HIDROMETRIA

Luc DESCROIX ⁽¹⁾
Juan ESTRADA AVALOS ⁽²⁾
Christophe BOUVIER ⁽³⁾

Introducción.

Las características hidrológicas de la Región Hidrológica 36 están en relación directa con los parámetros climáticos: el agua es poco abundante sobre todo en la parte baja que depende para su abastecimiento de la parte alta; ésta, ubicada en la Sierra Madre Occidental, tiene una pluviometría mucho más importante que la Región Lagunera.

De hecho, los coeficientes de escurrimiento disminuyen de la sierra Madre hacia la Laguna, y así los ríos mayores conservan más o menos su gasto entre la sierra y su entrada en el desierto; los ríos menores tienen un gasto que decrece al pasar por zonas más secas. En las regiones con precipitaciones inferiores a los 350 mm, no existe escurrimiento organizado; las condiciones climáticas son características de las regiones áridas, con escurrimientos esporádicos, irregulares y pudiendo ser intensos pero que solo son de nivel local. En general, estos escurrimientos se pierden rapidamente en las playas y lagunas de evaporación; en esto las lagunas endorréicas de la RH 36 son típicas del clima continental árido. Aún en las zonas favorecidas de la Sierra Madre (Río Santiago, Tepehuanes y Sextín), la duración de la estación seca hace muy irregular el regimen anual, con gastos que disminuyen de octubre a mayo. En este período los escurrimientos se mantienen, aunque con volúmenes bajos, debido a la gran superficie forestal que permite conservar una reserva natural largo tiempo después de las lluvias.

Para este análisis los datos hidrométricos se obtuvieron de 10 estaciones de aforo que permitieron delimitar 10 subcuencas en la zona de escurrimiento organizado (Figura 1); otras tres subdivisiones estan determinadas entre sí por parteaguas en la parte árida de la RH 36. Una de estas 10 estaciones funciona desde 1929, la cual sirvió de base para la construcción de la presa Lázaro Cárdenas que comenzó su funcionamiento en 1946. Esta tiene un volumen de almacenamiento equivalente al volumen medio de 4 años de escurrimiento en su cuenca vertiente. El agua sirve totalmente para el abastecimiento de perímetros de riego localizados en la cuenca media del Nazas (Rodeo-Nazas), pero sobre todo en la parte baja de la Laguna.

Las estaciones de aforo permiten conocer las características de cada subcuenca en materia de escurrimiento y aportación de agua; el tratamiento estadístico permite posteriormente hacer una previsión de lo que se puede razonablemente esperar del volumen escurrido.

Para llevar a cabo el estudio general de la RH 36, se dividió esta en 13 unidades hidrográficas basándose principalmente en la existencia de los registros históricos de los escurrimientos al mismo tiempo que su continuación hasta la fecha en las observaciones (Figura 1).

⁽¹⁾ Investigador ORSTOM, Gómez Palacio, Dgo.

⁽²⁾ Investigador CENID-RASPA INIFAP-SARH. Gómez Palacio, Dgo.

⁽³⁾ Investigador ORSTOM, Cd de México.

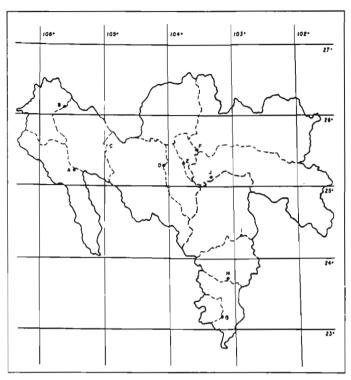


Figura 1

Ubicación geográfica de las estaciones hidrométricas y sus delimitaciones hidrográficas.

En el Cuadro 1 se presenta el inicio de las observaciones para cada estación hidrométrica.

Cuadro 1

Lista de las estaciones hidrométricas.

	E. Hidrométrica	Cauce	Inicio
Α	Salomé Acosta	río Ramos	12-08-69
В	Sardinas	río Sextin	01-06-70
С	El Palmito	río Nazas	01-01-29
D	Agustín Melgar	rio Nazas	01-02-70
Ε	Cañón de Fdz.	rio Nazas	13-08-36
F	Los Angeles	río Nazas	23-03-64
G	El Sauz	rio Aguanaval	01-09-28
Н	Cazadero	rio Aguanaval	19-12-56
1	San Francisco	rio Aguanaval	12-08-76
J	La Flor	rio Aguanaval	24-06-41

En seguida se hace una descripción general de cada una de ellas, además de presentar algunos parámetros físicos que se determinaron con la finalidad de tener una mejor caracterización de la RH 36.

Descripción de las Unidades Hidrográficas.

Las diferentes subcuencas de la RH 36 se pueden comparar, al nivel físico, por una serie de parámetros que pueden influenciar la concentración de las avenidas y el coeficiente de escurrimiento:

- * la longitud de drenaje (L, en km), es la suma de la longitud de cada río y arroyo de una cuenca vertiente;
- * la densidad de drenaje es esta misma longitud de drenaje (L), dividida por el área de la cuenca S (en km²);
- * el coeficiente de compacidad (CC) es un índice de la forma de la cuenca, que influye en la concentración de las aguas; se calcula de la manera siguiente:

$$CC = 0.28 \times P/S^{1/2}$$

con P = perímetro de la cuenca en kilómetros;

S =área de la cuenca en km^2 ;

* el rectángulo equivalente es el rectángulo teórico en el cual la concentración y el escurrimiento del agua serían los mismos que en la verdadera cuenca; se estima de la siguiente forma:

con L = longitud del rectángulo;

A = anchura del rectángulo;

CC = coeficiente de compacidad;

 $S = \text{área de la cuenca en km}^2$;

* la curva hipsométrica es la distribución del área de la cuenca en función de su elevación.

Al igual que la curva hipsométrica, el coeficiente de compacidad es un parámetro numérico que se puede incorporar directamente en modelos hidrológicos, caracterizando la pendiente y la forma de la cuenca.

El cálculo de todos los anteriores parámetros se realizó a partir de las cartas Topográficas y de Hidrología Superficial editadas por el INEGI, en la escala de 1:250,000. A continuación se describe cada una de las 13 unidades hidrográficas de la RH 36, así como sus resultados obtenidos.

Subcuenca Salomé Acosta

Esta subcuenca se forma por las vertientes de los ríos Santiago y Tepehuanes, los cuales drenan en dirección Noroeste y Sureste, respectivamente. Estos ríos unen sus cauces 15 km aguas abajo de la ciudad de Santiago Papasquiaro, Dgo., dando origen al rio Ramos. La estación hidrométrica Salomé Acosta se ubica a 8 km después de esta confluencia, siguiendo posteriormente el cauce en la dirección Noroeste hacia el embalse de la presa Lázaro Cardenas. La subcuenca se ubica entre los 24°00' y los 25°45' de latitud norte y los 105°00' y los 106°30' de longitud al Oeste del meridiano de Greenwich, con una superficie de 7,128 km². La forma que presenta esta unidad se puede considerar alargada con orientación noroeste.

Parámetros físicos.

Esta subcuenca tiene la mayor capacidad de respuesta al influjo de la precipitación de la RH 36, dado que su densidad de drenaje de 0.33 es la más alta de todas las unidades hidrográficas, (Cuadro 2). Asimismo, es una de las que presentan forma más alargada con un ancho y largo de rectángulo equivalente de 24.04 km y 281.48 km, respectivamente. En cuanto a la hipsometría (Figura 2), ésta presenta la forma característica de las cuencas maduras, al igual que la subcuenca Sardinas (Figura 3). Esta similitud se explica dado que ambas estan ubicadas en la Sierra Madre Occidental.

Cuadro 2

Parámetros físicos obtenidos para la subcuenca Salomé Acosta.

Perímetro de la subcuenca	519.2 km
Longitud de drenaje	2,219.0 km
Superficie de la subcuenca	7,128.0 km2
Densidad de drenaje	0.33
Coeficiente de compacidad	2.08
Rectángulo equivalente :	
Largo	281.48 km
Ancho	24.04 km

Hidrometría

La estación hidrométrica se instaló con el objeto de conocer los volúmenes escurridos en este sitio además de observar las crecientes que drenan a la presa Lázaro Cárdenas. La estación cuenta con observaciones a partir del 12 de agosto de 1969 hasta la fecha, sin embargo, se cuenta únicamente con los registros procesados hasta diciembre de 1977 (boletines hidrológicos de la RH 36). A partir del 11 de julio de 1970 se cuenta con registro gráfico de los niveles del agua.

El gasto máximo reportado para este período fue de 712 m³.s⁻¹ registrado el 7 de agosto de 1973, mientras que el valor mínimo fue de 0.202 m³.s⁻¹, ocurrido el 28 de junio de 1976.

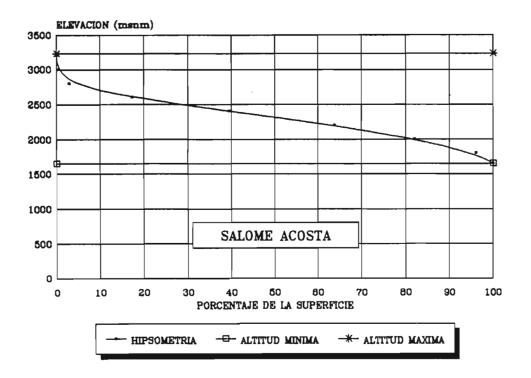


Figura 2

Distribución hipsométrica en la subcuenca Salomé Acosta.

Dentro de la subcuenca se ubican las siguientes estaciones pluviométricas: Santiago Papasquiaro (73), Colonia Ignacio Zaragoza (80), Tepehuanes (77), y El Tarahumar (81). Esta última estación se localiza fuera de la subcuenca pero cercana a su parteaguas (Figura 1 de Pluviometría).

Subcuenca Sardinas

El cauce principal de esta subcuenca es el río Sextín o del Oro, el cual se origina en la Sierra Madre Occidental dentro del municipio de Guanacevi, Dgo. El cauce recibe importantes aportaciones de los arroyos Escobar, Lobos, Matalotes y Guanacevi. La estación hidrométrica que afora estos escurrimientos se ubica 400 m aguas arriba de la confluencia del río Sextin con el arroyo Sardinas. El cauce del río sigue posteriormente con dirección suroeste hasta llegar al embalse de la presa Lázaro Cárdenas. Esta subcuenca se ubica entre los 25°00' y 26°15' de latitud Norte y los 104° 45' y 105° 45' de longitud oeste al meridiano de Grenwich, teniendo una superficie de 4,659.7 km².

Parámetros físicos.

En el Cuadro 3 se muestran los parámetros físicos determinados para esta subcuenca, presentando al igual que la subcuenca Salomé Acosta, alta capacidad de drenaje debido a sus carac-

terísticas orográficas. De hecho esta unidad genera el más alto gasto específico de la RH 36 $(2.45 \text{ lt/s/m}^2).$

La hipsometría que presenta esta subcuenca se ilustra en la Figura 3, con altitudes que varían entre los 3,310 msnm y los 1,640 msnm.

Cuadro 3 Parámetros físicos obtenidos para la subcuenca Sardinas.

378.2 km
1,457.5 km
4,659.7 km2
0.29
1.55
166.74 km
30.44 km

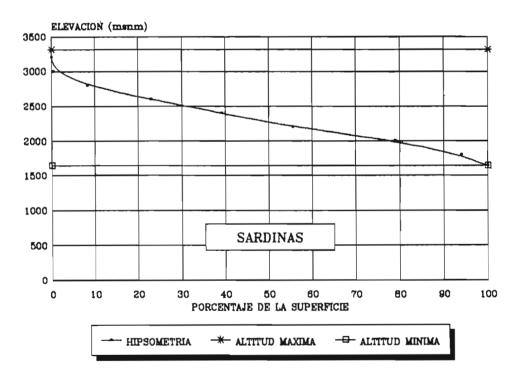


Figura 3 Curva hipsométrica de la subcuenca Sardinas.

Hidrometría

El objeto de la instalación de la estación hidrométrica Sardinas, al igual que en el caso de la estación Salomé Acosta, fue el de conocer los caudales que se aportan a la presa Lázaro Cárdenas desde estas vertientes. La estación funciona desde el 1 de junio de 1970 hasta la fecha. Se cuenta con sus registros procesados hasta diciembre de 1977, período en el cual se reporto un gasto máximo de 1,830 m³.s⁻¹ el 4 de agosto de 1973, el mínimo reportado fue de 0.82 m³.s⁻¹ para el 3 de junio de 1976.

Dentro de la cuenca se tienen las estaciones pluviométricas de Guanacevi (31), El Zape (19) y Cienega de Escobar (15).

Subcuenca Palmito

El río Nazas se origina en esta subcuenca al unirse los cauces de los ríos Ramos y Sextín o del Oro, dentro del municipio de Indé, Dgo. Cuatro kilómetros abajo de esta confluencia se instaló la estación hidrométrica Palmito, con el objeto de realizar observaciones que posteriormente sirvieron de base en el diseño y construcción de la presa Lázaro Cárdenas. Esta subcuenca se ubica entre los 25° 00' y 26° 15' de latitud norte y los 104° 45' y 105° 45' de longitud al Oeste del meridiano de Greenwich, con una superficie de 7,287.9 km². La cuenca presenta una forma que se puede asemejar a un rectángulo, teniendo orientación hacia el Norte en su parte mas alargada.

Parámetros físicos

En este caso, las características físicas se calcularon de dos formas :

- 1) Considerando únicamente el área comprendida por esta subcuenca,
- 2) Abarcando el área total drenada hasta la estación hidrométrica Palmito, incluyéndose las subcuencas Salomé Acosta y Sardinas (Cuadro 4).

En esta unidad hidrográfica se observa que la densidad de drenaje (0.24) disminuye en comparación de los dos anteriores (Salomé Acosta y Sardinas), disminuyendo a su vez, aunque debido tambien al decremento de la precipitación, la capacidad de aportación de los escurrimientos en esta zona. Asimismo, en la curva hipsométrica (Figura 4), se observa una mayor pendiente debido a la fase de trancisión de la Sierra Madre Occidental a la planicie en la RH 36.

Hidrometría

La estación hidrométrica Palmito se instaló el 1 de enero de 1929 con el objeto de registrar el comportamiento de los escurrimientos superficiales que sirvieran de base en el diseño de la presa Lázaro Cárdenas. Debido a las obras de construcción de esta y a partir de 15 de julio de 1936, la estación fue reubicada 1,300 m aguas abajo de su sitio original. Una vez en operación la presa, los patrones naturales de escurrimiento se alteraron por lo que el objetivo de la estación cambió por el de medir los volúmenes vertidos del vaso de almacenamiento, funcionando de igual manera hasta la fecha.

Cuadro 4 Parámetros físicos obtenidos para la subcuenca Palmito y el área total acumulada.

Parámetros físicos de la subcuenca	Palmito
Perímetro de la subcuenca	410.2 km
Longitud de drenaje	1,729.5 km
Superficie de la subcuenca	7,287.9 km2
Densidad de drenaje	0.24
Coeficiente de compacidad	1.35
Parámetros físicos del área total a de la cuenca Nazas hasta la estaci	
Densidad de drenaje	0.29
Coeficiente de compacidad	1.90
Superficie acumulada	19,075.6 km2
Rectángulo equivalente :	
Largo	417.3 km
Ancho	44.4 km

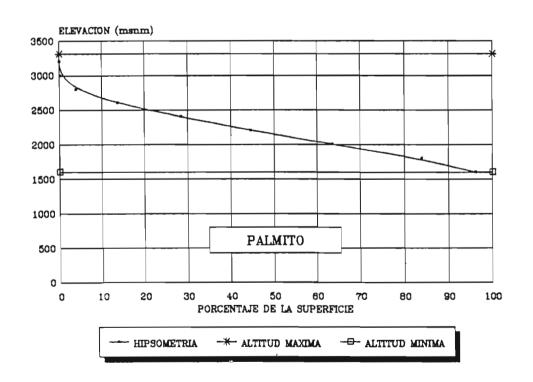


Figura 4 Hipsometría de la subcuenca Palmito.

La construcción de la presa se inició en el año de 1936 por la entonces Comisión Nacional de Irrigación, empezando su funcionamiento en julio de 1946. El objetivo de su construcción fue el de almacenar los escurrimientos superficiales para ser aprovechados en forma planificada por el riego agrícola, principalmente en la Comarca Lagunera. El almacenamiento original de la presa fue de 3,000 millones de metros cúbicos con una área de embalse de 11,122 ha. En el año de 1975, la estructura de la presa fue modificada, con lo que se amplió la capacidad total de la presa a 4,438 millones de metros cúbicos (2,873 millones para riego y azolves, y 1,565 millones de control y superalmacenamiento).

Los registros de la estación hidrométrica se dividen en los períodos establecidos antes y después del funcionamiento de la presa. Para el primer caso se tienen observaciones procesadas del 1 de enero de 1929 al 20 de junio de 1946, y del 21 de junio de 1946 al 31 de diciembre de 1977 para el segundo caso.

El máximo volumen registrado durante el primer período (regimen natural), fué de 2,635 m³.s⁻¹ el 27 de septiembre de 1936, mientras que el gasto mínimo se presento el 10 de junio de 1941 con un valor de 0.180 m³.s⁻¹.

Dentro de la subcuenca se localizan las siguientes estaciones pluviométricas: Salome Acosta, Gral. Escobedo (30), Sardinas (68), San Bernardo (62), Santa Maria del Oro (64), Indé (33) y Palmito (27) (Figura 1 de Pluviometría).

Subcuenca Agustín Melgar

Después de la presa Lázaro Cárdenas, el cauce del río Nazas continua con dirección sureste por espacio de 80 km aproximadamente, hasta llegar a la población de Rodeo, Dgo., cambiando posteriormente su dirección hacia el Oeste por una longitud de 30 km y después hacia el Noreste otros 50 km, llegando así al embalse de la presa Francisco Zarco.

Durante este trayecto, y dentro del área comprendida por esta subcuenca, los afluentes más importantes que recibe el río Nazas por su margen derecha son el río San Juan y el río Peñón, mientras que por su margen izquierda recibe al arroyo de San Luis del Cordero.

Aguas abajo de ésta última confluencia se ubica la estación hidrométrica Agustín Melgar que afora los escurrimientos superficiales antes de entrar al embalse de la presa Francisco Zarco. La subcuenca se desarrolla entre los 24°10' y 25°45' de latitud norte y los 103°30' y 105°00'de longitud al Oeste del meridiano de Greenwich. La superficie de la subcuenca hasta el sitio de la estación es de 11,776.6 km², teniendo una forma alargada con orientacion noroeste, con su menor amplitud hacia su extremo Sur y su máxima hacia el extremo Norte.

Parámetros físicos

Los parámetros físicos para esta subcuenca y para el área total acumulada hasta la estación de aforo Agustín Melgar se muestran en el Cuadro 5. En este caso, la longitud de drenaje se estima principalmente hacia el Sur de la unidad hidrográfica, a partir de los ríos San Juan y Peñón. También, en esta porción de la subcuenca se encuentran las mayores altitudes originadas por la sierra de Gamón. Esto se puede observar en la curva hipsométrica (Figura 5), donde el 30 por ciento de la superficie total tiene elevaciones superiores a los 2,200 msnm.

Cuadro 5

Parámetros físicos obtenidos para la subcuenca Agustín Melgar y el área total acumulada.

Parámetros físicos de	la	subcuen	ca Agu	stín	Melgar
Perímetro de la subcuenca			5	37.2	km
Longitud de drenaje			3,	484.0) km
Superficie de la subcuenca			11,	776.6	6 km2
Densidad de drenaje				0.30)
Coeficiente de compacidad				1.39	9
Parámetros físicos del	ár	ea total	acumula	ada	de la
cuenca Nazas hasta la	ı e	stación /	Agustín	Mel	gar
Densidad de drenaje				0.29	9
Coeficiente de compacidad				2.15	5
Superficie acumulada			30,	852.2	2 km2
Rectángulo equivalente :					
Largo			6	18.9	km
Ancho				48.9	kmi

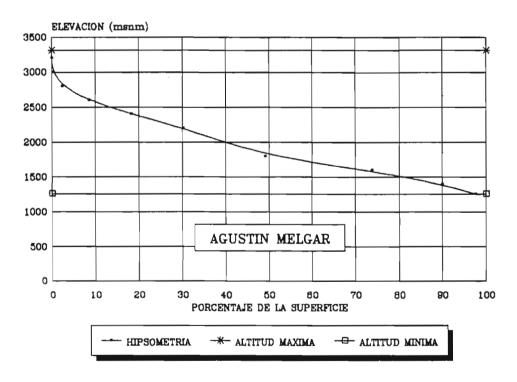


Figura 5
Curva hipsométrica de la subcuenca Agustín Melgar.

Hidrometría

La estación hidrométrica Agustín Melgar se instaló con el objeto de cuantificar las aportaciones de esta subcuenca antes de entrar a la presa Francisco Zarco, después de haber sido controlados los escurrimientos aguas arriba en la presa Lázaro Cárdenas. La estación empezó a funcionar desde el 2 de febrero de 1970 hasta la fecha, contándose con los aforos procesados hasta diciembre de 1977.

Durante este período se registró un máximo gasto máximo de 581 m³.s⁻¹ el 27 de septiembre de 1970, mientras que el mínimo se reportó el 7 de mayo de 1975 con 0.111 m³.s⁻¹.

En esta parte media de la RH 36 se encuentra la mayor densidad de estaciones pluviométricas, ubicándose dentro de esta subcuenca, El Casco (23), San Luis del Cordero (66), Nazas (45), Rodeo (57), Higueras(32), Coneto de Comonfort (82), San Juan del Río (72), Panuco de Coronado(54), Peñón Blanco (53), Luis Moya (35) y Cuauhtemoc (10).

Subcuenca Cañón de Fernández

Después de la estación Agustín Melgar, el cauce del río Nazas sigue en dirección oeste por espacio de unos 25 km hasta recibir por su margen derecha el arroyo Cuencamé, siendo éste el más importante afluente de esta subcuenca. Tres kilómetros aguas abajo de esta confluencia se ubica la estación hidrométrica Cañón de Fernández, cuyos registros observados sirvieron de base en el diseño y construcción de la presa Francisco Zarco que inició su funcionamiento en 1968.

La subcuenca se desarrolla entre los 24° 30' y 25° 40' de latitud norte y 103° 30' y 104° 05' de longitud al Oeste del meridiano de Greenwich, con una superficie de 3,335 km².

Al igual que la subcuenca Agustín Melgar, se puede decir que esta subcuenca presenta forma alargada con orientación noroeste, encontrándose su menor amplitud hacia el Norte de la misma.

Parámetros físicos

En el Cuadro 6 se muestran los parámetros físicos determinados para esta subcuenca.

La hipsometría de la subcuenca se presenta en la Figura 6.

Hidrometría

La estación hidrométrica Cañón de Fernández empezó su funcionamiento el 13 de agosto de 1936, con el objetivo de conocer los regimenes del río Nazas en este sitio para su aprovechamiento futuro. De esta forma, los registros fueron utilizados en el diseño y construcción de la presa Francisco Zarco ("las Tortolas") que empezó su operación el 12 de marzo de 1968. A partir de esta fecha, el objetivo de la estación cambió por el de medir las extracciones y desfogues de la presa Francisco Zarco. La estación hidrométrica no ha cambiado de sitio desde su instalación. El gasto máximo reportado antes del funcionamiento de la presa fue de 2,280 m³.s⁻¹ el dia 28 de septiembre de 1936, en tanto que el mínimo fue 0.0 m³.s⁻¹ presentándose entre el 21 de mayo y el 2 de junio de 1954. Para los escurrimientos controlados por la presa, el gasto máximo fue de 1,738 m³.s⁻¹ el 15 de septiembre de 1968.

Cuadro 6 Parámetros físicos obtenidos para la subcuenca Cañón de Fernández y el área total acumulada.

Parámetros físicos de la subcuenca C	. de Fernández
Perímetro de la subcuenca	253.8 km
Longitud de drenaje	1,180.3 km
Superficie de la subcuenca	3,335.0 km2
Densidad de drenaje	0.31
Coeficiente de compacidad	1.23
Parámetros físicos del área total acua cuenca Nazas hasta la estación C. de	
Densidad de drenaje	0.30
Coeficiente de compacidad	2.09
Superficie acumulada	34,187.2 km2
Rectángulo equivalente :	
Largo	364.58 km
Ancho	52.64 km

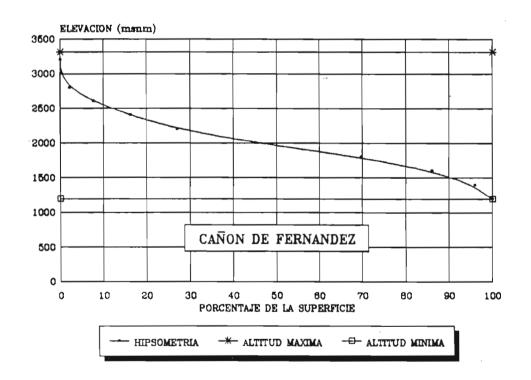


Figura 6 Distribución de la hipsometría en la subcuenca Cañón de Fernández.

La construcción de la presa Fransisco Zarco se estableció dentro del Plan de Rehabilitación de la Comarca Lagunera en el año de 1966, con el objetivo de aprovechar en forma mas eficiente las extracciones y derrames de la presa Lázaro Cárdenas, así como los escurrimientos generados en la parte media de la cuenca, controlando de esta forma avenidas extraordinarias. La presa tuvo un almacenamiento inicial de 300 millones de metros cúbicos de los cuales 235 millones estaban disponibles. Posteriomente y con el objeto de aumentar la seguridad de la presa, se elevó su cortina aumentando su almacenamiento total a 430 millones de metros cúbicos.

Hacia el Suroeste de la presa Francisco Zarco, dentro de esta subcuenca, se localiza la presa Las Mercedes que almacena los escurrimientos del arroyo La Fe con propósitos de riego. La presa tiene una capacidad de almacenamiento de dos millones de metros cúbicos.

Dentro de esta subcuenca se ubican las estaciones pluviométricas de Cuencamé (9), Yerbanis (79), 12 de diciembre (1), Atotonilco (3) y Cañón de Fernández (7).

Subcuenca Los Angeles

Aguas abajo de la presa Francisco Zarco, el cauce del río Nazas fluye por espacio de 20 km en dirección norte, a través del Cañón de Fernández, para posteriormente cambiar con rumbo sureste dirigiéndose hacia las ciudades de Lerdo, Gómez Palacio y Torreón. La estación hidrométrica Los Angeles se localiza a 4 km aguas arriba de Ciudad de Lerdo, Dgo., en la población rivereña del mismo nombre. Esta subcuenca se ubica entre los 25° 05' y 25° 45' de latitud norte, y los 103° 30' y 103° 55'de longitud al Oeste del meridiano de Greenwich, con una superficie de 1,389 km². La forma que presenta es alargada con orientacion hacia el Norte.

Parámetros Físicos

En el Cuadro 7 se muestran los parámetros físicos determinados para esta subcuenca.

La hipsometría de la subcuenca se presenta en la Figura 7.

Hidrometría

Después de la estación hidrométrica Los Angeles, el río Nazas sigue su cauce por espacio de 2 km hasta llegar a la presa derivadora San Fernando, a partir de la cual el agua se conduce por una serie de canales revestidos para ser utilizados en el riego agrícola. La estación hidrométrica se instaló con el propósito de conocer los volúmenes de agua antes de ser distribuidos, empezando su funcionamiento el 23 de marzo de 1964. Se cuenta con los años completos de observación a partir de 1970 a la fecha, teniéndose procesados los registros hasta Diciembre de 1977.

Para este período el gasto máximo fue de 153.5 m³.s⁻¹ el 19 de agosto de 1973, mientras que el gasto mínimo fue de 0.0 m³.s⁻¹ para diferentes fechas del registro, (en 1991 fue estimado un volumen máximo aproximado 600 m³ s⁻¹).

En esta subcuenca no se localiza ninguna estación pluviométrica.

Cuadro 7

Parámetros físicos obtenidos para la subcuenca Los Angeles y área total acumulada.

Parámetros físicos de la subcuenca	Los Angeles
Perímetro de la subcuenca Longitud de drenaje	186.8 km 253.8 km
Superficie de la subcuenca Densidad de drenaje Coeficiente de compacidad	1,389.0 km2 0.18 1.40
Parámetros físicos del área total ac la cuenca Nazas hasta la estación l	cumulada de
Densidad de drenaje Coeficiente de compacidad Superficie acumulada	0.29 2.16 35.576.2 km2
Rectángulo equivalente : Largo Ancho	673.03 km 52.58 km



Figura 7
Curva hipsométrica de la subcuenca Los Angeles.

77

Subcuenca El Sauz

Esta unidad hidrográfica es drenada por el cauce del río San Franscisco o de los Lazos, formado por varios arroyos que escurren desde la cordillera "Moneda de cinco pesos", al Oeste de la subcuenca, y de los cerros Grande y Colorado al Sur de la misma. Esta se desarrolla entre los 23° 00' y 23° 30' de latitud norte y los 103° 10' y 103° 40' de longitud oeste al meridiano de Greenwich, con una superficie de 1,327.6 km². La forma que presenta se asemeja a un círculo con bordes irregulares. La dirección general del drenaje es hacia el Sureste. La estación hidrométrica que afora los escurrimientos se instaló 1,000 m aguas abajo de la cortina de la presa Leobardo Reynoso dentro del municipio de Fresnillo Zacatecas.

Parámetros físicos.

En el Cuadro 8 se muestran los parámetros físicos determinados para esta subcuenca.

La hipsometría de la subcuenca se presenta en la Figura 8.

Cuadro 8

Parámetros físicos obtenidos para la subcuenca El Sauz

Perimetro de la cuenca	85.8 km
Longitud de drenaje	373.75 km
Superficie de la cuenca	1,327.6 km2
Densidad de drenaje	0.29
Coeficiente de compacidad	1.44
Rectángulo equivalente :	
Largo	74.98 km
Ancho	17.10 km

Hidrometría

La estación hidrométrica El Sauz se instaló el 1 de septiembre de 1928 con el objetivo de realizar observaciones de los escurrimientos que sirvieron de base en el diseño y construcción de la presa Leobardo Reynoso, la cual empezó su funcionamiento el 1 de junio de 1949. A partir de esta fecha el patron natural de los escurrimientos se vió alterado, cambiando el objetivo de la estacion de aforo por el de medir las extracciones y derrames de la presa operando de la misma forma hasta la fecha.

La presa Leobardo Reynoso tiene una capacidad total de 76.1 millones de m³, de los cuales, cinco millones fueron destinados para el depósito de azolves. El agua almacenada es utilizada principalmente en el riego de superficies agrícolas que se distribuye a través de una red de canales. El área de embalse de la presa a la cota de su vertedor de demasias (2,123.75 msnm) es de 996 ha.

El volumen máximo reportado durante el primer período de observaciones (antes de la construcción de la presa), fue de 274 m³.s⁻¹ el día 25 de septiembre de 1928, mientras que el gasto mínimo fue de 0.0 m³.s⁻¹ presentándose en diferentes fechas del funcionamiento de la estación. Dentro de la cuenca se ubica únicamente la estación pluviométrica El Sauz (20).

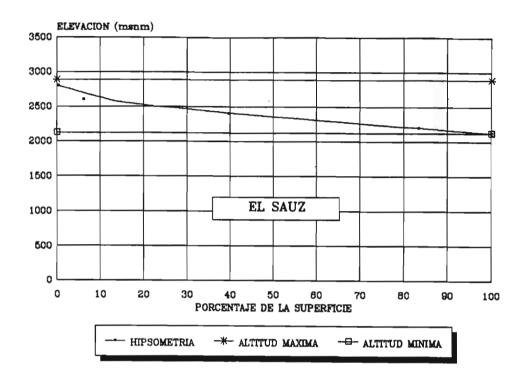


Figura 8
Hipsometría de la subcuenca El Sauz.

Subcuenca Cazadero

Esta subcuenca se drena en su parte alta mediante el cauce del río Chico, desde una altura de 2,770 msnm, siendo este el origen de la red hidrográfica que forma el río Aguanaval. El río Chico recibe dos afluentes de consideración en su trayecto; el arroyo El Arenal que desemboca por su margen derecha y el río de los Lazos que converge por su margen izquierda. En el primero de ellos se localiza la presa Santa Rosa a 2.5 km aguas arriba de su convergencia, en tanto que en el segundo afluente se construyó la presa Leobardo Reynoso, a 10 km aguas arriba de su unión con el río Chico. Después de esta última confluencia al cauce se le conoce como río Trujillo, el cual presenta un tramo de composición arenosa que ocasiona la infiltración de los escurrimientos que sólo en grandes avenidas pueden fluir aguas abajo. Después de un recorrido de 70 km el río Trujillo desemboca sus aguas a la presa Cazadero, 5 km aguas abajo del afluente izquierdo río Sain Alto.

La subcuenca se define entre los 22° 45' y 23° 45' de latitud norte y los 102° 50' y 103° 45' de longitud oeste al meridiano de Greenwich, con un área de 3,756.2 km². La estación hidrométrica que afora esta unidad hidrográfica se localiza 1,500 m aguas abajo de la presa Cazadero.

Parámetros físicos.

En el Cuadro 9 se muestran los parámetros físicos determinados para esta subcuenca.

La hipsometría de la subcuenca se presenta en la Figura 9.

Cuadro 9

Parámetros físicos para la subcuenca Cazadero y el área total acumulada.

Parámetros físicos de la subcuenca	Cazadero		
Perímetro de la subcuenca	322.4 km		
Longitud de drenaje	1,021.3 km		
Superficie de la subcuenca	3,756.2 km2		
Densidad de drenaje	0.27		
Coeficiente de compacidad 1.47			
Parámetros físicos del área total ac la cuenca Aguanaval hasta la estaci			
Densidad de drenaje	0.275		
Coeficiente de compacidad	1.56		
Superficie acumulada	5,083.8 km2		
Rectángulo equivalente :			
Largo	168.05 km		
Ancho	30.11 km		

Hidrometría

En esta subcuenca se pueden precisar dos períodos de observación para los escurrimientos considerando la fecha del inicio de operación de la presa Cazadero, es decir, antes y después de su funcionamiento.

- Para el primer caso se tienen los registros de las estaciones hidrométricas Cazadero I, desde el 19 diciembre de 1956 hasta el 31 de octubre de 1961, y Cazadero II, a partir del 1 de octubre de 1961 al 18 de junio de 1964, fecha en la cual la presa Cazadero empezó su almacenamiento. La estación Cazadero I fue suspendida al quedar ubicada sobre el vertedor de demasias de la presa.
- Para el segundo período de observación la estación Cazadero II registra las descargas y desfogues del embalse desde su inicio de operación a la fecha. Se cuenta con los datos procesados hasta diciembre de 1977.

El gasto máximo registrado antes del funcionamiento de la presa fue de 424 m 3 .s $^{-1}$ el día 25 de agosto de 1959, mientras que el mínimo se registro el dia 20 de abril de 1957 con 0.012 m 3 .s $^{-1}$.

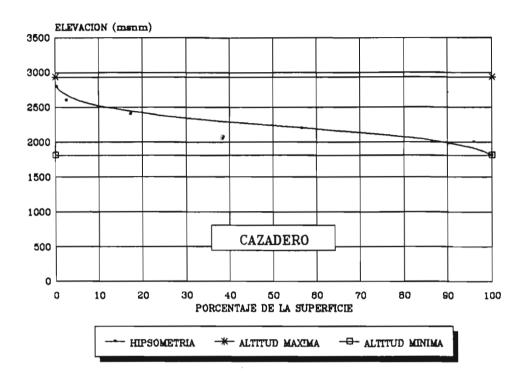


Figura 9

Distribución hipsométrica de la subcuenca Cazadero.

Una vez en funcionamiento la presa, el gasto máximo fue de 713.3 m³.s⁻¹ el 15 de agosto de 1973, en tanto que el mínimo fue de 0.0 m³.s⁻¹ para varias fechas de observación.

La capacidad total de la presa Cazadero es de 30.9 millones de metros cúbicos de los cuales 8 están destinados para azolves. El área de embalse a la cota del vertedor de demasias es de 688 ha. Los almacenamientos son aprovechados para un riego planeado de 3,400 ha.

En la parte alta de esta subcuenca los escurrimientos son aprovechados mediante la presa Santa Rosa que se localiza sobre el arroyo El Arenal. Esta inició su funcionamiento en el año de 1939 estando a cargo de su construcción la entonces Comisión Nacional de Irrigación. Cuenta con una capacidad de almacenamiento de I4.5 millones de metros cúbicos que permiten irrigar 500 hectáreas de cultivos. La presa es alimentada por los escurrimientos del arroyo que cuenta con una área de captación de 37.5 km², además de los escurrimientos derivados del río Chico a través de un canal de 2.5 km de longitud, con áreas de cuenca hasta la obra derivadora de 195 km².

En esta subcuenca se ubican las estaciones pluviométricas de Cazadero (11) y Fresnillo (29).

Subcuenca San Francisco

Aguas abajo de la presa Cazadero el río, a partir de aquí mejor conocido por el nombre de río Aguanaval, sigue su cauce con dirección noreste por espacio de 30 km, pasando por la poblacion de Río Grande para llegar posteriormente a Paso Blanco. A partir de este poblado cambia su orientación hacia el Norte para dirigirse a la localidad de San Francisco, lugar donde se sitúa la estación hidrométrica del mismo nombre.

Esta subcuenca se desarrolla entre los 23° 40' y los 24° 25' de latitud norte y los 102° 40' y los 103° 40' de longitud oeste al meridiano de Greenwich. Cuenta con un área de 5,109.1 km² de forma irregular.

Parámetros físicos.

.

En el Cuadro 10 se muestran los parámetros físicos determinados para esta subcuenca.

La hipsometría de la subcuenca se presenta en la Figura 10.

Cuadro 10

Parámetros físicos obtenidos para la subcuenca San Francisco y el área total acumulada.

Parámetros físicos de la subcuenca	San Francisco
Perímetro de la subcuenca	287.8 km
Longitud de drenaje	1,199.25 km
Superficie de la subcuenca	5,109.1 km2
Densidad de drenaje	0.24
Coeficiente de compacidad	1.13
Parámetros físicos del área total ac	
cuenca Aguanaval hasta la estación	
Densidad de drenaje	0.255
Coeficiente de compacidad	1.63
Superficie acumulada	10,192.9 km2
Rectángulo equivalente :	
Largo	253.28 km
Ancho	40.11 km

Hidrometría

El cauce del río Aguanaval recibe diferentes arroyos a lo largo de su trayecto en esta subcuenca, sobresaliendo los afluentes derechos El Aguila, Mazapil y La Cantera, que tienen su origen en la sierra Guadalupe a una altura aproximada a los 2,500 msnm. La estación hidrométrica empezó su funcionamiento el 12 de agosto de 1976 con el objeto de conocer el régimen hidráulico del río Aguanaval para su posterior utilización en estudios regionales. La estación funciona normalmente hasta la fecha. Se cuenta con la información procesada de 1976 y 1977.

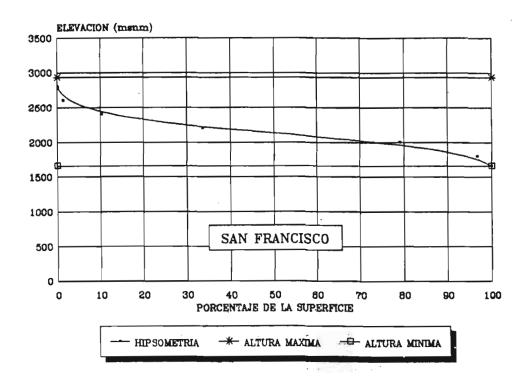


Figura 10

Hipsometría de la subcuenca San Francisco.

Subcuenca La Flor

Después de la estación hidrométrica San Francisco, el río Aguanaval sigue en dirección Norte hasta el poblado Nueva Reforma, para posteriormente dirigirse hacia la población San Juan de Guadalupe con orientación noreste. A continuación el cauce cambia de rumbo hacia el Noroeste para llegar a donde se localiza la estación hidrométrica La Flor.

La subcuenca se ubica entre los 24° 00' y 25° 15' de latitud norte y los 102° 40' y 103° 40' de longitudinal oeste del meridiano de Greenwich.

El área de la subcuenca es de 9,607.4 km², asemejando su forma a un rectángulo teniendo su parte más alargada una orientación Sur - Norte.

Parámetros físicos.

En el Cuadro 11 se muestran los parámetros físicos determinados para esta subcuenca.

La hipsometría de la cuenca se presenta en la Figura 11.

Cuadro 11

Parámetros físicos obtenidos para la subcuenca La Flor y el área total acumulada.

Parámetros físicos de la subcuenca	La Flor
Perimetro de la subcuenca	421.0 km
Longitud de drenaje	2,559.5 km
Superficie de la subcuenca	9,607.4 km2
Densidad de drenaje	0.27
Coeficiente de compacidad	1.20
Parámetros físicos del área total a	
la cuenca Aguanaval hasta la estac	ion La Flor
Densidad de drenaje	0.26
Coeficiente de compacidad	1.63
Superficie acumulada	19,800.3 km2
Rectángulo equivalente :	
Largo	351.96 km
Ancho	55.74 km

Hidrometría

La estación hidrométrica se ubica sobre el lecho del río Aguanaval, entre la presa derivadora Sombreretillo que drena hacia el canal del mismo nombre, y antes de la presa derivadora La Flor. La estación empezó su funcionamieto el 24 de junio de 1941, con el objeto de conocer los volumenes vertidos por el Aguanaval antes de la presa derivadora La Flor. A partir del 11 de junio de 1941 se iniciaron las lecturas gráficas del limnígrafo.

Las aportaciones más importantes que recibe el Aguanaval en este trayecto son: arroyo de Reyes con una cuenca de 718 km²; arroyo de Santa Clara o Río Santiago con un área de cuenca de 2,844 km²; y el arroyo Mezamitote con un área aportadora de 718 km².

Sobre al arroyo Santa Clara se localiza la presa Los Naranjos con una capacidad de almacenamiento de 26 millones de metros cúbicos. Se contruyó con fines agrícolas para irrigar un área de 2,300 ha.

Las estaciones pluviométricas que se ubican dentro de esta subcuenca, son: Ramón Corona, Juan Aldama (34), Santa Clara (70), Simon Bolivar (58) y San Juan de Guadalupe (69).

Subcuenca Viesca

Esta subcuenca es el colector general del cauce del río Aguanaval, el cual aporta en este punto un promedio de 300 millones de metros cúbicos cada año. La utilización de los escurrimientos es principalmente agrícola, siendo empleados principalmente por los canales de riego Sombreretillo y La Flor.

La subcuenca se ubica entre los 24°20' y 25°40' de la t i t u d norte y los 101°30' y 103°40' de longitud al Oeste del meridiano de Greenwich. El área es de 13,604.5 km². La forma, aunque irregular, se presenta alargada con orientación que predomina hacia el Noroeste.

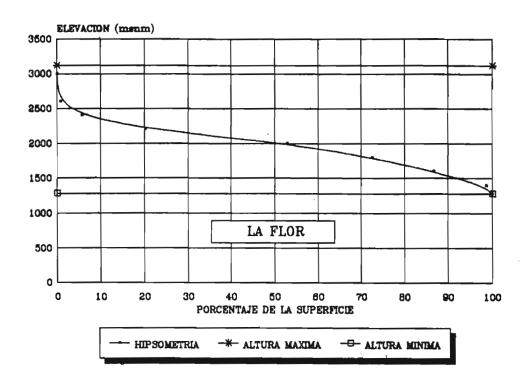


Figura 11
Curva hipsométrica de la subcuenca La Flor.

Parámetros físicos

En el Cuadro 12 se muestran los parámetros físicos determinados para esta subcuenca.

Cuadro 12

La hipsometría de la subcuenca se presenta en la Figura 12.

Parámetros físicos obtenidos
para la subcuenca Viesca

Perimetro de la cuenca	713.8 km
Longitud de drenaje	1,751.3 km
Superficie de la cuenca	13,604.5 km2
Densidad de drenaje	0.13
Coeficiente de compacidad	1.93

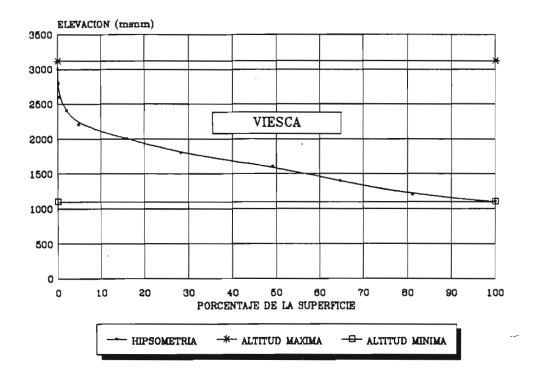


Figura 12

Curva hipsométrica de la subcuenca Viesca.

Hidrometría

Los escurrimientos provenientes del río Aguanaval son aprovechados mediante una serie de canales revestidos, principalmente el de Sombreretillo y el de La Flor, los cuales irrigan un área de 3,196 ha y 1,395 ha, respectivamente.

Las obras mas comúnes de aprovechamiento en la región son del tipo de abrevadero y captación de lluvia in situ para la producción de cultivos básicos. Estas obras se realizan generalmente en programas gubernamentales o por la iniciativa privada en pequeñas propiedades principalmente ganaderas.

Las estaciones pluviométricas que se ubican en la subcuenca son: La Ventana (38), Viesca (78), Bajío de Ahuichila (6) y La Rosita (39).

Subcuenca Mayrán

Esta subcuenca es el colector general del río Nazas y la región con mayor desarrollo, en un principio agrícola, y actualmente también industrial y comercial. Los escurrimientos son aprovechados por una red de canales revistidos que conducen el agua a diferentes puntos de la Comarca Lagunera para irrigar las superficies de diversos cultivos. Los volúmenes que se reciben son de alrededor de 1,200 millones de metros cúbicos por año para el riego, complementándose este con la extracción de agua subterránea.

La subcuenca se desarrolla entre los 25° 20' y los 26° 40' de latitud norte y los 101° 40' y 103° 40' de longitud al Oeste del meridiano de Greenwich. El área es de 15,172.2 km², presentado una forma alargada con sus extremos orientados en dirección Este - Oeste.

Parámetros físicos

En el Cuadro 13 se muestran los parámetros físicos determinados para esta subcuenca.

La hipsometría de la subcuenca se presenta en la Figura 13.

Cuadro 13

Parámetros físicos obtenidos para la subcuenca Mayrán.

Perimetro de la cuenca	709 km
Longitud de drenaje	1,089 km
Superficie de la cuenca	15,172.2 km2
Densidad de drenaje	0.105
Coeficiente de compacidad	1.57

Hidrometría

Esta subcuenca no es aportadora de escurrimientos hacia el cauce del río Nazas, sin embargo, se pueden encontrar aprovechamientos de los escurrimientos provenientes de cerros para abrevaderos, o bien para la captacion *in situ* de la lluvia con fines agrícolas. Estas obras se realizan principalmente en programas de desarrollo implementados por el Gobierno Estatal y/o Federal. En esta subcuenca se ubica la localidad de Parras de la Fuente, la cual cuenta con un manantial importante proveniente de la sierra de Parras. Sus escurrimientos tienen diferentes usos.

Esta subcuenca cuenta con las siguientes estaciones pluviométricas: Lerdo, Presa Coyote, CENID-RASPA (13), El Cuije (26), Fco. I. Madero (28), San Perdo (63), Tlahualilo (76), Las Nieves (36), Estanque del León (22) y Parras (51).

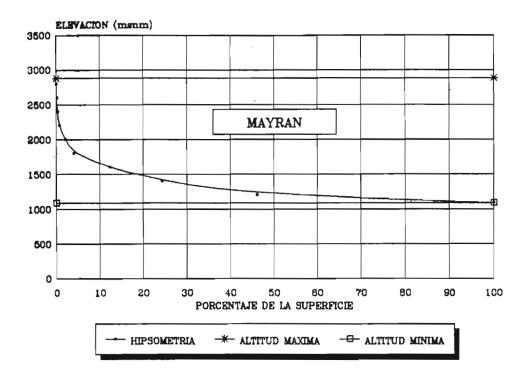


Figura 13
Distribución hipsométrica de la subcuenca Mayrán.

Subcuenca Bolsón Sur

Al Norte del río Nazas se localiza la fracción Sur del Bolsón de Mapimí considerada dentro del la RH 36. Esta región esta formada por una cuenca endorréica que se desarrolla entre los 25° 35' y los 26° 40' de latitud norte y los 103° 30' y 104° 30' de longitud oeste al meridiano de Greenwich. El límite de esta zona con respecto a la laguna de Mayrán es de muy difícil definición debido a la falta de sistemas orográficos en este sentido, por lo que se consideró el aspecto fisiográfico para su división, encontrándose un área de 7,552.4 km². La forma que presenta se asemeja a una cuadrado con longitud por lado de 90 km, aproximadamente.

Parámetros físicos.

En el Cuadro 14 se muestran los parámetros físicos determinados para esta subcuenca. La hipsometría de la subcuenca se presenta en la Figura 14.

Cuadro 14

Parámetros físicos obtenidos para la subcuenca Bolsón Sur.

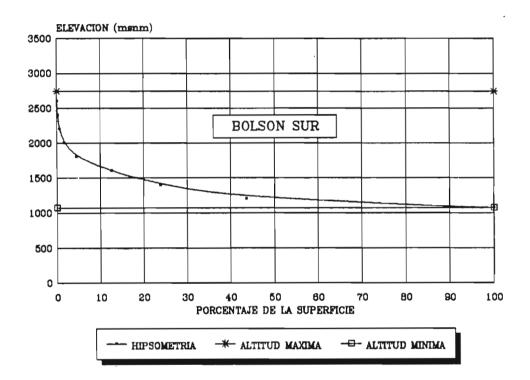


Figura 14
Curva hipsométrica de la subcuenca Bolsón Sur.

Hidrometría

En esta región se encuentra la presa 5 de Mayo que se localiza al Suroeste de la ciudad de Mapimí. Almacena los escurrimientos superficiales del arroyo La Cadena que drena de Sur a Norte. La capacidad del vaso es de 5 x 10⁶ m³ que irrigan un total de 240 ha. Al Noroeste de Tlahualilo se encuentran la laguna de los Patos, laguna de las Liebres y lagu-

na de Puerto Rico.

Las estaciones pluviométricas que se ubican dentro de la región son: 5 de Mayo (2), Mapimí (44) y Tortugas (75). Además de las estaciones de Agua Puerca (4), El Derrame (21), Escalón Chihuahua (18) y Ceballos (8), que se localizan en la parte cercana del parteaguas Norte del Bolsón Sur.

Escurrimientos Superficiales.

En el caso de los registros diarios de los escurrimientos superficiales, se cuenta con la información presentada en los boletines hidrológicos editados para la RH 36. En estos se encuentran los gastos medios diarios para cada una de las estaciones hidrométricas hasta el año de 1977. Durante la segunda fase de este proyecto se procesarán los datos hasta 1992, utilizando para ello un sistema computacional llamado HYDROM (1989), el cual fue desarrollado por el ORSTOM.

En los boletines hidrológicos se presentan en forma acumulada los volúmenes de los escurrimientos aforados para el caso de estaciones secuenciales. De este modo, se realizó un balance hidrológico con la finalidad de conocer el volumen aportado anualmente para cada una de las subcuencas. En el caso de la existencia de presas se consideraron: los almacenamientos, las pérdidas por evaporación y las aportaciones por precipitación dentro de las mismas. Estas pérdidas y aportaciones, son calculadas a partir de las observaciones en la variación del nivel del agua en el embalse, así como de las variables climáticas registradas en las estaciones más cercanas a la presa.

Otra dificultad que se presenta en el balance hidrológico, son los diferentes períodos de observación en cada una de las estaciones hidrométricas, coincidiendo todas a partir de 1976 (Cuadro 1). Para el caso de la cuenca del río Nazas, las estaciones de aforo coinciden en su funcionamiento a partir de 1971, por lo que el balance hidrológico se presenta en dos períodos: uno desde el inicio de la operación de la estación Palmito y hasta 1970, y un segundo balance de 1971 a 1977, en el cual estan incluidas todas las estaciones de esta cuenca. El primer período comprende los escurrimientos naturales o los no alterados por la influencia de los embalses hasta 1946, fecha del inicio en la operación de la presa Lázaro Cárdenas (Palmito).

En los cuadros presentados en éste apartado las unidades se expresan en millones de metros cúbicos para todas las variables observadas, (volumen aforado, almacenamiento, evaporación y precipitación en el embalse, y el volumen escurrido).

Cuenca del río Nazas.

Como se mencionó anteriormente, el balance hidrológico realizado en esta cuenca se divide en dos períodos: uno a partir de 1929 a 1970 y en el cual se consideran unicamente dos grandes subcuencas, una formada por las unidades hidrográficas de Salome Acosta, Sardinas y Palmito, y la otra conformada por las subcuencas Agustín Melgar y Cañon de Fernández, (Figura 1). El segundo período abarca desde 1971 a 1977. En este último se encuentran en funcionamiento todas las estaciones de aforo para esta cuenca.

La estación hidrométrica Palmito cuenta con información de los escurrimientos naturales desde 1929 hasta 1945, ya que la presa Lázaro Cárdenas empezó su funcionamiento en el año de 1946. A partir de esta fecha fue necesario realizar un balance de las entradas y salidas de su embalse para cuantificar los volúmenes anuales aportados. En el Cuadro 15, se muestran los balances realizados así como el volumen escurrido dentro de la subcuenca formada por las unidades hidrográficas de Salomé Acosta, Sardinas y Palmito.

Cuadro 15

Balance de agua realizado para el área comprendida por las subcuencas Sardinas

Balance de agua realizado para el área comprendida por las subcuencas Sardinas, Salomé Acosta y Palmito (en millones de m³).

Año	Volumen ^a aforado	Almacei inicial	namiento final	Evaporación en el	Precipitació en el	n Vol. escurrido dentro de la
				embalse	embalse	subcuenca
					(Sare	dinas, Salomé A. y Palmito
1929	280.5					280.5
1930	706.1					706.1
1931	1,306.2					1,306.2
1932	2.052.5					2,052.5
1933	1,284.5					1,284.5
1934	431.3					431.3
1935	1,716.8					1,716.8
1936	2,029.3					2,029.3
1937	771.8					771.8
1938	2,452.7					2,452.7
1939	789.6					789.6
1940	769.0					769.0
1941	2,147.4					2,147.4
1942						
1942	1,477.8 1,747.4					1,477.8
1944						1,747.4
1945	1,668.3 614.4					1,668.3 614.4
	Observacio	ones después	de la constru	ucción de la Presa	Lázaro Cárden	as
1947	1,079.4	543.5	1,528.0	83.1	11.0	2,136.0
1948	1,137.4	1,528.0	899.3	113.2	13.4	608.5
1949	1,061.3	899.3	961.6	81.9	12.8	1,192.8
1950	950.8	961.6	541.1	72.8	4.9	598.2
1951	499.1	541.1	269.8	59.8	5.4	282.1
1952	212.5	269.8	279.1	53.2	2.6	272.4
1953	223.2	279.1	465.6	53.7	5.9	457.5
1954	487.0	465.6	549.0	53.8	6.6	617.6
1955	8.888	549.0	1,198.0	63.6	14.8	1,586.7
1956	1,259.7	1,198.0	281.7	66.2	3.2	406.5
1957	228.4	281.7	287.1	45.0	3.3	275.5
1958	326.9	287.1	2,117.0	54.8	20.3	2,191.3
1959	1, 451.6	2,117.0	1,215.0	. 111.4	18.0	643.1
1960	1,226.1	1,215.0	854.6	90.7	9.7	946.7
1961	999.5	854.6	855.1	76.7	15.0	1,061.7
1962	824.0	855.1	199.8	67.3	3.5	232.5
1963	26.1	199.8	1,307.0	56.9	10.4	1,179.9
1964	7 85.4	1,307.0	1,508.0	115.0	19.8	1,081.6
1965	953.5	1,508.0	928.4	122.3	12.5	483.7
1966	734.5	928.4	1,893.0	714.7	20.8	2,393.0
1967	1,063.1	1,893.0	2,383.0	146.1	42.1	1,657.1
1968	2,550.2	2,383.0	3,034.0	170.4	56.9	3,314.7
1969	1,473.0	3,034.0	1,902.0	200.4	24.0	517.4
1970	1,404.8	1,902.0	1,746.0	142.9	19.8	1,371.8

Para el caso de la estación Cañón de Fernández, se cuenta con información desde el año de 1937, procediéndose de la misma forma que en la estación Palmito. La presa Francisco Zarco (Las Tortolas) empezó su funcionamiento el año de 1968. El balance realizado y los volúmenes aportados en la subcuenca se presentan en el Cuadro 16. Las aportaciones se derivaron del área comprendida por las subcuencas Agustín Melgar y Cañón de Fernández.

Cuadro 16

Balance de agua para el área comprendida por las subcuencas Agustín Melgar y Cañón de Fernández (en millones de m³).

Año	Volumen (1) aforado	Almacena inicial	amiento final	Evaporación en el embalse	en el embalse	Vol. escurrido (2) dentro de la subcuenca
					(A	gustín Melgar y C. d <mark>e Fdz.</mark>)
1937	811.5					39.7
1938	2881.0					428.4
1939	845.9					56.3
1940	779.6					10.6
1941	2542.2					394.8
1942	1654.7					176.9
1943	1953.0					205.6
1944	1633.8					- 34.5
1945	575.3					- 39.1
	Observaci	ones después	de la const	rucción de la pres	a Lázaro Cárdena	as
1947	1269.4					190.0
1948	1298.8					16 1 .5
1949	1194.5					133.2
1950	1011.3					60.4
1951	527.7					28.6
1952	160.1					- 52.5
1953	342.0					118.9
1954	466.1					- 20.9
1955	791.7					- 97 <i>.</i> 1
1956	1114.3					- 145.4
1957	174.2					- 54.2
1958	1052.6					725.7
1959	1504.8					53.1
1960	1323.1					97.0
1961	1066.0					66.6
1962	794.9					- 29.1
1963	113.0					86.8
1964	921.4					136.0
1965	901.2					- 52.3
1966	1150.4					415.9
	Observac	iones después	de la cons	trucción de la pres	a Francisco Zarc	0
1969	1628.022	350.2	107.9	47.08	2.5 95	- 42.8
1970	1159.557	107.9	200.6	35.5	4.008	- 121.0

⁽¹⁾ Volumen aforado = volumen a la salida de la subcuenca.

⁽²⁾ Volumen escurrido en la cuenca = volumen de escurrimiento generado dent ro de la subcuenca.

A partir del año 1971 a 1977 se cuenta con la información procesada para todas las estaciones hidrométricas seleccionadas en la cuenca Nazas, teniendo dos las características de registros de patrones naturales (Salomé Acosta y Sardinas) y las demás de escurrimiento alterado. En los Cuadros 17 y 18 se presentan los balances realizados para cada una de las estaciones con régimen alterado y natural, respectivamente.

Cuadro 17
Volúmenes aportados en millones de m³, por cada subcuenca para el período de 1971 a 1977 (escurrimiento alterado).

Año	Volumen		namiento	•	Precipitación	
	aforado	inicial	final	en el embalse	en el embalse	dentro de la subcuenca
					empaise	subcuenca
			Subcuen	ca Palmito		
1971	1,132.408	1,146	1,650	138.0	25.85	447.996
1972	1,122.101	1,650	1,446	129.7	24.27	386.310
1973	1,143.233	1,446	3,010	149.3	36.82	861.746
1974	1,272.436	3,010	2,744	192.4	36.70	215.859
1975	1,032.296	2,744	2,295	188.5	22.69	135.004
1976	1,067.362	2,295	2,715	151.9	37.10	117.874
1977	1,239.756	2,715	1,903	174.0	32.98	52.957
		S	ubcuenca	Agustín Melgar		
1971	1,032.473					- 99.935
1972	889.092					- 233.009
1973	1,230.583					87.350
1974	1,164.785					- 107.651
1975	960.992					- 71.304
1976	1,190.398					123.036
1977	1,242.047					2.291
		Sub	cuenca Ca	añón de Fernán	dez	
1971	1,044.074	200.6	272.5	48.21	8.402	123.309
1972	1,078.708	272.5	120.6	38.94	4.052	72.604
1973	1,038.135	120.6	363.8	50.44	8.938	92.254
1974	1,173.804	363.8	310.1	61.72	5.259	11.780
1975	1,107.419	310.1	142.6	51.28	2.959	27.248
1976	1,135.816	142.6	162.9	36.04	4.924	- 3.166
1977	1,251.207	162.9	144.2	31.65	3.796	18.314
			Subcuenc	a Los Angeles		
1971	912.458					- 131.616
1972	984.372					- 94.336
1973	961.926					- 76.209
1974	1,088.504					- 85.300
1975	1,034.003					- 73.416
1976	1,083.900					- 51.916
1977	1,158.236					- 92.971

Cuadro 18

Volúmenes de los escurrimientos aportados en las subcuencas Agustín Melgar y Sardinas, (escurrimiento natural en millones de m3).

Año	Vol. escurrido dentro de la subcuenca					
Subcuen	ca Solomé Acosta					
1971	337.127					
1972	343.432					
1973	1,023.673					
1974	516.216					
1975	338.645					
1976	790.161					
1977	310.114					
Subc	uenca Sardinas					
1971	363.535					
1972	293.789					
1973	934.294					
1974	430.061					
1975	275.457					
1976	694.127					
1977	205.705					

Cuenca del río Aguanaval.

En la subcuenca El Sauz, los escurrimientos empezaron a ser aforados desde el año de 1931 mediante la estación hidrométrica El Sauz I. Con el inicio de la operación de la presa Leobardo Reynoso en junio 1949, la estación el Sauz I fue suspendida, y a partir de esta fecha los escurrimientos han sido observados por la estación El Sauz II.

El balance hidrológico para este período (1931 a 1977), se muestra en el Cuadro 19. Los escurrimientos generados en esta subcuenca son aprovechados aguas abajo en un perímetro de riego agrícola, por lo que sólo en avenidas extraordinarias estos volúmenes pueden llegar a la estación hidrométrica Cazadero; sin embargo, no es posible determinar estas aportaciones dado que no existe una estación que los cuantifique.

La estación Cazadero I empezó su funcionamiento en el año de 1957 hasta el año de 1961, fecha en que entró en funcionamiento Cazadero II. La presa Cazadero empezó su almacenamiento en el mes de junio de 1964. Existen dos aprovechamientos de los escurrimientos que deben ser considerados en el balance general; uno de ellos es el canal Colonial que se utiliza en la conducción del agua para riego a la colonia Ignacio Zaragoza y el canal general izquierdo que conduce también el agua con fines agrícolas. El pri nero empezó su funcionamiento en el mismo año que la estación Cazadero I, mientras que el segundo inició su operación en el año de 1966. El canal Colonial conduce los escurrimientos antes de ser aforados por la estación Cazadero, mientras que el canal general izquierdo es alimentado por una presa dirivadora aguas abajo de la estación Cazadero II.

Tomando estas consideraciones se realizó el balance obteniéndose los volúmenes generados en esta subcuenca (entradas), así como los escurrimientos vertidos sobre el río Aguanaval (salidas), (Cuadro 20).

Cuadro 19 Balance hídrico realizado de 1931 a 1977 para la subcuenca El Sauz (en millones de m^3).

	Volumen	aforado	Almace	namiento	Evaporac. en el	Precipitac. en el	Vol. escurrido dentro de la
Año	Sauz	Sauz II	inicial	final	embalse	embalse	subcuenca
1931	46.239						46.239
1932	32.261						32.261
1933	34.798						34.798
1934	-						-
1935	-						-
1936	-						-
1937	15.093						15.093
1938	37.787						37.787
1939	7.508						7.508
1940	22.318						22.318
1941	59.938						59.938
1942	23.469						23.469
1943	79.676						79.676
1944	37.781						37.781
1945	6.212						6.212
1946	7.650						7.650
1947	23.158						23.158
1948	84.347						84.347
1949	0.257	0.403	13.799	13.001	0.323	0.007	0.178
1950		3.884	6.190	6.492	2.447	0.572	6.061
1951		7.985	6.492	30.890	4.204	1.120	35.467
1952		21.105	30.890	6.244	5.215	0.507	1.167
1953		2.605	6.244	48.250	4.439	1.739	47.311
1954		28.400	48.250	15.610	1.146	1.146	0.000
1955		10.569	15.610	47.960	1.855	1.855	42.919
1956		29.388	47.960	9.929	0.876	0.876	0.000
1957		6.443	9.929	6.740	2.717	0.314	5.657
1958		36.028	6.740	55.890	4.413	3.779	85.812
1959		40.446	55.890	54.480	12.090	4.820	46.306
1960		39.171	54.480	25.290	10.880	1.427	19.434
1961		20.315	25.290	19.480	5.947	1.257	19.195
1962		17.737	19.480	1.076	3.435	0.443	2.325
1963		5.604	1.076	42.950	4.903	1.877	50.504
1964		35.788	42.950	30.420	8.053	1.973	29.338
1965		34.261	30.420	18.360	5.322	1.084	26.439
1966		18.729	18.360	46.300	6.108	1.787	50.990
1967		61.204	46.300	56.330	8.931	2.957	77.208
1968		32.702	56.330	52. 9 50	10.530	2.984	36.868
1969		45.949	52.950	11.710	8.230	0.797	12.142
1970		26.381	11.710	56.580	5.719	2.374	70.596
1971		97.687	56 .580	55.920	10.820	3.472	104.375
1972		39.263	55.920	22.610	10.010	1.827	14.136
1973		152.434	22.610	56.000	9.040	5.060	189.804
1974		27.218	56.000	22.610	9.913	1.349	2.392
1975		21.085	22.610	43.290	7.079	1.252	47.592
1976		48.131	43.290	59.740	8.955	3.560	69.976
1977		38.247	59.740	31.665	9.831	1.745	18.258

Cuadro 20
Balance de agua en el período de 1957 a 1977 en la subcuenca Cazadero (en millones de m³).

			Ca	zadero				Evapo.	Precip.	Volum.	scurrido
			Canal	Canal	Volumen	Almacen	amiento	en el	en el	en la su	bcuenca:
Año	Caza. 1	Caza. II	Colonia	Izquierdo	aforado	inicial	final	vaso	vaso	entrada	salida
1957	38.362		2.493							40.855	38.362
1958	243.870		1.070							244.940	243.870
1959	112.083		1.278							113.361	112.083
1960	27.343		2.147							29.490	27.343
1961	27.485	2.749	1.050							31.284	30.234
1962		20.849	1.420							22.269	20.849
1963		56.625	1.021							57.646	56.625
1964		8.929	0.640		4.728	94.511	121.401	1.657	0.766	37.350	8.929
196 5		53.950	0.891		54.841	26.890	31.790	6.104	1.713	64.132	53.950
1966		65.583	0.650	1.338	66.233	31.790	31.690	5.973	1.723	70.380	64.245
1967		138.555	1.042	13.448	13 9. 597	31.690	31.880	5.779	2.097	143.469	125.107
1968		58.217	0.658	17.644	58.875	31.880	30.950	6.209	2.067	62.087	40.573
1969		33.856	1.075	28.408	34.931	30.950	20.110	5.645	0.899	28.837	5.448
1970		80.527	0.672	16.765	81.199	20.110	31.660	5.577	1.521	96.805	63.762
1971		187.507	1.09 1	27.415	188.598	31.660	30.950	6.285	2.239	191.934	160.092
19 72		31.151	1.393	28.018	32.544	30.950	29.120	6.469	1.230	35.953	3.133
1973		442.096	0.934	19.224	443.030	29.120	30.950	6.367	2.748	448.479	422.872
1974		37.756	1.121	33.995	38.877	30.950	15.310	5.541	0.818	27.960	3.761
1975		76.093	0.666	13.298	76.759	15.310	30.660	5.535	1.163	96.481	62.795
1976		234.334	1.236	22.051	235.570	30.660	31.370	5.817	2.612	239.485	212.283
1977		41.893	0.692	30.949	42.585	31.370	31.526	5.183	1.125	46.799	10.944

Para la subcuenca San Francisco, se cuenta únicamente con los datos procesados para 1977. En este año, se aforaron un total de 35.452 x 10⁶ m³, de los cuales 24.508 x 10⁶ m³ fueron generados en esta unidad hidrográfica.

En el caso de la subcuenca La Flor, se consideran los volúmenes conducidos por los canales Sombreretillo y La Flor, los cuales son alimentados por presas derivadoras que se ubican aguas arriba y abajo de la estación hidrométrica La Flor, respectivamente. Los balances realizados se observan en el Cuadro 21.

Cuadro 21

Balance del agua para la estación La Flor (en millones de m³).

	Canal	Estación	Canal	Volumen en la su	escurrido bcuenca:
Αñο	Sombreretillo	La Flor	La Flor	entrada	salida
1942	19.402	68.645	8.12	88.047	60.525
1943	21.570	113.565	10.418	135.135	103.147
1944	16.276	107.203	11.698	123.479	95.505
1945	9.820	15.851	4.791	25.671	11.06
1946	13.225	42.066	9.119	55.291	32.947
1947	18.075	168.887	5.902	186.962	162.985
1948	27.306	240.954	9.384	268.26	231.57
1949	13.513	30.825	3.463	44.338	27.362
1950	13.349	36.410	4.336	49.759	32.074
1951	17.629	121.709	8.21	139.338	113.499
1952	8.849	18.487	4.314	27.336	14.173
1953	22.548	338.249	10.418	360.797	327.831
1954	8.846	9.294	5.406	18.14	3.888
1955 1956	23.547	183.546 11.279	13.174 5.267	207.093 22.915	170.372
1956	11.636 14.118	93.531	5.267	107.649	6.012 88.22
1958	33.159	540.271	13.908	573.43	526.363
1959	21,470	139.073	15.083	160.543	123.99
1960	14.148	44.485	6.539	58.633	37.946
1961	13.371	30.324	7.716	43.695	22.608
1962	9.765	25.383	5.002	35.148	20.381
1963	22.568	103.677	10.363	126.245	93.314
1964	16.843	6.984	6.982	23.827	0.002
1965	16,472	91.928	6.45	108.4	85.478
1966	21,700	150.354	9.443	172.054	140.911
1967	21.580	258.057	6.712	279.637	251.345
1968	15.586	190.805	7.619	206.391	183.186
1969	12.140	9.231	3.767	21.371	5.464
1970	15.523	113.105	7.473	128.628	105.632
1971	23.818	240.012	11.335	263.83	228.677
1972	14.732	42.00	6.808	56.734	35.194
1973	18.956	581.209	8.182	600.165	573.027
1974	11.232	10.126	3.063	21.358	7.063
1975	11.935	120.563	4.644	132.498	115.919
1976	16.515	419.002	13.859	435.517	405.143
1977	11.161	7.001	5.747	18.162	1.254

Coeficientes de Escurrimiento.

Debido a que la información disponible de pluviometría e hidrometría varía en el tiempo, se procedió a calcular los coeficientes de escurrimiento en base a los registros existentes en cada caso. De esta forma, para estimar los volúmenes aportados por la lluvia se utilizaron los superficies calculadas para las isoyetas reportadas por el INEGI, y los valores anuales de precipitación utilizando polígonos de Thiessen para períodos con disponibilidad de información.

En los cuadro aquí presentados, cada estación pluviométrica esta referida a un número romano para mayor claridad.

Cuenca Nazas

En esta cuenca y debido a la disponibilidad de información pluviométrica e hidrométrica, los coeficientes de escurrimiento se calcularon para dos períodos de observación: el primero que comprende de 1929 a 1970 y un segundo de 1971 a 1977. En el primer caso se determinaron considerando los volúmenes aportados por la lluvia a partir de los polígonos de Thiessen con siete estaciones pluviométricas y mediante las isoyetas medias anuales reportadas por el INEGI.

En este caso, las estaciones pluviométricas utilizadas en la elaboración de los polígonos de Thiessen así como sus valores totales anuales, aparecen en el Cuadro 22. Asimismo en el Cuadro 23 se muestran las superficies correspondientes a los rangos medios anuales de precipitación reportadas por el INEGI.

A partir de la información anterior, se calcularon los volúmenes aportados por la lluvia que se utilizaron en la estimación de los coeficientes de escurrimiento. En el Cuadro 24 se encuentran los resultados obtenidos para la superficie comprendida por las subcuencas Salomé Acosta, Sardinas y Palmito.

De igual manera se determinaron los coeficientes de escurrimiento para la agrupación de las subcuencas de Agustín Melgar y Cañón de Fernández. Los resultados se muestran en el Cuadro 25. En este último caso, cabe hacer mención que los coeficientes con valores negativos son debidos a que los escurrimientos disminuyeron entre las estaciones de Palmito y Cañón de Fernández, provocando un deficit en los escurrimientos; sin embargo esto se explica debido a que en esta zona comienzan los aprovechamientos a lo largo de la rivera del río principalmente en el riego complementario de cultivos forrajeros, así como de hortalizas .

Para el período comprendido entre 1971 y 1977 se seleccionaron las estaciones pluviométricas mostradas en el Cuadro 26 para establecer los polígonos de Thiessen. Los valores de área, porcentaje y volúmenes aportados en la subcuenca, se señalan en el Cuadro 28.

Los coeficientes obtenidos durante este período se muestran en el Cuadro 27, en el cual se aprecia que los coeficientes negativos prevalecen para las subcuencas de Agustín Melgar y Los Angeles.

Cuadro 22 Precipitación pluvial en mm para cada estación (cuenca Nazas).

Estaciones pluviométricas

I Santiago Papasquiaro

II Guanacevi

III Palmito IV Nazas

V Cañón de Fernández

VI Cuencamé

VII Presa Coyote

			ESTACIOI	UES DIIN	/IOMETRIC		_
Año	ı	11	111	IV	V	V١	VII
1938	-	-	447.7	-	-	_	-
1939	551.0	-	*	348.0	-	374.5	-
1940	479.0	584.6	*	280.5	-	380.5	-
1941	602.5	692.8	455.8	484.5	576.6	474.0	424.3
1942	323.2	740.4	498.7	294.2	419.0	430.5	123.7
1943	*	887.3	49 0.9	450.0	455.9	822.0	234.7
1944	400.5	606.2	548.8	249.5	235.2	140.4	218.2
1945	310.6	438.8	267.9	220.5	216.7	136.2	174.2
1946	417.0	6 49.2	395.8	412.5	342.2	298.1	216.3
1947	612.1	800.1	305.6	256.5	372.7	313.2	223.8
1948	355.0	431.2	312.1	275.5	252.8	327.0	234.8
1949	537.0	616.2	4 17.2	262.0	259.9	295.9	175.4
1950	320.0	471.0	200.5	*	175.9	214.9	105.7
1951	*	372 <i>.</i> 1	292.7	335.0	131.0	388.5	184.1
1952	271.3	341.5	135.1	*	108.0	85.4	93.0
1953	331.2	351.2	278.7	222.0	224.0	362.7	192.9
1954	384.0	512.1	256.0	158.5	155.0	181.2	78.7
1955	528.9	494.3	422.6	168.7	149.5	330.1	130.2
1956	335.0	265.9	170.2	177.4	125.5	259.5	117.0
1957	444.5	308.3	160.3	116.0	130.5	196.0	135.9
1958	657.0	698.5	501.8	574.0	325.0	628.2	415.9
1959	311.0	30 9. 6	349.8	277.3	208.5	431.5	160.8
1960	469.0	622.7	309.2	215.0	162.5	317.9	237.7
1961	648.0	487.4	466.4	344.5	189.0	318.9	95.9
1962	354.0	276.9	212.3	140.5	163.5	221.9	65.0
1963	643.0	584.6	338.3	254.0	187.0	343.5	185.5
1964	597.5	539.7	421.0	415.1	299.0	387.6	201.0
196 5	383.3	328.4	263. 8	245.0	231.0	324.7	139.2
1966	348.0	576.1	488.6	319.5	2 86 .5	547.7	248.5
1967	620.1	581.8	578.0	333.5	206.5	401.4	281.5
1968	595.8	899.5	610.7	415.5	405.0	555.3	417.8
1969	217.4	364.0	285.3	114.3	158.5	323.3	89.3
1970	141.7	593.6	318.7	308.0	308.0	*	303.9

^(*) años incompletos.

⁽⁻⁾ sin datos.

Cuadro 23

Determinación de los volúmenes aportados en las subcuencas del Nazas a partir de la precipitación media de INEGI.

			RA	NGO DE F	PRECIPITAC	ION		
Estaciones	200-300	300-400	400-500	500-600	600-700	700-800	800-1000	
				Porce	ntajes			
Salome Acosta	0.0	0.0	19.4	20.2	34.4	23.8	2.2	100
Sardinas	0.0	0.0	7.2	29.6	37.9	16.6	8.7	100
Palmito	0.0	4.8	61.3	31.3	2.6	0.0	0.0	100
				Superfici	es en km2	2		
Salome Acosta	0.0	0.0	1,386.0	1,438.0	2,449.0	1,698.7	156.3	7,128.
Sardinas	0.0	0.0	335.0	1,380.7	1,766.6	771.6	406.1	4,660.
Palmito	0.0	348.5	4,467.9	2,281.5	190.1	0.0	0.0	7,288.
			Volúr	nenes Apo	ortados er	n Mm3		
Salome Acosta	0.0	0.0	623.7	790.9	1,591.9	1,274.1	140.7	4,421.
Sardinas	0.0	0.0	150.8	759.4	1,148.2	578.7	365.5	3,002.
Palmito	0.0	122.0	2,010.5	1,254.8	123.6	0.0	0.0	3,510.
							Total	10,934.
				Porce	ntajes			
Agustín Melgar	7.3	39.9	36.7	15.9	0.2	0.0	0.0	100
Cañón de Fdz.	25.9	54.7	19.4	0.0	0.0	0.0	0.0	100
				Superfici	es en km2	!		
Agustín Melgar	864.9	4,696.7	4,324.6	1,870.6	20.1	0.0	0.0	11,777.
Cañón de Fdz.	863.0	1,824.7	647.2	0.0	0.0	0.0	0.0	3,335.
			Volún	nenes Apo	ortados er	Mm3		
Agustín Melgar	216.2	1,643.8	1,946.0	1,028.8	13.1	0.0	0.0	4,847.
Cañón de Fdz.	215.8	638.7	291.3	0.0	0.0	0.0	0.0	1,145.
							Total	5,993.

Cuadro 24

Coeficientes de escurrimiento (K) calculados a partir de la precipitación total anual de tres estaciones pluviométricas y de las isoyetas de INEGI para el área de las subcuencas de Salomé Acosta, Sardinas y Palmito. Estaciones Pluviométricas : I Santiago Papasquiaro

II Guanacevi III Palmito

	subo Salomé	cuenca	s/c Sardinas		subcuen Palmito		Vol.	Vol.	к	ĸ
Fax Divisia				,						
Est. Pluvio.	I	11	11	1	łI	111	PP	esc.	(1)	(2)
% de la s/c	75.2	24.8	100.0	17.2	23.5	59.3				
km2	5,360.6	1,767.8	4,659.7	1,253.5	1,712.7	4,321.7				
	-,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	.,	,		200.5		2.57
1929								280.5		2.57
1930								706.1		6.46
1931								1,306.2		11.95
1932 1933								2 ,05 2 .5 1 ,284.5		18.77 11.75
1934								431.3		3.94
1935								1,716.8		15.70
1936								2,029.3		18.56
1937								771.8		7.06
1938						1 ,9 34.8		2,452.7		22.43
1939	2,953.7			690.7		-		789.6		7.22
1940	2,567.7	1033.5	2,724.1	600.4	1,001.2	-		769.0		7.03
1941	3,229.7	1,224.7	3,228.2	755.2	1,186.5	1,969.8	11,594.4	2,147.4	18.5	19.64
1942	1,732.5	1,308.9	3,450.0	405.1	1,268.1	2,155.2	10,319.9	1,477.8	14.3	13.51
1943	_	1,568.6	4,134.6	-	1,519.6	2,121.5	-	1,747.4	_	15. 9 8
1944	2,146.9	1,071.7	2,824.7	502.0	1,038.2	2,371.8	9,955.3	1,668.3	16.8	15.26
1945	1,665.0	775.7	2,044.7	389.3	751.5	1,157.8	6,784.0	614.4	9.1	5.62
1946	2,235.4	1,147.7	3,025.1	522.7	1,111.6	1,710.5	9,753.2	-	-	-
1947	3,281.2	1,414.5	3,728.2	767.3	1,370.3	1,320.7	11,882.2	2,136.0	17.98	19.53
1948	1,903.0	762.3	2,009.3	445.0	738.5	1,348.8	7,206.9	608.5	8.44	5.57
1949	2,878.6	1,089.3	2,871.3	673.1	1,055.3	1,803.0	10,370.8	1,192.8	11.50	10.91
1950	1,715.4	832.7	2,194.7	401.1	806.7	8,66.5	6,817.0	598.2	8.78	5.47
1951	-	657.8	1,733.9	-	637.3	1,265.0	-	282.1	-	2.58
1952	1,4543	603.7	1.591.3	340.1	584,.9	583.9	5,158.1	272.4	5.28	2.49
1953	1,775.4	620.9	1,636.5	415.2	601.5	1,204.5	6,253.9	457.5	7.31	4.18
1954	2,058.5	905.3	2,386.2	481.4	877.1	1,106.4	7,814.8	617.6	7.90	5.65
1955	2,83 5.2	873.8	2,303.3	663.0	846.6	1,826.4	9,348.2	1,586.7	16.97	14.51
1956	1,795.8	470.1	1,239.0	419.9	455.4	735.6	5,115.8	406.5	7.95	3.72
1957	2,382.8	545.0	1.436.6	557.2	528.0	69 2.8	6,142.4	2 75 .5	4.48	2.5 2
1958	3,521.9	1,234.8	3,254.8	823.6	1,196.3	2,168.7	12,200.1	2,191.3	17.96	20.04
1959	1,667.1	547.3	1,442.6	389.8	5 3 0.2	1,511.7	6,088.9	643.1	10.56	5.88
1960	2,514.1	1,100.8	2,901.6	587.9	1,066.5	1,336.3	9,507.2	946.7	9.96	8.66
1961	3,,473.6	861.6	2,271.1	812.3	834.7	2,015.7	10,269.1	1,061.7	10.34	9.71
1962	1,897.6	489.5	1,290.3	443.7	474.2	917.5	5,512.9	232.5	4.22	2.13
1963 1964	3,446.8 3,202.9	1,033.5 954.1	2,724.1 2,514.8	806.0 749.0	1,001.2 924.3	1,462.0 1,819.4	10,473.7	1,179.9	11.27	10.79
1965	2,054.7	580.6	1,530.2	480.5	562.4	1,819.4	10,164.6 6,348.5	1,081.6 483.7	10.64 7.62	9.89 4.42
1966	1,865.5	1,018.5	2. 6 84.5	436.2	986.7	2,111.6	9,102.9	2,393.0	26.29	21.88
1967	3,324.1	1,018.5	2,711.0	777.3	996.4	2,498.0	11,335.3	1,657.1	14.62	15.15
1968	3,193.8	1,590.2	4,191.4	746.8	1,540.5	2,639.3	13,902.1	3,314.7	23.84	30.31
1969	1,165.4	643.5	1,696.1	272.5	623.4	1,233.0	5,633.9	517.4	9.18	4.73
1970	759.6	1,049.4	2,766.0	177.6	1,016.6	1,377.3	7,146.6	1,371.8	19.20	12.55
	, 55.0	1,013.4		.,,,,	1,010.0	1,511.5	.,,,,,,,,	1,07 1.0		, 2.55

⁽¹⁾ A partir de la precipitación total de tres estaciones pluviométricas.

⁽²⁾ A partir de las isoyetas de INEGI.

Cuadro 25

Coeficientes de escurrimiento (K) obtenidos con la precipitación total anual y las isoyetas de INEGI para cinco estaciones pluviométricas del Nazas.

	· · · · ·		uenca			subcuer					
		Agustin	Melga	r	Cañ	ón Ferr	nández	Vol.	Vol.	K	K
Est. Pluvio.	I	III	IV	V	IV	V	VI	РP	esc.	(1)	(2)
% de la s/c	1.9	20.3	55.4	22.4	17.9	49.9	32.2				
km2	223.8	2,390.6	6,524.2	2,638.0	597.0	1,664.2	1,073.9				
1937									39.7		0.7
1938		1,070.3							428.4		7.1
1939	123.3	_	2,270.4		207.8		402.2		56.3		0.9
1940	107.2	-	1,830.0		167.5		408.6		10.6		0.2
1941	134.8	-	3,161.0	1,521.0	289.2	959.6	509.0	7,664.4	394.8	5.2	6.6
1942	72.3	1,192.2	1,919.4	1,105.3	175.6	697.3	462.3	5,624.5	176.9	3.1	3.0
1943	-	1,173.6	2,935.9	1,202.6	268.6	758.7	882.7	-	205.6	-	3.4
1944	89.6	1,312.0	1,627.8	620.4	148.9	391.4	150.8	4.341.0	- 34.5	- 0.8	- 0.6
1945	69.5	640.5	1,438.6	571.6	131.6	360.6	146.3	3,358.7	- 39.1	- 1.2	- 0.7
1946	93.3	946.2	2,691.2	902.7	246.3	569.5	320.1	5,769.4	-	-	-
1947	137.0	730.6	1,673.5	983.2	153.1	620.3	336.3	4,633.9	190.0	4.1	3.2
1948	79.4	746.1	1,797.4	666.9	164.5	420.7	351.2	4,226.2	161.5	3.8	2.7
1949	120.2	997.4	1,709.3	685.6	156.4	432.5	317.8	4,419.2	133.2	3.0	2.2
1950	71.6	479.3	-	464.0	-	292.7	230.8	-	60.4	-	1.0
1951	0	699.7	2,185.6	345.6	200.0	218.0	417.2	4,066.1	28.6	0.7	0.5
1952	60.7	323.0	-	284.9	-	179.7	91.7	-	- 52.5	-	- 0.9
1953	74.1	666.3	1,448.4	590.9	132.5	372.8	389.5	3,674.5	118.9	3.2	2.0
1954	85.9	612.0	1,034.1	408.9	94.6	258.0	194.6	2,688.1	- 20.9	- 0.8	- 0.3
1955	118.3	1,010.3	1,100.6	394.4	100.7	248.8	354.5	3,327.7	- 97.1	- 2.9	- 1.6
1956	75.0	406.9	1,157.4	331.1	105.9	208.9	278.7	2,563.8	- 145.4	- 5.7	- 2.4
1957	99.5	383.2	756.8	344.3	69.3	217.2	210.5	2,080.7	- 54.2	- 2.6	- 0.9
1958	147.0	1,199.7	3,744.9	857.3	342.7	540.9	674.6	7,507.1	725.7	9.7	12.1
1959	69.6	836.2	1,809.2	550.0	165.5	347.0	463.4	4,240.9	53.1	1.3	0.9
1960	104.9	739.2	1,402.7	428.7	128.4	270.4	341.4	3,415.7	97.0	2.8	1.6
1961	145.0	1,115.0	2,247.6	498.6	205.7	314.5	342.5	4,868.8	66.6	1.4	1.1
1962	79.2	507.5	916.7	431.3	83.9	272.1	238.3	2,529.0	- 29.1	- 1.1	- 0.5
1963	143.9	8.808	1,657.2	493.3	151.6	311.2	368.9	3,934.8	86.8	2.2	1.5
1964	133.7	1,006.5	2,708.2	788.7	247.8	497.6	416.2	5,798.8	136.0	2.3	2.3
196 5	85.8	630.7	1,598.4	609.4	146.3	384.4	348.7	3,803.6	- 52.3	- 1.4	- 0.9
1966	77.9	1,168.1	2,084.5	755.8	190.7	476.8	588.2	5,341.9	415.9	7.8	6.9
1967	138.8	1,381.8	2,175.8	544.7	199.1	343.7	431.1	5,214.9	209.2	4.0	3.5
1968	133.3	1,460.0	2,945.7	1,068.4	269.5	674.0	596.3	7,147.2	-	-	-
1969	48.6	682.1	745.7	418.1	68.2	263.8	347.2	2,573.7	- 42.8	- 1.7	- 0.7
1970	31.7	761.9	2,009.5	812.5	183.9	512.6	0	4,312.0	- 121.0	- 2.8	- 2.0
									_		

⁽¹⁾ A partir de la lluvia total anual de cinco estaciones pluviométricas.

Estaciones pluviométricas:

I Santiago Papasquiaro

III Palmito

IV Nazas

V C. de Fernández

VI Cuencamé

⁽²⁾ A partir de las isoyetas de INEGI.

Cuadro 26

Precipitación pluvial en mm y estaciones pluviométricas utilizadas en los polígonos de Thiessen en la cuenca Nazas.

Año	H	111	IV	V	VIII	١x	X	ХI	XII	XIII	XIV	ΧV	XVI
1971	505.1	430.4	402.2	405.5	430.0	472.6	458.5	303.4	682.7	562.5	448.0	274.4	343.8
1972	639.8	405.7	314.4	256.0	586.0	719.6	459.5	370.0	445.5	515.5	402.2	343.5	420.8
1973	700.5	523.4	418.0	405.0	418.0	608.2	580.9	205.2	676.3	803.5	531.6	335.1	176.1
1974	558.6	396.0	190.6	278.5	397.0	473.3	435.8	254.5	448.8	463.5	347.3	206.8	145.3
1975	511.1	377.5	162.5	162.0	396.0	580.5	399.5	139.5	410.0	374.0	371.9	186.0	336.3
1976	657.5	427.1	369.1	265.7	553.0	837.1	577.9	417.0	473.2	608.5	632.8	378.8	188.9
1977	444.4	370.0	362.0	218.4	461.5	483.1	378.9	151.0	453.4	343.5	280.6	264.0	310.4

II Guanacevi

VIII Tepehuanes

cada subcuenca del Nazas.

XI Peñoles

XV La Flor

III Palmito

IX C. de Escobar X Sardinas XII P. de Coronado XIII Ramón Corona XIV Santa Clara XVI Lerdo

IV Nazas

V C. de Fernández

Cuadro 27
Coeficiente de escurrimiento (K) obtenidos a partir de los polígonos de Thiessen en

	S	alomé Acos	ta		Sardinas			Palmito	
Año	Vol. apo.	Vol. afo.	K	Vol. apo.	Vol. afo.	K	Vol. apo.	Vol. afo.	K
1971	3,145.2	337.1	10.7	2,263.6	363.5	16.1	3,239.7	448.0	13.8
1972	4,359.5	343.4	7.9	2,790.2	293.8	10.5	3,524.7	386.3	11.0
1973	3,316.9	1,023.7	30.9	3,026.4	934.3	30.9	3,954.9	861.7	21.8
1974	2,983.5	516.2	17.3	2,366.1	430.1	18.2	3,057.3	215.9	7.1
1975	3,089.9	338.6	11.0	2,278.6	275.5	12.1	3,025.8	135.0	4.5
1976	4,325.8	790.2	18.3	3,089.7	694.1	22.5	3,919.2	117.9	3.0
1977	3,309.5	310.1	9.4	2,008.8	205.7	10.2	2,898.9	53.0	1.8
	Δ	gustín Mel	gar	Cañón	de Fernán	dez	i	Los Angele	s
Año	Vol. apo.	Vol. afo.	K	Vol. apo.	Vol. afo.	K	Vol. apo.	Vol. afo.	K
	5,666.9	00.0		1 2262	4000		_		25.0
1971	3,000.3	- 99.9	- 1.8	1,326.2	123.3	9.3	511.0	- 131.6	- 25.8
1971 1972	4,592.6	- 99.9 - 233.0	- 1.8 - 5. 1	1,326.2 998.2	123.3 72.6	9.3 7.3	511.0 495.0	- 131.6 - 94.3	- 25.8 - 19.1
	,								
1972	4,592.6	- 233.0	- 5. 1	998.2	72.6	7.3	495.0	- 94.3	- 19.1
1972 1973	4,592.6 5,830.3	- 233.0 87.4	- 5. 1 1.5	998.2 1,399.5	72.6 92.3	7.3 6.6	495.0 368.9	- 94.3 - 76.2	- 19.1 - 20.7
1972 1973 1974	4,592.6 5,830.3 3,831.3	- 233.0 87.4 - 107.7	- 5.1 1.5 - 2.8	998.2 1,399.5 878.7	72.6 92.3 11.8	7.3 6.6 1.3	495.0 368.9 274.2	- 94.3 - 76.2 - 85.3	- 19.1 - 20.7 - 31.1

Cuadro 28

Volúmenes aportados por la precipitación en cada subcuenca del Nazas de acuerdo a la proporción de los polígonos de Thiessen.

		cuenca é Acosta			cuenca rdinas				uenca Palmito			
st. Pluvio.	1	II	III	II	m	IV	t	ŧŧ	W	IV	V	
% de la s/c	77.7	17.0	5.3	16.4	53.6	30.0	9.4	13.9	1.6	25.3	49.8	
km2	5,538.8	1,211.8	377.8	764.2	2,497.6	1,397.9	685.1	1,013.0	116.6	1,843.8	3,629.4	
		Vo	lumen apo	ortado en	la subcue	nca (mille	ones de	m 3)				
1971	2,381.7	572.7	190.8	361.2	1,261.5	640.9	294.6	478.8	58.9	845.4	1,562.1	
1972	3,245.7	872.0	241.7	549,9	1,598.0	642.3	401.5	729.0	74.6	847.2	1,472.4	
1973	2,315.2	737.0	264.7	464.7	1,749.6	812.0	286.4	616.1	81.7	1071.1	1,899.6	
1974	2,198.9	573.6	211.0	361.7	1,395.2	609.2	272.0	479.5	65.1	803.5	1,437.2	
1975	2,193.4	703.5	193.1	443.6	1,276.5	558.5	271.3	588.1	59.6	736.6	1,370.2	
1976	3,062.9	1,014.5	248.4	639.7	1,642.2	807.9	378.8	848.0	76.7	1,065.6	1,550.1	
1977	2,556.1	585.4	167.9	369.2	1,109.9	529.7	316.2	489.4	51.8	698.6	1,342.9	
		subcue	nca Agus	tín Melgar	r		s/c Ca	ñón de Fe	rnández		s/c Los An	geles
st. Pluvio.	V	VI	VII	VIII	IX	X	VIII	X	ΧI	XII	XII	XIII
% de la s/c	12.6	18.9	29.4	30.9	6.9	1.3	20.5	15.2	10.4	53.9	39.1	60.
km2	1,483.9	2,225.8	3,462.3	3,639.0	812.6	153.1	683.7	506.9	346.9	1,797.6	543.1	845
		Vo	lumen apo	ortado en	la subcue	nca (mille	ones de	m3)				
1971	638.6	675.3	2,363.7	1,463.6	457.1	68.6	275.0	227.1	95.2	728.9	220.2	290
1972	602.0	823.5		1,144.1	418.9	61.6	215.0	203.9	119.1	460.2	139.0	356
1973	776.6	456.7	2,341.6		652.9	81.4	285.8	269.5	116.2	728.6	220.0	149
1974	587.6	566.5	1,553.9	693.6	376.6	53.2	130.3	176.1	71.7	500.6	151.3	122
1975	560.2	310.5	1,419.6	591.3	303.9	56.9	111.1	188.5	64.5	291.2	88.0	284
1976	633.8	928.1	1,638.4	1,343.1	494.5	96.9	252.4	320.8	131.4	477.6	144.3	159
1977	549.0	336.1	1,569.8		279.1	43.0	247.5	142.2	91.6	392.6	118.6	262

Cuenca Aguanaval

En el caso de la cuenca del río Aguanval se realizaron las estimaciones en dos períodos: en el primero, que abarcó de 1931 a 1968, se utilizaron las superficies correspondientes a las isoyetas reportadas por el INEGI en la carta de "Precipitación pluvial media anual", mientras que en el segundo se calcularon en base a la precipitación total anual de 7 estaciones pluviométricas basadas en la distribución de polígonos de Thiessen.

En el Cuadro 29 se aprecian los valores planimetreados de las isoyetas reportadas por INEGI y utilizados en la estimación de los coeficientes de escurrimientos mostrados en el Cuadro 30. En este caso y debido a que la estación San Francisco sólo cuenta con datos de 1976 a la fecha, el valor reportado para la subcuenca La Flor comprende los escurrimientos generados para las dos subcuencas.

Para el segundo período de observación se consideraron los registros de 7 estaciones pluviométricas que se señalan en el Cuadro 31 así como la superficie ocupada en base a la distribución de los polígonos de Thiessen. Los valores obtenidos se señalan en el Cuadro 32, haciéndose mención que únicamente fue posible calcular para 1977 el coeficiente de escurrimiento de la unidad hidrométrica San Francisco.

Cuadro 29

Determinación de los volúmenes aportados en cada subcuenca del Aguanaval a partir de la precipitación media anual reportada por INEGI.

		RANGO I	DE PRECIP	ITACION		
Estación	600-700	500-600	400-500	300-400	200-300	Total
			Porce	ntajes		
CAZADERO	9.4	44.9	45.7	-	-	100
EL SAUZ	70.6	24.6	4.8	-	-	100
SN. FCO.	-	9.2	44.9	45.3	0.6	100
LA FLOR	0.4	8.6	22.3	38.0	30.7	100
			Valores	Ajustados		
CAZADERO	349.6	1,688.4	1,718.2	-	-	3,756.2
EL SAUZ	937.7	326.6	63.3	-	-	1,327.6
SN. FCO.	-	469.0	2,295.0	2,315.2	29.9	5,109.1
LA FLOR	40.8	826.1	2,141.8	3,651.2	2,947.5	9,607.4
			Volúmene	s Ajustad	os	
CAZADERO	227.3	928.5	773.2	-	-	1,929.0
EL SAUZ	609.5	179.6	28.5	-	-	817.6
SN. FCO.	-	258.0	1,032.7	810.3	7.5	2,108.5
LA FLOR	26.5	454.4	963.8	1,277.9	736.9	3,459.5

Cuadro 30
Coeficientes de escurrimiento (K) calculados a partir de los datos de precipitación media anual de INEGI para la cuenca del río Aguanaval.

											;	subcu	enca S. Fo	ю.
	S	ubcue	nca (Cazade	ero		subcu	enca	El Sau	UZ		y la	a Flor (1)	
Αñο	Vol.	apo.	Vol.	afo.	K	Vol.	apo.	Vol.	afo.	K	Vol.	apo.	Vol. afo.	K
1931						81	7.6	46		5.7				
1932						81	7.6	32	.3	3.9				
1933						81	7.6	34	.8	4.3				
1934														
1935														
1936														
1937						81	7.6	15		1.8				
1938						81	7.6	37	.8	4.6				
1939						81	7.6	7.5	5	0.9				
1940						81	7.6	22	.3	2.7				
1941						81	7.6	59	.9	7.3				
1942						81	7.6	23	.5	2.9	3,4	59.5	88.0	2.5
1943						81	7.6	79	.7	9.7	3,4	59.5	135.1	3.9
1944						81	7.6	37	.8	4.6	3,4	59.5	123.5	3.6
1945						81	7.6	6.7	2	0.8	3,4	59.5	25.7	0.7
1946						81	7.6	7.	7	0.9	3,4	59.5	55.3	1.6
1947						81	7.6	23	.2	2.8	3,4	59.5	187.0	5.4
1948						81	7.6	-84	.3	10.3	3,4	59.5	268.3	7.8
1949							_	-		-	3,4	59.5	44.3	1.3
1950						81	7.6	6.	1	0.7	3,4	59.5	49.8	1.4
1951						81	7.6	35	.5	4.3	3,4	59.5	139.3	4.0
1952							7.6	1.3		0.1		59.5	27.3	0.8
1953							7.6	47		5.8		59.5	360.8	10.4
1954							7.6	0)	0		59.5	18.1	0.5
1955							7.6	42	.9	5.2		59.5	207.1	6.0
1956							7.6	C		0		59.5	22.9	0.7
1957	1,92	29.0	40	0.9	2.1		7.6	5.		0.7		59.5	107.6	3.1
1958		29.0		4.9	12.7		7.6	85		10.5		59.5	573.4	16.6
1959		29.0		3.4	5.9		7.6	46	.3	5.7		59.5	160.5	4.6
1960		29.0		9.5	1.5		7.6	19		2.4		59.5	58.6	1.7
1961		29.0		1.3	1.6		7.6	19		2.3		59.5	43.7	1.3
1962		29.0		2.3	1.2		7.6	2.:		0.3		59.5	35.1	1.0
1963		29.0		7.6	3.0		7.6	50		6.2		59.5	126.2	3.6
1964		29.0		7.4	1.9		7.6	29		3.6		59.5	23.8	0.7
1965		29.0		.3	0.5		7.6	26		3.2		59.5	108.4	3.1
1966		29.0		0.4	3.6		7.6	51		6.2		59.5	172.1	5.0
1967		29.0		3.5	7.4		7.6	77		9.4		59.5	279.6	8.1
1968		29.0		2.1	3.2		7.6	36		4.5		59.5	206.4	6.0

⁽¹⁾ Los coeficientes presentados corresponden a las dos subcuencas de San Francisco y la Flor.

Cuadro 31

Volúmenes aportados por la precipitación pluvial en cada subcuenca del Aguanaval, de acuerdo a la superficie de los polígonos de Thiessen.

	s/c C	azadero	s/c E	l Sauz	subcu	enca S	an Fra	ncisco		sub	cuenca	La Flor	
Estación	XVII	XVIII	XVII	XVIII	XVIII	XIX	хх	XXI	XIX	хх	XXI	XXII	XXIII
				Su	perficie	abarca	da en	la sub	cuenca	(km2)			
	1,918.7	1,837.5	1,312.6	15.0	3,472.7	634.6	514.5	487.4	1,121.2	3,236.7	2,469.1	2,310.6	469.8
						Porcen	taje de	super	ficie				
	51.1	48.9	98.9	1.1	68.0	12.4	10.1	9.5	11.7	33.7	25.7	24.0	4.9
1969	463.9	546.3	317.4	4.5	1,032.4	198.0	160.9	102.1	349.8	1,012.5	517.3	263.4	55.9
1970	1,006.7	749.2	688.7	6.1	1,415.8	331.0	207.6	136.0	584.8	1,306.0	688.9	324.6	47.4
1971	974.9	1,699.2	666.9	13.9	3,211.2	356.9	230.5	324.1	630.7	1,450.1	1,642.0	634.0	106.9
1972	660.8	554.9	452.1	4.5	1,048.7	327.1	206.9	104.8	578.0	1,301.8	530.9	793.7	41.3
1973	1,463.8	1,162.6	1,001.4	9.5	2,197.1	509.9	273.5	176.9	900.9	1,720.6	896.3	774.3	111.3
1974	551.0	516.0	377.0	4.2	975.1	294.1	178.7	89.1	519.7	1,124.1	451.6	477.8	51.2
1 975	771.3	699.9	527.7	5.7	1,322.7	237.3	191.3	136.1	419.3	1,203.7	689.6	429.8	124.2
1976	1,085.8	1,066.1	742.8	8.7	2,014.8	386.1	325.6	263.4	682.2	2,048.2	1,334.5	875.2	117.0
1977	601.3	707.3	411.4	5.8	1,336.6	218.0	144.4	179.5	385.1	908.2	909.1	610.0	30.4
					Precip	itación	pluvial	en mi	m				
			Año	XVII	XVIII	XIX	ХX	XXI	XXII	XXIII			
			1969	241.8	297.3	312.0	312.8	209.5	114.0	119.0			
			1970	524.7	407.7	521.6	403.5	279.0	140.5	101.0			
			1971	508.1	924.7	562,5	448.0	665.0	274.4	227.5			
			1972	344.4	302.0	515.5	402.2	215.0	343.5	88.0			
			1973	762.9	632.7	803.5	531.6	363.0	335.1	. 237.0			
			1974	287.2	280.8	463.5	347.3	1 8 2.9	206.8	109.0			
			1975	402.0	380.9	374.0	371.9	279.3	186.0	264.3			
			1976	565.9	580.2	608.5	632.8	540.5	378.8	249.1			
			1977	313.4	384.9	343.5	280.6	368.2	264.0	64.8			

Estaciones Climatológicas:

XVII El Sauz XVIII Cazadero XX Santa Clara

XXI San Juan de Guadalupe

XIX Ramón Corona

XXII La Flor XXIII Viesca

Cuadro 32

Coeficientes de escurrimiento (K) calculados a partir de la disponibilidad de los datos de precipitación para la cuenca Aguanaval.

	subcue	enca Cazad	lero	subcu	enca El Sai	ΙZ	s/c Sa	an Francisc	0	subcuen	ca La Flor	***
Año	Vol. apo.	Vol. afo.	K	Vol. apo.	Vol. afo.	K	Vol. apo.	Vol. afo.	K	Vol. apo.	Vol. afo.	K
1969	1,010.2	28.8	2.9	321.8	12.1	3.8	1,493.4			2,198.8	21.4	0.6
1970	1,755.9	96.8	5.5	694.8	74.6	10.7	2,090.4			2,951.8	128.6	2.6
1971	2,674.0	191.9	7.2	680.8	104.4	15.3	4,122.7			4,463.6	263.8	3.1
1972	1,215.7	36.0	3.0	456.6	14.1	3.1	1,687.6			3,245.7	56.7	1.2
1973	2,626.4	448.5	17.1	1,010.9	189.8	18.8	3,157.4			4,403.4	600.2	7.9
1974	1,067.0	28.0	2.6	381.2	2.4	0.6	1,537.1			2,624.4	21.4	0.5
1975	1,471.2	96.5	6.6	533.4	47.6	8.9	1,887.5			2,866.6	132.5	2.8
1976	2,151.9	239.5	11.1	751.5	70.0	9.3	2,990.0			5,057.3	435.5	5.4
1977	1,308.6	46.8	3.6	417.1	18.3	4.4	1,878.4	35.5	1.9	2,842.9	18.2	0.6

^{* * *} Los coeficientes de escurrimiento en este caso están calculados para la subcuenca San Francisco y La Flor, excluyendo el año de 1977.

Distribución Estadística de los Escurrimientos.

En este punto se determinaron las funciones de distribución que mejor se ajustaran a los escurrimientos superficiales anuales y a los máximos diarios anuales, para lo cual se utilizó el paquete computacional DIXLOI (1989), que permite el ajuste de 10 leyes estadísticas de distribución.

Debido a la naturaleza del análisis se seleccionaron las subcuencas que presentaran escurrimientos naturales, es decir, subcuencas donde no se tuvieran vasos de almacenamientos construidos sobre el cauce principal o, sobre algun afluente de consideración. En este sentido sólo fue posible seleccionar la subcuencas El Sauz y Palmito, en su período de observación de 1929 a 1945 y de 1931 a 1948, respectivamente para los gastos totales anuales y de 1929 a 1945 y 1931 a 1948 para el caso de los valores máximos diarios anuales.

En la estación El Sauz se encontró que uno de los mejores ajustes fue el de la distribución Gumbel para el caso del gasto total anual. En el gasto máximo diario anual se determinó que la mejor distribución fue Pearson V. En el Cuadro 33 se muestran las características generales que se obtuvieron durante el análisis.

Para la estación Palmito, la mejor distribución fue la Pearson III en el caso del volumen total anual y la Gumbel para los valores máximos diarios anuales. En el el Cuadro 34 se muestran las características generales obtenidas en este análisis.

Cuadro 33

Características generales de ajuste para la estación hidrométrica El Sauz (cuenca Aguanaval).

	T	otal anual		Gasto i	máximo d	diario
Características de la muestra	(millo	nes de n	n3)	(m3.s-1)	
Tamaño		15 años			15 años	
Período		1931-1948			1931-1948	3
Media		34.549			81.247	
Mediana		32.261			45.400	
Moda		26.684			57.770	
Desviación estandar		23.611			66.690	
C. de asimetría		0.998			1.287	
C. de aplastamiento		0.140			- 0.020	
Ajuste de la distribución		Gumbel		F	earson	V
Brunet-Moret		7.5			1.8	
Chi 2		-			~	
Parámetros de la distribución:						
Escala		1,777.891			43.39	
De posición		2,379.365			52.23	
Probabilidad de recurrencia:	límite	valor	límite	límite	valor	límite
	inferior	medio	superior	inferior	medio	superior
5 años	36.855	50.461	64.067	84.104	117.311	150.518
10 años	46.348	63.803	81.257	107.27	149.872	192.471
20 años	55.246	76.601	97.955	128.990	181.105	233.221
100 años	75.060	105.579	136.099	177.346	251.830	326.313

Distribución Geográfica de los Escurrimientos.

Los coeficientes de escurrimiento determinados con los datos pluviométricos existentes extendidos con polígonos de Thiessen y los datos de las estaciones hidrométricas se muestran en la Figura 15.

Se puede comparar esta figura en que aparecen los datos por subcuenca con la Figura 16, que contiene los coeficientes de escurrimiento determinados por INEGI (mapa simplificado por el cambio de escala, realizado a partir del mapa al 1/250,000) con una compilación de los parámetros siguientes:

- Pluviometría anual media;
- Permeabilidad del suelo;
- Uso del suelo.

Cuadro 34
Características generales de ajuste para la distribución Gumbel en la estación hidrométrica Palmito (cuenca Nazas).

		Total anua	al	Gas	to máximo	diario	
Características de la muestra	(m	illones de	m3)	•	(m3.s-1)		
Tamaño		17 años			17 años		
Período		1929-1945			1929-1945		
Media		1,457.085			1,102.770		
Mediana		1,477.780			929		
Moda		1,371.757			92 3 .500		
Desviación estandar		683.056			683.890		
C. de asimetría		0.258			0.698		
C. de aplastamiento		-1.060			0.698		
Ajuste de la distribución:		Gumbel			Gumbel		
Brunet-Moret		2.8			2.2		
Chi 2		-			-		
Parámetros de la distribución:							
Escala		586.745			532.382		
De posición		1,123.965			800.380		
Probabilidad	límite	valor	límite	límite	valor	límite	
de recurrencia:	inferior	medio	superior	inferior	medio	superior	
5 años	1,582.24	2,004.04	2,425.84	1,216.200	1,598.922	1,981.643	
10 años	1,903.26	2,444.36	2,985.45	1,507.470	1,998.436	2,489.401	
20 años	2,204.73	2,866.71	3,528.70				
100 años	2,877.00	3,823.08	4,769.18	2,390.971	3,249.418	4,107.865	

Los coeficientes de escurrimiento van disminuyendo del parteaguas de la Sierra Madre Occidental hacia las Lagunas: en la parte alta de la cuenca del Nazas, el coeficiente rebasa el 15 por ciento (cuencas del Sextín, Tepehuanes y Santiago); estas zonas corresponden a las que en la pluviometría supera los 500 mm; como esta pluviometría alcanza los 800 mm en el parteaguas, es probable que en esta parte el coeficiente sea cercano al 30 por ciento. En efecto, todos los parámetros son favorables:

- La pluviometría;
- La litología, ya que las montañas están en gran parte constituídas por rocas plutónicas:
- El uso del suelo, pues los bosques ocupan una gran proporción del espacio, lo que constituye un parámetro favorable al incremento del volúmen total anual escurrido;
- Las pendientes, que son aquí las más fuertes de toda la RH 36, y que favorecen el escurrimiento.

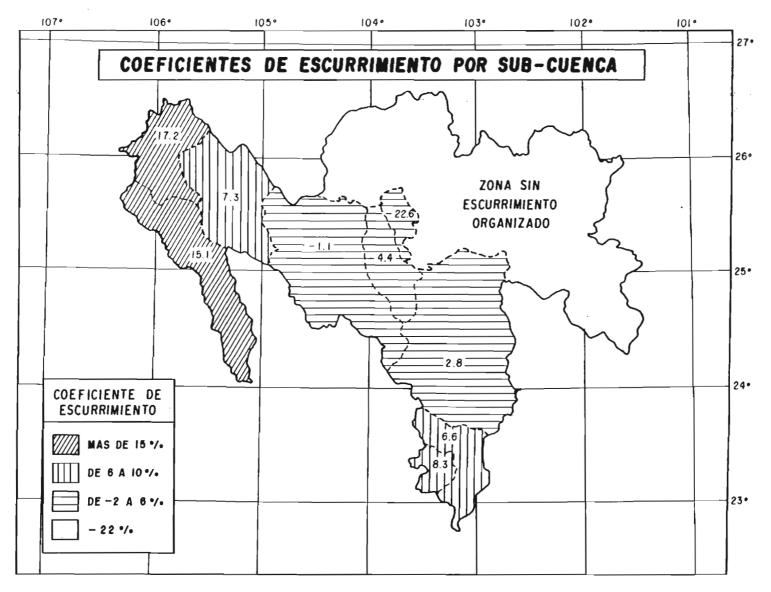


Figura 15

Coeficientes de escurrimiento calculados a partir de los datos hidrométricos en la RH 36

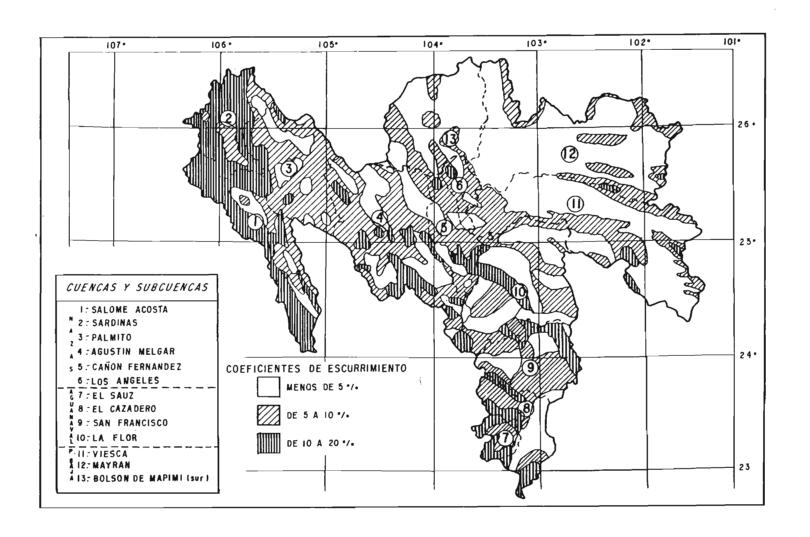


Figura 16

Los coeficientes disminuyen hacia la planicie, por que todos los parámetros expuestos provocan su decremento: pendientes menores, pluviometría muy débil, permeabilidad creciente del suelo, uso del suelo y vegetación natural que favorecen el escurrimiento instantáneo pero disminuyen el volumen total escurrido anualmente.

El problema mayor actualmente en la determinación del coeficiente de escurrimiento es la escasez de los datos pluviométricos en la cuenca alta del río Nazas: siendo regiones poco pobladas, las posibilidades de instalar pluviómetros son escasas, así que sería interesante instalar en esta zona pluviógrafos o a lo menos totalizadores anuales.

En efecto, los polígonos de Thiessen son inmensos y cubren a veces zonas muy diversas a las que se atribuye el valor de pluviometría de la estación que frecuentemente se ubica en el valle; y son los parteaguas que más lluvias reciben; así que el resultado es aproximativo, y en nuestro caso, los coeficientes de escurrimiento son exagerados por ser, a lo contrario subevaluada la pluviometría.

Es teoricamente más exacto conseguir los coeficientes de escurrimiento a partir de los datos pluviométricos procesados en forma de mapa de isohietas. Pero son tantos los parámetros geográficos que entran en el esquema de éstas, que a pesar de la gran importancia de la altitud, se requiere gran conocimiento de los aspectos físicos y microclimáticos de las cuencas.

En la Figura 15 se puede ver que el coeficiente de escurrimiento se hace negativo en la subcuenca Agustín Melgar, aunque sea de nuevo positivo aguas abajo; el coeficiente se ha determinado haciendo la diferencia entre el gasto anual medio en Agustín Melgar y en Palmito: este gasto disminuye al ir aguas abajo; siendo una zona en que la pluviometría supera los 300 mm anuales, y constatándose que el coeficiente es positivo más abajo, se puede suponer que el abatimiento del gasto entre las dos estaciones es debido al consumo de agua por los perímetros de riego de la cuenca media del Nazas, entre Rodeo y Nazas.

Densidad del Drenaje.

Aunque no sean exactamente correlacionados, se puede comparar los datos de escurrimiento con los de la densidad de drenaje, que se muestran en la Figura 17.

De hecho, esta densidad de drenaje disminuye también más o menos con la pluviometría; este mapa fue realizado a partir de los ríos y riachuelos indicados en el mapa topográfico al 1:250,000 del INEGI. Se puede ver que esta densidad es importante en la cuenca media del Nazas y del Aguanaval, a pesar de la pluviometría más débil; esto se puede explicar porque la densidad de drenaje se calculó tomando en cuenta todos los ríos aunque sean intermitentes: así que la densidad sólo disminuye realmente en las planicies, en donde no hay escurrimientos organizados, y entonces los cauces son poco numerosos.

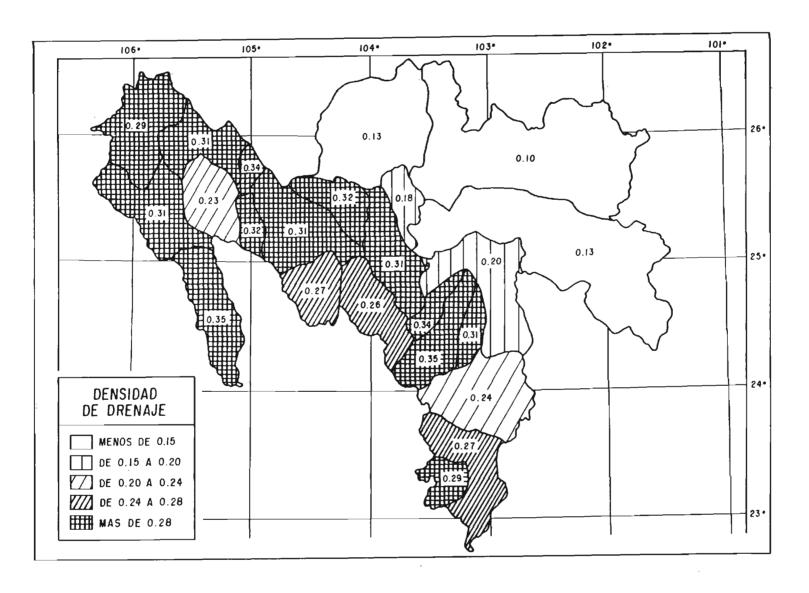


Figura 17

Escurrimiento y Gasto Específico.

Las cuencas naturales.

Las cuencas en las que existen datos disponibles, y cuyo cauce no esta influenciado por una presa, son:

- Palmito, antes de 1945 (existen datos desde 1928);
- El Sauz, antes de 1948 (existen datos desde 1931);
- Cañón de Fernández, antes de 1945 (existen datos desde 1937);
- Sardinas (existen datos desde 1971 a 1977);
- Salomé Acosta (existen datos desde 1971 a 1977);

Se ha visto que los coeficientes de escurrimiento disminuyen de la cuenca alta hacia la baja. Se nota el mismo comportamiento, claro, con el gasto específico, que es el gasto anual medio dividido por la superficie. Para las cuencas naturales, este gasto es el siguiente:

```
-Palmito (1929-1945): 2.51/s/km<sup>2</sup>
-El Sauz (1931-1948): 0.86 1/s/km<sup>2</sup>
```

Se nota que el gasto en Palmito queda muy influenciado por los fuertes coeficientes de escurrimiento de la cuenca alta.

Para el período de 1971 a 1977, que permite comparaciones con las estaciones Sardinas y Salomé Acosta, los gastos específicos son los siguientes (se añadió para las cuencas que poseen una presa del volumen evaporado al escurrido):

- Palmito:	2.21	l/s/km ² (1.96 efectivo)
- Salomé Acosta:	2.3	$l/s/km^2$
- Sardinas:	2.45	$l/s/km^2$
- Cañón de Fernández:	0.98	$1/s/km^2$
- El Sauz:	1.7	l/s/km ²

Evolución espacial y temporal.

El gasto específico disminuye aguas abajo, pues el vomulen escurrido crece poco (y aún, decrece en A. Melgar), aunque la superficie de la cuenca vertiente aumente.

Se puede notar también que el gasto específico de Palmito disminuye entre el primer y el segundo período. Pero siendo influenciado el gasto por el almacenamiento de la presa, es difí-

cil extraer conclusiones de este hecho, en efecto, se constata una evaluación contraria en El Sauz, estación también influenciada por una presa, donde el gasto específico aumenta del 100 por ciento.

Pero el comportamiento de la subcuenca Palmito es interesante ya que baja su gasto aunque el período 1971-1977 haya sido excento en lluvias. Esto refleja una disminución del consumo de agua por los perímetros, debido a una mejor pluviometría. Pero tal vez la causa de este abatimiento pueda ser una degradación del coeficiente de escurrimiento (por degradación del medio ambiente aguas arriba), o por el azolve que disminuye el volumen útil de la presa.

En fin, se pueden comparar estos gastos específicos con los de unos ríos de gran importancia en regiones áridas o tropicales con larga estación seca: varios tienen una tendencia al endorreísmo, y su alimentación de agua en las montañas les permite apenas llegar al mar; varios afluentes del río Colorado y del río Bravo del Norte tienen gastos específicos (G.E.) inferiores a 0.5 l/s/km², el Eufrates ve pasar su gasto específico de 6.5 a 1 l/s/km² al atravesar la Mesopotamia y el "delta interior del chtt-et-Arab, en pleno desierto iraquí. El Tigris pasa de 15.5 a 3.2 en este mismo desierto. El río Nilo pasa de 3 a 1.42 l/s/km² al atravesar su "delta interior" del SUDD y de 1.42 a 0.69 l/s/km², en desierto del Sahara.

Pero la RH 36 se aproxima también al regimen de unos ríos de Africa Tropical cercanos del desierto: el Niger sale de las montañas con un gasto específico superior a 8 l/s/km²; sólo le queda 3.5 l/s/km² en Tombuctú, a la salida de su "delta interior", y menos de 1.5 a su salida del Sahel (pero 6 a su desembocadura, en zona húmeda). El río Senegal baja de 4 a 1 l/s/km² mientras sigue el márgen del Sahara; y se quedó varios meses sin agua en las terribles sequías de 1972 y 1983. El río Gambia pasa de 12 a 4 1/s/km² al atravesar el Sahel.

La RH 36 se ubica en un cruce climático, y su endorreísmo se puede comparar con el de las regiones tropicales secas (río Chari y lago Chad, en Africa; lago Eyre en Australia) y también con el de los desiertos continentales de latitud más elevada: lagos salados de Utah, piemonte del Noroeste de Argentina, Norte del Sahara, y aún bolsones endorréicos de Asia Central (Mar de Aral).

Cuadro 35
Gastos específicos del río Nazas en comparación de otras cuencas de

zonas semiáridas y áridas.

CUENCA VERTIENTE	UBICACION	GASTO ESPECIFICO
AFLUENTES DEL RIO COLORADO Y DEL RIO BRAVO	COLORADO, NUEVO MEXICO, SUR DE TEXAS, NORTE DE MEXICO	< 0.5
RIO	TURQUIA - SIRIA - IRAK	
EUFRATES	- Entrada del Chatt El Arab : - Desembocadura :	6 .5 1
RIO TIGRIS	TURQUIA - IRAK - Entrada del Chatt El Arab : - Salida del Chatt El Arab :	15.5 3.2
RIO	TANZANIA - SUDAN - ETIOPIA - EGIPTO	
NILO	- Entrada del Sudd :	3
	- Salida del Sudd :	1.42
	- Desembocadura :	0.65
RIO	AFRICA SAHELIANA	
NIGER	- Entrada del "Delta interior" :	8
	- Salida del "Delta interior" :	3.5
	- Frontera de Nigeria (salida del Sahel) :	1.5
	- Desembocadura :	6
RIO	AFRICA SAHELIANA	
SENEGAL	- Bafoulabe (cuenca media) :	4
	- Desembocadura :	1
RIO	AFRICA TROPICAL	
GAMBIA	- Kedougou (cuenca media) :	12
	- Desembocadura :	4
RIO	RH 36 (NORTE DE MEXICO)	
NAZAS	- Palmito (cuenca alta) :	2.21
	- Cañón de Fernández :	0.98

Conclusión.

Las características hidrológicas son el resultado de la interacción de las condiciones climáticas y físicas de una región. De esta forma en la RH 36 se pueden diferenciar dos sistemas de drenaje superficial: uno sistema ordenado que se desarrolla en su parte alta e intermedia, y un sistema difuso correspondiente a la parte baja (Lagunas de Mayrán y Viesca). En ambas cuencas (Nazas y Aguanaval), los mayores escurrimientos (el 80 por ciento) se generan hacia las zonas más altas y montañosas. Los patrones de escurrimiento muestran que existe un volumen medio anual de 1,169 millones de metros cúbicos que son aprovechados en la parte baja (Región Lagunera), existiendo, durante el trayecto de los cauces, una serie de aprovechamientos dedicados principalmente a la irrigación de los cultivos. Los mayores gastos específicos se presentan en la cuenca Nazas, 2.45 y 2.3 l/s/km² para las subcuencas Sardinas y Salomé Acosta, respectivamente; mientras que para su parte intermedia, los volúmenes de agua en el cauce disminuyen debido a las extracciones que realizan los perímetros de riego existentes en esta zona.

Referencias.

GUILCHER A., (1969). Précis d'Hydrologie; Masson, Paris.

HYDROM, (1989). Logiciel de banque de données hydrométriques. ORSTOM, Paris.

INEGI, (1980). Serie de mapas de Hidrología Superficial escala 1:250,000. INEGI. México.

LAMAGAT J. P., ALBERGEL J., BOUCHER J. M., DESCROIX L., (1989). Monographie de la Gambie; ORSTOM, Dakar.

LEBEL T., BOYER J. F., (1989). DIXLOI: Un ensemble de Programmes FORTRAN 77 pour l'ajustement de lois statistiques et leur représentation graphique. Laboratoire d'Hydrologie ORSTOM, France.

LOUP J., (1976). Les eaux terrestres; Masson, Paris.

ROCHE M., (1963). Hydrologie de surface; ORSTOM, Paris.

SARH, (1970). Boletín Hidrológico Núm. 35. Tomos I y II.

SARH, (1977). Actualización al Boletín Hidrológico 35. Tomo III.