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Abstract
The increasing availability of genome sequences has highlighted the limitations of us-ing a single reference genome to represent the diversity within a species. Pangenomes,encompassing the genomic information from multiple genomes, thus offer a more com-prehensive representation of intraspecific diversity. However, pangenomes in form of avariation graph often lack annotation information and tools formanipulating it, which lim-its their utility for downstream analyses.We introduce here GrAnnoT, a tool designed foran efficient and reliable integration of annotation information in such variation graphs.It projects existing annotations from a source genome to the variation graph and sub-sequently to other embedded genomes. GrAnnoT was benchmarked against state-of-the-art tools on pangenome variation graphs and linear genomes from Asian rice, andtested on human and E. coli data. The results demonstrate that GrAnnoT is consen-sual, conservative, and fast. It provides informative outputs, such as presence-absencematrices for genes, and alignments of transferred features between source and tar-get genomes, helping in the study of genomic variations and evolution. GrAnnoT’srobustness and replicability across different species make it a valuable tool for en-hancing pangenome analyses. GrAnnoT is available under the GNU GPLv3 licence athttps://forge.ird.fr/diade/dynadiv/grannot.
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Introduction
Recent advances in genome sequencing and assembly methods give access to a massive and

increasing number of genome sequences per species for the scientific community. Consequently,
while still currently prevalent, the use of a single reference genome has been shown to bias many
analyses (Chen et al., 2021; Martiniano et al., 2020; Maurstad et al., 2024), as it favors variant
calling toward reference alleles and thus hinders the identification of non-reference sequences.
From that rises the idea that a single individual is not enough to represent the diversity of a
given species or group. This led to the development and diffusion of the concept of pangenomics
across the whole tree of life (Bayer et al., 2020; Liao et al., 2023; Miga and Wang, 2021; Rouli
et al., 2015; Shi et al., 2023).

A pangenome aims to represent the complete genomic information from several genomes of
the same species or group, in order to better represent the intra-specific/group diversity. While
the concept emerged from bacterial studies (Tettelin et al., 2005), it is now applied to larger
and more complex eukaryotic genomes. Many studies in pangenomics have been published, and
allowed a better understanding of genomic diversity, population dynamics, and evolution (Rice
et al., 2023; Secomandi et al., 2025; Tranchant-Dubreuil et al., 2019; Zhou et al., 2022).

This pangenomic information can be stored in different structures depending on the type
of organism and study involved. Ranging from gene set to whole pangenome graphs, the meth-
ods to build, manipulate and study these structures differ. Some representations of pangenomes
have an extensive toolset allowing in depth analysis (e.g. bacterial pangene set with tools such
as PPanGGOLiN (Gautreau et al., 2021)), some can handle thousands of genomes (e.g. de Bruijn
graphs built by Bifrost (Holley and Melsted, 2020)), and some others still suffer from method-
ological shortage.

Annotation is an important element for studying genomic sequences and understanding their
potential biological functions, if any, to help interpret the variations found in the pangenome in
regard of phenotypes. Numerous tools have already been proposed to produce, cluster, visualize,
or manipulate pangenome annotation (Durant et al., 2021; Gautreau et al., 2021; Horsfield et al.,
2023; Pedersen et al., 2016).

The variation graph (Outten and Warren, 2021) is a promising structure for representing a
pangenome, but it still lacks adapted tools to integrate and manipulate annotation. This struc-
ture represents the whole sequence information of the embedded genomes, including intergenic
regions, small and large variants (SNPs as well as large indels, duplications and translocations -
to some extent), and is easier to use for large or complex genomes with high repeat content
(Andreace et al., 2023; Secomandi et al., 2025) compared to de Brujin graphs, for instance. In
variation graphs, the nodes represent sequences by stretch of DNA, the links (or edges) show the
adjacencies between two sequences (nodes) in at least one embedded genome, and the paths re-
construct these embedded genome sequences. Variation graphs are usually built from complete
alignments between whole genomes, and the currently most popular tools include PGGB (Garri-
son et al., 2024) and minigraph-cactus (Hickey et al., 2023). Additionally, tools like VG (Garrison
et al., 2018) and ODGI (Guarracino et al., 2022) manipulate these graphs and perform various
tasks. These variation graphs are currently used for better alignment of reads, genotyping, and
structural variation detection (Hickey et al., 2020; Sirén et al., 2021). However, the variation
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graph only encodes sequence information, and does not carry any annotation natively. Such bio-
logical information is crucial to give context to any variation in genomic sequences, and is often
available for the linear reference genomes. Integrating these existing annotations to the variation
graphs would enrich these structures and make them a better tool for studying pangenomes.

While tools exist to visualize annotations on a graph (Jonkheer et al., 2022; Liu et al., 2024;
Miao and Yue, 2025; Wick et al., 2015), their use is not adapted for large-scale analyses of thou-
sands of annotations. To answer this issue, VG annotate recently proposed to project genomic
annotation on a graph, and offers options to efficiently index and query the resulting graph an-
notation (Novak et al., 2024). However, it cannot project annotations from the graph to the
genomes, which would in turn allow to output genome annotation and to identify the variants
between the embedded genomes in the annotated regions, to study their impact. Tools for trans-
ferring annotation exist for linear to linear genomes, with the most used of them being Liftoff
(Shumate and Salzberg, 2021), but it relies on gene-by-gene sequence alignment and does not
provide explicit information about variations between genomes. In this regard, the use of the
variation graph, which represents in its essence a whole genome alignment and models the syn-
teny between embedded genomes, is a natural way to transfer annotations from genome to
graph, or from graph to genome, and to identify the differences between genomes.

To fill this gap, we developed GrAnnoT, a command line tool that manipulates genomic an-
notations in a variation graph space under its native GFA format. Starting from projecting on
the graph the annotation of a single genome in a GFF format, GrAnnoT then outputs the graph
annotation in GAF format (as VG annotate), but it also projects this annotation on the other
embedded genomes with a dedicated GFF output for each of them. In addition to this trans-
fer, GrAnnoT compares the annotated regions between the genomes in the graph, and outputs
transfer statistics (i.e. transfer rate, or mean sequence identity and coverage), lists and types of
variants, alignments, and a presence-absence matrix for gene features. These operations rely on
the structure of the graph, speeding up the transfers by harnessing the multiple genome align-
ment it represents (Hickey et al., 2023; Li et al., 2020). We applied it to variation graphs built
from different species, and compared it to existing methods to ensure the annotation transfer
is valid. As an graph annotation transfer tool, GrAnnoT is fast and conservative, and it allows to
study the annotated regions of a pangenome variation graph and of its embedded genomes in
an easier way and at a larger scale than any tool before.

Implementation
GrAnnoT is implemented in Python 3.10+, as a Linux command-line tool that can be installed

as a standard python package. It only requires the tqdm package and the external program bed-
tools (Quinlan, 2014) (that must be accessible in the user or in the global path). To ease its instal-
lation and use, an AppTainer container definition is available in the GrAnnoT repository on the
IRD forge (https://forge.ird.fr/diade/dynadiv/grannot); all the codes are under the GNU
GPLv3 license.
Code overview

GrAnnoT performs annotation transfer from an annotated genome (the source genome) to a
variation graph (Figure 1). It can also transfer the annotation from the graph to one, several or all
other genomes embedded in the graph (the target genomes). It takes as input the annotation of
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the source genome in GFF3 format, and the variation graph that includes the source and target
genome in GFA 1.1 format (without overlap between the nodes).

The annotation transfer only relies on the graph structure, harnessing the multiple alignment
and synteny it naturally represents. GrAnnoT projects the coordinates between the graph and
the genomes, transferring annotations in a fast, alignment-free manner.

Once the annotation has been loaded, GrAnnoT outputs the graph annotation in GAF format
(Li et al., 2020). This tab-delimited text format was originally proposed to represent sequence-to-
graph alignment. However, it can also be used for graph annotation (Novak et al., 2024), where,
instead of describing the paths of the mapped reads, it describes the paths of the annotated
features through the graph. GrAnnoT can then output the annotation in GFF3 format for a cho-
sen set of target linear genomes included in the variation graph. These transfers can be filtered
through sequence identity and coverage scores similarly to the BLAST approach (Altschul et al.,
1990). For these transfers, the alignment of each feature between the source genome and the
target one can be outputted in a Clustal-like format, as well as a list of all the variants recorded in
the alignments. These alignments are not computed by GrAnnoT, but directly extracted from the
graph structure. Finally, a presence-absence matrix for gene features summarizes the transfer
on the target genomes.
Implementation details

The first step is to find the start and stop positions of each node from the graph on the
embedded genomes (Figure 1, step 1). For that, GrAnnoT follows the paths of these genomes
in the graph and computes the start and stop positions of the nodes for each of them; these
positions are then stored in BED files, one per contig/chromosome per genome. Then, the BED
files representing the source genome are compared to its annotation file using bedtools intersect
(Quinlan, 2014). The resulting BED file is processed to compute the paths of the features in the
graph and output the graph annotation in the GAF format.

In order to transfer an annotation to a target genome, the sub-path of the genome corre-
sponding to the feature is extracted (Figure 1a, step 2). For that, all the nodes from the original
feature path are looked for in the target genome paths. These nodes are then grouped into copies
of the feature, since the nodes corresponding to a feature can sometimes be foundmultiple times
in the target genome path (duplication). For each copy, the first and the last nodes are considered
as the ends of the feature’s copy in the target genome, and all copies are transferred by default.
An option allows to only transfer the copy with the highest sequence identity and coverage. All
the nodes between the first and last segment in the target genome path are expected to be part
of the feature’s copy to transfer, including the nodes absent from the original feature path, cor-
responding to insertions. Nodes from the original feature path that are not found in the target
genome correspond to deletions. An insertion and a deletion at the same locus in the variation
graph correspond to a substitution.

For the transfer itself, only the two nodes at the ends of the feature path on the target
genome are considered (nodes in blue in Figure 1). The BED file previously computed report-
ing the positions of the nodes on the target genome is used to locate these two nodes on the
genome.

Transferred features are then filtered based on the coverage (in base) and the identity level
between the source and the target genomes (Figure 1b), both set at 80% by default (but can
be defined by the user). These parameters are estimated by computing the cumulated length
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(a) Transfer from genome to graph (step 1) and from graph to genome (step 2)

(b) Transfer on target genome rejected due to low coverage and sequence identity.
Figure 1 – GrAnnoT overview. Step 1: the position of the feature is projected from thesource genome to the graph using the positions of the nodes on the source genome.Step 2: the position of the feature is projected from the graph to the target genome (a).The first and last nodes from the feature that are on the target genome (the blue ones)are the ends of the feature in this genome, and everything in between is considered aspart of the feature. The differences between the two genomes in this region in termsof path in the graph mirror the differences between the two versions of the feature. Ifthese differences are too important and the transfer does not reach the coverage and/orsequence identity thresholds, the annotation is not transferred (b).

of the shared and different nodes between the paths of the features in the two genomes. The
genes are excluded if they do not meet the threshold set, and their child features (exons, CDS,
UTR) are not transferred. This filtering ensures that the sequence of the annotated feature is
conserved between the source and target genome, to remove spurious transfers. The output is
finally printed out in the GFF3 format.

If the user is interested in the differences between the source and target annotation, GrAnnoT
can provide a detailed comparison between the feature alternative paths in the source and any
of the embedded target genomes. For that, GrAnnoT can output the variants details in a human-
readable text format that describes all the variants present in the feature (node deletion, in-
sertion, substitution). A Clustal-like alignment file of all the transferred features based on their
alternative paths is similarly generated.
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Benchmark
Data and tools for benchmarks

Themain test data used in this paper is an Asian rice pangenome graph built with 13 genomes
(Kawahara et al., 2013a; Zhou et al., 2020) using minigraph-cactus v2.8.2 with default options
(Hickey et al., 2023; see supplementary data for the exact commands) and the cv Nipponbare
IRGSP1.0 as reference. The rice genome is 380-410Mb long and has 12 chromosomes. The
annotation used as source (Kawahara et al., 2013b) includes 57,585 gene features for 813,790
total features, and is rich in transposable elements (15,848/57,858≈27% of gene features are
annotated as transposable elements).

GrAnnoT was also tested on a graph of the human chromosome 1 with 92 haplotypes (from
Liao et al., 2023) and an E. coli 13 genomes graph (see supplementary data for the genomes used)
built using the same protocol as for rice (detailed commands available online, Marthe and Sabot,
2025b).

GrAnnoT was compared to existing and state-of-the-art tools (see below) that can also per-
form annotation transfer in order to assess its efficiency, and using the different data presented
before to test its replicability and robustness. All analyses were ran on a biprocessor Intel(R)
Xeon(R) CPU E5-2650 v4 @ 2.20GHz with 48 HT CPU computer with 144Gb of RAM, under
RockyLinux 9.1 Blue Onyx.

In all transfers madewith GrAnnoT, the parameters for sequence identity and coverage based
filtering were left as default, so at 80% both. These parameters can be changed by the user, and
an evaluation of their effect on the transfers in rice data is available in supplementary data (Table
S9).

Multiple tools are available to perform annotation transfer between linear genomes, with
different approaches. Tools like CAT (Fiddes et al., 2018), RATT (Otto et al., 2011), FLO (Pra-
cana et al., 2017), or CrossMap (Zhao et al., 2013) use a form of whole genome alignment to
convert the positions of the annotated features from one genome to another. Tools like Liftoff
(Shumate and Salzberg, 2021), GeMoMa (Keilwagen et al., 2019) and LiftOn (Chao et al., 2024)
align the sequence of each annotated feature on the target genome to find its position. The cur-
rent state-of-the-art annotation transfer tool for linear genome sequences is Liftoff (Shumate
and Salzberg, 2021). It is widely used (Alonge et al., 2022; Kim et al., 2021; Wang et al., 2021;
Yang et al., 2023), and was chosen here test the validity of GrAnnoT’s genome to genome anno-
tation transfers. However, since Liftoff does not use a pangenome graph to transfer annotations,
the comparison with GrAnnoT is biased by the graph itself, whose structure partially impacts the
results of GrAnnoT transfer (see Discussion).

For annotation transfer on graph through alignment, Liftoff approach can be mimicked by
aligning the sequences of the annotated features to the graph. Graph pangenome alignment
tools can be thus compared to GrAnnoT for graph annotation transfer: GraphAligner was chosen
for this purpose (Rautiainen and Marschall, 2020), as a state-of-the-art tool for aligning long
sequences on a graph.

To transfer annotations between genomes through a pangenome graph and use graph prop-
erties instead of gene sequence alignment, VG and ODGI were used. They are state-of-the-art
tools for pangenome graph manipulation (Garrison et al., 2018; Guarracino et al., 2022), and
while they do not have options specifically designed to transfer annotations between genomes
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of the graph, they do have options to project coordinates between the graph and its embedded
genomes. odgi position and vg inject/surject project coordinates between the genomes of the
graph and can be used to transfer annotations, with the limitation that there is no filtering based
on sequence identity of coverage.

Additionally, VG recently implemented an option to annotate the graph by projecting an an-
notation from a genome to the graph. Although vg inject already performed this task, vg annotate
is specifically designed for this purpose (Novak et al., 2024) and is easier to use. It also offers
efficient ways to index an query the graph annotation.

The results and execution time of all these functions were compared to GrAnnoT.
The versions of the tools used are available in the supplementary data. The complete ex-

act commands used for those benchmark are available online (Marthe and Sabot, 2025b). The
Jupyter notebooks used for the analysis are available on our Forge (https://forge.ird.fr/
diade/dynadiv/grannot, Marthe et al., 2025). All the data used for the analysis and the out-
puts are available online (Marthe and Sabot, 2025a,b).
Comparison of the transfers
Comparison with other tools. Results were evaluated for the two types of transfers that GrAnnoT
can perform: from genome to graph and from genome to genome. In both cases, the transfers
were performed with the different tools described before when possible. Then, for each trans-
ferred feature, its positions provided by the different tools were compared. Given a feature, we
consider two transfers as different if they placed the feature at different positions. A transfer is
specific to a tool if it is different from all the other transfers. By definition, a feature transfer is
also specific to a tool if the feature is only transferred by this tool.

We tested GrAnnoT, GraphAligner, VG inject and VG annotate for the transfer of the anno-
tation of the cv Nipponbare (Kawahara et al., 2013b) to the rice pangenome graph. We tested
GrAnnoT, Liftoff, VG inject/surject and ODGI position for the transfer of the annotation of the cv
Nipponbare to the cv Azucena.
Genome to graph transfer. For the genome to graph transfer, only the gene features were used.
Indeed, VG annotate requires the GFF3 features to have a ID and a Name attribute to be trans-
ferred, while GrAnnot does not. It was the case only for the gene and mRNA features in the
IRGSP annotation of the cv Nipponbare. For simplicity, we thus only selected the gene features
in this annotation, as the mRNA are always included in a gene, and did not add other type of
features to test the transfers.

The three methods that do not perform alignment (GrAnnoT, VG inject and VG annotate) have
the exact same results for all the features. For ~32% of the features transferred by GraphAligner
(17,870 features out of 55,798), the output is different from the other tools (Figure 2a). However,
when allowing a difference of 1 bp on the position on the path, ~88% of the GraphAligner-
specific transfers (15,673 out of 17,870 transfers) are then considered identical to the transfers
from the other tools (Figure 2b). Further verification showed that these 1 bp differences from
GraphAligner are alignment errors, where 1 bp is missing in 5’ or 3’ in the transferred feature
sequence. Such differences are minor and acceptable for certain applications, but not in the
context of annotation. Because of that, the current version of GraphAligner does not seem to
be suitable for precise annotation transfer.
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(a) Features transferred at the exact same position (b) Features transferred at a distance of 1 bp maximum
Figure 2 – Genome to graph transfer comparison, Upset representation. Each verticalbar represents the number of identical transfers between the different tools specifiedbelow the bar. Two transfers are considered identical if they placed the feature at theexact same path in the graph and either at the exact same position on the nodes (a) orat a distance of maximum 1 nucleotide (b). The horizontal bars on the left represent thetotal number of transfers for each tool. GrAnnoT transfers are highlighted in red.

Genome to genome transfer. Most of the transfers between genomes are identical between the
four tools (663,665/918,973≈72%). GrAnnoT seems to be themost consensual tool as it has the
least specific transfers (Figure 3a) compared to the other tools. Liftoff has themost transfers, and
seems to perform better than other tools (see below).

When looking at the tool-specific transfers, VG stands out the most, with 73,134 specific
transfers. However, when allowing a difference of 10 bp between the transfers, VG has ~65.3%
less specific transfers. Some of these VG specific transfers were manually compared to the trans-
fers from the other tools for the same feature, and were identified as errors from VG (see sup-
plementary Figure S1 for an example). This suggests that VG produces small errors during the
surject step, since VG inject was shown to have the exact same results as GrAnnoT in Figure
2a. The 10bp difference tolerance revealed Liftoff and ODGI as the most divergent tools (with
46,696 and 37,195 specific transfers, respectively; Figure 3b).

Regarding the Liftoff-specific transfers, most are features that only Liftoff can transfer. In-
deed, ~56% of them are inter-chromosomal translocations, i.e. features that are on a different
chromosome between the source and the target genome (Figure 4). These transfers cannot be
performed with GrAnnoT, VG or ODGI, as variation graphs are currently built chromosome-per-
chromosome to reduce complexity, and therefore cannot represent such events (Andreace et al.,
2023; Mergez et al., 2024). Thus, features on different chromosomes between Nipponbare and
Azucena cannot be transferred by any of the graph-based approaches, and are found only by
Liftoff. This could explain why Liftoff has the most transfers between the four tools.

Furthermore, when the annotations of these Liftoff specific-transferred features were thor-
oughly looked at, it appeared that they are enriched in transposable elements (TE) (p-value <
0.01; Figure 4). This could explain this discrepancy of chromosomal location between the two
varieties, since transposable elements are mobile in the genome and can jump between chromo-
somes (Hayward and Gilbert, 2022; Wicker et al., 2007). The Liftoff-specific transfers that are
on the same chromosome are also enriched in TEs (p-value < 0.01; Figure 5), as their ability to
move in the genome makes them often not syntenic: encoding the relationships between such
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(a) Features transferred at the exact same position

(b) Features transferred at a distance of 10 bp maximum
Figure 3 – Genome to genome transfer comparison, Upset representation. Each verticalbar represents the number of identical transfers between the different tools specifiedbelow the bar. Two transfers are considered identical if they placed the feature eitherat the exact same positions on the target genome (a) or at a distance of maximum 10nucleotide (b). The horizontal bars on the left represent the total number of transfers foreach tool. GrAnnoT transfers are highlighted in red.

TEs in the graph with the current variation graph tools still seems complex (Eizenga et al., 2020).
Indeed, the graph we used was built by minigraph-cactus, that aligns genomes to the graph in
construction (Li et al., 2020). During this process, a non-syntenic region is more difficult to align,
and its sequence can be represented in the variation graph by two different nodes carrying the
same information. Because of that, some duplications, inversions, translocations, and TEs are not
detected in the graph (Lemaitre, 2021; Romain et al., 2025), and annotations in these regions are
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Figure 4 – Transposable element and inter-chromosomal translocation percentages in allLiftoff transfer vs Liftoff-specific transfers. The Liftoff-specific transfers are enriched ininterchromosomal translocations and transposable elements compared to all the otherLiftoff transfers. Detailed data and p-value calculation are available in supplementarydata (Tables S1 and S2).
not transferrable using only the variation graph structure. Since the relationships between the
TEs are not always correctly encoded by the graph, TE annotation transfers cannot be reliably
performed by tools such as GrAnnoT, VG or ODGI, that only use the structure of the graph.

Overall, Liftoff-specific transfers seem valid, and demonstrate a limitation in the variation
graph approaches: they completely rely on the variation graph structure, which is not perfect
and struggles to connect non-syntenic shared elements. The three graph tools tested are thus
not suited for studying mobile sequences, such as interchromosomal translocations or TEs.

Most of the ODGI-specific transfers place a feature on a very small interval on the target
genome. For instance, among the 37,195ODGI-specific transfers, ~65% of the features (24,058)
are placed on an interval of a length of zero nucleotide, and ~30% (11,320) on an interval of
a length of one nucleotide. These transfers should be discarded, as they are of no biological
meaning in terms of genes.
Robustness.
Back and forth transfer. Two consecutive transfers (back and forth) with Liftoff and GrAnnoT
allowed to compare how conservative these tools are. The first transfer was performed from the
cv Nipponbare to the cv Azucena with the two tools. Then, the resulting Azucena GFF3 file was
used as source to perform the second transfer, from the cv Azucena back to the cv Nipponbare.
The resulting GFF3 for the cv Nipponbare was compared to its first original annotation in order
to measure the loss or corruption of information during these transfers.

10 Nina Marthe et al.

Peer Community Journal, Vol. 5 (2025), article e133 https://doi.org/10.24072/pcjournal.651

https://doi.org/10.24072/pcjournal.651


Figure 5 – Transposable element percentages in all Liftoff transfer vs Liftoff-specific trans-fers. Compared to the other Liftoff transfers, Liftoff-specific transfers are enriched intransposable elements, whether or not they are in a translocation. Detailed data and p-value calculation are available in supplementary data (Tables S3 and S4).
Liftoff loses less features during the two-round process (Table 1). This can be explained by the

fact that Liftoff is better at finding non-syntenic features and handles interchromosomal translo-
cations, as shown previously. However, while GrAnnoT did not lose any more annotation on the
way back to the original sequence, Liftoff lost 257 features in the way back. In addition, when
comparing the positions of the features before and after the two transfers (original vs transferred
twice), GrAnnoT shows better results that Liftoff, with only 3.8% of the features being located at
a different position compared to the original annotation, versus 10.4% of discrepancies for Liftoff.
Moreover, aftermanual verification, it appeared that all the featuresmisplaced byGrAnnoT in the
second transfer are features where an extremity was shortened during the first transfer due to
a deletion at the beginning or the end of the feature. Thus, while the feature transferred during
the second transfer was incomplete regarding the true annotation, the transfer itself occurred
correctly.

Finally, some features transferred by Liftoff back to the cv Nipponbare are placed on a differ-
ent chromosome than the original one, as the transfer is alignment-based only and does not rely
on synteny. In this regard GrAnnoT is more conservative than Liftoff. Indeed, orthologous copies
are sometimes considered to guarantee a better conservation of gene function compared to par-
alogous copies, according to the ortholog conjecture (Nevers et al., 2020; Rogozin et al., 2014).
As the variation graph conserves the synteny, GrAnnoT is more likely to transfer annotations
between orthologous copies than between paralogous copies.

Overall, while GrAnnoT transfers less annotations than Liftoff (as seen in Figure 3a), it is more
conservative with the annotations it does transfer.
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Table 1 – GrAnnoT and Liftoff comparison on back and forth transfer. The input annota-tion for first transfer included 55,986 features. The loss corresponds to the number offeatures not transferred in either transfer (first cv Nipponbare to cv Azucena or secondcv Azucena to cv Nipponbare). The other rows show how many features were at thesame or at different positions before and after the two transfers.
GrAnnoT LiftoffLoss in first transfer 7,961 1,622Loss in second transfer 0 257Total loss 7,961 1,879Same position 47,184 48,482Different position 841 5,6251-10bp difference 393 36011-100bp difference 275 648101-1000bp difference 165 776>1000bp difference 8 1,210Different chromosome 0 2,631Total transfers 48,025 54,107

Table 2 – Comparison of GrAnnoT transfers using graphs with different referencegenomes. The input annotation for the transfer included 55,986 features. The loss cor-responds to the number of features not transferred. The other rows show how manyfeatures were placed at the same or at different positions when transferred with the twographs.
Nipponbare reference Natel Boro referenceTotal transfers 48,025 45,946Loss 7,961 10,040Specific transfers 2,376 297
Comparison between the two graphsCommon transfers 45,256Different transfers 3931-10bp difference 16911-100bp difference 87101-1000bp difference 76>1000bp difference 61Different chromosome 0

Impact of the reference genome for graph construction. The variation graphs used were built
with minigraph-cactus, which requires a reference genome as anchor, that can thus bias the
graph structure (Andreace et al., 2023). To test the replicability of the GrAnnoT approach, trans-
fers through two different graphs were compared. The two graphs have the same genomes em-
bedded (13 Asian rice genomes), but were built with a different reference genome to initiate the
graph. The reference genomes used for the two graphs are the annotated genome IRGSP-1.0 (cv
Nipponbare), and Os127652RS1 (cv Natel Boro) (Zhou et al., 2020). Annotation transfer from cv
Nipponbare to cv AzucenaRS1 was performed with these two graphs, and the positions of the
common transferred features were compared.
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Among the 48,322 features transferred on the cv Azucena, 2,673 (~5.5%) were not trans-
ferred by both graphs. Among the 45,649 features transferred by both graphs, only 393 (~0.9%)
were not transferred at the same exact location (Table 2).

The amount of features not transferred by both graphs is not negligible, even though they
mostly consist of TEs (see before). However, it can be explained by the choice of the reference
genome for the second graph construction, the cv Natel Boro. Indeed, among the 11 genomes
in the graph that are not involved in the transfer (neither the cv Nipponbare nor the cv Azucena),
the cv Natel Boro is among the furthest, genetically speaking, as shown in the phylogenetic tree
in the genomes original paper (Zhou et al., 2020). Thus, it makes sense that the graph centered
around the cv Nipponbare displays better performance for annotation transfer from the cv Nip-
ponbare. This showcases the importance of the choice of the reference genome for the graph
construction, that must be adapted to the use case of the graph.
Comparison with other species. GrAnnoT was compared to Liftoff using two other datasets:
a pangenome variation graph of the human chromosome 1 (Liao et al., 2023) and an E. coli
pangenome variation graph (see supplementary data), both made with minigraph-cactus. For
the rice graph, the transfer was again made from the cv Nipponbare to the cv Azucena; for the
human graph, the transfer was made from the CHM13 to the GrCH38 haplotype; for the E.coli
graph, the transfer was made from the O157_H7_EC4115_0a2c271 strain to the S88_fa4fe08
one. These comparisons checked if the positions of the features transferred by both approaches
are consistent, to assess if the results observed in the rice pangenome graph were replicable
with graphs from other type of dataset/organisms/phylum.

It appears that for the rice and human datasets, most of the features are transferred by both
tools (~85.7% for rice and ~91.3% for human) (Table 3). For E. coli, only ~62.5% of features are
transferred by Liftoff and GrAnnoT, and both tools have relatively low transfer rates (below 70%,
see Table 3). This suggests that the features not transferred by either tool reflect a difference in
gene content between the two strains, rather that a technical error.

Additionally, a large part of the features transferred by both tools are placed at the exact
same position by Liftoff and GrAnnoT (~96.8% for rice, ~99.6% for human and ~95.5% for E. coli).
As expected, some features are transferred only by Liftoff, but for the human graph GrAnnoT-
specific transfers appear in negligible quantities. This better transfer capacity for the two tools
in human may be due to the lesser diversity of human genomes compared to rice (mean 15.6
millions SNP for 64 human haplotypes vs 9.4 millions for only 16 rice ones, respectively; Ebert
et al., 2021; Wei et al., 2024), and even more so compared to E. coli. In addition, the annotation
of human genes is probably better curated than in rice, with less hypothetical genes that may be
false positive, also explaining the better transfer for both tools on human reference.

Liftoff-specific transfers for E.Coli were manually inspected and most of them are related to
unknown protein domains or related to biotic and abiotic stress responses. Such type of genes
in bacteria are generally related to mobile structures such as ICE, e.g. Zheng et al., 2023.
Scalability. To ensure GrAnnoT can work with larger datasets, it was tested on a variation graph
build using minigraph-cactus with 69 A.thaliana genomes (Lian et al., 2024; Mergez et al., 2024).
GrAnnoT was used to transfer the annotation of the genome Abd-0 to the graph and then to all
68 other genomes. This operation was performed in ~2h52min, with an average of ~2min30sec
per transfer (including the transfer from Abd-0 to the graph).
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Table 3 –Comparison betweenGrAnnoT and Liftoff in several species. Each feature in theinput annotation was transferred using GrAnnoT and Liftoff. When the feature has beentransferred by both tools, the two positions given were compared to see how differentthey are.
Rice Human Chr1 E.coliTotal features to transfer 55,986 282,668 11,460Features transferred by GrAnnoT 48,025 85.78% 276,681 97.88% 7,407 64.63%GrAnnoT-specific transfers 72 0.13% 4,647 1.64% 239 2.09%Features transferred by Liftoff 54,363 97.10% 275,249 97.38% 7,939 69.28%Liftoff-specific transfers 6,410 11.45% 3,264 1.12% 767 6.69%Features transferred by both tools 47,951 85.65% 258,092 91.31% 7,167 62.54%Same position 46,431 82.93% 256,927 90.89% 6,844 59.72%Different position 1,520 2.71% 1,165 0.41% 323 2.82%1-10bp difference 795 1.42% 623 0.22% 184 1.61%11-100bp difference 284 0.51% 150 0.05% 70 0.61%101-1000bp difference 155 0.28% 46 0.02% 15 0.13%>1000bp difference 164 0.29% 346 0.12% 54 0.47%Different chromosome 122 0.22% 0 0% 0 0%Runtime Liftoff 00:23:45 00:10:27 00:00:09Runtime GrAnnoT 00:08:11 00:14:47 00:00:22

Table 4 – Run time comparison for genome to genome transfer in rice. GrAnnoT, VGinject/surject and ODGI position transfer through the graph, and VG inject/surject andODGI convert/index the graph before the transfer. Liftoff directly uses the genome fastafiles.
GrAnnoT Liftoff VG inject/surject ODGI positionGraph construction 04:23:22 - 04:23:22 04:23:22Graph conversion/index - - 00:14:34 00:05:37Annotation transfer 00:08:11 00:23:45 07:12:17 70:18:04Total time 04:31:33 00:23:45 11:49:73 74:46:63

Run time comparison
The execution time for the transfer from genome to genomewith the different tools wasmea-

sured on Asian rice data between the cv Nipponbare and the cv Azucena, using the command
/usr/bin/time (Table 4). The graph tools use as input the annotation file in GFF3 and the variation
graph in the adapted format. VG inject/surject (as we deal here with genome to genome transfer)
and ODGI position require the variation graph to be converted/indexed in their format before
use (.xg and .og, respectively), and GrAnnoT uses directly the variation graph in native GFA for-
mat. Liftoff uses as input the fasta files for the genomes and the annotation file in GFF3 format.
The results show that GrAnnoT has the best run time, and that ODGI and VG inject/surject are
substantially slower that GrAnnoT and Liftoff.

GrAnnoT was further compared to Liftoff in terms of run time.
Several transferswere performedwith both tools to compare the run times, becauseGrAnnoT

is designed to facilitate the transfer toward multiple target genomes: it starts by pre-processing
the variation graph and loading the graph annotation, which only needs to be done once, no
matter how many target genomes are included in the graph.
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Figure 6 – Genome to genome transfer comparison. GrAnnoT and Liftoff run time for1-12 transfers were measured using the command /usr/bin/time. Liftoff was run both inGFF and DB mode. GrAnnoT values are presented including or not the graph buildingtime. Detailed time points are available in supplementary data in Table S5.
Liftoff can be run in GFF mode or in database mode; the database mode needs less time

since the GFF annotation file has already been processed. Both of these mode were compared
to GrAnnoT.

The commands timed are transfers from the cv Nipponbare to all the other genomes in the
rice pangenome graph, with 12 transfers in total.

The results show that GrAnnoT is faster than Liftoff to perform one annotation transfer (~8
minutes vs ~22 minutes), and even more to perform twelve (~47 minutes vs ~5 hours and 30
minutes, see Figure 6). However, this comparison does not take into account the time needed
to build the graph. When adding the graph construction time (~4h23mn on our infrastructure)
to the GrAnnoT 12 transfers time, we still get a duration (~5h10mn) slightly shorter to Liftoff
transfers (~5h47min or ~5h29min). Additionally, GrAnnoT can give supplementary informative
output that describe the transfers performed such as a presence-absence matrix or alignment
files of the transferred features, as well as the graph annotation.

For the human graph, GrAnnoT is not faster than Liftoff for one transfer (see the last lines
of Table 3). However, as shown on Figure 6, for several transfers GrAnnoT is more advanta-
geous. We tested the runtime of GrAnnoT for the annotation transfer on 10 haplotypes, and got
~45 minutes in total. This is significantly lower than the time for one transfer multiplied by 10
(~1h44min), which is what we can expect of 10 Liftoff transfers from the results in Figure 6.
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Applications
To assess the use of GrAnnoT annotation transfer, in particular the informative outputs com-

plementary to the GFF3 itself, we analyzed a few characteristics of the annotation transfers
between the Nipponbare and Azucena cultivars. More precisely, we verified that the variations
in the graph reported by GrAnnoT are distributed as biologically expected, in a way that does
not disrupt the proteins coded by the gene features.
Indel rate in different feature types

We looked at the positions of the indel variants (insertion or deletion) in the different feature
types that correspond to different parts of the genes. These variants are expected to be less
present in the CDS compared to the rest of the gene due to selection pressure, because the
resulting changes in the coded protein are more important.

The feature types that were compared are:
• the whole gene feature itself
• the mRNA
• the 5’UTR
• the exons
• the CDS
• the introns
• the 3’UTR

These feature types have different average lengths, inducing a bias in the number of indel
found by feature type; if the indels are randomly distributed, we expect more indels in the fea-
ture type that has the longest cumulated length. To counter this bias, for each feature type we
reported the total number of indels found to its cumulated length, obtaining the average number
of indel per position.

The results displayed in Figure 7 show that, as expected, the CDS have the fewest indels and
the non-coding regions (UTR and introns) have the most. This confirms that the variations in the
graph reported by GrAnnoT are consistent with the current understanding of genome variation
selection.
Frameshift mutations in different feature types

Indels can modify the protein coded by a gene, but indels in CDS are particularly impact-
ful when they change the reading frame. We calculated the rate of frameshift mutations (indel
whose length is not a multiple of 3) among the indels, for all feature types. We expect to have a
lower ratio of frameshift mutations in the CDS compared to the non-coding regions, because of
the selection pressure.

The results displayed in Figure 8 show that the CDS have the lowest percentage of frameshift
variation from their indels, and that the introns have the highest.
Substitutions position in different feature types

Substitutions are usually smaller variants than indels, so they are expected to have a smaller
impact. However their distribution in CDS is not expected to be uniform. Indeed, substitutions
on the third position of a codon is more likely to be silent than a substitution on the two other
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Figure 7 – Indel count. Each bar represents the number of indels (insertion or deletion)per position in the corresponding feature type. As expected, the CDS are the most con-served and thus have the least indels, and the non-coding regions (UTR and introns) arethe least conserved and have the most indels. Detailed data and p-value calculation areavailable in supplementary data (Table S6).
positions. Because of that, in CDS the third codon position usually has more substitutions than
the two other positions (Sanchez et al., 2005).

On Figure 9, we show that the CDS indeed has more substitutions on the third codon po-
sition than the other two positions, while the other gene elements have more homogeneous
substitution distributions. Details about how we computed the substitution position in the CDS
are available in supplementary data.
Pangene set analysis

The PAV matrix output was computed for all the genomes in the Asian rice graph (minus the
source genome cv Nipponbare), and was used to compute the core, dispensable and shell gene
set from the cv Nipponbare in this pangenome.

We found ~58%of core genes and ~33%of dispensable genes (Table 5) in our variation graph,
which is similar to what is seen in the literature when accounting for the different threshold
chosen in each study (with ~53-62% of core and ~38% of dispensable gene families for instance;
Wang et al., 2018).

Discussion and conclusion
Annotation of pangenomes is a broad and crucial topic, that has been explored in various

ways depending on the type of pangenome considered. Some pangenomes consist in a gene
set, where several genomes are separately annotated and the resulting genes are clustered into
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Figure 8 – Frameshift indel count. Each bar represents the percentage of frameshift vari-ant (length not multiple of 3) among all the indels in each feature type. As expected,the CDS have the fewest frameshift variant, since these variants impact significantly theprotein coded. Detailed data and p-value calculation are available in supplementary data(Table S7).
Table 5 – Core, dispensable and shell gene set. The population size is 12, and there are55,986 genes in total.

Core genes Dispensable genes Shell genesPresence percentage 100% - 95% 95% - 10% 10% - 0%Number of genes 32,537 18,403 5 046Percentages of genes 58.1% 32.9% 9%
orthologous groups (Gautreau et al., 2021; Gordon et al., 2017). Alternatively, pangenomes can
be stored in de Bruijn graphs, that ggCaller (Horsfield et al., 2023) can annotate de novo (for
bacteria), or that Pantools (Jonkheer et al., 2022) can visualize and project annotation on this
visualization. However the variation graph structure has less manipulation options, and most of
them rely on the visualization on the graph (Liu et al., 2024; Miao and Yue, 2025). Visualizing
whole variation graphs can be challenging, as these structures are usually complex and non-linear
for large genomes, resulting in a hairball-like structure which is difficult to interpret (Durant,
2022). It is easier to project and visualize only a few annotations on a targeted region of the
graph to study the variations, but this approach is less scalable, poorly reproducible, and usually
requires to know in advance which regions to study.

GrAnnoT fills this gap by efficiently projecting an annotation on a variation graph and its
embedded genomes, and providing useful information on the variants in the annotated regions
between the different genomes embedded in this graph. It is easy to install and to use, and the
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Figure 9 – Substitution positions. For each feature type, the percentage of substitutionsthat are on each of the three codon positions is displayed. In the CDS, the third positionhasmore substitutions than the two other positions. For the other feature types, we don’tsee that the positions multiple of 3 have more substitutions than the others. Detaileddata and p-value calculation are available in supplementary data (Table S8).
operations it proposes are fast, reliable, reproducible, and it gives informative and user friendly
outputs. Once the annotation has been transferred in the variation graph and its variations be-
tween the genomes have been reported, subgraphs of the regions or genes of interest can be
extracted with tools like VG or ODGI, or GrAnnoT in the future. A visualization of these subgraph
can help study in more details the variations found in the regions targeted with GrAnnoT.

The main limitation of GrAnnoT, as displayed in this paper, comes from the variation graph
itself : GrAnnoT solely relies on this graph structure and does not perform any alignment (in
order to conserve speed); thus, any flaw in the variation graph will hinder GrAnnoT in its trans-
fers. As a first example, graphs built by minigraph-cactus (such as the ones we used) separate the
chromosomes to build independent graphs, and thus cannot represent interchromosomal events
(such as translocation or transposition). In addition, the example of the transposable elements
in the Asian rice dataset highlights that minigraph-cactus currently struggles to align some non
syntenic elements (transposed copies), even on the same chromosome. Therefore, those anno-
tations cannot be transferred by GrAnnot. GrAnnoT can handle gene duplication and inversion
when the information is present in the variation graph; however, the detection of these variants
(by minigraph-cactus) can be inconsistent (Lemaitre, 2021; Romain et al., 2025). When the graph

Nina Marthe et al. 19

Peer Community Journal, Vol. 5 (2025), article e133 https://doi.org/10.24072/pcjournal.651

https://doi.org/10.24072/pcjournal.651


builders will be able to inform on interchromosomal relationships and duplications, GrAnnot will
be able to immediately transfer the annotations corresponding to these regions.

Indeed, applying GrAnnoT to a graph built with another tool than minigraph-cactus would
be an interesting option, to see if other graph builders are better at representing non-syntenic
relationships.

To test that, GrAnnoT has been applied to PGGB graphs, as this graph builder has the benefit
of being completely reference-free. The annotation transfer on the PGGB graph was performed
correctly, but the transfer on a target genome was very slow and erroneous in repeated regions,
for reasons not yet identified (data not shown). One possible explanation could be the tendency
of PGGB graphs to have many cycles, at the opposite of minigraph-cactus graphs (Andreace et
al., 2023). This resulting complexity could be the reason for the high runtime and errors of graph-
to-genome transfers, as GrAnnoT algorithms are not suited for such complex graph topologies.
However, in the future, we plan to improve the compatibility between PGGB and GrAnnoT, in
order to be adaptable to more type of variation graphs.

Minigraph is another tool that builds pangenome graphs, but the output format (rGFA format)
is incompatible with GrAnnoT as its graphs do not include paths or walks, and thus cannot inform
to which path belong the current annotation.

GrAnnoT was compared to existing tools that perform some similar operations, but none
correspond exactly to its scope or its full capacities.

For annotation transfer to the graph, GrAnnoT was compared with VG annotate, and the two
tools gave the exact same results. Both are straightforward to use, and are good options. VG
inject has the same behavior (outside of its complexity in use) as VG annotate, and thus is also
efficient. On the opposite, GraphAligner is too slow and showed some errors in placing gene
borders. The runtimes are in the same order of magnitude between GrAnnoT and VG annotate,
with the VG strategy consisting in investing time to index the graph for rapid individual transfers
later on, while GrAnnoT uses directly the GFA in its native form.

For annotation transfer between genomes, GrAnnoT has showed good results and is compa-
rable to Liftoff in terms of performance for syntenic elements. As previously mentioned, Liftoff
is better at transferring non syntenic annotations, and should thus be preferred by users inter-
ested in such elements. In terms of CPU time, once the graph is built GrAnnoT is faster than
Liftoff, and the graph construction time can be compensated when performing several transfers.
While GrAnnoT can transfer annotations between genomes as accurately as Liftoff, its primary
objective is to integrate annotations to a pangenome variation graph, and therefore to inform
the user of the variability of the population in terms of genes, and of the variation within the
genes sequences. In comparison, Liftoff only provides a percentage of similarity, and not any
alignment or information on the variants.

For performing both tasks, VG offers the commands inject/surject, and ODGI the command
position. However the runtimes for these tools are prohibitive, and their transfers are not reliable,
probably because they were aimed to transfer a few set of coordinates in non-complex, human
genomic regions.

Another addition in GrAnnoT compared to VG and ODGI is the filtering based on sequence
identity and coverage, which ensures that a substantial part of the annotated feature is present
in the target genome. The threshold used can be easily modified by the user, to adapt to the
species, pangenome diversity, graph quality, type of feature annotated, etc.
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In the future, we plan to improve GrAnnoT capacity to annotate a pangenome variation graph
by including more than one annotation. Indeed, GrAnnoT current approach for transferring anno-
tation comes with the downside of only informing on regions that are shared with the originally
annotated genome. However, one advantage of the pangenome is to study dispensable regions,
that are not shared by every genome and thus that are not always present in the annotated
genome. When available, integrating annotations from several genomes in the variation graph
would give a more complete picture of the gene set in the population, and help study the whole
pangenome.

Another future development of GrAnnoT could be to aim to reduce the loss of non-syntenic
annotations. For that, we would first need to detect them, by selecting gene annotations poorly
transferred for example. Then, using a graph alignment tool, we could find all the different sets
of nodes representing their sequence, i.e. all the different locations of the annotated sequence
in the graph. This approach would help transfer annotations lost due to transposition or chromo-
somal rearrangement, but requires accurate detection of elements not transferred because of
the graph structure. Indeed, the alignment of gene sequences on the graph is time consuming,
and naively aligning all the genes would be too long and redundant, as the graph correctly aligns
most of the genomes regions.

In conclusion, the present study introduced GrAnnoT, the first tool able to efficiently transfer
annotation on a pangenome variation graph from one of its embedded genomes and reverse. It
relies on the already performed alignment that created the graph to identify syntenic segments.
We benchmarked GrAnnoT on Asian rice, bacteria and human pangenomes, and showed that it is
fast, scalable, reliable and efficient, and performs adequately compared to state-of-the-art tools
for linear genomes. It is a robust, replicable tool working on any type of species for which a vari-
ation graph is available. In addition, GrAnnoT can provide useful outputs, such as the alignments
of the gene sequence between source and target, or a presence/absence matrix.
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Supplementary data
Data and tools used :

• Data
– E.coli graph (built with data obtained using the same protocol as Heumos et al., 2024,
see below)

– Human graph (from Liao et al., 2023)
– Rice graph (built with data from Kawahara et al., 2013a; Zhou et al., 2020)

• Tools
– minigraph-cactus v2.8.2 (Hickey et al., 2023)
– Liftoff v1.6.3 (Shumate and Salzberg, 2021)
– ODGI v0.8.6-11-ga1f169cc (Guarracino et al., 2022)
– VG v1.58.0 (Garrison et al., 2018)
– GraphAligner Branchmaster commit daec67f67a2f50d648a6aa30cbbe5a2949583061
(Rautiainen and Marschall, 2020)

NCBI ID of E.coli genomes used to build the graph:
• NC_000913.3
• NC_002655.2
• NC_004431.1
• NC_007779.1
• NC_008253.1
• NC_008563.1
• NC_009800.1
• NC_010468.1
• NC_010473.1
• NC_011353.1
• NC_011601.1
• NC_011741.1
• NC_011742.1

Substitution positions: To find the codon positions for the subsection "Substitutions position in
different feature types", we had to take into account the splicing of the mRNA. Indeed, the CDS
elements in the annotation only correspond to a fraction of the real CDS in the mRNA. Thus the
substitution positions are not relative to the real CDS, and finding the third position of the codon
required to add the context of the preceding CDS fragments. This adjustment was only done for
the CDS elements in the annotation, since they are the only splited elements. This explains why
the exons do not follow the CDS tendency in Figure 9, contrary to Figures 7 and 8.
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LOC_Os01g01050 ACAAGTCACAGGGAGGAGTC 20
GrAnnoT_Lifotff_ODGI_transfer ACAAGTCACAGGGAGGAGTC 20
VG_transfer ACAAGTCACAGGGAGGAGTC 20

********************
...
...
...

LOC_Os01g01050 TCTAT--------CTATCTA 512
GrAnnoT_Lifotff_ODGI_transfer tctatctatctatctatcta 520
VG_transfer tctatctatctatctatcta 520

***** *******
...
...
...

LOC_Os01g01050 TATACATGACGATATGATCC 4131
GrAnnoT_Lifotff_ODGI_transfer TATACATGACGATATGATCC 4139
VG_transfer TATACATGACGA-------- 4131

************

Figure S1 – Extraction of the alignment of LOC_Os01g01050 gene and its transfers oncv Azucena by different tools. VG inject/surject transfer appears to have an error as thepositions it gives miss the last 8 bases of the gene. The gene total length is conserved inVG transfer because there is an insertion in cv Azucena in the middle of the gene.
Table S1 – Interchromosomal translocation rates in Liftoff transfers. The p-value mea-sures the enrichment in interchromosomal translocations in the Liftoff-specific transfers,and was computed with Pearson’s Chi-squared test.

Different chromosome Same chromosome P-valueLiftoff-specific transfers 3,604 2,806 < 0.01Other Liftoff transfers 122 47,831
Table S2 – Transposable elements rates in Liftoff transfers. The p-value measures theenrichment in transposable elements in the Liftoff-specific transfers, and was computedwith Pearson’s Chi-squared test.

Transposable elements Other features P-valueLiftoff-specific transfers 3,919 2,491 < 0.01Other Liftoff transfers 11,053 36,900
Table S3 – Transposable elements rates in Liftoff transfers. The p-value measures theenrichment in transposable elements in the Liftoff-specific transfers on the same chro-mosome, and was computed with Pearson’s Chi-squared test.

Transposable elements Other features P-valueLiftoff-specific transferson the same chromosome 1,263 1,543 < 0.01Other Liftoff transfers 13,709 37,848
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Table S4 – Transposable elements rate in Liftoff transfers. The p-value measures the en-richment in transposable elements in the Liftoff-specific transfers in interchromosomaltranslocations, and was computed with Pearson’s Chi-squared test.
Transposable elements Other features P-valueLiftoff-specific transferson a different chromosome 2,656 948 < 0.01Other Liftoff transfers 12,316 38,443

Table S5 – GrAnnoT and Liftoff CPU time comparison for 1 to 12 transfers
GrAnnoT Liftoff GFF Liftoff DB1 transfer 00:08:11.64 00:23:45 00:22:082 transfers 00:11:36.00 00:49:03 00:46:073 transfers 00:15:04.47 01:20:34 01:16:184 transfers 00:19:29.69 01:55:02 01:49:175 transfers 00:22:59.03 02:25:29 02:18:166 transfers 00:26:13.64 02:56:24 02:47:377 transfers 00:29:41.71 03:29:06 03:18:388 transfers 00:33:23.48 03:59:03 03:47:119 transfers 00:37:06.03 04:23:31 04:10:1610 transfers 00:39:54.23 04:46:52 04:32:0911 transfers 00:43:50.98 05:17:58 05:01:3812 transfers 00:46:45.57 05:47:34 05:29:53

Table S6 – Indel counts in genes and CDS. Annotations were transferred between cvNipponbare and cv Azucena, and the number of insertions and deletions was analyzed.The p-value measures the enrichment in indel in gene features, and was computed withPearson’s Chi-squared test.
Positions without indel Positions with indel P-valueGene 141,980,198 46,148 < 0.01CDS 74,201,787 8,762

Table S7 – Frameshift indel counts in genes and CDS. Annotations were transferred be-tween cv Nipponbare and cv Azucena, and the insertions and deletions lengths wereanalyzed. The p-value measures the enrichment in indel causing a frameshift in gene fea-tures, and was computed with Pearson’s Chi-squared test.
Non-frameshift indel Frameshift indel P-valueGene 9,959 36,189 < 0.01CDS 3,950 4,812

Table S8 – Substitution positions in nucleotide triplets in genes and CDS. Annotationswere transferred between cv Nipponbare and cv Azucena, and the substitution positionswere analyzed. The p-value measures the enrichment in substitutions on position 3 ofthe nucleotide triplets in CDS features, and was computed with Pearson’s Chi-squaredtest.
Substitutions on position 1 or 2 Substitutions on position 3 P-valueGene 171,763 87,638 < 0.01CDS 73,005 51,562
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Table S9 – Impact of sequence identity and coverage based filtering on annotation trans-fers between cv Nipponbare and cv Azucena using GrAnnoT. The first row gives the valueof both parameters. The filtering has a limited effect on gene transfer (transfer rate), anddoes not impact the transfer of transposable elements (TE).
Filter 50% Filter 60% Filter 70% Filter 80% Filter 90% Filter 95%Transferred genes 48,847 48,600 48,363 48,011 47,428 46,556Not transferred genes 7,139 7,386 7,623 7,975 8,558 9,430Transferred TE 11,443 11,330 11,217 11,088 10,926 10,749Transfer rate 87.2% 86.8% 86.4% 85.8% 84.7% 83.2%TE rate in transfers 23.4% 23.3% 23.2% 23.1% 23.0% 23.1%
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