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HIGHLIGHTS GRAPHICAL ABSTRACT

e Drought is a multifaceted phenomenon,
described by a comprehensive set of
features EH T e S

e Six yearly drought facets capture v i B A
drought impact on major agro- ‘ t
environmental sectors under Mediterra-
nean conditions

e Drought features are asynchronous,
making it unlikely for all to be negative
(minimal impact) or positive (harmful
impact) across climatic years

e Six keystone features, each with func-
tional significance, provide a synthetic
drought impact assessment index

ARTICLE INFO ABSTRACT

Editor: Fernando Pacheco Drought is a keystone constraint with far-reaching implications for agro-environmental threats. Yet, drought
indices are mostly hydro-meteorological or agricultural, obscuring evidence of the key role agro-ecosystem di-

Keywords: versity plays in buffering the consequences of regional climatic variability. We then question how contrasted

Multifaceted drought drought facets could differentially drive the functioning of agro-ecosystems, and whether the interannual

DFEAT

asynchrony of these facets might prevent multi-crisis events. Here, we examine how a multifaceted character-
ization of yearly drought events differentially relates to key agro-environmental sectors and test how these
drought facets synchronize over Lebanon, a Middle Eastern drought-prone country grappling with socio-
economic and political crises. Using parsimonious multiple linear regression (MLR) models, we captured the
combined functional roles of six yearly drought facets (duration, onset, offset, drying rate, peak drought day, and
mean intensity of episodic rainfall pulses) on major agro-environmental sectors, including winter wheat yield,
tree-ring radial growth, and area burned by wildfires. Delayed drought offset and faster spring soil moisture
drying rates appeared more closely associated to increased burned areas (R? = 0.25), while drought onset and
autumn rainfall pulses from the previous year were negatively linked to winter wheat yield (R? = 0.12), and tree
radial growth switched from a control by drought onset and to duration with increasing altitude (R? = 0.33). The
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observed asynchrony in agro-environmental response to climate variability over the 1960-2020 period appears
to buffer the occurrence of concomitant extremes, a pattern that we could relate to the asynchrony in their
controlling drought facets. By demonstrating the functional role of each drought facet, we conclude on the ef-
ficiency of a compound functionally-sound drought facets index for synchronous agro-environmental climate

crisis warning.

1. Introduction

Globally, an increasing frequency of natural hazards has been
observed and documented over the last three decades, encompassing
extreme weather events, such as heat waves, floods, wildfires, and
droughts (Dixon et al., 2019; Krichen et al., 2023; Seneviratne et al.,
2021). Drought, originating from an extended period of precipitation
levels falling below the historical average for a particular region and
timeframe, stands out as one of the most impactful hydro-climatic
phenomena, affecting all aspects of society and environment (Wilhite
and Pulwarty, 2017). Drought then represents a major disruptor of
terrestrial ecosystem functioning, leading to significant agro-
environmental threats (Hoover et al., 2020). These threats, defined as
the negative impacts on the sustainability, productivity, and resilience
of agricultural systems and their surrounding environments, occur
irrespective of whether these systems are located in arid, semi-arid, or
humid regions (Kmoch et al., 2024; Vicente-Serrano et al., 2020).

Drought is, however, a multi-disciplinary concept, typically classi-
fied into four types: meteorological drought (instigated by precipitation
deficits), agricultural drought (often related to soil moisture depletion in
the rooting zone), hydrological drought (water shortage in streams or
storages), and socio-economic drought (imbalance between water sup-
ply and demand) (Haile et al., 2020; Wilhite and Glantz, 1985). These
globally recognized categories capture, to a certain extent, the intricate
nature of drought propagating through the entire hydrological cycle,
with the assessment of each drought type relying on specific indices
(Ndayiragije and Li, 2022). Although all drought indices are based on
climatic variables, each index allows the quantification of different di-
mensions of drought in both time and space (Vicente-Serrano et al.,
2012; Zargar et al., 2011). While certain indices rely on anomalies of a
single climatic variable (such as precipitation or evapotranspiration)
across different time scales, others, more complex, combine multiple soil
hydrological processes (Seneviratne et al., 2021; Yihdego et al., 2019).

More recently, agricultural drought was extended to its ecological
dimension to capture its impacts on the key functions of terrestrial
ecosystems (Crausbay et al., 2017; Sadiqi et al., 2022; Vicente-Serrano
et al., 2020). Some recent regional-to-global studies have identified
robust relationships between the interannual variability of drought
indices and key response variables in agro-ecosystems, such as tree-ring
radial growth (Alfaro-Sanchez et al., 2018; Bhuyan et al., 2017; Gao
etal., 2018; Gazol et al., 2017; Proutsos and Tigkas, 2020), forest growth
and mortality (Allen et al., 2010, 2015; Choat et al., 2018; Lempereur
et al., 2015), forest fires (Andrade and Bugalho, 2023; Barbero et al.,
2019; Coscarelli et al., 2021; Lahaye et al., 2018; Turco et al., 2017;
Vissio et al., 2023), and yield of major global crops (Leng and Hall, 2019;
Lesk et al., 2016; Matiu et al., 2017; Pena-Gallardo et al., 2018; Santini
et al., 2022). Each anomaly in agro-ecosystem functioning can lead to
socio-ecologically-related agro-environmental threats, such as reduced
wood production and carbon sequestration, forest and human infra-
structure losses, or food insecurity, surpassing the response capacities of
developing countries when happening concomitantly.

Some of these studies suggest that agro-environmental threats are
multifactorial and respond to multiple facets of drought (Gao et al.,
2018; Santini et al., 2022; Turco et al., 2017). Indeed, the interannual
variability in climate variables can lead to contrasted agro-
environmental responses, supporting the idea that the use of a single
drought index (e.g., annual precipitation anomaly) might highly hide
the complexity of drought impacts on natural and agro-ecosystems. Yet,

most of these key findings about drought effects have relied on multi-
scalar drought indices such as the Standardized Precipitation Index
(SPI, McKee et al.,, 1993) and the Standardized Precipitation Evapo-
transpiration Index (SPEL, Vicente-Serrano et al., 2010). While both
indices allow drought to be analyzed at multiple temporal scales, the
minimum temporal window required for their calculation is one month.
This restriction limits the temporal resolution of the analysis, omitting
rainfall pulses and relying on local anomalies to a standard period hardly
comparable between regions. There is, in turn, an increasing debate on
drought characterization among ecologists (Slette et al., 2019),
including limitations in the use of standardized precipitation index
(Zang et al., 2020), associated with a lack of functional meaning of these
meteorological or hydrological indices to ecological functions and pro-
cesses. For instance, annual tree-ring increment has been widely
assessed with seasonal precipitation and temperature while underlying
processes of tree growth under water limitations respond to a soil water
deficit threshold (drought onset) preventing cell turgor for elongation
(Lempereur et al., 2015; Zribi et al., 2016). Ruffault et al. (2013) illus-
trated that, in the Mediterranean region, for a given regional climate and
temporal trend, drought features such as onset, offset, and duration can
produce contrasted local patterns.

These results thus questions how various agro-environmental threats
might be linked to specific drought facets differentially responding to
climate variability, and that some years might combine multiple
extreme facet values as an integrated index for synchronous crisis. Dif-
ferential drought features have been shown to affect socio-economic and
environmental sectors in Europe (Blauhut et al., 2016), while Kukal and
Irmak (2018) illustrate how co-occurring intra-sectorial impacts, as
annual yields across crop types in the central US, differentially respond
to a similar regional interannual climate variability and trend.

Here, we use the recently developed tool DFEAT (Drought FEature
Assessment Tool) (Elias et al., 2024) to characterize yearly drought
facets based on a daily generic soil water balance model over a hydro-
logical year using the Keetch-Byram Drought Index (KBDI) (Keetch and
Byram, 1968). Our aim is to i) test how each drought feature might
differentially impact major agro-environmental functions and processes
(wheat production, tree radial growth, and areas burned by wildfires)
and ii) investigate the synchronies of these drought features anomalies
as an integrated compound index for multi-agro-environmental crisis
warning. We performed this analysis at the national level over Lebanon,
a Middle Eastern country encompassing a gradient of summer-dry cli-
mates from Mediterranean-humid to arid, and recently under socio-
political instability threatening food production (Kharroubi et al.,
2021), ecosystems sustainability, and wildfire danger (Majdalani et al.,
2022). More specifically, we seek to investigate which pairs of drought
features (including drought onset, offset, duration, drying rate, peak
drought day, and the mean intensity of rainfall pulses) exert a significant
influence on key agro-environmental functions, and whether they syn-
chronize or buffer each other across the 1960-2020 period. Our results
will help to promote efficient national-level warning systems of
concomitant drought-related agro-environmental threats that could
worsen the socio-political instability of the country.

2. Materials and methods
2.1. Study area

The study area covers the national territory of Lebanon (10,452km2),
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a Mediterranean drought-prone country, located between 33°-35°N and
35°-37°E on the Eastern shore of the Mediterranean Sea (Fig. 1a). Even
though Lebanon has limited geographic extent, yet it encompasses a
diverse physiography, composed of two parallel mountainous chains
‘Mount-Lebanon’ and ‘Anti-Lebanon’ extending from southwest to
northeast with an average altitude of 1400 m and 1050 m, respectively
(Shaban, 2020). The highest point, Kornet el-Sawda, located in the
western Mount-Lebanon range, reaches an elevation of 3088 m, the
highest crest in the Middle-East region. Both mountainous chains are
separated by the ‘Bekaa Valley’, where most of the country's agricultural
lands are located (Jomaa et al., 2019; Lemenkova, 2022) (Fig. 1b).
Among the main cultivated field crops, winter wheat and potatoes
occupy the largest areas of the valley's cultivated arable lands (Nasrallah
et al., 2019). In contrast, most of Lebanon's forests are aggregated over
the ‘Mount-Lebanon’ mountain range. According to the most recent land
use/cover type map of the country (LULC) (CNRS-L., 2019), the vege-
tation composed of forests, shrublands, and grasslands covers approxi-
mately 33.33 % (348,440 ha) of the Lebanese territory, including 87.8 %
of forests and shrublands and 12.18 % of grasslands (Fig. 1c). Along the
littoral zone and on the western slope of Mount-Lebanon, several
coniferous (cedar, cypress, fir, juniper, and pine) and deciduous (carob
tree, oaks, and pistachio tree) forests have developed (Hajar et al.,
2010). Forest fires, which affect an average of 1500 ha of forests each
year (Majdalani et al., 2022), pose a significant threat to the highly
urbanized coastal zone interspersed with natural areas. The ecological
significance of Lebanon's forests is rooted in the cultural value of Cedrus
libani, the emblematic species of the country, which occupies a mere
0.86 % (1135 ha) of Lebanon's total forest cover. Additionally, these
forests hold economic importance through wood production, which
supports rural populations (Sattout et al., 2007).

Lebanon's diverse topography gives rise to a wide range of biocli-
matic zones, largely driven by rainfall variability. Precipitation, which
occurs predominantly between October and March, varies significantly
across the country, from over 1000 mm annually in the northern coastal
areas to <200 mm in the arid eastern regions (Jomaa et al., 2019). In
particular, >95 % of the rainfall is concentrated in the winter months,
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particularly December and January. As a result of the unevenly
distributed precipitation, Lebanon experiences a sharp climatological
gradient, with relatively humid to sub-humid conditions along the
coastal plains transitioning to arid conditions in the interior and eastern
parts of the country (Haddad et al., 2014; Shaban et al., 2019). Leb-
anon's climate is also marked by prolonged warm and dry summers,
extending from June to October, which lead to seasonal drought, with
September typically being the driest month of the year (Kobrossi et al.,
2021). The average annual temperature ranges between 14 °C in winter
and 27 °C in summer in the coastal zone, with an average of 21 °C. In
contrast, in the mountainous regions, the average annual temperature is
below 12 °C (Shaban, 2020).

2.2. Yearly drought features characterization from daily soil moisture
time series

For the multifaceted drought characterization, we relied on a pre-
viously developed automated tool, the Drought FEature Assessment Tool
(DFEAT), to extract yearly drought features over a hydrological year
(Elias et al., 2024). These features are derived from the Keetch-Byram
Drought Index (KBDI; Keetch and Byram, 1968), representing the soil
water deficit to field capacity (in mm), based on a simplified water-
balance model simulating daily soil water loss (depletion) per day,
and widely used in drought assessment studies (Andrade and Bugalho,
2023; Dimitrakopoulos and Bemmerzouk, 2003; Ganatsas et al., 2011;
Nogueira et al., 2017). Despite it simple formulation, the KBDI index has
been tested in diverse hydro-climatic regions, demonstrating a fair
ability to replicate live fuel moisture content in certain Mediterranean
shrub species (Dimitrakopoulos and Bemmerzouk, 2003; Ruffault et al.,
2018). It has also shown a strong correlation with observed surface soil
moisture under Mediterranean conditions (Ganatsas et al., 2011), and
has been employed in agricultural research studies (Salehnia et al.,
2018). Yet, Elias et al. (2024) acknowledged some limitations in the
KBDI approach, which assumes an arbitrary soil depth and a type of soil.
They also discussed the limitations of temperatures-based evapotrans-
piration estimates within the KBDI and similar drought indices.
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Fig. 1. (a) Location of Lebanon within the Mediterranean basin; (b) Digital Elevation Model (DEM) (adapted from ASTER GDEM Version 3) and major topographies;
(c) Distribution of forests/shrublands, grasslands, field crops, rivers, and lakes (adapted from CNRS-L., 2019).
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Accordingly, based on three soil desiccation thresholds (25 %, 50 %,
and 75 % of the 200 mm field capacity, representing low, moderate, and
extreme drought propagation levels, respectively) which were selected
for their potential implications for agro-environmental threats, DFEAT
extracts 19 yearly drought features related to the onset and offset tim-
ings, duration, severity, peak drought days, and the soil drying/rewet-
ting rates (Elias et al., 2024). We considered the 25 % threshold (or
KBDI-50) as an index of full soil profile refilling aiming at detecting
multi-year drought without winter soil deep drainage, as a major in-
formation in ground water recharge (Reinecke et al., 2021). The 50 %
(KBDI-100) and 75 % (KBDI-150) thresholds correspond to the
maximum and minimum critical thresholds of plant water stress iden-
tified across biomes globally (Fu et al., 2024). Also, both thresholds
affect vegetation functioning through stomatal closure and the subse-
quent plant transpiration and carbon assimilation (Granier et al., 1999),
or tree growth through disruption of cell turgescence in Mediterranean
forests (Lempereur et al., 2017). We proposed the two thresholds to
cover various plant water use strategies (Klein, 2014) and soil texture
(Saxton and Rawls, 2006). We acknowledge more drastic thresholds of
90 % might be of interest, but Elias et al. (2024) illustrated the high
correlation between thresholds.

This tool has been recently applied and tested across Lebanon (Elias
et al., 2024), using daily temperature and precipitation data from the
open-source ERA5-Land climate dataset, downloaded at a 9 km spatial
resolution (Munoz-Sabater et al., 2021). This initial application of
DFEAT over the Lebanese territory uncovered three different Mediter-
ranean soil moisture dynamics or drought types: the Mediterranean
typical dynamic (MED), the Humid mountainous Dynamic (HMED), and
the Dry dynamic with multi-year drought occurrence (DRY-MED). These
types were classified based on soil moisture desiccation patterns in
relation to the country's climatic gradient.

In addition, preliminary analysis revealed inherent dependencies
among many of the extracted drought features, which led to the final
consideration of only six uncorrelated keystone features: drought
duration for the moderate drought level, soil moisture drying rate, peak
drought day occurrence, drought timings (onset and offset), and the
mean intensity of rainfall pulses (Elias et al., 2024). Table 1 presents a
brief definition of each of the six retained drought features. Together,
these six features encapsulate the full development stages of drought
events (Fig. 2). Accordingly, in this study, we have focused on these
specific features due to their potential implications for understanding
the multifaceted nature of drought and its threats to Lebanon's agro-
environmental sectors.

Finally, we have combined these six drought features (DF) with a
lagged version of each one-by-one year (DF n-1), acknowledging that
eco-physiological processes of a given year can result from previous
year's drought (Gao et al., 2018; Santini et al., 2022; Turco et al., 2017).
We ended up with 12 drought features, six for each coincident drought

Table 1
Major drought features issued from DFEAT and their corresponding definitions
and units (Elias et al., 2024).

Drought Features Definition

Moderate Drought
Duration
Drying rate

Number of days spanning between moderate drought onset
and offset days of the year

Maximum daily soil water losses during drought
development stage (mm/day)

Peak KBDI DOY Day of the year (DOY) when KBDI reaches its peak severity

value
Moderate Drought Day of the year (DOY) marking the end of the moderate
Offset drought level; when soil moisture is recovered to 50 % of its

total available water content
Moderate Drought Day of the year (DOY) marking the onset of the moderate
Onset drought level; when soil lost 50 % of its total available
water content
Mean intensity (in mm) of episodic rainfall pulses events
occurring at the end of the dry season

Rainfall pulses Mean
Intensity
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year, and six for the lagged ones.
2.3. Yearly information on agro-environmental threats

2.3.1. Winter wheat yield

Durum wheat, the strategic cereal crop of Lebanon (Abi Saab et al.,
2019a; Nasrallah et al., 2018), was selected in our study to quantify the
implications of interannual drought variability on key rainfed agricul-
tural systems across the country. In Lebanon, wheat accounts for
approximately 70 % of the total cultivated cereal area (45,000 ha), with
around 30,000 ha of wheat fields out of the total cultivated land area of
223,000 ha, half of which are irrigated (Verner et al., 2018). Wheat yield
is defined as the ratio of production over the harvested area. Annual
wheat production (hectogram) and area (hectares) were obtained at the
country level, from 1961 to 2019, from the Food and Agriculture Or-
ganization of the United Nations (FAO) (available at http://faostat.fao.
org/default.aspx). The wheat calendar in Lebanon exhibits a well-
defined sequence of phenological stages: sowing in October—No-
vember, germination and further growth through winter, flowering in
spring (April-May), and grain filling (maturity) and harvest in
June-July (Nasrallah et al., 2018, 2019). This timeframe enables a
focused consideration of drought features that may directly impact
winter wheat yield both during and in the lead-up to its growing season.
Features that provide information outside the range of the growing
season (from sowing to harvest) were not included in the analysis. This
exclusion applies to drought duration, offset, Peak KBDI DOY, and
coincident year rainfall pulses mean intensity, which correspond to the
period after winter wheat harvest. The same applies to the lagged
drought features (DF n-1), where only Peak KBDI DOY (n-1), drought
offset (n-1), and rainfall pulses mean intensity (n-1) were considered, as
they correspond to the period when the wheat is sown.

The presence of a unit root (i.e., presence of trend or seasonal
pattern) on the wheat yield time series was tested, using the Augmented
Dickey-Fuller test (ADF, Dickey and Fuller, 1979). Using this test, the
null hypothesis could not be rejected, indicating that the wheat yield
time series is not-stationary, and does not have a constant variance over
time. This result could be attributed to advances in agricultural tech-
nology and improved management practices (Pena-Gallardo et al.,
2019). Also, the serial correlation of wheat yields time series was
analyzed based on their autocorrelation functions (ACF), which showed
a significant autocorrelation for time lags of up to 15 years (Fig. 3a).

In order to remove bias introduced by non-climate factors and to
account for autocorrelation in the wheat yield time series, we fitted an
Autoregressive Integrated Moving Average function with structure
(0,1,2) using the ‘auto-arima’ function from the ‘forecast’ R-cran pack-
age (Hyndman et al., 2020). The detrended wheat yields (Fig. 3.b) are
considered in further analysis as more suitable indicator of the inter-
annual variability in wheat production. Finally, to extract drought fea-
tures over the area covered by the crop, we utilized the delineated field
crops area derived from the LULC map (CNRS-L., 2019), which was
resampled at 9 km resolution to match the spatial resolution of the cli-
matic dataset used for this study (section 2.2).

2.3.2. Tree-ring data

To investigate the forest tree growth productivity response to
drought features, we utilized six tree-ring chronologies encompassing
the period 1960-2002, developed from six sites in Lebanon at six
different altitudes (Touchan et al., 2005, 2014). Each chronology was
constructed based on several trees, typically >10, of the same species
growing in the same site. Five of the six tree-ring chronology sites belong
to Cedrus libani, while one site belongs to Abies cilicica. Lebanon cedar
(Cedrus libani) is a drought tolerant conifer of the Pinaceae family which
is distributed along a wide altitudinal range (600-2300 m above sea
level) in Turkey, Lebanon, and Syria (Giiney et al., 2015), and is a
protected species with high cultural value in Lebanon (Sattout et al.,
2007). Abies cilicica is an endemic fir species native to the mountains of
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Fig. 3. (a) Autocorrelation Function (ACF) diagrams for the wheat yields time series for the period 1961-2019; (b) Autocorrelation Function (ACF) diagrams of
residuals from the ARIMA (0,1,2). Blue dashed lines indicate the 95 % confidence intervals.

the Eastern Mediterranean region. It is found in three primary distri-
bution areas in Turkey, Syria, and Lebanon (Mount-Lebanon Range)
(Beridze et al., 2021). The species is at risk in its lower elevation habitats
due to the aridization of local climates (Aussenac, 2002) and is classified
as a near-threatened species in Lebanon where fir forests mark their
southernmost geographic range (Awad et al., 2014).

The tree-ring data was downloaded from the International Tree-Ring
Data Bank (ITRDB), (accessed online at http://www.ncdc.noaa.gov/
paleo/treering.html). The processing of tree-ring width measurements
and the full methodology are detailed in Touchan et al. (2005). The
national distribution of these different sites offers the opportunity to
study drought features impacts on tree-ring width growth following an
altitudinal aridity and temperature gradient. Table 2 presents additional
information on each site.

2.3.3. Forest and Shrubland burned areas

As a major environmental threat, we used the annual wildland
burned area data obtained from remotely sensed data over Lebanon
from Majdalani et al. (2022). The fire data cover the 1984-2019 period,
including 2302 fires burning an estimated total area of 53,306 ha, with a
mean yearly value of 1500 ha burned/year in Lebanon (Fig. 4a). The fire
season extends over a protracted period, ranging from June to

Table 2

Site information for tree-ring width chronologies, including site name, the
dominant tree species at the study sites, the elevation above sea level, latitude,
and longitude.

Site Name Species Elevation (m) Latitude (°) Longitude (°)
Wadi Balat Abies cilicica 1170 34.47 36.23
Herch Ehden Cedrus libani 1640 34.3 35.98
Bsharri Cedrus libani 1940 34.23 36.03
Arz Jaj Cedrus libani 1780 34.13 35.82
Barouk Cedrus libani 1775 34.68 35.68
Maaser Al Shouf  Cedrus libani 1700 33.67 35.69

November (Majdalani et al., 2022).

The Burned Area (BA) time series was checked for trend stationarity
using the KPSS test (Kwiatkowski et al., 1992), which did not provide
sufficient evidence to reject the null hypothesis, indicating that the BA
time series is trend stationary (Fig. 4b). However, marked year-to-year
oscillations are present in the BA time series. First, we normalized the
positively skewed BA by applying a logarithmic transformation (y =
log10 (BA)) for the normality requirement, as verified by the Shapiro-
Wilk test. Then, the time series of log10 (BA) was further detrended to
minimize the influence of slowly changing factors such as the gradual
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Fig. 4. (a) Fire frequency map, and (b) yearly burned area (ha) over the forest and shrub cover in Lebanon (1984-2019) (adapted from Majdalani et al., 2022).

increase in fire management and land-use changes, following similar
approaches used in modeling drought-fire relationships. Finally, the fire
occurrence map was resampled at 9 km spatial resolution to match the
spatial resolution of the climatic dataset used for this study (section 2.2)
and extract climate variables over each pixel burned at least once.

2.4. Statistical analyses

To perform correlations between pixel-level drought features and
national-level agro-environmental information, the weighted mean of
drought features was calculated for wheat fields and burned areas, with
relative weights being the surface of each land cover in each 9 km
climate pixel over Lebanon. For tree-ring chronologies, a pixel-based
evaluation was conducted, as the data on tree-ring width measure-
ments is available for six specific locations precisely located by their
latitude and longitude coordinates.

To estimate the impacts of coincident drought features (current
summer drought conditions) and their lagged values by one year
(antecedent drought conditions) on the previously mentioned key agro-
environmental variables, we performed a Multiple Linear Regression
model (MLR), an empirical method widely used in drought impact
assessment studies (Belhadj-Khedher et al., 2020; Bhuyan et al., 2017;
Bouras et al., 2021; Turco et al., 2017; Vissio et al., 2023). This data-
driven statistical method links yearly values of burned areas, wheat
yields, and tree radial growth taken as dependent variables with the
selected drought features (independent or predictor variables) (Eq. 1):

Y =0, +5X1+ P Xo+ P Xn+€ (€D
where Y is the predicted value of the dependent variables, f, is the y-

intercept when all the independent variables are zero, #; and g, are the
regression coefficients that represent the sensitivities of Y to the inde-

pendent variables X; and X, presented here by the six retained drought
features. ¢ is a stochastic noise term that captures all other (neglected)
factors that influence the dependent variables (Y) other than X; and
X5 (Tranmer and Elliot, 2008).

We limited our analysis to test the importance of all possible com-
binations for only two explanatory variables (pairs of drought features).
Accordingly, we fitted all possible models (i.e., in-sample models) with
the combination of two selected predictors at each time (2 predictors out
of 12) aiming to identify the maximum correlation values among all the
models evaluated. The goodness of fit of the developed models was
estimated using the coefficient of determination (R?) as an indication of
the explained variance and was considered statistically significant for p-
values <0.05. Additionally, to identify the best statistically significant
models, we computed the minimum Akaike information criterion (AIC)
value among all the developed models (Akaike, 1974), using the ‘per-
formance’ R-cran package, providing utilities for computing measures to
evaluate models quality and fit (Liidecke et al., 2021). The AIC measures
the goodness of a statistical model based on a trade-off between its ac-
curacy (that is, the explained variance) and its complexity (that is, the
number of free parameters). Following this criterion, the model with the
lowest AIC is preferred. The retained models presented and discussed in
Sections 3 and 4 where those residuals satisfy the hypothesis of
normality, zero autocorrelation, and constant variance (i.e., homosce-
dasticity tested using the Breusch-Pagan test, using the ‘bptest’ function
from the ‘Imtest’ R-cran package) (Schmidt and Finan, 2018; Verran and
Ferketich, 1987; Zeileis and Hothorn, 2002).

To get a more nuanced understanding into the uncertainty sur-
rounding the coefficient estimates (regression model slopes) and R?
values of our retained significant models, we leveraged a bootstrap
resampling technique. This approach utilizes the “pairs (random x)”
method, which resamples pairs of observations (encompassing both the
dependent and all independent variables) from the original dataset for
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each model, with replacement (Davison and Hinkley, 1997). This iter-
ative process is repeated over 1000 replicates, generating bootstrap
samples that faithfully replicate the dependence structure within the
variables, and was implemented using the “boot” R-cran package (Canty
and Ripley, 2017). Subsequently, the model is refitted on these resam-
pled datasets. By treating the observed data as a singular realization of
the underlying process, our bootstrap approach enables us to construct
numerous hypothetical replications of the same process.

The results are presented in regression plots using the ‘Corrplot’ R-
cran package (Wei et al., 2021), wherein the upper half of the plots, the
circle color and size represent the strength of multiple R? values for each
constructed model, reflecting the correlation between two independent
variables (X1 from rows and X2 from columns) in relation to the targeted
agro-environmental variables. The diagonal line in the upper half rep-
resents the correlation between a single independent variable (drought
feature) and the targeted agro-environmental variables. Asterisks indi-
cate significant p-value levels: * < 0.05, ** < 0.01, *** < 0.001. In the
lower half of the plots, the numeric values represent the Akaike Infor-
mation Criterion (AIC).

Heat maps were produced to illustrate synchronicity phases between
the six selected drought features using the ‘ggplot2’ package in R
(Wickham et al., 2016).

All the statistical analyses were performed in R 4.3.1 statistical
environment (Core Team, 2021).
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3. Results
3.1. Burned area / drought assessment

To identify the key drought features potentially affecting the inter-
annual BA variability in Lebanon, we created a regression plot pre-
senting all potential explained variances (R%) and AIC values between
the detrended logl0 (BA) and the combination of different drought
features pairs (Fig. 5). Since both the dependent and independent var-
iables are in standardized forms, the model's slope coefficient values
indicate the extent of change in standard deviations.

The overall examination of the constructed Drought-BA regression
plot reveals higher explained variance (R?) using multiple regressions
incorporating pairs of features compared to simple regressions utilizing
individual drought features as explanatory variables. For instance, for
one potential predictor's response (i.e., the diagonal line of the upper
regression plot), drought offset, taken as the predictor, explains 15 %
(R2 = 0.15) of the annual BA with a significant p-value of 0.02. Simi-
larly, drought duration appears to be significantly correlated to BA (p-
value = 0.04), although with a lower explained variance than drought
offset (R? = 0.11). Both linear models, with positive bootstrapped slope
coefficients, reveal that when drought duration increases or ends later in
the season, the area burned is larger.

Our regression plot also demonstrates that incorporating pairs of
drought features could improve the explanatory power compared to
single explanatory variables. This is exemplified by the MLR model
combining drying rate and drought offset of the same year (i.e.,
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Fig. 5. Relationships between the six selected drought features and their lagged values by one year (n-1) with the detrended log10(BA). The color value and circle
size in the upper diagonal cells are proportional to the range of the explained variance (R?). Large circles colored with dark red are models with higher explained
variance compared to others, which are colored with sequential shades from yellow to orange. Significant codes for p-values: 0.001 as “****, 0.01 as “**’, 0.05 as “*’,
and non-significant as . The lower half of the diagonal provides the AIC numerical values for each developed model, using a sequential color scale from dark blue

(highest AIC value) to very pale blue (lowest AIC value).
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coincident drought year), which achieved the highest explained vari-
ance (R% = 0.25, p-value = 0.008). The 95 % confidence interval (CI) for
the R2, obtained via bootstrapping, ranges from 0.10 (lower CI bound) to
0.42 (higher CI bound). We conclude that both features synergistically
act as positive explanators to the interannual variability of BAs. Other
MLR models, with RZ ~ 0.20 and featuring similar 95 % CI ranges for R,
along with two statistically significant predictors, also appear in the
regression plot and are summarized in Table 3.

Among others, drought duration combined either with the drying
rate, the peak drought day of the coincident, or the peak drought day of
the previous year, is statistically significant, with an explained variance
of 0.23, 0.22, and 0.21 respectively. As secondary explanators, mean
intensity of autumn rainfall pulses (RP-I mean, model 5) and earlier peak
drought appear negatively correlated with BA, confirming the effec-
tiveness of episodic rainfall pulses events at the end of the dry season in
reducing burned area.

Wel'll note that a delayed peak drought day of the antecedent year
(Peak KBDI DOY n-1, model 3 and 6) also leads to reduced BA in the year
n. Taken together, the statistical analysis reported here points out that
same-summer drought conditions exert a dominant influence on the
areas burned by fires compared to the less influential association
observed with antecedent drought conditions (n-1).

3.2. Wheat yield /drought relationship assessment

We investigated the relationship between drought features and
wheat yield over the selected drought features matching the crop
calendar.

Two statistically significant models (with p-values <0.05) capture
the impact of coincident (year n) and antecedent (year n-1) drought
features on wheat yields (Fig. 6). The first model includes the previous
year autumn rainfall pulses (RP. [. Mean n-1) and the coincident year soil
moisture drying rate occurring in spring during the growing period as
the explanatory variables. The second model includes the previous year
autumn rainfall with the current year drought onset as the explanatory
variables. High daily drying rate (i.e., soil moisture depletion) and late-
season drought onset during the growing season are negatively linked to
wheat yield, hence causing harvest losses. However, in both models, the
previous year autumn rainfall pulses intensity appears highly valuable
for the sowing period, as increased rainfall pulses in year n-1 lead to
greater wheat yields in the next year (year n). Both models exhibit an
explained variance of 0.12 (p-value <0.05), with a 95 % CI ranging from
0.01 (lower CI bound) to 0.28 (higher CI bound).

Table 3

Performance of the best significant MLR models, developed between pairs of
drought features and detrended log10 (BA). Rows report the predictors used in
the developed model (Predictor 1 and Predictor 2), the slope coefficient of each
predictor (Slope 1 and Slope 2), the model explained variance (Multiple R2), and
p-value significance levels.

Model  Predictor 1 Slope Predictor 2 Slope Multiple p-
1 2 R? value
1 Mod. 0.31 Drying rate 0.25 0.23 0.015
Duration
2 Mod. 0.22 Peak KBDI 0.13 0.22 0.017
Duration DOY
3 Mod. 0.22 Peak KBDI -0.13 0.21 0.02
Duration DOY (n-1)
4 Peak KBDI 0.11 Mod. Offset 0.17 0.22 0.017
DOY
5 Peak KBDI 0.15 RP. I. Mean -0.24 0.18 0.03
DOY
6 Mod. Offset ~ 0.18 Peak KBDI -0.13 0.23 0.014
DOY (n-1)
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3.3. Tree ring / drought assessment along altitudinal gradient

We investigate here the tree-ring and drought relationship for the six
sampling sites covering an altitudinal transect ranging from Wadi Balat
(1170 m above sea level (asl)) to Bsharri (1940 m asl). Accordingly, six
regression plots between pairs of drought features and tree-ring width
chronologies are produced for each site (Figs. 7 a-f).

Wadi Balat (WB) and Herch Ehden (HE) sites (Fig. 7a, b), which are
situated at the lowest altitudes compared to the other sites (Table 2),
share approximately similar responses to drought features, more
particularly regarding drought onset, which has the most statistically
significant influence (HE p-value = 0.0002, and p-value = 0.0001 for
WB) on the tree-ring growth of Abies cilicica and Cedrus libani, when
considered alone as the single explanatory variable. The late-season
drought onset reveals a positive association with tree-ring radial
growth (R? = 0.3), while an early drought onset is negatively associated
with tree-ring growth. In both sites, the 95 % CI for the bootstrapped
explained variance ranges between 0.10 and 0.50. As a secondary
explanatory factor, drought duration appears more statistically signifi-
cant at the WB site (p-value = 0.004), exhibiting a higher explained
variance (R? = 0.19) compared to the HE site R?= 0.10), which shows
less statistical significance (p-value = 0.04). Both sites highlight the
negative association between longer drought duration (and accordingly
drought severity) and decreased tree radial growth.

When both dimensions (duration and onset) are combined in a single
model, the lowest site (WB) shows the highest statistically significant
explained variance (R? = 0.33, p-value = 0.0004) compared to the HE
site (R? = 0.28 and p-value = 0.001). At both sites, the explained vari-
ance is mostly dominated by drought onset, with a minor contribution of
drought duration. We will note that other drought features do not have
the same meaningful difference at the two sites (WB and HE). For
instance, late-season rainfall pulses (RP. I. Mean) combined with
drought onset of the same year are statistically significant in both sites,
but only positively associated with tree-ring growth at the WB site.
Interestingly, both sites have the same pattern of positive and statisti-
cally significant association (p-value = 0.0005) between the previous
year's drought onset (Mod. onset n-1) and the current year's drought
onset, which explains 32 % of tree-rings variability, where 95 % CI for
bootstrapped R? ranges between 0.15 and 0.50.

When transitioning to a slightly higher altitude at the Maaser Al
Shouf site (1700 m asl), drought duration becomes the most influential
and statistically significant feature (p-value = 0.0006) negatively
explaining 25 % (R? = 0.25) of tree-ring variability (95 % CI ranges
between 0.10 and 0.46), while drought onset appears less statistically
significant in affecting tree radial growth (p-value = 0.01, R% = 0.14).
However, at this site, it is noteworthy to mention that drought duration
also appears highly statistically significant (p-value <0.01) when com-
bined with all the coincident and antecedent season drought features,
with a statistical explained variance varying between 0.25 and 0.30
(Fig. 7¢).

At the Barouk site (1775 m asl), with lower explained variance R? =
0.12) and statistical significance (p-value = 0.03), drought duration is
still the most influential feature on tree-ring growth when taken alone or
even when combined with the previous year drought duration (R?> =
0.18, p-value = 0.02) or onset R% = 0.20, p-value = 0.01) (Fig. 7d).

At the Arz Jaj site (1780 m asl), one pair of drought features previous
year drought onset (Mod. onset n-1) and mean rainfall pulses intensity
(RP. I. mean n-1), positively and significantly explains 33 % (R% = 0.33)
of tree-ring growth of the next year (Fig. 7e).

Finally, at the highest elevated site (Bsharri at 1940 m asl), drought
duration and offset remain statistically significant (p-value = 0.01)
when taken alone as predictors, but with a low explained variance (R2
= 0.12). However, when both are combined with the peak drought day
of the previous season (Peak KBDI DOY n-1), the explained variance
increases by 8 % (R? = 0.20) with approximately the same significance
level (Fig. 7).
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We conclude here on the progressive switch of drought feature
contribution to tree radial growth from drought onset at lower altitudes
to drought duration at higher altitudes.

3.4. Yearly drought features synchrony patterns across bio-climatic
regions of Lebanon

We could previously show that agro-environmental variables are
related to different combinations of drought facets. In turn, at the na-
tional level, we question here how to provide a synthetic yearly drought
impact assessment index. Here, we analyzed how our key impactful
drought features might be correlated and thus synchronized, so that
some years could be qualified as hydrologically harmful for agro-
environmental services when concomitant positive (or drier) drought
features anomalies occur.

We can infer from Fig. 8 that drought features are hardly all
concomitantly negative. This result suggests that, during climatically
similar years, certain drought facets can have contrasting (positive or
negative) asynchronous impacts on fire, plant growth or crop yield. We
observed this pattern consistently across all bioclimatic zones of
Lebanon. When summing up DF anomalies in an integrated drought
feature severity index (DFSI) we could better capture particular years as
1998, 2007, 2008, 2010, and 2013 with the highest positive values, as a
result of synchronous positive values in most drought feature (e.g., the
synchronous harmful effect of drought duration, onset, offset, and
rainfall pulses mean intensity concomitating in the year 2008).

Additionally, we show an asynchronized pattern between the yearly
calculated DFSI and precipitation anomalies across all bioclimatic zones,
which indicates that relying solely on standardized precipitation indices
may not fully capture the variability across the six functionally-targeted
drought features considered in this study, nor the full spectrum of their
associated agro-environmental threats. Drought features variability
across bioclimatic zones aren't solely driven by precipitation amount,
even if precipitation is the primary driver of soil drought, and depend
more on an interplay of interactive factors, such as their temporal dis-
tribution and the daily temperature fluctuation. Yet, drought features
are mostly not synchronized across the three studied bioclimatic zones
covering the Lebanese territory, so that concomitant agro-
environmental threats are relatively rare over our ecologically diverse
region, as illustrated in Fig. 9.

4. Discussion
4.1. Agro-environmental functional meaning of yearly drought features

Our results reveal that the interannual variability of BA in Lebanon
from 1984 to 2019 is predominantly and significantly correlated with
both the rate of soil moisture depletion during drought onset and the
timing of drought offset at the end of the dry season. It is noteworthy to
mention that this MLR model explained variance (R2 = 0.25) remains
lower compared to other national and regional studies, which report
values ranging from 0.40 to 0.80 of explained variability over the
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Mediterranean basin due to drought assessment using the SPEI index
(Turco et al., 2017), although the most drought-prone southern Medi-
terranean countries experienced low to no-correlation in these analyses.
In Lebanon, this lower explained variance may be due to the close
relationship between BA variability and other anthropogenic factors, as

11

noted by Majdalani (2023) and Mhawej et al. (2016, 2017). Addition-
ally, the number of heat waves during the dry season might contribute
more importantly than the considered drought features when drought is
recurrent (Belhadj-Khedher et al., 2020; Ruffault et al., 2020). A faster
drying rate of soil moisture during the drought development stage (i.e.,
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spring and early summer seasons), in response to reduced or less intense
spring precipitation and rising temperatures, could rapidly deplete soil
moisture content, due to increasing atmospheric evaporative demand,
leaving the herbaceous layer more flammable due to less water content
in their leaves and tissues (Cardil et al., 2019; Jacobson et al., 2022;
Turco et al., 2019; Westerling et al., 2006). Concomitantly, a delayed
drought offset (i.e., during the months of October and November),
contributes to prolonged and severe soil desiccation conditions. This
extends the window of opportunity for more wildfires to occur during
these two months (Majdalani et al., 2022; Richardson et al., 2022; Sal-
loum and Mitri, 2014). Majdalani et al. (2022) specifically identified
October and November as the peak fire months for the Lebanese Medi-
terranean forests and shrublands, a particular case within the Mediter-
ranean basin, where summer months experience high air relative
humidity while autumn experience drier air conditions. The delayed
appearance of autumnal precipitations has also been evidenced in other
Mediterranean areas (Cayan et al., 2022; Goss et al., 2020; Lukovic et al.,
2021; Swain, 2021), extending fire-prone periods and leading to a larger
cumulated burned area over the year. However, drought duration or
severity might be more of a reliable index in other areas (Carvalho et al.,
2021; Urbieta et al., 2015).

Regarding agricultural production, mostly located in the eastern part
of the country in the Bekaa valley, we identified contrasted drought
features occurring during the crop calendar and affecting the annual
yield of winter wheat. Our analysis reveals that wheat yield of a
particular year n is affected by drought conditions at the different stages
of crop establishment. The key time periods are: October-December of
the previous year (year n-1) when sowing starts and January—June of the
current year (year n) during the growth and maturation. Our findings
infer that an adequate soil moisture during the sowing period, captured
by the significant contribution of rainfall pulses of year n-1, is essential
for successful germination and seedling establishment (Bouras et al.,
2020; Latiri et al., 2010; Pook et al., 2009; Wang et al., 2016), while a
prolonged soil desiccation of year n-1 due to delayed or insufficient
autumn rainfall can hinder germination and root growth (Latiri et al.,
2010; Pena-Gallardo et al., 2019; Yu et al., 2018). We also found that
accelerated drying rates of soil moisture of year n coincide with insuf-
ficient spring rainfall, particularly during April and May (Pdscoa et al.,
2017; Tigkas and Tsakiris, 2015). This deficiency falls short of meeting
the water demands of wheat crops during critical developmental stages
when the photosynthetic activity peaks, surpassing earlier growth pha-
ses (Karam et al., 2009). In addition, our findings concur with previous
ones showing that drought onset occurring during the end of the
growing season (May and June), coinciding with the grain filling period,
constraint wheat production in the Mediterranean region (Del Moral
et al., 2003; Yang et al., 2020; Yu et al., 2018). Overall, our results
indicate that features of drought from previous year (i.e., rainfall pulses
n-1) and from current year (i.e., drought onset or drying rate n) can both
contribute to predict wheat production at the national level. But it is
worth noting that, although the developed models demonstrate statis-
tically significant relationships between drought features and detrended
winter wheat yield (p-value <0.05), the explained variance of these
models is relatively low (R? = 0.12) compared to other regional and
global studies. For instance, Pena-Gallardo et al. (2019) reported cor-
relation values between different drought accumulation periods and
wheat yields ranging between 0.41 and 0.6 at the district level in Spain
using the SPEI index, and Leng and Hall (2019) reported an R? = 0.25 on
a global scale when using the SPI drought index. Our results could be
explained by the fact that, in Lebanon, >50 % of the wheat cultivated
areas are irrigated, especially in the areas where rainfall fails to provide
sufficient water thus, alleviating multifaceted drought impacts (Verner
et al., 2018). Also, our results suggest, however, that irrigation may not
be sufficient to totally alleviate drought impacts on yield. In the Bekaa
valley, the primary wheat production area in Lebanon, irrigation is still
conducted in a traditional way, rather than based on meteorological
data or technological sensors (Abi Saab et al., 2019b). In addition, the
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variability in crop yield can also be attributed to other biotic and abiotic
factors. For instance, spring frost, which we did not account for, was
found to have detrimental impact on crop growth and productivity
within the Bekaa valley (Abi Saab et al., 2019a).

We finally captured the sensitivity of tree radial growth to key
drought facets. We could identify that, according to altitude (correlated
to decreasing air temperatures and PET or increasing precipitation
amount), tree growth responded to contrasted drought features, in line
with the source (carbon assimilation) vs sink (non-photosynthetic)
limitation hypothesis (Cabon et al., 2020; Guillemot et al., 2015;
McDowell et al., 2008). In upper altitudes, drought duration was the
main driver, while in lower altitudes, drought onset progressively
appeared as the main driver. These results align with the findings
recently reported by Cabon et al. (2024) across altitudinal gradients
under Mediterranean climate, where limitations imposed by biophysical
limitations (e.g., cambial cell division and development) at drier sites
overpass the limitation imposed by carbon assimilation over the dry
season in upper altitudes. In the highest site in altitude, Bsharri, the
relationship between stem growth and drought duration can be attrib-
uted to the “carbon starvation” hypothesis, as a result of reduced
photosynthesis when trees close their stomata and reduce carbon ex-
changes with the atmosphere, thus disrupting sugar transport within the
phloem, limiting carbohydrate utilization and, consequently, promoting
growth reduction (Cabon et al., 2024; Giiney et al., 2017; McDowell
et al., 2022). At the lower altitude sites, Wadi Balat and Herch Ehden,
the correlation between stem growth and drought onset aligns more
closely with the sink hypothesis. These findings are consistent with
conclusions previously demonstrated by Giiney et al. (2015, 2020),
Lempereur et al. (2015), and Delpierre et al. (2016) revealing that the
weather conditions prevailing during the period of most linear growth
(spring months) are more crucial for defining the final ring widths and
that drought onset is a keystone information for this agro-environmental
sector. We also identified that at Wadi Balat, Herch Ehden, and Maaser
Al Shouf sites, the drought conditions from the previous year seem to
exert a significant influence on subsequent year's growth. Both drought
onsets in the preceding year (Mod. onset n-1) and in the subsequent year
can positively influence the formation of wider tree rings at the Wadi
Balat and Herch Ehden sites. This result highlights the potential role of
the preceding year (n-1) in shaping carbon balance and reserves. These
reserves may be strategically utilized by trees in the subsequent year ()
to produce wider growth rings, particularly under delayed drought onset
conditions (Cabon et al., 2024). The observed negative influence of the
previous year's drought on subsequent growth aligns with the drought
legacy effects, highlighting the enduring impacts of multifaceted
drought occurrence on tree growths (Gao et al., 2018).

4.2. Asynchrony of drought features as a driver of stability in agro-
ecosystem functioning and threats

One of our main result shows that drought features and their nega-
tive impacts on ecological and agronomic functions and processes are
not correlated and, therefore, asynchronous at the local scale with non-
concomitant extremes. This result leads to the key conclusion that a year
considered as ‘dry’ based on annual or seasonal rainfall deficit (as usu-
ally performed Hendrawan et al., 2022, 2023), hides a more complex
picture regarding its various facets and the asynchrony of their impacts
on eco and agroecosystems. In our study area, we showed that drought
features don't all reach high values at the same time (or year). Because
different features affect different ecosystem functions and processes, we
can expect that shocks/anomalies across different vegetation types don't
happen synchronously, lowering the risk of triggering regional multi-
crisis events (Homer-Dixon et al., 2015). Our multifaceted drought
assessment framework then brings new insights for ecosystem syn-
chrony analysis, an emerging property to elucidate ecosystem response
to global change (Vagnon et al., 2024). Until now, species (crop or tree)
diversity has been shown to drive agro- or ecosystem stability across
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interannual climate variability (Grossiord et al., 2014; Renard et al.,
2023; Renard and Tilman, 2019; Schnabel et al., 2021), through
complementarity mechanisms inferred from the interspecific variability
in water stress response (Liu et al., 2024). More specifically, Valencia
et al. (2020) suggested that the synchrony in species responses to
climate overrides species richness in stabilizing plant community func-
tioning. While research has explored the role of the multiple facets of
biodiversity (richness, evenness) on the ecosystem's stability (Craven
et al., 2018), as a future avenue of research, we suggest here that the
asynchrony in the multiple facets of droughts should be further assessed
as a climate driver of ecosystem's stability and as a potential driver of
species leaf and root traits (Skelton et al., 2015; Sun et al., 2024).
Providing drought facets tailored to agronomists and ecologists, corre-
sponding to acknowledged critical thresholds for plant functioning,
should facilitate broader adoption compared to sometimes obscure
drought indices (Slette et al., 2019). Moreover, the tool is generic
enough to be used on any soil water content generated from empirical or
process-based models using climate time series, or remotely sensed plant
or soil moisture content over bioclimates experiencing a single drought
period as the Mediterranean (Elias et al., 2024). We tested these effects
on wheat yield, forest fires, and tree growth, but any other agro-
environmental issue as Mediterranean rainfed agriculture (olive, grape
wine, barley, and pine seeds) (Trabelsi et al., 2022), pasture and grazing
(Iglesias et al., 2016), irrigation demand (Xing et al., 2020), or forest
management such as tree mortality (Allen et al., 2015), could be
assessed with this framework.

4.3. From local to regional drought synchrony through atmospheric
oscillations

Our study combined three agro-environmental threats over the na-
tional territory of Lebanon, showing differential responses to drought
facets, but also encompassing different regions with contrasted climates.
Forest fires mostly happen in the coastal region (Majdalani et al., 2022),
while major forests cover the mountainous areas and wheat crops are
mostly located in the northeastern part of the country (CNRS-L., 2019).
We highlighted the role of contrasted and asynchronous drought facets
in driving agro-environmental threats during extreme events, enhanced
when they happen concomitantly, but our study accounts for the spatial
asynchronies in climate variability and the subsequent occurrence of
drought facets. At the global scale, synchronized crop failure is a major
threat to food security when extreme climatic events occur concomi-
tantly over major global cropping areas (Mehrabi and Ramankutty,
2019) in the context of global market. At the national level as in
Lebanon, this spatial synchrony of drought events might affect national
food security, particularly in countries under economic crisis as
currently happening (Abou Ltaif et al., 2024; Ali, 2024). Detecting
synchrony in pixel-level drought facets, or area-weighted anomalies as
in severity-area-duration approaches (Andreadis et al., 2005; Zhou et al.,
2020) should bring fruitful information on food or environmental se-
curity related to drought events.

This spatial synchrony can reveal synoptic large-scale events. For
example, tree growth synchrony (or drought onset and drought duration
as revealed in our analysis) has been shown to be an effective indicator
of large-scale climate extremes (Jia et al., 2024), mostly related to at-
mospheric oscillations potentially affecting concomitantly all ecosys-
tems (Krawczyk et al., 2020). This regional synchrony, extending the
concept of drought to its spatial extent, is a major indicator of historical
climate change and megadrought occurrence with high regional socio-
ecological impacts (Ionita et al., 2021; Sharma and Mujumdar, 2017)
that should be further investigated through drought features in the
context of climate change and agro-environmental impact assessment.

4.4. Toward a compound drought facets index

Finally, our analysis could reveal the differential impacts of various
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drought facets on key agro-environmental threats over Lebanon and
their regional temporal and spatial variability across the country.
Increasing need for early warning of climate threats (Hermans et al.,
2022) or long-term country strategies for sustainable development goals
under climate change scenarios have been raised (Xue et al., 2024).
While single drought indices appear insufficient, multiple indices could
bring confusion. Synthetic compound indices have been proposed for
drought, mostly combining drought types (Tramblay et al., 2020):
meteorological, hydrological, and agricultural droughts (Ali et al., 2022;
von Matt et al., 2024; Wu et al., 2022). For the Middle East and North
Africa more specifically, Bergaoui et al. (2024) developed a Composite
Drought Index (CDI) combining remote sensing and modeled data in-
puts, reflecting anomalies in precipitation (through SPI calculation),
vegetation (NDVI index), soil moisture (root-zone soil moisture anom-
aly), and evapotranspiration. These compound indices were even
complexified by combining drought with heat indices as a major critical
information for agro environmental disruptions (Hao et al., 2020; Hos-
seinzadehtalaei et al., 2024; Li et al., 2021). Elias et al. (2024) high-
lighted the significance of this approach in DFEAT development
perspectives. Yet, building on this approach, we propose here a com-
pound index of drought facets. By revealing the functional role of each
facet on agro- and ecosystems, we suggest that a compound drought
facet index could bring synthetic information on potential concomitant
threats leading to crises. Therefore, we could provide an efficient
drought assessment tool and framework so that policymakers and land
managers will be better equipped to more effectively diagnose the cli-
matic drivers of agro-environmental issues within the key affected sec-
tors. Furthermore, providing climate change projections of frequency
and intensity of drought features can significantly enhance preparedness
and raise awareness of the potential effects of future classified ‘harmful’
hydrological years on the country's primary agro-environmental sectors.
This approach fosters a more sustainable and adaptive future manage-
ment framework to mitigate national agro-environmental crises in the
country, particularly in the context of socio-political instability (Ali,
2024; Kharroubi et al., 2021).

5. Conclusion

This study proposed a comprehensive characterization of yearly
multifaceted drought events, leveraging daily simulated soil water bal-
ance. We could also provide valuable insights on drought features'
functional meaning for major agro-environmental threats in the typical
Mediterranean agro-ecosystems over Lebanon. By constructing parsi-
monious Multiple Linear Regression (MLR) models that incorporate
pairs of drought features from both the current and preceding year, we
were able to assess their statistically significant effects on each target
variable. Our findings substantiate our initial hypothesis that the
interannual variability in agro-environmental threats is multifactorial
and that combined drought features provide a superior explained vari-
ance compared to individual features. Additionally, our results validate
our second hypothesis regarding the differential weighting of various
drought features in relation to the target variables. By leveraging these
correlations, we concluded on the significant role of drought facets
asynchrony in buffering climate impacts leading to multiple and
concomitant agro-environmental crisis. Synchronous disturbances
actually constitute a major under-investigated threat with potentially
aggravating cascading effects (Burton et al., 2020), more hardly handled
under socio-political and economic instability as currently in Lebanon
and other Mediterranean countries (Diourane and Talbi, 2024), a major
concern for disaster reduction goals of the Sendai Framework (Peters,
2024; UNDRR, 2015).
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