterranean region (Del Moral 
et al., 2003; Yang et al., 2020; Yu et al., 2018). Overall, our results 
indicate that features of drought from previous year (i.e., rainfall pulses 
n-1) and from current year (i.e., drought onset or drying rate n) can both 
contribute to predict wheat production at the national level. But it is 
worth noting that, although the developed models demonstrate statis
tically significant relationships between drought features and detrended 
winter wheat yield (p-value <0.05), the explained variance of these 
models is relatively low (R2 = 0.12) compared to other regional and 
global studies. For instance, Peña-Gallardo et al. (2019) reported cor
relation values between different drought accumulation periods and 
wheat yields ranging between 0.41 and 0.6 at the district level in Spain 
using the SPEI index, and Leng and Hall (2019) reported an R2 = 0.25 on 
a global scale when using the SPI drought index. Our results could be 
explained by the fact that, in Lebanon, >50 % of the wheat cultivated 
areas are irrigated, especially in the areas where rainfall fails to provide 
sufficient water thus, alleviating multifaceted drought impacts (Verner 
et al., 2018). Also, our results suggest, however, that irrigation may not 
be sufficient to totally alleviate drought impacts on yield. In the Bekaa 
valley, the primary wheat production area in Lebanon, irrigation is still 
conducted in a traditional way, rather than based on meteorological 
data or technological sensors (Abi Saab et al., 2019b). In addition, the 

variability in crop yield can also be attributed to other biotic and abiotic 
factors. For instance, spring frost, which we did not account for, was 
found to have detrimental impact on crop growth and productivity 
within the Bekaa valley (Abi Saab et al., 2019a).

We finally captured the sensitivity of tree radial growth to key 
drought facets. We could identify that, according to altitude (correlated 
to decreasing air temperatures and PET or increasing precipitation 
amount), tree growth responded to contrasted drought features, in line 
with the source (carbon assimilation) vs sink (non-photosynthetic) 
limitation hypothesis (Cabon et al., 2020; Guillemot et al., 2015; 
McDowell et al., 2008). In upper altitudes, drought duration was the 
main driver, while in lower altitudes, drought onset progressively 
appeared as the main driver. These results align with the findings 
recently reported by Cabon et al. (2024) across altitudinal gradients 
under Mediterranean climate, where limitations imposed by biophysical 
limitations (e.g., cambial cell division and development) at drier sites 
overpass the limitation imposed by carbon assimilation over the dry 
season in upper altitudes. In the highest site in altitude, Bsharri, the 
relationship between stem growth and drought duration can be attrib
uted to the “carbon starvation” hypothesis, as a result of reduced 
photosynthesis when trees close their stomata and reduce carbon ex
changes with the atmosphere, thus disrupting sugar transport within the 
phloem, limiting carbohydrate utilization and, consequently, promoting 
growth reduction (Cabon et al., 2024; Güney et al., 2017; McDowell 
et al., 2022). At the lower altitude sites, Wadi Balat and Herch Ehden, 
the correlation between stem growth and drought onset aligns more 
closely with the sink hypothesis. These findings are consistent with 
conclusions previously demonstrated by Güney et al. (2015, 2020), 
Lempereur et al. (2015), and Delpierre et al. (2016) revealing that the 
weather conditions prevailing during the period of most linear growth 
(spring months) are more crucial for defining the final ring widths and 
that drought onset is a keystone information for this agro-environmental 
sector. We also identified that at Wadi Balat, Herch Ehden, and Maaser 
Al Shouf sites, the drought conditions from the previous year seem to 
exert a significant influence on subsequent year's growth. Both drought 
onsets in the preceding year (Mod. onset n-1) and in the subsequent year 
can positively influence the formation of wider tree rings at the Wadi 
Balat and Herch Ehden sites. This result highlights the potential role of 
the preceding year (n-1) in shaping carbon balance and reserves. These 
reserves may be strategically utilized by trees in the subsequent year (n) 
to produce wider growth rings, particularly under delayed drought onset 
conditions (Cabon et al., 2024). The observed negative influence of the 
previous year's drought on subsequent growth aligns with the drought 
legacy effects, highlighting the enduring impacts of multifaceted 
drought occurrence on tree growths (Gao et al., 2018).

4.2. Asynchrony of drought features as a driver of stability in agro- 
ecosystem functioning and threats

One of our main result shows that drought features and their nega
tive impacts on ecological and agronomic functions and processes are 
not correlated and, therefore, asynchronous at the local scale with non- 
concomitant extremes. This result leads to the key conclusion that a year 
considered as ‘dry’ based on annual or seasonal rainfall deficit (as usu
ally performed Hendrawan et al., 2022, 2023), hides a more complex 
picture regarding its various facets and the asynchrony of their impacts 
on eco and agroecosystems. In our study area, we showed that drought 
features don't all reach high values at the same time (or year). Because 
different features affect different ecosystem functions and processes, we 
can expect that shocks/anomalies across different vegetation types don't 
happen synchronously, lowering the risk of triggering regional multi- 
crisis events (Homer-Dixon et al., 2015). Our multifaceted drought 
assessment framework then brings new insights for ecosystem syn
chrony analysis, an emerging property to elucidate ecosystem response 
to global change (Vagnon et al., 2024). Until now, species (crop or tree) 
diversity has been shown to drive agro- or ecosystem stability across 
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interannual climate variability (Grossiord et al., 2014; Renard et al., 
2023; Renard and Tilman, 2019; Schnabel et al., 2021), through 
complementarity mechanisms inferred from the interspecific variability 
in water stress response (Liu et al., 2024). More specifically, Valencia 
et al. (2020) suggested that the synchrony in species responses to 
climate overrides species richness in stabilizing plant community func
tioning. While research has explored the role of the multiple facets of 
biodiversity (richness, evenness) on the ecosystem's stability (Craven 
et al., 2018), as a future avenue of research, we suggest here that the 
asynchrony in the multiple facets of droughts should be further assessed 
as a climate driver of ecosystem's stability and as a potential driver of 
species leaf and root traits (Skelton et al., 2015; Sun et al., 2024). 
Providing drought facets tailored to agronomists and ecologists, corre
sponding to acknowledged critical thresholds for plant functioning, 
should facilitate broader adoption compared to sometimes obscure 
drought indices (Slette et al., 2019). Moreover, the tool is generic 
enough to be used on any soil water content generated from empirical or 
process-based models using climate time series, or remotely sensed plant 
or soil moisture content over bioclimates experiencing a single drought 
period as the Mediterranean (Elias et al., 2024). We tested these effects 
on wheat yield, forest fires, and tree growth, but any other agro- 
environmental issue as Mediterranean rainfed agriculture (olive, grape 
wine, barley, and pine seeds) (Trabelsi et al., 2022), pasture and grazing 
(Iglesias et al., 2016), irrigation demand (Xing et al., 2020), or forest 
management such as tree mortality (Allen et al., 2015), could be 
assessed with this framework.

4.3. From local to regional drought synchrony through atmospheric 
oscillations

Our study combined three agro-environmental threats over the na
tional territory of Lebanon, showing differential responses to drought 
facets, but also encompassing different regions with contrasted climates. 
Forest fires mostly happen in the coastal region (Majdalani et al., 2022), 
while major forests cover the mountainous areas and wheat crops are 
mostly located in the northeastern part of the country (CNRS-L., 2019). 
We highlighted the role of contrasted and asynchronous drought facets 
in driving agro-environmental threats during extreme events, enhanced 
when they happen concomitantly, but our study accounts for the spatial 
asynchronies in climate variability and the subsequent occurrence of 
drought facets. At the global scale, synchronized crop failure is a major 
threat to food security when extreme climatic events occur concomi
tantly over major global cropping areas (Mehrabi and Ramankutty, 
2019) in the context of global market. At the national level as in 
Lebanon, this spatial synchrony of drought events might affect national 
food security, particularly in countries under economic crisis as 
currently happening (Abou Ltaif et al., 2024; Ali, 2024). Detecting 
synchrony in pixel-level drought facets, or area-weighted anomalies as 
in severity-area-duration approaches (Andreadis et al., 2005; Zhou et al., 
2020) should bring fruitful information on food or environmental se
curity related to drought events.

This spatial synchrony can reveal synoptic large-scale events. For 
example, tree growth synchrony (or drought onset and drought duration 
as revealed in our analysis) has been shown to be an effective indicator 
of large-scale climate extremes (Jia et al., 2024), mostly related to at
mospheric oscillations potentially affecting concomitantly all ecosys
tems (Krawczyk et al., 2020). This regional synchrony, extending the 
concept of drought to its spatial extent, is a major indicator of historical 
climate change and megadrought occurrence with high regional socio- 
ecological impacts (Ionita et al., 2021; Sharma and Mujumdar, 2017) 
that should be further investigated through drought features in the 
context of climate change and agro-environmental impact assessment.

4.4. Toward a compound drought facets index

Finally, our analysis could reveal the differential impacts of various 

drought facets on key agro-environmental threats over Lebanon and 
their regional temporal and spatial variability across the country. 
Increasing need for early warning of climate threats (Hermans et al., 
2022) or long-term country strategies for sustainable development goals 
under climate change scenarios have been raised (Xue et al., 2024). 
While single drought indices appear insufficient, multiple indices could 
bring confusion. Synthetic compound indices have been proposed for 
drought, mostly combining drought types (Tramblay et al., 2020): 
meteorological, hydrological, and agricultural droughts (Ali et al., 2022; 
von Matt et al., 2024; Wu et al., 2022). For the Middle East and North 
Africa more specifically, Bergaoui et al. (2024) developed a Composite 
Drought Index (CDI) combining remote sensing and modeled data in
puts, reflecting anomalies in precipitation (through SPI calculation), 
vegetation (NDVI index), soil moisture (root-zone soil moisture anom
aly), and evapotranspiration. These compound indices were even 
complexified by combining drought with heat indices as a major critical 
information for agro environmental disruptions (Hao et al., 2020; Hos
seinzadehtalaei et al., 2024; Li et al., 2021). Elias et al. (2024) high
lighted the significance of this approach in DFEAT development 
perspectives. Yet, building on this approach, we propose here a com
pound index of drought facets. By revealing the functional role of each 
facet on agro- and ecosystems, we suggest that a compound drought 
facet index could bring synthetic information on potential concomitant 
threats leading to crises. Therefore, we could provide an efficient 
drought assessment tool and framework so that policymakers and land 
managers will be better equipped to more effectively diagnose the cli
matic drivers of agro-environmental issues within the key affected sec
tors. Furthermore, providing climate change projections of frequency 
and intensity of drought features can significantly enhance preparedness 
and raise awareness of the potential effects of future classified ‘harmful’ 
hydrological years on the country's primary agro-environmental sectors. 
This approach fosters a more sustainable and adaptive future manage
ment framework to mitigate national agro-environmental crises in the 
country, particularly in the context of socio-political instability (Ali, 
2024; Kharroubi et al., 2021).

5. Conclusion

This study proposed a comprehensive characterization of yearly 
multifaceted drought events, leveraging daily simulated soil water bal
ance. We could also provide valuable insights on drought features' 
functional meaning for major agro-environmental threats in the typical 
Mediterranean agro-ecosystems over Lebanon. By constructing parsi
monious Multiple Linear Regression (MLR) models that incorporate 
pairs of drought features from both the current and preceding year, we 
were able to assess their statistically significant effects on each target 
variable. Our findings substantiate our initial hypothesis that the 
interannual variability in agro-environmental threats is multifactorial 
and that combined drought features provide a superior explained vari
ance compared to individual features. Additionally, our results validate 
our second hypothesis regarding the differential weighting of various 
drought features in relation to the target variables. By leveraging these 
correlations, we concluded on the significant role of drought facets 
asynchrony in buffering climate impacts leading to multiple and 
concomitant agro-environmental crisis. Synchronous disturbances 
actually constitute a major under-investigated threat with potentially 
aggravating cascading effects (Burton et al., 2020), more hardly handled 
under socio-political and economic instability as currently in Lebanon 
and other Mediterranean countries (Diourane and Talbi, 2024), a major 
concern for disaster reduction goals of the Sendai Framework (Peters, 
2024; UNDRR, 2015).
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drivers of dangerous fires in Mediterranean France? Int. J. Wildland Fire 27 (3), 
155–163. https://doi.org/10.1071/WF17087.

Latiri, K., Lhomme, J.-P., Annabi, M., Setter, T.L., 2010. Wheat production in Tunisia: 
Progress, inter-annual variability and relation to rainfall. Eur. J. Agron. 33 (1), 
33–42. https://doi.org/10.1016/j.eja.2010.02.004.

Lemenkova, P., 2022. Geomorphology of the Beqaa Valley, Lebanon and Anti-Lebanon 
Mountains. Acta Scientifica Naturalis 9 (1), 1–22. https://doi.org/10.2478/asn- 
2022-0002.

Lempereur, M., Limousin, J., Guibal, F., Ourcival, J., Rambal, S., Ruffault, J., 
Mouillot, F., 2017. Recent climate hiatus revealed dual control by temperature and 
drought on the stem growth of Mediterranean Quercus ilex. Glob. Chang. Biol. 23 (1), 
42–55. https://doi.org/10.1111/gcb.13495.

Lempereur, M., Martin-StPaul, N.K., Damesin, C., Joffre, R., Ourcival, J., Rocheteau, A., 
Rambal, S., 2015. Growth duration is a better predictor of stem increment than 
carbon supply in a M editerranean oak forest: implications for assessing forest 
productivity under climate change. New Phytol. 207 (3), 579–590. https://doi.org/ 
10.1111/nph.13400.

Leng, G., Hall, J., 2019. Crop yield sensitivity of global major agricultural countries to 
droughts and the projected changes in the future. Sci. Total Environ. 654, 811–821. 
https://doi.org/10.1016/j.scitotenv.2018.10.434.

Lesk, C., Rowhani, P., Ramankutty, N., 2016. Influence of extreme weather disasters on 
global crop production. Nature 529 (7584), 84–87. https://doi.org/10.1038/ 
nature16467.

Li, J., Wang, Z., Wu, X., Zscheischler, J., Guo, S., Chen, X., 2021. A standardized index for 
assessing sub-monthly compound dry and hot conditions with application in China. 
Hydrol. Earth Syst. Sci. 25 (3), 1587–1601. https://doi.org/10.5194/hess-2020-383.

G. Elias et al.                                                                                                                                                                                                                                    Science of the Total Environment 969 (2025) 178990 

15 

https://doi.org/10.1007/s00484-002-0151-1
https://doi.org/10.1007/s00484-002-0151-1
https://doi.org/10.5281/zenodo.14286198
https://doi.org/10.1080/17524032.2018.1546202
https://doi.org/10.1016/j.jhydrol.2024.131700
https://doi.org/10.1016/j.jhydrol.2024.131700
https://doi.org/10.1038/s41467-024-49244-7
https://doi.org/10.1038/s41467-024-49244-7
https://doi.org/10.1016/j.agrformet.2010.10.011
https://doi.org/10.1111/gcb.14367
https://doi.org/10.1016/j.agrformet.2016.08.014
https://doi.org/10.1088/1748-9326/ab83a7
https://doi.org/10.1016/S0304-3800(98)00205-1
https://doi.org/10.1073/pnas.1411970111
https://doi.org/10.5194/bg-12-2773-2015
https://doi.org/10.5194/bg-12-2773-2015
https://doi.org/10.1186/s40529-015-0100-z
https://doi.org/10.1007/s00468-016-1492-4
https://doi.org/10.1007/s13595-020-01007-2
http://refhub.elsevier.com/S0048-9697(25)00625-4/rf0250
http://refhub.elsevier.com/S0048-9697(25)00625-4/rf0250
https://doi.org/10.1002/wat2.1407
https://doi.org/10.1016/j.crvi.2010.05.003
https://doi.org/10.1007/s00704-020-03317-x
https://doi.org/10.1088/1748-9326/ac45b4
https://doi.org/10.1088/1748-9326/ac45b4
https://doi.org/10.1371/journal.pone.0281287
https://doi.org/10.1371/journal.pone.0281287
https://doi.org/10.1007/s11069-022-05468-8
https://doi.org/10.5751/ES-07681-200306
https://doi.org/10.5751/ES-07681-200306
https://doi.org/10.1093/biosci/biz126
https://doi.org/10.1038/s43247-024-01352-4
http://cran.rediris.es/web/packages/forecast/forecast.pdf
http://cran.rediris.es/web/packages/forecast/forecast.pdf
https://doi.org/10.1016/j.agsy.2016.07.017
https://doi.org/10.1016/j.agsy.2016.07.017
https://doi.org/10.1038/s43247-021-00130-w
https://doi.org/10.1038/s43247-021-00130-w
https://doi.org/10.1175/JAMC-D-21-0198.1
https://doi.org/10.1186/s13717-024-00536-2
https://doi.org/10.4236/acs.2019.93026
https://doi.org/10.4236/acs.2019.93026
https://doi.org/10.1016/j.agwat.2008.09.018
https://doi.org/10.1016/j.agwat.2008.09.018
https://books.google.com/books?hl=fr&amp;lr=&amp;id=zUiUwKYMq_8C&amp;oi=fnd&amp;pg=PA11&amp;dq=keetch+byram+1968&amp;ots=2omN2-rDRb&amp;sig=jRdYqopcoLsHzlOl63zNyg-VFvc
https://books.google.com/books?hl=fr&amp;lr=&amp;id=zUiUwKYMq_8C&amp;oi=fnd&amp;pg=PA11&amp;dq=keetch+byram+1968&amp;ots=2omN2-rDRb&amp;sig=jRdYqopcoLsHzlOl63zNyg-VFvc
https://books.google.com/books?hl=fr&amp;lr=&amp;id=zUiUwKYMq_8C&amp;oi=fnd&amp;pg=PA11&amp;dq=keetch+byram+1968&amp;ots=2omN2-rDRb&amp;sig=jRdYqopcoLsHzlOl63zNyg-VFvc
https://books.google.com/books?hl=fr&amp;lr=&amp;id=zUiUwKYMq_8C&amp;oi=fnd&amp;pg=PA11&amp;dq=keetch+byram+1968&amp;ots=2omN2-rDRb&amp;sig=jRdYqopcoLsHzlOl63zNyg-VFvc
https://doi.org/10.3390/nu13092976
https://doi.org/10.1111/1365-2435.12289
https://doi.org/10.1016/j.landurbplan.2024.105022
https://doi.org/10.1016/j.landurbplan.2024.105022
https://doi.org/10.1007/s12517-020-06387-3
https://doi.org/10.1038/s41598-020-60525-1
http://https//www.sciencedirect.com/science/article/pii/S2667345223000500
http://https//www.sciencedirect.com/science/article/pii/S2667345223000500
https://doi.org/10.1038/s41598-018-21848-2
https://doi.org/10.1016/0304-4076(92)90104-Y
https://doi.org/10.1016/0304-4076(92)90104-Y
https://doi.org/10.1071/WF17087
https://doi.org/10.1016/j.eja.2010.02.004
https://doi.org/10.2478/asn-2022-0002
https://doi.org/10.2478/asn-2022-0002
https://doi.org/10.1111/gcb.13495
https://doi.org/10.1111/nph.13400
https://doi.org/10.1111/nph.13400
https://doi.org/10.1016/j.scitotenv.2018.10.434
https://doi.org/10.1038/nature16467
https://doi.org/10.1038/nature16467
https://doi.org/10.5194/hess-2020-383


Liu, D., Esquivel-Muelbert, A., Acil, N., Astigarraga, J., Cienciala, E., Fridman, J., 
Kunstler, G., Matthews, T.J., Ruiz-Benito, P., Sadler, J.P., 2024. Mapping multi- 
dimensional variability in water stress strategies across temperate forests. Nat. 
Commun. 15 (1), 8909. https://doi.org/10.1038/s41467-024-53160-1.

Lüdecke, D., Ben-Shachar, M.S., Patil, I., Waggoner, P., Makowski, D., 2021. 
Performance: an R package for assessment, comparison and testing of statistical 
models. Journal of Open Source Software 6 (60). https://doi.org/10.21105/ 
joss.03139.
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