ARCHIVES

## SCIENCES DE LA MER

OCÉANOGRAPHIE

N° 2

1995

## Campagne océanographique FLUPAC à bord du N.O. l'ATALANTE 23 septembre au 29 octobre 1994

Recueil des données

Tome 2 : optique marine, matière organique dissoute, pigments photosynthétiques, observations microscopiques, production primaire, "broutage", zooplancton, sédimentation

> Coordonné par Robert LE BORGNE Henriette GESBERT

L'INSTITUT FRANÇAIS DE RECHERCHE SCIENTIFIQUE POUR LE DÉVELOPPEMENT EN COOPERATION



CENTRE DE NOUMÉA

### ARCHIVES

### SCIENCES DE LA MER

#### OCÉANOGRAPHIE

N° 2

## 1995

## Campagne océanographique FLUPAC à bord du N.O. l'ATALANTE 23 septembre au 29 octobre 1994

Recueil des données

Tome 2 : optique marine, matière organique dissoute, pigments photosynthétiques, observations microscopiques, production primaire, "broutage", zooplancton, sédimentation

> Coordonné par Robert LE BORGNE Henriette GESBERT



L'INSTITUT FRANÇAIS DE RECHERCHE SCIENTIFIQUE POUR LE DÉVELOPPEMENT EN COOPERATION

CENTRE DE NOUMÉA

010056965

© ORSTOM, Nouméa, 1995

/Le Borgne, R. /Gesbert, H.

> Campagne océanographique FLUPAC à bord du N.O. l'ATALANTE 23 septembre au 29 octobre 1994. Recueil des données. Tome 2 : optique marine, matière organique dissoute, pigments photosynthétiques, observations microscopiques, production primaire, "broutage", zooplancton, sédimentation,

Nouméa : ORSTOM. Décembre 1995. 330 p. Archives : Sci. Mer ; Océanogr. ; 2

Ø30OCECAM

CAMPAGNE OCEANOGRAPHIQUE ; MATIERE ORGANIQUE ; CHLOROPHYLLE ; ZOOPLANCTON ; PHYTOPLANCTON ; BIOMASSE ; CARBONE ORGANIQUE ; APPAREIL DE MESURE ; OPTIQUE SOUS MARINE ; PRODUCTION PRIMAIRE ; MESURE ; FLUPAC / PACIFIQUE

> Imprimé par le Centre ORSTOM Décembre 1995



## TABLE DES MATIERES DU TOME 2

| 1 - INTRODUCTION                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 - OBJECTIFS DE LA CAMPAGNE1                                                                                                                                                                    |
| 3 - EQUIPE SCIENTIFIQUE                                                                                                                                                                          |
| 4 - PLAN DE LA CAMPAGNE                                                                                                                                                                          |
| 5 - CONDITIONS GENERALES RENCONTREES                                                                                                                                                             |
| 6 - ENERGIE RADIATIVE DISPONIBLE POUR LA PHOTOSYNTHESE (P.A.R.)<br>ET ECLAIREMENT MULTISPECTRAL<br>(par Cécile DUPOUY-DOUCHEMENT et Eric POULIQUEN)                                              |
| 7 - TOTAL ORGANIC CARBON<br>(par Dennis HANSELL, Craig CARLSON et Martine RODIER)                                                                                                                |
| 8 - DOSAGES DES ALKENONES<br>(par Marie-Alexandrine SICRE et Yann TERNOIS)                                                                                                                       |
| 9 - PIGMENTS PHOTOSYNTHETIQUES ET ACIDES NUCLEIQUES. MESURES<br>PAR SPECTROFLUORIMETRIE<br>(par Jacques NEVEUX)                                                                                  |
| 10 - MICROSCOPIE OPTIQUE ET ELECTRONIQUE<br>(par Marie-Josèphe DINET)                                                                                                                            |
| 11 - MESURES DE PRODUCTION PRIMAIRE<br>(par Aubert LE BOUTEILLER)                                                                                                                                |
| 12 - MESURES DE PRODUCTION PRIMAIRE IN SITU A L'AIDE DU LET GO<br>(par Yves DANDONNEAU)                                                                                                          |
| 13 - ASSIMILATION ET REGENERATION DE <sup>15</sup> N<br>(par Claudie NAVARETTE)                                                                                                                  |
| 14 - ASSIMILATION DU SILICIUM<br>(par Stéphane BLAIN)                                                                                                                                            |
| 15 - P/B vs E<br>(par Jean-Michel ANDRE et Nora SADOUDI)                                                                                                                                         |
| <ul> <li>16 - MESURES DES COEFFICIENTS D'ABSORPTION SPECIFIQUES DU<br/>PHYTOPLANCTON DANS L'UPWELLING EQUATORIAL</li> <li>16a. Méthode des filtres GF/F (par Cécile DUPOUY-DOUCHEMENT)</li></ul> |
| 17 - PIEGES A SEDIMENTS<br>(par Martine RODIER)                                                                                                                                                  |

| 18 - THORIUM 234 WATER COLUMN AND TRAPS MEASUREMENTS<br>(par John DUNNE)                                                             | 227 |
|--------------------------------------------------------------------------------------------------------------------------------------|-----|
| 19 - ESTIMATION OF PICOPHYTOPLANKTON GROWTH AND<br>MICROZOOPLANKTON GRAZING IN THE EQUATORIAL PACIFIC                                |     |
| (par Hongbin LIU)                                                                                                                    |     |
| 20 - ZOOPLANCTON ET PRODUCTION SECONDAIRE<br>(par Robert LE BORGNE, Alain LAPETITE et Isabelle PALAZZOLI)                            | 253 |
| (r),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |     |
| 21 - CAROTTAGES PROFONDS<br>(par Catherine ORGANO)                                                                                   |     |

#### RESUME

La campagne FLUPAC du N.O. L'Atalante, qui s'est déroulée du 23 septembre au 29 octobre 1994, s'est placée dans le cadre du programme international JGOFS (JOINT GLOBAL OCEAN FLUX STUDY). Elle a comporté deux radiales et deux stations équatoriales de 6-7 jours. La première radiale, le long de 165°E, a parcouru la zone comprise entre 20°S et 6°N. La seconde s'est déroulée le long de l'équateur entre 167°E et 150°W. Les deux stations de longue durée ont eu lieu à 0°-167°E et 0°-150°W. Elles ont été l'occasion d'études détaillées des flux impliqués dans le cycle du carbone de la couche superficielle (0-500 m).

Ce second tome du recueil de données présente les méthodes et résultats des paramètres suivants :

matière organique dissoute, structure de taille de la chlorophylle *a*, pigments photosynthétiques obtenus en spectrofluorimétrie, observations microscopiques sur le phytoplancton, assimilation de <sup>14</sup>C (ligne '*in situ*', P:B vs E, Let-Go), <sup>32</sup>Si et <sup>15</sup>N, absorption spécifique, optique marine et atmosphérique, sédimentation des particules, 'broutage' du picophytoplancton, zooplancton (biomasse, composition élémentaire, composition faunistique, taux métaboliques) et carottages profonds.

#### ABSTRACT

The FLUPAC cruise on board R/V l'Atalante, took place from September 23 to October 29, 1994. It was part of the equatorial area study by JGOFS (JOINT GLOBAL OCEAN FLUX STUDY). FLUPAC included two transects and two equatorial time-series stations. The first transect, along 165°E, stretched from 20°S to 6°N, while the second one was described between 167°E and 150°W along the equator. The two time-series stations took place at 0°-167°E and 0-150°W. They were devoted to detailed studies on carbon fluxes of the 0-500 m water column.

The second volume of the data report presents results on the following parameters: dissolved organic matter, chlorophyll 'a' size structure, photosynthetical pigments, as measured by spectrofluorometry, microscopic observations on phytoplankton, <sup>14</sup>C uptake (measured in situ, with the LET-GO or during P:B vs E experiments), <sup>32</sup>Si and <sup>15</sup>N uptakes, specific absorption, atmospheric and submarine optics, particulate sinking rates, picophytoplankton grazing, zooplankton (biomass, elemental and taxonomic compositions, metabolic rates) and sediment cores.

#### Erratum au premier tome

Page 22, l'unité utilisée pour le  $\Sigma CO_2$  est la millimole par kg (mM kg-1) et la méthode est celle de DICKSON (1991) et non DICKINSON.

## ERRATA du Tome 1 du Recueil de données FLUPAC.

#### Station 003 :

| Z    | NO3   | NO2   | Phéo a |
|------|-------|-------|--------|
| 3    | 0.007 | 0.000 | 0.119  |
| 20   | 0.015 | 0.003 | 0.122  |
| 38   | 0.005 | 0.002 | 0.162  |
| 59   | 0.016 | 0.000 | 0.203  |
| 79   |       |       | 0.347  |
| 89   | 0.057 | 0.006 | 0.343  |
| 98   | 0.006 | 0.000 | 0.282  |
| 111  | 0.226 | 0.104 | 0.324  |
| 122  | 0.716 | 0.213 | 0.309  |
| 141  | 1.86  | 0.145 | 0.195  |
| 161  | 3.99  | 0.028 | 0.155  |
| 182  | 4.29  | 0.016 | 0.049  |
| 1001 | 37.19 | 0.005 |        |

#### Station 006 :

| Z   | Chla  | Phéo a |
|-----|-------|--------|
| 2   | 0.067 | 0.109  |
| 20  | 0.075 | 0.074  |
| 40  | 0.085 | 0.094  |
| 49  | 0.164 | 0.127  |
| 59  | 0.263 | 0.258  |
| 68  | 0.293 | 0.372  |
| 81  | 0.293 | 0.480  |
| 90  | 0.295 | 0.488  |
| 100 | 0.136 | 0.154  |
| 119 | 0.109 | 0.226  |
| 140 | 0.069 | 0.156  |
| 160 | 0.042 | 0.123  |

#### Station 036 :

| Z   | 02 | CO2   | AT    | SiO3 | СР   | NP2  | PP    | SiP |
|-----|----|-------|-------|------|------|------|-------|-----|
| 4   |    | 1.865 | 2.206 | 1.4  | 1.99 | 0.29 | 0.015 |     |
| 19  |    | 1.874 | 2.218 | 1.4  | 2.66 | 0.24 | 0.016 |     |
| 40  |    | 1.878 | 2.219 | 1.4  | 2.65 | 0.32 | 0.020 |     |
| 61  |    | 1.879 | 2.227 | 1.4  | 1.61 | 0.27 | 0.015 |     |
| 81  |    | 1.884 | 2.230 | 1.4  | 2.14 | 0.35 | 0.021 |     |
| 89  |    | 1.935 | 2.270 | 1.7  | 3.11 | 0.40 | 0.027 |     |
| 99  |    | 2.029 | 2.289 | 5.0  | 3.19 | 0.34 | 0.016 |     |
| 110 |    | 2.068 | 2.305 | 6.0  | 1.63 | 0.19 | 0.011 |     |
| 118 |    | 2.080 | 2.312 | 6.6  | 1.68 | 0.13 | 0.009 |     |
| 140 |    | 2.099 | 2.320 | 7.0  | 1.48 | 0.09 | 0.008 |     |
| 161 |    | 2.102 | 2.313 | 7.9  | 1.12 | 1    |       |     |
| 200 |    | 2.121 | 2.313 | 10.8 |      | 0.07 | 0.005 |     |
| 249 |    | 2.111 | 2.313 |      | 1.22 | 0.09 | 0.005 |     |
| 297 |    | 2.153 | 2.297 | 22.5 | 1.35 | 0.13 | 0.005 |     |

#### Station 039:

| Z   | Proc   | Syn  | micro |
|-----|--------|------|-------|
| 2   | 140000 | 1330 | 560   |
| 21  | 170000 | 2030 | 710   |
| 38  | 166980 | 1750 | 960   |
| 50  | 171780 | 1600 | '790  |
| 60  | 174470 | 1340 | 690   |
| 74  | 166830 | 154G | 650   |
| 99  | 50850  | 60   | 2310  |
| 110 | 14280  | 0    | 370   |
| 120 | 15370  | ()   | 390   |
| 150 | 700    | Ű    | 110   |

#### **1 - INTRODUCTION**

La demande de campagne FLUPAC a été formulée auprès d'IFREMER une première fois en janvier 1992 par le programme du même nom (FLUPAC : FLUx dans l'ouest du PACifique équatorial), mis en oeuvre par le Centre ORSTOM de Nouméa. Elle portait sur l'étude, dans le cadre de JGOFS (Joint Global Ocean Flux Study), de la partie occidentale du Pacifique équatorial. France-JGOFS décidait l'année suivante de la soutenir en même temps que la campagne OLIPAC (OLIgotrophie en PACifique), demandée par André MOREL du Laboratoire de Physique et Chimie Marines (LPCM) de l'Université de Paris. Etait décidée aussi une coordination entre les deux campagnes sous l'appellation d'EPOPE (Etude de Processus dans l'Océan Pacifique Equatorial) qui fut confiée à Yves DANDONNEAU de l'ORSTOM (Paris). A l'origine, FLUPAC devait avoir lieu entre le 150°E et la ligne de changement de date, tandis qu'OLIPAC était prévu entre Hawaii et Tahiti, donc vers 150°W.

1997

L'opération EPOPE recevait la décision d'attribution du navire océanographique l'Atalante par l'IFREMER à la mi-1993. Simultanément, il était demandé de fusionner les deux campagnes FLUPAC et OLIPAC, ce qui conduisit à revoir le schéma général en faisant démarrer les opérations à Nouméa pour les terminer à Papeete. En conséquence, FLUPAC comporterait comme prévu, une station de plusieurs jours en situation d'oligotrophie et une seconde en milieu eutrophe, à l'est de la précèdente, auxquelles s'ajoutait une radiale équatoriale. OLIPAC, de son côté, était cantonné le long de 150°W avec un aller-retour Papeete-l'équateur.

La campagne FLUPAC à bord du navire océanographique "l'Atalante", fut également l'occasion d'une coopération entre le Centre ORSTOM de Nouméa et les laboratoires français (CNRS, Université) et américains. Cette coopération, autorisée par le nombre de places disponibles à bord de "l'Atalante", permit la mesure d'un nombre important de paramètres physiques, chimiques, biologiques et même sédimentologiques. Le premier tome du recueil des données récoltées au cours de la campagne est paru en juin 1995. Il présentait les observations en route et les résultats obtenus avec la sonde CTD et sur les prélèvements à la rosette. Le second tome présente toutes les autres observations.

#### 2 - OBJECTIFS DE LA CAMPAGNE

La zone équatoriale de l'océan Pacifique est le siège d'un upwelling, à l'origine à la fois, d'une exportation de dioxyde de carbone vers l'atmosphère et d'un "piégeage" de cet élément par la production primaire accrue qu'il entraîne. L'extension de l'upwelling à l'ouest du bassin, subit des fluctuations importantes d'une période à l'autre et fait jouer à la zone équatoriale un rôle variable vis-à-vis du cycle du carbone et de ses échanges avec l'atmosphère. Il est donc important de pouvoir comparer les deux types de situations - avec et sans upwelling - ce qui a été le thème de la campagne FLUPAC.

L'étude des différentes étapes du cycle du carbone et des éléments qui lui sont associés (azote, phosphore, silicium, thorium), suppose également la connaissance des facteurs de variations et celle de la variabilité à court terme (de type diurne). Elle nécessite donc des mesures réalisées lors de stations de plusieurs jours en position relativement fixe. Ces mesures ont concerné le carbone présent dans la couche superficielle (0-500 m) de l'océan, sous ses formes

| Paramètre, profondeur                         | Appareils                         |                                                  |
|-----------------------------------------------|-----------------------------------|--------------------------------------------------|
|                                               |                                   |                                                  |
| Météo (sauf vent)                             | centrale du bord                  | G. ELDIN/ F. GALLOIS                             |
| Vent                                          | Relevés passerelle                | G. ELDIN/ F. GALLOIS                             |
| idem                                          | Centrale Précis Mécanique CR2M    | A. POISSON/ B. SCHAUER/ C. BRUNET                |
| Courantologie: 0-300m et 0-800m               | ADCP                              | G. ELDIN                                         |
| température et salinité de surface            | thermosalinographe                | F. GALLOIS/ A. POISSON                           |
| Profils de température                        | XBT                               | F. GALLOIS                                       |
| Température: 0-1000m ou 0-fond                | Sonde SBE                         | G. ELDIN/ F. GALLOIS/ J.Y. PANCHE/ Y, DANDONNEAU |
| Salinité avec calibrations: 0-1000m ou 0-fond | Sonde SBE et salinomètre Portasal | G. ELDIN/ J.Y. PANCHE                            |
| Transmissomètrie: 0-1000m ou 0-fond           | Sonde SBE                         | G. ELDIN/ E. POULIQUEN                           |
| Fluorescence "in vivo"(0-1000m)               | Sonde SBE                         | G.ELDIN/ A. LEBOUTEILLER                         |
| Fluorescence en surface                       | Fluorimètre Turner Design         | A. POISSON/ B. SCHAUER                           |
| PAR: 0-1000m                                  | Sonde SBE/cel. Biospherical       | G. ELDIN/E. POULIQUEN                            |
| PAR 0-150m                                    | cel. Biospherical                 | E.POULIQUEN/ C. DUPOUY                           |
| PAR: 0 - 150m                                 | cellule Li-Cor                    | E. POULIQUEN/ C. DUPOUY                          |
| Eclairement multispectral                     | MER 1012                          | E. POULIQUEN/ C. DUPOUY                          |
| Eclairement incident                          | cellules Li-Cor et Biospherical   | E. POULIQUEN/C. DUPOUY                           |
| Optique atmosphérique (épaisseur optique)     | CIMEL manuel                      | E. POULIQUEN                                     |
|                                               |                                   |                                                  |
| Oxygène dissous: 0-1000m ou 0-fond            | Sonde SBE/ Winkler                | G. ELDIN/B. SCHAUER/J. KOMOR/M. RODIER           |
| idem: surface                                 | Thermosalinographe SBE 21         | A, POISSON/ B. SCHAUER/ C. BRUNET                |
| Carbone minéral total dissous                 | Coulomètre UIC                    | A.POISSON/ B. SCHAUER                            |
| Alcalinité totale                             | PHmètre Radiometer                | A.POISSON/ C. BRUNET                             |
| p CO2 surface                                 | spectro IR Ultramat 5F            | A. POISSON/ B. SCHAUER/ C. BRUNET                |
| pCO2 air                                      | idem                              | A. POISSON/ B. SCHAUER/ C. BRUNET                |
|                                               |                                   |                                                  |
| NO2, NO3, NH4, PO4, SiO2                      | Autoanalyseur Technicon           | M.RODIER /S.BONNET/P.GERARD/H.LEMONNIER          |
| Carbone organique dissous                     | Méthode catalytique               | M. RODIER/ Y. SUZUKI/ D. HANSELL                 |
| Azote et phosphore organique dissous          | Méth. persulfate et Technicon     | M.RODIER /S.BONNET/P.GERARD/H.LEMONNIER          |
| Azote et phosphore particulaires              | Méth. persulfate et Technicon     | M.RODIER /S.BONNET/P.GERARD/H.LEMONNIER          |
| Carbone et azote particulaires                | CHN                               | M. RODIER/P.GERARD                               |
| Silice particulaire                           | dissolution et Technicon          | S. BLAIN                                         |
| Fe et métaux traces                           | spectromètrie ou absorption atom. | J. DUNNE                                         |
| 234Th                                         | compteur radioactivité            | J. DUNNE                                         |
| aikénones                                     |                                   | A. POISSON/ M.A. SICRE                           |
|                                               |                                   |                                                  |
| Chlorophylle "a"                              | fluorimètre Turner                | A. LE BOUTEILLER                                 |
| Pigments                                      | spectrofluorimètre                | J.NEVEUX                                         |
| Pigments: HPLC                                | HPLC                              | M. RODIER/ J. NEWTON                             |
| Idem                                          | HPLC                              | J.M. ANDRE/ H. CLAUSTRE                          |
| ldem                                          | HPLC                              | J. NEVEUX                                        |
| Phycoérythrines                               | spectrofluorimétre                | J. NEVEUX                                        |
| Acides nucléiques                             |                                   | J. NEVEUX                                        |
| Microscopie à épifluorescence                 | microscope                        | M.J. DINET                                       |
| Microscopie électronique (MEB et MET)         | MEB et MET                        | M.J. DINET                                       |
| Cytofluorimètrie                              | FCM Becton-Dickinson              | J.BLANCHOT                                       |
| Cultures de populations naturelles            |                                   | M.J. DINET                                       |
|                                               | FOM at the starburg               |                                                  |
| Croissance des prochlorophytes                | FCM et fluorimetre                |                                                  |
| Assimilation C14                              | mesures in situ et in situ simule | A. LE BOUTEILLER                                 |
| Assimilation C14                              | Let-Go                            | Y DANDONNEAU                                     |
| Production primaire: méthode à l'oxygène      | sonde YSI                         | A. LE BOUTEILLER                                 |
| Production primaire: chlorophylle             | fluorimétre                       | A. LE BOUTEILLER                                 |
| Assimilation N15                              | spectromètre d'émission           | C.NAVARETTE                                      |
| minéralisation N15                            | idem                              | C. NAVARETTE                                     |
| Assimilation Si32                             | in situ et in situ simule         | S.BLAIN                                          |
| P/8 vs E                                      | photosynthetron                   |                                                  |
| Absorption                                    | spectrophotometre                 | C. DUPOUT/ N. SADOUDI/ K. ALLALI                 |
|                                               | Diàsas Tashaisas                  |                                                  |
| Taux de sedimentation (poids sec et compo-    | Pieges Technicap                  | M. RODIER / J. DUNNE                             |
| sition élémentaire, composition pigmentaire   |                                   |                                                  |
| composition tionstique et faunistique)        |                                   |                                                  |
|                                               | Filet à concerte/P2               |                                                  |
| Biomasse zooplancton >200µm (0-200m)          | filet trole vertical              |                                                  |
| Composition des pourdemente                   |                                   | B LE BORGNE/A LAPETITE/L PALA77011               |
| Composition des peuplements                   | incubations                       |                                                  |
| Respiration et excretion >200µm et >350m      | for at luorimètre                 | H I III                                          |
| Grazing du pico- et nanopiarición             |                                   |                                                  |
| Sédimonte protonde                            | Carottier Küllenberg              | CORGANO                                          |
| Interface paused imports                      | Multitube                         | C. ORGANO                                        |
| internet eau-seuments                         |                                   |                                                  |

dissoutes (système des carbonates, carbone organique) et particulaires. Ont été étudiés les processus physiques et biologiques qui permettent le "piégeage" du carbone : production primaire nouvelle, transfert en direction des couches profondes par migrations verticales du zooplancton et sédimentation. En complément de cette étude portant sur la partie supérieure de l'océan, des prélèvements de sédiments ont été effectués sur le fond afin de déterminer la nature des éléments qui interviennent actuellement - et qui sont intervenus par le passé - dans l'exportation de carbone particulaire.

24

La campagne FLUPAC devait se rendre de Nouméa à Tahiti, tout en effectuant deux stations de longue durée dans la région équatoriale. Cela nécessitait un trajet de 5795 milles nautiques qui furent mis à profit pour réaliser deux radiales descriptives. La première, située le long du méridien 165°E, permit de décrire l'extension en latitude de la zone équatoriale dans la partie ouest du Pacifique. La seconde radiale suivit l'équateur entre le premier et le second point fixe afin de repérer la limite ouest de la zone d'enrichissement et de décrire les éventuelles variations méridiennes de la structure hydrologique et ses conséquences sur la production biologique.

#### **3 - EQUIPE SCIENTIFIQUE** (Tableau 1)

#### Elle comprenait 28 membres, que l'on classera par spécialité :

Robert LE BORGNE, ORSTOM/Nouméa, Chef de mission et production secondaire.

Gérard ELDIN, ORSTOM/Nouméa, hydrologie, courantologie, météo. Francis GALLOIS, ORSTOM/Nouméa, hydrologie Jean-Yves PANCHE, ORSTOM/Nouméa, électronicien.

Jean-Michel ANDRE, ORSTOM/Nouméa, P:B vs E Cécile DUPOUY-DOUCHEMENT, ORSTOM/Nouméa, bio-optique. Eric POULIQUEN, Scripps Inst. Oceanogr./USA, optique Nora SADOUDI, LPCM/Villefranche, P:B vs E, bio-optique

Christian BRUNET, LPCM/Paris, système des carbonates Alain POISSON, LPCM/Paris, système des carbonates. Bernard SCHAUER, LPCM/Paris, système des carbonates.

Sylvain BONNET, ORSTOM/Nouméa, sels nutritifs. Philippe GERARD, ORSTOM/Nouméa, sels nutritifs. Jacqueline KOMOR, ORSTOM/Nouméa, oxygène dissous. Hugues LEMONNIER, IFREMER/Nouméa, sels nutritifs.

John DUNNE, Univ. Washington/USA, <sup>234</sup>Th et métaux traces Martine RODIER, ORSTOM/Nouméa, sédimentation et MOD. Jean BLANCHOT, ORSTOM/Nouméa, pico- et nanoplancton. Marie-Josèphe DINET, CNRS/Banyuls, taxonomie phytoplancton. Hongbin LIU, Univ. Hawaii/USA, broutage et croissance du picoplancton. Jacques NEVEUX, CNRS/Banyuls, pigments du phytoplancton.

Stéphane BLAIN, Univ. Brest, incorporation de Silice. Yves DANDONNEAU, ORSTOM-LODYC/Paris, production <sup>14</sup>C. Aubert LE BOUTEILLER, ORSTOM/Nouméa, chlorophylle "a" et production primaire. Claudie NAVARETTE, ORSTOM/Nouméa, incorporation de <sup>15</sup>N.

Alain LAPETITE, ORSTOM/Nouméa, biomasse du zooplancton. Isabelle PALAZZOLI, CNRS/Villefranche, composition du zooplancton.

Catherine ORGANO, CFR/Gif-sur-Yvette, sédiments profonds.

#### Participants au projet, mais n'ayant pas embarqué à FLUPAC :

Karima ALLALI et Annick BRICAUD, LPCM/Villefranche, bio-optique Hervé CLAUSTRE, LPCM/Paris, HPLC Dennis HANSELL et Craig CARLSON, Bermuda Biological Station, DOC. Thomas LE VAILLANT, ORSTOM/Nouméa, informatique. Jan NEWTON, Univ. Washington/USA, pigments HPLC. Marie-Hélène RADENAC, ORSTOM/Nouméa, océanographie physique. Marie-Alexandrine SICRE et Yann TERNOIS, LPCM/Paris, alkénones. Yoshimi SUZUKI, Univ. Shizuoka/Japon, DOC.

#### Adresses :

**ORSTOM/Nouméa**: Centre ORSTOM de Nouméa B.P. A5 98848 Nouméa Cedex Nouvelle-Calédonie Tél.: (687) 26.10.00 Fax: (687) 26.43.26 Scripps Inst. Oceanogr./USA : Scripps Institution of Oceanography La Jolla, Ca. 92093 U.S.A. Tél.: 619 534 6412 Fax: 619 534 0704 LPCM/Paris: Laboratoire de Physique et Chimie Marines Université Pierre et Marie Curie Tél.: (33-1) 44 27 48 64 Fax: (33-1) 44 27 49 93 Univ. Washington/USA : School of Oceanography University of Washington Seattle, Wa. 98195 U.S.A. Fax: (206) 543 6073 **CNRS/Banyuls:** Laboratoire Arago 66650 Banyuls-sur-Mer France Tél.: 68 88 73 73 Fax: 68 88 73 95 Univ. Hawaii/USA : Department of Oceanography University of Hawaii at Manoa 1000, Pope road Honolulu, Hi. 96822

U.S.A.

Tél.: (808) 948 8433 Fax : (808) 956 4104 Univ. Brest : Laboratoire d'océanographie chimique Faculté des Sciences et Techniques Université de Bretagne Occidentale 29275 Brest France Tél.: 98 31 61 52 Fax: 98 31 66 36 **ORSTOM-LODYC/Paris**: Laboratoire d'Océanographie Dynamique et de Climatologie Université Pierre et Marie Curie 75252 Paris Cedex 05 France Tél.: (1).44 27 44 55 LPCM/Villefranche: Laboratoire de Physique et Chimie Marines B.P. 08 06230 Villefranche-sur-Mer France Tél.: 93 76 37 39 Fax: 93 76 37 39 **CNRS/Villefranche:** Station zoologique B.P. 28 La Darse 06230 Villefranche-sur-Mer France Tél.: 93 55 56 56 Fax: 93 76 38 34 CFR/Gif-sur-Yvette : Centre des Faibles Radioactivités Domaine du CNRS 91198 Gif-sur-Yvette France Fax: (33) 69 82 35 68

#### 5



Figure 1: Plan de la campagne FLUPAC à bord de N.O. "L'Atalante" (23/9 - 29/10/1994)

6

#### 4 - PLAN DE LA CAMPAGNE (Figure 1)

- Appareillage du N.O. "L'Atalante" le 23 septembre à 8h30 locale, de Nouméa. Route sur la baie du Santal à Lifou.
- Essais de matériel en baie du Santal le 23/9/94 : ensemble sonde Sea Bird-rosette de 24 bouteilles Noex Technicap de 10.7 L et débitmètres TSK. Durée totale : 2h.
- Route sur 1ère station de la radiale 165°E à 15°S.

#### 4.1. - Radiale 165°E (15°S-6°N)

 lère station (n° 1) de la radiale le 25 septembre à 5h locale (18h le 24/9 en TU) à 15°S, 165°E.
 Les stations de cette radiale comprenaient classiquement un trait de sonde-rosette à 1000 m et un trait vertical de filet triple WP-2 à 500 m. Ont été réalisés en plus :

- des profils de pénétration de lumière au spectro-irradiancemètre, (stations 2, 5, 11, 13, 15, 16, 21)

- des profils de production primaire (14C) avec la LET-GO aux stations 2,5,8,11,15,21.

- le largage de bouées dérivantes Niiler de la NOAA (stations 16 et 22).

- Dernière station (n° 22) de la radiale le 1er octobre à 19h30 locale (7h30 TU).
- Route sur la position de la première station de 6 jours les 1er, 2 et 3 octobre.

#### 4.2. - Première station de 6 jours (0°-167°E) 3-9 octobre 1994 (HL)

Arrivée à 2h30 le 3 octobre (16h30 le 2/10 en TU). Début des opérations à la mer avec CTD n° 23.

Cette station s'est faite en suivant le mouillage en dérive des pièges à sédiments pendant environ 48h. La remise à l'eau de ce mouillage s'est faite sur une position différente de celle de la récupération après que le navire se soit rapproché de la position initiale (0°-167°E). Pendant la journée, un second mouillage en dérive a été suivi : il s'agit de celui de la production primaire. Un troisième - celui de la Let-GO - a été mis à l'eau certains jours. Une série d'opérations à la mer ont été effectuées quotidiennement. Le tableau 2 présente celles du dernier jour de la deuxième station (150°W) à titre d'exemple. Y manque le carottage profond que l'on faisait en milieu de journée (de midi à 15 h).

 Fin de la station de 6 jours le 9 octobre à 1h20 (14h20 TU le 8/10/94) avec récupération des pièges à sédiments.

#### 4.3. - Radiale équatoriale (166°E-150°W) : 9-18 octobre 1994 (HL)

· lère station de la radiale équatoriale (n° 62) le 9 octobre à 23h (12h TU) à 170°E.

Les stations ont lieu quotidiennement à 11h (HL) et 23h et durent environ 2h. Les opérations à la mer sont celles de la radiale 165°E. CTD et filet triple systématiquement et profils de lumière (stations 63, 65, 67, 69, 71, 73, 75, 77, 79, 81), LET-GO (stations 63, 65, 67, 69, 71, 73, 75, 77, 79, 81), prélèvements pour métaux-trace (stations 62, 64, 67, 70, 72, 75, 78, 80) et largage de bouées Niiler (stations 63, 65, 67, 72, 79) en option.

Fin de la radiale équatoriale le 18 octobre à 11h30 locale (23h30 TU le 18/10) avec la station 81.

HEURE LOCALE - HEURE GMT: Dans ce rapport, les heures indiquées sont souvent des heures locales (ou du bord). Nous sommes restés en GMT+11 jusqu'au 10/10/94 à 23.00 (station 64), qui est devenu le 10/10/94, minuit (soit encore, le 10/10/94, midi en T.U.). Le changement d'heure suivant est aussi un changement de date: à la station 70 du 13/10/94 à minuit, nous sommes redevenus le 12/10/94 à 23.00 (soit le 13/10/94 à 10.00 en T.U.). Enfin, le dernier changement d'heure a eu lieu à la station 78 le 16/10/94 à minuit: nous sommes revenus à 23.00 le 16/10/94 (soit le 17/10/94 à 9.00 en T.U.).

L'HEURE LOCALE QUI FIGURE DANS LE PREMIER TOME EST UNE HEURE CALCULEE, TRES VOISINE DE L'HEURE SOLAIRE MAIS N'EST PAS L'HEURE DU BORD.

#### 4.4. - Deuxième station de 7 jours (0°-150°W) : 19-25 octobre 1994 (HL)

• Début à 3h00 locale le 19 octobre (13h le 19/10/94 en TU) avec CTD n° 82.

Le schéma des opérations à la mer est voisin de celui de la première station de 6 jours (Tableau 2).La position des stations a suivi la dérive du mouillage des pièges à sédiments, comme au premier point fixe.

• Fin de la station le 25 octobre à 23h45 (9h45 en TU le 26/10) avec CTD n° 126.

#### 4.5. - Transit sur Papeete : 26-29 octobre 1994

- · Pas de stations, mais mesures de surface en route.
- · Arrivée à Papeete le 29 octobre à 15h (HL).

#### **5 - CONDITIONS GENERALES RENCONTREES**

La radiale effectuée le long de 165°E montre une situation classique dans la zone située entre 10°S et 4°N, sans présence de sels nutritifs en surface. A l'équateur même, on observe la signature du passage d'un "jet" est, avec approfondissement de la pycnocline et de la nitracline.

La localisation de la première station de 6 jours a été choisie dans une zone oligotrophe de l'équateur, à proximité de la radiale 165°E. Le schéma des courants y était typique de celui de la "warm pool" montrant un Courant Equatorial Sud (CES) coulant vers l'ouest et le Sous Courant Equatorial (SCE), vers l'est, avec un maximum d'intensité vers 200 m. La couche de mélange avait une température de plus de 29°C et une épaisseur d'environ 100 m. Les nitrates apparaissent

# Table 2 : Opérations à la mer du mardi 25 octobre 1994.

| 0  | Heure |                                                                                                                  |
|----|-------|------------------------------------------------------------------------------------------------------------------|
| 1  |       |                                                                                                                  |
| 0  |       |                                                                                                                  |
| 2  |       |                                                                                                                  |
| 3  |       | CTD + rosette (0-1000m)                                                                                          |
| 4  |       |                                                                                                                  |
| 5  |       | Récupération des pièges à sédiments                                                                              |
| ~  |       |                                                                                                                  |
| ь  |       | Bouée prod primaire (mise à l'eau)                                                                               |
| 7  |       | CTD + rosette (0-1000m)                                                                                          |
| 8  |       |                                                                                                                  |
| 9  |       | Mise a l'eau des pieges a sediments                                                                              |
| 10 |       | Filets WP-2 (0-500m), 35um (0-200 et<br>0-100m). Filet à nappes9h30: 3 bouteilles de 30L sur treuil<br>carottier |
| 11 |       | CTD + rosette (0-1000m) et profil de lumière si bonne orientation                                                |
| 12 |       | Récupération de la bouée de production primaire                                                                  |
| 13 |       | Profil de lumière s'il n'a pas été fait pendant la CTD, LET-GO                                                   |
| •• |       | CTD + rosette, 0-200m                                                                                            |
| 14 |       |                                                                                                                  |
| 15 |       |                                                                                                                  |
| 16 |       | CTD + rosette , 0-1000m                                                                                          |
| 17 |       |                                                                                                                  |
| ., |       | CTD + rosette, 0-200m                                                                                            |
| 18 |       | Récupération bouée production primaire                                                                           |
| 19 |       |                                                                                                                  |
| 20 |       | CTD + rosette ( 0-1000m)                                                                                         |
| _  |       | WPv 0-500m                                                                                                       |
| 21 |       | Filet vertical 35µm: 0-200 et 0-100m<br>CTD + rosette, 0-200m                                                    |
| 22 |       | Récupération des pièges à sédiments                                                                              |
| 23 |       |                                                                                                                  |
| 24 |       | CTD + rosette (0-1000m)                                                                                          |

dans la thermocline, en même temps que le maximum de biomasse phytoplanctonique (mis en évidence par la fluorescence "*in vivo*" et la transmissométrie).

La première partie de la radiale équatoriale présente une structure hydrologique voisine de la première station de 6 jours jusqu'à la ligne de changement de date. A l'est de ce méridien, le courant ouest cède la place à un courant est. Les données des mouillages TOGA-TAO montrent que ce courant était associé à une onde de Kelvin de "downwelling", générée par un coup de vent de secteur ouest dans le Pacifique occidental. Cette onde de Kelvin a contribué apparamment, à l'établissement des conditions d'El Niño qui ont suivi.

La réponse de la structure hydrologique à ce changement de courant de surface, ne s'observe qu'à partir de 172°W : la salinité de surface et la concentration de dioxyde de carbone augmentent en même temps que la chlorophylle. La température subit une très faible diminution en surface. L'enrichissement superficiel de sels nutritifs n'apparaît que vers 168°W, ce qui suggère qu'ils ont été consommés par le phytoplancton de 172° à 168°W. A l'est de 168°W, la situation ne subira plus de grands changements.

Ces caractéristiques de l'hydrologie et de la biologie sont généralement associées à l'existence de l'upwelling équatorial, lié aux courants ouest de surface, divergents. Or, lors de la radiale équatoriale de FLUPAC, le régime des courants était convergent et donc défavorable à la présence de la zone d'enrichissement observée. Pour expliquer ce paradoxe, on peut invoquer soit le mélange vertical qui est lié au cisaillement du courant de surface et du sous-courant, dont le coeur remonte lorsqu'on se déplace vers l'est, soit au transport horizontal d'eaux enrichies par un upwelling présent avant la campagne.

La seconde station de 7 jours, située à  $150^{\circ}$ W, était située dans cette zone d'enrichissement. La couche homogène avait une épaisseur de 120-130 m avec présence de nitrate (3,8  $\mu$ M en surface). La concentration en chlorophylle "a" était importante entre 80 m et la surface, avec un léger maximum vers 30-50 m.

Le trajet retour de la seconde station de longue durée sur Tahiti a permis de montrer que les nitrates étaient encore présents en surface jusqu'à 13°S, ce qui donne une idée de l'importance de l'extension de la zone d'enrichissement équatorial.

#### PRESENTATION DES RESULTATS ET STOCKAGE DES DONNEES

Contrairement au premier tome, celui-ci est divisé en chapîtres rédigés sous la responsabilité des auteurs qui ont récolté les données. Ce choix était inhérent à l'extrême variété des paramètres chimiques et biologiques qui ont été mesurés au cours de la campagne et permet davantage de souplesse dans la présentation. En revanche, il produit une hétérogénéité d'un chapître à l'autre que l'éditeur s'est efforcé de réduire. Tout complément d'information devra être demandé à (ou aux) l'auteur (s). Enfin, il a paru souhaitable de laisser les textes rédigés en anglais dans leur langue d'origine plutôt que de les traduire.

La plupart des données présentées dans ce recueil ont été stockées dans une banque de données du Centre ORSTOM de Nouméa. Elles peuvent être obtenues auprès du chef de mission ou du responsable de la banque, J.M. André.

### **Chapitre 6**

## ENERGIE RADIATIVE DISPONIBLE POUR LA PHOTOSYNTHESE (P.A.R) ET ECLAIREMENT MULTISPECTRAL

Cécile DUPOUY-DOUCHEMENT Centre ORSTOM de Nouméa BP A5 98848 NOUMEA Cédex Nouvelle Calédonie

Tel : (687) 26 10 00, Fax : (687) 26 43 26, E-mail : dupouy@noumea.orstom.nc

et

Eric POULIQUEN California Space Institute - 221 Scripps Institution of Oceanography LA JOLLA, CA 92093 USA (Tel: (1) 619 534 62 43 - Fax : (1) -619 534 74 52, E-mail : epoulig@spode.ucsd.edu

#### ENERGIE DISPONIBLE POUR LA PHOTOSYNTHESE (P.A.R)

#### **1 - PRESENTATION**

Les mesures optiques effectuées durant la campagne FLUPAC avaient pour but la détermination de l'éclairement disponible pour la photosynthèse (P.A.R., "Photosynthetically Active Radiation") dans la colonne d'eau, ainsi que la mesure de la profondeur de la zone euphotique définie comme la profondeur où subsiste 1% de la valeur du PAR de surface (ainsi que celle du 0,1%).

L'éclairement descendant ou flux de photons est mesuré en  $\mu E m^{-2} s^{-1}$ , dans l'intervalle de longueurs d'onde 400-700 nm.

#### 2 - MATERIEL

Deux quantamètres ont été utilisés lors de nos mesures :

- un capteur plan, le LICOR 185B ayant été utilisé aux campagnes précédentes (PROPPAC) pour intercomparaison

- un capteur sphérique, le QSP-200 (M.E.R., de Biospherical Instrument Inc., Booth, 1976 (données non présentées ici)

- un QSP-200 du même type équipant la sonde rosette dont les données sont consignées dans le volume I du recueil de données FLUPAC.

#### **3 - METHODES**

Les mesures de l'éclairement disponible pour la photosynthèse ont été effectuées à la descente et à la remontée des quantamètres placés sur le bâti du MER 1012, de façon à bénéficier des profondeurs données par le capteur de pression. Celles-ci ont été effectuées depuis un portique amenant l'instrument à 2 mètres de la coque, sur le bord exposé au soleil.

De façon à s'affranchir des variations de hauteur du soleil, les mesures au LICOR ont toutes été effectuées autour de 11:00 (sauf exceptions voir **Tableau 1**). La descente du LICOR se faisait systématiquement 1 à 2 h environ après la sonde rosette. La dernière profondeur sondée était de 130 m avec le LICOR.

#### 4 - PRESENTATION DES RESULTATS

Les mesures de PAR dans l'eau sont corrigées des variations de l'éclairement incident mesuré simultanément sur le pont par un deuxième quantamètre (LICOR-AIR) relié au même système d'enregistrement.

Les valeurs absolues du PAR obtenues aux différentes profondeurs sont exprimées en pourcentages de la valeur de PAR juste au-dessous de la surface. La valeur exacte du PAR sous la surface n'est pas connue (trop grande erreur de mesure) et est estimée à partir du PAR mesuré au-dessus de la surface par le LICOR-AIR en tenant compte de deux facteurs :

\* une perte d'éclairement à l'interface air/eau dont la valeur admise est de 0,95 (Morel, 1978),

\* un facteur d'intercalibration qui résulte de la mesure simultanée de l'éclairement de surface sur le pont par les deux quantamètres LICOR-Eau et LICOR-Air. A FLUPAC, ce facteur a été estimé à 0,84.

| DATES    | STATIONS | POSITIONS  | SITUATION    | Heure locale | Etat du ciel | Observations |
|----------|----------|------------|--------------|--------------|--------------|--------------|
|          |          |            |              |              |              |              |
| 27/09/94 | 11       | 5S/165E    | Radiale      | 10h30        | 1 sur 8      |              |
| 29/09/94 | 15       | 1S/165E    | Radiale      | 13h30        | 6 sur 8      |              |
| 30/09/94 | 18       | 2N/165E    | Radiale      | 12h00        | 7 sur 8      |              |
| 30/09/94 | 20       | 4N/165E    | Radiale      | 11h00        | 7 sur 8      |              |
| 03/10/94 | 25       | 0S/167E    | Point fixe 1 | 12h40        | 6 sur 8      |              |
| 04/10/94 | 36       | 0S/167E    | Point fixe 1 | 09h00        | -            |              |
| 05/10/94 | 42       | 0N/167E    | Point fixe 1 | 09h00        | 0 sur 8      |              |
| 06/10/94 | 44       | 0N/166.5E  | Point fixe 1 | 15h00        | 1 sur 8      |              |
| 06/10/94 | 49       | 0N/166.4E  | Point fixe 1 | 11h40        | 1 sur 8      |              |
| 07/10/94 | 55       | 0N/166.3E  | Point fixe 1 | 11h00        | 5 sur 8      |              |
| 10/10/94 | 63       | 0S/172E    | Radiale Eq   | 11h15        | 7 sur 8      | angle fort   |
| 10/10/94 | 65       | 0S/175.6E  | Radiale Eq   | 11h15        | -            |              |
| 11/10/94 | 67       | 0S/179.5E  | Radiale Eq   | 11h10        | 6 sur 8      |              |
| 12/10/94 | 69       | 0S/176.4W  | Radiale Eq   | 11h15        | 6 sur 8      |              |
| 13/10/94 | 71       | 0S/172.25W | Radiale Eq   | 11h25        | -            | pas d'angle  |
| 14/10/94 | 73       | 0S/168.3W  | Radiale Eq   | 11h12        | 6 sur 8      |              |
| 15/10/94 | 75       | 0S/164.4W  | Radiale Eq   | 11h20        | 5 sur 8      | pas d'angle  |
| 16/10/94 | 77       | 0N/160.6W  | Radiale Eq   | 11h15        | 6 sur 8      |              |
| 16/10/94 | 77bis    | 0N/160.6W  | Radiale Eq   | 11h45        | 5 sur 8      |              |
| 17/10/94 | 79       | 0S/156.6W  | Radiale Eq   | 11h10        | -            |              |
| 18/10/94 | 81       | 0N/153W    | Radiale Eq   | 11h15        | 1 sur 8      | angle fort   |
| 19/10/94 | 84       | 0N/150.1W  | Point fixe 2 | 12h05        | 7 sur 8      |              |
| 20/10/94 | 90       | 0N/150.3W  | Point fixe 2 | 12h05        | 7 sur 8      |              |
| 21/10/94 | 96       | 0N/149.5W  | Point fixe 2 | 11h50        | couvert      |              |
| 22/10/94 | 101      | 0S/149.5W  | Point fixe 2 | 10h30        | 6 sur 8      |              |
| 23/10/94 | 107      | 0S/149.4W  | Point fixe 2 | 10h50        | couvert      | angle fort   |
| 24/10/94 | 113      | 0S/149.3W  | Point fixe 2 | 10h35        | -            |              |
| 25/10/94 | 120      | 0S/149.2W  | Point fixe 2 | <u>11</u> h  |              |              |

Tableau 1. Mesures de PAR effectuées avec le capteur plan LICOR pendant FLUPAC

Le PAR à chaque profondeur est donc exprimé comme :

PAR(z) en % = PAR (z) en  $\mu E m^{-2} s^{-1} / (0.95 PAR (0^{+}) en \mu E m^{-2} s^{-1} x 0.84)$  (1)

Au Tableau 2, on trouve, pour chaque station :

- la profondeur en mètres

- le PAR(z) exprimé en % et calculé comme (1) pour la descente et la remontée

- la valeur des éclairements PAR  $(0^+)$  mesurés sur le pont en  $\mu$ E m-2 s-1, à la descente et à la remontée

Les mesures entre 5 et 10 mètres sont douteuses en raison des variations trop importantes du signal dues à la houle.

#### 5 - PROFONDEURS DE LA ZONE EUPHOTIQUE (z1% et z0,1%)

Le Tableau 3 et la Figure 1 permettent de comparer les profondeurs de la zone euphotique définie comme la profondeur du 1% (et 0,1%) du PAR sous la surface (1), obtenues à l'aide du capteur LICOR plan (résultats présentés au tableau 2) et du QSP-200 de la sonde-rosette (voir volume I du recueil de données FLUPAC). Les valeurs du tableau ont été déterminées graphiquement.

On rappelle que le capteur LICOR plan était descendu sur le bâti du MER-1012, ceci de 1 à 2 heures après le capteur sphérique QSP-200 placé sur le bâti de la sonde-rosette.

On note que, dans les conditions de mesure de FLUPAC, les profondeurs de z1% mesurées par le QSP-200 sont plus grandes que celles mesurées par le LICOR. Les deux séries de z1% et z0,1% déterminées par le LICOR et le QSP sont signicativement différentes (test de Wilcoxon). On obtient :

z1% QSP-200 (m) = 0.98 z1% Licor + 9.46 (m) n=19

 $z_{0,1\%}$  QSP-200 (m) = 0,77  $z_{0,1\%}$  Licor + 39,14 (m) n=19

#### REFERENCES

MOREL A. et PRIEUR L., 1977. Résultats de la campagne GUIDOME (18 septembre - 13 octobre 1976). Fascicule 2. Groupe Mediprod. *Résultats des campagnes à la mer. Publications du CNEXO*. n°13. 98 pp.



Figure 1 - Comparaison des profondeurs des pourcentages du PAR juste sous la surface, mesurées à l'aide de deux capteurs indépendants à 1-2 h d'intervalle: le LICOR plan (sur le bâti du MER-1012) et le QSP-200 sur la sonde-rosette pendant la campagne FLUPAC. (A) z1% - (B) z0,1%.

| Colorform Id | 0///00/1004    | 101-20        |     | 1 4 4 4 4 4 | 00/00/1004          | 1010         |
|--------------|----------------|---------------|-----|-------------|---------------------|--------------|
| station 11   | 27/09/1994     |               | e e | stauton 15  | 29/19/1994          | 1313         |
| prot(m)      | %PAR0-mese     | // PARU-rem   | 1   | proting     | 57 05               | %FARU        |
| 1            | 66.20          | 51 50         |     |             | 37,03               | 20.45        |
| 10           | 20,32          | 51,58         |     | 10          | 29,47               | 29,47        |
| 10           | 29,47          |               |     | 10          | 23,38               | 23,38        |
| 13           | 22,11          | 25 27         |     | 13          | 14 74               | 1/,00        |
| 20           | 27,03          | 55,57         |     | 20          | 14,74               | 14,74        |
| 20           | 17 69          | 14 74         |     | 23          | 10,79               | 0.01         |
| 30           | 17,00          | 14,74         |     | 25          | 0,01                | 0,23<br>766  |
| 40           | 12 82          | 9,02<br>14 25 |     | 33          | 0,04<br>7.07        | 5 21         |
| 40           | 0.73           | 6 30          |     | 40          | 7,07                | J,51<br>1 12 |
| 4J<br>50     | 9,75           | 5 1 1         |     | 45          | 5 60                | 2.24         |
| 55           | 6 10           | 5,11          |     | 55          | J,00<br>1 13        | 5,24         |
| 55<br>60     | 3.54           | 1 12          |     | 55          | 2.05                | 2 50         |
| 65           | 5,54           | 3.08          |     | 65          | 2,95                | 2,39         |
| 70           | 2 21           | 3,90          |     | 70          | 2,30                | 2,33         |
| 70           | 2,21           | 3,34<br>2,65  |     | 70          | 2,00                | 1,05         |
| 73           | 1,05           | 2,03          |     | 73          | 1,//                | 1 10         |
| 00           | 1,41           | 2,33          |     | 00          | 1,41                | 1,10         |
| 83           | 1.50           | 2,39          |     | 85          | 1,18                | 1,00         |
| 90           | 1,52           | 1,77          |     | 90          | 1,00                |              |
| 95           | 1,06           | 1,24          |     | 95          | 0,71                |              |
| 100          | 0,88           | 1,18          |     | 100         | 0,59                |              |
| 105          | 0.66           | 0.00          |     | 105         | 0,56                |              |
| 110          | 0,66           | 0,88          |     |             |                     |              |
| 115          |                | 0,62          |     | PAR(0+      | ) desc=1500 $\mu$ E | 2 m-2 s-1    |
| 120          |                |               |     | PAR(0+      | ) rem=1500 μE       | 2 m-2 s-1    |
| 125          |                | 0,42          |     |             |                     |              |
| PAR(0+) de   | esc=1300 à 850 | μE m-2 s-1    |     |             |                     |              |
| PAR(0+) re   | m=1300 à 850   | uE m-2 s-1    |     |             |                     |              |

%PAR0-desc %PAR0-rem

13h30

29,47

23,58 17,68

14,74

10,61

8,25 7,66

5,31 4,13

3,24

2,59

2,53

1,18

1,00

| station 18 | 30/09/1994         | 12h00           |
|------------|--------------------|-----------------|
| prof(m)    | %PAR0-desc         | %PAR0-rem       |
| 1          |                    |                 |
| 5          | 49,12              | 41,26           |
| 10         | 27,92              | 23,45           |
| 15         |                    |                 |
| 20         | 13,07              | 10,98           |
| 25         |                    |                 |
| 30         | 11,05              | 9,28            |
| 35         | 10,88              | 9,14            |
| 40         | 8,84               | 7,43            |
| 45         |                    |                 |
| 50         | 7,58               | 6,37            |
| 55         | 5,72               | 4,81            |
| 60         | 4,82               | 4,05            |
| 65         | 3,22               | 2,70            |
| 70         | 2,68               | 2,25            |
| 75         | 2,14               | 1,80            |
| 80         | 1,84               | 1,54            |
| 85         | 1,31               | 1,10            |
| 90         | 1,11               | 0,94            |
|            | 750 > 1250         | )E              |
| PAR(0+) d  | esc = 750  a  1550 | $\mu E = 2 + 1$ |
| PAR(0+) R  | em=030 a 1300      | μE III-2 S-1    |
|            |                    |                 |
|            |                    |                 |
|            |                    |                 |
|            |                    |                 |
|            |                    |                 |
|            |                    |                 |

| station 20 | 30/09/1994             | 11h00     | station 25  | 03/10/1994    | 12h40     | station 36 | 04/10/1994     | 09h00     |
|------------|------------------------|-----------|-------------|---------------|-----------|------------|----------------|-----------|
| prof(m)    | %PAR0-desc             | %PAR0-rem | prof(m)     | %PAR0-desc    | %PAR0-rem | prof(m)    | %PAR0-desc     | %PAR0-rem |
| 1          |                        |           | 1           |               | 73,68     |            |                | 78,02     |
| 5          | 42,44                  |           | 5           |               | 39,30     | 5          |                | 52,01     |
| 10         | 31,83                  | 45,74     | 10          | 21,44         |           | 10         |                | 33,81     |
| 15         | 24,76                  | 19,51     | 15          | 16,08         |           | 15         |                | 26,01     |
| 20         | 15,92                  | 16,77     | 20          |               | 9,65      | 20         |                |           |
| 25         | 14,15                  |           | 25          | 7,80          |           | 25         |                | 15.00     |
| 30         | 12,38                  | 14,03     | 30          |               | 7,37      | 30         |                | 15,60     |
| 35         | 10,61                  | 9,93      | 35          | 5,53          | 5,80      | 35         |                | 13,00     |
| 40         |                        |           | 40          |               |           | 40         | 7,80           |           |
| 45         | 7,07                   | 7,76      | 45          | 4,42          | 5,22      | 45         |                | 9,36      |
| 50         | 6,01                   |           | 50          | 4,02          | 4,18      | 50         |                | 7,28      |
| 55         |                        | 4,74      | 55          | 4,02          |           | 55         |                | 6,76      |
| 60         | 4,52                   | 3,79      | 60          | 3,12          | 3,40      | 60         | 4,16           | 5,20      |
| 65         | 3,08                   | 2,21      | 65          |               | 2,34      | 65         |                | 4,94      |
| 70         | 2,31                   |           | 70          | 2,44          | 2,08      | 70         |                | 3,90      |
| 75         | 1,51                   | 0,98      | 75          |               | 1,72      | 75         | 3,12           | 3,38      |
| 80         | 1,11                   |           | 80          | 1,04          | 1,51      | 80         | 2,60           | 2,86      |
| 85         | 0,79                   | 0,54      | 85          | 0,78          | 1,40      | 85         | 2,86           | 2,60      |
| 90         | 0,53                   | 0,49      | 90          |               | 1,04      | 90         | 2,18           | 1,92      |
| 95         | 0,18                   | 0,34      | 95          | 0,62          | 0,73      | 95         | 1,56           |           |
| 100        | 0,18                   |           | 100         | 0,26          | 0,62      | 100        | 1,30           | 1,30      |
| 105        | 0,18                   |           | 105         | 0,18          |           | 105        | 1,01           |           |
| 110        | 0,14                   |           | 110         | 0,16          | 0,44      |            |                |           |
| 115        | 0,11                   | 0,27      | 115         | 0,29          | 0,31      | PAR(0+     | ) desc=1700 µE | 2 m-2 s-1 |
| 120        | 0,07                   |           | 120         | 0,23          |           | PAR(0+     | ) rem=1700 μE  | m-2 s-1   |
| 125        | ·                      |           |             |               |           |            |                |           |
| 130        | 0,07                   |           | PAR(0+) des | c=1650 µЕ m-2 | s-1       |            |                |           |
| PAR(0      | +) desc= $250 \mu E r$ | m-2 s-1   | PAR(0+) rem | n=1800 μE m-2 | s-1       |            |                |           |
| PAR(0-     | +) rem=290 μE n        | n-2 s-1   |             |               |           |            |                |           |

## Tableau 2 - PAR (z) exprimé en % PAR (0-) (suite)

| station 42 | 05/10/1994                   | 09h00     |  | station 44 | 06/10/1994     | 15h00     | 12 | station 49 | 06/10/1994     | 11h40     |
|------------|------------------------------|-----------|--|------------|----------------|-----------|----|------------|----------------|-----------|
| orof(m)    | %PAR0-dest                   | %PAR0-rem |  | prof(m)    | %PAR0-dest     | %PAR0-rem |    | prof(m)    | %PAR0-desc     | %PAR0-rem |
| 1          |                              | 69,67     |  | 1          |                | 45,98     |    | 1          |                | 45,34     |
| 5          | 48,23                        | 45,55     |  | 5          | 21,22          | 28,29     |    | 5          | 22,67          | 40,81     |
| 10         | 29,47                        | 32,15     |  | 10         | 17,68          | 21,22     |    | 10         | 24,94          | 34,01     |
| 15         | 21,44                        |           |  | 15         | 14,15          | 14,15     |    | 15         |                | 31,74     |
| 20         | 18,76                        |           |  | 20         |                | 12,03     |    | 20         | 18,14          | 22,67     |
| 25         | 13,40                        |           |  | 25         | 10,61          | 10,61     |    | 25         | 15,87          | 18,14     |
| 30         | 13,40                        | 15,00     |  | 30         | 9,20           |           |    | 30         | 13,60          | 15,87     |
| 35         | 10,72                        | 12,33     |  | 35         |                | 7,78      |    | 35         | 11,34          | 13,60     |
| 40         | 8,04                         | 10,18     |  | 40         | 6,37           | 5,66      |    | 40         | 9,98           | 11,34     |
| 45         | 8,04                         | 8,57      |  | 45         | 5,31           | 5,52      |    | 45         | 9,07           | 9,07      |
| 50         | 6,43                         | 7,77      |  | 50         | 4,24           | 4,24      |    | 50         | 7,26           | 7,71      |
| 55         | 5,36                         | 6,16      |  | 55         | 3,54           | 3,54      |    | 55         | 6,80           | 6,80      |
| 60         | 4,82                         | 4,82      |  | 60         | 3,04           | 3,18      |    | 60         | 5,44           | 5,89      |
| 65         | 4,29                         | 4,29      |  | 65         | 2,48           | 2,62      |    | 65         | 4,76           | 4,53      |
| 70         | 3,48                         | 3,75      |  | 70         | 2,12           | 2,12      |    | 70         | 4,08           |           |
| 75         | 3,22                         | 3,22      |  | 75         | 1,77           | 1,98      |    | 75         | 3,85           | 4,08      |
| 80         | 2,68                         | 2,68      |  | 80         | 1,56           |           |    | 80         | 2,95           | 3,17      |
| 85         | 2,14                         | 2,14      |  | 85         | 1,27           | 1,34      |    | 85         | 2,49           | 2,72      |
| 90         | 1,61                         | 1,61      |  | 90         | 0,92           |           |    | 90         | 2,27           |           |
| 95         | 1,07                         | 1,13      |  | 95         | 0,71           | 0,85      |    | 95         | 2,04           |           |
| 100        | 0,80                         | 0,80      |  | 100        | 0,53           | 0,57      |    | 100        | 2,04           | 1,18      |
| 105        | 0,54                         |           |  | 105        | 0,42           | 0,39      |    | 105        |                | 0,91      |
| 110        |                              | 0,54      |  | 110        | 0,28           |           |    | 110        | 0,68           | 0,68      |
| 115        | 0,32                         | 0,40      |  | 115        | 0,21           |           |    | 115        | 0,45           |           |
| 120        | 0,27                         |           |  | 120        | 0,18           |           |    | 120        | 0,23           | 0,41      |
| 125        | 0,21                         | 0,21      |  | 125        | 0,08           |           |    | 125        | 0,23           |           |
| 130        | 0,19                         |           |  |            |                |           |    | 130        |                |           |
|            |                              |           |  | PAR(0+     | ) desc=1250 μE | E m-2 s-1 |    | 135        | 0,14           |           |
| PAR(0+     | PAR(0+) desc=1650 μE m-2 s-1 |           |  | PAR(0+     | -) rem=1250 μE | 2 m-2 s-1 |    | PAR(0+     | ) desc=1950 μI | E m-2 s-1 |
| PAR(0+     | -) rem=1650 µE               | 2 m-2 s-1 |  |            | -              |           |    | PAR(0+     | -) rem=1950 μE | 2 m-2 s-1 |

## Tableau 2 - PAR(z) exprimé en % PAR (0-) (suite)

| station 55 | 07/10/1994     | 11h00     |        | station 63    | 10/10/1994    | 11h15      | station 65 | 10/10/1994<br>%PAR0-rem |
|------------|----------------|-----------|--------|---------------|---------------|------------|------------|-------------------------|
| prot(m)    | MA 21          | %FAR0-rem |        | prot(m)       | 701 AIRO-ueso | 39.30      |            | 701 AIX0-1 CIII         |
| 5          | 35 37          | 30.95     |        | 5             | 26.69         | 21.61      | 5          | 70,77                   |
| 10         | 55,57          | 26.53     |        | 10            | 16.68         | 17.68      | 10         | 53.07                   |
| 15         | 22.11          | 22,99     |        | 15            | 10,00         | _ , ,      | 15         | 30.96                   |
| 20         | 17.68          | 17.68     |        | 20            |               |            | 20         | 24,33                   |
| 25         | 15.47          | 15.92     |        | 25            |               | 10,41      | 25         | ŕ                       |
| 30         | 13.26          | 8.84      |        | 30            | 7,51          | 8,84       | 30         | 16,36                   |
| 35         | 11.05          | 8.84      |        | 35            | 6,34          | · · ·      | 35         | 13,27                   |
| 40         | 9.73           | 11,05     |        | 40            | 5,17          | 6,48       | 40         | 11,94                   |
| 45         | 8,40           | 8,84      |        | 45            | 4,34          |            | 45         | 11,06                   |
| 50         | 7.07           | 6,63      |        | 50            | 3,67          |            | 50         | 10,17                   |
| 55         | 6.19           | 6,19      |        | 55            | 3,00          |            | 55         | 8,85                    |
| 60         | 4.86           | 4,86      |        | 60            | 2,34          | 2,55       | 60         | 8,85                    |
| 65         | 3,98           | 4,42      |        | 65            | 1,84          | 2,26       | 65         |                         |
| 70         | 3,54           | 3,98      |        | 70            | 1,67          | 1,87       | 70         | 5,97                    |
| 75         |                | 3,49      |        | 75            |               | 1,77       | 75         | 4,87                    |
| 80         | 2,87           | 2,87      |        | 80            | 1,44          |            | 80         | 3,98                    |
| 85         | 2,43           | 2,21      |        | 85            | 1,11          | 1,04       | 85         | 3,54                    |
| 90         | 1,99           | 1,77      |        | 90            | 0,88          | 0,79       | 90         | 3,10                    |
| 95         | 1,55           | 1,55      |        | 95            | 0,66          | 0,59       | 95         | 2,48                    |
| 100        | 0,97           | 0,88      |        | 100           | 0,55          | 0,53       | 100        |                         |
| 105        | 0,88           | 0,66      |        | 105           | 0,44          | 0,39       | 105        | 1,11                    |
| 110        | 0,57           |           |        | 110           | 0,33          | 0,33       | 110        | 0,88                    |
| 115        | 0,44           | 0,44      |        | 115           | 0,22          |            | 115        |                         |
| 120        | 0,35           | 0,29      |        |               |               |            | 120        | 0,66                    |
| 125        | 0,27           | 0,22      |        | PAR(0+) d     | esc=530 à 400 | μE m-2 s-1 |            |                         |
| 130        | 0,20           | 0,20      |        | PAR(0-        | +) rem=450 μE | m-2 s-1    | PAR(0+     | ) rem=2000 μE n         |
| 135        | 0,15           | 0,15      |        |               |               |            |            |                         |
| 140        | 0,11           |           |        |               |               |            |            |                         |
| PAR(0+     | ) desc=2000 μI | E m-2 s-1 | PAR(0- | +) rem=2000 μ | E m-2 s-1     |            |            |                         |

## Tableau 2 - PAR (z) exprimé en % PAR(0-) (suite)

| station 67 | 11/10/1994     | 11h10     | st  | ation 69  | 12/10/1994     | 11h15      | station 71 | 13/10/1994    | 11h25             |
|------------|----------------|-----------|-----|-----------|----------------|------------|------------|---------------|-------------------|
| prof(m)    | %PAR0-des      | %PAR0-rem | . R | rof(m)    | %PAR0-des      | %PAR0-rem  | prof(m)    | %PAR0-dest    | %PAR0-rem         |
| 1          |                | 47,76     |     | 1         |                | 66,32      | 1          |               | (0.00             |
| 5          |                | 39,16     |     | 5         | 16,21          | 17,68      | 5          |               | 60,98             |
| 10         | 24,53          | 32,00     |     | 10        | 13,26          | 15,47      | 10         |               |                   |
| 15         |                | 22,45     |     | 15        | 10,61          |            | 15         |               | 38,91             |
| 20         |                | 17,67     |     | 20        | 8,84           |            | 20         | 18,50         | 35,37             |
| 25         | 9,81           | 14,33     |     | 25        | 9,15           |            | 25         | 11,50         | 21,22             |
| 30         | 7,56           | 11,94     |     | 30        | 7,62           |            | 30         | 9,50          | 16,46             |
| 35         | 6,81           |           |     | 35        | 7,17           |            | 35         |               | 14,64             |
| 40         |                | 8,60      |     | 40        | 6,71           | 8,84       | 40         |               | 10,06             |
| 45         | 5,25           | 5,25      |     | 45        | 6,05           | 5,31       | 45         |               | 8,54              |
| 50         | 4,91           | 4,06      |     | 50        | 5,43           | 4,79       | 50         | 5,05          | 7,32              |
| 55         | 4,41           | 3,92      |     | 55        | 3,88           | J          | 55         | 3,54          |                   |
| 60         | 4,41           | 3,82      |     | 60        | 3,41           | 3,68       | 60         | 3,03          | 4,76              |
| 65         | 3,43           | 3,10      |     | 65        | 3,16           | 2,58       | 65         | 2,27          | 3,66              |
| 70         |                | 2,63      |     | 70        | 2,37           | 2,41       | 70         | 1,77          | 2,87              |
| 75         | 3,14           | 2,15      |     | 75        | 2,05           | 1,61       | 75         | 1,52          | 2,26              |
| 80         | 2,45           | 1,84      |     | 80        | 1,58           | 1,13       | 80         | 1,26          | 1,40              |
| 85         | 1,86           | 1,58      |     | 85        | 1,26           | 0,80       | 85         | 1,01          | 1,28              |
| 90         | 1,47           | 1,34      |     | 90        | 0,79           | 0,68       | 90         | 0,71          | 0,98              |
| 95         | 1,18           | 1,05      |     | 95        |                | 0,34       | 95         | 0,51          | 0,79              |
| 100        | 0,74           | 0,81      |     | 100       | 0,63           | 0,31       | 100        | 0,45          | 0,67              |
| 105        |                |           |     | 105       | 0,47           | 0,25       | 105        | 0,35          | 0,49              |
| 110        | 0,59           |           |     | 110       | 0,32           |            | 110        | 0,25          | 0,40              |
| 115        | 0,49           | 0,43      |     | 115       | 0,27           |            | 115        | 0,23          | 0,34              |
| 120        | 0,34           | 0,36      |     | 120       | 0,24           | 0,24       | 120        | 0,20          |                   |
| 125        | 0,33           | 0,31      |     | 125       | 0,24           | 0,18       |            |               |                   |
| 130        | 0,25           | 0,23      |     |           |                |            | PAR(0+)    | desc=1750 µl  | E m <b>-2 s-1</b> |
| 135        | 0,17           | 0,20      |     | PAR(0+)   | desc=600 à 530 | μE m-2 s-1 | PAR(0+     | ) rem=1450 µI | E m-2 s-1         |
| 140        |                | 0,19      |     | PAR(0+) r | em=2000 à 750  | μE m-2 s-1 |            |               |                   |
| PAR(0+     | ) desc=1850 µI | E m-2 s-1 |     |           |                |            |            |               |                   |
| PAR(0-     | -) rem=1900 μE | E m-2 s-1 |     |           |                |            |            |               |                   |

### Tableau 2 - PAR (z) exprimé en % PAR (0-) (suite)

| ion 77 | 16/10/1994                                                | 11h15   | station 77bis                | 16/10/1994    | 11h45       | station 79                   | 17/10/1994<br>% PAR0-dest | 11h10<br>%PAR0-rem |
|--------|-----------------------------------------------------------|---------|------------------------------|---------------|-------------|------------------------------|---------------------------|--------------------|
| 1      | 75 79                                                     | 60.63   |                              | 75.79         | wir Antonem | 1                            | 48,25                     |                    |
| 5      | 10,12                                                     | 32.84   | 5                            | ,             | 35,37       | 5                            |                           | 42,89              |
| 10     |                                                           | 24.25   | 10                           |               | 25,26       | 10                           |                           | 32,17              |
| 15     | 21.73                                                     | 20.21   | 15                           | 22,74         | 22,74       | 15                           | 20,37                     | 21,44              |
| 20     | ,                                                         | 15.16   | 20                           | ,             | 12,63       | 20                           |                           | 17,16              |
| 25     | 10,11                                                     | 10,61   | 25                           | 10,11         | 9,85        | 25                           |                           | 15,01              |
| 30     | 7,58                                                      | 7,58    | 30                           | 8,08          | 7,07        | 30                           | 8,04                      | 10,72              |
| 35     | 6,06                                                      | 5,56    | 35                           | 5,56          | 5,05        | 35                           |                           | 7,51               |
| 40     | 4,55                                                      | 4,55    | 40                           | 4,04          | 3,79        | 40                           |                           | 5,36               |
| 45     | 3,28                                                      | 2,78    | 45                           | 2,53          | 2,78        | 45                           | 3,22                      | 3,75               |
| 50     | 2,53                                                      | 2,53    | 50                           | 2,02          | 2,78        | 50                           | 2,68                      | 3,00               |
| 55     | 1,77                                                      | 1,77    | 55                           | 1,67          | 1,77        | 55                           | 2,14                      | 2,31               |
| 60     | 1,26                                                      | 1,52    | 60                           | 1,26          | 1,26        | 60                           | 1,34                      | 1,61               |
| 65     | 1,01                                                      | 1,11    | 65                           | 1,01          | 1,11        | 65                           | 1,07                      | 1,39               |
| 70     | 0,76                                                      | 0,81    | 70                           | 0,81          | 0,71        | 70                           | 0,80                      | 1,02               |
| 75     | 0,61                                                      | 0,71    | 75                           | 0,61          | 0,61        | 75                           | 0,64                      | 0,80               |
| 80     | 0,45                                                      | 0,51    | 80                           | 0,40          | 0,51        | 80                           |                           |                    |
| 85     | 0,35                                                      | 0,38    | 85                           | 0,35          | 0,36        | 85                           |                           | 0,48               |
| 90     | 0,23                                                      | 0,30    | 90                           | 0,28          | 0,28        | 90                           |                           | 0,38               |
| 95     | 0,21                                                      | 0,25    | 95                           | 0,20          | 0,23        | 95                           | 0,32                      | 0,29               |
| 100    | 0,14                                                      |         | 100                          | 0,15          | 0,18        | 100                          | 0,21                      | 0,24               |
| 105    | 0,13                                                      |         | 105                          | 0,13          | 0,16        | 105                          | 0,16                      | 0,24               |
| 110    | 0,10                                                      |         | 110                          | 0,10          | 0,11        | 110                          | 0,14                      | 0,19               |
| 115    | 0,08                                                      |         | 115                          | 0,08          | 0,10        | 115                          | 0,08                      | 0,16               |
| 120    | 0,06                                                      |         | 120                          | 0,06          | 0,08        | 120                          |                           | 0,13               |
| 125    | 0,05                                                      | 0,05    | 125                          | 0,05          | 0,05        | 125                          |                           | 0,11               |
| 130    |                                                           | 0,04    | 130                          | 0,05          | 0,05        | 130                          | 0,06                      | 0,10               |
| 135    | 0,03                                                      |         | 135                          | 0,03          | 0,03        | 135                          | 0,05                      | 0,07               |
|        |                                                           |         | 140                          | 0,03          |             |                              |                           |                    |
| PAR(0+ | $PAR(0+) \text{ desc}=1750 \ \mu\text{E m}-2 \text{ s}-1$ |         | PAR(0+) desc=1750 μE m-2 s-1 |               |             | PAR(0+) desc=1650 µE m-2 s-1 |                           |                    |
| PAR(0  | +) rem=1750 μE                                            | m-2 s-1 | PAR(0+)                      | ) rem=1750 µE | E m-2 s-1   | PAR(0+)                      | ) rem=1650 μE             | m-2 s-1            |

Tableau 2 - PAR (z) exprimé en % PAR (0-) (suite)

.

station 77

.

prof(m) 

| station 73                        | 14/10/1994     | 11h12     |  |  |  |  |  |  |
|-----------------------------------|----------------|-----------|--|--|--|--|--|--|
| prof(m)                           | %PAR0-dest     | %PAR0-rem |  |  |  |  |  |  |
| 1                                 | 88,42          | 54,62     |  |  |  |  |  |  |
| 5                                 | 34,74          | 40,97     |  |  |  |  |  |  |
| 10                                | 37,89          | 27,31     |  |  |  |  |  |  |
| 15                                | 16,58          | 18,21     |  |  |  |  |  |  |
| 20                                | 11,05          | 13,66     |  |  |  |  |  |  |
| 25                                | 16,80          | 11,38     |  |  |  |  |  |  |
| 30                                |                | 9,10      |  |  |  |  |  |  |
| 35                                | 7,00           | 6,83      |  |  |  |  |  |  |
| 40                                |                | 5,92      |  |  |  |  |  |  |
| 45                                | 4,42           | 4,55      |  |  |  |  |  |  |
| 50                                | 4,04           | 3,41      |  |  |  |  |  |  |
| 55                                | 4,42           | 2,73      |  |  |  |  |  |  |
| 60                                |                | 2,28      |  |  |  |  |  |  |
| 65                                | 2,53           | 1,82      |  |  |  |  |  |  |
| 70                                | 1,89           | 1,37      |  |  |  |  |  |  |
| 75                                | 1,58           |           |  |  |  |  |  |  |
| 80                                | 1,26           | 0,64      |  |  |  |  |  |  |
| 85                                | 1,07           | 0,77      |  |  |  |  |  |  |
| 90                                | 0,69           | 0,55      |  |  |  |  |  |  |
| 95                                | 0,51           | 0,46      |  |  |  |  |  |  |
| 100                               | 0,47           | 0,41      |  |  |  |  |  |  |
| 105                               |                | 0,32      |  |  |  |  |  |  |
| 110                               | 0,38           | 0,25      |  |  |  |  |  |  |
| 115                               | 0,32           | 0,23      |  |  |  |  |  |  |
| 120                               |                | 0,18      |  |  |  |  |  |  |
| 125                               | 0,19           |           |  |  |  |  |  |  |
| 130                               | 0,16           |           |  |  |  |  |  |  |
| 135                               | 0,15           | 0,11      |  |  |  |  |  |  |
| 140                               | 0,12           |           |  |  |  |  |  |  |
| 145                               | 0,09           | 1         |  |  |  |  |  |  |
| PAR(0+) desc=1400 $\mu$ E m-2 s-1 |                |           |  |  |  |  |  |  |
| PAR(0+                            | -) rem=1750 μE | m-2 s-1   |  |  |  |  |  |  |

| Tab | leau 2 | 2 - | PAR | ( <b>z</b> ) | exprimé | en | % | <b>PAR(0-)</b> | ) (suite) |
|-----|--------|-----|-----|--------------|---------|----|---|----------------|-----------|
|-----|--------|-----|-----|--------------|---------|----|---|----------------|-----------|

| station 75 | 15/10/1994                        | 11h20     |
|------------|-----------------------------------|-----------|
| prof(m)    | %PAR0-desc                        | %PAR0-rem |
| 1          |                                   |           |
| 5          | 30,32                             | 35,37     |
| 10         |                                   | 30,32     |
| 15         | 17,68                             | 20,21     |
| 20         | 15,16                             | 15,16     |
| 25         | 10,11                             | 10,11     |
| 30         | 7,58                              | 7,58      |
| 35         | 6,06                              | 5,05      |
| 40         | 3,54                              | 4,55      |
| 45         | 2,53                              | 3,28      |
| 50         | 1,77                              | 2,43      |
| 55         | 1,52                              | 1,87      |
| 60         | 1,26                              | 1,41      |
| 65         | 1,01                              | 1,11      |
| 70         | 0,76                              | 0,91      |
| 75         | 0,61                              | 0,76      |
| 80         | 0,51                              | 0,56      |
| 85         | 0,35                              | 0,43      |
| 90         |                                   |           |
| 95         | 0,25                              | 0,33      |
| 100        | 0,20                              | 0,25      |
| 105        | 0,15                              | 0,23      |
| 110        | 0,13                              | 0,18      |
| 115        | 0,13                              | 0,13      |
| 120        |                                   | 0,13      |
| 125        | 0,10                              | 0,10      |
| 130        | 0,08                              |           |
| 135        | 0,08                              | 0,08      |
| 140        |                                   | 0,06      |
| 145        |                                   |           |
| 150        | 0,03                              |           |
| PAR(0+     | ) desc=1750 μE                    | E m-2 s-1 |
| PAR(0+     | <ul> <li>) rem=1750 μE</li> </ul> | 2 m-2 s-1 |

| station 81 | 18/10/1994     | 111615    |             |               |              | station 90 | 20/10/1994     | 121605    |
|------------|----------------|-----------|-------------|---------------|--------------|------------|----------------|-----------|
| prof(m)    | %PAR0-dest     | %PAR0-rem | station 84  | 19/10/1995    | 12h05        | prof(m)    | %PAR0-dest     | %PAR0-rem |
| 1          |                |           | prof(m)     | %PAR0-desc    | %PAR0-rem    | 1          | 71,23          | 42,34     |
| 5          |                | 45,57     | 1           |               | 58,95        | 5          | 35,62          | 25,41     |
| 10         |                | 26,80     | 5           | 34,01         | 45,47        | 10         |                | 22,58     |
| 15         | 21,44          | 18,76     | 10          | 23,81         | 27,79        | 15         | 19,18          | 16,94     |
| 20         |                | 15,55     | 15          | 19,72         | 20,21        | 20         | 15,89          | 14,11     |
| 25         |                | 10,19     | 20          | 14,96         | 17,68        | 25         | 10,96          | 10,16     |
| 30         | 8,85           | 8,58      | 25          | 11,79         | 11,62        | 30         | 9,32           | 7,90      |
| 35         |                | 7,77      | 30          | 7,86          | 8,59         | 35         | 6,58           | 5,65      |
| 40         |                | 5,90      | 35          | 5,89          | 6,57         | 40         | 4,93           | 4,80      |
| 45         | 4,02           |           | 40          | 4,42          | 5,36         | 45         | 3,84           | 3,44      |
| 50         | 2,95           | 2,95      | 45          | 3,79          | 4,18         | 50         |                |           |
| 55         | 2,41           | 2;09      | 50          | 3,47          | 3,22         | 55         | 2,19           | 2,09      |
| 60         | 1,77           | 1,61      | 55          | 2,53          | 2,57         | 60         | 1,92           | 1,69      |
| 65         | 1,39           | 1,34      | 60          | 1,89          | 1,88         | 65         | 1,37           | 1,13      |
| 70         | 1,07           | 1,02      | 65          | 1,52          | 1,61         | 70         | 1,10           | 0,90      |
| 75         | 0,80           | 0,80      | 70          | 1,18          | 1,39         | 75         | 0,82           | 0,68      |
| 80         |                | 0,64      | 75          | 0,95          | 1,07         | 80         | 0,66           | 0,56      |
| 85         |                |           | 80          | 0,76          | 0,80         | 85         | 0,49           | 0,38      |
| 90         |                |           | 85          | 0,57          | 0,56         | 90         | 0,41           | 0,34      |
| 95         | 0,31           |           | 90          | 0,41          | 0,43         | 95         | 0,33           |           |
|            |                |           | 95          | 0,32          | 0,38         | 100        | 0,22           |           |
| PAR(0+     | ) desc=1650 μE | E m-2 s-1 | 100         | 0,24          | 0,29         | 105        | 0,21           | 0,23      |
| PAR(0+     | -) rem=1650 μE | 2 m-2 s-1 | 105         | 0,20          |              | 110        | 0,16           | 0,17      |
|            |                |           | 110         | 0,17          | 0,20         | 115        | 0,14           | 0,14      |
|            |                |           | 115         | 0,12          | 0,18         | 120        | 0,07           | 0,11      |
|            |                |           | 120         | 0,11          | 0,16         | 125        | 0,07           | 0,08      |
|            |                |           | 125         | 0,11          | 0,11         | 130        |                | 0,06      |
|            |                |           | 130         | 0,08          | 0,11         | 135        | 0,05           |           |
|            |                |           | 135         |               |              | 140        |                |           |
|            |                |           | 140         |               | 0,08         | 145        | 0,03           |           |
|            |                |           | PAR(0+) des | sc=1300 à 160 | 0 μE m-2 s-1 | PAR(0+)    | ) desc=1700 µE | E m-2 s-1 |
|            |                |           | PAR(0+) rer | n=1750 à 1650 | ) μE m-2 s-1 | PAR(0+     | ) rem=1650 μE  | m-2 s-1   |

Tableau 2 - PAR (z) exprimé en % PAR (0-) (suite)

|            |                                   |           |                              | Tableau 2 - | PAR (z) exp    | rimé en % P. | AR (0-) (suit | e)             |                 |           |
|------------|-----------------------------------|-----------|------------------------------|-------------|----------------|--------------|---------------|----------------|-----------------|-----------|
| station 96 | 21/10/1994                        | 111h50    | Y.                           | station 101 | 2/10/1994      | 10h30        | _             |                |                 | -         |
| prof(m)    | %PAR0-desc                        | %PAR0-rem |                              | prof(m)     | %PAR0-dese     | %PAR0-rem    |               | station 107    | 23/10/1994      | 10h50     |
| 1          | 60,66                             | 45,49     |                              | 1           | 69,69          |              |               | prof(m)        | %PAR0-dest      | %PAR0-rem |
| 5          | 40,44                             | 27,80     |                              | 5           | 32,17          | 42,89        |               | 1              |                 | 72,85     |
| 10         | 20,22                             | 17,69     |                              | 10          | 24,12          | 26,80        |               | 5              | 20,81           | 39,02     |
| 15         | ·                                 | 14,15     |                              | 15          |                | 21,44        |               | 10             |                 | 31,22     |
| 20         | 13,14                             | 12,13     |                              | 20          | 16,08          | 16,08        |               | 15             |                 | 23,41     |
| 25         | 10.11                             | 8.59      |                              | 25          | 11,79          | 12,33        |               | 20             | 14,05           | 15,61     |
| 30         | 7.58                              | 7.08      |                              | 30          | 9,11           | 9,11         |               | 25             | 10,41           | 10,41     |
| 35         | 6.07                              | 5.05      |                              | 35          | 6,43           | 6,97         |               | 30             | 8,85            | 8,85      |
| 40         | 4.55                              | 4,30      |                              | 40          | ·              | 5,36         |               | 35             | 7,28            | 6,76      |
| 45         | 3.54                              | 3.18      |                              | 45          |                | 4,18         |               | 40             | 5,20            | 5,72      |
| 50         | 2,53                              | 2,27      |                              | 50          |                | 2,95         |               | 45             | 3,64            | 3,90      |
| 55         | 2.02                              | 1,72      |                              | 55          | 2,68           | 2,25         |               | 50             | 3,12            | 3,23      |
| 60         | 1.77                              | 1,42      |                              | 60          | 1,88           | 1,88         |               | 55             | 2,60            | 2,34      |
| 65         | 1,26                              | 1,01      |                              | 65          | 1,61           | 1,45         |               | 60             | 2,08            | 1,93      |
| 70         | 1,01                              | 0,81      |                              | 70          | 1,07           | 1,07         |               | 65             | 1,56            |           |
| 75         | 0,76                              | 0,61      |                              | 75          | 0,80           | 0,91         |               | 70             | 1,14            |           |
| 80         | 0,61                              | 0,48      |                              | 80          | 0,66           | 0,70         |               | 75             | 0,78            | 0,83      |
| 85         | ·                                 | 0,40      |                              | 85          | 0,59           | 0,59         |               | 80             | 0,62            | 0,68      |
| 90         | 0,35                              | 0,35      |                              | 90          | 0,49           | 0,43         |               | 85             | 0,57            | 0,52      |
| 95         | 0,30                              | 0,25      |                              | 95          | 0,39           | 0,35         |               | 90             | 0,52            | 0,44      |
| 100        | 0,25                              | 0,20      |                              | 100         | 0,29           | 0,29         |               | 95             | 0,31            | 0,36      |
| 105        | 0,18                              | 0,15      |                              | 105         | 0,27           | 0,21         |               | 100            | ° 0 <b>,2</b> 6 | 0,26      |
| 110        | 0,15                              | 0,13      |                              | 110         | 0,24           | 0,16         |               | 105            | 0,21            | 0,23      |
| 115        | 0,13                              | 0,10      |                              | 115         | 0,16           | 0,13         |               | 110            | 0,18            | 0,18      |
| 120        | 0,10                              | 0,10      |                              | 120         | 0,13           | 0,11         |               | 115            | 0,13            | 0,16      |
| 125        | 0,08                              | 0,08      |                              | 125         | 0,10           | 0,11         |               | 120            | 0,13            | 0,13      |
| 130        | 0.07                              |           |                              | 130         | 0,08           | 0,08         |               | 125            | 0,10            | 0,10      |
| 135        | 0.05                              |           |                              | 135         | 0,08           |              |               | 130            | 0,10            |           |
| PAR(0+     | $PAR(0+) desc=1750 \mu E m-2 s-1$ |           | PAR(0+) desc=1650 µE m-2 s-1 |             |                |              | PAR(0+        | ) desc=1700 μl | E m-2 s-1       |           |
| PAR(0-     | ) rem=1750 μE                     | m-2 s-1   |                              | PAR(0+      | ) desc=1650 µl | E m-2 s-1    |               | PAR(0+         | ) desc=1700 μl  | E m-2 s-1 |

## Tableau 2 - PAR (z) exprimé en % PAR (0-) (suite)

| station 113 | 24/10/1994        |           | station 120 | 25/10/1994    | 11h00        |
|-------------|-------------------|-----------|-------------|---------------|--------------|
| prof(m)     | %PAR0-desc        |           | prof(m)     | %PAR0-dest    | %PAR0-rem    |
| 1           |                   |           | 1           |               | 84,20        |
| 5           | 37,512            |           | 5           |               |              |
| 10          | 29,474            |           | 10          | 27,80         | 39,81        |
| 15          | 18,204            |           | 15          |               |              |
| 20          |                   |           | 20          | 15,16         | 15,20        |
| 25          |                   |           | 25          | 12,64         |              |
| 30          |                   |           | 30          | 10,93         | 10,50        |
| 35          | 6,762             |           | 35          | 7,80          | 7,70         |
| 40          | 5,201             |           | 40          | 6,24          | 6,07         |
| 45          | 4,681             |           | 45          | 4,68          | 4,55         |
| 50          | 3,641             |           | 50          |               | 3,79         |
| 55          | 2,861             |           | 55          | 3,03          | 3,29         |
| 60          | 2,274             |           | 60          | 2,53          | 2,38         |
| 65          | 1,617             |           | 65          | 2,02          | 2,12         |
| 70          | 1,263             |           | 70          | 1,52          | 1,77         |
| 75          | 1,011             |           | 75          | 1,26          | 1,26         |
| 80          | 0,808             |           | 80          | 1,01          | 1,06         |
| 85          | 0,758             |           | 85          | 0,81          | 0,78         |
| 90          | 0,606             |           | 90          | 0,61          | 0,61         |
| 95          | 0,455             |           | 95          | 0,51          | 0,51         |
| 100         | 0,379             |           | 100         | 0,40          | 0,40         |
| 105         | 0,328             |           | 105         | 0,33          | 0,33         |
| 110         | 0,227             |           | 110         | 0,23          | 0,25         |
| 115         | 0,126             |           | 115         | 0,20          | 0,20         |
| 120         | 0,076             |           | 120         | 0,18          | 0,18         |
| 125         | 0,066             |           | 125         | 0,14          |              |
|             |                   |           | 130         | 0,13          | 0,13         |
| PAR(0+) de  | esc=1650 à 2000 μ | E m-2 s-1 | 135         | 0,10          |              |
|             |                   |           | 140         | 0,08          |              |
|             |                   |           | 145         | 0,05          |              |
|             |                   |           | PAR(0+) de  | sc=1800 à 175 | 0 μE m-2 s-1 |
|             |                   |           | PAR(0+) re  | m=1000 à 1750 | ) μE m-2 s-1 |

Tableau 2 - PAR (z) exprimé en % PAR (0-) (suite)

**Tableau 3**. Valeurs des profondeurs de la zone euphotique, z1% (et du z0,1%) de la valeur de PAR sous la surface (PAR (0<sup>-</sup>). Heure locale de la descente du LICOR plan. En gras, stations où les deux instruments ont été utilisés.

| Station   | Heure locale | Z1% Licor   | Z1% QSP     | Z0,1%Licor  | Z0,1% QSP   |
|-----------|--------------|-------------|-------------|-------------|-------------|
|           |              | (en mètres) | (en mètres) | (en mètres) | (en mètres) |
| 2         | 16h00        | -           | 103         | -           | 150         |
| 5         | 12h30        | -           | 89          | -           | 134         |
| 8         | 10h30        | -           | 83          | -           | 128         |
| 11        | 10h30        | 98          | -           | 152         | -           |
| 12        | 16h          | -           | 80          | -           | 120         |
| 15        | 13h30        | 88          | 97          | 145         | 144         |
| 18        | 12h00        | 91          | 94          | 140         | 132         |
| 20        | 11h00        | 82          | -           | 116         | -           |
| 21        | 10h00        | -           | 84          | -           | 124         |
| 24        | 07h00        | -           | 82          | -           | 122         |
| 25        | 12h40        | 90          | 95          | 140         | 152         |
| 26        | 15h00        | -           | 100         | -           | 148         |
| 30        | 07h30        | -           | 102         | -           | ?           |
| 31        | 11h30        | -           | 94          | -           | ?           |
| 36        | 11h00        | 105         | 95          | 146         | 137         |
| 37        | 11h30        | -           | 108         | -           | 162         |
| 42        | 09h00        | 95          | -           | 145         | -           |
| 43        | 11h30        | -           | 96          | -           | 156         |
| 44        | 15h00        | 93          | -           | 130         | -           |
| 48        | 07h00        | -           | 86          | -           | 120         |
| 49        | 11h40        | 102         | 112         | 145         | 160         |
| 50        | 15h00        | -           | 103         | -           | 139         |
| 54        | 07h00        | -           | 102         | -           | >150        |
| 55        | 11h00        | 100         | -           | 142         | -           |
| 56        | 13h00        | -           | 104         | -           | 148         |
| 57        | 15h00        | -           | 99          | -           | 136         |
| 63        | 11h15        | 85          | 98          | 136         | 140         |
| 65        | 11h15        | 110         | 113         | 150         | 160         |
| 67        | 11h10        | 95          | 108         | 148         | 160         |
| 69        | 11h15        | 90          | 108         | 136         | 160         |
| 71        | 11h25        | 84          | -           | 132         | -           |
| 73        | 11h12        | 82          | 88          | 134         | 146         |
| 75        | 11h20        | 70          | 77          | 114         | 138         |
| 77        | 11h15        | 66          | 77          | 111         | 126         |
| 77bis     | 11h45        | 67          | -           | 112         | -           |
| <b>79</b> | 11h10        | 71          | 77          | 113         | 128         |
| 81        | 11h15        | 70          | 81          | 112         | 132         |
| 83        | 07h00        | -           | 67          | -           | 124         |

Stations 2 à 83.

### Tableau 3 (suite). idem

## Stations 84 à 120.

| 84  | 12h05 | 74 | 74 | 120 | 124  |
|-----|-------|----|----|-----|------|
| 85  | 15h00 | -  | 65 | 124 | 106  |
| 89  | 07h00 | -  | 67 | -   | 113  |
| 90  | 12h05 | 72 | 81 | 120 | 129  |
| 95  | 07h00 | -  | 57 | -   | 102? |
| 96  | 11h50 | 65 | 76 | 115 | 126  |
| 97  | 15h00 | -  | 56 | -   | 97   |
| 101 | 10h30 | 72 | 77 | 120 | 130  |
| 102 | 10h30 | -  | 82 | -   | 138  |
| 103 | 15h00 | -  | 59 | -   | 104  |
| 107 | 10h50 | 70 | -  | 125 | 128  |
| 108 | 13h00 | -  | 81 |     | 140  |
| 109 | 15h00 | -  | 65 |     | 110  |
| 113 | 10h35 | 75 | 80 | 130 | 130  |
| 114 | 12h00 | -  | 86 | -   | 143  |
| 115 | 15h00 | -  | 69 | -   | 113  |
| 119 | 07h00 | -  | 83 | -   | 130  |
| 120 | 11h00 | 80 | 87 | 135 | 136  |

-

#### SPECTRAL DOWNWARD IRRADIANCE AND UPWARD RADIANCE

#### BACKGROUND

The Flupac program is a component of the international JGOFS (Joint Global Ocean Flux Study). The main purpose of JGOF is to understand on a global scale the mechanisms that control the carbon flux in the ocean and also to evaluate the ocean-atmospheric exchanges. The Flupac campaign occured in September and October of 1994 on the R/V Atalante. It took place in the Western Pacific Equatorial Zone. This campaign was principally devoted to the study of the biochemical cycles in two different hydrological structures; 1) with no upwelling located in the western part of the zone of interest; 2) with upwelling, located in the eastern part of the zone. It was interesting to measure the carbon sink and the intensity of the "biological pump" in these two characteristic places.

#### **CRUISE SCHEDULE**

The R/V Atalante left from Noumea (New Caledonia France) on the of 23rd of September for a 38 day cruise and arrived in Tahiti on the 29th of October. The schedule was as follows:

- calibration of some instruments at Lifou island during the night of the 23rd.
- transit to the north for the first cast  $(165^{\circ}E / 15^{\circ}S)$ .
- cast every degree of latitude up the (165°E/ 6°N).
- casts at the same location for 6 days (166°E/0°N).
- transit to the east.
- casts at the same location for 6 days (150.15°W/0°N).
- end of the casts and return to Tahiti.

### **INSTRUMENTS**

During most of the day casts, underwater radiometric data was acquired. We used the Biospherical Instrument MER1012 for this purpose. In a few words, this instrument is designed to take measurements of:

- the downwelling flux Ed at 410, 441, 520, 560, 683 nm
- the upwelling radiance Lu at 410 441, 488, 520, 560, 683 nm

Peripherical instruments were also attached to the MER1012:

- a CTD (conductivity, salinity and temperature)
- a fluorometer
- a transmissometer

This MER1012 could not be calibrated before the cruise but was sent to the Center for Hydro-Optics & Remote Sensing of San Diego State University for calibration as soon as we received it after the cruise. The radiometric calibration report revealed anomalous responses for the Ed(410), Ed(442) and Lu(682) and EoPar. These anomalous responses were said to probably be due to a gradual decay of the photodiode sensitivity. We decided however to trust
the latest calibration rather than making a risky assumption on the actual behavior of the sensors <u>during</u> the cruise. This will be discussed further.

It also turned out that the transmissometer borrowed from the Scripps Photobiology Group and used during the cruise did not work properly and gave incorrect and unrecoverable data. The reason was because one of the internal lenses was stained due to internal corrosion.

All the other acquisition channels and instruments seemed to work correctly.

## **MEASUREMENT PROCEDURE**

Because of several technical problems and task priorities on board (optical measurements were secondary), we could not use our electrical towing cable and the appropriate crane for our measurements. Thus, we had to use a "homemade" method with a short electric, manually-monitored cable, coupled with a carrying cable. The whole process was not satisfactory but did work at least. Also, the current being very strong in equatorial regions, our casts were sometimes very difficult to do, and the stability of the instrument was strongly questionable as you will notice on the optical data displayed further. Working with this sparing cable that was only 150 m long obliged us to take the MER1012 deckboard and our computer down on the bridge near the crane. Despite these many problems, we managed to acquire some data. For each cast, we was helped by one or two crew members.

## CASTS

We were usually able to do one cast per day at around 12 am (local time) and since we were working in the equatorial region, the sun elevation was usually very close to the zenith. These particular conditions brought some questions out. For example, using a little side crane, the importance of the ship shade on the light measured by the MER1012 was in question. This question will remain unanswered but should not be neglected as far as the accuracy of the data is concerned.

Twenty-nine valuable up and down Mer casts were done during Flupac 94. As examples, the corrected file headers from two of these 29 casts are listed below. The cast 42 (file c1005a.d01) was made in an oligotrophic zone (low concentration in biomass). The cast 90 (file c1020a.d01) was made in an upwelling zone richer in biomass:

#### filename c1005a.d01

date 10-05-1994 day\_of\_year 278 day\_since\_010192 1009 file\_created 22:27:11 GMT cruise Flupac 94 (station 42 point fixe) position E166.35.458 N00.09.757 sky\_state clear cruise\_id flupac 94 operator\_name E. Pouliquen & C. Dupouy sun\_position 2 session started 22:27:11 underwater\_MER mer1012-8107 deck\_MER transmiss\_offset 0 trans\_air\_calib 4.866 cal\_date\_uw 021595

cal\_date\_deck 021595 type cast dark\_file black station\_number 00.42 number\_units 1 collection\_cal\_file calibration file flupac94.cfl lcd\_calib\_file 1 flu9410.cfl lcdfile\_created Jul 20 1995 17:52:39

#### filename c1020a.d01

date 10-20-1994 day\_of\_year 293 day\_since\_010192 1024 file\_created 22:14:56 GMT cruise Flupac 94 (station 90) position W150.03.995 N00.01.504 sky\_state clear (cirrus) cruise\_id flupac 94 operator\_name E. Pouliquen & C. Dupouy sun\_position 3 session\_started 22:14:56 underwater\_MER mer1012-8107 deck\_MER transmiss\_offset 0 trans\_air\_calib 4.866 cal\_date\_uw 021595 cal\_date\_deck 021595 type cast dark\_file black station\_number 00.90 number\_units 1 collection\_cal\_file calibration file flupac94.cfl lcd\_calib\_file 1 flu9410.cfl lcdfile\_created Jul 20 1995 18:03:56

#### **PROCESSING OF THE DATA**

The data processing first required a valid and updated calibration file. As mentioned in the last MER1012 calibration report, the time history of the sensors responsiveness shows an apparent increase of 1% per year for most of the channels. However, the time sampling of the calibration procedures has not been high enough to make an accurate estimate of the evolution of the responsiveness of each sensor, especially at the exact time of the cruise. So far there is <u>no</u> clue that enables us to prove that the degradation is only occurring during the use of the instrument or during its storage (or both). Based on this uncertainty and since the calibration was done 5 months after Flupac, we decided to use the last calibration coefficient rather than doing a total guess by interpolating the coefficients between the last and the previous calibrations.

Another element of reflection comes directly from the calibration process: James L. Muller and Clay C. Titus clearly mentioned that the 1% per year (since the last calibration in December 93) could result from an increase in actual source irradiance relative to the assumed irradiance scale. The same problem is encountered for the radiance calibration that even shows an increase of 2% to 7% over a 2 year period. According to Muller and Titus, this could result from the degradation of their reference reflectance plaque. To sum up, if we add the possible errors due to 1) the MER1012 responsiveness degradation (1 to 2%),

- 2) to the reference lamp (or plaque) response degradation (2% for the irradiance, 2% to 7% for the radiance)
- 3) and to the calibration error (from 0.8% to 1.4%),

we come to a minimum standard error of roughly 5% for the instrument itself.

Of course, measurements at sea bring also a set of uncertainty factors starting with the ship shade, the instrument motion (that most of all affects the upwelling radiance), and many other parasite factors. It comes then that all the data shown below must be strongly noisy and be affected by quantity of external elements. For example, the variation of the radiance (Ed) and (Lu) due to the oscillations of the instrument during the cast can be easily noticed on the cast sheets.

## **EXAMPLE OF TWO CAST SHEETS**

Using the most adequate calibration coefficients, we have been able to display the evolution of the radiance, of the irradiance, of the salinity, of the fluorometry and of the temperature on **Figure 1a and b.** As expected, for the two stations, the most penetrating wavelengths are 441 nm and 488 nm, while at 630 nm (red end of the visible spectrum), the downwelling irradiance is totally attenuated at 15 meters, the green to yellow wavelengths being intermediately attenuated (520 to 560 nm).

Station 90 at **figure 1a** is an example of a typical mesotrophic situation where temperature and salinity profiles are homogeneous from the surface down to 125 m. No stratification occurs in the euphotic layer. The *in vivo* fluorescence is of 0,12 mV at the surface, and its profile shows a regular increase from 0 to about 45m and a regular decrease to 120m. Light attenuation is constant from the surface down to 140 m. The same observation can be made for the upwelled radiance Lu.

Station 42 at **figure 1b** is typical of an oligotrophic situation with a strong thermocline and salinity discontinuity at 85m. The *in vivo* fluorescence at the surface is less than 0,1 mV and shows a sharp increase at 85 m. Light attenuation is lower than at station 90 (until the 80 m depth), due to a lower *in vivo* fluorescence. At 441 and 488 nm, light attenuation sharply increases at 85 m, associated with the deep chlorophyll maximum.

## **COMPUTATION OF THE KC**

Due to the instrument oscillations during the cast, the fluctuation of the absorption coefficient Kc was very important on a small depth scale. We averaged the Kc for every 10 meters starting from the sea surface to the lowest depth available.

**Figure 2a and b** show the vertical profiles of the attenuation coefficients for the different wavelengths at the two stations. Kc at long wavelengths (560,630nm) is identical at the two stations. The great difference between stations comes from the Kc at the blue-green wavelengths. At station 90, Kc (441, 488, 520nm) is higher than Kc (441,488) at station 42, and constant over the vertical. At station 42, Kc (441, 488, 520nm) presents a sharp increase above 80m, linked to the increase of the *in vivo* fluorescence. This increase is stronger for 441 nm, which is linked to the maximum wavelength of chlorophyll absorption.

**ACKNOWLEDGMENTS**: We thank Robert Le Borgne and all the crew members for their help and support during the preparation and during the cruise.



**Figure 1a.** Radiance, irradiance at 5 wavelengths, temperature, salinity and *in vivo* fluorometry at station 90 of the FLUPAC cruise. MER 1012 data. 0,02°N - 150,10°W.



Figure 1b. idem at station 42. 0,120N - 166,65°E.

34

Depth(m)

| flupac 94                                       | c1020a.d01 | Station 00.90                         |
|-------------------------------------------------|------------|---------------------------------------|
| 10-20-1994 at 22:14<br>sky state: clear (cirrus | :56 Mixed  | Layer Depth(m)                        |
| uw_MER mer1012-8                                | 107 Bottom | · · · · · · · · · · · · · · · · · · · |
| Comments:                                       |            |                                       |



**Figure 2a.** Vertical profiles of Kc at 5 wavelengths and fluorescence at station 90 of the FLUPAC cruise derived from MER 1012 data. 0,02°N - 150,10°W.

| flupac 94                                                                              | c1005a.d01                       | Station 00.42  |
|----------------------------------------------------------------------------------------|----------------------------------|----------------|
| 10-05-1994 at 22:27<br>sky state<br>sun position 2 <sup>lear</sup><br>uw_MER mer1012-8 | :11 Mixed<br>Top :<br>107 Botton | Layer Depth(m) |
| Comments:                                                                              |                                  |                |



Figure 2b. idem at station 42. 0,120N - 166,65°E.

1.

**Chapitre 7** 

# TOTAL ORGANIC CARBON

Dennis HANSELL<sup>(1)</sup>, Craig CARLSON<sup>(1)</sup> and Martine RODIER<sup>(2)</sup>

(1) Bermuda Biological Station for Research 297-8143 St Georges, GE-01 Bermuda (Email : dennis@bbsr.edu)

(2) Centre ORSTOM de Nouméa B.P. A5 98848 Nouméa Cedex, Nouvelle-Calédonie (Tél : (687) 26 10 00 - Fax : (687) 26 43 26 - Email : rodier@noumea.orstom.nc)

#### INTRODUCTION

The quantity of carbon found globally in marine dissolved organic matter (960 gT C) is second in size only to inorganic carbon in the ocean. This pool of carbon, referred to as dissolved organic carbon (DOC), is generally found in concentrations of 40-80 M C, an order of magnitude greater than the living and detrital particulate organic pool. Despite the large amount of carbon found in dissolved organic matter, the pool remains spatially and temporally undersampled and poorly understood. For instance, we know little about he biological or physical factors controlling the distribution of DOC, and we know even less about its chemical composition. Most problematic in this time of possible climate change is that we do not fully understand the contribution of DOC in the marine carbon cycle.

Recent work in the Equatorial Pacific has suggested that up to 75% of the carbon fixed as new primary production accumulates as DOC (Feely *et al.*, 1995; Peltzer *et al.*, 1995). If correct, this finding has an important implication : only 25% of new production can be exported vertically from the highly productive equatorial zone while the remainder must be exported horizontally. Horizontal export of organic carbon does not fit the new production paradigm that the oceanographic community has tried to understand for the last 3 decades. Determining DOC distributions in the western Equatorial Pacific, when coupled to results from the central and eastern Equatorial Pacific, will enable us to redefine the new production paradigm that is so critical to quantifying and predicting the marine and global carbon cycle.

#### SAMPLING

Samples were taken from 12 L Niskin bottles from 10-17 depths in the water column. Water was collected directly from the Niskins into 40 ml ultra-cleaned glass vials. The vialed water was acidified to approximately pH 2 with the addition of 150 $\mu$ l of 50% H3PO4, then sealed with teflon-lined caps. The vials were frozen (-20°C) until later analysis in a shore based laboratory.

#### ANALYTICAL METHODS

All DOC samples were analyzed by a high temperature combustion (HTC) method using a homemade instrument. The machine's configuration and operating parameters are as follows : Ultra high pure  $O_2$ , flowing through the machine at 175 ml/min, was used as a carrier gas. One hundred microliters of sample, already sparged of inorganic carbon, were injected manually through a pneumatic injection port into a quartz combustion tube (490 mm x 13 mm) packed with Pt gauze (Ionics), 7% Pt on alumina catalyst (Dymatec), Sulfix (Wako Pure Chemical Industries, Inc.) and CuO wire (Leeman Labs) heated to 740 C. The Pt catalyst, Sulfix and CuO wire were separated by thin layers of quartz wool. Sulfix was used for the removal of halides and the CuO wire was used to convert CO to  $CO_2$ . After passing through the combustion furnace, the carrier gas was passed through several water traps and a final copper halide trap before entering the detector. The  $CO_2$  was detected with a LiCor 6252  $CO_2$  analyzer and the signal was integrated with chromatographic software (Dynamax Macintegrator I version 1.3; Rainin Inst.).

Extensive conditioning of the combustion tube was essential to minimize the machine blank. After conditioning, the system blank was assessed with ampulated low carbon waters (LCW) that had been referenced against blank water provided by Dr. Jonathan Sharp for the 1994 DOC community intercomparison program. The system response was standardized daily with a four point calibration curve of glucose solution in LCW. Deep Sargasso seawater (>1000 m), which had been acidified and ampulated, served as an internal reference standard. Analyzing low carbon water and deep seawater reference several times a day allowed an assessment of the machines stability from run-to-run and day-to-day.

## REFERENCES

- FEELY, R.A., R. WANNINKHOF, C.E., COSCA, P.P., MURPHY, M.F., LAMB & M.D. STECKLEY. 1995 - CO<sub>2</sub> distributions in the equatorial Pacific during the 1991-1992 ENSO event. *Deep-Sea Res.*, II 42: 365-386.
- PELTZER, E.T. & N.A. HAYWARD. 1995 Spatial distribution and temporal variability of total organic carbon along 140°W in the equatorial Pacific Ocean in 1992. *Deep-Sea Res.*, II (in press).

| Flupac | Station : | 5    |
|--------|-----------|------|
| Depth  | DOC       | σ    |
| (m)    | (µM)      | (μM) |
| 1      | 73.24     | 1.29 |
| 20     | 74.42     | 0.95 |
| 40     | 68.95     | 1.02 |
| 60     | 68.8      | 0.97 |
| 70     | 69.23     | 0.42 |
| 80     | 65.29     | 1.46 |
| 90     | 59.47     | 1    |
| 100    | 58.88     | 0.49 |
| 150    | 53.73     | 1    |
| 180    | 49.36     | 0.98 |
| 1000   | 39.72     | 1.55 |
|        |           |      |

| Flupac | Station : | 6    |
|--------|-----------|------|
| Depth  | DOC       | σ    |
| (m)    | (µM)      | (µM) |
| 1      | 70.86     | 1.77 |
| 20     | 70.32     | 1.86 |
| 50     | 69.08     | 1.42 |
| 60     | 65.54     | 0.2  |
| 70     | 62.61     | 1.04 |
| 80     | 61.59     | 1.03 |
| 100    | 64.14     | 1.06 |
| 120    | 56.42     | 0.97 |
| 140    | 55.18     | 0.92 |
| 160    | 54.81     | 0.52 |
| 180    | 51.17     | 0.87 |
| 1000   | 42.38     | 1.17 |
|        |           |      |

| Flupac | Station : | 7    |
|--------|-----------|------|
| Depth  | DOC       | σ    |
| (m)    | (µM)      | (µM) |
| 1      | 72.52     | 1.09 |
| 20     | 67.69     | 1.56 |
| 60     | 63.31     | 1.66 |
| 70     | 59.4      | 0.68 |
| 80     | 59.95     | 0.88 |
| 100    | 59.86     | 0.2  |
| 120    | 56.16     | 1.32 |
| 140    | 56.05     | 0.14 |
| 160    | 55.12     | 0.91 |
| 180    | 52.27     | 0.88 |
| 1000   | 43.45     | 0.61 |
|        |           |      |

| Flupac | Station : | 8    |
|--------|-----------|------|
| Depth  | DOC       | σ    |
| (m)    | (µM)      | (μM) |
| 1      | 70.9      | 0.26 |
| 40     | 68.65     | 0.91 |
| 50     | 68.39     | 1.44 |
| 60     | 57.78     | 0.52 |
| 70     | 57.45     | 1.45 |
| 80     | 57.16     | 1.1  |
| 90     | 57.72     | 0.72 |
| 100    | 57.52     | 1.12 |
| 120    | 54.96     | 1.03 |
| 140    | 56.7      | 1.12 |
| 160    | 56.09     | 1.12 |
| 180    | 54 75     | 0.6  |

| Flupac | Station : | 9    |
|--------|-----------|------|
| Depth  | DOC       | σ    |
| (m)    | (µM)      | (µM) |
| 1      | 70.62     | 0.59 |
| 20     | 75.19     | 0.93 |
| 50     | 70.57     | 0.21 |
| 70     | 70.68     | 1.62 |
| 80     | 62.89     | 1.03 |
| 90     | 61.56     | 0.93 |
| 100    | 59.65     | 1.48 |
| 120    | 60.08     | 0.81 |
| 160    | 56.16     | 1.64 |
| 180    | 50.37     | 0.96 |
| 1000   | 43.44     | 1.34 |
|        |           |      |

| Flupac | Station : | 10   |  |  |
|--------|-----------|------|--|--|
| Depth  | DOC       | σ    |  |  |
| (m)    | (µM)      | (μM) |  |  |
| 1      | 70.86     | 1.89 |  |  |
| 40     | 70.5      | 1.36 |  |  |
| 50     | 68.77     | 1.63 |  |  |
| 60     | 69.54     | 1.21 |  |  |
| 70     | 68.27     | 0.93 |  |  |
| 80     | 66.62     | 0.64 |  |  |
| 90     | 66.4      | 1.26 |  |  |
| 100    | 62.14     | 1.33 |  |  |
| 120    | 61.97     | 0.63 |  |  |
| 140    | 58.05     | 0.37 |  |  |
| 160    | 58.2      | 0.86 |  |  |
| 180    | 55.56     | 0.38 |  |  |

| Flupac | Station : | 11   | ] | Flupac | Station : | 12   | Flupa |
|--------|-----------|------|---|--------|-----------|------|-------|
| Depth  | DOC       | σ    |   | Depth  | DOC       | σ    | Dept  |
| (m)    | (µM)      | (μM) |   | (m)    | (µM)      | (µM) | (m)   |
| 1      | 66.76     | 1.33 |   | 1      | 68.86     | 1.17 |       |
| 40     | 72.36     | 1.04 |   | 50     | 68.48     | 1.77 |       |
| 50     | 71.51     | 1.47 |   | 60     | 66.82     | 1.02 |       |
| 60     | 66.84     | 0.49 |   | 70     | 66.62     | 0.3  |       |
| 70     | 65.05     | 1.16 |   | 80     | 61.71     | 1.58 |       |
| 80     | 66.56     | 1.44 |   | 100    | 67.72     | 0.94 |       |
| 90     | 64.74     | 0.66 |   | 120    | 59.56     | 1.13 |       |
| 100    | 62.18     | 1.64 |   | 140    | 64.38     | 1.85 | 1     |
| 120    | 57.59     | 0.46 |   | 160    | 53.97     | 1.2  | 1     |
| 140    | 60.26     | 0.87 |   | 180    | 54.25     | 0.66 | 1     |
| 160    | 56.6      | 1.02 |   |        |           |      | 1     |
| 180    | <u> </u>  | 1.25 |   |        |           |      | 1     |

| Flupac | Station : | 13   |
|--------|-----------|------|
| Depth  | DOC       | σ    |
| (m)    | (µM)      | (μM) |
| 1      | 73.66     | 1.19 |
| 40     | 72.77     | 1.16 |
| 50     | 68.37     | 1.38 |
| 60     | 67.92     | 1.65 |
| 70     | 67.47     | 1.43 |
| 80     | 65.96     | 1.11 |
| 90     | 63.96     | 1.13 |
| 100    | 59.34     | 1.03 |
| 120    | 56.64     | 1.32 |
| 140    | 55.91     | 0.56 |
| 160    | 54.77     | 0.83 |
| 180    | 54.03     | 1.22 |

| Flupac | Station : | 14   | Flupac | Station : | 15   | Flupac | Station : | 16   |
|--------|-----------|------|--------|-----------|------|--------|-----------|------|
| Depth  | DOC       | σ    | Depth  | DOC       | σ    | Depth  | DOC       | σ    |
| (m)    | (µM)      | (µM) | (m)    | (µM)      | (μM) | (m)    | (µM)      | (µM) |
| 1      | 62.15     | 0.24 | 1      | 68.85     | 0.83 | 1      | 75.02     | 1.87 |
| 40     | 61.38     | 1.01 | 40     | 67.58     | 0.97 | 20     | 76.76     | 1.01 |
| 50     | 61.26     | 0.24 | 50     | 64.48     | 1.06 | 40     | 76.12     | 1.15 |
| 60     | 61.01     | 0.34 | 60     | 68.51     | 1.45 | 60     | 72.9      | 0.34 |
| 70     | 59.52     | 1.56 | 70     | 64.25     | 0.57 | 80     | 72        | 0.81 |
| 80     | 59.23     | 1.04 | 80     | 63.12     | 0.86 | 90     | 68.94     | 1.01 |
| 90     | 56.08     | 0.92 | 90     | 65.31     | 0.86 | 100    | 69.06     | 0.95 |
| 100    | 56.72     | 0.78 | 100    | 59.08     | 1.66 | 110    | 58.47     | 0.6  |
| 120    | 50.65     | 0.9  | 120    | 58        | 0.88 | 120    | 59.04     | 0.45 |
| 140    | 48.25     | 1.21 | 140    | 46.43     | 0.95 | 130    | 54.74     | 1.41 |
| 160    | 49.02     | 0.92 | 160    | 47.31     | 1.06 | 140    | 53.35     | 1.04 |
|        |           |      | 180    | 49.66     | 1.35 | 160    | 54.54     | 0.91 |
|        |           |      |        |           |      |        |           |      |
| Flupac | Station : | 17   | Flupac | Station : | 18   | Flupac | Station : | 19   |
| Depth  | DOC       | σ    | Depth  | DOC       | σ    | Depth  | DOC       | σ    |
| (m)    | (µM)      | (µM) | (m)    | (µM)      | (µM) | (m)    | (µM)      | (µM) |
| 1      | 68.82     | 1.56 | 1      | 69.35     | 0.63 | 1      | 71.69     | 1.49 |
| 20     | 69.95     | 0.76 | 40     | 68.37     | 1.25 | 20     | 74.72     | 0.98 |
| 40     | 71.55     | 0.88 | 60     | 67.69     | 1.55 | 40     | 66.87     | 1.43 |
| 60     | 69.82     | 1.47 | 70     | 68.35     | 0.75 | 60     | 65.82     | 1.76 |
| 80     | 67.52     | 1.6  | 80     | 67.71     | 1.08 | 70     | 65.81     | 0.78 |
| 100    | 61.11     | 0.94 | 90     | 65.7      | 1.19 | 80     | 64.75     | 1.23 |
| 110    | 56.15     | 1.01 | 100    | 56.77     | 1.5  | 90     | 64.78     | 1.22 |
| 120    | 56.43     | 0.89 | 120    | 56.62     | 0.95 | 100    | 63.98     | 1.99 |
| 120    | 54.24     | 1    | 140    | 55.43     | 1.01 | 120    | 60.8      | 0.28 |
| 160    | 53.27     | 1.24 | 160    | 55.51     | 0.8  | 140    | 58.31     | 1.44 |
| 180    | 51.17     | 1.28 | 180    | 55.05     | 0.78 | 160    | 55.05     | 0.94 |
|        |           |      | 1000   | 41.47     | 1.47 |        |           |      |
|        | Charlin   |      | 171    |           |      | <br>   |           |      |
| Flupac | Station : | 20   | Flupac | Station : | 21   | Flupac | Station : |      |
| Depth  | DOC       | σ    | Depth  | DOC       | σ    | Depth  | DOC       | σ    |
| (m)    | (µM)      | (μM) | (m)    | (μΜ)      | (μΜ) | (m)    | (µM)      | (µM) |
| 1      | 71.01     | 1.48 | 1      | 73.15     | 0.27 | 1      | 71.4      | 1.26 |
| 20     | 69.12     | 1.77 | 40     | 70.36     | 0.98 | 30     | 71.35     | 1.26 |
| 40     | 70.97     | 1.8  | 60     | 68.1      | 1.93 | 60     | 70.83     | 0.76 |
| 60     | 71.02     | 1.71 | 70     | 67.08     | 1.64 | 80     | 65.96     | 1.88 |
| 70     | 67.21     | 0.2  | 80     | 66.88     | 0.81 | 90     | 65.11     | 1.09 |
| 80     | 65.05     | 0.84 | 90     | 60.57     | 1.44 | 100    | 60.05     | 1.25 |
| 90     | 59.31     | 1.6  | 100    | 54.31     | 1.23 | 110    | 59.51     | 0.88 |
| 100    | 65.46     | 0.18 | 110    | 54.52     | 1.97 | 120    | 52.47     | 0.56 |
| 120    | 55.65     | 1.35 | 120    | 54.02     | 0.44 | 130    | 52.03     | 1.61 |
| 140    | 56.4      | 1.71 | 140    | 53.51     | 0.52 | 140    | 55.59     | 0.91 |
| 160    | 55.54     | 0.64 | 180    | 54.82     | 1.73 | 160    | 47        | 1.13 |
| 180    | 55.66     | 0.24 |        |           |      | 180    | 38.5      | 0.88 |

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$               | Flupac       | Station : | 38           | Flupac | Station :     | 44          |  | Flupac   | Station : | 62          |
|-----------------------------------------------------------------------|--------------|-----------|--------------|--------|---------------|-------------|--|----------|-----------|-------------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$               | Depth        | DOC       | σ            | Depth  | DOC           | σ           |  | Depth    | DOC       | σ           |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$               | (m)          | (µM)      | (µM)         | (m)    | (µM)          | (µM)        |  | (m)      | (µM)      | (µM)        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $               | 5            | 68.76     | 1.22         | 5      | 67.49         | 1.11        |  | 1        | 67.69     | 1.32        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $               | 20           | 70.63     | 0.76         | 20     | 68.35         | 0.36        |  | 30       | 71.19     | 1.02        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$               | 40           | 70.12     | 0.68         | 40     | 71.06         | 0.51        |  | 60       | 71.56     | 1.18        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$               | 50           | 69.58     | 1.08         | 50     | 71.26         | 1.64        |  | 70       | 71.43     | 0.35        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                | 60           | 69.6      | 1.53         | 60     | 71.22         | 1.05        |  | 80       | 70.85     | 0.49        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $               | 70           | 69.18     | 0.95         | 70     | 71.36         | 1.01        |  | 90       | 70.2      | 1.12        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                | 80           | 69.46     | 0.89         | 80     | 66            | 0.26        |  | 100      | 63.22     | 1.57        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$               | 90           | 65.83     | 1.28         | 90     | 61.78         | 1.39        |  | 110      | 53.92     | 1.89        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$               | 100          | 52.76     | 1.29         | 110    | 50.26         | 0.76        |  | 120      | 47.56     | 0.75        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                | 110          | 53.23     | 1.02         | 120    | 51.43         | 1.12        |  | 140      | 49.23     | 1.28        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$               | 120          | 58.54     | 1.32         | 160    | 48.64         | 0.63        |  | 160      | 47.23     | 0.39        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                | 160          | 50.57     | 1.11         | 200    | 54.96         | 0.51        |  | 180      | 49.68     | 0.34        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                | 200          | 50.41     | 0.89         | 250    | 44.53         | 0.94        |  | 1000     | 42.28     | 0.43        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                | 250          | 49.45     | 0.71         | 300    | 48.9          | 0.7         |  |          |           |             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                | 300          | 54.2      | 1            | 600    | 42.22         | 0.54        |  |          |           |             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                | 600          | 43.69     | 0.97         |        |               |             |  |          |           |             |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $               | 1000         | 46.7      | 1.12         |        |               |             |  |          |           |             |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $               |              |           |              | ~      | <u></u>       |             |  |          | 0         |             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                | Flupac       | Station : | 63           | Flupac | Station :     | 64          |  | Flupac   | Station : | 65          |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                | Depth        | DOC       | σ            | Depth  | DOC           | σ           |  | Depth    | DOC       | σ           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                | (m)          | (μM)      | (μM)         | (m)    | (μM)          | (μM)        |  | (m)      | (µM)      | <u>(μM)</u> |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                | 1            | 75.36     | 1.45         | 1      | 75.64         | 1.08        |  | 1        | 72.57     | 0.77        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                | 30           | 70.74     | 0.5          | 30     | 73.31         | 0.8         |  | 30       | 69.58     | 0.49        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                 | 60           | 72.16     | 0.85         | 60     | 71.51         | 0.63        |  | 60       | 71.59     | 0.61        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                | 70           | 69.02     | 0.49         | 70     | 73.31         | 0.85        |  | 70       | 69.88     | 0.89        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                 | 80           | 68.51     | 0.36         | 80     | 68.9          | 1.66        |  | 80       | 70.19     | 0.45        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                | 90           | 66.34     | 0.6          | 90     | 64.42         | 1.38        |  | 90       | 68.65     | 1.18        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                 | 100          | 63.76     | 1.02         | 100    | 60.83         | 1.5         |  | 100      | 56.67     | 0.9         |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                 | 110          | 61.03     | 0.77         | 110    | 56.8          | 0.85        |  | 110      | 56.87     | 0.72        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                | 120          | 59.98     | 0.51         | 120    | 54.9          | 1.65        |  | 120      | 53.55     | 1           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                | 140          | 51        | 0.96         | 140    | 52.8          | 1.59        |  | 140      | 52.5      | 1.38        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                | 160          | 48.63     | 0.91         | 160    | 51.91         | 0.45        |  | 160      | 51.91     | 0.7         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                | 180          | 48.87     | 0.45         | 180    | 49.41         | 1.3         |  | 180      | 51.12     | 1.28        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                | 1000         | 43.83     | 0.94         | 1000   | 42.55         | 0.98        |  |          |           |             |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                | Flupac       | Station : | 66           | Flupac | Station .     | 67          |  | Flupac   | Station · | 68          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                | Denth        |           | <u>م</u>     | Donth  |               | <u>م</u>    |  | Donth    |           | <u> </u>    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                |              |           | (1)()        |        |               | (11)        |  |          |           | (1)0        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                | ( <u>m</u> ) | $(\mu M)$ | (μM)<br>1.25 | (m)    | (μM)<br>72.26 | <u>(μM)</u> |  | (m)      | (µM)      | <u>(μM)</u> |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                |              | 77.00     | 1.35         | 1      | 72.20         | 0.7         |  |          | 74.07     | 0.94        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$               | 50           | 77.22     | 0.92         | 20     | 72.05         | 1.20        |  | 20       | 73.01     | 0.71        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$               | 70           | 74.11     | 1.02         | 50     | 73.23         | 0.90        |  | 50<br>70 | 72.03     | 1.42        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$               | 20           | 73.03     | 0.25         | 80     | 67.90         | 1.55        |  | 80       | 75.01     | 1.29        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$               | 00           | 71.25     | 0.44         | 00     | 60.70         | 1.51        |  | 00<br>00 | 68.26     | 1.05        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$               | 100          | 66.48     | 1 02         | 100    | 67.85         | 1.11        |  | 100      | 69.50     | 1.5         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$               | 110          | 54 42     | 0.07         | 110    | 65.8          | 0.36        |  | 110      | 68.07     | 0.45        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$               | 120          | 55.24     | 0.07         | 120    | 62.04         | 0.30        |  | 120      | 61 61     | 0.05        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$               | 140          | 47.05     | 0.09         | 1/0    | 58 14         | 0.00        |  | 140      | 60.34     | 0.04        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$               | 140          | 52 54     | 0.55         | 140    | 55 54         | 1 22        |  | 140      | 48.52     | 1 1 2       |
|                                                                       | 180          | 103.94    | 1.85         | 180    | 53 32         | 0.58        |  | 180      | 47.92     | 0.10        |
| T TUUU T 40.27 T 0.22 T T TUUU T 37.07 T 0.96 T T TUUU T 41.41 T 11.7 | 1000         | 40.27     | 0.22         | 1000   | 39.02         | 0.98        |  | 1000     | 41.41     | 0.0         |

į , ·

.

| Flupac | Station : | 69   |
|--------|-----------|------|
| Depth  | DOC       | σ    |
| (m)    | (µM)      | (µM) |
| 1      | 72.06     | 1.21 |
| 20     | 72.74     | 1.31 |
| 40     | 72.66     | 1.06 |
| 60     | 68.47     | 0.8  |
| 80     | 66.85     | 0.6  |
| 90     | 66.53     | 1.63 |
| 110    | 66.23     | 2.03 |
| 120    | 64.09     | 1.95 |
| 140    | 60.82     | 0.56 |
| 160    | 60.96     | 1.22 |
| 180    | 52.76     | 1.49 |
| 1000   | 48        | 1.22 |
|        |           |      |

| Flupac | Station : | 70   |
|--------|-----------|------|
| Depth  | DOC       | σ    |
| (m)    | (μΜ)      | (μM) |
| 5      | 70.39     | 1.25 |
| 30     | 70.16     | 0.35 |
| 50     | 69.48     | 0.78 |
| 70     | 70.36     | 1.5  |
| 80     | 74.98     | 0.53 |
| 90     | 72.31     | 0.87 |
| 100    | 64.09     | 1.63 |
| 120    | 56.98     | 0.59 |
| 140    | 53.67     | 0.74 |
| 160    | 54.2      | 0.98 |
| 180    | 52.79     | 0.25 |
| 1000   | 47.1      | 1.34 |
|        |           |      |

| Flupac | Station : | 71   |
|--------|-----------|------|
| Depth  | DOC       | σ    |
| (m)    | (μM)      | (µM) |
| 1      | 75.44     | 1.42 |
| 20     | 70.11     | 0.95 |
| 40     | 71.58     | 1.03 |
| 60     | 70.44     | 1.06 |
| 70     | 70.45     | 0.14 |
| 80     | 70.07     | 1.04 |
| 90     | 70.09     | 0.67 |
| 100    | 69.22     | 1.02 |
| 120    | 60        | 0.52 |
| 140    | 59.47     | 1.15 |
| 160    | 55.14     | 1.03 |
| 180    | 53.87     | 1.03 |
| 1000   | 45.42     | 0.69 |

| Flupac | Station : | 73   |
|--------|-----------|------|
| Depth  | DOC       | σ    |
| (m)    | (μM)      | (μΜ) |
| 5      | 70.94     | 1.29 |
| 20     | 71.78     | 1.51 |
| 40     | 71.16     | 1.2  |
| 50     | 71.14     | 1.25 |
| 60     | 70.28     | 1.44 |
| 80     | 70.24     | 1.32 |
| 90     | 67.43     | 0.45 |
| 100    | 67.61     | 1.24 |
| 120    | 62.88     | 1.39 |
| 140    | 47.59     | 0.95 |
| 160    | 53.83     | 0.77 |
| 180    | 104.3     | 1.11 |
| 1000   | 41.51     | 1.14 |

| Flupac | Station : | 74   |
|--------|-----------|------|
| Depth  | DOC       | σ    |
| Depui  |           |      |
| (m)    | (µM)      | (µM) |
| 5      | 73.6      | 0.49 |
| 20     | 73.25     | 1.14 |
| 40     | 73.63     | 0.94 |
| 50     | 70.54     | 0.86 |
| 60     | 70.98     | 0.93 |
| 80     | 71.41     | 1.3  |
| 100    | 63.77     | 0.73 |
| 110    | 64.16     | 1.42 |
| 120    | 64.06     | 1.08 |
| 140    | 55.24     | 1.29 |
| 160    | 53.78     | 0.68 |
| 1000   | 41.64     | 0.64 |
|        |           |      |

| <u>Flupac</u> | Station : | <u>75</u> |
|---------------|-----------|-----------|
| Depth         | DOC       | σ         |
| (m)           | (µM)      | (µM)      |
| 5             | 72.68     | 1.29      |
| 20            | 65.71     | 0.65      |
| 30            | 66.62     | 0.97      |
| 40            | 64.88     | 1.23      |
| 50            | 65.31     | 1.59      |
| 60            | 61.78     | 0.91      |
| 80            | 62.05     | 0.52      |
| 120           | 59.23     | 0.88      |
| 140           | 52.59     | 0.61      |
| 160           | 50.36     | 0.86      |
| 180           | 53.04     | 0.97      |
| 1000          | 53.18     | 0.9       |
|               |           |           |

| Flupac | Station : | 76   |
|--------|-----------|------|
| Depth  | DOC       | σ    |
| (m)    | (µM)      | (µM) |
| 5      | 59.67     | 0.28 |
| 20     | 59.92     | 0.64 |
| 40     | 58.94     | 0.22 |
| 50     | 60.39     | 0.93 |
| 60     | 60.38     | 1.51 |
| 80     | 56.9      | 1.21 |
| 100    | 57.5      | 0.75 |
| 120    | 55.87     | 1.24 |
| 130    | 53.37     | 1.68 |
| 140    | 53.12     | 1.01 |
| 160    | 51.91     | 1.59 |
|        |           |      |

| Flupac | Station : | 77   |
|--------|-----------|------|
| Depth  | DOC       | σ    |
| (m)    | (µM)      | (μΜ) |
| 20     | 64.15     | 1.65 |
| 30     | 64.32     | 1.03 |
| 40     | 66.8      | 1.17 |
| 50     | 63.7      | 1.36 |
| 60     | 63.66     | 1.05 |
| 80     | 60.7      | 0.71 |
| 100    | 57.85     | 1.18 |
| 120    | 57.95     | 1.92 |
| 140    | 52.53     | 1.91 |
| 160    | 47.81     | 0.27 |
| 180    | 46.11     | 0.52 |
| 1000   | 42.01     | 1.32 |

| Flupac | 78    |      |
|--------|-------|------|
| Depth  | DOC   | σ    |
| (m)    | (μM)  | (μM) |
| 5      | 67.39 | 1.19 |
| 20     | 67.24 | 1.09 |
| 30     | 65.62 | 0.61 |
| 40     | 64.69 | 0.54 |
| 50     | 65.31 | 0.97 |
| 60     | 62.55 | 0.29 |
| 80     | 63.42 | 1.17 |
| 100    | 58.38 | 1.42 |
| 120    | 55.94 | 0.96 |
| 140    | 55.4  | 1.43 |
| 160    | 54.74 | 0.82 |
| 1000   | 42.21 | 0.06 |

| Flupac | Station : | 80   | ] | Flupac | Station : | 81   | Flupac | Station : | 103  |
|--------|-----------|------|---|--------|-----------|------|--------|-----------|------|
| Depth  | DOC       | σ    |   | Depth  | DOC       | σ    | Depth  | DOC       | σ    |
| (m)    | (μM)      | (µM) |   | (m)    | (µM)      | (µM) | (m)    | (µM)      | (μM) |
| 5      | 66.31     | 0.83 | ] | 5      | 67.92     | 0.63 | 5      | 69.72     | 0.2  |
| 20     | 66.11     | 0.81 |   | 20     | 66.3      | 0.75 | 20     | 68.12     | 1.31 |
| 30     | 66.01     | 0.85 |   | 30     | 66.44     | 1.78 | 30     | 67.01     | 1.37 |
| 50     | 65.39     | 0.81 |   | 40     | 66.49     | 1.38 | 40     | 67.31     | 0.33 |
| 60     | 63.59     | 0.75 |   | 50     | 61.83     | 1.09 | 60     | 62.5      | 0.68 |
| 80     | 63.11     | 0.19 |   | 80     | 60.48     | 1.24 | 80     | 60.32     | 1.18 |
| 100    | 59.29     | 0.88 |   | 100    | 58.83     | 1.08 | 100    | 58.8      | 1.23 |
| 120    | 51.74     | 0.64 |   | 120    | 55.71     | 1.51 | 120    | 56.29     | 0.77 |
| 140    | 52.15     | 1.09 |   | 140    | 54.76     | 1.41 | 140    | 54.01     | 0.49 |
| 160    | 51.35     | 1.44 |   | 160    | 52.01     | 1.65 | 160    | 50.77     | 0.57 |
| 180    | 49.76     | 1.4  |   | 180    | 48.75     | 1.23 | 180    | 49.7      | 0    |
| 1000   | 43.82     | 0.15 |   | 1000   | 38.97     | 0.38 | 200    | 48.63     | 0.36 |
|        |           |      |   |        |           |      | 300    | 46.69     | 0.33 |

**Chapitre 8** 

# **DOSAGES DES ALKENONES**

Marie-Alexandrine SICRE et Yann TERNOIS

Laboratoire de Physique et Chimie marines Université Pierre et Marie Curie 75252 Paris Cedex 05, France (Email : sicre@ccr.jussieu.fr - Fax : (33-1) 44 27 49 93)

#### **CONTEXTE SCIENTIFIQUE**

La composition isotopique du carbone organique du phytoplancton marin (d<sup>13</sup>C) serait un enregistreur des concentrations en CO<sub>2</sub> dissous disponible pour la photosynthèse, dans les eaux de surface. Plus récemment Jasper and Hayes, (1990) ont montré qu'il existait une relation empirique liant le d<sup>13</sup>C de biomarqueurs comme les alkenones aux concentrations en CO<sub>2</sub> dissous dans l'eau. Cette relation peut être appliquée pour déterminer l'évolution de pCO<sub>2</sub> dans les paléo-environnements en paliant aux incertitudes auquelles peut conduire l'approche basée sur les mesures de d<sup>13</sup>C du TOC (Total Organic Carbon). Dans le but de paramétriser cette relation nous avons réalisé quelques prélèvements lors de la campagne Flupac. Ces prélèvements, d'un volume de 90 litres chacun, ont été effectués aux stations 71, 79 et 116 ainsi qu'au point fixe 1. Les profondeurs d'échantillonnage ont été choisies au maximum de fluorescence. Le traitement à bord et l'analyse au laboratoire sont détaillés dans ce qui suit.

#### **PROTOCOLE EXPERIMENTAL**

Le matériel algaire est collecté par filtration à bord des échantillons d'eau de mer. On utilise un porte-filtre en acier inoxydable, muni de filtres Whatman GF/F en fibre de verre de porosité 0,7 mm, et d'un diamètre de 147 mm. La filtration est effectuée à l'aide d'une pompe ASTI et l'on préconise l'utilisation de tuyaux de raccordement en téflon, pour éviter toute contamination. Les filtres sont ensuite insérés dans des tubes en verre et stockés au congélateur (-20°C) jusqu'à leur analyse au laboratoire. Les filtres sont alors découpés et extraits dans un erlenmeyer. Un volume de 150ml du mélange dichlorométhane : méthanol (2:1 v/v) est ajouté ainsi qu'une quantité connue de standards internes. Les échantillons sont extraits par l'ultrasonication pendant 10 minutes puis centrifugés à 3000 tours par minute. Cette opération (extraction et centrifugation) est répétée 3 fois avec le même mélange de solvants et une quatrième fois en utilisant comme solvant d'extraction le méthanol. Les 4 extraits sont réunis, concentrés et séchés sur sulfate de magnésium.

Les alkenones sont isolées du mélange lipidique par chromatographie sur gel de silice réalisée sur une colonne de verre de 9 mm de diamètre contenant 7 gr de silice. La fraction contenant les alkenones est ensuite analysée en chromatographie en phase gazeuse.

#### RESULTATS

Les analyses en chromatographie gazeuse a révélé l'absence d'alkenones dans les 4 échantillons d'eau traités. Dans la mesure où ces composés ont été détectés dans les sédiments superficiels de cette même zône, on peut penser que lors de la campagne Flupac le développement des coccolithophorides était quasi inexistant et que celui-ci doit intervenir pendant une autre période de l'année.

Chapitre 9

# PIGMENTS PHOTOSYNTHETIQUES ET ACIDES NUCLEIQUES MESURES PAR SPECTROFLUORIMETRIE

**Jacques NEVEUX** 

Observatoire Océanologique de Banyuls Laboratoire Arago F - 66650 Banyuls-sur-Mer - France (Tél : (33) 68 88 73 73 - Fax : (33) 68 88 73 95 - Email : jneveux@oob-arago.univ-perp.fr)

## A - METHODES

Toutes les déterminations ont été faites à partir de méthodes spectrofluorimétriques.

## 1) Pigments chlorophylliens

Ils permettent d'obtenir à la fois des informations sur la biomasse et sur la composition phytoplanctonique. Leur analyse a été réalisée selon la technique d'approximation des moindres carrés (Neveux et Lantoine, 1993). Elle a été effectuée à bord par trois procédures qui diffèrent les unes des autres par le mode d'acquisition des données de fluorescence :

- 1) mesures à 24 couples de longueurs d'onde sur un spectrofluorimètre Perkin Elmer MPF 66 avec un temps d'intégration sur laque mesure de 2 sec,
- 2) mesures à 96 couples de longueurs d'onde sur un spectrofluorimètre Hitachi F4500 avec un temps d'intégration sur chaque mesure de 0,5 sec,
- 3) réalisation de spectres 3D (excitation, émission, fluorescence) sur Hitachi F4500 et calcul des concentrations à partir de 806 points.

La comparaison de ces trois procédures sera réalisée afin de déterminer celle qui apporte la meilleure précision dans la détermination des différentes chlorophylles.

Les pigments contenus dans 500 ml d'eau de mer et récupérés sur des filtres GF/F de 47 mm de diamètre sont extraits dans 6 ml d'acétone pure. Les filtres sont broyés à l'aide d'une baguette de verre au bout fraîchement coupé. L'eau retenue par les filtres permet d'aboutir à une solution pigmentaire dans l'acétone à 90% et son volume (corrigé d'un effet de réduction volumique) est inclus dans le volume total d'extraction qui sert au calcul des concentrations dans l'eau de mer. Les extraits sont maintenus environ 12h à l'obscurité et au réfrigérateur, avant centrifugation et mesure. La plupart des extraits ont été mesurés à l'aide des trois procédures désignés ci-dessus.

Quelques mesures après fractionnement de taille par filtration (500 ml filtré) en série sur  $2 \mu m$  Nuclepore et GF/F ont également été réalisées (CTD 2: 0, 20, 40, 60, 80, 100, 110, 120, 140, 160 et 180 m ; CTD 114: 5, 30, 60, 80, 100 m).

Remarques : Les tableaux de données correspondent à celles obtenues par la première procédure. Les concentrations sont exprimées en  $\mu g.l^{-1}$ . On considère que les extraits contiennent au plus 10 pigments :

Les chlorophylles a (Chl a), b (Chl b), c (Chl c)

Les chlorophylles associées à *Prochlorococcus marinus* : divinyle-Chl a (pChl a) et divinyle-Chl b (pChl b).

Les phéopigments dérivés de l'ensemble des chlorophylles (Phé a, Phé b, Phé c, pPhé a, pPhé b).

La colonne CaT correspond à la somme Chl a + pChl a (ceci permet de comparer les résultats obtenus avec ceux de la fluorimétrie classique).

Sachant que les coefficients d'absorption spécifique des pChl a et pChl b ne sont pas encore parfaitement connus, on a, dans le calcul des concentrations, supposé que les coefficients de fluorescence spécifique des Chl a et pChl a (ou Chl b et pChl b) au niveau de leur maximum d'excitation et d'émission de fluorescence étaient identiques. Les utilisateurs de l'HPLC supposent plus généralement une équivalence des coefficients spécifiques au niveau des maximums d'absorption dans le rouge pour les deux chlorophylles. Ceci entraîne des valeurs de pChl *a* qui sont théoriquement plus élevée de 17% en spectrofluorimétrie qu'en HPLC. Les travaux récents de Shedbalkar et Rebeiz (1992 : voir aussi Goericke et Repeta, 1993) semblent indiquer des valeurs de coefficient d'absorption spécifique dans le rouge 7 à 10% plus faibles pour la pChl *a* que pour la Chl *a*. Ceci indique que les "vraies" valeurs de pChl a seraient intermédiaires entre celles mesurées par spectrofluorimétrie et celles mesurées par HPLC, compte tenu des hypothèses différentes utilisées lors des calibrations.

La technique repose sur la résolution d'un système de 24 équations linéaires à 11 inconnues. Les solutions (sans contrainte particulière) peuvent être négatives. L'existence de valeurs négatives dans le tableau est donc normale. Toutefois, leur valeur absolue doit rester faible par rapport à la concentration calculée en CaT. Sinon, de fortes valeurs négatives pourraient indiquer des problèmes dans les mesures, mais aussi constituer l'indice d'une présence de pigments non pris en compte dans l'analyse et qui pourraient interférer. Pour plus de détails sur la signification des mesures cf : Neveux et Lantoine (1993).

## 2) Phycobiliprotéines (phycoérythrines)

Les phycobiliprotéines sont des pigments hydrosolubles qui se rencontrent dans un nombre limité de taxons (cyanobactéries, Cryptophycées, Rhodophycées). En milieu océanique, elles sont essentiellement représentées par les phycoérythrines et associées le plus souvent aux cyanobactéries.

Trois litres d'eau de mer sont filtrés sur un filtre GF/F de 47 mm de diamètre. Les filtres sont placés dans des tubes Nunc et plongés dans l'azote liquide. Les pigments sont extraits à bord dans un mélange tampon phosphate-glycérol (50/50) avec broyage du filtre à l'aide d'une baguette de verre. Les spectres d'excitation de fluorescence entre 450 et 560 nm (émission fixée à 585 nm) et les spectres d'émission entre 550 et 700 nm (excitation fixée au maximum d'excitation trouvé) sont enregistrés sur le spectrofluorimètre Perkin Elmer MPF 66. La quantification des phycoérythrines est réalisée à partir de l'aire située sous le spectre d'excitation.

## 3) Acides nucléiques

Les mesures d'ADN et du rapport ARN/ADN ont été proposées respectivement comme des indicateurs de la biomasse et de la dynamique des communautés planctoniques globales.

Les concentrations en acides nucléiques sont déterminées par la méthode des deux fluuorochromes Thiazole orange et Hoechst : Berdalet et Dortch, 1991). Trois litres d'eau de mer sont filtrés sur filtres GF/F. Les filtres sont congelés dans l'azote liquide avant l'analyse en laboratoire. L'extraction est effectuée à l'aide d'un tampon PBS et d'un broyage au Potter puis aux ultrasons (Machado *et al.*, in prép.). La fluorescence des extraits est mesurée au spectrofluorimètre MPF 66. Le Hoechst réagit qu'avec l'ADN alors que le Thiazole Orange réagit avec l'ensemble des acides nucléiques. La calibration est réalisée à partir de solutions purifiées d'ADN et d'ARN. La fluorescence en présence du Hoechst permet de déterminer la concentration en ADN. Connaissant le coefficient de fluorescence spécifique de l'ADN en présence du thiazole orange, il est aisé d'en déduire par différence la part de fluorescence mesurée en présence de Thiazole Orange qui est dûe à l'ARN. On calcule ensuite la concentration en ARN connaissant son coefficient de fluorescence de thiazole orange.

## **B - PRESENTATION DES DONNEES**

## Unités : µg.l<sup>-1</sup>

Abbréviations utilisées dans les tableaux :

| Ca T =     | somme de la Chl a "classique" et de la divinyl Chl a |
|------------|------------------------------------------------------|
| Chl a =    | chlorophylle a                                       |
| Chl b =    | chlorophylle b                                       |
| Chl c =    | chlorophylle c                                       |
| Phe $a =$  | phéopigment a                                        |
| Phe $b =$  | phéopigment b                                        |
| Phe $c =$  | phéopigment c                                        |
| pChl a =   | divinyl - chlorophylle a                             |
| pChl $b =$ | divinyl - chlorophylle b                             |
| pChe $a =$ | divinyl - phéopigment a                              |
| pPhe $b =$ | divinyl - phéopigment b                              |
|            |                                                      |

## **C - REFERENCES CITEES**

- BERDALET E. & DORTCH Q., 1991 New double-staining technique for RNA and DNA measurement in marine phytoplankton. *Mar. Ecol. Prog. Ser.* 73: 295-305.
- GOERICKE R. & D.J. REPETA, 1993 Chlorophylls a and b divinyl chlorophylls a and b in the open subtropical North Atlantic Ocean. *Mar. Ecol. Prog. Ser.* 101: 307-313.
- NEVEUX J. & LANTOINE F., 1993 Spectrofluorometric ousay of chlorophylls and phaeopigments using the least squares approximation technique. *Deep Sea Res.*, I(40): 1741-1765.

## Tableau 1

|         | Profondeurs où ont été réalisées les prélèvements pour les mesures de: |                                                           |  |  |  |
|---------|------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|
| Station | Phycoérythrines                                                        | Acides nucléiques                                         |  |  |  |
|         |                                                                        |                                                           |  |  |  |
| CTD 2   | 0, 20, 40, 60, 80 et 100 m                                             |                                                           |  |  |  |
| CTD 4   | 0, 20, 40, 50, 60, 70, 80, 90 et 100 m                                 |                                                           |  |  |  |
| CTD 8   | 0, 40, 60, 70, 80 et 90 m                                              |                                                           |  |  |  |
| CTD 9   |                                                                        | 0, 20, 40, 50, 60, 70, 80, 90, 100, 120, 160 m            |  |  |  |
| CTD 12  | 0, 20, 40, 50, 60, 70, 80, 90 et 100 m                                 |                                                           |  |  |  |
| CTD 18  | 0, 40 et 80 m                                                          |                                                           |  |  |  |
| CTD 22  | 0, 60 et 90 m                                                          |                                                           |  |  |  |
| CTD 31  | 5, 20, 40, 60, 80 et 100 m                                             |                                                           |  |  |  |
| CTD 37  |                                                                        | 5, 20, 40, 60, 80, 100, 110, 140 et 150 m                 |  |  |  |
| CTD 49  |                                                                        | 5, 20, 40, 60, 80, 100, 110, 120, 140 et 150 m            |  |  |  |
| CTD 55  | 20, 60 et 80 m                                                         |                                                           |  |  |  |
| CTD 63  | 0, 30, 60, 70, 80, 90, 100 et 110 m                                    |                                                           |  |  |  |
| CTD 65  |                                                                        | 0, 30, 60, 80, 90, 100, 110, 120, 140 et 160 m            |  |  |  |
| CTD 66  | 0, 60, 80 et 90 m                                                      |                                                           |  |  |  |
| CTD 69  | 0, 40, 80, 100 et 110 m                                                |                                                           |  |  |  |
| CTD 72  | 5, 60 et 80 m                                                          |                                                           |  |  |  |
| CTD 73  | 5, 40 et 80 m                                                          |                                                           |  |  |  |
| CTD 75  | 20, 30, 40, 50, 60, 80, 100 et 120 m                                   |                                                           |  |  |  |
| CTD 77  |                                                                        | 5, 20, 30, 40, 50, 60, 80, 90, 100, 120, 140 et 160 m     |  |  |  |
| CTD 81  | 5, 20, 30, 40, 50, 60, 80, 100 et 120 m                                |                                                           |  |  |  |
| CTD 84  | 5, 20, 30, 40, 60, 70, 80, 100 et 120 m                                |                                                           |  |  |  |
| CTD 90  |                                                                        | 5, 20, 30, 40, 60,70, 80, 100, 120, 140, 160, 200, 1000 m |  |  |  |
| CTD 102 | 5, 20, 30, 40, 60,70, 80 et 100 m                                      |                                                           |  |  |  |
|         |                                                                        |                                                           |  |  |  |

# Tableau 2 - Pigments chlorophylliens

| Station 1 | ł |
|-----------|---|
|-----------|---|

| prof. (m)                                                                                                                                 | CaT                                                                                                                                                                                              | ChI a                                                                                                                                                                                                                         | Chl b                                                                                                                                                                            | ChI c                                                                                                                                                                                     | Phe a                                                                                                                                                                                     | Phe b                                                                                                                                                                                                                                      | Phe c                                                                                                                                                                                              | pChl a                                                                                                                                                                                     | pChl b                                                                                                                                                                                             | pPhe a                                                                                                                                                                                              | pPhe b                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                                                                                                                         | 0 101                                                                                                                                                                                            | 0.037                                                                                                                                                                                                                         | 0.009                                                                                                                                                                            | 0.019                                                                                                                                                                                     | 0.031                                                                                                                                                                                     | 0.007                                                                                                                                                                                                                                      | 0.019                                                                                                                                                                                              | 0.064                                                                                                                                                                                      | 0 004                                                                                                                                                                                              | -0.021                                                                                                                                                                                              | -0.006                                                                                                                                                                                                                                                                              |
| 30                                                                                                                                        | 0,100                                                                                                                                                                                            | 0,022                                                                                                                                                                                                                         | 0,000                                                                                                                                                                            | 0.016                                                                                                                                                                                     | 0.031                                                                                                                                                                                     | 0,006                                                                                                                                                                                                                                      | 0.021                                                                                                                                                                                              | 0.068                                                                                                                                                                                      | 0.003                                                                                                                                                                                              | -0.010                                                                                                                                                                                              | -0.000                                                                                                                                                                                                                                                                              |
| 60                                                                                                                                        | 0,100                                                                                                                                                                                            | 0,035                                                                                                                                                                                                                         | 0,011                                                                                                                                                                            | 0.016                                                                                                                                                                                     | 0,031                                                                                                                                                                                     | 0,000                                                                                                                                                                                                                                      | 0,021                                                                                                                                                                                              | 0,000                                                                                                                                                                                      | 0,005                                                                                                                                                                                              | -0.020                                                                                                                                                                                              | -0,009                                                                                                                                                                                                                                                                              |
| 80                                                                                                                                        | 0,105                                                                                                                                                                                            | 0,035                                                                                                                                                                                                                         | 0,017                                                                                                                                                                            | 0,010                                                                                                                                                                                     | 0,031                                                                                                                                                                                     | 0,008                                                                                                                                                                                                                                      | 0,010                                                                                                                                                                                              | 0,008                                                                                                                                                                                      | 0,005                                                                                                                                                                                              | -0,020                                                                                                                                                                                              | -0,008                                                                                                                                                                                                                                                                              |
| 100                                                                                                                                       | 0,155                                                                                                                                                                                            | 0,049                                                                                                                                                                                                                         | 0,013                                                                                                                                                                            | 0,022                                                                                                                                                                                     | 0,043                                                                                                                                                                                     | 0,005                                                                                                                                                                                                                                      | 0,027                                                                                                                                                                                              | 0,085                                                                                                                                                                                      | 0,007                                                                                                                                                                                              | -0,028                                                                                                                                                                                              | ~0,000                                                                                                                                                                                                                                                                              |
| 100                                                                                                                                       | 0,109                                                                                                                                                                                            | 0,040                                                                                                                                                                                                                         | 0,021                                                                                                                                                                            | 0,023                                                                                                                                                                                     | 0,052                                                                                                                                                                                     | 0,009                                                                                                                                                                                                                                      | 0,034                                                                                                                                                                                              | 0,125                                                                                                                                                                                      | 0,015                                                                                                                                                                                              | -0,031                                                                                                                                                                                              | -0,011                                                                                                                                                                                                                                                                              |
| 110                                                                                                                                       | 0,203                                                                                                                                                                                            | 0,048                                                                                                                                                                                                                         | 0,029                                                                                                                                                                            | 0,030                                                                                                                                                                                     | 0,062                                                                                                                                                                                     | 0,010                                                                                                                                                                                                                                      | 0,046                                                                                                                                                                                              | 0,155                                                                                                                                                                                      | 0,024                                                                                                                                                                                              | -0,035                                                                                                                                                                                              | -0,011                                                                                                                                                                                                                                                                              |
| 120                                                                                                                                       | 0,361                                                                                                                                                                                            | 0,120                                                                                                                                                                                                                         | 0,057                                                                                                                                                                            | 0,071                                                                                                                                                                                     | 0,120                                                                                                                                                                                     | 0,019                                                                                                                                                                                                                                      | 0,099                                                                                                                                                                                              | 0,241                                                                                                                                                                                      | 0,087                                                                                                                                                                                              | -0,067                                                                                                                                                                                              | -0,015                                                                                                                                                                                                                                                                              |
| 130                                                                                                                                       | 0,359                                                                                                                                                                                            | 0,145                                                                                                                                                                                                                         | 0,040                                                                                                                                                                            | 0,075                                                                                                                                                                                     | 0,130                                                                                                                                                                                     | 0,020                                                                                                                                                                                                                                      | 0,102                                                                                                                                                                                              | 0,214                                                                                                                                                                                      | 0,146                                                                                                                                                                                              | -0,073                                                                                                                                                                                              | -0,014                                                                                                                                                                                                                                                                              |
| 140                                                                                                                                       | 0,227                                                                                                                                                                                            | 0,078                                                                                                                                                                                                                         | 0,019                                                                                                                                                                            | 0,045                                                                                                                                                                                     | 0,087                                                                                                                                                                                     | 0,013                                                                                                                                                                                                                                      | 0,057                                                                                                                                                                                              | 0,149                                                                                                                                                                                      | 0,105                                                                                                                                                                                              | -0,040                                                                                                                                                                                              | -0,001                                                                                                                                                                                                                                                                              |
| 160                                                                                                                                       | 0,084                                                                                                                                                                                            | 0,032                                                                                                                                                                                                                         | 0,004                                                                                                                                                                            | 0,021                                                                                                                                                                                     | 0,032                                                                                                                                                                                     | 0,005                                                                                                                                                                                                                                      | 0,024                                                                                                                                                                                              | 0,052                                                                                                                                                                                      | 0,055                                                                                                                                                                                              | -0,015                                                                                                                                                                                              | -0,002                                                                                                                                                                                                                                                                              |
| 180                                                                                                                                       | 0,109                                                                                                                                                                                            | 0,045                                                                                                                                                                                                                         | 0,009                                                                                                                                                                            | 0,026                                                                                                                                                                                     | 0,042                                                                                                                                                                                     | 0,007                                                                                                                                                                                                                                      | 0,028                                                                                                                                                                                              | 0,064                                                                                                                                                                                      | 0,053                                                                                                                                                                                              | -0,021                                                                                                                                                                                              | -0,002                                                                                                                                                                                                                                                                              |
|                                                                                                                                           |                                                                                                                                                                                                  |                                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                           | Station 2                                                                                                                                                                                                                                  |                                                                                                                                                                                                    |                                                                                                                                                                                            |                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                     |
| prof. (m)                                                                                                                                 | CaT                                                                                                                                                                                              | ChI a                                                                                                                                                                                                                         | Chi b                                                                                                                                                                            | Chl c                                                                                                                                                                                     | Phe a                                                                                                                                                                                     | Phe b                                                                                                                                                                                                                                      | Phe c                                                                                                                                                                                              | pChi a                                                                                                                                                                                     | pChI b                                                                                                                                                                                             | pPhe a                                                                                                                                                                                              | pPhe b                                                                                                                                                                                                                                                                              |
| 0                                                                                                                                         | 0,091                                                                                                                                                                                            | 0,032                                                                                                                                                                                                                         | 0,006                                                                                                                                                                            | 0,012                                                                                                                                                                                     | 0,007                                                                                                                                                                                     | 0,005                                                                                                                                                                                                                                      | 0,007                                                                                                                                                                                              | 0,059                                                                                                                                                                                      | 0,003                                                                                                                                                                                              | -0,002                                                                                                                                                                                              | -0,003                                                                                                                                                                                                                                                                              |
| 20                                                                                                                                        | 0,097                                                                                                                                                                                            | 0,036                                                                                                                                                                                                                         | 0,007                                                                                                                                                                            | 0,014                                                                                                                                                                                     | 0,009                                                                                                                                                                                     | 0,003                                                                                                                                                                                                                                      | 0,010                                                                                                                                                                                              | 0,061                                                                                                                                                                                      | 0,003                                                                                                                                                                                              | -0,003                                                                                                                                                                                              | -0,003                                                                                                                                                                                                                                                                              |
| 40                                                                                                                                        | 0,121                                                                                                                                                                                            | 0,055                                                                                                                                                                                                                         | 0,009                                                                                                                                                                            | 0,020                                                                                                                                                                                     | 0,012                                                                                                                                                                                     | 0,004                                                                                                                                                                                                                                      | 0,012                                                                                                                                                                                              | 0,066                                                                                                                                                                                      | 0,004                                                                                                                                                                                              | -0,004                                                                                                                                                                                              | -0,003                                                                                                                                                                                                                                                                              |
| 60                                                                                                                                        | 0,136                                                                                                                                                                                            | 0,057                                                                                                                                                                                                                         | 0,011                                                                                                                                                                            | 0,023                                                                                                                                                                                     | 0,013                                                                                                                                                                                     | 0,006                                                                                                                                                                                                                                      | 0,013                                                                                                                                                                                              | 0,080                                                                                                                                                                                      | 0,006                                                                                                                                                                                              | -0,004                                                                                                                                                                                              | -0,005                                                                                                                                                                                                                                                                              |
| 80                                                                                                                                        | 0.261                                                                                                                                                                                            | 0.081                                                                                                                                                                                                                         | 0.026                                                                                                                                                                            | 0.040                                                                                                                                                                                     | 0.026                                                                                                                                                                                     | 0.007                                                                                                                                                                                                                                      | 0.032                                                                                                                                                                                              | 0.180                                                                                                                                                                                      | 0.021                                                                                                                                                                                              | -0.004                                                                                                                                                                                              | -0.007                                                                                                                                                                                                                                                                              |
| 100                                                                                                                                       | 0.454                                                                                                                                                                                            | 0,175                                                                                                                                                                                                                         | 0.057                                                                                                                                                                            | 0.078                                                                                                                                                                                     | 0.048                                                                                                                                                                                     | 0.010                                                                                                                                                                                                                                      | 0.061                                                                                                                                                                                              | 0.279                                                                                                                                                                                      | 0.053                                                                                                                                                                                              | -0.009                                                                                                                                                                                              | -0.005                                                                                                                                                                                                                                                                              |
| 110                                                                                                                                       | 0 536                                                                                                                                                                                            | 0,216                                                                                                                                                                                                                         | 0 079                                                                                                                                                                            | 0.095                                                                                                                                                                                     | 0.057                                                                                                                                                                                     | 0.013                                                                                                                                                                                                                                      | 0.079                                                                                                                                                                                              | 0 320                                                                                                                                                                                      | 0.085                                                                                                                                                                                              | -0.007                                                                                                                                                                                              | -0.011                                                                                                                                                                                                                                                                              |
| 120                                                                                                                                       | 0 334                                                                                                                                                                                            | 0.154                                                                                                                                                                                                                         | 0.053                                                                                                                                                                            | 0.069                                                                                                                                                                                     | 0.036                                                                                                                                                                                     | 0.004                                                                                                                                                                                                                                      | 0.058                                                                                                                                                                                              | 0 180                                                                                                                                                                                      | 0.128                                                                                                                                                                                              | -0.005                                                                                                                                                                                              | 0,000                                                                                                                                                                                                                                                                               |
| 140                                                                                                                                       | 0,354                                                                                                                                                                                            | 0,104                                                                                                                                                                                                                         | 0,028                                                                                                                                                                            | 0.043                                                                                                                                                                                     | 0.025                                                                                                                                                                                     | 0.005                                                                                                                                                                                                                                      | 0.034                                                                                                                                                                                              | 0,111                                                                                                                                                                                      | 0,120                                                                                                                                                                                              | -0.002                                                                                                                                                                                              | 0,000                                                                                                                                                                                                                                                                               |
| 160                                                                                                                                       | 0.124                                                                                                                                                                                            | 0,058                                                                                                                                                                                                                         | 0,020                                                                                                                                                                            | 0,019                                                                                                                                                                                     | 0.015                                                                                                                                                                                     | 0,000                                                                                                                                                                                                                                      | 0.024                                                                                                                                                                                              | 0,066                                                                                                                                                                                      | 0.081                                                                                                                                                                                              | 0,002                                                                                                                                                                                               | 0,004                                                                                                                                                                                                                                                                               |
| 180                                                                                                                                       | 0,124                                                                                                                                                                                            | 0,033                                                                                                                                                                                                                         | 0,005                                                                                                                                                                            | 0,027                                                                                                                                                                                     | 0,010                                                                                                                                                                                     | 0,001                                                                                                                                                                                                                                      | 0,024                                                                                                                                                                                              | 0,000                                                                                                                                                                                      | 0,001                                                                                                                                                                                              | 0,001                                                                                                                                                                                               | 0,000                                                                                                                                                                                                                                                                               |
| 100                                                                                                                                       | 0,000                                                                                                                                                                                            | 0,033                                                                                                                                                                                                                         | 0,005                                                                                                                                                                            | 0,017                                                                                                                                                                                     | 0,010                                                                                                                                                                                     | 0,000                                                                                                                                                                                                                                      | 0,015                                                                                                                                                                                              | 0,027                                                                                                                                                                                      | 0,050                                                                                                                                                                                              | 0,002                                                                                                                                                                                               | 0,004                                                                                                                                                                                                                                                                               |
|                                                                                                                                           |                                                                                                                                                                                                  |                                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                           | station 3                                                                                                                                                                                                                                  |                                                                                                                                                                                                    |                                                                                                                                                                                            |                                                                                                                                                                                                    |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                     |
| prof. (m)                                                                                                                                 | CaT                                                                                                                                                                                              | Chl a                                                                                                                                                                                                                         | Chl b                                                                                                                                                                            | Ch1 c                                                                                                                                                                                     | Phe a                                                                                                                                                                                     | Phe b                                                                                                                                                                                                                                      | Phe c                                                                                                                                                                                              | pChl a                                                                                                                                                                                     | pChl b                                                                                                                                                                                             | pPhe a                                                                                                                                                                                              | pPhe b                                                                                                                                                                                                                                                                              |
| 0                                                                                                                                         | 0,209                                                                                                                                                                                            | 0,078                                                                                                                                                                                                                         | 0,017                                                                                                                                                                            | 0,037                                                                                                                                                                                     | 0,016                                                                                                                                                                                     | 0,005                                                                                                                                                                                                                                      | 0,027                                                                                                                                                                                              | 0,131                                                                                                                                                                                      | 0,011                                                                                                                                                                                              | -0,003                                                                                                                                                                                              | -0,003                                                                                                                                                                                                                                                                              |
| 20                                                                                                                                        |                                                                                                                                                                                                  | 0 070                                                                                                                                                                                                                         | 0,019                                                                                                                                                                            | 0,036                                                                                                                                                                                     | 0,020                                                                                                                                                                                     | 0,005                                                                                                                                                                                                                                      | 0,027                                                                                                                                                                                              | 0,130                                                                                                                                                                                      | 0,010                                                                                                                                                                                              | -0,003                                                                                                                                                                                              | -0,003                                                                                                                                                                                                                                                                              |
| 20                                                                                                                                        | 0,209                                                                                                                                                                                            | 0,079                                                                                                                                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                           | 0.005                                                                                                                                                                                                                                      | 0.042                                                                                                                                                                                              | 0.100                                                                                                                                                                                      | 0.014                                                                                                                                                                                              | ~0.002                                                                                                                                                                                              | -0.003                                                                                                                                                                                                                                                                              |
| 20<br>40                                                                                                                                  | 0,209<br>0,235                                                                                                                                                                                   | 0,073                                                                                                                                                                                                                         | 0,019                                                                                                                                                                            | 0,042                                                                                                                                                                                     | 0,025                                                                                                                                                                                     | 0,005                                                                                                                                                                                                                                      | 0,042                                                                                                                                                                                              | 0,152                                                                                                                                                                                      | 0,014                                                                                                                                                                                              | -0,002                                                                                                                                                                                              | 0,000                                                                                                                                                                                                                                                                               |
| 40<br>60                                                                                                                                  | 0,209<br>0,235<br>0,319                                                                                                                                                                          | 0,079<br>0,083<br>0,123                                                                                                                                                                                                       | 0,019<br>0,026                                                                                                                                                                   | 0,042<br>0,065                                                                                                                                                                            | 0,025<br>0,027                                                                                                                                                                            | 0,003                                                                                                                                                                                                                                      | 0,042                                                                                                                                                                                              | 0,152<br>0,196                                                                                                                                                                             | 0,025                                                                                                                                                                                              | -0,002                                                                                                                                                                                              | 0,000                                                                                                                                                                                                                                                                               |
| 40<br>60<br>80                                                                                                                            | 0,209<br>0,235<br>0,319<br>0,399                                                                                                                                                                 | 0,079<br>0,083<br>0,123<br>0,206                                                                                                                                                                                              | 0,019<br>0,026<br>0,057                                                                                                                                                          | 0,042<br>0,065<br>0,092                                                                                                                                                                   | 0,025<br>0,027<br>0,040                                                                                                                                                                   | 0,003<br>0,003<br>0,009                                                                                                                                                                                                                    | 0,042<br>0,053<br>0,084                                                                                                                                                                            | 0,152<br>0,196<br>0,193                                                                                                                                                                    | 0,025<br>0,038                                                                                                                                                                                     | -0,002<br>-0,002<br>-0,003                                                                                                                                                                          | 0,000<br>-0,005                                                                                                                                                                                                                                                                     |
| 40<br>60<br>80<br>90                                                                                                                      | 0,209<br>0,235<br>0,319<br>0,399<br>0,406                                                                                                                                                        | 0,083<br>0,123<br>0,206<br>0,186                                                                                                                                                                                              | 0,019<br>0,026<br>0,057<br>0,047                                                                                                                                                 | 0,042<br>0,065<br>0,092<br>0,077                                                                                                                                                          | 0,025<br>0,027<br>0,040<br>0,043                                                                                                                                                          | 0,003<br>0,003<br>0,009<br>0,005                                                                                                                                                                                                           | 0,042<br>0,053<br>0,084<br>0,080                                                                                                                                                                   | 0,192<br>0,196<br>0,193<br>0,220                                                                                                                                                           | 0,025<br>0,038<br>0,044                                                                                                                                                                            | -0,002<br>-0,002<br>-0,003<br>0,000                                                                                                                                                                 | 0,000<br>-0,005<br>-0,001                                                                                                                                                                                                                                                           |
| 20<br>40<br>60<br>80<br>90<br>100                                                                                                         | 0,209<br>0,235<br>0,319<br>0,399<br>0,406<br>0,312                                                                                                                                               | 0,079<br>0,083<br>0,123<br>0,206<br>0,186<br>0,108                                                                                                                                                                            | 0,019<br>0,026<br>0,057<br>0,047<br>0,030                                                                                                                                        | 0,042<br>0,065<br>0,092<br>0,077<br>0,048                                                                                                                                                 | 0,025<br>0,027<br>0,040<br>0,043<br>0,033                                                                                                                                                 | 0,003<br>0,003<br>0,009<br>0,005<br>0,002                                                                                                                                                                                                  | 0,042<br>0,053<br>0,084<br>0,080<br>0,054                                                                                                                                                          | 0,152<br>0,196<br>0,193<br>0,220<br>0,204                                                                                                                                                  | 0,025<br>0,038<br>0,044<br>0,040                                                                                                                                                                   | -0,002<br>-0,002<br>-0,003<br>0,000<br>0,001                                                                                                                                                        | 0,000<br>-0,005<br>-0,001<br>0,002                                                                                                                                                                                                                                                  |
| 40<br>60<br>80<br>90<br>100                                                                                                               | 0,209<br>0,235<br>0,319<br>0,399<br>0,406<br>0,312<br>0,298                                                                                                                                      | 0,079<br>0,083<br>0,123<br>0,206<br>0,186<br>0,108<br>0,131                                                                                                                                                                   | 0,019<br>0,026<br>0,057<br>0,047<br>0,030<br>0,043                                                                                                                               | 0,042<br>0,065<br>0,092<br>0,077<br>0,048<br>0,057                                                                                                                                        | 0,025<br>0,027<br>0,040<br>0,043<br>0,033<br>0,030                                                                                                                                        | 0,003<br>0,003<br>0,009<br>0,005<br>0,002<br>0,004                                                                                                                                                                                         | 0,042<br>0,053<br>0,084<br>0,080<br>0,054<br>0,054                                                                                                                                                 | 0,152<br>0,196<br>0,193<br>0,220<br>0,204<br>0,167                                                                                                                                         | 0,014<br>0,025<br>0,038<br>0,044<br>0,040<br>0,092                                                                                                                                                 | -0,002<br>-0,002<br>-0,003<br>0,000<br>0,001<br>0,005                                                                                                                                               | 0,000<br>-0,005<br>-0,001<br>0,002<br>0,005                                                                                                                                                                                                                                         |
| 40<br>60<br>80<br>90<br>100<br>110<br>120                                                                                                 | 0,209<br>0,235<br>0,319<br>0,399<br>0,406<br>0,312<br>0,298<br>0,240                                                                                                                             | 0,079<br>0,083<br>0,123<br>0,206<br>0,186<br>0,108<br>0,131<br>0,110                                                                                                                                                          | 0,019<br>0,026<br>0,057<br>0,047<br>0,030<br>0,043<br>0,043                                                                                                                      | 0,042<br>0,065<br>0,092<br>0,077<br>0,048<br>0,057<br>0,050                                                                                                                               | 0,025<br>0,027<br>0,040<br>0,043<br>0,033<br>0,030<br>0,023                                                                                                                               | 0,003<br>0,003<br>0,009<br>0,005<br>0,002<br>0,004<br>0,002                                                                                                                                                                                | 0,042<br>0,053<br>0,084<br>0,080<br>0,054<br>0,054<br>0,054                                                                                                                                        | 0,152<br>0,196<br>0,193<br>0,220<br>0,204<br>0,167<br>0,130                                                                                                                                | 0,014<br>0,025<br>0,038<br>0,044<br>0,040<br>0,092<br>0,101                                                                                                                                        | -0,002<br>-0,002<br>-0,003<br>0,000<br>0,001<br>0,005<br>0,002                                                                                                                                      | 0,000<br>-0,005<br>-0,001<br>0,002<br>0,005<br>0,006                                                                                                                                                                                                                                |
| 20<br>40<br>60<br>80<br>90<br>100<br>110<br>120<br>140                                                                                    | 0,209<br>0,235<br>0,319<br>0,399<br>0,406<br>0,312<br>0,298<br>0,240<br>0,155                                                                                                                    | 0,079<br>0,083<br>0,123<br>0,206<br>0,186<br>0,108<br>0,131<br>0,110<br>0,075                                                                                                                                                 | 0,019<br>0,026<br>0,057<br>0,047<br>0,030<br>0,043<br>0,035<br>0,017                                                                                                             | 0,042<br>0,065<br>0,092<br>0,077<br>0,048<br>0,057<br>0,050<br>0,035                                                                                                                      | 0,025<br>0,027<br>0,040<br>0,043<br>0,033<br>0,030<br>0,023<br>0,015                                                                                                                      | 0,003<br>0,003<br>0,009<br>0,005<br>0,002<br>0,004<br>0,002<br>0,000                                                                                                                                                                       | 0,042<br>0,053<br>0,084<br>0,080<br>0,054<br>0,054<br>0,046<br>0,034                                                                                                                               | 0,152<br>0,196<br>0,193<br>0,220<br>0,204<br>0,167<br>0,130<br>0,081                                                                                                                       | 0,025<br>0,038<br>0,044<br>0,040<br>0,092<br>0,101<br>0.083                                                                                                                                        | -0,002<br>-0,003<br>0,000<br>0,001<br>0,005<br>0,002<br>0,003                                                                                                                                       | 0,000<br>-0,005<br>-0,001<br>0,002<br>0,005<br>0,006<br>0,007                                                                                                                                                                                                                       |
| 20<br>40<br>60<br>80<br>90<br>100<br>110<br>120<br>140<br>160                                                                             | 0,209<br>0,235<br>0,319<br>0,399<br>0,406<br>0,312<br>0,298<br>0,240<br>0,155<br>0,082                                                                                                           | 0,079<br>0,083<br>0,123<br>0,206<br>0,186<br>0,108<br>0,131<br>0,110<br>0,075<br>0,039                                                                                                                                        | 0,019<br>0,026<br>0,057<br>0,047<br>0,030<br>0,043<br>0,035<br>0,017<br>0,005                                                                                                    | 0,042<br>0,065<br>0,092<br>0,077<br>0,048<br>0,057<br>0,050<br>0,035<br>0,021                                                                                                             | 0,025<br>0,027<br>0,040<br>0,043<br>0,033<br>0,030<br>0,023<br>0,015<br>0,013                                                                                                             | 0,003<br>0,009<br>0,005<br>0,002<br>0,004<br>0,002<br>0,000<br>0,000                                                                                                                                                                       | 0,042<br>0,053<br>0,084<br>0,080<br>0,054<br>0,054<br>0,054<br>0,046<br>0,034<br>0,021                                                                                                             | 0,152<br>0,196<br>0,193<br>0,220<br>0,204<br>0,167<br>0,130<br>0,081<br>0,043                                                                                                              | 0,025<br>0,038<br>0,044<br>0,040<br>0,092<br>0,101<br>0,083<br>0,056                                                                                                                               | -0,002<br>-0,003<br>0,000<br>0,001<br>0,005<br>0,002<br>0,003                                                                                                                                       | 0,000<br>-0,005<br>-0,001<br>0,002<br>0,005<br>0,006<br>0,007                                                                                                                                                                                                                       |
| 20<br>40<br>60<br>80<br>90<br>100<br>110<br>120<br>140<br>160<br>180                                                                      | 0,209<br>0,235<br>0,319<br>0,399<br>0,406<br>0,312<br>0,298<br>0,240<br>0,155<br>0,082<br>0,028                                                                                                  | 0,073<br>0,083<br>0,123<br>0,206<br>0,186<br>0,108<br>0,131<br>0,110<br>0,075<br>0,039<br>0,017                                                                                                                               | 0,019<br>0,026<br>0,057<br>0,047<br>0,030<br>0,043<br>0,035<br>0,017<br>0,005<br>0,003                                                                                           | 0,042<br>0,065<br>0,092<br>0,077<br>0,048<br>0,057<br>0,050<br>0,035<br>0,021<br>0,009                                                                                                    | 0,025<br>0,027<br>0,040<br>0,043<br>0,033<br>0,030<br>0,023<br>0,015<br>0,013<br>0,005                                                                                                    | 0,003<br>0,009<br>0,005<br>0,002<br>0,004<br>0,002<br>0,000<br>0,003<br>0,001                                                                                                                                                              | 0,042<br>0,053<br>0,084<br>0,080<br>0,054<br>0,054<br>0,054<br>0,046<br>0,034<br>0,021<br>0,010                                                                                                    | 0,152<br>0,196<br>0,193<br>0,220<br>0,204<br>0,167<br>0,130<br>0,081<br>0,043<br>0,011                                                                                                     | 0,025<br>0,038<br>0,044<br>0,040<br>0,092<br>0,101<br>0,083<br>0,056<br>0,011                                                                                                                      | -0,002<br>-0,003<br>0,000<br>0,001<br>0,005<br>0,002<br>0,003<br>0,003<br>0,002                                                                                                                     | 0,000<br>-0,005<br>-0,001<br>0,002<br>0,005<br>0,006<br>0,007<br>0,007<br>0,002                                                                                                                                                                                                     |
| 20<br>40<br>60<br>80<br>90<br>100<br>110<br>120<br>140<br>160<br>180                                                                      | 0,209<br>0,235<br>0,319<br>0,399<br>0,406<br>0,312<br>0,298<br>0,240<br>0,155<br>0,082<br>0,028                                                                                                  | 0,073<br>0,083<br>0,123<br>0,206<br>0,186<br>0,108<br>0,131<br>0,110<br>0,075<br>0,039<br>0,017                                                                                                                               | 0,019<br>0,026<br>0,057<br>0,047<br>0,030<br>0,043<br>0,035<br>0,017<br>0,005<br>0,003                                                                                           | 0,042<br>0,065<br>0,092<br>0,077<br>0,048<br>0,057<br>0,050<br>0,035<br>0,021<br>0,009                                                                                                    | 0,025<br>0,027<br>0,040<br>0,043<br>0,033<br>0,030<br>0,023<br>0,015<br>0,013<br>0,005                                                                                                    | 0,003<br>0,009<br>0,005<br>0,002<br>0,004<br>0,002<br>0,000<br>0,003<br>0,001<br>station 4                                                                                                                                                 | 0,042<br>0,053<br>0,084<br>0,080<br>0,054<br>0,054<br>0,054<br>0,046<br>0,034<br>0,021<br>0,010                                                                                                    | 0,152<br>0,196<br>0,193<br>0,220<br>0,204<br>0,167<br>0,130<br>0,081<br>0,043<br>0,011                                                                                                     | 0,025<br>0,038<br>0,044<br>0,040<br>0,092<br>0,101<br>0,083<br>0,056<br>0,011                                                                                                                      | -0,002<br>-0,003<br>0,000<br>0,001<br>0,005<br>0,002<br>0,003<br>0,003<br>0,003                                                                                                                     | 0,000<br>-0,005<br>-0,001<br>0,002<br>0,005<br>0,006<br>0,007<br>0,007<br>0,002                                                                                                                                                                                                     |
| 20<br>40<br>60<br>80<br>90<br>100<br>110<br>120<br>140<br>160<br>180                                                                      | 0,209<br>0,235<br>0,319<br>0,399<br>0,406<br>0,312<br>0,298<br>0,240<br>0,155<br>0,082<br>0,028                                                                                                  | 0,073<br>0,083<br>0,123<br>0,206<br>0,186<br>0,108<br>0,131<br>0,110<br>0,075<br>0,039<br>0,017                                                                                                                               | 0,019<br>0,026<br>0,057<br>0,047<br>0,030<br>0,043<br>0,035<br>0,017<br>0,005<br>0,003                                                                                           | 0,042<br>0,065<br>0,092<br>0,077<br>0,048<br>0,057<br>0,050<br>0,035<br>0,021<br>0,009                                                                                                    | 0,025<br>0,027<br>0,040<br>0,043<br>0,033<br>0,030<br>0,023<br>0,015<br>0,013<br>0,005                                                                                                    | 0,003<br>0,009<br>0,005<br>0,002<br>0,004<br>0,002<br>0,000<br>0,003<br>0,001<br>station 4<br>Phe b                                                                                                                                        | 0,042<br>0,053<br>0,084<br>0,080<br>0,054<br>0,054<br>0,054<br>0,034<br>0,021<br>0,010                                                                                                             | 0,152<br>0,196<br>0,193<br>0,220<br>0,204<br>0,167<br>0,130<br>0,081<br>0,043<br>0,011                                                                                                     | 0,025<br>0,038<br>0,044<br>0,040<br>0,092<br>0,101<br>0,083<br>0,056<br>0,011                                                                                                                      | -0,002<br>-0,003<br>-0,003<br>0,000<br>0,001<br>0,005<br>0,002<br>0,003<br>0,003<br>0,003                                                                                                           | 0,000<br>-0,005<br>-0,001<br>0,002<br>0,005<br>0,006<br>0,007<br>0,007<br>0,007                                                                                                                                                                                                     |
| 20<br>40<br>60<br>80<br>90<br>100<br>110<br>120<br>140<br>160<br>180                                                                      | 0,209<br>0,235<br>0,319<br>0,399<br>0,406<br>0,312<br>0,298<br>0,240<br>0,155<br>0,082<br>0,028<br>CaT                                                                                           | 0,075<br>0,083<br>0,123<br>0,206<br>0,186<br>0,108<br>0,131<br>0,110<br>0,075<br>0,039<br>0,017<br>Chl a                                                                                                                      | 0,019<br>0,026<br>0,057<br>0,047<br>0,030<br>0,043<br>0,035<br>0,017<br>0,005<br>0,003<br>Chl b                                                                                  | 0,042<br>0,065<br>0,092<br>0,077<br>0,048<br>0,057<br>0,050<br>0,035<br>0,021<br>0,009<br>Chl c                                                                                           | 0,025<br>0,027<br>0,040<br>0,043<br>0,033<br>0,030<br>0,023<br>0,015<br>0,013<br>0,005<br>Phe a                                                                                           | 0,003<br>0,009<br>0,005<br>0,002<br>0,004<br>0,002<br>0,000<br>0,003<br>0,001<br>station 4<br>Phe b                                                                                                                                        | 0,042<br>0,053<br>0,084<br>0,080<br>0,054<br>0,054<br>0,054<br>0,034<br>0,021<br>0,010<br>Phe c                                                                                                    | 0,152<br>0,196<br>0,193<br>0,220<br>0,204<br>0,167<br>0,130<br>0,081<br>0,043<br>0,011                                                                                                     | 0,025<br>0,038<br>0,044<br>0,040<br>0,092<br>0,101<br>0,083<br>0,056<br>0,011                                                                                                                      | -0,002<br>-0,003<br>0,000<br>0,001<br>0,005<br>0,002<br>0,003<br>0,003<br>0,003<br>0,002                                                                                                            | 0,000<br>-0,005<br>-0,001<br>0,002<br>0,005<br>0,006<br>0,007<br>0,007<br>0,007<br>0,002                                                                                                                                                                                            |
| 20<br>40<br>60<br>80<br>90<br>100<br>110<br>120<br>140<br>160<br>180<br>prof. (m)                                                         | 0,209<br>0,235<br>0,319<br>0,399<br>0,406<br>0,312<br>0,298<br>0,240<br>0,155<br>0,082<br>0,028<br>CaT<br>0,193                                                                                  | 0,083<br>0,123<br>0,206<br>0,186<br>0,108<br>0,131<br>0,110<br>0,075<br>0,039<br>0,017<br>Chl a<br>0,082                                                                                                                      | 0,019<br>0,026<br>0,057<br>0,047<br>0,030<br>0,043<br>0,035<br>0,017<br>0,005<br>0,003<br>ChI b<br>0,015                                                                         | 0,042<br>0,065<br>0,092<br>0,077<br>0,048<br>0,057<br>0,050<br>0,035<br>0,021<br>0,009<br>Chl c                                                                                           | 0,025<br>0,027<br>0,040<br>0,043<br>0,033<br>0,030<br>0,023<br>0,015<br>0,013<br>0,005<br>Phe a                                                                                           | 0,003<br>0,009<br>0,005<br>0,002<br>0,004<br>0,002<br>0,000<br>0,003<br>0,001<br>station 4<br>Phe b<br>0,005                                                                                                                               | 0,042<br>0,053<br>0,084<br>0,080<br>0,054<br>0,054<br>0,054<br>0,054<br>0,021<br>0,010<br>Phe c<br>0,029                                                                                           | 0,152<br>0,196<br>0,193<br>0,220<br>0,204<br>0,167<br>0,130<br>0,081<br>0,043<br>0,011                                                                                                     | 0,014<br>0,025<br>0,038<br>0,044<br>0,040<br>0,092<br>0,101<br>0,083<br>0,056<br>0,011                                                                                                             | -0,002<br>-0,003<br>0,000<br>0,001<br>0,005<br>0,002<br>0,003<br>0,003<br>0,003<br>0,002                                                                                                            | 0,000<br>-0,005<br>-0,001<br>0,002<br>0,005<br>0,006<br>0,007<br>0,007<br>0,002<br>pPhe b<br>-0,002                                                                                                                                                                                 |
| 20<br>40<br>60<br>80<br>90<br>100<br>110<br>120<br>140<br>160<br>180<br>prof. (m)<br>0<br>20                                              | 0,209<br>0,235<br>0,319<br>0,399<br>0,406<br>0,312<br>0,298<br>0,240<br>0,155<br>0,082<br>0,028<br>CaT<br>0,193<br>0,193                                                                         | 0,075<br>0,083<br>0,123<br>0,206<br>0,186<br>0,108<br>0,131<br>0,110<br>0,075<br>0,039<br>0,017<br>Ch1 a<br>0,082<br>0,082                                                                                                    | 0,019<br>0,026<br>0,057<br>0,047<br>0,030<br>0,043<br>0,035<br>0,017<br>0,005<br>0,003<br>Chl b<br>0,015<br>0,017                                                                | 0,042<br>0,065<br>0,092<br>0,077<br>0,048<br>0,057<br>0,050<br>0,035<br>0,021<br>0,009<br>Chl c<br>0,037<br>0,038                                                                         | 0,025<br>0,027<br>0,040<br>0,043<br>0,033<br>0,030<br>0,023<br>0,015<br>0,013<br>0,005<br>Phe a<br>0,016<br>0,017                                                                         | 0,003<br>0,009<br>0,005<br>0,002<br>0,004<br>0,002<br>0,000<br>0,003<br>0,001<br>station 4<br>Phe b<br>0,005<br>0,004                                                                                                                      | 0,042<br>0,053<br>0,084<br>0,080<br>0,054<br>0,054<br>0,054<br>0,054<br>0,021<br>0,010<br>Phe c<br>0,029<br>0,032                                                                                  | 0,152<br>0,196<br>0,193<br>0,220<br>0,204<br>0,167<br>0,130<br>0,081<br>0,043<br>0,011<br>pChl a<br>0,111<br>0,111                                                                         | 0,025<br>0,038<br>0,044<br>0,040<br>0,092<br>0,101<br>0,083<br>0,056<br>0,011<br>pChl b<br>0,011<br>0,010                                                                                          | -0,002<br>-0,003<br>-0,003<br>0,000<br>0,001<br>0,005<br>0,002<br>0,003<br>0,003<br>0,003<br>0,002<br>pPhe a<br>-0,002<br>-0,002                                                                    | 0,000<br>-0,005<br>-0,001<br>0,002<br>0,005<br>0,006<br>0,007<br>0,007<br>0,007<br>0,002<br>pPhe b<br>-0,002<br>-0,004                                                                                                                                                              |
| 20<br>40<br>60<br>80<br>90<br>100<br>110<br>120<br>140<br>160<br>180<br>prof. (m)<br>0<br>20<br>40                                        | 0,209<br>0,235<br>0,319<br>0,399<br>0,406<br>0,312<br>0,298<br>0,240<br>0,155<br>0,082<br>0,028<br>CaT<br>0,193<br>0,193<br>0,246                                                                | 0,075<br>0,083<br>0,123<br>0,206<br>0,186<br>0,108<br>0,131<br>0,110<br>0,075<br>0,039<br>0,017<br>Chl a<br>0,082<br>0,082<br>0,082<br>0,108                                                                                  | 0,019<br>0,026<br>0,057<br>0,047<br>0,030<br>0,043<br>0,035<br>0,017<br>0,005<br>0,003<br>ChI b<br>0,015<br>0,017<br>0,020                                                       | 0,042<br>0,065<br>0,092<br>0,077<br>0,048<br>0,057<br>0,050<br>0,035<br>0,021<br>0,009<br>Chl c<br>0,037<br>0,038<br>0,050                                                                | 0,025<br>0,027<br>0,040<br>0,043<br>0,033<br>0,030<br>0,023<br>0,015<br>0,013<br>0,005<br>Phe a<br>0,016<br>0,017<br>0,023                                                                | 0,003<br>0,009<br>0,005<br>0,002<br>0,004<br>0,002<br>0,000<br>0,003<br>0,001<br>station 4<br>Phe b<br>0,005<br>0,004<br>0,007                                                                                                             | 0,042<br>0,053<br>0,084<br>0,080<br>0,054<br>0,054<br>0,054<br>0,034<br>0,021<br>0,010<br>Phe c<br>0,029<br>0,032<br>0,038                                                                         | 0,132<br>0,196<br>0,193<br>0,220<br>0,204<br>0,167<br>0,130<br>0,081<br>0,043<br>0,011<br>pChl a<br>0,111<br>0,111<br>0,137                                                                | 0,025<br>0,038<br>0,044<br>0,040<br>0,092<br>0,101<br>0,083<br>0,056<br>0,011<br>0,011<br>0,011<br>0,010<br>0,016                                                                                  | -0,002<br>-0,003<br>0,000<br>0,001<br>0,005<br>0,002<br>0,003<br>0,003<br>0,003<br>0,003<br>0,002                                                                                                   | 0,000<br>-0,005<br>-0,001<br>0,002<br>0,005<br>0,006<br>0,007<br>0,007<br>0,007<br>0,002<br>pPhe b<br>-0,002<br>-0,004<br>-0,002                                                                                                                                                    |
| 20<br>40<br>60<br>80<br>90<br>100<br>110<br>120<br>140<br>160<br>180<br>prof. (m)<br>0<br>20<br>40<br>50                                  | 0,209<br>0,235<br>0,319<br>0,399<br>0,406<br>0,312<br>0,298<br>0,240<br>0,155<br>0,082<br>0,028<br>CaT<br>0,193<br>0,193<br>0,246<br>0,225                                                       | 0,075<br>0,083<br>0,123<br>0,206<br>0,186<br>0,108<br>0,131<br>0,110<br>0,075<br>0,039<br>0,017<br>Chl a<br>0,082<br>0,082<br>0,082<br>0,082                                                                                  | 0,019<br>0,026<br>0,057<br>0,047<br>0,030<br>0,043<br>0,035<br>0,017<br>0,005<br>0,003<br>ChI b<br>0,015<br>0,017<br>0,020<br>0,018                                              | 0,042<br>0,065<br>0,092<br>0,077<br>0,048<br>0,057<br>0,050<br>0,035<br>0,021<br>0,009<br>Chl c<br>0,037<br>0,038<br>0,050<br>0,042                                                       | 0,025<br>0,027<br>0,040<br>0,043<br>0,033<br>0,030<br>0,023<br>0,015<br>0,013<br>0,005<br>Phe a<br>0,016<br>0,017<br>0,023<br>0,020                                                       | 0,003<br>0,009<br>0,005<br>0,002<br>0,004<br>0,002<br>0,000<br>0,003<br>0,001<br>station 4<br>Phe b<br>0,005<br>0,004<br>0,007<br>0,004                                                                                                    | 0,042<br>0,053<br>0,084<br>0,080<br>0,054<br>0,054<br>0,054<br>0,034<br>0,021<br>0,010<br>Phe c<br>0,029<br>0,032<br>0,038<br>0,034                                                                | 0,132<br>0,196<br>0,193<br>0,220<br>0,204<br>0,167<br>0,130<br>0,081<br>0,043<br>0,011<br>pChl a<br>0,111<br>0,111<br>0,137<br>0,137                                                       | 0,014<br>0,025<br>0,038<br>0,044<br>0,040<br>0,092<br>0,101<br>0,083<br>0,056<br>0,011<br>0,015                                                                                                    | -0,002<br>-0,003<br>0,000<br>0,001<br>0,005<br>0,002<br>0,003<br>0,003<br>0,003<br>0,002<br>pPhe a<br>-0,002<br>-0,002<br>-0,002<br>0,000<br>-0,003                                                 | 0,000<br>-0,005<br>-0,001<br>0,002<br>0,005<br>0,006<br>0,007<br>0,007<br>0,007<br>0,002<br>-0,002<br>-0,002<br>-0,002                                                                                                                                                              |
| 20<br>40<br>60<br>80<br>90<br>100<br>110<br>120<br>140<br>160<br>180<br>prof. (m)<br>0<br>20<br>40<br>50<br>60                            | 0,209<br>0,235<br>0,319<br>0,399<br>0,406<br>0,312<br>0,298<br>0,240<br>0,155<br>0,082<br>0,028<br>CaT<br>0,193<br>0,193<br>0,246<br>0,225<br>0,282                                              | 0,075<br>0,083<br>0,123<br>0,206<br>0,186<br>0,108<br>0,131<br>0,110<br>0,075<br>0,039<br>0,017<br>Chl a<br>0,082<br>0,082<br>0,082<br>0,082<br>0,088<br>0,119                                                                | 0,019<br>0,026<br>0,057<br>0,047<br>0,030<br>0,043<br>0,035<br>0,017<br>0,005<br>0,003<br>ChI b<br>0,015<br>0,017<br>0,020<br>0,018<br>0,025                                     | 0,042<br>0,065<br>0,092<br>0,077<br>0,048<br>0,057<br>0,050<br>0,035<br>0,021<br>0,009<br>Chl c<br>0,037<br>0,038<br>0,050<br>0,042<br>0,056                                              | 0,025<br>0,027<br>0,040<br>0,043<br>0,033<br>0,030<br>0,023<br>0,015<br>0,013<br>0,005<br>Phe a<br>0,016<br>0,017<br>0,023<br>0,020<br>0,026                                              | 0,003<br>0,009<br>0,005<br>0,002<br>0,004<br>0,002<br>0,000<br>0,003<br>0,001<br>station 4<br>Phe b<br>0,005<br>0,004<br>0,007<br>0,004<br>0,001                                                                                           | 0,042<br>0,053<br>0,084<br>0,080<br>0,054<br>0,054<br>0,054<br>0,034<br>0,021<br>0,010<br>Phe c<br>0,029<br>0,032<br>0,038<br>0,034<br>0,046                                                       | 0,132<br>0,196<br>0,193<br>0,220<br>0,204<br>0,167<br>0,130<br>0,081<br>0,043<br>0,011<br>pChl a<br>0,111<br>0,111<br>0,137<br>0,137<br>0,163                                              | 0,025<br>0,038<br>0,044<br>0,040<br>0,092<br>0,101<br>0,083<br>0,056<br>0,011<br>0,016<br>0,011<br>0,010<br>0,016<br>0,015<br>0,021                                                                | -0,002<br>-0,003<br>0,000<br>0,001<br>0,005<br>0,002<br>0,003<br>0,003<br>0,003<br>0,002<br>pPhe a<br>-0,002<br>-0,002<br>-0,002<br>0,000<br>-0,003<br>-0,003                                       | 0,000<br>-0,005<br>-0,001<br>0,002<br>0,005<br>0,006<br>0,007<br>0,007<br>0,007<br>0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002                                                                                                                                          |
| 20<br>40<br>60<br>80<br>90<br>100<br>110<br>120<br>140<br>160<br>180<br>prof. (m)<br>0<br>20<br>40<br>50<br>60<br>70                      | 0,209<br>0,235<br>0,319<br>0,399<br>0,406<br>0,312<br>0,298<br>0,240<br>0,155<br>0,082<br>0,028<br>CaT<br>0,193<br>0,193<br>0,246<br>0,225<br>0,282<br>0,233                                     | 0,075<br>0,083<br>0,123<br>0,206<br>0,186<br>0,108<br>0,131<br>0,110<br>0,075<br>0,039<br>0,017<br>Chl a<br>0,082<br>0,082<br>0,082<br>0,082<br>0,088<br>0,119<br>0,106                                                       | 0,019<br>0,026<br>0,057<br>0,047<br>0,030<br>0,043<br>0,035<br>0,017<br>0,005<br>0,003<br>ChI b<br>0,015<br>0,017<br>0,020<br>0,018<br>0,025<br>0,024                            | 0,042<br>0,065<br>0,092<br>0,077<br>0,048<br>0,057<br>0,050<br>0,035<br>0,021<br>0,009<br>Chl c<br>0,037<br>0,038<br>0,050<br>0,042<br>0,056<br>0,048                                     | 0,025<br>0,027<br>0,040<br>0,043<br>0,033<br>0,030<br>0,023<br>0,015<br>0,013<br>0,005<br>Phe a<br>0,016<br>0,017<br>0,023<br>0,020<br>0,026<br>0,019                                     | 0,003<br>0,009<br>0,005<br>0,002<br>0,004<br>0,002<br>0,000<br>0,003<br>0,001<br>station 4<br>Phe b<br>0,005<br>0,004<br>0,007<br>0,004<br>0,007<br>0,004<br>0,007                                                                         | 0,042<br>0,053<br>0,084<br>0,080<br>0,054<br>0,054<br>0,054<br>0,034<br>0,021<br>0,010<br>Phe c<br>0,029<br>0,032<br>0,032<br>0,038<br>0,034<br>0,046<br>0,042                                     | 0,132<br>0,196<br>0,193<br>0,220<br>0,204<br>0,167<br>0,130<br>0,081<br>0,043<br>0,011<br>pChl a<br>0,111<br>0,111<br>0,137<br>0,137<br>0,163<br>0,127                                     | 0,014<br>0,025<br>0,038<br>0,044<br>0,040<br>0,092<br>0,101<br>0,083<br>0,056<br>0,011<br>0,016<br>0,015<br>0,021<br>0,020                                                                         | -0,002<br>-0,003<br>0,000<br>0,001<br>0,005<br>0,002<br>0,003<br>0,003<br>0,003<br>0,002<br>pPhe a<br>-0,002<br>-0,002<br>-0,002<br>0,000<br>-0,003<br>-0,003<br>-0,001                             | 0,000<br>-0,005<br>-0,001<br>0,002<br>0,005<br>0,006<br>0,007<br>0,007<br>0,007<br>0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002                                                                                                                      |
| 20<br>40<br>60<br>80<br>90<br>100<br>110<br>120<br>140<br>160<br>180<br>prof. (m)<br>0<br>20<br>40<br>50<br>60<br>70<br>80                | 0,209<br>0,235<br>0,319<br>0,399<br>0,406<br>0,312<br>0,298<br>0,240<br>0,155<br>0,082<br>0,028<br>CaT<br>0,193<br>0,193<br>0,246<br>0,225<br>0,282<br>0,233<br>0,458                            | 0,075<br>0,083<br>0,123<br>0,206<br>0,186<br>0,108<br>0,131<br>0,110<br>0,075<br>0,039<br>0,017<br>Chl a<br>0,082<br>0,082<br>0,082<br>0,082<br>0,082<br>0,088<br>0,119<br>0,106<br>0,248                                     | 0,019<br>0,026<br>0,057<br>0,047<br>0,030<br>0,043<br>0,035<br>0,017<br>0,005<br>0,003<br>Chl b<br>0,015<br>0,017<br>0,020<br>0,018<br>0,025<br>0,024<br>0,077                   | 0,042<br>0,065<br>0,092<br>0,077<br>0,048<br>0,057<br>0,050<br>0,035<br>0,021<br>0,009<br>Chl c<br>0,037<br>0,038<br>0,050<br>0,042<br>0,056<br>0,048<br>0,104                            | 0,025<br>0,027<br>0,040<br>0,043<br>0,033<br>0,030<br>0,023<br>0,015<br>0,013<br>0,005<br>Phe a<br>0,016<br>0,017<br>0,023<br>0,020<br>0,026<br>0,019<br>0,057                            | 0,003<br>0,009<br>0,005<br>0,002<br>0,004<br>0,002<br>0,000<br>0,003<br>0,001<br>station 4<br>Phe b<br>0,005<br>0,004<br>0,007<br>0,004<br>0,007<br>0,004                                                                                  | 0,042<br>0,053<br>0,084<br>0,080<br>0,054<br>0,054<br>0,054<br>0,034<br>0,021<br>0,010<br>Phe c<br>0,029<br>0,032<br>0,032<br>0,038<br>0,034<br>0,046<br>0,042<br>0,042                            | 0,132<br>0,196<br>0,193<br>0,220<br>0,204<br>0,167<br>0,130<br>0,081<br>0,043<br>0,011<br>pChl a<br>0,111<br>0,111<br>0,137<br>0,137<br>0,163<br>0,127<br>0,209                            | 0,014<br>0,025<br>0,038<br>0,044<br>0,040<br>0,092<br>0,101<br>0,083<br>0,056<br>0,011<br>0,015<br>0,011<br>0,010<br>0,016<br>0,015<br>0,021<br>0,020<br>0,086                                     | -0,002<br>-0,003<br>0,000<br>0,001<br>0,005<br>0,002<br>0,003<br>0,003<br>0,003<br>0,002<br>pPhe a<br>-0,002<br>-0,002<br>-0,002<br>0,000<br>-0,003<br>-0,003<br>-0,001<br>0,000                    | 0,000<br>-0,005<br>-0,001<br>0,002<br>0,005<br>0,006<br>0,007<br>0,007<br>0,007<br>0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002                                                                                                            |
| 20<br>40<br>60<br>80<br>90<br>100<br>110<br>120<br>140<br>160<br>180<br>prof. (m)<br>0<br>20<br>40<br>50<br>60<br>70<br>80<br>90          | 0,209<br>0,235<br>0,319<br>0,399<br>0,406<br>0,312<br>0,298<br>0,240<br>0,155<br>0,082<br>0,028<br>CaT<br>0,193<br>0,193<br>0,246<br>0,225<br>0,282<br>0,233<br>0,458<br>0,443                   | 0,075<br>0,083<br>0,123<br>0,206<br>0,186<br>0,108<br>0,131<br>0,110<br>0,075<br>0,039<br>0,017<br>Chl a<br>0,082<br>0,082<br>0,082<br>0,082<br>0,082<br>0,082<br>0,088<br>0,119<br>0,106<br>0,248<br>0,237                   | 0,019<br>0,026<br>0,057<br>0,047<br>0,030<br>0,043<br>0,035<br>0,017<br>0,005<br>0,003<br>ChI b<br>0,015<br>0,017<br>0,020<br>0,018<br>0,025<br>0,024<br>0,027<br>0,077          | 0,042<br>0,065<br>0,092<br>0,077<br>0,048<br>0,057<br>0,050<br>0,035<br>0,021<br>0,009<br>Chl c<br>0,037<br>0,038<br>0,050<br>0,042<br>0,056<br>0,048<br>0,104<br>0,100                   | 0,025<br>0,027<br>0,040<br>0,043<br>0,033<br>0,030<br>0,023<br>0,015<br>0,013<br>0,005<br>Phe a<br>0,016<br>0,017<br>0,023<br>0,020<br>0,026<br>0,019<br>0,057<br>0,060                   | 0,003<br>0,009<br>0,005<br>0,002<br>0,004<br>0,002<br>0,000<br>0,003<br>0,001<br>station 4<br>Phe b<br>0,005<br>0,004<br>0,007<br>0,004<br>0,007<br>0,004<br>0,007<br>0,004<br>0,007                                                       | 0,042<br>0,053<br>0,084<br>0,080<br>0,054<br>0,054<br>0,054<br>0,034<br>0,021<br>0,010<br>Phe c<br>0,029<br>0,032<br>0,038<br>0,034<br>0,046<br>0,042<br>0,046                                     | 0,132<br>0,196<br>0,193<br>0,220<br>0,204<br>0,167<br>0,130<br>0,081<br>0,043<br>0,011<br>pChl a<br>0,111<br>0,111<br>0,137<br>0,137<br>0,163<br>0,127<br>0,209<br>0,206                   | 0,025<br>0,038<br>0,044<br>0,040<br>0,092<br>0,101<br>0,083<br>0,056<br>0,011<br>0,010<br>0,011<br>0,010<br>0,016<br>0,015<br>0,021<br>0,020<br>0,086<br>0,128                                     | -0,002<br>-0,003<br>0,000<br>0,001<br>0,005<br>0,002<br>0,003<br>0,003<br>0,003<br>0,002<br>pPhe a<br>-0,002<br>-0,002<br>-0,002<br>0,000<br>-0,003<br>-0,003<br>-0,001<br>0,000<br>0,001           | 0,000<br>-0,005<br>-0,001<br>0,002<br>0,005<br>0,006<br>0,007<br>0,007<br>0,007<br>0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,005                                      |
| 20<br>40<br>60<br>80<br>90<br>100<br>110<br>120<br>140<br>160<br>180<br>prof. (m)<br>0<br>20<br>40<br>50<br>60<br>70<br>80<br>90<br>100   | 0,209<br>0,235<br>0,319<br>0,399<br>0,406<br>0,312<br>0,298<br>0,240<br>0,155<br>0,082<br>0,028<br>CaT<br>0,193<br>0,193<br>0,246<br>0,225<br>0,282<br>0,233<br>0,458<br>0,443<br>0,231          | 0,079<br>0,083<br>0,123<br>0,206<br>0,186<br>0,108<br>0,131<br>0,110<br>0,075<br>0,039<br>0,017<br>Ch1 a<br>0,082<br>0,082<br>0,082<br>0,082<br>0,082<br>0,108<br>0,088<br>0,119<br>0,106<br>0,248<br>0,237<br>0,127          | 0,019<br>0,026<br>0,057<br>0,047<br>0,030<br>0,043<br>0,035<br>0,017<br>0,005<br>0,003<br>ChI b<br>0,015<br>0,017<br>0,020<br>0,018<br>0,025<br>0,024<br>0,077<br>0,032          | 0,042<br>0,065<br>0,092<br>0,077<br>0,048<br>0,057<br>0,050<br>0,035<br>0,021<br>0,009<br>Chl c<br>0,037<br>0,038<br>0,050<br>0,042<br>0,056<br>0,048<br>0,104<br>0,100<br>0,057          | 0,025<br>0,027<br>0,040<br>0,043<br>0,033<br>0,030<br>0,023<br>0,015<br>0,013<br>0,005<br>Phe a<br>0,016<br>0,017<br>0,023<br>0,020<br>0,026<br>0,019<br>0,057<br>0,060<br>0,024          | 0,003<br>0,009<br>0,005<br>0,002<br>0,004<br>0,002<br>0,000<br>0,003<br>0,001<br>station 4<br>Phe b<br>0,005<br>0,004<br>0,007<br>0,004<br>0,007<br>0,004<br>0,007<br>0,004<br>0,007                                                       | 0,042<br>0,053<br>0,084<br>0,080<br>0,054<br>0,054<br>0,054<br>0,034<br>0,021<br>0,010<br>Phe c<br>0,029<br>0,032<br>0,038<br>0,034<br>0,046<br>0,042<br>0,104<br>0,100<br>0,046                   | 0,152<br>0,196<br>0,193<br>0,220<br>0,204<br>0,167<br>0,130<br>0,081<br>0,043<br>0,011<br>pChl a<br>0,111<br>0,111<br>0,137<br>0,137<br>0,163<br>0,127<br>0,209<br>0,206<br>0,105          | 0,014<br>0,025<br>0,038<br>0,044<br>0,040<br>0,092<br>0,101<br>0,083<br>0,056<br>0,011<br>0,015<br>0,011<br>0,010<br>0,016<br>0,015<br>0,021<br>0,020<br>0,086<br>0,128<br>0,122                   | -0,002<br>-0,003<br>0,000<br>0,001<br>0,005<br>0,002<br>0,003<br>0,003<br>0,002<br>pPhe a<br>-0,002<br>-0,002<br>-0,002<br>0,000<br>-0,003<br>-0,003<br>-0,003<br>-0,001<br>0,000<br>0,001<br>0,000 | 0,000<br>-0,005<br>-0,001<br>0,002<br>0,005<br>0,006<br>0,007<br>0,007<br>0,007<br>0,007<br>0,002<br>-0,002<br>-0,004<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,005                                       |
| 20<br>40<br>60<br>80<br>90<br>100<br>110<br>120<br>140<br>160<br>180<br>90<br>100<br>50<br>60<br>70<br>80<br>90<br>100<br>120             | 0,209<br>0,235<br>0,319<br>0,399<br>0,406<br>0,312<br>0,298<br>0,240<br>0,155<br>0,082<br>0,028<br>CaT<br>0,193<br>0,246<br>0,225<br>0,282<br>0,233<br>0,458<br>0,443<br>0,231<br>0,154          | 0,075<br>0,083<br>0,123<br>0,206<br>0,186<br>0,108<br>0,131<br>0,110<br>0,075<br>0,039<br>0,017<br>Ch1 a<br>0,082<br>0,082<br>0,082<br>0,082<br>0,108<br>0,088<br>0,119<br>0,106<br>0,248<br>0,237<br>0,127<br>0,079          | 0,019<br>0,026<br>0,057<br>0,047<br>0,030<br>0,043<br>0,035<br>0,017<br>0,005<br>0,003<br>ChI b<br>0,015<br>0,017<br>0,020<br>0,018<br>0,025<br>0,024<br>0,077<br>0,032<br>0,014 | 0,042<br>0,065<br>0,092<br>0,077<br>0,048<br>0,057<br>0,050<br>0,035<br>0,021<br>0,009<br>Chl c<br>0,037<br>0,038<br>0,050<br>0,042<br>0,056<br>0,048<br>0,104<br>0,100<br>0,057<br>0,039 | 0,025<br>0,027<br>0,040<br>0,043<br>0,033<br>0,030<br>0,023<br>0,015<br>0,013<br>0,005<br>Phe a<br>0,016<br>0,017<br>0,023<br>0,020<br>0,026<br>0,019<br>0,057<br>0,060<br>0,024<br>0,016 | 0,003<br>0,009<br>0,005<br>0,002<br>0,004<br>0,002<br>0,000<br>0,003<br>0,001<br>station 4<br>Phe b<br>0,005<br>0,004<br>0,007<br>0,004<br>0,007<br>0,004<br>0,007<br>0,004<br>0,007<br>0,004<br>0,007<br>0,004<br>0,007<br>0,004<br>0,007 | 0,042<br>0,053<br>0,084<br>0,080<br>0,054<br>0,054<br>0,054<br>0,021<br>0,010<br>Phe c<br>0,029<br>0,032<br>0,038<br>0,034<br>0,046<br>0,042<br>0,046<br>0,042<br>0,104<br>0,100<br>0,046<br>0,030 | 0,132<br>0,196<br>0,193<br>0,220<br>0,204<br>0,167<br>0,130<br>0,081<br>0,043<br>0,011<br>pChl a<br>0,111<br>0,111<br>0,137<br>0,137<br>0,163<br>0,127<br>0,209<br>0,206<br>0,105<br>0,076 | 0,014<br>0,025<br>0,038<br>0,044<br>0,040<br>0,092<br>0,101<br>0,083<br>0,056<br>0,011<br>0,016<br>0,015<br>0,021<br>0,020<br>0,086<br>0,128<br>0,122<br>0,106                                     | -0,002<br>-0,003<br>0,000<br>0,001<br>0,005<br>0,002<br>0,003<br>0,003<br>0,002<br>pPhe a<br>-0,002<br>-0,002<br>-0,002<br>0,000<br>-0,003<br>-0,003<br>-0,001<br>0,000<br>0,001<br>0,000           | 0,000<br>-0,005<br>-0,001<br>0,002<br>0,005<br>0,006<br>0,007<br>0,007<br>0,007<br>0,007<br>0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,005                             |
| 20<br>40<br>60<br>80<br>90<br>100<br>110<br>120<br>140<br>160<br>180<br>90<br>20<br>40<br>50<br>60<br>70<br>80<br>90<br>100<br>120<br>140 | 0,209<br>0,235<br>0,319<br>0,399<br>0,406<br>0,312<br>0,298<br>0,240<br>0,155<br>0,082<br>0,028<br>CaT<br>0,193<br>0,193<br>0,246<br>0,225<br>0,282<br>0,233<br>0,458<br>0,443<br>0,231<br>0,154 | 0,079<br>0,083<br>0,123<br>0,206<br>0,186<br>0,108<br>0,131<br>0,110<br>0,075<br>0,039<br>0,017<br>Chl a<br>0,082<br>0,082<br>0,082<br>0,082<br>0,082<br>0,108<br>0,088<br>0,119<br>0,106<br>0,248<br>0,237<br>0,127<br>0,079 | 0,019<br>0,026<br>0,057<br>0,047<br>0,030<br>0,043<br>0,035<br>0,017<br>0,005<br>0,003<br>Chl b<br>0,015<br>0,017<br>0,020<br>0,018<br>0,025<br>0,024<br>0,077<br>0,032<br>0,014 | 0,042<br>0,065<br>0,092<br>0,077<br>0,048<br>0,057<br>0,050<br>0,035<br>0,021<br>0,009<br>Chl c<br>0,037<br>0,038<br>0,050<br>0,042<br>0,056<br>0,048<br>0,104<br>0,100<br>0,057<br>0,039 | 0,025<br>0,027<br>0,040<br>0,043<br>0,033<br>0,030<br>0,023<br>0,015<br>0,013<br>0,005<br>Phe a<br>0,016<br>0,017<br>0,023<br>0,020<br>0,026<br>0,019<br>0,057<br>0,060<br>0,024<br>0,016 | 0,003<br>0,009<br>0,005<br>0,002<br>0,004<br>0,002<br>0,000<br>0,003<br>0,001<br>station 4<br>Phe b<br>0,005<br>0,004<br>0,007<br>0,004<br>0,007<br>0,004<br>0,007<br>0,004<br>0,007<br>0,004<br>0,003<br>0,000<br>0,000                   | 0,042<br>0,053<br>0,084<br>0,080<br>0,054<br>0,054<br>0,054<br>0,034<br>0,021<br>0,010<br>Phe c<br>0,029<br>0,032<br>0,038<br>0,034<br>0,046<br>0,042<br>0,104<br>0,100<br>0,046<br>0,030          | 0,152<br>0,196<br>0,193<br>0,220<br>0,204<br>0,167<br>0,130<br>0,081<br>0,043<br>0,011<br>0,043<br>0,011<br>0,101<br>0,111<br>0,137<br>0,163<br>0,127<br>0,209<br>0,206<br>0,105<br>0,076  | 0,014<br>0,025<br>0,038<br>0,044<br>0,040<br>0,092<br>0,101<br>0,083<br>0,056<br>0,011<br>0,016<br>0,015<br>0,011<br>0,010<br>0,016<br>0,015<br>0,021<br>0,020<br>0,086<br>0,128<br>0,122<br>0,106 | -0,002<br>-0,003<br>0,000<br>0,001<br>0,005<br>0,002<br>0,003<br>0,003<br>0,002<br>pPhe a<br>-0,002<br>-0,002<br>-0,002<br>-0,003<br>-0,003<br>-0,003<br>-0,001<br>0,000<br>0,001                   | 0,000<br>-0,005<br>-0,001<br>0,002<br>0,005<br>0,006<br>0,007<br>0,007<br>0,007<br>0,007<br>0,007<br>0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,002<br>-0,004<br>0,002<br>-0,005 |

| prof. (m) | CaT   | Chl a | Chl b | Chl c | Phe a  | Phe b     | Phe c | pChI a | pChl b | pPhe a | pPhe b |
|-----------|-------|-------|-------|-------|--------|-----------|-------|--------|--------|--------|--------|
| 0         | 0,131 | 0,039 | 0,008 | 0,013 | 0,011  | 0,005     | 0,005 | 0,091  | 0,004  | -0,005 | -0,003 |
| 20        | 0,130 | 0,044 | 0,009 | 0,016 | 0,011  | 0,005     | 0,008 | 0,086  | 0,004  | -0,004 | -0,003 |
| 40        | 0,145 | 0,049 | 0,010 | 0,020 | 0,014  | 0,003     | 0,012 | 0,096  | 0,006  | -0,004 | -0,002 |
| 60        | 0,435 | 0,209 | 0,058 | 0,095 | 0,047  | 0,005     | 0,067 | 0,227  | 0,032  | -0,008 | -0,001 |
| 70        | 0,551 | 0,311 | 0,113 | 0,134 | 0,067  | 0,008     | 0,111 | 0,239  | 0,055  | -0,003 | -0,003 |
| 80        | 0,548 | 0,338 | 0,136 | 0,133 | 0,072  | 0,014     | 0,122 | 0,210  | 0,099  | 0,004  | 0,005  |
| 90        | 0,497 | 0,309 | 0,109 | 0,123 | 0,065  | 0,009     | 0,096 | 0,188  | 0,120  | 0,000  | 0,012  |
| 100       | 0,343 | 0,197 | 0,058 | 0,085 | 0,044  | 0,003     | 0,065 | 0,146  | 0,133  | -0,002 | 0,010  |
| 120       | 0,166 | 0,086 | 0,020 | 0,041 | 0,020  | 0,000     | 0,032 | 0,080  | 0,101  | 0,000  | 0,007  |
| 150       | 0,030 | 0,019 | 0,004 | 0,009 | 0,006  | 0,001     | 0,010 | 0,011  | 0,014  | 0,002  | 0,002  |
| 180       | 0,011 | 0,008 | 0,001 | 0,004 | 0,005  | 0,001     | 0,006 | 0,003  | 0,003  | 0,002  | 0,001  |
|           |       |       |       |       |        | station 6 |       |        |        |        |        |
| prof. (m) | CaT   | Chl a | Chl b | Chỉ c | Phe a  | Phe b     | Phe c | pChl a | pChl b | pPhe a | pPhe b |
| 0         | 0,108 | 0,038 | 0,010 | 0,017 | 0,009  | 0,002     | 0,010 | 0,070  | 0,004  | -0,003 | -0,002 |
| 20        | 0,108 | 0,038 | 0,009 | 0,016 | 0,010  | 0,004     | 0,005 | 0,070  | 0,004  | -0,003 | -0,002 |
| 40        | 0,121 | 0,040 | 0,011 | 0,020 | 0,010  | 0,005     | 0,013 | 0,081  | 0,006  | -0,003 | -0,004 |
| 60        | 0,310 | 0,156 | 0,047 | 0,082 | 0,029  | 0,010     | 0,054 | 0,153  | 0,018  | -0,005 | -0,005 |
| 70        | 0,361 | 0,196 | 0,103 | 0,099 | 0,041  | 0,009     | 0,089 | 0,166  | 0,039  | -0,003 | -0,004 |
| 80        | 0,384 | 0,192 | 0,102 | 0,100 | 0,042  | 0,009     | 0,081 | 0,192  | 0,100  | -0,005 | 0,003  |
| 90        | 0,403 | 0,218 | 0,077 | 0,104 | 0,050  | 0,007     | 0,097 | 0,185  | 0,136  | 0,000  | 0,004  |
| 100       | 0,182 | 0,084 | 0,019 | 0,042 | 0,021  | 0,003     | 0,035 | 0,099  | 0,043  | -0,002 | 0,002  |
| 120       | 0,059 | 0,032 | 0,007 | 0,016 | 0,008  | 0,002     | 0,018 | 0,027  | 0,037  | 0,002  | 0,001  |
| 140       | 0,105 | 0,061 | 0,012 | 0,029 | 0,012  | 0,000     | 0,024 | 0,044  | 0,066  | 0,001  | 0,004  |
| 160       | 0,060 | 0,041 | 0,008 | 0,019 | 0,007  | 0,001     | 0,018 | 0,019  | 0,028  | 0,001  | 0,001  |
| 180       | 0,012 | 0,010 | 0,003 | 0,004 | 0,005  | 0,001     | 0,006 | 0,002  | 0,002  | 0,002  | 0,001  |
|           |       |       |       |       |        | station 8 |       |        |        |        |        |
| prof. (m) | CaT   | Chl a | Chl b | Chl c | Phe a  | Phe b     | Phe c | pChl a | pChl b | pPhe a | pPhe b |
| 0         | 0,118 | 0,040 | 0,006 | 0,015 | 0,008  | 0,000     | 0,007 | 0,077  | 0,005  | -0,004 | 0,000  |
| 20        | 0,119 | 0,044 | 0,008 | 0,016 | 0,009  | 0,000     | 0,008 | 0,076  | 0,005  | -0,005 | -0,001 |
| 40        | 0,127 | 0,046 | 0,009 | 0,019 | 0,009  | 0,002     | 0,010 | 0,082  | 0,005  | -0,003 | -0,002 |
| 50        | 0,287 | 0,103 | 0,027 | 0,051 | 0,023  | 0,001     | 0,030 | 0,184  | 0,015  | -0,007 | -0,002 |
| 60        | 0,423 | 0,207 | 0,138 | 0,106 | 0,041  | 0,003     | 0,086 | 0,216  | 0,037  | 0,000  | 0,005  |
| 80        | 0,349 | 0,214 | 0,047 | 0,104 | 0,028  | -0,013    | 0,088 | 0,135  | 0,137  | 0,007  | 0,016  |
| 90        | 0,336 | 0,208 | 0,039 | 0,098 | 0,024  | -0,012    | 0,085 | 0,129  | 0,152  | 0,007  | 0,014  |
| 100       | 0,303 | 0,179 | 0,027 | 0,084 | 0,025  | -0,011    | 0,071 | 0,124  | 0,166  | 0,004  | 0,015  |
| 120       | 0,205 | 0,115 | 0,017 | 0,053 | 0,016  | -0,009    | 0,037 | 0,091  | 0,135  | 0,001  | 0,011  |
| 140       | 0,115 | 0,074 | 0,013 | 0,033 | 0,009  | -0,004    | 0,029 | 0,041  | 0,064  | 0,003  | 0,005  |
| 160       | 0,039 | 0,032 | 0,006 | 0,014 | 0,006  | 0,000     | 0,013 | 0,006  | 0,009  | 0,003  | 0,003  |
| 180       | 0,040 | 0,025 | 0,007 | 0,012 | 0,004  | 0,002     | 0,006 | 0,015  | 0,006  | 0,002  | 0,000  |
|           |       |       |       |       |        | station 9 |       |        |        |        |        |
| prof. (m) | CaT   | Chl a | Chl b | Chl c | Phe a  | Phe b     | Phe c | pChl a | pChl b | pPhe a | pPhe b |
| 0         | 0,097 | 0,045 | 0,008 | 0,015 | 0,000  | -0,001    | 0,006 | 0,053  | 0,003  | 0,003  | 0,000  |
| 20        | 0,100 | 0,048 | 0,008 | 0,016 | 0,000  | 0,000     | 0,006 | 0,052  | 0,004  | 0,004  | 0,000  |
| 40        | 0,101 | 0,046 | 0,009 | 0,015 | 0,000  | -0,001    | 0,008 | 0,055  | 0,003  | 0,004  | 0,000  |
| 50        | 0,131 | 0,060 | 0,010 | 0,023 | 0,001  | -0,002    | 0,011 | 0,071  | 0,006  | 0,004  | 0,000  |
| 60        | 0,138 | 0,062 | 0,012 | 0,024 | 0,001  | -0,002    | 0,012 | 0,076  | 0,007  | 0,006  | 0,001  |
| 70        | 0,322 | 0,153 | 0,038 | 0,073 | 0,006  | -0,005    | 0,039 | 0,170  | 0,016  | 0,015  | 0,003  |
| 80        | 0,471 | 0,276 | 0,124 | 0,135 | 0,016  | -0,009    | 0,093 | 0,196  | 0,028  | 0,032  | 0,008  |
| 90        | 0,428 | 0,215 | 0,096 | 0,117 | 0,009  | -0,010    | 0,083 | 0,213  | 0,109  | 0,033  | 0,015  |
| 100       | 0,331 | 0,188 | 0,042 | 0,097 | 0,001  | -0,014    | 0,065 | 0,143  | 0,137  | 0,026  | 0,016  |
| 120       | 0,284 | 0,170 | 0,031 | 0,082 | 0,001  | -0,013    | 0,051 | 0,113  | 0,142  | 0,025  | 0,020  |
| 140       | 0,162 | 0,093 | 0,018 | 0,043 | -0,001 | -0,008    | 0,028 | 0,068  | 0,101  | 0,013  | 0,009  |
| 160       | 0,053 | 0,046 | 0,008 | 0,021 | 0,002  | -0,002    | 0,014 | 0,007  | 0,010  | 0,007  | 0,003  |

Station 5

58

160

0,053

0,046

| prof. (m) | CaT   | Chl a | Chl b | Chl c | Phe a | Phe b      | Phe c | pChI a | pChl b | pPhe a | pPhe b   |
|-----------|-------|-------|-------|-------|-------|------------|-------|--------|--------|--------|----------|
| 0         | 0,086 | 0,033 | 0,008 | 0,012 | 0,007 | 0,002      | 0,004 | 0,052  | 0,002  | -0,003 | -0,003 - |
| 20        | 0,088 | 0,035 | 0,008 | 0,013 | 0,008 | 0,002      | 0,007 | 0,053  | 0,003  | -0,003 | -0,002   |
| 40        | 0,123 | 0,042 | 0,013 | 0,019 | 0,010 | 0,004      | 0,012 | 0,081  | 0,006  | -0,003 | -0,004   |
| 50        | 0,268 | 0.089 | 0.053 | 0,049 | 0,025 | 0,005      | 0,026 | 0,179  | 0,017  | -0,005 | -0.001   |
| 60        | 0,432 | 0,196 | 0,167 | 0,107 | 0,045 | 0,016      | 0,077 | 0,236  | 0,033  | -0,004 | -0.001   |
| 70        | 0,420 | 0,185 | 0,165 | 0,098 | 0,045 | 0,013      | 0,075 | 0,235  | 0,039  | -0,002 | -0,001   |
| 80        | 0,390 | 0,170 | 0,080 | 0,092 | 0,037 | 0,004      | 0,056 | 0,220  | 0,126  | -0,002 | 0,011    |
| 90        | 0,319 | 0,165 | 0,059 | 0,078 | 0,036 | 0,001      | 0.059 | 0,154  | 0,121  | 0.004  | 0.012    |
| 120       | 0,177 | 0,092 | 0,020 | 0,045 | 0,017 | 0,002      | 0,030 | 0,085  | 0,106  | -0.001 | 0.004    |
| 140       | 0,135 | 0,071 | 0,014 | 0,035 | 0,013 | -0,001     | 0,021 | 0,064  | 0,085  | -0,001 | 0.004    |
| 160       | 0,094 | 0,051 | 0,008 | 0,026 | 0,009 | 0,000      | 0,018 | 0,043  | 0,061  | 0,000  | 0.003    |
| 180       | 0,046 | 0,036 | 0,007 | 0,016 | 0,007 | 0,001      | 0,012 | 0,010  | 0,011  | 0,001  | 0,001    |
|           |       |       |       |       |       | station 12 |       |        |        |        |          |
| prof. (m) | CaT   | Chl a | Chl b | Chl c | Phe a | Phe b      | Phe c | pChl a | pChł b | pPhe a | pPhe b   |
| 0         | 0,074 | 0,029 | 0,007 | 0,011 | 0,004 | 0,000      | 0,006 | 0,045  | 0,003  | -0,001 | -0,001   |
| 20        | 0,076 | 0,030 | 0,008 | 0,011 | 0,004 | 0,002      | 0,009 | 0,046  | 0,003  | 0,000  | -0,003   |
| 40        | 0,126 | 0,045 | 0,015 | 0,018 | 0,008 | 0,004      | 0,011 | 0,081  | 0,008  | -0,001 | -0,004   |
| 50        | 0,188 | 0,055 | 0,017 | 0,030 | 0,013 | 0,004      | 0,020 | 0,134  | 0,014  | -0,003 | -0,003   |
| 60        | 0,235 | 0,069 | 0,029 | 0,038 | 0,017 | 0,005      | 0,021 | 0,166  | 0,017  | -0,002 | -0,004   |
| 70        | 0,481 | 0,200 | 0,195 | 0,116 | 0,040 | 0,016      | 0,088 | 0,280  | 0,069  | 0,003  | -0,002   |
| 80        | 0,428 | 0,214 | 0,077 | 0,116 | 0,033 | 0,002      | 0,081 | 0,214  | 0,151  | 0,002  | 0,007    |
| 90        | 0,415 | 0,208 | 0,065 | 0,112 | 0,032 | 0,000      | 0,085 | 0,207  | 0,162  | 0,000  | 0,003    |
| 100       | 0,376 | 0,199 | 0,050 | 0,103 | 0,027 | -0,005     | 0,083 | 0,177  | 0,169  | 0,003  | 0,010    |
| 120       | 0,287 | 0,144 | 0,034 | 0,070 | 0,021 | -0,005     | 0,048 | 0,143  | 0,163  | 0,000  | 0,007    |
| 140       | 0,170 | 0,099 | 0,027 | 0,044 | 0,014 | -0,002     | 0,039 | 0,070  | 0,085  | 0,003  | 0,006    |
| 160       | 0,079 | 0,048 | 0,006 | 0,023 | 0,010 | 0,000      | 0,019 | 0,031  | 0,048  | 0,002  | 0,004    |
| 180       | 0,034 | 0,026 | 0,005 | 0,012 | 0,006 | 0,001      | 0,012 | 0,008  | 0,010  | 0,002  | 0,002    |
|           |       |       |       |       | :     | station 14 |       |        |        |        |          |
| prof. (m) | CaT   | Chl a | Chl b | ChI c | Phe a | Phe b      | Phe c | pChl a | pChl b | pPhe a | pPhe b   |
| 0         | 0,134 | 0,053 | 0,012 | 0,020 | 0,009 | 0,004      | 0,013 | 0,081  | 0,006  | -0,002 | -0,003   |
| 20        | 0,133 | 0,049 | 0,013 | 0,018 | 0,009 | 0,004      | 0,013 | 0,084  | 0,006  | -0,001 | -0,005   |
| 40        | 0,191 | 0,082 | 0,020 | 0,035 | 0,014 | 0,004      | 0,023 | 0,109  | 0,009  | -0,002 | -0,003   |
| 50        | 0,453 | 0,237 | 0,063 | 0,118 | 0,047 | 0,007      | 0,091 | 0,216  | 0,023  | 0,003  | -0,008   |
| 60        | 0,500 | 0,266 | 0,066 | 0,132 | 0,058 | 0,002      | 0,105 | 0,234  | 0,031  | 0,000  | -0,002   |
| 70        | 0,604 | 0,298 | 0,098 | 0,153 | 0,066 | 0,010      | 0,126 | 0,306  | 0,054  | 0,003  | -0,005   |
| 80        | 0,601 | 0,280 | 0,121 | 0,141 | 0,061 | 0,004      | 0,132 | 0,321  | 0,128  | 0,012  | 0,007    |
| 90        | 0,475 | 0,264 | 0,088 | 0,119 | 0,041 | -0,002     | 0,113 | 0,210  | 0,139  | 0,011  | 0,012    |
| 100       | 0,383 | 0,218 | 0,068 | 0,097 | 0,029 | -0,003     | 0,089 | 0,165  | 0,135  | 0,008  | 0,009    |
| 120       | 0,236 | 0,137 | 0,026 | 0,060 | 0,019 | -0,004     | 0,052 | 0,098  | 0,130  | 0,004  | 0,009    |
| 140       | 0,059 | 0,043 | 0,007 | 0,018 | 0,007 | 0,001      | 0,019 | 0,015  | 0,021  | 0,003  | 0,002    |
| 160       | 0,011 | 0,008 | 0,002 | 0,004 | 0,005 | 0,002      | 0,006 | 0,003  | 0,002  | 0,003  | 0,001    |

.

| prof. (m)   | CaT            | Chl a   | Chł b | Chl c  | Phe a  | Phe b          | Phe c | pChl a | pChl b | pPhe a  | pPhe b  |
|-------------|----------------|---------|-------|--------|--------|----------------|-------|--------|--------|---------|---------|
| 0           | 0,110          | 0,034   | 0,007 | 0,011  | 0,007  | 0,000          | 0,007 | 0,076  | 0,003  | -0,004  | -0.001  |
| 20          | 0,122          | 0.042   | 0,009 | 0.014  | 0.009  | 0.002          | 0.008 | 0.080  | 0.004  | -0.004  | -0.001  |
| 40          | 0.199          | 0.090   | 0.020 | 0.042  | 0.013  | 0.002          | 0.029 | 0.109  | 0.009  | -0.002  | -0.003  |
| 60          | 0.238          | 0 104   | 0.025 | 0.053  | 0.018  | 0.004          | 0.033 | 0 134  | 0.014  | -0.001  | -0.001  |
| 80          | 0.285          | 0 1 2 0 | 0,029 | 0.067  | 0,010  | 0.003          | 0,020 | 0,165  | 0,014  | 0,000   | 0,001   |
| 00          | 0,200          | 0,120   | 0,029 | 0,007  | 0,023  | 0,003          | 0,040 | 0,105  | 0,019  | 0,000   | 0,000   |
| 90          | 0,398          | 0,224   | 0,000 | 0,117  | 0,037  | 0,001          | 0,087 | 0,174  | 0,028  | 0,005   | 0,000   |
| 100         | 0,448          | 0,284   | 0,076 | 0,139  | 0,052  | 0,001          | 0,108 | 0,164  | 0,050  | 0,006   | 0,003   |
| 110         | 0,416          | 0,265   | 0,064 | 0,125  | 0,041  | -0,003         | 0,099 | 0,151  | 0,075  | 0,007   | 0,007   |
| 120         | 0,335          | 0,175   | 0,035 | 0,083  | 0,031  | <b>-0,</b> 007 | 0,064 | 0,160  | 0,169  | 0,006   | 0,015   |
| 130         | 0,151          | 0,080   | 0,010 | 0,039  | 0,010  | -0,004         | 0,028 | 0,071  | 0,103  | 0,000   | 0,005   |
| 140         | 0,020          | 0,017   | 0,004 | 0,007  | 0,005  | 0,000          | 0,009 | 0,002  | 0,002  | 0,002   | 0,002   |
| 160         | 0,007          | 0,005   | 0,002 | 0,002  | 0,004  | 0,001          | 0,009 | 0,002  | 0,002  | 0,003   | 0,002   |
| 180         | 0,003          | 0,002   | 0,001 | 0,001  | 0,004  | 0,002          | 0,005 | 0,001  | 0,000  | 0,002   | 0.001   |
|             | ,              |         |       |        | ,      | ,              |       | ,      | .,     | -,      | -,      |
|             |                |         |       |        | 5      | station 16     |       |        |        |         |         |
| prof. (m)   | CaT            | Chl a   | Chl b | Chl c  | Phe a  | Phe b          | Phe c | pChI a | pChl b | pPhe a  | pPhe b  |
| 0           | 0,104          | 0,033   | 0,007 | 0,012  | 0,006  | 0,001          | 0,005 | 0,070  | 0,004  | -0,001  | -0,001  |
| 20          | 0,105          | 0,032   | 0,009 | 0,012  | 0,006  | 0,002          | 0,009 | 0,072  | 0,004  | 0,000   | -0,003  |
| 40          | 0,146          | 0,046   | 0,010 | 0,020  | 0,008  | 0,000          | 0,012 | 0,100  | 0,009  | 0,000   | 0,000   |
| 60          | 0,183          | 0,056   | 0,013 | 0,026  | 0,011  | 0,001          | 0,017 | 0,128  | 0,015  | 0,001   | 0,000   |
| 80          | 0,301          | 0,095   | 0,024 | 0,053  | 0,019  | 0,002          | 0,038 | 0,206  | 0,027  | 0,007   | -0,001  |
| 90          | 0,378          | 0,156   | 0,045 | 0,086  | 0,025  | -0,005         | 0,069 | 0,222  | 0,037  | 0,013   | 0,002   |
| 100         | 0,445          | 0,226   | 0,060 | 0,115  | 0,030  | -0,010         | 0,088 | 0,219  | 0,103  | 0.010   | 0.008   |
| 110         | 0.331          | 0.180   | 0.024 | 0.082  | 0.017  | -0.014         | 0.061 | 0.151  | 0.185  | 0.010   | 0.020   |
| 120         | 0.275          | 0.155   | 0.021 | 0.070  | 0.016  | -0.010         | 0.058 | 0 120  | 0 149  | 0.004   | 0.009   |
| 130         | 0,275          | 0,100   | 0.014 | 0.046  | 0,010  | _0.005         | 0.034 | 0,120  | 0,142  | 0,004   | 0,005   |
| 140         | 0.140          | 0,100   | 0.012 | 0,040  | 0,009  | -0,005         | 0,004 | 0,009  | 0,075  | 0,003   | 0,005   |
| 140         | 0,140          | 0,004   | 0,012 | 0,039  | 0,011  | -0,004         | 0,029 | 0,030  | 0,077  | 0,004   | 0,000   |
| 100         | 0,020          | 0,018   | 0,005 | 0,007  | 0,005  | 0,000          | 0,013 | 0,002  | 0,001  | 0,003   | 0,002   |
|             |                |         |       |        | 5      | station 17     |       |        |        |         |         |
| prof. (m)   | CaT            | ChI a   | Chl b | Chl c  | Phe a  | Phe b          | Phe c | pChl a | pChl b | pPhe a  | pPhe b  |
| 0           | 0,125          | 0,037   | 0,007 | 0,015  | 0,006  | -0,002         | 0,009 | 0,088  | 0,005  | -0,003  | 0,000   |
| 20          | 0,131          | 0,040   | 0,010 | 0,015  | 0,006  | 0,000          | 0,008 | 0,091  | 0,006  | -0,003  | -0,002  |
| 40          | 0,134          | 0,037   | 0,010 | 0,015  | 0,007  | -0,002         | 0,006 | 0,097  | 0,006  | -0,002  | -0,003  |
| 60          | 0,181          | 0,055   | 0,013 | 0,027  | 0,010  | 0,001          | 0,014 | 0,126  | 0,012  | -0,001  | -0,003  |
| 80          | 0,303          | 0.110   | 0.030 | 0.059  | 0,018  | -0.004         | 0.041 | 0,193  | 0.028  | 0.003   | -0,001  |
| 100         | 0.398          | 0 200   | 0.059 | 0.094  | 0.025  | -0.012         | 0.075 | 0.198  | 0,109  | 0.006   | 0.012   |
| 110         | 0.300          | 0,200   | 0,007 | 0,071  | 0,020  | 0,012          | 0,070 | 0,170  | 0,107  | 0,000   | 0,012   |
| 120         | 0,220          | 0 100   | 0.010 | 0.051  | 0.013  | -0.013         | 0.040 | 0.111  | 0.141  | 0.001   | 0.012   |
| 140         | 0,220          | 0,107   | 0,019 | 0,051  | 0,013  | -0,010         | 0,040 | 0,111  | 0.144  | 0,001   | 0,012   |
| 140         | 0,220          | 0,114   | 0,017 | 0,032  | 0,011  | -0,010         | 0,050 | 0,111  | 0,144  | 0,001   | 0,017   |
| 180         | 0,080<br>0,004 | 0,039   | 0,009 | 0,010  | 0,000  | -0,002         | 0,014 | 0,021  | 0,019  | 0,003   | 0,005   |
|             |                |         |       |        |        | station 18     |       |        |        |         |         |
| prof (m)    | CaT            | Chla    | Chib  | Chla   | Phe a  | Phe h          | Phe c | nChl a | nChl h | nPhe a  | nPhe h  |
| prot. (iii) | Çai            | Çilî a  | Chi U | CIII C | i ne a | The o          | The e | penra  | penio  | pi ne u | prine o |
| 0           | 0,109          | 0,038   | 0,011 | 0,012  | 0,010  | 0,005          | 0,009 | 0,071  | 0,002  | -0,006  | -0,005  |
| 20          | 0,123          | 0,046   | 0,012 | 0,015  | 0,011  | 0,005          | 0,010 | 0,077  | 0,003  | -0,005  | -0,004  |
| 40          | 0,139          | 0,049   | 0,012 | 0,019  | 0,014  | 0,006          | 0,008 | 0,090  | 0,005  | -0,006  | -0,004  |
| 60          | 0,198          | 0,066   | 0,018 | 0,032  | 0,019  | 0,009          | 0,018 | 0,132  | 0,011  | -0,007  | -0,006  |
| 70          | 0,286          | 0,096   | 0,028 | 0,053  | 0,030  | 0,008          | 0,034 | 0,189  | 0,021  | -0,009  | -0,005  |
| 80          | 0,375          | 0,137   | 0,045 | 0,079  | 0,040  | 0,008          | 0,046 | 0,238  | 0,032  | -0,013  | -0,007  |
| 90          | 0,496          | 0,238   | 0,098 | 0,126  | 0,056  | 0,016          | 0,086 | 0,258  | 0,078  | -0,013  | -0,009  |
| 100         | 0,407          | 0,216   | 0,076 | 0,103  | 0,046  | 0,004          | 0,077 | 0,191  | 0,129  | -0,007  | 0,006   |
| 120         | 0,312          | 0,167   | 0,050 | 0,076  | 0,040  | -0,002         | 0,064 | 0,145  | 0,145  | -0,003  | 0,014   |
| 140         | 0,213          | 0,113   | 0,026 | 0,051  | 0,024  | 0,000          | 0,044 | 0,100  | 0,123  | -0,006  | 0,005   |
| 160         | 0,032          | 0,025   | 0,006 | 0,010  | 0,007  | 0,002          | 0,011 | 0,007  | 0,007  | 0,001   | 0,001   |
| 180         | 0,011          | 0,007   | 0,003 | 0,003  | 0,005  | 0,002          | 0,007 | 0,003  | 0,002  | 0,002   | 0,001   |

60

.

| prof. (m) | CaT   | Chl a | Chi b   | ChI c | Phe a | Phe b      | Phe c | pChl a | pCh1 b | pPhe a | pPhe b |
|-----------|-------|-------|---------|-------|-------|------------|-------|--------|--------|--------|--------|
| 0         | 0.149 | 0.047 | 0.012   | 0.019 | 0,014 | 0,003      | 0.015 | 0,101  | 0,007  | -0,006 | -0,004 |
| 20        | 0.150 | 0.048 | 0.013   | 0.020 | 0.015 | 0.004      | 0.018 | 0.101  | 0.007  | -0,005 | -0.006 |
| 40        | 0.329 | 0,140 | 0,046   | 0,075 | 0,036 | 0,010      | 0,056 | 0,189  | 0,021  | -0,006 | -0,008 |
| 60        | 0.537 | 0.252 | 0,089   | 0,133 | 0,070 | 0,019      | 0,113 | 0,285  | 0,054  | -0,006 | -0,014 |
| 70        | 0,529 | 0,288 | 0,085   | 0,148 | 0,083 | 0,010      | 0,136 | 0,240  | 0,054  | -0,005 | -0,011 |
| 80        | 0.444 | 0.240 | 0.081   | 0,115 | 0,065 | 0,014      | 0,116 | 0,204  | 0,081  | -0,003 | -0,008 |
| 90        | 0.405 | 0.216 | 0.104   | 0.095 | 0.060 | 0.014      | 0.086 | 0,190  | 0.116  | -0,004 | 0.004  |
| 100       | 0.386 | 0.189 | 0.092   | 0.088 | 0.050 | 0.008      | 0.089 | 0.196  | 0.131  | 0.001  | 0.009  |
| 120       | 0.245 | 0.123 | 0.037   | 0.055 | 0.027 | -0.002     | 0.051 | 0.122  | 0.146  | -0.002 | 0.010  |
| 140       | 0.121 | 0.075 | 0.011   | 0.033 | 0.015 | 0.000      | 0.027 | 0.046  | 0.067  | -0.001 | 0.004  |
| 160       | 0.031 | 0.027 | 0.006   | 0.011 | 0.008 | 0.002      | 0.014 | 0.004  | 0.003  | 0.001  | 0.001  |
|           | 0,001 | -,    | .,      | .,    | -,    | -,         |       | .,     | -,     | -,     | -,     |
|           |       |       | ~ · · · |       |       | Station 21 |       |        |        |        |        |
| prof. (m) | СаТ   | Chl a | Chl b   | Chl c | Phe a | Phe b      | Phe c | pChi a | pChI b | pPhe a | pPhe b |
| 0         | 0,140 | 0,038 | 0,011   | 0,016 | 0,013 | 0,004      | 0,010 | 0,103  | 0,005  | -0,006 | -0,005 |
| 20        | 0,154 | 0,043 | 0,012   | 0,019 | 0,014 | 0,002      | 0,013 | 0,111  | 0,007  | -0,006 | -0,004 |
| 40        | 0,197 | 0,055 | 0,014   | 0,027 | 0,018 | 0,003      | 0,018 | 0,142  | 0,010  | -0,009 | -0,005 |
| 60        | 0.620 | 0.272 | 0.007   | 0.1/5 | 0.121 | 0.000      | 0.176 | 0.17(  | 0.007  | 0.000  | 0.001  |
| 70        | 0,539 | 0,363 | 0,097   | 0,105 | 0,131 | 0,009      | 0,175 | 0,170  | 0,087  | -0,003 | -0,001 |
| 80        | 0,431 | 0,200 | 0,107   | 0,120 | 0,001 | 0,007      | 0,105 | 0,164  | 0,000  | -0,010 | -0,006 |
| 50        | 0,415 | 0,257 | 0,071   | 0,107 | 0,100 | 0,003      | 0,132 | 0,139  | 0,102  | 0,002  | 0,010  |
| 100       | 0,244 | 0,131 | 0,025   | 0,007 | 0,055 | -0,003     | 0,079 | 0,093  | 0,119  | -0,003 | 0,004  |
| 120       | 0,208 | 0,139 | 0,027   | 0,033 | 0,032 | -0,001     | 0,070 | 0,070  | 0,076  | 0,001  | 0,007  |
| 120       | 0,139 | 0,103 | 0,019   | 0,043 | 0,037 | 0,000      | 0,050 | 0,035  | 0,000  | 0,001  | 0,003  |
| 140       | 0,142 | 0,097 | 0,017   | 0,044 | 0,031 | 0,001      | 0,034 | 0,045  | 0,038  | 0,001  | 0,003  |
| 190       | 0,047 | 0,033 | 0,008   | 0,014 | 0,010 | 0,002      | 0,024 | 0,014  | 0,017  | 0,002  | 0,003  |
| 100       | 0,025 | 0,017 | 0,005   | 0,007 | 0,012 | 0,002      | 0,010 | 0,000  | 0,007  | 0,005  | 0,002  |
|           |       |       |         |       | :     | station 22 |       |        |        |        |        |
| prof. (m) | CaT   | Chl a | Chl b   | Chl c | Phe a | Phe b      | Phe c | pChl a | pChl b | pPhe a | pPhe b |
| 0         | 0,095 | 0,039 | 0,010   | 0,015 | 0,008 | 0,003      | 0,011 | 0,055  | 0,003  | -0,003 | -0,003 |
| 30        | 0,094 | 0,040 | 0,010   | 0,015 | 0,008 | 0,002      | 0,013 | 0,055  | 0,003  | -0,003 | -0,003 |
| 60        | 0,129 | 0,049 | 0,013   | 0,021 | 0,011 | 0,004      | 0,017 | 0,080  | 0,006  | -0,003 | -0,003 |
| 80        | 0,328 | 0,096 | 0,051   | 0,053 | 0,031 | 0,006      | 0,038 | 0,231  | 0,027  | -0,007 | -0,005 |
| 90        | 0,588 | 0,278 | 0,235   | 0,133 | 0,064 | 0,016      | 0,114 | 0,311  | 0,096  | -0,003 | 0,003  |
| 100       | 0,464 | 0,214 | 0,091   | 0,102 | 0,048 | -0,003     | 0,097 | 0,250  | 0,175  | -0,001 | 0,011  |
| 110       | 0,274 | 0,143 | 0,043   | 0,063 | 0,032 | -0,001     | 0,059 | 0,130  | 0,136  | -0,002 | 0,010  |
| 120       | 0,162 | 0,087 | 0,018   | 0,041 | 0,018 | -0,002     | 0,037 | 0,074  | 0,094  | -0,001 | 0,005  |
| 130       | 0,155 | 0,084 | 0,017   | 0,040 | 0,017 | -0,002     | 0,035 | 0,069  | 0,088  | -0,003 | 0,002  |
| 140       | 0,140 | 0,078 | 0,017   | 0,030 | 0,010 | -0,002     | 0,034 | 0,002  | 0,081  | -0,001 | 0,003  |
| 180       | 0,079 | 0,031 | 0,012   | 0,024 | 0,012 | 0,001      | 0,024 | 0,029  | 0,039  | 0,002  | 0,003  |
| 100       | 0,000 | 0,057 | 0,010   | 0,010 | 0,010 | 0,001      | 0,024 | 0,017  | 0,025  | 0,005  | 0,005  |
|           |       |       |         |       | 9     | Station 23 |       |        |        |        |        |
| prof. (m) | CaT   | Chl a | Chł b   | Chl c | Phe a | Phe b      | Phe c | pChl a | pChl b | pPhe a | pPhe b |
| 5         | 0,111 | 0,049 | 0,007   | 0,016 | 0,006 | 0,000      | 0,009 | 0,062  | 0,004  | -0,001 | 0,001  |
| 10        | 0,113 | 0,048 | 0,009   | 0,016 | 0,006 | 0,000      | 0,009 | 0,065  | 0,004  | 0,000  | 0,000  |
| 15        | 0,109 | 0,045 | 0,008   | 0,015 | 0,007 | 0,002      | 0,008 | 0,064  | 0,004  | -0,001 | -0,001 |
| 20        | 0,118 | 0,048 | 0,010   | 0,016 | 0,005 | 0,003      | 0,011 | 0,070  | 0,004  | 0,001  | -0,002 |
| 30        | 0,121 | 0,049 | 0,010   | 0,016 | 0,007 | 0,001      | 0,009 | 0,072  | 0,004  | -0,002 | -0,002 |
| 40        | 0,138 | 0,058 | 0,011   | 0,019 | 0,008 | 0,003      | 0,007 | 0,080  | 0,006  | -0,001 | 0,000  |
| 50        | 0,205 | 0,078 | 0,017   | 0,030 | 0,012 | 0,003      | 0,017 | 0,127  | 0,012  | 0,001  | -0,001 |
| 60        | 0,268 | 0,092 | 0,023   | 0,040 | 0,018 | 0,002      | 0,024 | 0,176  | 0,018  | 0,001  | -0,001 |
| 80        | 0,395 | 0,143 | 0,049   | 0,075 | 0,025 | 0,002      | 0,046 | 0,252  | 0,039  | 0,003  | 0,001  |
| 100       | 0,459 | 0,265 | 0,075   | 0,114 | 0,032 | -0,008     | 0,091 | 0,193  | 0,106  | 0,014  | 0,018  |
| 120       | 0,180 | 0,100 | 0,018   | 0,044 | 0,014 | -0,003     | 0,035 | 0,080  | 0,109  | 0,004  | 0,007  |
| 150       | 0,040 | 0,038 | 0,008   | 0,015 | 0,005 | 0,000      | 0,018 | 0,003  | 0,003  | 0,005  | 0,003  |

61

| prof. (m) | CaT   | Chl a | Chỉ b | Chl c | Phe a  | Phe b      | Phe c | pChl a | pChl b | pPhe a | pPhe b |
|-----------|-------|-------|-------|-------|--------|------------|-------|--------|--------|--------|--------|
| 5         | 0,090 | 0,034 | 0,007 | 0,011 | -0,001 | 0,001      | 0,004 | 0,055  | 0,002  | 0,003  | -0,002 |
| 20        | 0,099 | 0,041 | 0,010 | 0,013 | -0,002 | 0,002      | 0,006 | 0,058  | 0,003  | 0,005  | -0,002 |
| 40        | 0,125 | 0,051 | 0,011 | 0,018 | -0,002 | 0,000      | 0,009 | 0,073  | 0,005  | 0,006  | 0,001  |
| 60        | 0,129 | 0,052 | 0,012 | 0,019 | -0,002 | 0,001      | 0,009 | 0,077  | 0,005  | 0,007  | -0,001 |
| 80        | 0,464 | 0,148 | 0,061 | 0,082 | 0,002  | 0,000      | 0,040 | 0,316  | 0,046  | 0,029  | 0,001  |
| 90        | 0,537 | 0,305 | 0,120 | 0,137 | -0,003 | -0,011     | 0,093 | 0,232  | 0,106  | 0,049  | 0,017  |
| 100       | 0,329 | 0,191 | 0,045 | 0,085 | 0,001  | -0,007     | 0,062 | 0,138  | 0,146  | 0,034  | 0,015  |
| 110       | 0,143 | 0,090 | 0,017 | 0,039 | 0,000  | -0,004     | 0,028 | 0,053  | 0,075  | 0,016  | 0,008  |
| 120       | 0,085 |       |       |       |        |            |       |        |        |        |        |
| 140       | 0,030 | 0,028 | 0,007 | 0,011 | 0,003  | 0,000      | 0,014 | 0,002  | 0,002  | 0,007  | 0,002  |
| 160       | 0,024 | 0,021 | 0,006 | 0,009 | 0,002  | 0,001      | 0,010 | 0,002  | 0,001  | 0,007  | 0,002  |
| 200       | 0,004 | 0,002 | 0,001 | 0,001 | 0,006  | 0,002      | 0,007 | 0,002  | 0,000  | 0,005  | 0,001  |
| 300       | 0,002 | 0,001 | 0,001 | 0,000 | 0,003  | 0,001      | 0,004 | 0,001  | 0,000  | 0,002  | 0,001  |
|           |       |       |       |       | :      | station 27 |       |        |        |        |        |
| prof. (m) | CaT   | Chl a | Chl b | Chl c | Phe a  | Phe b      | Phe c | pChl a | pChl b | pPhe a | pPhe b |
| 5         | 0,101 | 0,038 | 0,010 | 0,012 | 0,000  | 0,001      | 0,006 | 0,063  | 0,003  | 0,005  | -0,001 |
| 20        | 0,146 | 0,054 | 0,015 | 0,019 | 0,000  | 0,001      | 0,008 | 0,092  | 0,007  | 0,008  | -0,002 |
| 40        | 0,178 | 0,059 | 0,015 | 0,023 | -0,001 | 0,001      | 0,011 | 0,119  | 0,010  | 0,010  | -0,001 |
| 50        | 0,297 | 0,087 | 0,024 | 0,042 | 0,000  | 0,001      | 0,020 | 0,210  | 0,024  | 0,018  | -0,003 |
| 60        | 0,352 | 0,098 | 0,028 | 0,052 | 0,003  | 0,000      | 0,020 | 0,254  | 0,032  | 0,018  | -0,001 |
| 70        | 0,442 | 0,129 | 0,066 | 0,076 | 0,004  | -0,001     | 0,034 | 0,313  | 0,053  | 0,023  | 0,000  |
| 80        | 0,298 | 0,158 | 0,032 | 0,073 | -0,001 | -0,009     | 0,050 | 0,140  | 0,162  | 0,027  | 0,014  |
| 100       | 0,200 | 0,109 | 0,021 | 0,051 | -0,002 | -0,003     | 0,031 | 0,091  | 0,122  | 0,018  | 0,008  |
| 110       | 0,119 | 0,078 | 0,016 | 0,035 | 0,001  | -0,002     | 0,028 | 0,041  | 0,054  | 0,013  | 0,005  |
| 120       | 0,085 | 0,065 | 0,014 | 0,028 | 0,002  | -0,001     | 0,023 | 0,020  | 0,028  | 0,013  | 0,005  |
| 130       | 0,031 | 0,029 | 0,007 | 0,012 | 0,002  | 0,001      | 0,013 | 0,003  | 0,002  | 0,008  | 0,002  |
| 140       | 0,027 | 0,025 | 0,007 | 0,010 | 0,001  | 0,002      | 0,009 | 0,002  | 0,002  | 0,006  | 0,001  |
| 150       | 0,028 | 0,025 | 0,007 | 0,010 | 0,002  | 0,002      | 0,012 | 0,003  | 0,002  | 0,006  | 0,001  |
| 160       | 0,023 | 0,021 | 0,005 | 0,009 | 0,003  | 0,001      | 0,009 | 0,002  | 0,002  | 0,006  | 0,002  |
|           |       |       |       |       |        | station 29 |       |        |        |        |        |
| prof. (m) | CaT   | Chl a | Chl b | Chl c | Phe a  | Phe b      | Phe c | pChl a | pChi b | pPhe a | pPhe b |
| 5         | 0,143 | 0,046 | 0,014 | 0,019 | 0,012  | 0,003      | 0,016 | 0,097  | 0,007  | -0,004 | -0,005 |
| 10        | 0,144 | 0,048 | 0,013 | 0,019 | 0,013  | 0,004      | 0,015 | 0,097  | 0,007  | -0,005 | -0,004 |
| 15        | 0,139 | 0,045 | 0,011 | 0,018 | 0,012  | 0,002      | 0,014 | 0,095  | 0,007  | -0,005 | -0,003 |
| 20        | 0,146 | 0,048 | 0,013 | 0,019 | 0,012  | 0,002      | 0,013 | 0,098  | 0,007  | -0,005 | -0,003 |
| 30        | 0,146 | 0,047 | 0,013 | 0,019 | 0,012  | 0,001      | 0,015 | 0,100  | 0,007  | -0,002 | -0,004 |
| 40        | 0,149 | 0,045 | 0,013 | 0,019 | 0,013  | 0,001      | 0,016 | 0,104  | 0,007  | -0,004 | -0,004 |
| 50        | 0,148 | 0,045 | 0,013 | 0,019 | 0,013  | 0,000      | 0,010 | 0,103  | 0,008  | -0,005 | -0,003 |
| 60        | 0,161 | 0,049 | 0,014 | 0,021 | 0,015  | 0,005      | 0,011 | 0,113  | 0,009  | -0,004 | -0,005 |
| 80        | 0,221 | 0,064 | 0,019 | 0,031 | 0,020  | 0,002      | 0,020 | 0,156  | 0,016  | -0,006 | -0,003 |
| 100       | 0,479 | 0,232 | 0,084 | 0,110 | 0,047  | 0,003      | 0,089 | 0,247  | 0,118  | -0,005 | -0,002 |
| 120       | 0,181 | 0,091 | 0,014 | 0,045 | 0,019  | -0,002     | 0,034 | 0,089  | 0,109  | -0,003 | 0,004  |
| 150       | 0,032 | 0,027 | 0,007 | 0,012 | 0,006  | 0,002      | 0,012 | 0,005  | 0,002  | 0,002  | 0,000  |

Station 26

150

0,032

Phc c pChl a pChl b pPhe a CaT Ch1 a Chl b Chl c Phe a Phe b pPhc b prof. (m) 0,212 0,075 0,020 0,034 0,019 0,028 0,137 0,011 -0,006 -0,007 5 0.006 20 0,206 0,070 0,017 0,033 0,019 0,007 0,028 0,136 0,013 -0,005 -0,006 40 0,205 0,068 0,017 0,033 0,019 0,006 0,027 0,137 0,013 -0,004 -0,007 60 0,200 0,065 0,019 0,032 0,020 0,005 0,026 0,135 0,012 -0,005 -0,008 0,097 0,034 0,053 0,029 0,004 0,040 0,193 0,026 -0,001 -0,005 80 0,291 0,174 0,051 0,048 0,091 0,179 0,128 0,003 0,003 100 0,353 0,086 0,006 110 0,226 0,112 0,015 0,056 0,026 -0,002 0,049 0,114 0,135 -0,003 0,006 120 0,125 0,077 0,015 0,035 0,018 0,002 0,035 0,048 0,056 0,001 0,002 0,017 0,014 0,004 0,006 0,006 0,002 0,011 0,003 0,001 0,003 0,001 140 0,013 0,004 0,010 0,001 160 0,016 0,006 0,005 0,002 0,003 0,003 0,001 0,017 0,013 0,004 0,006 0,002 0,011 0,003 0,001 0,003 0,001 180 0,006 0,001 0,001 200 0,002 0,001 0,001 0,003 0,001 0,005 0,000 0,002 0,001 300 0,002 0,001 0,001 0,001 0,006 0,002 0,007 0,001 0,000 0,003 0,001 station 33 CaT Chl a Chl b ChI c prof. (m) Phe a Phe b Phe c pChl a pChl b pPhe a pPhe b 0,183 0,055 0,013 0,025 0,018 0,002 0,019 0,012 5 0,128 -0,008 -0,002 20 0,186 0,052 0,015 0,026 0,018 0,003 0,021 0,133 0,011 -0,008 -0,005 40 0,187 0,055 0,016 0,025 0,018 0,002 0,023 0,131 0,011 -0,009 -0,005 50 0,238 0,071 0,016 0,018 0,035 0,023 0,002 0,024 0,168 -0,011 -0,002 0,232 60 0,069 0,017 0,034 0,022 0,003 0,028 0,164 0,017 -0,009 -0,005 70 0,223 0,066 0,018 0,033 0,023 0,005 0,030 0,157 0,016 -0,009 -0,006 80 0,232 0,072 0,021 0,035 0,026 0,005 0,032 0,159 0,017 -0,007 -0,005 100 0,426 0,157 0,076 0,046 0,007 0,080 0,085 0,091 0,269 -0,005 0,001 0,237 110 0,115 0,016 0,058 0,027 0,001 0,056 0,121 0,156 -0,006 0,007 0,198 120 0,099 0,014 0,023 -0,004 0,100 0,049 0,045 0,126 -0,005 0,007 130 0,120 0,074 0,015 0,034 0,017 0,003 0,035 0,046 0,055 -0,001 0,001 140 0,046 0,039 0,010 0,016 0,009 0,003 0,021 0,007 0,004 0,003 0,000 150 0,030 0,026 0,007 0,010 0,007 0,001 0,015 0,004 0,002 0,002 0,001 160 0,016 0,013 0,004 0,005 0,006 0,001 0,010 0,003 0,001 0,002 0,001 station 35 prof. (m) CaT Chl a Chl b Chl c Phe a Phe b Phe c pChI a pChl b pPhe a pPhe b 5 0,179 0,047 0,012 0,021 0,011 0,004 0,006 0,131 0,010 -0,002 -0,003 10 0,187 0,053 0,013 0,022 0,013 0,002 0,010 0,134 0,011 0,000 -0,002 20 0,186 0,046 0,013 0,018 -0,004 0,021 0,007 0,010 0,139 0,012 0,004 0,204 30 0,057 0,013 0,025 0,014 0,002 0,009 0,147 0,013 0,001 -0,001 40 0,213 0,061 0,015 0,029 0,015 0,006 0,013 0,152 0,015 0,004 -0,005 50 0.213 60 0,216 0,017 0,013 0,066 0,030 0,003 0,016 0,015 0,150 0,002 -0,003 70 0,210 0,019 0,067 0,031 0,013 0,008 0,015 0,014 0,143 0,004 -0,005 0,207 80 0,069 0,018 0,031 0,016 0,004 0,015 0,138 0,015 0,004 -0,003 100 0,347 0,142 0,060 0,070 0,025 0,006 0,041 0,205 0,052 0,012 0,004 120 0,203 0,099 0,016 0,047 0,014 -0,001 0,032 0,103 0,132 0,006 0,010 150 0,029 station 37 prof. (m) CaT ChI a ChI b Chl c Phe a Phe b Phe c pChI a pChI b pPhe a pPhe b 0,136 0,027 5 0,009 0,011 0,007 0,006 0,009 0,110 0,005 -0,003 -0,006 20 0,172 0,043 0,014 0,017 0,009 0,006 0,007 0,129 0,008 -0,003 -0,005 40 0,173 0,049 0,014 0,022 0,010 0,005 0,012 0,124 0,010 -0,001 -0,005 60 0,213 0,064 0,017 0,029 0,012 0,007 0,016 0,149 0,013 -0,001 -0,005 80 0,204 0,074 0,020 0,035 0,011 0,007 0,019 0,130 0,013 0,001 -0,005 100 0,410 0,224 0,074 0,103 0,033 0,008 0,082 0,186 0,139 0,019 0,012 140 0,030 0,025 0,007 0,011 0,009 0,002 0,024 0,004 0,002 0,011 0,002

station 31

63

0,003

0,003

0,002

0,016

0,014

0,007

0,011

0,004

0,001

0,007

0,003

0,000

0,006

0,006

0,003

0,002

0,001

0,001

0,008

0,006

0,004

150

180

300

0,037

0,030

0,004

0,026

0,026

0,003

0,007

0,007

0,001

0,011

0,011

100,0

| prof. (m) | СаТ     | Chl a   | Chỉ b | Chl c | Phe a | Phe b      | Phe c | pChl a | pChl b | pPhe a | pPhe b |
|-----------|---------|---------|-------|-------|-------|------------|-------|--------|--------|--------|--------|
|           |         |         |       |       |       |            |       | F      | F      | P1     | p1     |
| 5         | 0.141   | 0.021   | 0.010 | 0.012 | 0.000 | 0.004      | 0.000 |        | 0.007  |        |        |
| 20        | 0,141   | 0,031   | 0,010 | 0,012 | 0,008 | 0,004      | 0,008 | 0,110  | 0,006  | -0,004 | -0,004 |
| 40        | 0,142   | 0,038   | 0,012 | 0,014 | 0,010 | 0,002      | 0,009 | 0,105  | 0,007  | -0,003 | -0,003 |
| 50        | 0,150   | 0,038   | 0,012 | 0,015 | 0,012 | 0,003      | 0,007 | 0,112  | 0,007  | -0,003 | -0,004 |
| 70        | 0,171   | 0,042   | 0,014 | 0,017 | 0,011 | 0,003      | 0,007 | 0,129  | 0,009  | -0,004 | -0,005 |
| 70        | 0,171   | 0,043   | 0,014 | 0,018 | 0,010 | 0,005      | 0,007 | 0,128  | 0,009  | -0,002 | -0,005 |
| 100       | 0,218   | 0,070   | 0,019 | 0,032 | 0,013 | 0,003      | 0,015 | 0,147  | 0,014  | 0,000  | -0,003 |
| 110       | 0,380   | 0,222   | 0,033 | 0,090 | 0,023 | -0,007     | 0,069 | 0,158  | 0,138  | 0,009  | 0,015  |
| 120       | 0,241   | 0,129   | 0,022 | 0,039 | 0,010 | -0,004     | 0,040 | 0,112  | 0,129  | 0,004  | 0,010  |
| 120       | 0.006   | 0.067   | 0.012 | 0.020 | 0.010 | 0.001      | 0.025 | 0.020  | 0.021  | 0.004  | 0.000  |
| 140       | 0,090   | 0,007   | 0,013 | 0,029 | 0,010 | 0,001      | 0,023 | 0,029  | 0,001  | 0,004  | 0,002  |
| 150       | 0,042   | 0,037   | 0,009 | 0,015 | 0,005 | 0,002      | 0,017 | 0,003  | 0,004  | 0,004  | 0,001  |
| 150       | 0,010   | 0,014   | 0,004 | 0,000 | 0,000 | 0,002      | 0,010 | 0,005  | 0,001  | 0,003  | 0,002  |
| 100       | 0,055   | 0,028   | 0,000 | 0,012 | 0,004 | 0,001      | 0,012 | 0,005  | 0,004  | 0,003  | 0,001  |
|           |         |         |       |       |       | station 41 |       |        |        |        |        |
| prof. (m) | CaT     | Chl a   | Chỉ b | Chl c | Phe a | Phe b      | Phe c | pChl a | pChl b | pPhe a | pPhe b |
| 5         | 0,095   | 0,025   | 0,007 | 0,009 | 0,005 | 0,003      | 0,005 | 0,070  | 0,003  | -0,001 | -0,003 |
| 10        | 0,102   | 0,029   | 0,007 | 0,011 | 0,005 | 0,001      | 0,005 | 0,073  | 0,004  | -0,002 | -0,002 |
| 20        | 0,119   | 0,031   | 0,009 | 0,012 | 0,006 | 0,001      | 0,008 | 0,088  | 0,005  | -0,002 | -0,002 |
| 30        | 0,141   | 0,036   | 0,013 | 0,015 | 0,007 | 0,002      | 0,011 | 0,105  | 0,006  | -0,001 | -0,006 |
| 40        | 0,139   | 0,041   | 0,011 | 0,016 | 0,008 | 0,001      | 0,008 | 0,098  | 0,008  | -0,003 | -0,002 |
| 50        | 0,154   | 0,046   | 0,012 | 0,018 | 0,008 | 0,000      | 0,011 | 0,108  | 0,009  | -0,003 | -0,002 |
| 60        | 0,184   | 0,057   | 0,017 | 0,024 | 0,008 | 0,001      | 0,012 | 0,127  | 0,011  | -0,002 | -0,002 |
| 70        | 0,264   | 0,086   | 0,031 | 0,043 | 0,014 | 0,002      | 0,023 | 0,178  | 0,024  | -0,001 | -0,001 |
| 80        | 0,477   | 0,232   | 0,089 | 0,108 | 0,027 | -0,005     | 0,079 | 0,245  | 0,089  | 0,007  | 0,008  |
| 100       | 0,302   | 0,164   | 0,028 | 0,071 | 0,021 | -0,008     | 0,060 | 0,138  | 0,142  | 0,002  | 0,011  |
| 120       | 0,191   | 0,101   | 0,016 | 0,046 | 0,012 | -0,006     | 0,040 | 0,089  | 0,109  | 0,003  | 0,007  |
| 150       | 0,039   | 0,034   | 0,007 | 0,014 | 0,005 | 0,000      | 0,016 | 0,005  | 0,005  | 0,002  | 0,001  |
|           |         |         |       |       |       | station 43 |       |        |        |        |        |
| prof. (m) | CaT     | Chl a   | Chl b | Chl c | Phe a | Phe b      | Phe c | pChl a | pChi b | pPhe a | pPhe b |
| 5         | 0 074   | 0.018   | 0.005 | 0.005 | 0.004 | 0.003      | 0.000 | 0.056  | 0.002  | -0.001 | -0.002 |
| 20        | 0,074   | 0,010   | 0,005 | 0,005 | 0.005 | 0,005      | 0,000 | 0,050  | 0,002  | -0.002 | -0.002 |
| 40        | 0 1 1 1 | 0.032   | 0,009 | 0.012 | 0,005 | 0.001      | 0.008 | 0.079  | 0,005  | -0.002 | -0.003 |
| 60        | 0 137   | 0.044   | 0.013 | 0.018 | 0.007 | 0.003      | 0.010 | 0.094  | 0.007  | -0.001 | -0.004 |
| 80        | 0,137   | 0.069   | 0.025 | 0.035 | 0.013 | 0.002      | 0.022 | 0.168  | 0.017  | -0.001 | -0.007 |
| 100       | 0,257   | 0 184   | 0.031 | 0.085 | 0.017 | -0.007     | 0.063 | 0.142  | 0.139  | 0.007  | 0.010  |
| 110       | 0.268   | 0 149   | 0.024 | 0.069 | 0.015 | -0.009     | 0.051 | 0.118  | 0.134  | 0.005  | 0.011  |
| 120       | 0.217   | 0 1 1 8 | 0.021 | 0.056 | 0.012 | -0.003     | 0.041 | 0.099  | 0,117  | 0,005  | 0.005  |
| 140       | 0 101   | 0.073   | 0.014 | 0.032 | 0.007 | 0.001      | 0.024 | 0.028  | 0.034  | 0.006  | 0,003  |
| 160       | 0.056   | 0.049   | 0.010 | 0.021 | 0,006 | 0,001      | 0.020 | 0,008  | 0,007  | 0,004  | 0.001  |
| 180       | 0.033   | 0.025   | 0.005 | 0.011 | 0,005 | 0,001      | 0,007 | 0,008  | 0,009  | 0,003  | 0.002  |
| 200       | 0,004   | 0,003   | 0,002 | 0,001 | 0,003 | 0,001      | 0,005 | 0,001  | 0,000  | 0,003  | 0,001  |
| 300       | 0,002   | 0,002   | 0,000 | 0,000 | 0,004 | 0,001      | 0,002 | 0,001  | 0,000  | 0,003  | 0,001  |
|           | -       |         |       |       |       |            |       |        |        |        |        |

.

CaT Chl a Chl b ChI c Phe a Phe b Phc c pChI a pChl b pPhc a prof. (m) pPhe b 0,097 0,011 0,062 0,003 5 0,035 0,006 0.002 0,000 0.004 0,000 0,000 10 0,010 0,001 0,056 0,003 0,001 0,087 0,031 0,006 0,000 0.004 -0,001 20 0,078 0,033 0,007 0,010 0,001 0,000 0,004 0,045 0,002 0,001 0,000 0,012 0,002 0,001 0,046 0,003 0,002 30 0,084 0,038 0,009 0,004 -0,002 0,013 0,002 40 0,095 0,039 0,010 0,000 0,006 0,056 0,004 0,002 -0,001 50 0,102 0,040 0,010 0,014 0,004 0,000 0,008 0,062 0,005 0,003 -0,001 60 0,114 0,045 0,012 0,015 0,002 0,003 0,007 0,070 0,006 0,004 -0,002 70 0,123 0,047 0,013 0,017 0,003 0,001 0,009 0,076 0,006 0,003 -0,001 80 0,183 0,070 0,017 0,030 0,005 0,001 0,015 0,113 0,013 0,005 0,000 100 0,371 0,235 0,048 0,096 0,004 -0,009 0,070 0,136 0,115 0,022 0,016 120 0,195 0,105 0,018 0,048 0,004 -0,005 0,034 0,090 0,112 0,010 0,009 150 0,052 0,045 0,009 0,019 0,001 0,001 0,016 0,007 0,007 0,007 0,001 station 49 prof. (m) CaT Chl a Chl b Chl c Phe a Phe b Phe c pChl a pChl b pPhe a pPhe b 0,069 0,023 0,003 0,007 -0,002 0,000 0,047 0,002 0,003 0,000 0,000 5 0,012 -0,002 20 0,080 0,036 0,006 0,000 0,045 0,003 0,005 0,000 0,003 40 0,089 0,041 0,008 0,014 -0,003 0,000 0,005 0,048 0,004 0,007 0,000 60 0,053 0,010 0,020 -0,003 -0,001 0,111 0,009 0,058 0,006 0,008 0,000 80 0,247 0,100 0,022 0,046 -0,003 0,001 0,021 0,147 0,019 0,019 0,003 100 0,394 0,262 0,046 0,116 -0,015 -0,013 0,087 0,132 0,118 0,048 0,021 110 0,283 0,171 0,028 0,077 -0,010 -0,009 0,054 0,112 0,126 0,032 0,016 120 0,246 0,144 0,027 0,066 -0,008 -0,006 0,046 0,102 0,121 0,029 0,013 140 0,114 0,082 0,017 0,036 -0,002 -0,003 0.033 0.031 0,040 0,018 0,006 150 0,079 0,067 0,014 0,028 0,001 -0,001 0,030 0,012 0,013 0,016 0,004 200 0,002 0,001 0,001 0,001 0,005 0,002 0,006 0,001 0,001 0,003 0,001 300 0,003 0,002 0,001 0,001 0,003 0,001 0,006 0,001 0,000 0,003 0,001 station 53 prof. (m) CaT Chl a Chl b ChI c Phe a Phe b Phe c pChl a pChl b pPhe a pPhe b 0,079 0,033 0,006 0,010 0.004 0,002 5 0,003 0,046 0,002 0,000 -0,002 10 0,077 0,034 0,011 0,007 0,004 0,002 0,002 0,003 0,043 -0,001 -0,001 20 0,079 0,035 0,008 0,012 0,003 0,003 0,004 0,044 0,002 0,000 -0,003 0,082 30 0,032 0,007 0,012 0,004 0,002 0,004 0,049 0,004 -0,001 -0,001 40 0,109 0,049 0,013 0,016 0,006 0,003 0,006 0,060 0,004 0,000 -0,002 50 0,119 0,051 0,013 0,018 0,007 0,003 0,009 0,068 0,005 0,000 -0,002 60 0,156 0,059 0,015 0,023 0,009 0,002 0,011 0,097 0,010 0,000 0,000 70 0,181 0,064 0,016 0,026 0,011 0,004 0,013 0,116 0,012 0,002 0,000 80 0,347 0,135 0,043 0,064 0,023 0,002 0,035 0,212 0,032 0,004 0,000 100 0,303 0,179 0,025 0,077 0,018 0,000 0,058 0,123 0,117 0,005 0,010 120 0,199 0,103 0,017 0,047 0,013 -0,001 0,030 0,119 0,096 0,003 0,010 150 0,069 0,057 0,012 0,023 0,006 0,011 0,001 0,020 0,012 0,006 0,003 station 55 prof. (m) CaT Chl a Chl b Chl c Phe a Phe b Phe c pChI a pChl b pPhe a pPhe b 5 0,060 0,022 0,005 0,006 0,003 0,001 0,037 0,002 0,001 -0,001 -0,002 20 0,068 0,034 0,008 0,010 0,003 0,002 0,004 0,035 0,001 -0,001 -0,002 40 0,095 0,042 0,010 0,015 0,005 0,003 0,005 0,053 0,003 0,000 -0,002 60 0,126 0,053 0,013 0,020 0,008 0,007 0,004 0,073 0,006 0,000 -0,003 80 0,308 0,096 0,024 0,051 0,019 0,009 0,019 0,212 0,024 -0,003 -0,003 100 0,541 0,368 0,082 0,163 0,038 0,006 0,119 0,173 0,112 0,014 0,007 110 0,323 0,194 0,030 0,089 0,019 0,000 0,061 0,129 0,133 0,005 0,009 120 0,215 0,113 0,021 0,054 0,015 0,000 0,037 0,101 0,124 0,002 0,006 140 0,143 0,091 0,018 0,042 0,010 0,002 0,029 0,052 0,064 0,003 0,002 150 0,086 0.069 0,015 0,030 0,007 0,002 0,029 0,017 0,019 0,005 0,001 180 0,006 0,005 0,004 0,002 0,003 0,001 0,006 0,001 0,000 0,004 0,002 200 0,002 0,001 0,001 0,001 0,004 0,002 0,005 0,001 0,000 0,002 0,001 300 0,003 0,001 0,001 0,001 0,004

station 47

0,001

0,006

100,0

0,000

0,003

0,001
#### st 56 cécile

| prof. (m) | CaT   | Chl a | Chl b | Chl c | Phe a | Phe b  | Phe c | pChl a | pChl b | pPhe a | pPhe b |
|-----------|-------|-------|-------|-------|-------|--------|-------|--------|--------|--------|--------|
| 5         | 0,040 | 0,019 | 0,004 | 0,005 | 0,004 | 0,001  | 0,005 | 0,020  | 0,001  | -0,001 | 0,000  |
| 20        | 0,057 | 0,028 | 0,006 | 0,008 | 0,006 | 0,002  | 0,007 | 0,029  | 0,002  | -0,002 | 0,000  |
| 40        | 0,084 | 0,034 | 0,010 | 0,013 | 0,009 | 0,000  | 0,013 | 0,049  | 0,003  | -0,002 | -0,002 |
| 60        | 0,120 | 0,046 | 0,014 | 0,019 | 0,012 | 0,000  | 0,019 | 0,073  | 0,005  | -0,002 | -0,003 |
| 70        | 0,168 | 0,055 | 0,018 | 0,026 | 0,017 | 0,000  | 0,026 | 0,113  | 0,009  | -0,002 | -0,004 |
| 80        | 0,326 | 0,112 | 0,042 | 0,066 | 0,033 | -0,004 | 0,057 | 0,214  | 0,023  | -0,003 | -0,008 |
| 90        | 0,562 | 0,288 | 0,099 | 0,147 | 0,068 | -0,011 | 0,127 | 0,274  | 0,069  | -0,006 | -0,003 |
| 100       | 0,350 | 0,215 | 0,038 | 0,097 | 0,041 | -0,011 | 0,086 | 0,135  | 0,100  | -0,005 | 0,003  |
| 120       | 0,177 | 0,088 | 0,017 | 0,042 | 0,023 | -0,006 | 0,043 | 0,089  | 0,100  | -0,001 | 0,005  |
| 150       | 0,067 | 0,051 | 0,009 | 0,021 | 0,010 | 0,000  | 0,021 | 0,015  | 0,018  | 0,001  | 0,002  |

| prof. (m) | СаТ     | Chl a | Chl b | Chl c | Phe a | Phe b      | Phe c | pChI a | pChl b  | pPhe a | pPhe b |
|-----------|---------|-------|-------|-------|-------|------------|-------|--------|---------|--------|--------|
| 0         | 0,076   | 0,031 | 0,007 | 0,009 | 0,004 | 0,002      | 0,003 | 0,045  | 0,002   | -0,001 | -0,001 |
| 30        | 0,082   | 0,035 | 0,009 | 0,011 | 0,005 | 0,003      | 0,006 | 0,047  | 0,002   | -0,001 | -0,003 |
| 60        | 0,121   | 0,045 | 0,009 | 0,017 | 0,007 | 0,002      | 0,006 | 0,075  | 0,007   | -0,002 | 0,000  |
| 80        | 0,421   | 0,178 | 0,051 | 0,091 | 0,031 | 0,004      | 0,055 | 0,243  | 0,028   | -0,001 | 0,002  |
| 90        | 0,387   | 0,155 | 0,057 | 0,079 | 0,033 | 0,005      | 0,048 | 0,232  | 0,040   | 0,004  | 0,000  |
| 100       | 0,459   | 0,206 | 0,068 | 0,104 | 0,039 | 0,006      | 0,067 | 0,253  | 0,092   | 0,005  | 0,004  |
| 110       | 0,349   | 0,195 | 0,033 | 0,092 | 0,027 | -0,001     | 0,061 | 0,154  | 0,153   | 0,005  | 0,014  |
| 120       | 0,217   | 0,131 | 0,019 | 0,059 | 0,019 | -0,001     | 0,045 | 0,086  | 0,103   | 0,003  | 0,006  |
| 140       | 0,061   | 0,054 | 0,012 | 0,022 | 0,011 | 0,001      | 0,023 | 0,007  | 0,006   | 0,004  | 0,002  |
| 160       | 0,032   | 0,028 | 0,007 | 0,011 | 0,007 | 0,001      | 0,013 | 0,004  | 0,002   | 0,006  | 0,004  |
| 180       | 0,012   | 0,010 | 0,003 | 0,004 | 0,005 | 0,002      | 0,009 | 0,002  | 0,001   | 0,004  | 0,002  |
|           |         |       |       |       | :     | station 63 |       |        |         |        |        |
| prof. (m) | CaT     | Chl a | Chl b | Chl c | Phe a | Phe b      | Phe c | pChl a | pChl b  | pPhe a | pPhe b |
| 0         | 0.082   | 0.037 | 0.008 | 0.012 | 0.007 | 0.004      | 0.005 | 0 044  | 0.003   | -0.003 | -0.001 |
| 30        | 0 149   | 0.067 | 0.014 | 0.027 | 0.013 | 0.004      | 0.013 | 0.086  | 0.007   | -0.006 | -0.001 |
| 60        | 0,200   | 0,002 | 0,014 | 0,027 | 0,019 | 0,001      | 0,017 | 0 121  | 0,007   | -0.006 | -0.002 |
| 70        | 0,200   | 0,072 | 0.021 | 0,050 | 0.022 | 0,000      | 0,017 | 0,121  | 0.013   | -0.009 | 0,002  |
| 80        | 0,224   | 0.141 | 0,021 | 0,050 | 0,022 | 0,002      | 0,024 | 0,120  | 0,013   | _0.009 | 0,002  |
| 00        | 0,200   | 0.247 | 0,055 | 0,070 | 0,020 | 0,004      | 0,035 | 0,157  | 0.040   | -0,009 | 0,001  |
| 100       | 0,427   | 0,247 | 0,073 | 0,110 | 0,002 | 0,000      | 0,087 | 0,177  | 0,040   | -0,005 | 0,000  |
| 100       | 0,427   | 0,227 | 0,071 | 0,107 | 0,055 | 0,002      | 0,081 | 0,200  | 0,087   | -0,004 | 0,007  |
| 110       | 0,405   | 0,216 | 0,052 | 0,100 | 0,053 | -0,003     | 0,089 | 0,189  | 0,104   | -0,006 | 0,018  |
| 120       | 0,362   | 0,200 | 0,038 | 0,091 | 0,049 | -0,002     | 0,078 | 0,163  | 0,167   | -0,011 | 0,015  |
| 140       | 0,053   | 0,041 | 0,010 | 0,017 | 0,008 | 0,002      | 0,015 | 0,012  | 0,014   | 0,002  | 0,002  |
| 160       | 0,028   | 0,024 | 0,006 | 0,010 | 0,006 | 0,003      | 0,010 | 0,005  | 0,003   | 0,004  | 0,001  |
| 180       | 0,012   | 0,010 | 0,003 | 0,004 | 0,004 | 0,002      | 0,008 | 0,002  | 0,001   | 0,003  | 0,001  |
|           |         |       |       |       | :     | station 64 |       |        |         |        |        |
| prof. (m) | CaT     | Chỉ a | Chỉ b | Chl c | Phe a | Phe b      | Phe c | pChl a | pChI b  | pPhe a | pPhe b |
| 0         | 0,057   | 0,026 | 0,006 | 0,009 | 0,005 | 0,003      | 0,001 | 0,031  | 0,002   | -0,002 | -0,001 |
| 30        | 0,061   | 0,029 | 0,007 | 0,011 | 0,004 | 0,002      | 0,004 | 0,032  | 0,003   | -0,001 | -0,002 |
| 60        | 0,109   | 0,047 | 0,014 | 0,018 | 0,008 | 0,004      | 0,009 | 0,062  | 0,006   | -0,003 | -0,003 |
| 70        | 0,141   | 0,050 | 0,016 | 0,023 | 0,012 | 0,006      | 0,013 | 0,090  | 0,009   | -0,003 | -0,005 |
| 90        | 0,413   | 0,177 | 0,103 | 0,099 | 0,046 | 0,019      | 0,086 | 0,236  | 0,075   | 0,013  | 0,007  |
| 100       | 0,425   | 0,207 | 0,067 | 0,108 | 0,044 | 0,004      | 0,091 | 0,218  | 0,136   | 0,002  | 0,012  |
| 110       | 0,309   | 0,167 | 0,034 | 0,078 | 0.029 | -0,005     | 0.068 | 0.142  | 0,144   | 0.000  | 0.014  |
| 120       | 0,236   | 0.131 | 0.025 | 0.061 | 0.022 | -0.002     | 0.053 | 0.105  | 0.119   | 0.000  | 0.010  |
| 140       | 0,062   | 0.043 | 0.009 | 0.019 | 0.009 | 0.001      | 0.019 | 0.020  | 0.025   | 0.001  | 0.002  |
| 160       | 0.020   | 0.016 | 0.003 | 0.007 | 0.005 | 0.001      | 0.011 | 0.005  | 0.006   | 0.002  | 0 002  |
| 180       | 0,022   | 0,017 | 0,004 | 0,008 | 0,007 | 0,002      | 0,010 | 0,005  | 0,006   | 0,003  | 0,003  |
|           |         |       |       |       | 9     | station 65 |       |        |         |        |        |
| prof. (m) | CaT     | Chi a | Chl b | Chl c | Phe a | Phe b      | Phe c | pChl a | pChi b  | pPhe a | pPhe b |
| 0         | 0,068   | 0.027 | 0.006 | 0.009 | 0.005 | 0.003      | 0.004 | 0.041  | 0.001   | -0.002 | -0.002 |
| 30        | 0.078   | 0.035 | 0.008 | 0.013 | 0.006 | 0.003      | 0.006 | 0.043  | 0.003   | -0.002 | -0.003 |
| 60        | 0.124   | 0.047 | 0.012 | 0.021 | 0.010 | 0.004      | 0.008 | 0.077  | 0.007   | -0.004 | -0.002 |
| 70        | 0.142   | 0.050 | 0.014 | 0.024 | 0.012 | 0.007      | 0.008 | 0.092  | 0.008   | -0.005 | -0.003 |
| 80        | 0.195   | 0.064 | 0.019 | 0.032 | 0.017 | 0,005      | 0.015 | 0 131  | 0.012   | -0.004 | -0.001 |
| 90        | 0.360   | 0,004 | 0.053 | 0.065 | 0 033 | 0.010      | 0,013 | 0 230  | 0 027   | -0,004 | _0.001 |
| 100       | 0 413   | 0 181 | 0.086 | 0,005 | 0.042 | 0.012      | 0,039 | 0,233  | 0 1 1 2 | 0.005  | 0,005  |
| 110       | 0 3 3 6 | 0 160 | 0.041 | 0.084 | 0.039 | 0.004      | 0.002 | 0 177  | 0 122   | 0.005  | 0,000  |
| 140       | 0 127   | 0.077 | 0.017 | 0.035 | 0.013 | 0,004      | 0,078 | 0.050  | 0.045   | 0,003  | 0,010  |
| 160       | 0.021   | 0,019 | 0.005 | 0.007 | 0.005 | 0.001      | 0.011 | 0,000  | 0.003   | 0.002  | 0,003  |
| 180       | 0.010   | 0.008 | 0.003 | 0.003 | 0.004 | 0.001      | 0.010 | 0.002  | 0.001   | 0.003  | 0.002  |
|           | ,       | -,    | - ,   | -,    | -,,   | -,         | -,    | -,     | ~,001   | -,     | -,     |

,

prof. (m) CaT ChI a Chl b ChI c Phe a Phe b Phe c pChI a pChl b pPhe a pPhe b 0,023 0 0,066 0,007 0,008 0,004 0,002 0.005 0.043 0,002 -0,002 -0,003 30 0,085 0,034 0,012 0,013 0,006 0,003 0,008 0,051 0,004 -0,001 -0.003 60 0,152 0,043 0,018 0,021 0,012 0,005 0,108 0,011 0,008 -0,004 -0,006 70 0,168 0,055 0,021 0,012 0,027 0,006 0,013 0,112 0,010 -0,005 -0,006 80 0,300 0,078 0,032 0,045 0,024 0,007 0,025 0,222 0,020 -0,009 -0,009 90 0,451 0,145 0,067 0,079 0,039 0,012 0,054 0,306 0,037 -0,002 -0,011 100 0,413 0,115 0,051 0,066 0,035 0,011 0,042 0,297 0,034 -0,003 -0,008 110 0,299 0,151 0,035 0,071 0,027 -0,002 0,061 0,148 0,155 -0,001 0,006 120 0,228 0,119 0,026 0,025 -0,007 0,053 0,109 0,055 0,137 0,007 0,021 140 0,092 0,064 0,016 0,012 0,026 0,003 0,027 0,028 0,034 0,003 0,001 0,045 160 0,038 0,011 0,015 0,007 0,004 0,019 0,007 0,005 0,004 0,000 180 0,019 0,017 0,005 0,006 0,006 0,002 0,011 0,003 0,001 0,003 0,002 station 67 Phe a CaT Chl a Chl b ChI c Phe c prof. (m) Phe b pChl a pChl b pPhe a pPhe b 0,005 0 0,063 0,018 0,006 0,008 0,003 0,004 0,045 0,002 -0,006 -0,002 20 0,074 0,028 0,008 0,010 0,011 0,004 0,008 0,046 0,002 -0,007 -0,004 50 0,099 0,039 0,016 0,015 0,015 0,006 0,011 0,060 0,006 -0,010 -0,004 70 0,086 0,023 0,032 0,026 0,126 0,212 0,042 0,009 0,013 -0,021 -0,006 80 0,371 0,109 0,043 0,068 0,059 0,012 0,052 0,262 0,030 -0,032 -0,010 90 0,428 0,167 0,065 0,097 0,070 0,021 0,071 0,261 0,034 -0,035 -0,015 100 0,485 0,237 0,085 0,126 0,084 0,026 0,094 0,248 0,043 -0,049 -0,016 110 0,329 0,223 0,063 0,111 0,062 0,021 0,086 0,106 0,053 -0,034 -0,014 120 0,377 0,209 0,059 0,068 0,020 0,083 0,169 0,115 -0,039 -0,014 0,110 140 0,038 0,006 0,051 0,088 0,199 0,111 0,016 0,054 0,111 -0,018 0,000 160 0,030 0,025 0,008 0,010 0,009 0,003 0,014 0,005 0,002 -0,001 0,000 0,014 0,010 0,007 0,002 0,004 0,001 0,001 0,001 180 0,003 0,004 0,008 station 68 CaT Chl a Chỉ b Chl c pChl a pChl b pPhe a prof. (m) Phe a Phe b Phe c pPhe b 0,021 0,009 0,041 0 0,062 0,006 0,009 0,002 0,004 0,002 -0,005 -0,002 0,008 0,044 -0,002 20 0,067 0,023 0,010 0,009 0,003 0,006 0,003 -0,006 50 0,076 0,029 0,011 0,012 0,011 0,004 0,007 0,047 0,004 -0,006 -0,003 70 0,130 0,040 0,017 0,019 0,019 0,006 0,011 0,089 0,008 -0,012 -0,004 80 0,044 0,016 0,025 0,016 0,128 0,012 -0,014 -0,003 0,172 0,027 0,006 0,163 0,016 -0,017 -0,004 90 0,221 0,058 0,022 0,037 0,033 0,009 0,027 100 0,300 0,110 0,045 0,060 0,048 0,012 0,041 0,190 0,024 -0,022 -0,004 110 0,350 0,160 0,066 0,084 0,057 0,019 0,060 0,190 0,049 -0,030 -0,007 0,335 0,186 0,052 0,094 0,058 0,011 0,080 0,149 0,104 -0,032 -0,009 120 0,104 0,011 0,033 -0,001 0,044 0,077 0,095 -0,015 0,005 140 0,182 0,050 0,010 0,016 0,005 0,003 0,000 0,001 0,036 0,031 0,008 0,012 0,003 160 0,003 0,001 0,002 0,002 0,012 0,004 0,005 0,006 0,002 0,007 180 0,015 station 69 Chl a Chl b Chì c Phe a Phe b Phe c pChl a pChl b pPhe a pPhe b prof. (m) CaT 0,071 0,028 0,007 0,008 0,007 0,003 0.005 0,043 0,002 -0,004 -0,002 0 0,011 -0,005 -0,001 20 0,033 0,008 0,008 0,003 0,005 0,056 0,004 0,089 0,014 -0,005 -0,002 0,037 0,011 0,009 0,003 0,011 0,065 0,005 0,102 40 -0,008 -0,002 0,048 0,017 0,022 0,013 0,006 0,011 0,104 0.008 0,151 60 0,224 0,093 0,114 0,054 0,023 0,081 0,249 0,030 -0,014 -0,007 0,473 80 0,096 0,046 0,026 0,067 0,178 0,053 -0,011 -0,006 100 0,418 0,241 0,113 0,086 0,029 0,013 0,060 0,092 0,061 -0,008 -0,006 0,176 0,048 110 0,268 0,084 0,088 -0,005 0,000 0,110 0,024 0,054 0,020 0,006 0,037 120 0,194 0,030 0,050 0,065 -0,001 0,004 0,013 0,033 0,013 0,002 0,071 140 0,120 0,004 0,003 0,002 0,001 0,012 0,008 0,004 0,015 0,029 0,007 160 0,033

station 66

0,002

0,011

0,006

0,010

0,006

0,026

180

0,023

0,003

0,001

0,002

0,001

| prof. (m) | СаТ       | Chl a  | Chl b | Chl c     | Phe a  | Phe b      | Phe c     | pChl a | pChl b | pPhe a  | pPhe b  |
|-----------|-----------|--------|-------|-----------|--------|------------|-----------|--------|--------|---------|---------|
| • • • •   |           |        |       |           |        |            |           |        |        |         | •       |
| 5         | 0,084     | 0,032  | 0,008 | 0,013     | 0,008  | 0,004      | 0,006     | 0,052  | 0,003  | -0,005  | -0,003  |
| 30        | 0,125     | 0,044  | 0,016 | 0,018     | 0,012  | 0,006      | 0,006     | 0,081  | 0,007  | -0,008  | -0,002  |
| 50        | 0,151     | 0,048  | 0,018 | 0,023     | 0,016  | 0,004      | 0,012     | 0,103  | 0,009  | -0,010  | -0,001  |
| 70        | 0,290     | 0,089  | 0,036 | 0,050     | 0,030  | 0,011      | 0,022     | 0,201  | 0,018  | -0,014  | -0,006  |
| 90        | 0,451     | 0,201  | 0,099 | 0,094     | 0,053  | 0,022      | 0,058     | 0,250  | 0,033  | -0,017  | -0,006  |
| 100       | 0,360     | 0,180  | 0,082 | 0,085     | 0,040  | 0,019      | 0,055     | 0,181  | 0,038  | -0,014  | -0,007  |
| 120       | 0,155     | 0,088  | 0,012 | 0,041     | 0,018  | 0,003      | 0,027     | 0,067  | 0,076  | -0,004  | 0,002   |
| 140       | 0.084     | 0.050  | 0.011 | 0.022     | 0.012  | 0.006      | 0.020     | 0.034  | 0.044  | 0.000   | 0.000   |
| 160       | 0.023     | 0.020  | 0.005 | 0.008     | 0.006  | 0.003      | 0.007     | 0.002  | 0.001  | 0.001   | 0,000   |
| 180       | 0.019     | 0.016  | 0.005 | 0.007     | 0,006  | 0,004      | 0.007     | 0.003  | 0.001  | 0,003   | 0,000   |
| 100       | 0,017     | 0,010  | 0,005 | 0,007     | 0,000  | 0,004      | 0,007     | 0,005  | 0,001  | 0,005   | 0,000   |
|           |           |        |       |           | 5      | station 71 |           |        |        |         |         |
| prof. (m) | СаТ       | Chl a  | Ch1 b | Chl c     | Phe a  | Phe b      | Phe c     | pChl a | pChI b | pPhe a  | pPhe b  |
| 0         | 0,094     | 0,032  | 0,007 | 0,011     | 0,007  | 0,003      | 0,004     | 0,062  | 0,003  | -0,004  | -0,002  |
| 20        | 0,113     | 0,038  | 0,009 | 0,016     | 0,009  | 0,003      | 0,008     | 0,074  | 0,005  | -0,005  | -0,003  |
| 40        | 0,212     | 0,083  | 0,018 | 0,036     | 0,018  | 0,006      | 0,017     | 0,129  | 0,010  | -0,010  | -0,002  |
| 60        | 0,332     | 0,132  | 0,046 | 0,063     | 0,032  | 0,010      | 0,035     | 0,200  | 0,020  | -0,010  | -0,002  |
| 70        | 0,367     | 0.154  | 0,061 | 0,074     | 0,041  | 0.009      | 0.046     | 0.213  | 0.022  | -0.011  | -0.002  |
| 80        | 0.407     | 0.182  | 0.070 | 0.088     | 0.043  | 0.013      | 0.053     | 0.226  | 0.029  | -0.006  | -0.001  |
| 90        | 0 303     | 0 190  | 0 077 | 0,000     | 0.044  | 0.013      | 0,060     | 0,203  | 0.030  | -0.005  | -0.004  |
| 100       | 0,374     | 0,103  | 0,077 | 0.086     | 0.043  | 0,013      | 0,000     | 0,205  | 0,030  | -0,003  | -0,004  |
| 120       | 0,574     | 0,175  | 0,085 | 0,000     | 0,045  | 0,013      | 0,038     | 0,100  | 0,031  | -0,004  | -0,001  |
| 120       | 0,091     | 0,072  | 0,019 | 0,029     | 0,013  | 0,004      | 0,024     | 0,019  | 0,017  | 0,000   | 0,001   |
| 140       | 0,051     | 0,041  | 0,010 | 0,017     | 0,007  | 0,003      | 0,018     | 0,010  | 0,010  | 0,002   | 0,000   |
| 160       | 0,039     | 0,031  | 0,008 | 0,013     | 0,007  | 0,004      | 0,013     | 0,009  | 0,008  | 0,002   | 0,000   |
| 180       | 0,036     | 0,032  | 0,007 | 0,013     | 0,007  | 0,004      | 0,013     | 0,004  | 0,002  | 0,002   | -0,001  |
|           |           |        |       |           | 5      | station 72 |           |        |        |         |         |
| prof (m)  | CaT       | Chia   | Chin  | Chlo      | Pha a  | Dha h      | Pha c     | aChl a | PCh b  | p Pha a | n Dha h |
| pior. (m) | Cal       | Cill a |       | Chi c     | Flie a | Phe 0      | Phe c     | pCm a  | peni b | prile a | prne o  |
| 5         | 0,121     | 0,038  | 0,010 | 0,018     | 0,010  | 0,006      | 0,008     | 0,083  | 0,006  | -0,005  | -0,002  |
| 30        | 0,149     | 0,054  | 0,016 | 0,026     | 0,011  | 0,006      | 0,013     | 0,095  | 0,006  | -0,005  | -0,004  |
| 50        | 0,209     | 0,088  | 0,024 | 0,043     | 0,017  | 0,008      | 0,020     | 0,121  | 0,009  | -0,009  | -0,006  |
| 60        | 0,268     | 0,122  | 0,040 | 0,058     | 0,023  | 0,011      | 0,028     | 0,146  | 0,010  | -0,010  | -0,008  |
| 70        | 0,322     | 0,153  | 0,058 | 0,074     | 0,027  | 0,016      | 0,044     | 0,169  | 0,014  | -0,009  | -0,010  |
| 80        | 0,296     | 0,131  | 0,054 | 0,063     | 0,028  | 0.012      | 0.036     | 0,165  | 0.015  | -0.012  | -0.007  |
| 90        | 0.433     | 0,198  | 0.111 | 0.095     | 0.044  | 0.020      | 0.070     | 0.236  | 0.032  | -0.007  | -0.009  |
| 100       | 0.399     | 0.178  | 0.091 | 0.095     | 0.035  | 0.015      | 0.059     | 0 221  | 0.099  | -0.006  | 0,000   |
| 120       | 0,175     | 0 124  | 0.039 | 0.051     | 0.018  | 0,009      | 0.039     | 0.051  | 0.042  | -0.002  | -0.004  |
| 140       | 0.084     | 0.050  | 0.011 | 0.022     | 0.012  | 0,005      | 0,020     | 0.034  | 0.044  | 0,002   | 0,004   |
| 140       | 0,004     | 0,000  | 0.012 | 0,022     | 0,012  | 0,000      | 0,020     | 0,007  | 0,044  | 0,000   | 0,000   |
| 100       | 0,001     | 0,039  | 0,013 | 0,010     | 0,007  | 0,003      | 0,015     | 0,022  | 0,032  | 0,001   | 0,001   |
| 180       | 0,030     | 0,026  | 0,009 | 0,010     | 0,005  | 0,003      | 0,010     | 0,004  | 0,003  | 0,001   | 0,000   |
|           |           | st 73  |       |           | st 74  |            |           |        | st 75  |         |         |
|           | prof. (m) | CaT    |       | prof. (m) | СаТ    |            | prof. (m) | СаТ    | Chl a  | pChi a  |         |
|           | 5         | 0,127  |       | 5         | 0,209  |            | 5         | 0,355  | 0,169  | 0,187   |         |
|           | 30        | 0,157  |       | 20        | 0,222  |            | 20        | 0,450  |        |         |         |
|           | 50        | 0,208  |       | 40        | 0,391  |            | 30        | 0,512  |        |         |         |
|           | 60        | 0,268  |       | 50        | 0,424  |            | 40        | 0,578  |        |         |         |
|           | 70        | 0,328  |       | 60        | 0,429  |            | 50        | 0,514  |        |         |         |
|           | 80        | 0.305  |       | 80        | 0.351  |            | 60        | 0.466  |        |         |         |
|           | 90        | 0.439  |       | 100       | 0.223  |            | 80        | 0.321  |        |         |         |
|           | 100       | 0 417  |       | 110       | 0 143  |            | 100       | 0 148  |        |         |         |
|           | 120       | 0.180  |       | 120       | 0,145  |            | 100       | 0,140  |        |         |         |
|           | 140       | 0,160  |       | 140       | 0,073  |            | 120       | 0,007  |        |         |         |
|           | 140       | 0,000  |       | 140       | 0,083  |            | 140       | 0,084  |        |         |         |
|           | 100       | 0,030  |       | 100       | 0,041  |            | 160       | 0,032  |        |         |         |
|           | 180       | 0,019  |       | 180       | 0,021  |            | 180       | 0,023  |        |         |         |

| prof. (m) | CaT    | Chl a | Chl b  | Chl c   | Phe a  | Phe b                                    | Phe c | pChl a   | pChl b                                 | pPhe a   | pPhe b     |
|-----------|--------|-------|--------|---------|--------|------------------------------------------|-------|----------|----------------------------------------|----------|------------|
| 5         | 0.296  | 0.170 | 0.046  | 0.071   | 0.012  | 0.000                                    | 0.036 | 0.126    | 0.000                                  | 0.002    | 0.001      |
| 20        | 0,290  | 0,170 | 0,040  | 0,071   | 0,012  | 0,009                                    | 0,030 | 0,120    | 0,009                                  | 0,003    | 0,001      |
| 40        | 0,308  | 0,177 | 0,047  | 0,077   | 0.014  | 0,008                                    | 0,037 | 0,131    | 0,010                                  | 0,002    | 0,003      |
| 50        | 0,117  | 0,227 | 0,117  | 0,105   | 0,025  | 0,017                                    | 0,005 | 0,120    | 0,047                                  | 0,009    | 0,011      |
| 50<br>60  | 0.348  | 0,222 | 0,122  | 0,105   | 0,020  | 0,017                                    | 0,037 | 0,167    | 0,075                                  | 0,011    | 0,008      |
| 80        | 0,340  | 0,107 | 0,030  | 0,051   | 0,018  | 0,008                                    | 0,040 | 0,102    | 0,123                                  | 0,003    | 0,000      |
| 100       | 0,224  | 0,135 | 0,033  | 0,001   | 0,011  | 0,000                                    | 0,038 | 0,083    | 0,077                                  | 0,004    | 0,003      |
| 100       | 0,174  | 0,112 | 0,028  | 0,040   | 0,008  | 0,000                                    | 0,028 | 0,039    | 0,039                                  | 0,005    | 0,002      |
| 120       | 0,124  | 0,005 | 0,019  | 0,030   | 0,000  | 0,000                                    | 0,024 | 0,040    | 0,045                                  | 0,006    | 0,002      |
| 130       | 0,080  | 0,034 | 0,011  | 0,022   | 0,003  | 0,001                                    | 0,011 | 0,026    | 0,035                                  | 0,004    | 0,004      |
| 140       | 0,036  |       |        |         |        |                                          |       |          |                                        |          |            |
| 100       | 0,035  |       |        |         |        |                                          |       |          |                                        |          |            |
|           |        |       |        |         | S      | station 77                               |       |          |                                        |          |            |
| neof (m)  | Cat    | Chla  | Chib   | Chia    | Dha a  | Dha h                                    | Dha a | a Chi a  | -011                                   | -Dha -   | - 10 h a h |
| ptor. (m) | Cal    | Cin a | Chi b  | Chi c   | rite a | r tie o                                  | rnec  | рспа     | pCni o                                 | prne a   | prie o     |
| 5         | 0,344  | 0,160 | 0,062  | 0,053   | 0,042  | 0,015                                    | 0,034 | 0,185    | 0,010                                  | -0,026   | -0,006     |
| 20        | 0,419  | 0,207 | 0,093  | 0,082   | 0,051  | 0,019                                    | 0,054 | 0,212    | 0,016                                  | -0,028   | -0,005     |
| 30        | 0,461  | 0,235 | 0,112  | 0,100   | 0,057  | 0,021                                    | 0,067 | 0,226    | 0,021                                  | -0,028   | -0,005     |
| 40        | 0,492  | 0,249 | 0,126  | 0,115   | 0,066  | 0,021                                    | 0,074 | 0,243    | 0,029                                  | -0,031   | -0,005     |
| 50        | 0,480  | 0,244 | 0,120  | 0,121   | 0,067  | 0,020                                    | 0,081 | 0,235    | 0,048                                  | -0,028   | -0,005     |
| 60        | 0,481  | 0,244 | 0,116  | 0,127   | 0,069  | 0,017                                    | 0,088 | 0,237    | 0,065                                  | -0,027   | -0,008     |
| 80        | 0,391  | 0,198 | 0,058  | 0,105   | 0,053  | 0,007                                    | 0,073 | 0,193    | 0,137                                  | -0,021   | 0,003      |
| 100       | 0,298  | 0,169 | 0,052  | 0,081   | 0,046  | 0,015                                    | 0,060 | 0,129    | 0,108                                  | -0,013   | 0,002      |
| 120       | 0,141  | 0,087 | 0,030  | 0,037   | 0,023  | 0,005                                    | 0,032 | 0,054    | 0,065                                  | -0,006   | 0,002      |
| 140       | 0,072  | 0,041 | 0,010  | 0,019   | 0,013  | 0,002                                    | 0,016 | 0,031    | 0,047                                  | -0,002   | 0,003      |
| 160       | 0,024  | 0,021 | 0,010  | 0,006   | 0,011  | 0,003                                    | 0,011 | 0,003    | 0,002                                  | 0,001    | 0,001      |
| 180       | 0,020- | 0,017 | 0,007  | 0,006   | 0,007  | 0,003                                    | 0,008 | 0,003    | 0,002                                  | 0,001    | 0,001      |
|           |        |       |        |         |        |                                          |       |          |                                        |          |            |
|           |        |       |        |         | 5      | station 78                               |       |          |                                        |          |            |
| prof. (m) | CaT    | Chl a | Chl b  | Chl c   | Phe a  | Phe b                                    | Phe c | pChl a   | pChl b                                 | pPhe a   | pPhe b     |
| 5         | 0.220  | 0 132 | 0.047  | 0.045   | 0.025  | 0.011                                    | 0.026 | 0 107    | 0.000                                  | 0.010    | 0.004      |
| 20        | 0,230  | 0,123 | 0,047  | 0,043   | 0,025  | 0,011                                    | 0,020 | 0,107    | 0,008                                  | -0,012   | -0,004     |
| 20        | 0,328  | 0,182 | 0,087  | 0,007   | 0,035  | 0,015                                    | 0,042 | 0,145    | 0,012                                  | -0,014   | -0,000     |
| 30        | 0,370  | 0,192 | 0,100  | 0,076   | 0,045  | 0,013                                    | 0,040 | 0,104    | 0,017                                  | -0,020   | -0,002     |
| 40        | 0,432  | 0,233 | 0,134  | 0,095   | 0,054  | 0,022                                    | 0,038 | 0,217    | 0,023                                  | -0,020   | -0,000     |
| 50        | 0,470  | 0,248 | 0,148  | 0,105   | 0,058  | 0,018                                    | 0,070 | 0,229    | 0,032                                  | -0,019   | -0,004     |
| 60<br>80  | 0,477  | 0,249 | 0,155  | 0,107   | 0,039  | 0,021                                    | 0,082 | 0,228    | 0,052                                  | -0,015   | -0,005     |
| 80        | 0,319  | 0,180 | 0,079  | 0,077   | 0,039  | 0,010                                    | 0,052 | 0,139    | 0,084                                  | -0,011   | 0,002      |
| 120       | 0,113  | 0,067 | 0,016  | 0,029   | 0,015  | 0,002                                    | 0,023 | 0,046    | 0,058                                  | -0,004   | 0,002      |
| 140       | 0,077  | 0,041 | 0,007  | 0,021   | 0,014  | 0,002                                    | 0,012 | 0,036    | 0,058                                  | -0,003   | 0,003      |
| 160       | 0,041  | 0,028 | 0,009  | 0,011   | 0,009  | 0,003                                    | 0,009 | 0,013    | 0,018                                  | -0,001   | 0,001      |
|           |        |       |        |         | :      | station 79                               |       |          |                                        |          |            |
| prof. (m) | CaT    | Chl a | Ch1 b  | ChI c   | Phe a  | Phe b                                    | Phe c | pChI a   | pChl b                                 | pPhe a   | pPhe b     |
| 5         | 0.205  | 0 106 | 0.027  | 0.032   | 0.005  | 0.003                                    | 0.014 | 0 000    | 0.006                                  | 0.003    | 0.002      |
| د<br>۵۲   | 0,205  | 0,100 | 0,027  | 0,052   | 0.003  | 0,005                                    | 0.070 | 0 101    | 0.012                                  | 0.001    | 0.002      |
| 20        | 0,252  | 0.241 | 0,038  | 0.094   | 0,014  | 0,009                                    | 0,020 | 0,171    | 0,015                                  | 0,001    | 0,001      |
| 06        | 0,400  | 0,241 | 0,152  | 0,080   | 0,020  | 0,014                                    | 0,041 | 0.242    | 0,010                                  | 0,011    | 0,000      |
| 4U<br>¢A  | 0,477  | 0,200 | 0,130  | 0,107   | 0,023  | 0.014                                    | 0.055 | 0,273    | 0,025                                  | 0.014    | 0,005      |
| 3U<br>20  | 0,000  | 0,201 | 0,175  | 0,121   | 0,027  | 0,013                                    | 0,000 | 0,213    | 0,034                                  | 0,014    | 0,004      |
| 00        | 0,304  | 0,201 | 0,133  | 0,124   | 0,021  | 0,003                                    | 0,003 | .0 101   | 0,075                                  | 0,010    | 0,000      |
| 8U<br>100 | 0,412  | 0,221 | 0,101  | 0,102   | 0,021  | 0,003                                    | 0,039 | 0,171    | 0,105                                  | 0,012    | 0,000      |
| 100       | 0,204  | 0,129 | 0,041  | 0,034   | 0,013  | 0,001                                    | 0,033 | 0,075    | 0,070                                  | 0.007    | 0,010      |
| 120       | 0,123  | 0,073 | 0,020  | 0,034   | 0,008  | 0,002                                    | 0,024 | 0,040    | 0,050                                  | 0,007    | 0,005      |
| 140       | 0,004  | 0,049 | 0,013  | 0,021   | 0,000  | 0,001                                    | 0.014 | 0.003    | 0.003                                  | 0.004    | 0,005      |
| 100       | 0,023  | 0,022 | 0,009  | 0,007   | 0,004  | 0,002                                    | 0,010 | 0,005    | 0,005                                  | 0,004    | 0.001      |
|           |        | V.V.I | v.vv.J | N. N. 1 | V.VIO  | N. N | 0.000 | J. J J L | J. J J J J J J J J J J J J J J J J J J | J. J J J | V. V V I   |

70

| 5         0.270         0.152         0.061         0.061         0.017         0.013         0.039         0.117         0.090         0.007         -0.011           10         0.273         0.154         0.084         0.062         0.011         0.044         0.012         0.010         0.007         0.011         0.000         0.007         0.011         0.000         0.007         0.011         0.000         0.007         0.011         0.000         0.007         0.011         0.000         0.000         0.007         0.011         0.000         0.001         0.011         0.010         0.011         0.000         0.001         0.011         0.011         0.001         0.014         0.090         0.007         0.014         0.090         0.001         0.014         0.090         0.001         0.000         0.001         0.014         0.090         0.001         0.001         0.001         0.001         0.016         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001 <th>prof. (m)</th> <th>CaT</th> <th>Chl a</th> <th>Chł b</th> <th>Chl c</th> <th>Phe a</th> <th>Phe b</th> <th>Phe c</th> <th>pChI a</th> <th>pChl b</th> <th>pPhc a</th> <th>pPhe b</th> | prof. (m)                                                                                                                                                                         | CaT     | Chl a | Chł b   | Chl c | Phe a  | Phe b      | Phe c | pChI a | pChl b | pPhc a | pPhe b |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|---------|-------|--------|------------|-------|--------|--------|--------|--------|-------|
| 20         0.275         0.154         0.062         0.067         0.011         0.014         0.045         0.021         0.010           30         0.355         0.364         0.068         0.068         0.068         0.068         0.068         0.068         0.068         0.061         0.014         0.014         0.017         0.017         0.017         0.017         0.017         0.018         0.018         0.017         0.017         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.018         0.016         0.006         0.006         0.006         0.006         0.008         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001 <td>5</td> <td>0,270</td> <td>0,152</td> <td>0,061</td> <td>0,061</td> <td>0,017</td> <td>0,015</td> <td>0,039</td> <td>0,117</td> <td>0,009</td> <td>0,007</td> <td>-0,003</td>          | 5                                                                                                                                                                                 | 0,270   | 0,152 | 0,061   | 0,061 | 0,017  | 0,015      | 0,039 | 0,117  | 0,009  | 0,007  | -0,003 |       |
| 10         0.226         0.167         0.0687         0.021         0.011         0.045         0.122         0.010         0.007         0.084         0.021         0.016         0.005         0.011         0.0012         0.001         0.0012         0.001         0.0012         0.0013         0.012         0.013         0.012         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.013         0.012         0.016         0.005           100         0.116         0.013         0.013         0.003         0.027         0.042         0.031         0.003         0.021         0.041         0.044         0.064         0.001           140         0.042         0.011         0.015         0.005         0.002         0.002         0.001         0.003         0.001         0.003         0.001         0.004         0.001         0.003         0.001         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001 <td>20</td> <td>0,275</td> <td>0.154</td> <td>0,063</td> <td>0,062</td> <td>0,019</td> <td>0,011</td> <td>0,040</td> <td>0,121</td> <td>0,009</td> <td>0,007</td> <td>-0,001</td>                 | 20                                                                                                                                                                                | 0,275   | 0.154 | 0,063   | 0,062 | 0,019  | 0,011      | 0,040 | 0,121  | 0,009  | 0,007  | -0,001 |       |
| s. 0, 0, 65         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                                                                                                                                                                                | 0.296   | 0,167 | 0,068   | 0,068 | 0,021  | 0,011      | 0,045 | 0,129  | 0,010  | 0,005  | -0,001 |       |
| 60         0.416         0.224         0.122         0.017         0.073         0.017         0.073         0.024         0.808         0.061         0.0007           100         0.315         0.173         0.078         0.075         0.022         0.007         0.058         0.141         0.099         0.007           120         0.116         0.074         0.023         0.002         0.004         0.011         0.014         0.044         0.004         0.001           140         0.042         0.031         0.012         0.012         0.002         0.005         0.000         0.001         0.000         0.003         0.001         0.000         0.003         0.001         0.000         0.003         0.001         0.000         0.003         0.001         0.000         0.003         0.001         0.000         0.003         0.001         0.000         0.003         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001                                                                                                                                                                                                                     | 50                                                                                                                                                                                | 0.365   | 0.203 | 0.097   | 0.084 | 0.032  | 0,016      | 0,060 | 0,162  | 0.017  | 0,012  | 0,000  |       |
| 80         0.23         0.123         0.018         0.087         0.027         0.029         0.016         0.0057           100         0.116         0.074         0.022         0.017         0.022         0.016         0.028         0.111         0.029         0.001           120         0.116         0.074         0.022         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.011         0.012         0.000         0.002         0.000         0.003         0.001         0.000         0.003         0.001         0.000         0.003         0.001         0.000         0.003         0.001         0.000         0.003         0.001         0.000         0.003         0.001         0.000         0.003         0.001         0.000         0.003         0.001         0.000         0.003         0.001         0.000         0.003         0.011         0.007         0.005           20         0.355         0.180         0.065         0.061         0.028         0.013         0.014         0.013         0.014         0.013         0.014         0.013         0.014         0.013         0.014         0.012         0.011         0.017 <t< td=""><td>60</td><td>0.416</td><td>0 224</td><td>0.122</td><td>0.094</td><td>0.037</td><td>0.017</td><td>0.073</td><td>0.192</td><td>0.025</td><td>0.013</td><td>-0.002</td></t<>                                 | 60                                                                                                                                                                                | 0.416   | 0 224 | 0.122   | 0.094 | 0.037  | 0.017      | 0.073 | 0.192  | 0.025  | 0.013  | -0.002 |       |
| 100         0.315         0.172         0.078         0.022         0.007         0.058         0.141         0.099         0.099         0.099           120         0.116         0.074         0.224         0.011         0.014         0.027         0.452         0.646         0.066         0.004         0.001         0.011         0.014         0.004         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001 </td <td>80</td> <td>0 4 3 4</td> <td>0,221</td> <td>0.124</td> <td>0 104</td> <td>0.038</td> <td>0.018</td> <td>0.087</td> <td>0 204</td> <td>0.080</td> <td>0.016</td> <td>0.005</td> | 80                                                                                                                                                                                | 0 4 3 4 | 0,221 | 0.124   | 0 104 | 0.038  | 0.018      | 0.087 | 0 204  | 0.080  | 0.016  | 0.005  |       |
| 100         0,113         0,013         0,024         0,013         0,024         0,014         0,044         0,042         0,004         0,011         0,012         0,044         0,014         0,014         0,014         0,014         0,014         0,014         0,014         0,014         0,014         0,014         0,011         0,012         0,000         0,002         0,001         0,002         0,001         0,000         0,003         0,001         0,000         0,003         0,001         0,000         0,003         0,001         0,000         0,003         0,001         0,000         0,003         0,001         0,000         0,003         0,001         0,000         0,003         0,001         0,000         0,003         0,001         0,000         0,003         0,001         0,000         0,003         0,001         0,000         0,003         0,001         0,000         0,003         0,011         0,007         0,005         0,003         0,014         0,001         0,007         0,005         0,031         0,041         0,022         0,056         0,031         0,041         0,023         0,038         0,118         0,047         0,102         0,023         0,013         0,044         0,023         0                                                                                                                                                                               | 100                                                                                                                                                                               | 0,215   | 0,250 | 0,124   | 0,104 | 0,000  | 0,010      | 0,007 | 0.141  | 0,000  | 0,010  | 0,005  |       |
| Lio         0.014         0.012         0.012         0.013         0.003         0.004         0.011         0.014         0.012           160         0.018         0.016         0.0012         0.0012         0.0012         0.0012         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.0014         0.001                                                                                                                                                            | 100                                                                                                                                                                               | 0,515   | 0,175 | 0,078   | 0,075 | 0,022  | 0,007      | 0,058 | 0,141  | 0,075  | 0,009  | 0,007  |       |
| 140         0.042         0.031         0.031         0.031         0.034         0.004         0.004         0.004         0.004         0.004         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.003         0.001         0.001         0.003         0.001         0.017         0.010         0.007         0.013         0.001         0.010         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0                                                                                                                                                                               | 120                                                                                                                                                                               | 0,110   | 0,074 | 0,024   | 0,031 | 0,008  | 0,003      | 0,027 | 0,042  | 0,040  | 0,000  | 0,004  |       |
| 160         0.018         0.016         0.002         0.003         0.0045         0.0022         0.003         0.001         0.000         0.003         0.001           180         0.007         0.006         0.002         0.005         0.001         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.001         0.000         0.000         0.001         0.000         0.000         0.001         0.000         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001                                                                                                                                                                                       | 140                                                                                                                                                                               | 0,042   | 0,031 | 0,012   | 0,012 | 0,007  | 0,004      | 0,011 | 0,011  | 0,014  | 0,004  | 0,001  |       |
| 180         0,007         0,006         0,002         0,002         0,003         0,001         0,000         0,003         0,001           station 81           prof. (m)         CaT         Chi a         Chi b         Chi a         Chi b         OPhe b           prof. (m)         CaT         Chi a         Chi a         Chi b         OPhe b           prof. (m)         CaT         Chi a         Chi a         Chi b         OPhe b           a         OPhe b         Phe c         PChi a         Phe b           a         OPhe b         OPhe a         Phe b           a         OPhe b         OPhe a         Phe b           a         OPhe b         OPAC         OPAC         OPAC         OPAC         OPAC           Car         OPAC         OPAC         OPAC           OPAC         OPAC <th co<="" td=""><td>160</td><td>0,018</td><td>0,016</td><td>0,007</td><td>0,005</td><td>0,005</td><td>0,002</td><td>0,006</td><td>0,002</td><td>0,001</td><td>0,003</td><td>0,001</td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                               | <td>160</td> <td>0,018</td> <td>0,016</td> <td>0,007</td> <td>0,005</td> <td>0,005</td> <td>0,002</td> <td>0,006</td> <td>0,002</td> <td>0,001</td> <td>0,003</td> <td>0,001</td> | 160     | 0,018 | 0,016   | 0,007 | 0,005  | 0,005      | 0,002 | 0,006  | 0,002  | 0,001  | 0,003  | 0,001 |
| prof. (m)         CaT         Chia         Chib         Chic         Phea         Pheb         Phec         pChia         OChia         OChia         OPhea         Pheb           5         0.325         0.180         0.065         0.061         0.028         0.019         0.038         0.146         0.011         -0.007         -0.007           30         0.344         0.215         0.085         0.047         0.022         0.055         0.179         0.017         -0.001         -0.007           30         0.434         0.215         0.088         0.045         0.022         0.055         0.179         0.017         -0.010         -0.007           60         0.435         0.218         0.110         0.112         0.047         0.021         0.065         0.022         0.030         -0.011         -0.007           60         0.445         0.218         0.103         0.055         0.006         0.021         0.037         0.097         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.007         0.001         0.001         0.001         0.000         0.001 <td>180</td> <td>0,007</td> <td>0,006</td> <td>0,002</td> <td>0,002</td> <td>0,005</td> <td>0,002</td> <td>0,005</td> <td>0,001</td> <td>0,000</td> <td>0,003</td> <td>0,001</td>                                                  | 180                                                                                                                                                                               | 0,007   | 0,006 | 0,002   | 0,002 | 0,005  | 0,002      | 0,005 | 0,001  | 0,000  | 0,003  | 0,001  |       |
| prof. (m)         CaT         Chi a         Chi b         Chi c         Phe a         Phe b         Phe c         pChi a         pChi b         pPhe a         pPhe b           5         0,325         0,180         0.065         0.061         0,028         0,019         0,038         0,146         0,011         -0.007         -0.005           20         0,358         0,198         0.076         0.072         0,035         0,199         0,212         0,055         0,179         0,017         -0.010         -0.008           40         0,448         0,218         0,088         0,095         0,042         0,023         0,056         0,129         0,010         -0.001         -0.007           60         0,450         0,242         0,110         0,112         0,047         0,021         0,056         0,209         0,001         -0.000         0,001           100         0,228         0,100         0,33         0,023         0,007         0,037         0,977         0,989         -0,003         0,001           100         0,484         0,477         0,012         0,007         0,003         0,012         0,017         0,000         0,001         0,001         0,00                                                                                                                                                                                                                                        |                                                                                                                                                                                   |         |       |         |       | 5      | station 81 |       |        |        |        |        |       |
| 5         0.325         0.180         0.065         0.061         0.028         0.019         0.038         0.146         0.011         -0.007         -0.005           20         0.338         0.198         0.076         0.072         0.035         0.118         0.047         0.160         0.011         -0.007         -0.010         -0.007           30         0.334         0.218         0.088         0.095         0.042         0.023         0.055         0.179         0.010         -0.007           50         0.439         0.236         0.103         0.104         0.045         0.025         0.020         0.021         0.010         -0.007           60         0.450         0.242         0.110         0.112         0.047         0.021         0.056         0.209         0.010         -0.001         -0.007           100         0.228         0.110         0.033         0.023         0.040         0.019         0.066         0.021         0.030         0.001         0.000         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.000         0.002                                                                                                                                                                                                                                | prof. (m)                                                                                                                                                                         | CaT     | Chl a | Chl b   | Chl c | Phe a  | Phe b      | Phe c | pChI a | pChI b | pPhe a | pPhe b |       |
| 20         0,358         0,198         0,076         0,072         0,035         0,018         0,047         0,160         0,017         0,017         0,010         -0,008           40         0,408         0,218         0,088         0,095         0,042         0,055         0,179         0,017         -0,010         -0,007           50         0,439         0,224         0,113         0,114         0,045         0,0229         0,066         0,209         0,303         -0,014         -0,007           60         0,450         0,242         0,110         0,034         0,021         0,066         0,029         0,030         -0,014         -0,005           100         0,208         0,110         0,034         0,033         0,032         0,007         0,007         0,003         0,062         0,070         -0,002         0,003           100         0,484         0,047         0,012         0,007         0,003         0,017         0,001         0,001           180         0,026         0,020         0,088         0,007         0,003         0,007         0,001         0,001           180         0,426         0,020         0,003         0,012                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                 | 0,325   | 0,180 | 0,065   | 0,061 | 0,028  | 0,019      | 0,038 | 0,146  | 0,011  | -0,007 | -0,005 |       |
| 30         0,394         0,215         0,085         0,087         0,039         0,022         0,052         0,179         0,017         -0,010         -0,008           40         0,448         0,218         0,088         0,018         0,018         0,018         0,023         0,023         -0,012         -0,007           60         0,450         0,242         0,110         0,112         0,047         0,021         0,066         0,209         0,030         -0,014         -0,005           100         0,248         0,113         0,103         0,044         0,040         0,007         0,037         0,077         0,007         0,030         0,014         0,000         0,001         0,007         0,007         0,007         0,007         0,007         0,007         0,001         0,001           140         0,084         0,047         0,012         0,009         0,012         0,000         0,007         0,001         0,011         0,014         0,001         0,001           180         0,026         0,020         0,008         0,007         0,003         0,017         0,000         0,001           100         3.48         0,178         0,072         0,078                                                                                                                                                                                                                                               | 20                                                                                                                                                                                | 0,358   | 0,198 | 0,076   | 0,072 | 0,035  | 0,018      | 0,047 | 0,160  | 0,013  | -0,009 | -0,007 |       |
| 4         0.408         0.218         0.088         0.095         0.042         0.023         0.058         0.199         0.020         -0.010         -0.007           50         0.439         0.236         0.113         0.104         0.045         0.022         0.065         0.209         0.033         -0.014         -0.007           60         0.450         0.242         0.110         0.034         0.005         0.020         0.064         0.197         0.048         -0.010         -0.003         0.004         0.019         0.005         0.021         0.007         0.033         0.022         0.010         0.014         -0.002         0.003           100         0.208         0.102         0.0023         0.012         0.006         0.021         0.037         0.055         0.002         0.003           160         0.039         0.029         0.009         0.003         0.012         0.006         0.021         0.037         0.024         0.010         0.011         0.004         0.001         0.001         1.80         0.022         0.003         0.007         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001 <td< td=""><td>30</td><td>0,394</td><td>0,215</td><td>0,085</td><td>0,087</td><td>0,039</td><td>0,022</td><td>0,055</td><td>0,179</td><td>0,017</td><td>-0,010</td><td>-0,008</td></td<>                                       | 30                                                                                                                                                                                | 0,394   | 0,215 | 0,085   | 0,087 | 0,039  | 0,022      | 0,055 | 0,179  | 0,017  | -0,010 | -0,008 |       |
| 5         0,439         0,236         0,103         0,104         0,045         0,023         0,023         -0,012         -0,007           60         0,450         0,242         0,110         0,112         0,047         0,021         0,065         0,203         0,001         -0,001         4.0005           100         0,288         0,110         0,034         0,053         0,023         0,007         0,037         0,087         0,089         -0,002         0,003           120         0,148         0,046         0,040         0,015         0,006         0,021         0,037         0,055         0,002         0,005           160         0,399         0,029         0,009         0,112         0,007         0,003         0,007         0,007         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,007         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001                                                                                                                                                                                                                                 | 40                                                                                                                                                                                | 0,408   | 0,218 | 0,088   | 0,095 | 0,042  | 0,023      | 0,058 | 0,189  | 0,020  | -0,010 | -0,007 |       |
| 60         0,450         0,242         0,110         0,112         0,047         0,021         0,065         0,209         0,014         -0,014         -0,005           80         0,415         0,218         0,110         0,033         0,004         0,197         0,048         -0,010         -0,003           120         0,148         0,086         0,023         0,007         0,037         0,055         0,002         0,001           140         0,084         0,047         0,012         0,007         0,006         0,030         0,010         0,011         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,000         0,033         0,133         0,131         0,014         0,012         0,014         0,110         0,010         0,010                                                                                                                                                                                                                   | 50                                                                                                                                                                                | 0,439   | 0,236 | 0,103   | 0,104 | 0,045  | 0,025      | 0,060 | 0,203  | 0,023  | -0,012 | -0,007 |       |
| 80         0.415         0.218         0.103         0.015         0.046         0.020         0.064         0.197         0.048         -0.010         -0.005           100         0.208         0.110         0.034         0.033         0.023         0.007         0.037         0.097         0.048         -0.001         -0.002         0.001           120         0.148         0.086         0.023         0.015         0.006         0.021         0.037         0.055         0.002         0.001           140         0.044         0.047         0.012         0.009         0.003         0.012         0.010         0.011         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001                                                                                                                                                                                                                  | 60                                                                                                                                                                                | 0,450   | 0,242 | 0,110   | 0,112 | 0,047  | 0,021      | 0,065 | 0,209  | 0,030  | -0,014 | -0,005 |       |
| 100         0,208         0,110         0,034         0,053         0,023         0,007         0,037         0,097         0,089         -0,003         0,004           120         0,148         0,084         0,047         0,012         0,006         0,030         0,062         0,007         0,003         0,037         0,070         -0,001         0,001           160         0,039         0,029         0,009         0,012         0,007         0,003         0,017         0,006         0,037         0,007         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,000         0,003         0,12         0,014         0,017         0,000         0,002         0,017         0,044         0,148         0,017         0,000         0,002         0,010         0,052         0,150         0,016         0,000         0,000         0,000         0,001         0,017         0,0024         0,110         0,050                                                                                                                                                                                                     | 80                                                                                                                                                                                | 0,415   | 0,218 | 0,103   | 0,105 | 0,046  | 0,020      | 0,064 | 0,197  | 0,048  | -0,010 | -0,005 |       |
| 120         0,148         0,086         0,023         0,040         0,019         0,006         0,030         0,062         0,070         -0,002         0,003           140         0,084         0,047         0,012         0,023         0,015         0,006         0,021         0,037         0,002         0,000         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,002         0,003         0,012         0,054         0,148         0,017         0,000         0,002         0,153         0,017         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,001         0,001         0,017<                                                                                                                                                                                       | 100                                                                                                                                                                               | 0,208   | 0.110 | 0.034   | 0.053 | 0.023  | 0.007      | 0.037 | 0.097  | 0.089  | -0.003 | 0.004  |       |
| 140         0,084         0,047         0,012         0,023         0,015         0,006         0,021         0,035         0,0055         0,002         0,0055         0,002         0,001         0,001           180         0,026         0,020         0,008         0,007         0,007         0,003         0,007         0,006         0,007         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001                                                                                                                                                                                       | 120                                                                                                                                                                               | 0.148   | 0.086 | 0.023   | 0.040 | 0.019  | 0.006      | 0.030 | 0.062  | 0.070  | -0.002 | 0.003  |       |
| 160         0,039         0,029         0,012         0,003         0,012         0,003         0,012         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,002         0,002         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0                                                                                                                                                                               | 140                                                                                                                                                                               | 0.084   | 0.047 | 0.012   | 0.023 | 0.015  | 0,000      | 0.021 | 0.037  | 0.055  | 0,002  | 0,005  |       |
| 180         0,025         0,025         0,003         0,007         0,003         0,007         0,006         0,007         0,006         0,007         0,001         0,001         0,001           station 82           prof. (m)         CaT         Ch1 a         Ch1 b         Ch1 c         Phe b         Phe c         pCh1 a         pCh1 b         pPhe b           5         0,331         0,184         0,072         0,078         0,024         0,012         0,054         0,148         0,017         0,000         0,002           20         0,344         0,194         0,072         0,083         0,022         0,010         0,052         0,1150         0,017         0,000         0,000           30         0,332         0,179         0,071         0,022         0,009         0,050         0,153         0,018         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         0,004         -0,001         0,004 <td>160</td> <td>0,004</td> <td>0,017</td> <td>0,012</td> <td>0,023</td> <td>0,019</td> <td>0,000</td> <td>0,021</td> <td>0,000</td> <td>0.014</td> <td>0,002</td> <td>0,000</td>                                                                                                                      | 160                                                                                                                                                                               | 0,004   | 0,017 | 0,012   | 0,023 | 0,019  | 0,000      | 0,021 | 0,000  | 0.014  | 0,002  | 0,000  |       |
| 180       0.020       0.020       0.003       0.007       0.003       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.007       0.002       0.017       0.000       0.000       0.000         10       0.348       0.198       0.070       0.087       0.024       0.010       0.052       0.150       0.017       0.000       0.000         20       0.344       0.194       0.072       0.083       0.024       0.010       0.050       0.153       0.017       -0.001       0.002         40       0.325       0.171       0.066       0.073       0.024       0.010       0.050       0.154       0.018       -0.0001       -0.001         50       0.335       0.180       0.072       0.076       0.025       0.016       0.050       0.154       0.002       0.001       0.001       -0.001       -0.001       -0.001       -0.001                                                                                                                                                                                                                                                                                                       | 100                                                                                                                                                                               | 0,037   | 0,029 | 0,009   | 0,012 | 0,007  | 0,003      | 0,012 | 0,010  | 0,014  | 0,001  | 0,001  |       |
| station 82           prof. (m)         CaT         Ch1 a         Ch1 b         Ch1 c         Phe a         Phe b         Phe c         pCh1 a         pCh1 b         pPhe a         pPhe b           5         0.331         0.184         0.072         0.078         0.024         0.017         0.049         0.150         0.017         0.000         0.001           10         0.348         0.194         0.072         0.078         0.024         0.017         0.049         0.150         0.017         0.000         0.002           20         0.344         0.194         0.072         0.076         0.022         0.010         0.052         0.150         0.016         0.000         0.001           40         0.325         0.171         0.068         0.073         0.024         0.010         0.047         0.155         0.018         -0.001         -0.001         -0.001         -0.001         -0.001         0.005         0.155         0.018         -0.001         -0.001         -0.001         0.005         0.155         0.018         -0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001         0.001                                                                                                                                                                                                                                            | 180                                                                                                                                                                               | 0,020   | 0,020 | 0,008   | 0,007 | 0,007  | 0,003      | 0,007 | 0,000  | 0,007  | 0,001  | 0,001  |       |
| prof. (m)         CaT         Chl a         Chl b         Chl c         Phe a         Phe b         Phe c         pChl a         pChl b         pPhe a         pPhe b           5         0,331         0,184         0,072         0,078         0,024         0,017         0,049         0,150         0,017         0,000         0,003           10         0,348         0,198         0,072         0,087         0,022         0,049         0,150         0,017         0,000         0,002           20         0,344         0,194         0,072         0,083         0,022         0,009         0,550         0,153         0,017         -0,001         0,002           40         0,325         0,171         0,066         0,072         0,026         0,010         0,050         0,153         0,018         -0,001         -0,001         -0,001         0,050         0,155         0,018         -0,002         0,001         0,050         0,155         0,018         0,002         0,001         0,001         0,017         0,000         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001                                                                                                                                                                                                                           |                                                                                                                                                                                   |         |       |         |       | 5      | station 82 |       |        |        |        |        |       |
| 5         0.331         0.184         0.072         0.078         0.024         0.012         0.054         0.148         0.017         0.000         0.001           10         0.348         0.198         0.070         0.087         0.024         0.017         0.049         0.150         0.017         0.000         0.000           20         0.344         0.194         0.072         0.083         0.022         0.009         0.550         0.016         0.000         0.000           30         0.332         0.171         0.066         0.073         0.022         0.009         0.550         0.153         0.017         -0.001         -0.001           50         0.335         0.180         0.072         0.076         0.025         0.010         0.055         0.158         0.032         0.000         0.001           60         0.360         0.233         0.096         0.082         0.026         0.010         0.055         0.162         0.091         0.007           0.410         0.238         0.171         0.077         0.079         0.031         0.005         0.153         0.012         0.002         0.074         0.083         0.001         0.005                                                                                                                                                                                                                                                    | prof. (m)                                                                                                                                                                         | CaT     | Chl a | Chl b   | Chl c | Phe a  | Phe b      | Phe c | pChl a | pChl b | pPhe a | pPhe b |       |
| 10         0,348         0,198         0,070         0,087         0,024         0,017         0,049         0,150         0,117         0,000         0,002           20         0,344         0,194         0,072         0,083         0,025         0,010         0,052         0,150         0,016         0,000         0,000           30         0,332         0,179         0,071         0,072         0,002         0,009         0,050         0,153         0,016         0,001         -0,001         -0,001           40         0,325         0,110         0,066         0,072         0,076         0,025         0,010         0,050         0,158         0,018         -0,002         0,001           60         0,360         0,238         0,153         0,082         0,025         0,010         0,050         0,158         0,032         0,000         0,007           70         0,410         0,238         0,153         0,088         0,033         0,016         0,059         0,162         0,901         0,0000         0,007           100         0,174         0,099         0,025         0,046         0,012         0,002         0,013         0,016         0,023                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                 | 0,331   | 0,184 | 0,072   | 0,078 | 0,024  | 0,012      | 0,054 | 0,148  | 0,017  | 0,000  | 0,003  |       |
| 20         0,344         0,194         0,072         0,083         0,025         0,100         0,052         0,150         0,016         0,000         0,000           30         0,332         0,179         0,071         0,022         0,009         0,050         0,153         0,017         -0,001         0,002           40         0,325         0,171         0,068         0,073         0,024         0,010         0,050         0,153         0,018         -0,001         -0,001           50         0,335         0,180         0,072         0,076         0,025         0,010         0,050         0,153         0,018         -0,001         0,000         0,001           60         0,360         0,233         0,072         0,076         0,025         0,010         0,055         0,162         0,091         0,000         0,007           100         0,174         0,099         0,025         0,012         0,002         0,029         0,074         0,083         0,001         0,005           120         0,112         0,064         0,013         0,009         0,001         0,016         0,023         0,002         0,001           120         0,316 <t< td=""><td>10</td><td>0,348</td><td>0,198</td><td>0,070</td><td>0,087</td><td>0,024</td><td>0,017</td><td>0,049</td><td>0,150</td><td>0,017</td><td>0,000</td><td>0,002</td></t<>                                                                           | 10                                                                                                                                                                                | 0,348   | 0,198 | 0,070   | 0,087 | 0,024  | 0,017      | 0,049 | 0,150  | 0,017  | 0,000  | 0,002  |       |
| 30         0,332         0,179         0,071         0,077         0,022         0,009         0,050         0,153         0,017         -0,001         0,002           40         0,325         0,171         0,068         0,073         0,024         0,010         0,047         0,154         0,018         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         -0,001         0,014         -0,023         0,006         0,003         0,005         0,055         0,162         0,072         0,006         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,001         0,                                                                                                                                                                              | 20                                                                                                                                                                                | 0,344   | 0,194 | 0,072   | 0,083 | 0,025  | 0,010      | 0,052 | 0,150  | 0,016  | 0,000  | 0,000  |       |
| 40         0,325         0,171         0,068         0,073         0,024         0,010         0,047         0,154         0,018         -0,001         -0,001           50         0,335         0,180         0,072         0,076         0,025         0,010         0,050         0,155         0,018         -0,002         0,001           60         0,360         0,233         0,153         0,088         0,033         0,016         0,069         0,172         0,072         0,006         0,003           80         0,333         0,171         0,074         0,079         0,031         0,005         0,055         0,162         0,091         0,000         0,007           100         0,174         0,099         0,025         0,046         0,012         0,002         0,029         0,074         0,083         0,001         0,005           120         0,112         0,064         0,014         0,029         0,009         0,001         0,019         0,448         0,699         0,001         0,004           150         0,455         0,300         0,008         0,013         0,002         0,013         0,016         0,023         0,002         0,001                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                | 0,332   | 0,179 | 0,071   | 0,077 | 0,022  | 0,009      | 0,050 | 0,153  | 0,017  | -0,001 | 0,002  |       |
| 50         0,335         0,180         0,072         0,076         0,025         0,010         0,050         0,155         0,018         -0,002         0,001           60         0,360         0,203         0,096         0,082         0,026         0,010         0,050         0,158         0,032         0,000         0,004           70         0,410         0,238         0,153         0,088         0,033         0,016         0,069         0,172         0,072         0,006         0,003           80         0,333         0,171         0,074         0,079         0,031         0,005         0,055         0,162         0,091         0,000         0,007           100         0,174         0,099         0,025         0,046         0,012         0,002         0,029         0,074         0,083         0,001         0,004           150         0,045         0,030         0,008         0,013         0,009         0,002         0,013         0,016         0,023         0,002         0,013         0,012         -0,002         0,001           150         0,316         0,179         0,065         0,063         0,022         0,017         0,045         0,138                                                                                                                                                                                                                                                   | 40                                                                                                                                                                                | 0,325   | 0,171 | 0.068   | 0.073 | 0.024  | 0.010      | 0.047 | 0.154  | 0.018  | -0.001 | -0.001 |       |
| 60         0.360         0.203         0.096         0.082         0.010         0.050         0.118         0.002         0.001           70         0.410         0.238         0.153         0.088         0.033         0.016         0.060         0.172         0.072         0.006         0.003           80         0.333         0.171         0.074         0.079         0.031         0.005         0.055         0.162         0.091         0.000         0.007           100         0.174         0.099         0.025         0.046         0.012         0.002         0.029         0.074         0.083         0.001         0.005           120         0.112         0.064         0.014         0.029         0.009         0.001         0.019         0.048         0.069         0.001         0.004           150         0.045         0.030         0.008         0.013         0.009         0.002         0.013         0.016         0.023         0.002         0.001           150         0.415         0.030         0.065         0.063         0.022         0.012         0.042         0.137         0.012         -0.002         0.001           20                                                                                                                                                                                                                                                                  | 50                                                                                                                                                                                | 0.335   | 0.180 | 0.072   | 0.076 | 0.025  | 0.010      | 0.050 | 0.155  | 0.018  | -0.002 | 0.001  |       |
| To         O,410         O,238         O,153         O,041         O,053         O,164         O,069         O,172         O,072         O,006         O,003           80         0,333         0,171         0,074         0,079         0,031         0,005         0,055         0,162         0,091         0,000         0,007           100         0,174         0,099         0,025         0,046         0,012         0,002         0,029         0,074         0,083         0,001         0,005           120         0,112         0,064         0,014         0,029         0,009         0,001         0,019         0,448         0,069         0,001         0,004           150         0,045         0,030         0,008         0,013         0,009         0,002         0,013         0,016         0,023         0,002         0,003           150         0,045         0,300         0,008         0,013         0,009         0,002         0,013         0,016         0,023         0,002         0,001           20         0,316         0,179         0,065         0,063         0,022         0,017         0,045         0,138         0,011         0,000         -0,002                                                                                                                                                                                                                                                   | 60                                                                                                                                                                                | 0.360   | 0.203 | 0.096   | 0.082 | 0.026  | 0.010      | 0.050 | 0.158  | 0.032  | 0,000  | 0.004  |       |
| 80         0,133         0,074         0,079         0,031         0,005         0,025         0,112         0,004         0,007         0,007           100         0,174         0,099         0,025         0,046         0,012         0,002         0,029         0,074         0,083         0,001         0,005           120         0,112         0,064         0,014         0,029         0,001         0,019         0,048         0,069         0,001         0,004           150         0,045         0,030         0,008         0,013         0,009         0,002         0,013         0,016         0,023         0,002         0,003           station 84           prof. (m)         CaT         Chl a         Chl b         Chl c         Phe a         Phe b         Phe c         pChl a         pChl b         pPhe a         pPhe b           5         0,316         0,179         0,065         0,063         0,022         0,017         0,042         0,137         0,012         -0,002         0,001           20         0,314         0,176         0,066         0,063         0,022         0,017         0,045         0,138         0,011         0,000                                                                                                                                                                                                                                                                 | 70                                                                                                                                                                                | 0 410   | 0.238 | 0 1 5 3 | 0.088 | 0.033  | 0.016      | 0.069 | 0 172  | 0,052  | 0,000  | 0,001  |       |
| 100         0,174         0,074         0,075         0,012         0,002         0,029         0,074         0,083         0,001         0,005           120         0,112         0,064         0,014         0,029         0,009         0,019         0,048         0,069         0,001         0,002         0,019         0,048         0,069         0,001         0,004           150         0,045         0,030         0,008         0,013         0,009         0,002         0,013         0,016         0,023         0,002         0,001           150         0,045         0,030         0,008         0,013         0,009         0,002         0,013         0,016         0,023         0,002         0,003           station 84           prof. (m)         CaT         Ch1 b         Ch1 c         Phe a         Phe b           5         0,316         0,179         0,065         0,012         0,042         0,137         0,012         -0,002         0,001           20         0,314         0,176         0,066         0,063         0,022                                                                                                                                                                                                                                                                                                                                                                                    | 80                                                                                                                                                                                | 0 333   | 0.171 | 0.074   | 0,000 | 0,031  | 0.005      | 0.055 | 0.162  | 0,072  | 0,000  | 0,005  |       |
| 100       0,174       0,035       0,025       0,012       0,025       0,074       0,085       0,001       0,003         120       0,112       0,064       0,014       0,029       0,009       0,001       0,019       0,048       0,069       0,001       0,004         150       0,045       0,030       0,008       0,013       0,009       0,002       0,013       0,016       0,023       0,002       0,003         station 84             prof. (m)       CaT       Chl a       Chl b       Chl c       Phe a       Phe b       Phe c       pChl a       pChl b       pPhe a       pPhe b         5       0,314       0,176       0,066       0,063       0,022       0,017       0,045       0,138       0,011       0,000       -0,002       0,001         20       0,314       0,176       0,066       0,063       0,022       0,017       0,045       0,138       0,011       0,000       -0,002       0,001         30       0,357       0,188       0,078       0,082       0,027       0,202       0,555       0,168       0,011       0,002       0,000         40       0,385 <t< td=""><td>100</td><td>0 1 74</td><td>0,000</td><td>0.025</td><td>0.046</td><td>0,0012</td><td>0,000</td><td>0,000</td><td>0,102</td><td>0,021</td><td>0,000</td><td>0,007</td></t<>                                                                                                                                                                           | 100                                                                                                                                                                               | 0 1 74  | 0,000 | 0.025   | 0.046 | 0,0012 | 0,000      | 0,000 | 0,102  | 0,021  | 0,000  | 0,007  |       |
| 120         0,112         0,004         0,014         0,029         0,009         0,001         0,019         0,045         0,005         0,001         0,004           150         0,045         0,030         0,008         0,013         0,009         0,002         0,013         0,016         0,023         0,002         0,003           station 84           prof. (m)         CaT         Chl b         Chl c         Phe b         Phe c         pChl a         pChl b         pPhe b           5         0,316         0,179         0,065         0,063         0,022         0,017         0,045         0,138         0,011         0,000         -0,002         0,001           20         0,314         0,176         0,066         0,063         0,022         0,017         0,045         0,138         0,011         0,000         -0,002         0,001           30         0,357         0,188         0,078         0,082         0,027         0,200         0,055         0,168         0,016         0,003         -0,004           40         0,385         0,200         0,088         0,093         0,0                                                                                                                                                                                                                                                                                                                           | 120                                                                                                                                                                               | 0,174   | 0,055 | 0,025   | 0,040 | 0,012  | 0,002      | 0,029 | 0,074  | 0,065  | 0,001  | 0,003  |       |
| 130       0,043       0,030       0,038       0,013       0,009       0,002       0,013       0,016       0,023       0,002       0,003         station 84         prof. (m)       CaT       Chl a       Chl b       Chl c       Phe b       Phe c       pChl a       pChl b       pPhe a       pPhe b         5       0,316       0,179       0,065       0,063       0,022       0,012       0,042       0,137       0,012       -0,002       0,001         20       0,314       0,176       0,066       0,063       0,022       0,017       0,045       0,138       0,011       0,000       -0,002       0,001         30       0,357       0,188       0,078       0,082       0,027       0,202       0,055       0,185       0,021       0,002       0,0004         40       0,385       0,200       0,088       0,093       0,030       0,017       0,055       0,185       0,021       0,002       0,000         60       0,409       0,217       0,108       0,102       0,032       0,016       0,064       0,192       0,031 <td< td=""><td>120</td><td>0.045</td><td>0,004</td><td>0,014</td><td>0,029</td><td>0,009</td><td>0,001</td><td>0,019</td><td>0,040</td><td>0,009</td><td>0,001</td><td>0,004</td></td<>                                                                                                                                                                                                                               | 120                                                                                                                                                                               | 0.045   | 0,004 | 0,014   | 0,029 | 0,009  | 0,001      | 0,019 | 0,040  | 0,009  | 0,001  | 0,004  |       |
| prof. (m)         CaT         Chl a         Chl b         Chl c         Phe a         Phe b         Phe c         pChl a         pChl b         pPhe a         pPhe b           5         0,316         0,179         0,065         0,063         0,022         0,012         0,042         0,137         0,012         -0,002         0,001           20         0,314         0,176         0,066         0,063         0,022         0,017         0,045         0,138         0,011         0,000         -0,002           30         0,357         0,188         0,078         0,082         0,027         0,020         0,055         0,168         0,016         0,002         0,000           40         0,385         0,200         0,088         0,093         0,030         0,017         0,055         0,185         0,021         0,002         0,000           60         0,409         0,217         0,108         0,102         0,032         0,016         0,064         0,192         0,031         0,004         0,001           70         0,441         0,247         0,140         0,111         0,037         0,014         0,066         0,190         0,096         0,004         0,005                                                                                                                                                                                                                                              | 150                                                                                                                                                                               | 0,045   | 0,030 | 0,008   | 0,015 | 0,009  | 0,002      | 0,013 | 0,016  | 0,023  | 0,002  | 0,003  |       |
| prof. (m)         CaT         Chl a         Chl b         Chl c         Phe a         Phe b         Phe c         pChl a         pChl b         pPhe a         pPhe b           5         0,316         0,179         0,065         0,063         0,022         0,012         0,042         0,137         0,012         -0,002         0,001           20         0,314         0,176         0,066         0,063         0,022         0,017         0,045         0,138         0,011         0,000         -0,002           30         0,357         0,188         0,078         0,082         0,027         0,020         0,055         0,168         0,016         0,003         -0,004           40         0,385         0,200         0,088         0,093         0,030         0,017         0,055         0,185         0,021         0,002         0,000           60         0,409         0,217         0,108         0,102         0,032         0,016         0,064         0,192         0,031         0,004         0,001           70         0,441         0,247         0,140         0,111         0,037         0,014         0,066         0,190         0,096         0,004         0,005                                                                                                                                                                                                                                             |                                                                                                                                                                                   |         |       |         |       | 2      | station 84 |       |        |        |        |        |       |
| 5         0,316         0,179         0,065         0,063         0,022         0,012         0,042         0,137         0,012         -0,002         0,001           20         0,314         0,176         0,066         0,063         0,022         0,017         0,045         0,138         0,011         0,000         -0,002           30         0,357         0,188         0,078         0,082         0,027         0,020         0,055         0,168         0,016         0,003         -0,004           40         0,385         0,200         0,088         0,093         0,030         0,017         0,055         0,185         0,021         0,002         0,000           60         0,409         0,217         0,108         0,102         0,032         0,016         0,064         0,192         0,031         0,004         0,001           70         0,441         0,247         0,140         0,111         0,037         0,023         0,070         0,194         0,043         0,005         -0,002           80         0,435         0,245         0,148         0,106         0,037         0,014         0,066         0,190         0,096         0,004         0,005                                                                                                                                                                                                                                                     | prof. (m)                                                                                                                                                                         | СаТ     | Chl a | Chl b   | Chl c | Phe a  | Phe b      | Phe c | pChl a | pChi b | pPhe a | pPhe b |       |
| 20         0,314         0,176         0,066         0,063         0,022         0,017         0,045         0,138         0,011         0,000         -0,002           30         0,357         0,188         0,078         0,082         0,027         0,020         0,055         0,168         0,016         0,003         -0,004           40         0,385         0,200         0,088         0,093         0,030         0,017         0,055         0,185         0,021         0,002         0,000           60         0,409         0,217         0,108         0,102         0,032         0,016         0,064         0,192         0,031         0,004         0,001           70         0,441         0,247         0,140         0,111         0,037         0,014         0,066         0,190         0,096         0,004         0,005           80         0,435         0,245         0,148         0,106         0,037         0,014         0,066         0,190         0,096         0,004         0,005           100         0,260         0,156         0,055         0,071         0,025         0,009         0,048         0,104         0,003         0,005 <td< td=""><td>5</td><td>0,316</td><td>0,179</td><td>0,065</td><td>0,063</td><td>0,022</td><td>0,012</td><td>0,042</td><td>0,137</td><td>0,012</td><td>-0,002</td><td>0,001</td></td<>                                                                            | 5                                                                                                                                                                                 | 0,316   | 0,179 | 0,065   | 0,063 | 0,022  | 0,012      | 0,042 | 0,137  | 0,012  | -0,002 | 0,001  |       |
| 30         0,357         0,188         0,078         0,082         0,027         0,020         0,055         0,168         0,016         0,003         -0,004           40         0,385         0,200         0,088         0,093         0,030         0,017         0,055         0,185         0,021         0,002         0,000           60         0,409         0,217         0,108         0,102         0,032         0,016         0,064         0,192         0,031         0,004         0,001           70         0,441         0,247         0,140         0,111         0,037         0,023         0,070         0,194         0,043         0,005         -0,002           80         0,435         0,245         0,148         0,106         0,037         0,014         0,066         0,190         0,096         0,004         0,005           100         0,260         0,156         0,055         0,071         0,025         0,009         0,048         0,104         0,088         0,004         0,005           120         0,134         0,080         0,019         0,037         0,015         0,005         0,028         0,054         0,004         0,005 <t< td=""><td>20</td><td>0,314</td><td>0,176</td><td>0,066</td><td>0,063</td><td>0,022</td><td>0,017</td><td>0,045</td><td>0,138</td><td>0,011</td><td>0,000</td><td>-0,002</td></t<>                                                                            | 20                                                                                                                                                                                | 0,314   | 0,176 | 0,066   | 0,063 | 0,022  | 0,017      | 0,045 | 0,138  | 0,011  | 0,000  | -0,002 |       |
| 40         0,385         0,200         0,088         0,093         0,030         0,017         0,055         0,185         0,021         0,002         0,000           60         0,409         0,217         0,108         0,102         0,032         0,016         0,064         0,192         0,031         0,004         0,001           70         0,441         0,247         0,140         0,111         0,037         0,023         0,070         0,194         0,043         0,005         -0,002           80         0,435         0,245         0,148         0,106         0,037         0,014         0,066         0,190         0,096         0,004         0,005           100         0,260         0,156         0,055         0,071         0,025         0,009         0,048         0,104         0,088         0,004         0,005           120         0,134         0,080         0,019         0,037         0,015         0,005         0,028         0,054         0,016         0,003         0,005           140         0,094         0,054         0,014         0,025         0,011         0,003         0,012         0,002         0,001         0,0002         0,001     <                                                                                                                                                                                                                                             | 30                                                                                                                                                                                | 0,357   | 0,188 | 0,078   | 0,082 | 0,027  | 0,020      | 0,055 | 0,168  | 0,016  | 0,003  | -0,004 |       |
| 60         0,409         0,217         0,108         0,102         0,032         0,016         0,064         0,192         0,031         0,004         0,001           70         0,441         0,247         0,140         0,111         0,037         0,023         0,070         0,194         0,043         0,005         -0,002           80         0,435         0,245         0,148         0,106         0,037         0,014         0,066         0,190         0,096         0,004         0,005           100         0,260         0,156         0,055         0,071         0,025         0,009         0,048         0,104         0,088         0,004         0,005           120         0,134         0,080         0,019         0,037         0,015         0,005         0,028         0,054         0,076         0,003         0,005           140         0,094         0,054         0,014         0,025         0,011         0,003         0,012         0,002         0,001         0,002         0,001           160         0,020         0,018         0,010         0,005         0,002         0,007         0,001         0,000         0,003         0,000           <                                                                                                                                                                                                                                                     | 40                                                                                                                                                                                | 0,385   | 0,200 | 0,088   | 0,093 | 0,030  | 0,017      | 0,055 | 0,185  | 0,021  | 0,002  | 0,000  |       |
| 70         0,441         0,247         0,140         0,111         0,037         0,023         0,070         0,194         0,043         0,005         -0,002           80         0,435         0,245         0,148         0,106         0,037         0,014         0,066         0,190         0,096         0,004         0,005           100         0,260         0,156         0,055         0,071         0,025         0,009         0,048         0,104         0,088         0,004         0,005           120         0,134         0,080         0,019         0,037         0,015         0,005         0,028         0,054         0,076         0,003         0,005           140         0,094         0,054         0,014         0,025         0,011         0,003         0,021         0,040         0,064         0,003         0,004           160         0,020         0,018         0,010         0,005         0,002         0,001         0,002         0,001         0,000         0,003         0,000           200         0,006         0,004         0,002         0,001         0,005         0,002         0,001         0,000         0,003         0,000                                                                                                                                                                                                                                                                | 60                                                                                                                                                                                | 0,409   | 0,217 | 0,108   | 0,102 | 0,032  | 0,016      | 0,064 | 0,192  | 0,031  | 0,004  | 0,001  |       |
| 80         0,435         0,245         0,148         0,106         0,037         0,014         0,066         0,190         0,096         0,004         0,005           100         0,260         0,156         0,055         0,071         0,025         0,009         0,048         0,104         0,088         0,004         0,005           120         0,134         0,080         0,019         0,037         0,015         0,005         0,028         0,054         0,076         0,003         0,005           140         0,094         0,054         0,014         0,025         0,011         0,003         0,021         0,040         0,064         0,003         0,004           160         0,020         0,018         0,010         0,005         0,009         0,003         0,012         0,002         0,001         0,002         0,001           200         0,006         0,004         0,002         0,001         0,005         0,002         0,001         0,000         0,003         0,000           300         0,007         0,005         0,002         0,008         0,001         0,010         0,002         0,001         0,003         0,002                                                                                                                                                                                                                                                                              | 70                                                                                                                                                                                | 0,441   | 0,247 | 0,140   | 0,111 | 0,037  | 0,023      | 0,070 | 0,194  | 0,043  | 0,005  | -0,002 |       |
| 100         0,260         0,156         0,055         0,071         0,025         0,009         0,048         0,104         0,088         0,004         0,005           120         0,134         0,080         0,019         0,037         0,015         0,005         0,028         0,054         0,076         0,003         0,005           140         0,094         0,054         0,014         0,025         0,011         0,003         0,021         0,040         0,064         0,003         0,004           160         0,020         0,018         0,010         0,005         0,009         0,003         0,012         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,000         0,003         0,001           200         0,006         0,004         0,002         0,001         0,005         0,002         0,001         0,000         0,003         0,000           300         0,007         0,005         0,002         0,008         0,001         0,010         0,002         0,001         0,003         0,002                                                                                                                                                                                                                                                                                                                                                   | 80                                                                                                                                                                                | 0,435   | 0,245 | 0,148   | 0,106 | 0,037  | 0,014      | 0,066 | 0,190  | 0,096  | 0,004  | 0,005  |       |
| 120         0,134         0,080         0,019         0,037         0,015         0,005         0,028         0,054         0,076         0,003         0,005           140         0,094         0,054         0,014         0,025         0,011         0,003         0,021         0,040         0,064         0,003         0,004           160         0,020         0,018         0,010         0,005         0,009         0,003         0,012         0,002         0,001         0,002         0,001           200         0,006         0,004         0,002         0,001         0,005         0,002         0,001         0,000         0,003         0,000           300         0,007         0,005         0,002         0,008         0,001         0,010         0,002         0,001         0,003         0,002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100                                                                                                                                                                               | 0,260   | 0,156 | 0,055   | 0,071 | 0,025  | 0,009      | 0,048 | 0,104  | 0,088  | 0,004  | 0,005  |       |
| 140         0,094         0,054         0,014         0,025         0,011         0,003         0,021         0,040         0,064         0,003         0,004           160         0,020         0,018         0,010         0,005         0,009         0,003         0,012         0,002         0,001         0,002         0,001           200         0,006         0,004         0,002         0,001         0,005         0,002         0,001         0,000         0,003         0,000           300         0,007         0,005         0,002         0,008         0,001         0,010         0.002         0,001         0,003         0,002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120                                                                                                                                                                               | 0,134   | 0,080 | 0,019   | 0,037 | 0,015  | 0,005      | 0,028 | 0,054  | 0,076  | 0,003  | 0.005  |       |
| 160         0,020         0,018         0,010         0,005         0,009         0,003         0,012         0,002         0,001         0,002         0,001           200         0,006         0,004         0,002         0,001         0,005         0,002         0,001         0,002         0,001           300         0,007         0,005         0,002         0,008         0,001         0,010         0.002         0,001         0,002         0,001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140                                                                                                                                                                               | 0,094   | 0,054 | 0,014   | 0,025 | 0,011  | 0.003      | 0.021 | 0,040  | 0.064  | 0.003  | 0.004  |       |
| 200         0,006         0,004         0,002         0,001         0,005         0,002         0,007         0,001         0,000         0,003         0,000           300         0,007         0,005         0,002         0,008         0,001         0,010         0.002         0,001         0,002         0,001         0,001         0,001         0,001         0,001         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,001         0,002         0,002         0,002         0,002         0,002         0,002 </td <td>160</td> <td>0,020</td> <td>0,018</td> <td>0,010</td> <td>0,005</td> <td>0,009</td> <td>0.003</td> <td>0.012</td> <td>0.002</td> <td>0.001</td> <td>0.002</td> <td>0.001</td>  | 160                                                                                                                                                                               | 0,020   | 0,018 | 0,010   | 0,005 | 0,009  | 0.003      | 0.012 | 0.002  | 0.001  | 0.002  | 0.001  |       |
| 300 0,007 0,005 0,002 0,002 0,008 0,001 0,010 0.002 0.001 0,003 0,002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200                                                                                                                                                                               | 0,006   | 0,004 | 0,002   | 0,001 | 0,005  | 0.002      | 0.007 | 0.001  | 0.000  | 0.003  | 0.000  |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 300                                                                                                                                                                               | 0,007   | 0,005 | 0,002   | 0,002 | 0,008  | 0.001      | 0.010 | 0,002  | 0.001  | 0.003  | 0.002  |       |

| prof. (m) | СаТ   | ChI a | Chl b   | Ch1 c | Phe a | Phe b      | Phe c | pChl a | pChl b | pPhe a | pPhe b |
|-----------|-------|-------|---------|-------|-------|------------|-------|--------|--------|--------|--------|
| 5         | 0,305 | 0,172 | 0,076   | 0,069 | 0,026 | 0,015      | 0,045 | 0,133  | 0,011  | ~0,007 | -0,008 |
| 10        | 0,308 | 0,174 | 0,074   | 0,071 | 0,024 | 0,017      | 0,038 | 0,134  | 0,011  | -0,005 | -0,007 |
| 20        | 0,307 | 0,168 | 0,072   | 0,071 | 0,024 | 0,015      | 0,042 | 0,139  | 0,012  | -0,003 | -0,007 |
| 30        | 0,323 | 0,175 | 0,075   | 0,075 | 0,026 | 0,018      | 0,040 | 0,148  | 0,012  | -0,006 | -0,008 |
| 40        | 0.370 | 0,196 | 0,089   | 0,087 | 0,032 | 0,014      | 0,056 | 0,174  | 0,016  | -0,006 | -0,007 |
| 60        | 0.415 | 0.212 | 0.114   | 0.100 | 0.037 | 0.018      | 0.066 | 0.204  | 0.028  | -0.003 | -0.007 |
| 70        | 0.407 | 0.207 | 0.132   | 0.097 | 0.036 | 0.023      | 0.073 | 0.199  | 0.038  | -0.002 | -0.012 |
| 80        | 0 393 | 0,202 | 0.129   | 0.090 | 0.038 | 0.016      | 0.059 | 0 192  | 0.060  | -0.005 | -0.001 |
| 100       | 0.248 | 0.149 | 0.050   | 0.068 | 0,022 | 0.007      | 0.049 | 0.099  | 0.080  | -0.001 | 0,001  |
| 120       | 0,240 | 0.071 | 0,017   | 0,000 | 0,010 | 0,007      | 0,072 | 0,077  | 0.069  | 0,000  | 0,001  |
| 140       | 0,121 | 0.047 | 0,017   | 0,032 | 0,010 | 0,005      | 0,022 | 0,049  | 0,009  | 0,000  | 0,003  |
| 140       | 0,080 | 0,047 | 0,009   | 0,022 | 0,009 | 0,002      | 0,014 | 0,038  | 0,001  | 0,001  | 0,003  |
| 100       | 0,022 | 0,019 | 0,009   | 0,000 | 0,005 | 0,003      | 0,011 | 0,005  | 0,002  | 0,005  | 0,001  |
|           |       |       |         |       | S     | tation 88  |       |        |        |        |        |
| prof. (m) | CaT   | Chl a | Chl b   | Chl c | Phe a | Phe b      | Phe c | pChl a | pChl b | pPhe a | pPhe b |
| 5         | 0,329 | 0,179 | 0,073   | 0,072 | 0,015 | 0,012      | 0,048 | 0,150  | 0,013  | 0,007  | 0,003  |
| 10        | 0,327 | 0,173 | 0,063   | 0,075 | 0,013 | 0,013      | 0,045 | 0,153  | 0,014  | 0,009  | 0,005  |
| 20        | 0,344 | 0,192 | 0,072   | 0,078 | 0,015 | 0,006      | 0,045 | 0,153  | 0,014  | 0,008  | 0,006  |
| 30        | 0,342 | 0,181 | 0,074   | 0,075 | 0,017 | 0,007      | 0,049 | 0,160  | 0,014  | 0,006  | 0,002  |
| 40        | 0,357 | 0,198 | 0,077   | 0,080 | 0,017 | 0,008      | 0,053 | 0,160  | 0,015  | 0,008  | 0,005  |
| 50        | 0.361 | 0,188 | 0.083   | 0.077 | 0,020 | 0.005      | 0,053 | 0,173  | 0,018  | 0,004  | 0,003  |
| 60        | 0 363 | 0,186 | 0.085   | 0.081 | 0.023 | 0.010      | 0.050 | 0.178  | 0.020  | 0.006  | 0.003  |
| 70        | 0,372 | 0.195 | 0 1 1 1 | 0.084 | 0.022 | 0.010      | 0.061 | 0 177  | 0.034  | 0.010  | 0.006  |
| 80        | 0.364 | 0 191 | 0,120   | 0.081 | 0.025 | 0.008      | 0.058 | 0 173  | 0.053  | 0,009  | 0.006  |
| 100       | 0,204 | 0 144 | 0.046   | 0.064 | 0.015 | 0,000      | 0.046 | 0,091  | 0.072  | 0.010  | 0.004  |
| 120       | 0,235 | 0,144 | 0,040   | 0,004 | 0.007 | 0,000      | 0,070 | 0.047  | 0.064  | 0.004  | 0.003  |
| 150       | 0,115 | 0,000 | 0,015   | 0,001 | 0.004 | 0,002      | 0,020 | 0,031  | 0,050  | 0,003  | 0,005  |
| 150       | 0,071 | 0,040 | 0,007   | 0,010 | 0,004 | 0,000      | 0,000 | 0,051  | 0,000  | 0,005  | 0,000  |
|           |       |       |         |       | 5     | station 90 |       |        |        |        |        |
| prof. (m) | CaT   | Chl a | Chl b   | Chỉ c | Phe a | Phe b      | Phe c | pChI a | pChl b | pPhe a | pPhe b |
| 5         | 0,329 | 0,182 | 0,062   | 0,062 | 0,015 | 0,009      | 0,034 | 0,147  | 0,010  | -0,001 | 0,000  |
| 20        | 0,367 | 0,207 | 0,077   | 0,076 | 0,022 | 0,010      | 0,045 | 0,160  | 0,012  | -0,004 | -0,001 |
| 30        | 0,376 | 0,207 | 0,078   | 0,082 | 0,019 | 0,008      | 0,046 | 0,170  | 0,014  | 0,001  | 0,002  |
| 40        | 0,411 | 0,225 | 0,088   | 0,096 | 0,024 | 0,007      | 0,052 | 0,186  | 0,016  | -0,001 | 0,003  |
| 60        | 0,429 | 0,229 | 0,103   | 0,108 | 0,026 | 0,011      | 0,067 | 0,200  | 0,026  | 0,001  | 0,000  |
| 70        | 0,442 | 0,256 | 0,139   | 0,112 | 0,023 | 0,012      | 0,072 | 0,186  | 0,044  | 0,013  | 0,007  |
| 80        | 0.389 | 0,226 | 0,110   | 0,098 | 0,025 | 0,005      | 0,071 | 0,163  | 0,091  | 0,006  | 0,012  |
| 100       | 0.219 | 0,138 | 0.041   | 0,061 | 0,012 | 0,003      | 0,042 | 0,080  | 0,077  | 0,005  | 0,007  |
| 120       | 0.113 | 0.069 | 0.014   | 0.031 | 0.006 | 0.001      | 0,020 | 0,045  | 0,068  | 0,003  | 0,006  |
| 140       | 0.052 | 0.034 | 0.010   | 0.014 | 0.005 | 0.002      | 0.013 | 0.018  | 0,027  | 0,003  | 0,002  |
| 160       | 0.018 | 0.016 | 0.007   | 0.004 | 0.006 | 0.001      | 0,008 | 0,002  | 0,001  | 0,003  | 0,002  |
| 200       | 0,010 | 0,008 | 0.007   | 0,007 | 0,006 | 0.001      | 0.007 | 0.001  | 0.000  | 0.003  | 0.002  |
| 300       | 0,009 | 0,003 | 0,001   | 0,001 | 0,009 | 0,002      | 0,008 | 0,002  | 0,000  | 0,004  | 0,002  |
|           |       |       |         |       |       | station 92 |       |        |        |        |        |
| prof (m)  | СаТ   | Chl a | Chl b   | Chl c | Phe a | Phe b      | Phe c | pChł a | pChl b | pPhe a | pPhe b |
| prot. (m) | Cu.   | ein u |         |       |       |            | 0.040 | 0.100  | 0.011  |        |        |
| 5         | 0,303 | 0,171 | 0,066   | 0,069 | 0,010 | 0,011      | 0,040 | 0,132  | 0,011  | 0,004  | -0,002 |
| 20        | 0,305 | 0,172 | 0,068   | 0,069 | 0,010 | 0,007      | 0,039 | 0,133  | 0,010  | 0,006  | 0,000  |
| 30        | 0,328 | 0,180 | 0,073   | 0,075 | 0,012 | 0,009      | 0,045 | 0,147  | 0,012  | 0,004  | 0,000  |
| 40        | 0,410 | 0,218 | 0,096   | 0,097 | 0,019 | 0,007      | 0,057 | 0,192  | 0,017  | 0,003  | 0,002  |
| 60        | 0,417 | 0,221 | 0,106   | 0,100 | 0,022 | 0,010      | 0,062 | 0,195  | 0,024  | 0,004  | 0,001  |
| 70        | 0,442 | 0,242 | 0,127   | 0,106 | 0,022 | 0,012      | 0,068 | 0,200  | 0,030  | 0,010  | 0,003  |
| 80        | 0,431 | 0,231 | 0,133   | 0,102 | 0,022 | 0,014      | 0,068 | 0,199  | 0,041  | 0,010  | 0,002  |
| 100       | 0,302 | 0,153 | 0,062   | 0,074 | 0,015 | 0,006      | 0,048 | 0,149  | 0,101  | 0,006  | 0,003  |
| 120       | 0,164 | 0,097 | 0,023   | 0,043 | 0,006 | 0,001      | 0,031 | 0,067  | 0,082  | 0,005  | 0,004  |
| 140       | 0,080 | 0,045 | 0,010   | 0,021 | 0,004 | 0,000      | 0,015 | 0,034  | 0,056  | 0,003  | 0,003  |
| 150       | 0.030 | 0.024 | 0.008   | 0.009 | 0,003 | 0,001      | 0,011 | 0,006  | 0,008  | 0,003  | 0,001  |

·

| prof. (m) | CaT    | Chl a | Chl b     | Chl c   | Phe a | Phe b      | Phe c  | pChl a | pChl b    | pPhe a | pPhe b |
|-----------|--------|-------|-----------|---------|-------|------------|--------|--------|-----------|--------|--------|
| 5         | 0 362  | 0 200 | 0 077     | 0.078   | 0.023 | 0.012      | 0.051  | 0.163  | 0.014     | 0.000  | 0.002  |
| 10        | 0 363  | 0.195 | 0.074     | 0.080   | 0.024 | 0.009      | 0.054  | 0.168  | 0.015     | 0.000  | 0.003  |
| 20        | 0,361  | 0,175 | 0.070     | 0.078   | 0.025 | 0.006      | 0.046  | 0 172  | 0.015     | -0.003 | 0,005  |
| 20        | 0,301  | 0,120 | 0,074     | 0.084   | 0.026 | 0,006      | 0.046  | 0.168  | 0.015     | -0.004 | 0,004  |
| 40        | 0,370  | 0,207 | 0,073     | 0,004   | 0.024 | 0,000      | 0,040  | 0,160  | 0,015     | 0,007  | 0,000  |
| 40        | 0,330  | 0,107 | 0,075     | 0,070   | 0,024 | 0,007      | 0,040  | 0,107  | 0,013     | -0,002 | 0,001  |
| 50        | 0,339  | 0,184 | 0,079     | 0,070   | 0,020 | 0,009      | 0,051  | 0,175  | 0,017     | -0,001 | 0,004  |
| 60        | 0,380  | 0,195 | 0,096     | 0,082   | 0,029 | 0,010      | 0,054  | 0,184  | 0,021     | -0,002 | 0,006  |
| 70        | 0,401  | 0,213 | 0,116     | 0,088   | 0,031 | 0,010      | 0,059  | 0,188  | 0,031     | 0,002  | 0,011  |
| 80        | 0,395  | 0,217 | 0,120     | 0,091   | 0,032 | 0,010      | 0,073  | 0,178  | 0,044     | 0,004  | 0,012  |
| 100       | 0,302  | 0,166 | 0,067     | 0,076   | 0,021 | 0,009      | 0,051  | 0,136  | 0,091     | 0,005  | 0,010  |
| 120       | 0,172  | 0,104 | 0,025     | 0,045   | 0,012 | 0,000      | 0,031  | 0,067  | 0,079     | 0,002  | 0,008  |
| 150       | 0,055  | 0,033 | 0,007     | 0,015   | 0,005 | 0,000      | 0,009  | 0,023  | 0,037     | 0,001  | 0,004  |
|           |        |       |           |         |       | station 96 |        |        |           |        |        |
| prof. (m) | CaT    | Chl a | Chl b     | Chl c   | Phe a | Phe b      | Phe c  | pChI a | pChI b    | pPhe a | pPhe b |
| 5         | 0,299  | 0,147 | 0,051     | 0,052   | 0,016 | 0,011      | 0,037  | 0,153  | 0,010     | -0,001 | -0,003 |
| 20        | 0,369  | 0,193 | 0,071     | 0,073   | 0,025 | 0,009      | 0,047  | 0,176  | 0,014     | -0,004 | 0,000  |
| 30        | 0,399  | 0,209 | 0,083     | 0,085   | 0,027 | 0,011      | 0,055  | 0,189  | 0,016     | -0,003 | 0,000  |
| 40        | 0,427  | 0,220 | 0,095     | 0,098   | 0,029 | 0,013      | 0,059  | 0,207  | 0,020     | -0,003 | 0,000  |
| 60        | 0,436  | 0,227 | 0,103     | 0,106   | 0,030 | 0,008      | 0,065  | 0,208  | 0,025     | -0,002 | 0,005  |
| 70        | 0,435  | 0,230 | 0,118     | 0,108   | 0,032 | 0,014      | 0,072  | 0,205  | 0,033     | 0,001  | 0,000  |
| 80        | 0,421  | 0,228 | 0,125     | 0,104   | 0,035 | 0,013      | 0,076  | 0,192  | 0,055     | 0,003  | 0,003  |
| 100       | 0,299  | 0,166 | 0,060     | 0,080   | 0,023 | 0,003      | 0,055  | 0,134  | 0,096     | 0,001  | 0,007  |
| 120       | 0,160  | 0,097 | 0,024     | 0,044   | 0,013 | 0,002      | 0,034  | 0,062  | 0,078     | 0,004  | 0,007  |
| 140       | 0,103  | 0,059 | 0,013     | 0,028   | 0,009 | 0,000      | 0,021  | 0,044  | 0,067     | 0,002  | 0,006  |
| 160       | 0,034  | 0,027 | 0,009     | 0,010   | 0,005 | 0,001      | 0,009  | 0,007  | 0,009     | 0.002  | 0.001  |
| 200       | 0.009  | 0.008 | 0.003     | 0.003   | 0.005 | 0.002      | 0.008  | 0.001  | 0.001     | 0.003  | 0.001  |
| 300       | 0,005  | 0,003 | 0,002     | 0,001   | 0,008 | 0,003      | 0,009  | 0,002  | 0,000     | 0,003  | 0,001  |
|           |        |       |           |         |       | station 98 |        |        |           |        |        |
| prof. (m) | CaT    | Chi a | Chl b     | Chỉ c   | Phe a | Phe b      | Phe c  | pChl a | pChl b    | pPhe a | pPhe b |
| 5         | 0,291  | 0,155 | 0.058     | 0,062   | 0.017 | 0,011      | 0.031  | 0.137  | 0.010     | -0.001 | 0.001  |
| 20        | 0.369  | 0.188 | 0.082     | 0.082   | 0.022 | 0.013      | 0.041  | 0.181  | 0.016     | 0.000  | 0.001  |
| 30        | 0.420  | 0.215 | 0.097     | 0.097   | 0.027 | 0.018      | 0.055  | 0.205  | 0.017     | 0.002  | -0.002 |
| 40        | 0.443  | 0.219 | 0.105     | 0.101   | 0.029 | 0.014      | 0.058  | 0 224  | 0.022     | 0.001  | 0.002  |
| 60        | 0.450  | 0.237 | 0 1 2 0   | 0 1 1 0 | 0.033 | 0.017      | 0.067  | 0.214  | 0.032     | 0.006  | -0.002 |
| 70        | 0 420  | 0 227 | 0.128     | 0 101   | 0.032 | 0.018      | 0.066  | 0 193  | 0.048     | 0.006  | 0.001  |
| 80        | 0 386  | 0,227 | 0,120     | 0.094   | 0,030 | 0.015      | 0,000  | 0,172  | 0.048     | 0,000  | 0,001  |
| 100       | 0,220  | 0 130 | 0.040     | 0,059   | 0,050 | 0,013      | 0,005  | 0,172  | 0,000     | 0,007  | 0,004  |
| 120       | 0,220  | 0,150 | 0,040     | 0,057   | 0,014 | 0,004      | 0,050  | 0,070  | 0,005     | 0,002  | 0,005  |
| 140       |        |       |           |         |       |            |        |        |           |        |        |
| 150       |        |       |           |         |       |            |        |        |           |        |        |
| 150       |        |       |           | . 102   |       |            | . 104  |        |           |        |        |
|           | St 100 |       |           | St 102  |       |            | st 104 |        |           | st 106 |        |
| prof. (m) | CaT    |       | prof. (m) | CaT     |       | prof. (m)  | CaT    |        | prof. (m) | CaT    |        |
| 5         | 0,382  |       | 5         | 0,268   |       | 5          | 0,248  |        | 5         | 0,350  |        |
| 10        | 0,354  |       | 20        | 0,315   |       | 20         | 0,294  |        | 10        | 0,373  |        |
| 20        | 0,332  |       | 30        | 0,375   |       | 30         | 0,365  |        | 20        | 0,357  |        |
| 30        | 0,380  |       | 40        | 0,392   |       | 40         | 0,443  |        | 30        | 0,400  |        |
| 40        | 0,418  |       | 60        | 0,437   |       | 50         | 0,420  |        | 40        | 0,372  |        |
| 50        | 0,412  |       | 70        | 0,356   |       | 70         | 0,426  |        | 50        | 0,390  |        |
| 60        | 0,396  |       | 80        | 0,282   |       | 80         | 0,280  |        | 60        | 0,387  |        |
| 70        | 0,322  |       | 100       | 0,155   |       | 100        | 0,140  |        | 70        | 0,289  |        |
| 80        | 0,266  |       | 120       | 0,126   |       | 120        | 0,112  |        | 80        | 0,267  |        |
| 100       | 0,199  |       | 140       | 0,089   |       | 140        | 0,031  |        | 100       | 0,158  |        |
| 120       | 0,124  |       | 160       | 0,022   |       | 150        | 0,019  |        | 120       | 0,118  |        |
| 150       | 0,068  |       | 200       | 0,008   |       | 160        | 0,013  |        | 150       | 0,038  |        |

0,004

300

| prof. (m) | CaT   | Chl a | Chl b | Chl c | Phe a | Phe b     | Phe c | pChl a | pChl b | pPhe a  | pPhe b |
|-----------|-------|-------|-------|-------|-------|-----------|-------|--------|--------|---------|--------|
| 5         | 0,327 | 0.175 | 0,063 | 0,057 | 0,024 | 0.015     | 0,043 | 0,152  | 0,011  | -0,004  | -0,003 |
| 20        | 0.365 | 0.194 | 0.078 | 0,072 | 0.028 | 0.023     | 0.043 | 0,171  | 0,014  | 0.000   | -0.004 |
| 30        | 0.378 | 0.198 | 0.082 | 0.077 | 0.030 | 0.016     | 0.050 | 0.180  | 0.016  | -0.002  | 0.000  |
| 40        | 0.388 | 0.204 | 0.084 | 0.085 | 0.031 | 0.022     | 0.060 | 0.185  | 0.016  | -0.001  | 0.001  |
| 60        | 0.399 | 0.207 | 0.097 | 0.092 | 0.034 | 0.022     | 0.059 | 0.192  | 0.022  | 0.002   | 0.001  |
| 70        | 0.372 | 0,199 | 0.093 | 0.091 | 0.035 | 0.020     | 0.058 | 0 173  | 0.028  | 0.004   | 0.001  |
| 80        | 0 274 | 0.153 | 0.063 | 0.072 | 0.025 | 0.012     | 0.048 | 0 121  | 0.074  | 0.002   | 0,001  |
| 100       | 0,274 | 0,089 | 0,005 | 0.041 | 0.015 | 0.005     | 0.029 | 0.059  | 0.067  | 0.002   | 0.004  |
| 100       | 0,149 | 0,007 | 0,022 | 0.035 | 0.013 | 0,005     | 0,022 | 0.057  | 0,007  | 0,002   | 0.003  |
| 140       | 0,127 | 0,072 | 0.010 | 0,021 | 0.007 | 0,000     | 0,022 | 0,036  | 0.054  | 0,003   | 0.004  |
| 140       | 0,082 | 0,040 | 0,010 | 0,021 | 0,007 | 0,002     | 0,011 | 0,004  | 0,004  | 0,002   | 0,004  |
| 200       | 0,023 | 0,021 | 0,009 | 0,007 | 0,005 | 0,002     | 0,007 | 0,004  | 0,004  | 0,002   | 0,001  |
| 200       | 0,012 | 0,010 | 0,003 | 0,003 | 0,000 | 0,003     | 0,003 | 0,001  | 0,000  | 0,003   | 0,000  |
| 300       | 0,008 | 0,003 | 0,002 | 0,002 | 0,010 | 0,002     | 0,010 | 0,002  | 0,001  | 0,004   | 0,002  |
|           |       |       |       |       | sta   | ation 110 |       |        |        |         |        |
| prof. (m) | CaT   | Chl a | Chl b | Chl c | Phe a | Phe b     | Phe c | pChl a | pChl b | pPhe a  | pPhe b |
| 5         | 0,260 | 0,152 | 0,066 | 0,056 | 0,019 | 0,015     | 0,032 | 0,108  | 0,009  | 0,000   | 0,001  |
| 20        | 0,269 | 0,157 | 0,067 | 0,059 | 0,022 | 0,013     | 0,040 | 0,112  | 0,009  | -0,001  | -0,001 |
| 30        | 0,325 | 0,177 | 0,086 | 0,071 | 0,026 | 0,018     | 0,043 | 0,148  | 0,013  | 0,000   | -0,002 |
| 40        | 0,368 | 0,199 | 0,095 | 0,083 | 0,034 | 0,017     | 0,056 | 0,169  | 0,016  | -0,001  | 0,000  |
| 60        | 0,412 | 0,221 | 0,109 | 0,093 | 0,044 | 0,020     | 0,068 | 0,191  | 0,020  | 0,005   | 0,001  |
| 70        | 0,400 | 0,205 | 0,110 | 0,090 | 0,039 | 0,020     | 0,064 | 0,196  | 0,025  | 0,002   | -0,002 |
| 80        | 0,280 | 0,162 | 0,071 | 0,072 | 0,027 | 0,012     | 0,054 | 0,118  | 0,071  | 0,001   | 0,003  |
| 100       | 0,168 | 0,099 | 0,023 | 0,044 | 0,015 | 0,002     | 0,033 | 0,069  | 0,075  | -0,001  | 0,004  |
| 120       | 0,115 | 0,060 | 0,011 | 0,029 | 0,011 | 0,001     | 0,020 | 0,055  | 0,078  | 0,000   | 0,003  |
| 140       | 0,076 | 0,045 | 0,009 | 0,020 | 0,009 | 0,001     | 0,013 | 0,031  | 0,046  | 0,000   | 0,003  |
|           | C-T   |       | Chit  |       | sta   | ation 112 | Pho c | aChi a |        | n Dhe a | nDhe h |
| prot. (m) | Cal   | Chi a | Chi b | Chic  | Phe a | Phe o     | Phe c | pCni a | pCni o | prne a  | prie o |
| 5         | 0,285 | 0,163 | 0,063 | 0,062 | 0,010 | 0,014     | 0,042 | 0,123  | 0,010  | 0,017   | 0,001  |
| 10        | 0,269 | 0,160 | 0,058 | 0,063 | 0,005 | 0,012     | 0,041 | 0,109  | 0,010  | 0,016   | 0,003  |
| 20        | 0,296 | 0,177 | 0,068 | 0,065 | 0,008 | 0,011     | 0,044 | 0,119  | 0,010  | 0,016   | 0,002  |
| 30        | 0,299 | 0,181 | 0,065 | 0,067 | 0,011 | 0,014     | 0,040 | 0,119  | 0,010  | 0,016   | 0,002  |
| 40        | 0,308 | 0,184 | 0,074 | 0,066 | 0,010 | 0,016     | 0,043 | 0,124  | 0,010  | 0,017   | 0,000  |
| 50        | 0,302 | 0,174 | 0,071 | 0,064 | 0,009 | 0,015     | 0,041 | 0,129  | 0,010  | 0,017   | 0,002  |
| 60        | 0,307 | 0,176 | 0,069 | 0,067 | 0,012 | 0,014     | 0,046 | 0,131  | 0,011  | 0,017   | 0,004  |
| 70        | 0,324 | 0,181 | 0,088 | 0,070 | 0,016 | 0,015     | 0,050 | 0,143  | 0,015  | 0,022   | 0,004  |
| 80        | 0,283 | 0,178 | 0,091 | 0,067 | 0,015 | 0,012     | 0,054 | 0,105  | 0,034  | 0,022   | 0,007  |
| 100       | 0,196 | 0,122 | 0,031 | 0,054 | 0,007 | 0,005     | 0,043 | 0,073  | 0,060  | 0,012   | 0,006  |
| 120       | 0,105 | 0,057 | 0,011 | 0,026 | 0,004 | 0,002     | 0,016 | 0,048  | 0,071  | 0,007   | 0,005  |
|           |       |       |       |       | st    | ation 114 |       |        |        |         |        |
| prof. (m) | CaT   | Chi a | Chl b | Chì c | Phe a | Phe b     | Phe c | pChl a | pChl b | pPhe a  | pPhe b |
| 5         | 0.249 | 0,144 | 0.045 | 0,047 | 0,006 | 0,011     | 0,034 | 0,105  | 0,009  | 0,010   | 0,003  |
| 20        | 0.279 | 0.164 | 0.054 | 0,057 | 0.013 | 0,012     | 0,035 | 0,115  | 0,010  | 0,011   | 0,003  |
| 30        | 0.311 | 0,187 | 0.064 | 0,070 | 0,011 | 0,011     | 0,037 | 0,124  | 0,011  | 0,011   | 0,003  |
| 40        | 0.330 | 0.192 | 0.073 | 0,076 | 0,013 | 0,016     | 0,041 | 0,139  | 0,013  | 0,012   | 0,001  |
| 60        | 0.356 | 0.213 | 0.089 | 0,089 | 0,016 | 0,014     | 0,055 | 0,143  | 0,017  | 0,015   | 0,005  |
| 70        | 0.354 | 0.213 | 0.090 | 0,090 | 0,015 | 0,012     | 0,053 | 0,141  | 0,018  | 0,014   | 0,007  |
| 80        | 0.341 | 0.210 | 0.099 | 0.087 | 0.016 | 0,011     | 0,056 | 0,131  | 0,026  | 0,016   | 0,006  |
| 100       | 0.262 | 0.151 | 0.050 | 0.071 | 0.012 | 0.003     | 0,043 | 0,111  | 0,084  | 0,010   | 0,008  |
| 120       | 0.133 | 0.077 | 0.016 | 0.035 | 0.006 | 0.002     | 0.019 | 0,056  | 0,082  | 0,006   | 0,006  |
| 140       | 0.067 | 0.041 | 0.010 | 0.017 | 0.005 | 0.001     | 0.010 | 0,026  | 0,042  | 0,005   | 0,005  |
| 160       | 0.023 | 0.020 | 0.010 | 0.006 | 0.011 | 0.004     | 0.010 | 0,002  | 0,002  | 0,006   | 100,0  |
| 200       | 0.005 | 0.004 | 0.001 | 0.001 | 0,003 | 0,001     | 0,005 | 0,001  | 0,000  | 0,002   | 0,001  |
| 300       | 0,018 | 0,012 | 0,004 | 0,005 | 0,004 | 0,002     | 0,008 | 0,006  | 0,008  | 0,003   | 0,001  |
|           |       | -     | -     |       |       |           |       |        |        |         |        |

L

| prof. (m) | CaT   | Chl a  | Chl b  | Chl c | Phe a       | Phe b     | Phe c  | pChi a | pChl b | pPhe a         | pPhe b |
|-----------|-------|--------|--------|-------|-------------|-----------|--------|--------|--------|----------------|--------|
| 5         | 0,203 | 0,123  | 0,046  | 0,047 | 0,020       | 0,009     | 0,032  | 0,080  | 0,007  | -0,003         | -0,001 |
| 20        | 0.226 | 0.137  | 0.053  | 0.054 | 0.022       | 0.011     | 0.032  | 0.089  | 0.008  | -0.004         | -0.001 |
| 30        | 0.244 | 0.139  | 0.061  | 0.057 | 0.023       | 0.012     | 0.038  | 0.105  | 0.009  | -0.004         | -0.004 |
| 40        | 0.369 | 0,223  | 0.085  | 0.092 | 0.041       | 0.018     | 0.064  | 0.146  | 0.016  | -0.007         | -0.001 |
| 60        | 0,288 | 0.166  | 0,005  | 0,070 | 0.031       | 0,010     | 0.047  | 0,173  | 0.011  | -0.008         | -0,001 |
| 70        | 0,200 | 0,100  | 0,009  | 0,070 | 0,031       | 0,011     | 0,047  | 0,125  | 0,011  | -0,008         | -0,001 |
| 70        | 0,349 | 0,199  | 0,090  | 0,088 | 0,039       | 0,013     | 0,001  | 0,150  | 0,019  | -0,000         | 0,000  |
| 80        | 0,352 | 0,196  | 0,101  | 0,086 | 0,044       | 0,014     | 0,071  | 0,156  | 0,024  | -0,007         | -0,001 |
| 100       | 0,275 | 0,146  | 0,048  | 0,073 | 0,030       | 0,008     | 0,052  | 0,129  | 0,094  | -0,007         | 0,003  |
| 120       | 0,130 | 0,065  | 0,012  | 0,032 | 0,016       | 0,001     | 0,025  | 0,065  | 0,086  | -0,003         | 0,003  |
| 140       | 0,044 | 0,030  | 0,010  | 0,012 | 0,007       | 0,003     | 0,011  | 0,014  | 0,017  | 0,001          | 0,000  |
|           |       |        |        |       | st          | ation 118 |        |        |        |                |        |
| prof. (m) | CaT   | Chl a  | Chl b  | Chl c | Phe a       | Phe b     | Phe c  | pChl a | pChl b | pPhe a         | pPhe b |
| 5         | 0,260 | 0,141  | 0,060  | 0,056 | 0,026       | 0,012     | 0,042  | 0,120  | 0,009  | -0,006         | -0,003 |
| 10        | 0,277 | 0,166  | 0,065  | 0,061 | 0,026       | 0.013     | 0,042  | 0.111  | 0,010  | -0,008         | -0.001 |
| 20        | 0.253 | 0.142  | 0.056  | 0.055 | 0.026       | 0.010     | 0.035  | 0.111  | 0.010  | -0.009         | -0.001 |
| 30        | 0,259 | 0.143  | 0.061  | 0.057 | 0.026       | 0.013     | 0.042  | 0.116  | 0.010  | -0.007         | -0.004 |
| 40        | 0,257 | 0.155  | 0.067  | 0,050 | 0,025       | 0.015     | 0.041  | 0,117  | 0,010  | 0,007          | -0,004 |
| 50        | 0,272 | 0,135  | 0,007  | 0,059 | 0,020       | 0,015     | 0.045  | 0,119  | 0,010  | -0,000         | -0,003 |
| 50        | 0,207 | 0,149  | 0,008  | 0,058 | 0,030       | 0,011     | 0,045  | 0,118  | 0,010  | -0,010         | -0,004 |
| 60        | 0,286 | 0,159  | 0,077  | 0,062 | 0,033       | 0,014     | 0,047  | 0,127  | 0,012  | -0,009         | -0,003 |
| 70        | 0,294 | 0,173  | 0,092  | 0,066 | 0,032       | 0,016     | 0,051  | 0,122  | 0,015  | -0,006         | 0,000  |
| 80        | 0,306 | 0,186  | 0,101  | 0,070 | 0,034       | 0,018     | 0,054  | 0,120  | 0,018  | -0,004         | -0,001 |
| 100       | 0,254 | 0,138  | 0,049  | 0,065 | 0,027       | 0,011     | 0,053  | 0,116  | 0,078  | -0,006         | 0,001  |
| 120       | 0,116 | 0,060  | 0,009  | 0,028 | 0,013       | 0,001     | 0,017  | 0,055  | 0,079  | -0,003         | 0,006  |
| 150       | 0,019 | 0,015  | 0,006  | 0,005 | 0,004       | 0,002     | 0,005  | 0,003  | 0,003  | 0,002          | 0,000  |
| prof (m)  | Сат   |        | Chib   | Chia  | St<br>Phe a | ation 120 | Phe c  | aChl a |        | <b>P</b> Pha a | 5Dhe b |
| prot. (m) | Car   | Cill a | CIII Ü | Chre  | Flic a      | File 0    | File C | pen a  | pen o  | prile a        | prie o |
| 5         | 0,242 | 0,137  | 0,050  | 0,044 | 0,020       | 0,013     | 0,037  | 0,105  | 0,008  | -0,004         | -0,003 |
| 20        | 0,280 | 0,168  | 0,068  | 0,057 | 0,025       | 0,018     | 0,047  | 0,112  | 0,010  | -0,005         | -0,005 |
| 30        | 0,298 | 0,173  | 0,077  | 0,064 | 0,028       | 0,015     | 0,050  | 0,125  | 0,011  | -0,005         | -0,003 |
| 40        | 0,298 | 0,170  | 0,074  | 0,067 | 0,030       | 0,018     | 0,052  | 0,127  | 0,013  | -0,004         | -0,004 |
| 60        | 0,326 | 0,187  | 0,084  | 0,083 | 0,033       | 0,017     | 0,061  | 0,139  | 0,017  | -0,005         | -0,002 |
| 70        | 0,333 | 0,194  | 0,096  | 0,084 | 0,035       | 0,019     | 0,060  | 0,138  | 0,018  | -0,005         | -0,004 |
| 80        | 0,312 | 0,188  | 0,094  | 0,081 | 0,035       | 0,014     | 0,062  | 0,124  | 0,030  | -0,004         | -0,001 |
| 100       | 0,267 | 0,143  | 0,043  | 0,072 | 0,044       | 0,011     | 0,062  | 0,124  | 0,096  | 0,000          | 0,006  |
| 120       | 0,089 | 0,048  | 0,010  | 0,024 | 0,012       | -0,001    | 0,024  | 0,041  | 0,058  | -0,001         | 0,005  |
| 140       | 0,039 | 0,026  | 0,007  | 0,011 | 0,006       | 0,001     | 0,011  | 0,013  | 0,019  | 0,001          | 0,002  |
| 160       | 0.019 | 0.017  | 0.009  | 0.005 | 0.005       | 0.002     | 0.006  | 0.002  | 0.001  | 0.002          | 0.001  |
| 200       | 0.006 | 0.006  | 0.002  | 0.002 | 0.004       | 0.001     | 0.005  | 0.001  | 0,000  | 0.002          | 0.001  |
| 300       | 0.019 | 0.013  | 0.004  | 0.005 | 0.005       | 0.001     | 0,000  | 0,001  | 0,000  | 0,002          | 0,001  |
| 200       | 0,017 | 0,015  | 0,004  | 0,005 | st          | ation 126 | 0,000  | 0,000  | 0,000  | 0,001          | 0,001  |
| prof. (m) | CaT   | Chl a  | Chl b  | Chl c | Phe a       | Phe b     | Phe c  | pChl a | pChí b | pPhe a         | pPhe b |
| _         |       | 0      |        |       |             |           |        | •      |        |                |        |
| 5         | 0,237 | 0,138  | 0,063  | 0,049 | 0,011       | 0,011     | 0,033  | 0,099  | 0,006  | 0,005          | 0,002  |
| 20        | 0,252 | 0,144  | 0,068  | 0,051 | 0,014       | 0,014     | 0,037  | 0,108  | 0,007  | 0,005          | -0,002 |
| 30        |       |        |        |       |             |           |        |        |        |                |        |
| 50        | 0,285 | 0,159  | 0,075  | 0,064 | 0,021       | 0,017     | 0,047  | 0,126  | 0,009  | 0,008          | -0,003 |
| 60        | 0,306 | 0,172  | 0,080  | 0,069 | 0,021       | 0,013     | 0,049  | 0,133  | 0,011  | 0,006          | 0,003  |
| 70        | 0,330 | 0,194  | 0,090  | 0,077 | 0,027       | 0,017     | 0,052  | 0,137  | 0,014  | 0,010          | 0,003  |
| 80        | 0,344 | 0,205  | 0,103  | 0,083 | 0,025       | 0,021     | 0,055  | 0,139  | 0,019  | 0,012          | -0,001 |
| 100       | 0,293 | 0,163  | 0,052  | 0,076 | 0,022       | 0,008     | 0,050  | 0,130  | 0,097  | 0,010          | 0,007  |
| 120       | 0,129 | 0,073  | 0,015  | 0,032 | 0,013       | 0,003     | 0,021  | 0,056  | 0.078  | 0.003          | 0.005  |
| 140       | 0,049 | 0,034  | 0,010  | 0,014 | 0,012       | 0,003     | 0,019  | 0,015  | 0,020  | 0,003          | 0,002  |

## Chapitre 10

# **MICROSCOPIE OPTIQUE ET ELECTRONIQUE**

**Marie-Josèphe DINET** 

Observatoire Océanologique de Banyuls Laboratoire Arago F - 66650 Banyuls-sur-Mer - France (Tél : (33) 68 88 73 '73 - Fax : (33) 68 88 73 95 - Email : mjdinet@oob-arago.univ-perp.fr)

#### **MATERIEL ET METHODES**

Outre l'observation de matériel vivant sur un microscope optique équipé d'un dispositif à fluorescence et d'une vidéo avec imprimante (copie d'écran) permettant une première illustration des populations planctoniques présentes aux différentes stations, des préparations spécifiques correspondant à différents types d'observation ont été effectuées à bord. Elles ont pour but : (i) de distinguer les espèces pourvues de chl *a* (type diatomées ou autres microalgues à fluorescence rouge), de celles possédant des phycobilines (type *Synechococcus* ou autres cyanophycées, à fluorescence jaune ou orange) ainsi qu'un certain nombre de Dinophycées présentant une fluorescence verte ; de faire éventuellement des comptages comparatifs ; (ii) d'identifier au niveau spécifique les coccolithophorides, diatomées et dinoflagellés à thèque en microscopie électronique à balayage et (iii), d'identifier également au niveau spécifique les flagellés porteurs d'écailles sub-microscopiques (de l'ordre de 0,1-0,5 $\mu$ m) appartenant aux Prymnésiophycées, Prasinophycées ou Chrysophycées.

#### 1 - Microscopie optique : préparation de lames permanentes

Pour remplacer les traditionnels flacons prévus pour les comptages au microscope inversé, des lames permanentes ont été préparées extemporanément et observées dans un premier temps à bord. Elles donnent immédiatement des indications sur la nature des populations micro- et nanoplanctoniques et constituent un matériel sur lequel il est possible de revenir pour faire des observations complémentaires.

**Procédure :** un volume d'eau variable (de 250 à 500 ml pendant la campagne) est filtré sur une membrane type Nuclepore, de porosité choisie en fonction de ce que l'on veut observer, (dans le cas présent 0,8 ou 1  $\mu$ m). Les organismes sont fixés légèrement avec quelques gouttes de formaldéhyde pendant la filtration pour une meilleure conservation des formes fragiles. A la fin de la filtration, le filtre encore humide est placé sur une lame préalablement enduite de Poly-L-Lysine afin que les cellules restent sur la lame au moment où on retire le filtre. Sur l'emplacement du filtre on dépose 2 gouttes de gélatine glycérinée préalablement rendue liquide par chauffage au bain-marie. Cette gélatine contient du bichromate de potassium qui s'avère être un excellent fixateur des noyaux (le résultat est particulièrement spectaculaire dans le cas des Dinoflagellés) et empêche le développement de bactéries dans la gélatine. Une lamelle placée sur l'emplacement du filtre permet d'obtenir une préparation permanente après avoir luté les bords de la lamelle.

Avantages : outre le faible encombrement par rapport à des flacons, cette méthode permet grâce au retrait du filtre, d'obtenir silumtanément l'image d'une même cellule en lumière transmise et en fluorescence. Le volume filtré et la porosité du filtre peuvent être ajustés en fonction de la taille et de l'abondance des cellules. La préservation reste bonne pendant plusieurs années, mais les lames doivent être conservées au froid et à l'obscurité si l'on veut garder - au moins pendant quelques semaines, voire quelques mois - la fluorescence des cellules.

**Inconvénients** : une partie du matériel reste sur les filtres (estimée à 50% environ lors de la campagne, en comparant la fluorescence d'un filtre monté "in toto" par rapport à une lame équivalente). Les cellules flagellées de petite taille (<10  $\mu$ m) ne possédant pas de membrane résistante sont indéterminables ou détruites. On peut cependant considérer que l'abondance des cellules de petite taille est estimée par la cytométrie en flux.

*Conclusion* : cette méthode semi-quantitative donne, sous un faible encombrement et de façon durable, des informations précieuses sur la nature et l'abondance des cellules phytoplanctoniques identifiables en microscopie optique.

**N.B.** Afin de ne pas dissoudre les coccolithes présents dans les échantillons, il est nécessaire que le milieu de conservation et le fixateur ne soient pas acides. Il faut donc remplacer l'eau par du PBS lors de la préparation de la gélatine et ajouter très peu de formol pur pour la fixation (l'eau de mer sert alors de tampon).

#### 2 - Microscopie électronique à balayage : filtrations

L'examen des cellules possédant une enveloppe rigide - calcaire dans le cas des coccolithophorides, siliceuse dans le cas des diatomées, des silicoflagellés ou des Chrysophycées et organique mais résistante dans le cas des Dinoflagellés à thèque - est grandement facilité par l'utilisation de la microscopie électronique à balayage (MEB en français ou SEM en anglais) qui permet des grandissements et une définition bien supérieurs à ceux de la microscopie optique.

**Procédure** : filtrer un volume choisi en fonction de l'abondance des cellules sur membrane Nuclépore (0,8 ou 1  $\mu$ m au cours de la campagne). Rincer l'échantillon à l'eau douce pour éviter le dépôt de cristaux de sel sur le filtre. Laisser le filtre sécher à l'air libre et le stocker individuellement, dûment référencé. De retour au laboratoire, coller les filtres sur des portoirs (adaptés à chaque type de microscope), métalliser à l'or avant d'observer en balayage.

*Avantages* : cette méthode de récolte, très simple, permet d'identifier un grand nombre d'espèces et éventuellement d'évaluer l'abondance des espèces les plus représentatives. Elle permet notamment d'étudier la répartition des coccolithophorides dans la colonne d'eau, de comparer les résultats obtenus à ceux de la littérature et le cas échéant, de décrire de nouvelles espèces.

*Inconvénients* : elle ne concerne que les espèces à paroi résistante et ne conserve pas les formes fragiles pour lesquelles il faudrait une autre préparation spécifique (passage au "point critique"), difficile à mettre en oeuvre à bord d'un bateau.

*Conclusion* : cette méthode permet d'augmenter considérablement le nombre d'espèces identifiées et d'avoir une bonne connaissance des populations nanoplanctoniques (composées essentiellement de coccolithophorides, de diatomées et parfois de chrysophycées non identifiables en microscopie optique). Elle est aujourd'hui un complément indispensable à la microscopie optique.

# 3 - Microscopie électronique à transmission : obtention de cultures et préparation "in toto" sur grilles

Une partie des cellules échappe à l'identification en microscopie optique et électronique à balayage. Pour visualiser correctement cette catégorie d'organismes (très petites cellules flagellées, souvent couvertes d'écailles organiques), on a recours à la microscopie électronique à transmission sur des préparations dites "in toto" car elles concernent la cellule entière et non des coupes. Comme les cellules doivent être en grand nombre dans l'échantillon (quelques microlitres seulement pouvant être déposés sur chaque grille qui sert de support pour l'examen des cellules), il est préférable de travailler sur des cultures.

**Procédure :** Obtention de cultures : 10 ml de prélèvement sont placés dans un tube à essai stérile dans lequel on a ajouté une quantité variable de milieu de culture (250, 500  $\mu$ l ou 1 ml de F/10 au cours de la campagne). Les tubes sont placés près d'une fenêtre, et bénéficient d'un éclairement correspondant à environ 10% de l'éclairement solaire (on évitera, autant que possible, une exposition directe au rayonnement solaire). L'évolution de la croissance des algues est vérifiée environ une fois par semaine. Lorsque les cellules sont assez nombreuses, elles sont centrifugées (généralement 10 mm à 3000 t/mn).

Préparation des grilles : une goutte de la suspension obtenue dans le culot (environ 5  $\mu$ l) est déposée sur une grille à l'aide d'une micropipette. Après évaporation de l'eau, les grilles sont rincées à l'eau distillée, séchées à l'air ou à l'étuve et rangées dans des gélules avant ombrage à l'or-palladium et examen en microscopie électronique à transmission pour identification.

N.B. Une telle procédure a été appliquée à quelques échantillons riches en *Prochlorococcus, Synechococcus* et microalgues traités par J. Blanchot en cytométrie en flux. Il n'existe encore aucune illustration de *Prochlorococcus* "in toto" en microscopie électronique car la description des formes coccoïdes est généralement faite sur des coupes, après fixation et inclusion des cellules dans une résine.

*Avantages* : c'est la seule méthode relativement simple permettant l'identification de cette catégorie de flagellés. De nombreuses espèces restent à découvrir.

*Inconvénients* : les résultats ne sont pas assurés car on ne peut pas savoir à bord si la préparation est réussie ! D'où l'intérêt d'obtenir des cultures sur lesquelles il sera possible de travailler ultérieurement.

|         |            | STATIONS       | ANALYSEES  |              |
|---------|------------|----------------|------------|--------------|
|         |            |                |            |              |
| Station | Profondeur | Vol. utilisé   | Porosité   | Destination  |
|         |            |                |            |              |
| St. 2   | 20m        | 250 <u>m</u> l | 0,8µm      | Lame/optique |
|         |            | 250 ml         | 0,8µm      | Scanning     |
|         |            | 10 ml          | 250µl F/10 | Culture      |
|         | 80m        | 100 ml         | 0,8µm      | Lame/optique |
|         |            | 250 ml         | 0,8µm      | Scanning     |
|         |            | 10 ml          | 250µl F/10 | Culture      |
|         | 120m       | 250 ml         | 0,8µm      | Lame/optique |
|         |            | 250 ml         | 0,8µm      | Scanning     |
|         |            | 10 ml          | 250µl F/10 |              |
| St. 4   | 40m        | 100 ml         | 1,0µm      | Lame/optique |
|         |            | 150 ml         | 1,0µm      | Scanning     |
|         |            | 10 ml          | 250µl F/10 | Culture      |
|         | 80m        | 200 ml         | 1,0µm      | Lame/optique |
|         |            | 150 ml         | 1,0µm      | Scanning     |
|         |            | 10 ml          | 250µl F/10 | Culture      |
|         |            |                |            |              |
| St. 5   | 0m         | 100 ml         | 1,0µm      | Lame/optique |
|         | 40m        | 200 mi         | 1,0µm      | Lame/optique |
|         | 70m        | 200 ml         | 1,0µm      | Lame/optique |
|         |            | 10 mi          | 250µl F/10 | Culture      |
|         |            |                | ·          |              |
| St. 6   | 40m        | 200 ml         | 0,8µm      | Lame/optique |
|         |            | 250 ml         | 0,8µm      | Scanning     |
|         | 70m        | 200 ml         | 0,8µm      | Lame/optique |
|         |            | 200 ml         | 0,8µm      | Scanning     |
|         |            |                |            |              |
| St.7    | 20m        | 250 ml         | 0,8µm      | Lame/optique |
|         |            | 250 ml         | 0,8µm      | Scanning     |
|         |            | 10 ml          | 250µl F/10 | Culture      |
|         | 50m        | 250 ml         | 0,8µm      | Lame/optique |
|         |            | 250 ml         | 0,8µm      | Scanning     |
|         |            | 10 ml          | 250µl F/10 | Culture      |
|         | 70m        | 200 ml         | 1,0µm      | Lame/optique |
|         |            | 250 ml         | 0,8µm      | Scanning     |
|         |            | 10 ml          | 250µl F/10 | Culture      |
|         | 90m        | 250 ml         | 0,8µm      | Lame/optique |
|         |            |                |            |              |
| St. 8   | 20m        | 200 ml         | 1,0 µm     | Lame         |
|         |            | 250 ml         | 0,8 µm     | Scanning     |
|         |            | 10 ml          | 250µl F/10 | Culture      |
| \$t. 10 | 0m         | 200 ml         | 1 µm       | Lame/optique |
| _       |            | 250 ml         | 0,8µm      | Scanning     |
|         |            | 10 ml          | 250µl F/10 | Culture      |
|         | 20m        | 200 ml         | 1 µm       | Lame/optique |
|         |            | 250 ml         | 0,8µm      | Scanning     |
|         |            | 10 ml          | 250µl F/10 | Culture      |
|         |            |                |            |              |

|              |            | STATIONS     | ANALYSEES  |              |
|--------------|------------|--------------|------------|--------------|
|              |            |              |            |              |
| Station      | Profondeur | Vol. utilisé | Porosité   | Destination  |
|              |            |              |            |              |
| St 10(suite) | 50m        | 200 ml       | 1 µm       | Lame/optique |
|              |            | 250 ml       | 0,8µm      | Scanning     |
|              |            | 10 ml        | 250µl F/10 |              |
|              | 70m        | 200 ml       | 1 µm       | Lame/optique |
|              |            | 250 ml       | 0,8µm      | Scanning     |
|              |            | 10 ml        | 250µl F/10 | Culture      |
|              | 60m        | 200 ml       | 1 µm       | Lame/optique |
|              |            | 250 ml       | 0,8µm      | Scanning     |
|              |            | 10 ml        | 250µl F/10 | Culture      |
|              | 160m       | 200 ml       | 1 µm       | Lame/optique |
|              |            | 250 ml       | 0,8µm      | Scanning     |
|              |            |              |            |              |
| St. 13       | 0m         | 200 ml       | 0,8 µm     | Lame/optique |
|              |            | 250 ml       | 0,8µm      | Scanning     |
|              |            | 10 ml        | 250µl F/10 | Culture      |
|              | 40m        | 200 ml       | 0,8 µm     | Lame/optique |
|              |            | 250 ml       | 0,8µm      | Scanning     |
|              |            | 10 ml        | 250µl F/10 | Culture      |
|              | 80m        | 200 ml       | 0,8 µm     | Lame/optique |
|              |            | 250 ml       | 0,8µm      | Scanning     |
|              |            | 10 ml        | 250µl F/10 | Culture      |
|              |            |              |            |              |
| St. 15       | 0m         | 200 ml       | 0,8 µm     | Lame/optique |
|              |            | 200 ml       | 0,8µm      | Scanning     |
|              |            | 10 ml        | 250µl F/10 | Culture      |
|              | 20m        | 200 ml       | 0,8 µm     | Lame/optique |
|              |            | 200 ml       | 0,8µm      | Scanning     |
|              |            | 10 ml        | 250µl F/10 | Culture      |
|              | 50m        | 200 ml       | 0,8 µm     | Lame/optique |
|              |            | 200 ml       | 0,8µm      | Scanning     |
|              |            | 10 ml        | 250µl F/10 | Culture      |
|              | 70m        | 200 ml       | 0,8 µm     | Lame/optique |
|              |            | 200 ml       | 0,8µm      | Scanning     |
|              |            | 10 ml        | 250µl F/10 | Culture      |
|              | 90m        | 200 ml       | 0,8 µm     | Lame/optique |
|              |            | 200 ml       | 0,8µm      | Scannina     |
|              |            | 10 ml        | 250µl F/10 | Culture      |
|              | 160m       | 200 ml       | 0,8 µm     | Lame/optique |
|              |            | 200 ml       | 0,8µm      | Scannina     |
|              |            | 10 ml        | 250ul F/10 | Culture      |
|              |            |              |            |              |
| St. 18       | 0m         | 250 ml       | 0.8µm      | Lame/optique |
|              |            | 250 ml       | 0.8um      | Scanning     |
|              |            | 10 ml        | 250ul F/10 | Culture      |
|              | 40m        | 250 ml       | 0.8µm      | Lame/optique |
|              |            | 250 ml       | 0.8µm      | Scanning     |
|              |            | 10 ml        | 250ul F/10 | Culture      |
|              |            |              |            |              |

| Station         Profondeur         Vol. utilisé         Porosité         Destination           St 18 (suite)         60m         250 ml         0,8µm         Lame/optique           St 18 (suite)         60m         250 ml         0,8µm         Scanning           10 ml         250 ml         0,8µm         Lame/optique           80m         150 ml         0,8µm         Scanning           10 ml         250 ml         0,8µm         Scanning           90m         250 ml         0,8µm         Scanning           10 ml         250 ml         0,8µm         Scanning           120m         250 ml         0,8µm         Scanning           120m         250 ml         0,8µm         Scanning           120m         250 ml         0,8µm         Scanning           30m         250 ml         0,8µm         Scanning           30m         250 ml         0,8µm         Scanning           100m         250 ml         0,8µm         Scanning </th <th></th> <th></th> <th>STATIONS</th> <th>ANALYSEES (S</th> <th>SUITE)</th>                                                                    |               |            | STATIONS     | ANALYSEES (S | SUITE)       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|--------------|--------------|--------------|
| Station         Profondeur         Vol. utilisé         Porosité         Destination           St 18 (suite)         60m         250 ml         0,8µm         Lame/optique           10 ml         250µl         0,8µm         Scanning           10 ml         250µl         0,8µm         Scanning           250 ml         0,8µm         Scanning           10 ml         250µl         0,8µm         Scanning           90m         250 ml         0,8µm         Scanning           10 ml         250µl         0,8µm         Scanning           10 ml         250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Lame/optique         250 ml           10 ml         250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Lame/optique         250 ml           30m         250 ml         0,8µm         Scanning           100m                                                                                                                                                       |               |            |              |              |              |
| St 18 (suite)         60m         250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Scanning         10 ml         250µl F/10         Culture           80m         150 ml         0.8µm         Lame/optique         250µl F/10         Culture           10 ml         250µl F/10         Culture         250 ml         0.8µm         Scanning           90m         250 ml         0.8µm         Lame/optique         250µl F/10         Culture           10 ml         250µl F/10         Culture         250µl F/10         Culture         250µl F/10         Culture           10 ml         250 ml         0.8µm         Lame/optique         250µl F/10         Culture           120m         250 ml         0.8µm         Lame/optique         250 ml         0.8µm         Scanning           110 ml         250 ml         0.8µm         Lame/optique         250 ml         0.8µm         Scanning           100m         250 ml         0.8µm         Lame/optique         250 ml         0.8µm         Scanning           100m         250 ml         0.8µm         Scanning         250 ml         0.8µm         Scanning           100m         250 ml         0.8µm                                                                                   | Station       | Profondeur | Vol. utilisé | Porosité     | Destination  |
| St 18 (suite)         60m         250 ml         0.8µm         Lame/optique           10 ml         250µ F/10         Culture           80m         150 ml         0.8µm         Lame/optique           250 ml         0.8µm         Lame/optique           90m         250 ml         0.8µm         Scanning           10 ml         250µl F/10         Culture           90m         250 ml         0.8µm         Scanning           10 ml         250µl F/10         Culture           120m         250 ml         0.8µm         Scanning           120m         250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Lame/optique         250 ml           30m         250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Scanning           100m         250 ml                                                                                                                                                                    |               |            |              |              |              |
| 250 ml         0,8µm         Scanning           10 ml         250µl F/10         Culture           80m         150 ml         0,8µm         Lame/optique           250 ml         0,8µm         Scanning         10 ml         250µl F/10         Culture           90m         250 ml         0,8µm         Lame/optique         250 ml         0,8µm         Scanning           110 ml         250µl F/10         Culture         250 ml         0,8µm         Lame/optique           120m         250 ml         0,8µm         Lame/optique         250 ml         0,8µm         Scanning           120m         250 ml         0,8µm         Lame/optique         250 ml         0,8µm         Scanning           30m         250 ml         0,8µm         Lame/optique         250 ml         0,8µm         Scanning           100m         250 ml         0,8µm         Lame/optique         250 ml         0,8µm         Scanning           100m         250 ml         0,8µm         Scanning         00m         250 ml         0,8µm         Scanning           100m         250 ml         0,8µm         Scanning         10m         250 ml         0,8µm         Scanning           100m                                                                                                     | St 18 (suite) | 60m        | 250 ml       | 0,8µm        | Lame/optique |
| 10 ml         250µl F/10         Culture           80m         150 ml         0.8µm         Lame/optique           250 ml         0.8µm         Scanning           10 ml         250µl F/10         Culture           90m         250 ml         0.8µm         Scanning           10 ml         250µl F/10         Culture           250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Scanning           30m         250 ml         0.8µm         Scanning           30m         250 ml         0.8µm         Scanning           100m         250 ml         0.8µm         Scanning           250 ml                                                                                                                                                                                |               |            | 250 ml       | 0,8µm        | Scanning     |
| 80m         150 ml         0.8µm         Lame/optique           250 ml         0.8µm         Scanning           10 ml         250 ml         0.8µm         Scanning           90m         250 ml         0.8µm         Scanning           10 ml         250 ml         0.8µm         Scanning           10 ml         250 ml         0.8µm         Scanning           120m         250 ml         0.8µm         Scanning           250 ml         0.8µm         Scanning           250 ml         0.8µm         Scanning           30m         250 ml         0.8µm         Scanning           30m         250 ml         0.8µm         Scanning           100m         250 ml                                                                                                                                                                                 |               |            | 10 ml        | 250ul F/10   | Culture      |
| 250 ml         0.8µm         Scanning           10 ml         250µl F/10         Culture           90m         250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Scanning         10 ml         250µl F/10         Culture           10 ml         250 ml         0.8µm         Lame/optique         250 ml         0.8µm         Scanning           120m         250 ml         0.8µm         Lame/optique         250 ml         0.8µm         Scanning           30m         250 ml         0.8µm         Lame/optique         250 ml         0.8µm         Scanning           30m         250 ml         0.8µm         Lame/optique         250 ml         0.8µm         Scanning           100m         250 ml         0.8µm         Lame/optique         250 ml         0.8µm         Scanning           100m         250 ml         0.8µm         Lame/optique         250 ml         0.8µm         Scanning           110m         250 ml         0.8µm         Lame/optique         250 ml         0.8µm         Scanning           110m         250 ml         0.8µm         Scanning         250 ml         0.8µm         Scanning           110m         250 ml                                                                                                |               | 80m        | 150 ml       | 0.8um        | Lame/optique |
| 10 ml         250µl F/10         Culture           90m         250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Scanning           10 ml         250 ml         0.8µm         Culture           120m         250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Scanning           30m         250 ml         0.8µm         Scanning           100m         250 ml         0.8µm         Scanning           110m         250 ml         0.8µm         Scanning           110m         250 ml         0.8µm         Scanning                                                                                                                                                                       |               |            | 250 ml       | 0.8µm        | Scanning     |
| 90m         250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Scanning           10 ml         250 ml         0.8µm         Scanning           120m         250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Scanning           250 ml         0.8µm         Scanning           30m         250 ml         0.8µm         Scanning           30m         250 ml         0.8µm         Scanning           250 ml         0.8µm         Scanning           100m         250 ml         0.8µm         Scanning           20m         250 ml         0.8µm <td></td> <td></td> <td>10 ml</td> <td>250ul F/10</td> <td>Culture</td>                                                                                                      |               |            | 10 ml        | 250ul F/10   | Culture      |
| Image: Source         Image: Source         Scanning           10 ml         250 ml         0.8µm         Scanning           120m         250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Scanning           120m         250 ml         0.8µm         Scanning           30m         250 ml         0.8µm         Scanning           30m         250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Scanning           100m         250 ml         0.8µm         Scanning           100m         250 ml         0.8µm         Scanning           100m         250 ml         0.8µm         Scanning           40m         250 ml         0.8µm         Scanning           90m         250 ml         0.8µm         Scanning           110m         250 ml         0.8µm         Scanning           10m         250 ml         0.8µm         Scanning           20m         250 ml         0.8µm         Scan                                                                                                                                                                  |               | 90m        | 250 ml       | 0.8µm        | Lame/optique |
| 10 ml         250 µl         7/10         Culture           120m         250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Scanning           250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Scanning           100m         250 ml         0,8µm         Scanning           100m         250 ml         0,8µm         Scanning           100m         250 ml         0,8µm         Scanning           40m         250 ml         0,8µm         Scanning           40m         250 ml         0,8µm         Scanning           90m         250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Scanning           110m         250 ml         0,8µm         Scanning           20m         250 ml         0,8µm         Scanning           20m         250 ml<                                                                                                                                                                          |               |            | 250 ml       | 0.8um        | Scanning     |
| 120m         250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Scanning           250 ml         0.8µm         Scanning           30m         250 ml         0.8µm         Scanning           30m         250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Scanning           100m         250 ml         0.8µm         Scanning           100m         250 ml         0.8µm         Scanning           40m         250 ml         0.8µm         Scanning           40m         250 ml         0.8µm         Scanning           90m         250 ml         0.8µm         Scanning           110m         250 ml         0.8µm         Scanning           110m         250 ml         0.8µm         Scanning           20m         250 ml         0.8µm         Scanning           20m         250 ml         0.8µm         Scanning                                                                                                                                                                                        |               |            | 10 ml        | 250ul F/10   | Culture      |
| Internet         Internet         Internet           250 ml         0.8µm         Scanning           30m         250 ml         0.8µm         Lame/optique           30m         250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Scanning         Internet           30m         250 ml         0.8µm         Scanning           100m         250 ml         0.8µm         Scanning           40m         250 ml         0.8µm         Scanning           110m         250 ml         0.8µm         Scanning           20m         250 ml         0.8µm         Scanning           20m                                                                                                                                                                           |               | 120m       | 250 ml       | 0.8um        |              |
| St. 22         Om         250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Scanning         250 ml         0.8µm         Scanning           30m         250 ml         0.8µm         Lame/optique         250 ml         0.8µm         Scanning           100m         250 ml         0.8µm         Lame/optique         250 ml         0.8µm         Scanning           100m         250 ml         0.8µm         Scanning         Scanning           1er POINT FIXE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |            | 250 ml       | 0.800        | Scanning     |
| St. 22       Om       250 ml       0,8µm       Lame/optique         250 ml       0,8µm       Scanning         30m       250 ml       0,8µm       Lame/optique         250 ml       0,8µm       Lame/optique         250 ml       0,8µm       Lame/optique         250 ml       0,8µm       Lame/optique         250 ml       0,8µm       Scanning         100m       250 ml       0,8µm       Scanning         1er POINT FIXE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |            | 2.50 111     | 0,00111      |              |
| 30.12         0.11         250 ml         0.8µm         Lame/optique           30m         250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Scanning           100m         250 ml         0.8µm         Scanning           1er POINT FIXE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | St 22         | 0m         | 250 ml       | 0.800        | lame/optique |
| 30m         250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Scanning         100m         250 ml         0,8µm         Scanning           100m         250 ml         0,8µm         Scanning         100m         250 ml         0,8µm         Scanning           1er POINT FIXE         100m         250 ml         0,8µm         Lame/optique         250 ml         0,8µm         Lame/optique           40m         250 ml         0,8µm         Lame/optique         250 ml         0,8µm         Scanning           40m         250 ml         0,8µm         Lame/optique         250 ml         0,8µm         Scanning           90m         250 ml         0,8µm         Lame/optique         250 ml         0,8µm         Scanning           110m         250 ml         0,8µm         Lame/optique         250 ml         0,8µm         Scanning           120m         250 ml         0,8µm         Scanning         20m         250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Lame/optique         250 ml         0,8µm         Scanning           20m         250 ml         0,8µm         Scanning         250 ml         0,8µm <td< td=""><td>01. 22</td><td></td><td>250 ml</td><td>0.800</td><td>Scapping</td></td<> | 01. 22        |            | 250 ml       | 0.800        | Scapping     |
| Som         250 ml         0.8µm         Complete           100m         250 ml         0.8µm         Lame/optique           100m         250 ml         0.8µm         Scanning           1er POINT FIXE         5m         250 ml         0.8µm         Lame/optique           40m         250 ml         0.8µm         Lame/optique           40m         250 ml         0.8µm         Scanning           40m         250 ml         0.8µm         Scanning           90m         250 ml         0.8µm         Scanning           90m         250 ml         0.8µm         Scanning           110m         250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Lame/optique           250 ml         0.8µm         Scanning           20m                                                                                                                                                                          |               | 30m        | 250 ml       |              |              |
| 100m         250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Scanning           250 ml         0,8µm         Scanning           1er POINT FIXE         100m         250 ml         0,8µm         Lame/optique           40m         250 ml         0,8µm         Scanning           40m         250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Scanning           90m         250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Scanning         Scanning           110m         250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Lame/optique         Scanning           110m         250 ml         0,8µm         Scanning           20m         250 ml         0,8µm         Scanning <t< td=""><td></td><td>3011</td><td>250 ml</td><td></td><td></td></t<>                                                                                                     |               | 3011       | 250 ml       |              |              |
| Itom         250 mi         0,8µm         Lame/oplique           250 mi         0,8µm         Scanning           1er POINT FIXE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 100m       | 250 mi       |              |              |
| Ier POINT FIXE         St. 24         Sm         250 ml         0,8µm         Lame/optique           40m         250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Scanning           90m         250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Scanning           20m         250 ml         0,8µm         Scanning                                                                                                                                                                        |               | 100m       | 250 mi       |              |              |
| Iter POINT FIXE         250 ml         0,8μm         Lame/optique           St. 24         5m         250 ml         0,8μm         Scanning           40m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           90m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           110m         250 ml         0,8μm         Scanning           110m         250 ml         0,8μm         Scanning           110m         250 ml         0,8μm         Scanning           250 ml         0,8μm         Scanning         Scanning           20m         250 ml         0,8μm         Lame/optique           20m         250 ml         0,8μm         Scanning           20m         250 ml         0,8μm         Scanning           40m         250 ml         0,8μm         Scanning           250 ml         0,8μm         Scanning         Scanning           50m         250 ml         0,8μm         Scanning           250 ml         0,8μm         Scanning         Scanning                                                                                                                                                                 |               |            | 250 mi       | <u>0,8µm</u> | scanning     |
| Ter POINT FIXE         250 ml         0,8µm         Lame/optique           \$1.24         5m         250 ml         0,8µm         Scanning           40m         250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Scanning           20m         250 ml         0,8µm         Scanning           20m         250 ml         0,8µm         Scanning           40m         250 ml         0,8µm         Scanning           100m         250 ml         0.8µm         Scannin                                                                                                                                                                |               |            |              |              |              |
| St. 24       Sm       250 ml       0,8µm       Lame/optique         250 ml       0,8µm       Scanning         40m       250 ml       0,8µm       Lame/optique         250 ml       0,8µm       Scanning         90m       250 ml       0,8µm       Lame/optique         250 ml       0,8µm       Lame/optique         250 ml       0,8µm       Scanning         110m       250 ml       0,8µm       Lame/optique         250 ml       0,8µm       Scanning         110m       250 ml       0,8µm       Scanning         250 ml       0,8µm       Scanning         250 ml       0,8µm       Scanning         20m       250 ml       0,8µm       Scanning         20m       250 ml       0,8µm       Scanning         40m       250 ml       0,8µm       Scanning         40m       250 ml       0,8µm       Scanning         50m       250 ml       0,8µm       Scanning         250 ml       0,8µm       Scanning       250 ml         250 ml       0,8µm       Scanning       250 ml       0,8µm         250 ml       0,8µm       Scanning       250 ml                                                                                                                                                                                                                                                  | 1er POINT FI  |            | 050          | 0.0          |              |
| 250 ml         0,8µm         Scanning           40m         250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Scanning           90m         250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Scanning           90m         250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Scanning           110m         250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Scanning           110m         250 ml         0,8µm         Scanning           250 ml         0,8µm         Lame/optique           250 ml         0,8µm         Scanning           20m         250 ml         0,8µm         Scanning           20m         250 ml         0,8µm         Scanning           40m         250 ml         0,8µm         Scanning           40m         250 ml         0,8µm         Scanning           50m         250 ml         0,8µm         Scanning           50m         250 ml         0,8µm         Scanning           100m         250 ml         0,8µm         Scanning                                                                                                                                                                                              | St. 24        | 5m         | 250 mi       | 0,8µm        | Lame/optique |
| 40m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           90m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           110m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           110m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning         Scanning           20m         250 ml         0,8μm         Lame/optique           20m         250 ml         0,8μm         Scanning           20m         250 ml         0,8μm         Scanning           40m         250 ml         0,8μm         Scanning           20m         250 ml         0,8μm                                                                                                                                                                           |               | 10         | 250 mi       | <u>0,8µm</u> | scanning     |
| 250 ml         0,8μm         Scanning           90m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           110m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           250 ml         0,8μm         Scanning           250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           20m         250 ml         0,8μm         Scanning           20m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           40m         250 ml         0,8μm         Scanning           50m         250 ml         0,8μm         Scanning           50m         250 ml         0,8μm         Scanning           80m         250 ml         0,8μm         Scanning           100m         250 ml         0,8μm         Scanning           100m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm <td></td> <td>40m</td> <td>250 ml</td> <td><u>0,8µm</u></td> <td>Lame/optique</td>                                                                                            |               | 40m        | 250 ml       | <u>0,8µm</u> | Lame/optique |
| 90m         250 ml         0,8μm         Lame/opfique           250 ml         0,8μm         Scanning           110m         250 ml         0,8μm         Lame/opfique           250 ml         0,8μm         Scanning           250 ml         0,8μm         Scanning           250 ml         0,8μm         Lame/opfique           250 ml         0,8μm         Lame/opfique           250 ml         0,8μm         Scanning           20m         250 ml         0,8μm         Lame/opfique           20m         250 ml         0,8μm         Scanning           20m         250 ml         0,8μm         Scanning           40m         250 ml         0,8μm         Scanning           50m         250 ml         0,8μm         Scanning           50m         250 ml         0,8μm         Scanning           80m         250 ml         0,8μm         Scanning           100m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning         Scanning           100m         250 ml         0,8μm         Scanning           100m         250 ml         1,μm         Lame/optique </td <td></td> <td></td> <td>250 ml</td> <td>0,8µm</td> <td>Scanning</td>                                                                                           |               |            | 250 ml       | 0,8µm        | Scanning     |
| 250 ml         0,8μm         Scanning           110m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           250 ml         0,8μm         Scanning           St. 27         5m         250 ml         0,8μm           20m         250 ml         0,8μm         Lame/optique           20m         250 ml         0,8μm         Scanning           20m         250 ml         0,8μm         Scanning           20m         250 ml         0,8μm         Scanning           40m         250 ml         0,8μm         Scanning           40m         250 ml         0,8μm         Scanning           50m         250 ml         0,8μm         Scanning           50m         250 ml         0,8μm         Scanning           250 ml         0,8μm         Scanning         Scanning           100m         250 ml         0,8μm         Scanning           100m         250 ml         0,8μm         Scanning           100m         250 ml         0,8μm         Scanning           100m         250 ml         1μm         Lame/optique           10 ml         500µl F/10<                                                                                                                                                                            |               | 90m        | 250 ml       | 0,8µm        | Lame/optique |
| 110m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           St. 27         5m         250 ml         0,8μm         Lame/optique           20m         250 ml         0,8μm         Scanning           20m         250 ml         0,8μm         Lame/optique           20m         250 ml         0,8μm         Scanning           40m         250 ml         0,8μm         Scanning           40m         250 ml         0,8μm         Scanning           50m         250 ml         0,8μm         Scanning           250 ml         0,8μm         Scanning           100m         250 ml         1μm         Lame/optique           10 ml         500µl F/10         Culture         10 ml                                                                                                                                                                               |               |            | 250 ml       | 0,8µm        | Scanning     |
| 250 ml         0,8μm         Scanning           St. 27         5m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning         250 ml         0,8μm         Scanning           20m         250 ml         0,8μm         Lame/optique         250 ml         0,8μm         Scanning           20m         250 ml         0,8μm         Lame/optique         250 ml         0,8μm         Scanning           40m         250 ml         0,8μm         Lame/optique         250 ml         0,8μm         Scanning           50m         250 ml         0,8μm         Lame/optique         250 ml         0,8μm         Scanning           50m         250 ml         0,8μm         Lame/optique         250 ml         0,8μm         Scanning           80m         250 ml         0,8μm         Lame/optique         250 ml         0,8μm         Scanning           100m         250 ml         0,8μm         Scanning         Scanning         10 ml         250 ml         0,8μm         Lame/optique           100m         250 ml         0,8μm         Scanning         Scanning         10 ml         500μl F/10         Culture           40m         250 ml </td <td></td> <td>110m</td> <td>250 ml</td> <td>0,8µm</td> <td>Lame/optique</td>         |               | 110m       | 250 ml       | 0,8µm        | Lame/optique |
| St. 27       5m       250 ml       0,8μm       Lame/optique         250 ml       0,8μm       Scanning         20m       250 ml       0,8μm       Lame/optique         20m       250 ml       0,8μm       Lame/optique         250 ml       0,8μm       Scanning         40m       250 ml       0,8μm       Lame/optique         250 ml       0,8μm       Scanning         40m       250 ml       0,8μm       Scanning         50m       250 ml       0,8μm       Scanning         50m       250 ml       0,8μm       Scanning         80m       250 ml       0,8μm       Scanning         80m       250 ml       0,8μm       Scanning         100m       250 ml       0,8μm       Scanning         100m       250 ml       0,8μm       Scanning         \$t. 30       5m       250 ml       0,8μm       Scanning         \$t. 30       5m       250 ml       1μm       Lame/optique         10 ml       500μl F/10       Culture       10 ml       500μl F/10       Culture         10 ml       500μl F/10       Culture       10 ml       500μl F/10       Culture <td></td> <td></td> <td>250 mi</td> <td>0,8µm</td> <td>Scanning</td>                                                                                                                                                                  |               |            | 250 mi       | 0,8µm        | Scanning     |
| St. 27       5m       250 ml       0,8μm       Lame/optique         20m       250 ml       0,8μm       Scanning         20m       250 ml       0,8μm       Lame/optique         250 ml       0,8μm       Scanning         40m       250 ml       0,8μm       Lame/optique         250 ml       0,8μm       Lame/optique         250 ml       0,8μm       Lame/optique         250 ml       0,8μm       Scanning         50m       250 ml       0,8μm       Lame/optique         50m       250 ml       0,8μm       Lame/optique         250 ml       0,8μm       Lame/optique         250 ml       0,8μm       Scanning         80m       250 ml       0,8μm       Lame/optique         250 ml       0,8μm       Scanning       Image: Stanning         100m       250 ml       0,8μm       Scanning         100m       250 ml       1,μm       Lame/optique         10 ml       500µl F/10       Culture       Image: Stanning         10 ml       500µl F/10       Culture       Image: Stanning         100m       250 ml       1 μm       Lame/optique         100ml       500µ                                                                                                                                                                                                                       | . <u> </u>    |            |              |              |              |
| 250 ml         0,8μm         Scanning           20m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           40m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           50m         250 ml         0,8μm         Scanning           50m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning         Scanning           80m         250 ml         0,8μm         Scanning           100m         250 ml         0,8μm         Scanning           100m         250 ml         0,8μm         Scanning           100m         250 ml         0,8μm         Scanning           \$1,30         5m         250 ml         1,μm         Lame/optique           10 ml         500µl F/10         Culture         10 ml         500µl F/10         Culture           100m         250 ml         1 μm         Lame/optique         10 ml         500µl F/10         Culture                                                                                                                                                                           | St. 27        | 5m         | 250 ml       | 0,8µm        | Lame/optique |
| 20m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           40m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           50m         250 ml         0,8μm         Lame/optique           50m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           80m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique         250 ml           100m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           100m         250 ml         1 μm         Lame/optique           10 ml         500µl F/10         Culture         10 ml           10 ml         500µl F/10         Culture         10 ml           10 ml         500µl F/10         Culture         10 ml                                                                                                                                                                                                                                                          |               |            | 250 ml       | <u>0,8µm</u> | Scanning     |
| 250 ml         0,8μm         Scanning           40m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           50m         250 ml         0,8μm         Lame/optique           50m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           80m         250 ml         0,8μm         Scanning           80m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning         Scanning           100m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning         Scanning           100m         250 ml         0,8μm         Scanning           5t. 30         5m         250 ml         1 μm         Lame/optique           10 ml         500µl F/10         Culture         10 ml         500µl F/10         Culture           100m         250 ml         1 μm         Lame/optique         10 ml         500µl F/10         Culture                                                                                                                                                                                                                                                                   | <u> </u>      | 20m        | 250 ml       | 0,8µm        | Lame/optique |
| 40m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           50m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           250 ml         0,8μm         Scanning           80m         250 ml         0,8μm           250 ml         0,8μm         Scanning           100m         250 ml         0,8μm           250 ml         0,8μm         Scanning           100m         250 ml         0,8μm           250 ml         0,8μm         Scanning           100m         250 ml         0,8μm           5m         250 ml         0,8μm           St. 30         5m         250 ml         1 μm           10 ml         500μl F/10         Culture           40m         250 ml         1 μm         Lame/optique           10 ml         500μl F/10         Culture           100m         250 ml         1 μm         Lame/optique           10 ml         500μl F/10         Culture           10 ml         500μl F/10         Culture </td <td></td> <td></td> <td>250 ml</td> <td>0,8µm</td> <td>Scanning</td>                                                                                                                           |               |            | 250 ml       | 0,8µm        | Scanning     |
| 250 ml         0,8μm         Scanning           50m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           80m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           100m         250 ml         0,8μm         Scanning           100m         250 ml         0,8μm         Scanning           51.30         5m         250 ml         1,μm         Lame/optique           40m         250 ml         1 μm         Lame/optique           40m         250 ml         1 μm         Lame/optique           10 ml         500μl F/10         Culture                                                                                                                                                                                                                                                                                                                                                                         |               | 40m        | 250 ml       | 0,8µm        | Lame/optique |
| 50m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           80m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           100m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning         Scanning           100m         250 ml         0,8μm         Scanning           5m         250 ml         1 μm         Lame/optique           10 ml         500μl F/10         Culture           40m         250 ml         1 μm         Lame/optique           10 ml         500μl F/10         Culture         10 ml           100m         250 ml         1 μm         Lame/optique           10 ml         500μl F/10         Culture         10 ml                                                                                                                                                                                                                                                                                                                                                                                            |               |            | 250 ml       | 0,8µm        | Scanning     |
| 250 ml         0,8μm         Scanning           80m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           100m         250 ml         0,8μm         Scanning           100m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           250 ml         0,8μm         Scanning           5m         250 ml         1 μm           10 ml         500μl F/10         Culture           40m         250 ml         1 μm           10 ml         500μl F/10         Culture           10 ml         500μl F/10         Culture           10 ml         500μl F/10         Culture           100m         250 ml         1 μm           100m         250 ml         1 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 50m        | 250 ml       | 0,8µm        | Lame/optique |
| 80m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           100m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           250 ml         0,8μm         Scanning           5m         250 ml         1 μm           10 ml         500μl F/10         Culture           40m         250 ml         1 μm           10 ml         500μl F/10         Culture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |            | 250 ml       | 0,8µm        | Scanning     |
| 250 ml         0,8μm         Scanning           100m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           250 ml         0,8μm         Scanning           5m         250 ml         1 μm           10 ml         500μl F/10         Culture           40m         250 ml         1 μm           10 ml         500μl F/10         Culture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 80m        | 250 ml       | 0,8µm        | Lame/optique |
| 100m         250 ml         0,8μm         Lame/optique           250 ml         0,8μm         Scanning           5m         250 ml         1 μm         Lame/optique           10 ml         500μl F/10         Culture           40m         250 ml         1 μm           10 ml         500μl F/10         Culture           100m         250 ml         1 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |            | 250 ml       | 0,8µm        | Scanning     |
| 250 ml         0,8μm         Scanning           St. 30         5m         250 ml         1 μm         Lame/optique           10 ml         500μl F/10         Culture           40m         250 ml         1 μm         Lame/optique           10 ml         500μl F/10         Culture           100m         250 ml         1 μm         Lame/optique           10 ml         500μl F/10         Culture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | 100m       | 250 ml       | 0,8µm        | Lame/optique |
| St. 30         5m         250 ml         1 µm         Lame/optique           10 ml         500µl F/10         Culture           40m         250 ml         1 µm         Lame/optique           10 ml         500µl F/10         Culture           100m         250 ml         1 µm           10 ml         500µl F/10         Culture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |            | 250 ml       | 0,8µm        | Scanning     |
| 10 ml         500μl F/10         Culture           40m         250 ml         1 μm         Lame/optique           10 ml         500μl F/10         Culture           10 ml         500μl F/10         Culture           100m         250 ml         1 μm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | St. 30        | 5m         | 250 ml       | 1 µm         | Lame/optique |
| 40m         250 ml         1 μm         Lame/optique           10 ml         500μl F/10         Culture           100m         250 ml         1 μm         Lame/optique           100m         250 ml         1 μm         Lame/optique           10 ml         500μl F/10         Culture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |            | 10 ml        | 500µl F/10   | Culture      |
| 10 ml         500μl F/10         Culture           100m         250 ml         1 μm         Lame/optique           10 ml         500μl F/10         Culture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | 40m        | 250 ml       | 1 µm         | Lame/optique |
| 100m 250 ml 1 μm Lame/optique<br>10 ml 500μl F/10 Culture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |            | 10 ml        | 500µl F/10   | Culture      |
| 10 ml 500µl F/10 Culture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 100m       | 250 ml       | 1 µm         | Lame/optique |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |            | 10 ml        | 500µl F/10   | Culture      |

|            |            | STATIONS     | ANALYSEES (SU | IITE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------|------------|--------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |            |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Station    | Profondeur | Vol. utilisé | Porosité      | Destination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PIEGES     |            |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | 110m P1    | 50ml         | 1 µm          | Lame/optique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1ère Série | P2         | 50ml         | 1 µm          | Lame/optique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | P1 + P2    | 90 ml        | 0,8 µm        | EES (SUITE)<br>Destination<br>Lame/optique<br>Scanning<br>Lame/optique<br>Scanning<br>Lame/optique<br>Scanning<br>Lame/optique<br>Scanning<br>Lame/optique<br>Scanning<br>Lame/optique<br>Scanning<br>Lame/optique<br>Scanning<br>Lame/optique<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Scanning<br>Lame/optique<br>Scanning<br>Lame/optique<br>Scanning<br>Lame/optique<br>Scanning<br>Lame/optique<br>Scanning<br>Lame/optique<br>Scanning<br>Lame/optique<br>Scanning<br>Lame/optique<br>Scanning<br>Lame/optique<br>Scanning<br>Lame/optique<br>Scanning<br>Lame/optique<br>Scanning<br>Lame/optique<br>Scanning<br>Lame/optique<br>Scanning |
|            | 160m P3    | 90 ml        | 1 µm          | Lame/optique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | P4         | 90 ml        | 0,8 µm        | Scanning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 210m       | 90 ml        | 1 µm          | Lame/optique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |            | 90 ml        | 0,8 µm        | Scanning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 310m       | 90 ml        | 1 µm          | Lame/optique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |            | 90 ml        | 0,8 µm        | Scanning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            |            |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| St. 39     | 5m         | 250 ml       | 0,8µm         | Lame/optique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |            | 250 ml       | 0,8µm         | Scannina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 40m        | 250 ml       | 0.8µm         | Lame/optique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |            | 250 ml       | 0.8µm         | Scannina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 100m       | 250 ml       | 0.8um         | Lame/optique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |            | 250 ml       | 0.8µm         | Scannina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 200m       | 250 ml       | 0.8um         | Lame/optique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | 20011      | 250 ml       | 0.800         | Scanning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            |            | 20011        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| St 42      | 110m       | 250 ml       | 0.8µm         | Scanning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 01. 42     | 200m       | 250 ml       | 0.8um         | Scanning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 300m       | 250 ml       | 0.8um         | Scanning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            |            | 200111       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FRACTIONS  |            | Bouteille    | 30 Litres     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |            | Doutomo      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |            | 10 Litres    | 10 um         | Scanning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            |            | 500 ml       | 3 um          | Lame/optique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |            | 500 ml       | 3 um          | Scanning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            |            | 500 ml       | 1 um          | Lame/optique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |            | 500 ml       | 1 um          | Scanning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            |            |              | <u>P</u>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PIEGES     | 2ème Série |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            | 110m       | 90 ml        | 1 um          | Lame/optique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |            | 90 ml        | 0.8 um        | Scanning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 160m       | 90 ml        | 1 um          | Lame/optique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |            | 90 ml        | 0.8 μm        | Scanning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 210m       | 90 ml        | 1 um          | Lame/ontique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | 210111     | 90 ml        |               | Scapping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 310m       | 90 ml        | 1 um          | Lame/optique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | 51011      | 90 ml        |               | Scapping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            |            | 70111        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| St 56      | 500        | 500 ml       | 1.00          | lame/optique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 01. 30     | SIT        | 500 ml       |               | Scapping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 10m        | 500 ml       | 1.um          | lame/optique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |            | 500 ml       |               | Scapping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 20m        | 500 ml       | 1.um          | lamo (optione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | 2011       | 500 ~!       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |            | 500 mil      |               | scanning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|               |            | STATIONS     | ANALYSEES (SU | ITE)           |
|---------------|------------|--------------|---------------|----------------|
|               |            |              |               |                |
| Station       | Profondeur | Vol. utilisé | Porosité      | Destination    |
|               |            |              |               |                |
| St 56 (suite) | 40m        | 500 ml       | 1 µm          | Lame/optique   |
|               |            | 500 ml       | 0,8 µm        | Scanning       |
|               | 50m        | 500 ml       | 1 µm          | Lame/optique   |
|               |            | 500 ml       | 0,8 µm        | Scanning       |
|               | 60m        | 500 ml       | 1 µm          | Lame/optique   |
|               |            | 500 ml       | 0,8 µm        | Scanning       |
|               | 70m        | 500 ml       | 1 µm          | Lame/optique   |
|               |            | 500 ml       | 0,8 µm        | Scanning       |
|               | 90m        | 500 ml       | 1 µm          | Lame/optique   |
|               |            | 500 ml       | 0,8 µm        | Scanning       |
|               | 120m       | 500 ml       | 1 µm          | Lame/optique   |
|               |            | 500 ml       | 0,8 µm        | Scanning       |
|               | 150m       | 250 ml       | 1 µm Cycl.    | filtre/optique |
|               |            | 250 ml       | 1 µm Cycl.    | Lame/optique   |
|               |            | 500 ml       | 0,8 µm        | Scanning       |
|               |            |              |               |                |
| Filtration    | Neveux     |              |               |                |
|               |            | 10 Litres    | 1 µm Cycl.    | Scanning       |
|               |            |              |               |                |
| PIEGES        | 3ème Série |              |               |                |
|               | 110m       | 90 ml        | 1 µm Cycl.    | Lame/optique   |
|               |            | 90 ml        | 0,8 µm        | Scanning       |
|               | 160m       | 90 ml        | 1 µm Cycl.    | Lame/optique   |
| _             |            | 90 ml        | 0,8 µm        | Scanning       |
|               | 210m       | 90 ml        | 1 µm          | Lame/optique   |
|               |            | 90 ml        | 0,8 µm        | Scanning       |
|               | 310m       | 90 ml        | 1 µm          | Lame/optique   |
|               |            | 90 ml        | 0,8 µm        | Scanning       |
|               |            |              |               |                |
| FIN DU 1er    | POINT FIXE |              |               |                |
|               |            |              |               |                |
| St. 64        | 30m        | 500 ml       | 1 µm          | Lame/optique   |
|               |            | 500 ml       | 0,8 µm        | Scanning       |
|               | 90m        | 500 ml       | 1 µm          | Lame/optique   |
|               |            | 500 ml       | 0,8 µm        | Scanning       |
|               | 140m       | 500 ml       | 1 µm          | Lame/optique   |
|               |            | 500 ml       | 0,8 µm        | Scanning       |
|               |            |              |               |                |
| St. 66        | 0m         | 500 ml       | 1 µm          | Lame/optique   |
|               |            | 500 ml       | 0,8 µm        | Scanning       |
|               | 30m        | 500 ml       | 1 µm          | Lame/optique   |
|               |            | 500 ml       | 0,8 µm        | Scanning       |
|               | 60m        | 500 ml       | 1 µm          | Lame/optique   |
|               |            | 500 ml       | 0,8 µm        | Scanning       |
|               | 70m        | 500 ml       | 1 µm          | Lame/optique   |
|               |            | 500 ml       | 0,8 µm        | Scanning       |

|               |            | STATIONS     | ANALYSEES (SU | JITE)        |
|---------------|------------|--------------|---------------|--------------|
|               |            |              |               |              |
| Station       | Profondeur | Vol. utilisé | Porosité      | Destination  |
|               |            |              |               |              |
| St 66 (suite) | 100m       | 500 ml       | 1 µm          | Lame/optique |
|               |            | 500 ml       | 0,8 µm        | Scanning     |
|               | 120m       | 500 ml       | 1 µm          | Lame/optique |
|               |            | 500 ml       | 0,8 µm        | Scanning     |
|               | 160m       | 500 ml       | 1 µm          | Lame/optique |
|               |            | 500 ml       | 0,8 µm        | Scanning     |
|               |            |              |               | ¥            |
| St. 68        | 20m        | 500 ml       | 1 µm          | Lame/optique |
|               |            | 500 ml       | 0,8 µm        | Scanning     |
|               |            | 10 ml        | 500ul F/10    | Culture      |
|               | 50m        | 500 ml       | 1 um          | Lame/optique |
|               |            | 500 ml       | 0.8 µm        | Scannina     |
|               |            | 10 ml        | 500ul F/10    | Culture      |
|               | 110m       | 500 ml       | 1 um          | Lame/optique |
|               |            | 500 ml       | 0.8 um        | Scanning     |
|               |            | 10 ml        | 500ul F/10    | Culture      |
|               |            |              |               |              |
| St 70         | 500        | 500 ml       | 1 um          |              |
| 01.70         |            | 500 ml       | 0.8 µm        | Scanning     |
|               | 5000       | 500 ml       | 1 um          |              |
|               |            | 500 ml       |               | Scapping     |
|               | 100m       | 500 ml       | 1 um          |              |
|               |            | 500 ml       |               | Scapping     |
|               |            | 500111       | 0,0 μπ        |              |
| St 72         | 500        | 500 ml       | 1.um          |              |
| 01.72         |            | 500 ml       |               | Scapping     |
|               | 5000       | 500 ml       | 1 um          |              |
|               |            | 500 ml       |               | Scapping     |
|               | 80m        | 500 ml       | 1 um          |              |
|               |            | 500 ml       |               | Scapping     |
| -             |            | 500111       | 0,0 pm        |              |
| <u>St 74</u>  | 500        | 500 ml       | 1.00          |              |
| 51. 74        | <u> </u>   | 500 ml       | 0.8.00        |              |
|               | 20m        | 500 ml       | 1 um          |              |
|               | 2011       | 500 ml       |               | Scapping     |
|               | 40m        | 500 ml       | 1 um          |              |
|               |            | 500 ml       |               | Scapping     |
|               | 60m        | 500 ml       | 1 um          |              |
|               |            | 500 ml       |               |              |
|               | 8000       | 500 ml       | 1 um          |              |
|               | John       | 500 ml       |               |              |
|               | 100~       | 500 mi       | 0,6 µm        | Sconning     |
|               |            | 500 mi       |               |              |
|               |            | 500 mi       | υ,8 μm        | scanning     |
| \$+ 75        | 500        | 10 ml        | 500 J E (10   |              |
| 3175          | 20m        | 10 ml        |               |              |
|               | 40m        |              | 1500µ1 F/10   |              |
|               | 40M        | liumi        | 1500µ1F/10    | Culture      |

|         |            | STATIONS     | ANALYSEES (S | SUITE)       |
|---------|------------|--------------|--------------|--------------|
|         |            |              |              |              |
| Station | Profondeur | Vol. utilisé | Porosité     | Destination  |
|         |            |              |              |              |
| St 76   | 20m        | 500 ml       | 1 µm         | Lame/optique |
|         |            | 500 ml       | 0,8 µm       | Scanning     |
|         | 40m        | 500 ml       | 1 µm         | Lame/optique |
|         |            | 500 ml       | 0,8 µm       | Scanning     |
|         | 60m        | 500 ml       | 1 µm         | Lame/optique |
|         |            | 500 ml       | 0,8 µm       | Scanning     |
|         |            |              |              |              |
| St 78   | 5m         | 500 ml       | 1 µm         | Lame/optique |
|         |            | 500 ml       | 0,8 µm       | Scanning     |
|         | 40m        | 500 ml       | 1 µm         | Lame/optique |
|         |            | 500 ml       | 0,8 µm       | Scanning     |
|         | 80m        | 500 ml       | 1 µm         | Lame/optique |
|         |            | 500 ml       | 0,8 µm       | Scanning     |
|         |            |              |              |              |
| St 80   | 5m         | 500 ml       | 0.8 µm       | Scanning     |
|         | 20m        | 500 ml       | 0.8 um       | Scanning     |
|         |            | 500 ml       | 0.8 um       | Scanning     |
|         |            |              |              |              |
| 2èME    | POINT      | FIXE         |              |              |
| LONIE   |            | 10/12        |              |              |
| St 84   | 0m         | 5 ul         | arilles      | MFT          |
|         | 20m        | 5 ul         | grilles      | MFT          |
|         | 30m        | 5 ul         | arilles      | MFT          |
|         |            | - p.         | <u>9</u>     |              |
| St 86   | 10m ·      | 500 ml       | 1 µm         | Lame/optique |
|         |            | 500 ml       | 1 um         | Scanning     |
|         | 20m        | 500 ml       | 1 um         | Lame/optique |
|         |            | 500 ml       | 1 um         | Scanning     |
|         | 30m        | 500 ml       | 1 μm         |              |
|         |            | 500 ml       | 1 um         | Scanning     |
|         | 40m        | 500 ml       | 1 μm         | Lame/optique |
|         |            | 500 ml       | 1            | Scanning     |
|         | 60m        | 500 ml       | 1 µm         | Lame/optique |
|         |            | 500 ml       | 1 000        | Scapping     |
|         | 80m        | 500 ml       | 1 000        |              |
|         |            | 500 ml       | 1 um         | Scapping     |
|         | 100m       | 500 ml       | 1 μm         |              |
|         |            | 500 ml       | 1 μm         | Scapping     |
|         | 120m       | 500 ml       | 1            |              |
|         | 12011      | 500 ml       | 1            | Scapping     |
| PIECES  | 1ère série | 50011        |              |              |
|         | 110m       | 50 ml        |              | lame/ontique |
|         |            | 50 ml        |              | Scapping     |
|         | 160m       | 50 ml        |              |              |
|         |            | 100 ml       |              | Scapping     |
|         | 210m       | 80 ~1        |              |              |
|         | 2100       | 100 ml       |              |              |
|         |            |              | ο,ο μ        | scanning     |

|                                                                                 |            | STATIONS     | ANALYSEES (SU | JITE)         |
|---------------------------------------------------------------------------------|------------|--------------|---------------|---------------|
|                                                                                 |            |              |               |               |
| Station                                                                         | Profondeur | Vol. utilisé | Porosité      | Destination   |
| PIEGES                                                                          | 310m       | 90 ml        | 1 µm Cycl.    | Lame/optique  |
| (suite)                                                                         | _          | 100 ml       | 0,8 µm        | Scanning      |
|                                                                                 |            |              |               |               |
| St. 96                                                                          | 5m         | 500 ml       | 1 µm          | Lame/optique  |
|                                                                                 |            | 500 ml       | 1 µm          | Scanning      |
|                                                                                 |            | 10 ml        | 1 ml F/10     | Culture       |
|                                                                                 | 20m        | 500 ml       | 1 µm          | Lame/optique  |
|                                                                                 |            | 500 ml       | 1 µm          | Scanning      |
|                                                                                 |            | 10 ml        | 1 ml F/10     | Culture       |
|                                                                                 | 30m        | 500 ml       | 1 µm          | Lame/optique  |
|                                                                                 |            | 500 mi       | 1 µm          | Scanning      |
|                                                                                 |            | 10 ml        | 1 ml F/10     | Culture       |
| St 98                                                                           | 500        | 500 ml       | 1 um          | Lame/optique  |
| 51. 70                                                                          |            | 500 ml       | 1 um          | Scanning      |
|                                                                                 | 20m        | 500 ml       | 1 um          | Lame/optique  |
|                                                                                 |            | 500 ml       | 1 um          | Scannina      |
|                                                                                 | 30m        | 500 ml       | 1 µm          | Lame/optique  |
|                                                                                 |            | 500 ml       | 1 µm          | Scannina      |
|                                                                                 |            |              |               |               |
| PIEGES                                                                          | 2ème série |              |               |               |
|                                                                                 | 110m       | 50 ml        | 1 µm Cycl.    | Lame/optique  |
|                                                                                 |            | 120 ml       | 0,8 µm        | Scanning      |
|                                                                                 | 160m       | 55 ml        | 1 µm Cycl.    | Lame/optique  |
|                                                                                 |            | 120 ml       | 0,8 µm        | Scanning      |
|                                                                                 | 210m       | 80 ml        | 1 µm Cycl.    | Lame/optique  |
|                                                                                 |            | 80 ml        | 0,8 µm        | Scanning      |
|                                                                                 | 310m       | 80 ml        | 1 µm Cycl.    | Lame/optique  |
|                                                                                 |            | 80 ml        | 0,8 µm        | Scanning      |
| St. 110                                                                         | 30m        | 500 ml       | 1 µm ( Nucl.) | Lame/optique  |
| 0+ 440                                                                          |            | 050 ml       |               |               |
| ST. 112                                                                         | - mc       | 250 mi       |               |               |
|                                                                                 | 10         | 250 ml       |               | Scanning      |
|                                                                                 |            | 200 mi       |               |               |
| veaux                                                                           | 2000       | 250 ml       |               | scanning      |
|                                                                                 | 2011       | 200 mi       |               |               |
|                                                                                 | 200        | 250 ml       |               | lamo (optique |
|                                                                                 |            | 500 ml       |               | Scapping      |
|                                                                                 | 40m        | 250 ml       |               | lame/optique  |
|                                                                                 | 4011       | 200 ml       |               |               |
|                                                                                 | 5000       | 250 ml       | 1 um 0/0      | Lame (optique |
|                                                                                 | <u>-</u>   | 500 ml       |               | Scapping      |
| St. 98<br>PIEGES<br>St. 110<br>St. 112<br>(Cultures à<br>tous les ni-<br>veaux) | 60m        | 250 ml       |               |               |
|                                                                                 |            | 500 ml       | 1 um          |               |
|                                                                                 |            | 500 m        |               |               |
|                                                                                 | 1          | 1            | 1             | 1             |

|                |            | STATIONS     | ANALYSEES (S | SUITE)       |
|----------------|------------|--------------|--------------|--------------|
|                |            |              |              |              |
| Station        | Profondeur | Vol. utilisé | Porosité     | Destination  |
|                |            |              |              |              |
| St 112 (suite) | 70m        | 250 ml       | 1 µm Cycl.   | Lame/optique |
|                |            | 500 ml       | 1 µm         | Scanning     |
|                | 80m        | 250 ml       | 1 µm Cycl.   | Lame/optique |
|                |            | 500 ml       | 1 µm         | Scanning     |
|                | 100m       | 250 ml       | 1 µm Cycl.   | Lame/optique |
|                |            | 500 ml       | 1 µm         | Scanning     |
|                | 120m       | 250 ml       | 1 µm Cyci.   | Lame/optique |
|                |            | 500 ml       | 1 µm         | Scanning     |
|                |            |              |              |              |
| PIEGES         | 3ème série |              |              |              |
|                | 110m       | 50 ml        | 1 µm Cycl.   | Lame/optique |
|                |            | 130 ml       | 0,8 µm       | Scanning     |
|                | 160m       | 55 ml        | 1 µm Cycl.   | Lame/optique |
|                |            | 110 ml       | 0,8 µm       | Scanning     |
|                | 210m       | 90 ml        | 1 µm Cycl.   | Lame/optique |
|                |            | 90 ml        | 0,8 µm       | Scanning     |
|                | 310m       | 85 ml        | 1 µm Cycl.   | Lame/optique |
|                |            | 85 ml        | 0,8 µm       | Scanning     |
|                |            |              |              |              |
| St. 123        | 40m        | 10 litres    | 1 µm         | Scanning     |
|                |            |              |              |              |
| PIEGES         | 4ème série |              |              |              |
|                | 110m       |              |              |              |
|                |            |              |              |              |
|                | 160m       |              |              |              |
|                |            |              |              |              |
|                | 210m       |              |              |              |

,

Chapitre 11

# **MESURES DE PRODUCTION PRIMAIRE**

#### Aubert LE BOUTEILLER

Centre ORSTOM de Nouméa B.P. A5 98848 Nouméa cedex Nouvelle-Calédonie (Tél : (687) 26 10 09 - Fax : (687) 26 43 26 - Email : leboutei@noumea.orstom.nc)

#### **OBJECTIFS**

1- Mesurer la production primaire nette en deux situations présumées typiques, l'une située hors de l'upwelling équatorial dans l'ouest, l'autre dans l'upwelling équatorial au centre du Pacifique.

Plus précisément, on souhaite répondre à plusieurs questions :

- Les fortes valeurs de production obtenues pendant PROPPAC dans et hors de l'upwelling sont-elles surestimées ?

- En quoi la production observée dans l'upwelling équatorial à 165°E pendant un évènement " La Nina " diffère de la production mesurée dans l'upwelling à 150°W pendant un évènement " El Nino " ?

- Quelle relation existe entre la production primaire nette (méthode au  $^{14}$ C) et les productions nouvelle et régénérée (méthode à l'azote-15) ? Quel rapport relie la production totale et la production des diatomées (méthode au silicium-32) ?

- Comparaison entre valeurs fournies par les mesures *in situ* "classiques " et celles au Let-Go. Comparaison avec les résultats des expérimentations de P(B) vs E.

- 2 Déterminer quels sont les organismes responsables de la production primaire. Des fractionnements de taille seront pratiqués sur la chlorophylle et sur la production primaire en fin d'incubation afin de préciser comment varie la productivité parmi les trois principaux groupes d'organismes végétaux (prochlorophytes, cyanobactéries et picoeucaryotes).
- 3 -Déterminer quels sont les facteurs qui contrôlent le taux de production : effet des variations de la lumière, de la biomasse et des sels nutritifs. Etude de l'influence de la durée d'incubation grâce à des incubations systématiques de 6h, 12h et 24h. L'activité photosynthétique du phytoplancton d'un système tropical ultra-oligotrophe sera comparée à celle du système mésotrophe de l'upwelling équatorial.

#### PRELEVEMENTS

Les échantillons sont prélevés sur les bouteilles de la rosette à la station de 4h du matin pendant les études en position fixe, et à la station de minuit au cours de la radiale équatoriale. Les flacons sont remplis avec précaution à l'aide de tuyaux fins en silicone lavés chaque jour à l'acide chlorhydrique. Les flacons utilisés pour les incubations sont du type D.B.O. en verre Pyrex de 300ml, bouchés à l'émeri avec des bouchons en verre à pointeau.

### MARQUAGES AU <sup>14</sup>C

La solution mère de <sup>14</sup>C-bicarbonate de sodium (Amersham) est préparée au laboratoire selon la méthode de Fitzwater et al. (1992). Deux ampoules de 185 MBq de <sup>14</sup>C sont versées dans 1200 ml d'eau déminéralisée et bidistillée amenée à pH 10 par addition de 0,35g de Na<sub>2</sub>CO<sub>3</sub>. La solution marquée obtenue est ensuite distribuée dans une vingtaine de flacons en téflon qui sont immédiatement congelés.

Un flacon est décongelé juste avant chaque expérimentation, et 0,5 ou 1ml de solution (soit 150 ou 300 kBq) est ajouté à chaque flacon d'incubation.

Lors de chaque expérimentation, la quantité de <sup>14</sup>C adsorbée par les particules vivantes ou mortes présentes dans l'échantillon a été déterminée avec un ou plusieurs échantillons prélevés et marqués au <sup>14</sup>C comme ceux incubés *in situ*. Ces échantillons sont filtrés aussitôt, c'est-à-dire dès la fin de la mise à l'eau de la ligne de production, et le nombre de désintégrations par minute (DPM) qu'ils retiennent a été retranché du nombre de DPM mesuré sur les filtres en fin d'incubation.

#### **INCUBATIONS**

Les incubations ont eu lieu soit sur le pont pendant la radiale équatoriale, soit *in situ* sur 12 profondeurs pendant les deux études en point fixe. Deux lignes couplées furent alors mises à l'eau chaque jour vers 6h (heure locale), l'une relevée vers midi et l'autre en fin de journée. Des boîtes en altuglas servirent à placer en incubation in situ 5 flacons par niveau, en plus des flacons destinés aux mesures de production de silice, d'azote et par comptage de cellules (cytométrie de flux).

Au cours des points fixes, en plus des incubations in situ de 6 et 12h, 6 réplicats (un niveau sur deux) furent placés chaque jour en incubation in situ pendant la journée puis à l'obscurité sur le pont la nuit suivante, ceci afin de mesurer la perte nocturne.

Après chaque incubation, les flacons sont lavés avec HCl 0,5N puis rincés plusieurs fois à l'eau bidistillée.

#### **FILTRATIONS**

En fin d'incubation, les échantillons sont récoltés sur filtres GF/F de 25mm de diamètre. Le vide utilisé est de 50 hPa. Le filtre est immédiatement rincé à l'eau de mer filtrée afin de chasser le carbone inorganique marqué au <sup>14</sup>C, puis placé 24h à l'étuve à 50°C avant comptage de radioactivité.

#### FRACTIONNEMENTS DE TAILLE (production et chlorophylle)

Pour les fractionnements de taille, des filtres Nuclepore de 25mm sont employés, et le vide appliqué est alors inférieur ou égal à 4 hPa. Lors de chaque expérience, la production des fractions supérieure (retenue sur le filtre Nuclepore) et inférieure (filtrat refiltré sur GF/F) est mesurée, ainsi que celle de la fraction totale. Aucune différence significative n'a été mise en évidence entre la production totale mesurée et la somme des productions des fractions supérieure et inférieure.

| Station | Profonde | <u>ur</u> (m <u>) Porosité (</u> µm) | en " in situ simulé " |
|---------|----------|--------------------------------------|-----------------------|
| 61      | 60       | 1                                    |                       |
| 62      | 60       | 1et 3                                |                       |
| 64      | 60       | 1 et 3                               |                       |
| 66      | 60       | 0.8                                  |                       |
| 68      | 50       | 1 et 3                               |                       |
| 70      | 50       | 1 et 3                               |                       |
| 72      | 50       | 0.8, 1 et 3                          |                       |
| 74      | 50       | 0.8, 1 et 3                          |                       |
| 76      | 40       | 0.8, 1 et 3                          |                       |
| 78      | 30       | 0.8, 1 et 3                          |                       |

Fractionnements réalisés en production primaire (toujours en fin d'incubation) :

| Station | Porosité (µm) | Durée (h) |
|---------|---------------|-----------|
| 23      | 1             | 24        |
| 29      | 1             | 6 et 12   |
| 35      | 3             | 6 et 12   |
| 41      | 0.8           | 6 et 12   |
| 47      | 1             | 12        |
| 53      | 1             | 12 et 24  |
| 82      | 3             | 12        |
| 88      | 1             | 6 et 12   |
| 94      | 0.8           | 6 et 12   |
| 100     | 8             | 12        |
| 106     | 10            | 12        |
| 112     | 1             | 6 et 12   |
| 118     | 3             | 6 et 12   |

en " *in situ* " à 5, 20, 40, 60, 80 et 120m (profondeurs fixes)

En même temps que les fractionnements destinés à mesurer la structure de taille de la production, des fractionnements ont été réalisés pour connaître la distribution par taille de la chlorophylle.

Fractionnements réalisés en chlorophylle :

| Station | <u>Porosité</u> (µm) | <u>Profondeur</u> |
|---------|----------------------|-------------------|
| 6       | 1                    | 12 niveaux        |
| 9       | 3                    | idem              |
| 14      | 5                    | idem              |
| 29      | 1                    | 6 niveaux         |
| 35      | 3                    | idem              |
| 41      | 0.8                  | idem              |
| 47      | 1                    | idem              |
| 53      | 1                    | idem              |
| 61      | 1                    | 60m               |
| 62      | 3                    | 60m               |
| 63      | 3                    | 9 niveaux         |
| 64      | 1                    | 60m               |
| 65      | 0.8                  | 8 niveaux         |
| 66      | 0.8                  | 60m               |
| 68      | 1 et 3               | 50m               |
| 70      | 1 et 3               | 50m               |
| 72      | 0.8, 1 et 3          | 50m               |
| 74      | 0.8, 1 et 3          | 50m               |
| 76      | 1 et 3               | 40m               |
| 80      | 10                   | 50m               |
| 82      | 3                    | 6 niveaux         |
| 88      | 1                    | idem              |
| 94      | 0.8                  | idem              |
| 100     | 8                    | idem              |
| 106     | 10                   | idem              |
| 112     | 1                    | idem              |
| 118     | 3                    | idem              |

#### ANALYSES DE PRODUCTION

Le compteur en scintillation liquide utilisé à bord est un Packard modèle TRI-CARB 1600-TR neuf. Des fioles à scintillation en verre de 7 ml sont utilisées, et les comptages en DPM durent 6 mn. Le liquide scintillant employé pour l'analyse des filtres est de l'Aquasol ou de l'Ultima Gold qui donne de bons rendements (5ml par fiole). Pour les mesures de la quantité introduite, un mélange de 5ml d'Aquasol, 50µl d'éthanol-amine, 850µl d'eau et 50 ou 100µl d'échantillon est préparé.

La <u>quantité de traceur introduite</u> dans les échantillons a été mesurée systématiquement lors de chaque expérience, soit en début, soit en fin d'incubation.

Valeurs moyennes obtenues :

en début d'incubation : $Q = 950\ 500\ DPM$  dans  $50\mu$ l de la source (cv= 2,2%, n= 46) en fin d'incubation :  $Q = 6\ 332\ DPM$  dans  $100\mu$ l de l'échantillon (cv= 7,5%, n= 18)

Noter que ces deux résultats correspondent à la même quantité de <sup>14</sup>C ajoutée dans l'échantillon. Seule change la précision de l'analyse, bien meilleure lors des mesures dans la source que dans l'échantillon.

Chaque jour, un ou deux échantillons sont marqués au <sup>14</sup>C et filtrés aussitôt, c'est-àdire juste après la fin de la mise à l'eau des lignes d'incubation in situ, ceci afin de mesurer l'<u>adsorption</u>. Leur contenu en DPM est retranché des valeurs obtenues en fin d'incubation in situ.

Valeurs moyennes d'adsorption mesurées (pas d'effet de la profondeur) :

Premier point fixe : T = 62 DPM (n = 18; s = 14) Deuxième point fixe : T = 81 DPM (n = 20; s = 23)

La fixation de carbone à l'<u>obscurité</u> a été mesurée *in situ* chaque jour lors du deuxième point fixe. On trouve une valeur moyenne de  $0,008 \text{ mgC}.\text{m}^{-3}.\text{h}^{-1}$ .

La concentration de <u>carbone inorganique total</u> utilisée dans les calculs est une moyenne des valeurs mesurées à bord :  $A = 24000 \text{ mg.m}^{-3}$ 

La production est calculée avec la formule :

$$P = (R - T) A Q^{-1} t^{-1}$$

P = production primaire. unité : mgC.m<sup>-3</sup>.h<sup>-1</sup>

- R = nombre de DPM comptés par échantillon
- T = nombre de DPM adsorbés
- A = concentration de carbone inorganique total (mgC.m<sup>-3</sup>)
- Q = quantité de traceur introduite (DPM)
- t = durée de l'incubation (heure)

La quantité fixée à l'obscurité n'a pas été retranchée des valeurs calculées.

#### **TESTS DE REPRODUCTIBILITE**

Trois tests de reproductibilité ont été menés lors d'expériences sur le pont en "*in situ* simulé".

| Expérience | Nombre de réplicats | Moyenne (DPM) | <u>s (DPM)</u> | <u> </u> |
|------------|---------------------|---------------|----------------|----------|
|            |                     |               |                |          |
| 1          | 6                   | 3275          | 298            | 9,1      |
| 2          | 12                  | 1917          | 83             | 4,3      |
| 3          | 6                   | 21200         | 2190           | 10,3     |
|            |                     |               |                |          |

#### MESURES REALISEES IN SITU

Les échantillons sont prélevés sur les 12 bouteilles Niskin à profondeurs fixes pour toute la campagne. En plus, des réplicats sont prélevés sur les bouteilles Noex fermées aux mêmes profondeurs et destinées en priorité aux mesures de production azotée.

Réplicats sur les bouteilles Noex :

Premier point fixe  $(0^\circ; 166^\circ E)$ :

|            | <u>Stati</u> | on |    |    |    |    |
|------------|--------------|----|----|----|----|----|
| Profondeur | <u>23</u>    | 29 | 35 | 41 | 47 | 53 |
|            |              |    |    |    |    |    |
| 5          | *            | *  |    |    | *  | *  |
| 10         |              |    |    |    |    |    |
| 20         | *            | *  |    |    | *  | *  |
| 30         |              | *  |    |    | *  | *  |
| 40         | *            |    |    |    | *  | *  |
| 50         |              | *  |    |    | *  | *  |
| 60         | *            |    |    |    | *  | *  |
| 70         |              |    |    |    | *  | *  |
| 80         | *            | *  |    |    | *  | *  |
| 100        |              |    |    |    | *  | *  |
| 120        | *            | *  |    |    | *  | *  |
| 150        |              |    |    |    | *  | *  |
| 150        |              |    |    |    |    |    |

Deuxième point fixe (0°: 150°W) :

|            | Statio    | Station |    |     |     |     |     |
|------------|-----------|---------|----|-----|-----|-----|-----|
| Profondeur | <u>82</u> | 88      | 94 | 100 | 106 | 112 | 118 |
|            |           |         |    |     |     |     |     |
| 5          | *         | *       | *  | *   | *   | *   | *   |
| 10         |           |         |    |     |     |     |     |
| 20         | *         | *       | *  | *   | *   | *   | *   |
| 30         |           |         |    |     |     |     |     |
| 40         | *         | *       | *  | *   | *   | *   | *   |
| 50         |           |         |    |     |     |     |     |
| 60         | *         | *       | *  | *   | *   | *   | *   |
| 70         |           |         |    |     |     |     |     |
| 80         | *         | *       | *  | *   | *   | *   | *   |
| 100        |           |         |    |     |     |     |     |
| 120        | *         | *       | *  | *   | *   | *   | *   |
| 150        |           |         |    |     |     |     |     |

A partir des résultats des mesures sur les bouteilles Noex qui ne présentent aucune indication de pollution, il est possible d'éliminer systématiquement un certain nombre d'échantillons prélevés sur les bouteilles Niskin, car présentant des signes évidents d'inhibition de production causée par une pollution. Seules sont rejetées les valeurs inférieures de moitié à la valeur attendue obtenue soit par les réplicats dans les bouteilles Noex, soit par les valeurs satisfaisantes mesurées immédiatement au-dessus ou au-dessous. En réalité, peu de résultats demeurent " suspects " après ce tri, car la pollution génère le plus souvent des valeurs de 2 ou 3 fois inférieures aux valeurs attendues.

118

Echantillons prélevés sur les bouteilles Niskin et éliminés pour cause de pollution :

| Premier point fixe        | $(0^{-}; 100^{-})$ | 2):    |    |     |            |     |  |
|---------------------------|--------------------|--------|----|-----|------------|-----|--|
|                           | <u>Stati</u>       | on     |    |     |            |     |  |
| Profondeur                | 23                 | 29     | 35 | 41  | 4 <u>7</u> | 53  |  |
|                           |                    |        |    |     |            |     |  |
| 5                         |                    |        | *  |     |            |     |  |
| 10                        | *                  | *      | *  |     |            |     |  |
| 20                        | *                  |        | *  | *   | *          | *   |  |
| 30                        |                    |        |    | *   |            |     |  |
| 40                        |                    |        | *  |     |            |     |  |
| 50                        |                    |        |    |     |            |     |  |
| 60                        |                    | *      | *  | *   | *          |     |  |
| 70                        |                    | *      | *  | *   | *          | *   |  |
| 80                        |                    | *      | *  |     | *          |     |  |
| 100                       |                    |        |    |     |            |     |  |
| 120                       |                    | *      |    |     |            |     |  |
| 150                       |                    |        |    |     |            |     |  |
| Deuxième <b>n</b> oint fi | xe (0°· 15(        | )°W) ∙ |    |     |            |     |  |
| Deuxieme point in         | Stati              | on     |    |     |            |     |  |
| Profondeur                | 82                 | 88     | 94 | 100 | 106        | 112 |  |
| 5                         |                    |        |    |     |            |     |  |
| 10                        |                    |        |    |     |            |     |  |
| 20                        | *                  | *      | *  | *   | *          | *   |  |
| 30                        |                    |        |    |     |            |     |  |
| 40                        |                    |        |    |     |            |     |  |
| 50                        |                    |        |    |     |            |     |  |
| 60                        | *                  | *      | *  | *   | *          | *   |  |
| 70                        |                    |        |    |     |            |     |  |
| 80                        | *                  | *      | *  | *   | *          | *   |  |

Premier point five (0°: 166°E).

100

#### RESULTATS

A deux reprises, des mesures menées en parallèle permettent de comparer directement les résultats des mesures de la méthode " classique " avec ceux de la méthode " Let Go " :

|            | Station   | <u>n 94</u> | Station 100 |        |  |
|------------|-----------|-------------|-------------|--------|--|
| Profondeur | Classique | Let Go      | Classique   | Let Go |  |
| 5          | 2.64      | 1.17        | 2.60        | 1.27   |  |
| 10         | 2.56      | 1.31        | 1.70        | 1.67   |  |
| 15         |           | 1.30        |             | 1.37   |  |
| 20         | 2.39      | 1.67        | 2.55        | 1.87   |  |
| 30         | 2.07      | 1.95        | 2.10        | 1.68   |  |
| 40         | 1.50      | 1.30        | 1.89        | 1.49   |  |
| 50         | 0.97      | 1.12        | 1.21        | 1.10   |  |
| 60         | 0.62      | 0.66        | 0.73        | 0.71   |  |
| 70         | 0.31      |             | 0.28        |        |  |
| 80         | 0.24      | 0.19        | 0.26        | 0.17   |  |
| 100        | 0.08      |             | 0.12        |        |  |
| 105        |           | 0.05        |             | 0.05   |  |
| 120        | 0.05      |             | 0.05        |        |  |
| 150        | 0.00      |             | 0.05        |        |  |

Ces valeurs de production sont toutes calculées avec 24 000 mgC m<sup>-3</sup> de carbone inorganique total et sont exprimées en mgC m<sup>-3</sup> h<sup>-1</sup>.

Les valeurs du Let Go sont inférieures à celles de la méthode classique, en partie à cause d'une durée d'incubation un peu plus longue. Ramenées par jour, on trouve les valeurs intégrées (mgC m<sup>-2</sup> j<sup>-1</sup>):

| <u>Stati</u> | <u>on 94</u> | Station 100 |        |  |  |
|--------------|--------------|-------------|--------|--|--|
| Classique    | Let Go       | Classique   | Let Go |  |  |
| 1457         | 1147         | 1568        | 1319   |  |  |

Différence Let Go / Classique : -21%

-16%

Tableau 1 -- Production primaire à l'équateur (166°E) lors du premier point fixe. Résultats des incubations in situ de l'aube au crépuscule.

Unités : P en mgC  $m^{-3} h^{-1}$ PAR en E  $m^{-2} h^{-1}$ Durée en heures et centièmes

| FLUPAC     |           |           |           |           |           |           |
|------------|-----------|-----------|-----------|-----------|-----------|-----------|
|            |           |           |           |           |           |           |
| Date       | 03-oct-94 | 04-oct-94 | 05-oct-94 | 06-oct-94 | 07-oct-94 | 08-oct-94 |
| Jour       | 1         | 2         | 3         | 4         | 5         | 6         |
| Station    | 23        | 29        | 35        | 41        | 47        | 53        |
| PAR        | 3,43      | 0,46      | 3,65      |           |           | 3,62      |
| Durée      | 11        | 10,25     | 11,25     | 11,75     | 11,75     | 12        |
|            |           |           |           |           |           |           |
| Profondeur |           |           |           |           |           |           |
|            |           |           |           |           |           |           |
| 5          | 0,858     | 0,534     |           | 0,424     | 0,669     | 0,339     |
| 10         |           |           |           | 0,386     | 0,537     | 0,321     |
| 20         | 0,766     | 0,423     |           |           | 0,563     | 0,506     |
| 30         |           | 0,231     | 0,855     |           | 0,523     | 0,458     |
| 40         | 0,703     |           |           | 0,617     | 0,538     | 0,52      |
| 50         |           | 0,127     | 0,726     |           | 0,485     | 0,507     |
| 60         | 0,758     |           |           |           | 0,495     | 0,506     |
| 70         |           |           |           |           | 0,566     | 0,589     |
| 80         | 0,724     | 0,081     |           | 0,705     | 0,569     | 0,701     |
| 100        |           |           | 0,33      | 0,439     | 0,525     | 0,388     |
| 120        | 0,069     | 0,022     | 0,117     | 0,117     | 0,146     | 0,123     |
| 150        |           |           | 0,002     | 0,017     | 0,039     | 0,015     |

Tableau 2 -- Production primaire à l'équateur (140°W) lors du deuxième point fixe. Résultats des incubations de l'aube au crépuscule.

Unités : P en mgC  $m^{-3} h^{-1}$ PAR en E  $m^{-2} h^{-1}$ Durée en heures et centièmes

| FLUPAC     |           |           |           |           |           |           |           |
|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|            |           |           |           |           |           |           |           |
| Date       | 19-oct-94 | 20-oct-94 | 21-oct-94 | 22-oct-94 | 23-oct-94 | 24-oct-94 | 25-oct-94 |
| Jour       | 1         | 2         | 3         | 4         | 5         | 6         | 7         |
| Station    | 82        | 88        | 94        | 100       | 106       | 112       | 118       |
| PAR        | 2,92      | 3,37      | 3,37      | 3,4       | 3,48      | 3,23      | 3,33      |
| Durée      | 11,66     | 11,55     | 11,75     | 12,25     | 11,5      | 12        | 12        |
|            |           |           |           |           |           |           |           |
| Profondeur |           |           |           |           |           |           |           |
|            |           |           |           |           |           |           |           |
| 5          | 2,446     | 2,558     | 2,643     | 2,602     | 2,604     | 2,246     | 2,066     |
| 10         | 2,19      | 1,788     | 2,56      | 1,7       | 2,585     | 2,01      | 2,057     |
| 20         | 2,335     | 2,53      | 2,39      | 2,548     | 2,445     | 2,22      | 2,154     |
| 30         | 2,184     | 2,36      | 2,067     | 2,103     | 1,94      | 2,027     | 1,766     |
| 40         | 1,43      | 1,615     | 1,502     | 1,893     | 1,577     | 1,55      | 1,41      |
| 50         | 1,143     | 1,332     | 0,972     | 1,215     | 1,118     | 1,406     | 1,19      |
| 60         | 0,666     | 0,812     | 0,617     | 0,735     | 0,63      | 0,903     | 0,746     |
| 70         | 0,286     | 0,35      | 0,31      | 0,277     | 0,27      | 0,573     | 0,398     |
| 80         | 0,303     | 0,345     | 0,243     | 0,264     | 0,267     | 0,393     | 0,364     |
| 100        | 0,093     | 0,127     | 0,08      | 0,122     | 0,09      | 0,19      | 0,206     |
| 120        | 0,077     | 0,057     | 0,048     | 0,054     | 0,064     | 0,092     | 0,1       |
| 150        | 0,014     | 0,017     | 0,003     | 0,05      | 0,017     |           | 0,009     |
Chapitre 12

## MESURES DE PRODUCTION PRIMAIRE IN SITU A L'AIDE DU LET GO

Yves DANDONNEAU

**ORSTOM/LODYC** 

Tour 14, Case 100 Université Pierre et Marie Curie 4 Place Jussieu 75252 Paris Cedex 05 (tél : (33) 44 27 70 74 - Fax : (33) 1 44 27 38 05 - Email : yd@lodyc.jussieu.fr)

Le protocole suivi pour la mise en oeuvre des mesures de production primaire à l'aide du Let Go est dérivé des recommandations générales qui concernent la mesure de production primaire *in situ* par la technique du <sup>14</sup>C (Fitzwater *et al.*, 1982).

Les incubations ont lieu dans les chambres en polymetacrylate de carbone (Plexiglas  $\mathbb{R}$ ) préalablement rincées à l'aide d'une solution de H Cl 0,1 N, puis à l'aide d'eau Milli-Q  $\mathbb{R}$ . La mise en oeuvre du système Let Go est décrite dans Dandonneau et Le Bouteiller (1992). Aussitôt après la remontée, les chambres à incubation sont rangées à l'obscurité, puis leur contenu est transféré dans des flacons à parois opaques. Un prélèvement de 0,2 ml effectué dans chaque flacon est introduit dans une fiole pour comptage en scintillation liquide contenant au préalable 200  $\mu$ l d'éthanolamine et 750  $\mu$ l d'eau ; on y ajoute ensuite 5ml d'Aquasol  $\mathbb{R}$ .

Ces prélèvements servent à déterminer la quantité de <sup>14</sup>C présente dans la chambre à incubation. Le contenu des flacons est ensuite filtré sur filtres Whatman GF/F, 25 mm de diamètre, avec une aspiration de 0,1 atm. Dès la fin de la filtration, les filtres sont rincés à l'eau de mer, puis mis à sécher. Le <sup>14</sup>C inorganique résiduel est enlevé à l'aide de 100 $\mu$ l d'HCl 0,1N, dans une fiole à scintillation liquide avec 5 ml d'Aquasol ®.

Les comptages de radioactivité (DPM) sont faits en utilisant la correction du quenching fournie par le compteur à scintillation liquide (Packard Tri-Carb). Le calcul de la quantité de carbone fixée (P) est effectué à l'aide de la relation

$$P = \frac{(DPM_f - B_f)v[C]}{(DPM_a - B_a)V}$$

où DPMf et DPMa sont les résultats des comptages de radioactivité des filtres et des prélèvements d'eau des chambres à incubation,  $B_f$  et  $B_a$  sont les "blancs" de comptage pour ces deux termes, v= 200 µl est le volume du prélèvement, V est le volume filtré, et [C] est la concentration en carbone inorganique de l'eau de mer. [C] provient des mesures de [CO<sub>3</sub><sup>2-</sup>] faites par Alain Poisson, Christian Brunet et Bernard Schauer.

#### Références

- Dandonneau Y. et Le Bouteiller A. 1992. A simple and rapid device for measuring planktonic primary production by *in situ* sampling, and <sup>14</sup>C injection and incubation. Deep-Sea Research 39 : 795-803.
- Fitzwater S. E., Knauer G. A. et Martin J. H. 1982. Metal contamination and its effect on primary production measurements. Limnol. Oceanogr., 27: 544-551.

l





















# Chapitre 13

# ASSIMILATION ET REGENERATION DE <sup>15</sup>N

### **Claudie NAVARETTE**

Centre ORSTOM de Nouméa B.P. A5 98848 Nouméa, Nouvelle-Calédonie (Tél : (687) 26 10 00 - Fax : (687) 26 43 26 - Email : navarette@noumea.orstom.nc)

#### **1-OBJECTIFS**

L'objectif principal de nos travaux est d'estimer la production primaire pélagique en évaluant la part de la production nouvelle et celle de la production régénérée au sein de la production totale.

Pour y parvenir, j'étudie le cycle biogéochimique de l'azote, en mesurant (cf 4-3):

- Les processus d'absorption de l'azote minéral (nitrate NO3, nitrite NO2, ammonium NH4<sup>+</sup>)

- La régénération de l'azote au sein de la couche euphotique par l'étude de la régénération de NH<sub>4</sub><sup>+</sup>, de NO<sub>3</sub><sup>-</sup> et de NO<sub>2</sub><sup>-</sup>.

L'évaluation de ces différents flux devrait permettre d'établir les bilans précis de flux d'azote dans la couche euphotique de l'océan.

#### **2- PRINCIPE**

La méthode des traceurs isotopiques nous permet de suivre, grâce à un processus de marquage, différents flux impliqués dans le cycle biogéochimique de l'azote (Sheppard, 1962).

A l'état naturel, les éléments ont une composition isotopique presque constante. Dans le cas de l'azote, il existe 2 isotopes stables, <sup>14</sup>N et <sup>15</sup>N, dont les teneurs naturelles sont respectivement de 99.64 % et de 0.36 %.

La méthode de marquage consiste à ajouter une quantité connue d'une forme azotée marquée à l'azote-15, dans un échantillon d'eau de mer du milieu étudié, puis à suivre son cheminement dans les différents compartiments du système pélagique (fractions particulaire et dissoute). Cette méthode est applicable à l'étude de la circulation de l'azote dans la zone euphotique et en particulier à la mesure de l'absorption et de la régénération des composés azotés par les organismes planctoniques.

#### **3- PROTOCOLE**

Le protocole expérimental généralement utilisé pour mesurer l'absorption des composés azotés par le phytoplancton est le suivant :

- prélèvement d'un échantillon d'eau de mer dans un flacon en polycarbonate,
- inoculation avec une forme azotée marquée à l'azote-15,
- incubation,

- collection du matériel organique particulaire par filtration,

- mesure de l'enrichissement en azote-15 du matériel collecté.

Une variante de ce protocole est employée pour les études de la régénération dans le milieu marin (Harrison, 1978). Il s'agit de la récupération de l'azote minéral dissous dans le filtrat après filtration. Cette récupération de l'azote présent dans la phase liquide ne peut avoir lieu qu'après avoir isolé le composé par une extraction sélective.

L'extraction de NH4<sup>+</sup> se fait par diffusion selon la méthode de Paasche et Kristiansen (1982) améliorée par L'Helguen (1991).

L'extraction du nitrite présent dans l'eau de mer est réalisée selon la méthode de Shell (1978) améliorée par Lipschultz (1984).

Avant le début de l'extraction des nitrates de l'eau de mer, il est nécessaire de détruire les nitrites initialement présents dans l'eau de mer. Pour cela, les nitrites (400 ml de filtrat) sont réduits en azote gazeux par l'acide sulfamique 20 % (1 ml/l) (Bremner, 1965). Pour stopper la réduction des nitrites, l'addition de 2 ml de NaOH (8N) est nécessaire. Après décantation des hydroxydes insolubles formés (environ 1 heure), les nitrates sont réduits en nitrites par le passage sur une colonne de cadmium cupérisée en présence de chlorure d'ammonium ; les nitrites sont alors extraits comme précédemment.

#### 3-1 Prélèvement

Les prélèvements sont effectués au moyen de bouteilles Noex de 10,7 litres, à des profondeurs choisies en fonction de l'épaisseur de la couche euphotique et du profil de la fluorescence *in vivo*. L'échantillon est recueilli dans des flacons en polycarbonate de 2,3 ou 4,6 litres pour les expériences d'azote-15. Cette opération se déroule à l'ombre de façon à éviter une stimulation de l'activité planctonique, en particulier dans les échantillons profonds.

#### 3-2 Inoculation

Les échantillons sont enrichis, à raison de 10 % de la concentration naturelle, par de l'azote marqué sous la forme de nitrate ( $K^{15}NO_3$ ), de nitrite ( $K^{15}NO_2$ ) ou d'ammonium ( $^{15}NH_4Cl$ ). Ce choix tient compte de la sensibilité de la méthode utilisée pour l'analyse isotopique (spectromètre optique) et du fait que l'addition de traceur peut entrainer une perturbation du milieu (stimulation de l'activité métabolique), aboutissant à une surestimation des taux d'absorption mesurés.

Néanmoins, dans le cas où l'eau de mer est pauvre (< 0.1  $\mu$ M) ou totalement dépourvue du sel azoté considéré, 0,1 à 0,5  $\mu$ M de traceur sont ajoutés.

Les isotopes utilisés contiennent entre 96 et 99 % d'azote-15.

Dans différentes expériences, les échantillons ont été enrichis avec de fortes concentrations en azote-15 (2,5  $\mu$ M); des taux d'absorption à saturation sont alors mesurés.

Une solution mère concentrée (5000  $\mu$ M) pour chaque sel azoté est conservée au réfrigérateur. Avant chaque inoculation, une solution fille (500  $\mu$ M) est préparée afin de réaliser les enrichissements voulus. Chaque solution mère a été refaite au milieu de la campagne, lors de la radiale équatoriale.

#### 3-3 Incubation

Les échantillons inoculés sont incubés sur le pont du navire lors des radiales (incubation *in situ* simulée) ou dans le milieu naturel lors des points fixes (incubation *in situ*). La lumière incidente est atténuée, lors des incubations sur le pont, par des écrans en nickel et/ou des plaques de plexiglas bleu (Light blue Acrylite 625-5) qui permettent d'exposer l'échantillon à un éclairement proche de celui mesuré à la profondeur de prélèvement. La température de l'incubateur est maintenue constante grâce à un écoulement continu d'eau de mer pompée en surface.

La durée de l'incubation dépend du type d'expérience et de l'heure de prélèvement. Les durées des incubations *in situ* sont de 6 et 12 heures. La plupart des incubations *in situ* simulé durent entre 4 et 6 heures et se déroulent pendant une période centrée sur le midi solaire. Cependant des incubations plus longues ont été menées pour examiner les variations des taux d'absorption au cours du temps. Dans ce cas, plusieurs flacons ayant subi le même traitement, ont été prélevés sur des périodes allant de 0,2 à 24 heures.

#### **3-4 Filtration**

A la fin de l'incubation, la filtration a lieu sur des filtres en fibres de verre (Whatman, GF/F, diamètre = 47 ou 25 mm, précalcinés à 450°C pendant 4 heures). La dépression de filtration est maintenue entre 50 et 100 mm Hg afin de ne pas provoquer la lyse des cellules. Les filtres sont ensuite séchés à l'étuve à  $60^{\circ}$ C et stockés en présence de silicagel jusqu'à l'analyse isotopique au laboratoire.

Une portion du filtrat est prélevée pour le dosage chimique du sel azoté étudié, le reste est utilisé pour l'extraction du composé considéré et la mesure du flux régénéré.

Parfois, une partie de l'échantillon est filtrée immédiatement après inoculation de manière à acquérir des valeurs de référence pour les enrichissements en azote-15 ("temps zéro").

#### 3-5 Procédures pour les analyses isotopiques

La préparation des échantillons pour l'analyse isotopique comporte trois étapes :

la récupération de l'azote organique particulaire récolté sur le filtre,

la récupération de l'azote dissous dans le filtrat,

la conversion en azote gazeux (N<sub>2</sub>).

L'azote organique particulaire retenu sur le filtre peut être converti directement en azote gazeux et analysé par spectrométrie d'émission. Par contre, la récupération de l'azote présent dans la phase liquide ne peut avoir lieu qu'après avoir isolé le composé par une extraction sélective.

La matière organique particulaire retenue sur les filtres en fibres de verre est broyée dans un mortier avec environ 30 mg de cuprox (CuO+ Pt) qui est un oxydant puissant. La poudre ainsi obtenue est versée dans un tube en pyrex (diamètre : 6 mm ou 8 mm, longueur: 30 cm) préalablement lavé à l'acide sulfochromique, rincé à l'eau déionisée et passé au four à 450°C pendant quelques heures. Pour la combustion des éléments extraits de la phase dissoute il n'est pas nécessaire de broyer les filtres. Ils sont directement placés dans des nacelles en aluminium prétraitées (4h à 400°C) avec environ 30 mg de cuprox.

Une série de tubes (6) est alors connectée à un système qui permet l'obtention d'un vide poussé. La partie supérieure des ampoules est alors chauffée à environ  $250^{\circ}$ C pendant une demi-heure tout en maintenant un vide d'environ  $10^{-3}$  torr. Le dégazage des parois est nécessaire de manière à réduire les risques de contamination. Pendant toute cette opération la partie inférieure des ampoules doit rester à température ambiante pour éviter la combustion de l'échantillon. Les tubes sont ensuite scellés à l'aide d'un chalumeau. La combustion des échantillons est alors accomplie en chauffant les tubes à 500°C pendant 8 heures Elle aboutit à la formation d'azote moléculaire (N<sub>2</sub>) et également à d'autres gaz (CO<sub>2</sub>, O<sub>2</sub>).

#### **3-6** Analyse isotopique

L'analyse des échantillons à l'aide d'un spectromètre d'émission peut alors être effectuée après refroidissement.

L'analyseur optique utilisé est un appareil Sopra, modèle GS1.

Lors de l'analyse de l'échantillon, le tube est disposé verticalement entre les électrodes et son extrémité est plongée dans de l'azote liquide de manière à piéger les gaz autres que  $N_2$  issus de la combustion.

Le principe de la spectrométrie optique est le suivant: La présence d'atome de masse-15 dans une molécule d'azote gazeux excitée par un champ électrique haute fréquence provoque un déplacement des bandes du spectre d'émission. C'est ainsi que la longuer d'onde de la bande principale émise dans l'ultraviolet se situe à 297,7 nm pour les molécules<sup>14</sup>N<sup>14</sup>N, à 298,3 nm pour les molécules <sup>14</sup>N<sup>15</sup>N et à 298,9 nm pour les molécules <sup>15</sup>N<sup>15</sup>N. L'utilisation d'un détecteur photoélectrique et d'un enregistreur permet de mesurer l'intensité de ces différentes bandes et de calculer la teneur en azote-15. Pour obtenir une bonne résolution, il est nécessaire d'amplifier les signaux des molécules N<sub>29</sub> et N<sub>30</sub>. Le signal pour la molécule N<sub>30</sub> est rarement visible du fait des enrichissements relativements faibles (< 10% <sup>15</sup>N) de nos échantillons sauf dans le cas de NH<sub>4</sub>.

Les spectromètres optiques ne fournissent pas de mesures absolues des teneurs isotopiques à cause d'une résolution insuffisante des pics 28, 29 et 30. Un étalonnage est de ce fait nécessaire et obtenu à l'aide d'un spectromètre de masse pour une gamme de 0.36 à 20% <sup>15</sup>N. Cet étalonnage est actuellement réalisé par G. Slawyk à Marseille. Aussi **les valeurs des courbes présentées dans le paragraphe résultats ne sont-elles que des valeurs non corrigées.** 

3-7 Calcul des taux d'absorption

Les taux d'absorption sont calculés selon Shepard (1962):

<sup>15</sup>Np: % atome <sup>15</sup>N en excès dans la fraction particulaire à la fin de l'incubation.

<sup>15</sup>Nd: % atome %<sup>15</sup> N en excès dans la fraction dissoute, il est supposé rester constant au cours de l'incubation (Dugdale et Wilkerson, 1986).

Np: azote particulaire mesuré au CHN (µM)

Ti: temps d'incubation (en heures)

#### 4-DESCRIPTION DES EXPERIENCES REALISEES AU COURS DE LA CAMPAGNE FLUPAC

#### 4-1 Expériences réalisées lors des radiales

Le cycle biogéochimique de l'azote a été étudié, sur le méridien 165°E et sur l'équateur en considérant:

-d'une part, l'étude de l'intensité des processus:

\*Mesure des processus d'incorporation et de régénération de l'azote minéral à la lumière et à l'obscurité ( $NH_4^+$ ,  $NO_3^-$  et  $NO_2^-$ ).

\*Validation et correction des mesures effectuées sur le pont par comparaison avec des mesures *in situ*.

\*Mesure de taux d'absorption à saturation sur des échantillons enrichis avec de fortes concentrations en azote-15 (2,5  $\mu$ M<sup>15</sup>N pour les 3 sels azotés).

-d'autre part, les facteurs de variation des processus:

\*Vérification de la forme minérale (NH4<sup>+</sup>, NO3<sup>-</sup>, NO2<sup>-</sup>) préférentiellement assimilée par le phytoplancton.

\*Assimilation en fonction de la teneur en substrat choisi.

\*Détermination des fractions de taille (< 1  $\mu$ m ,< 3 $\mu$ m) responsables de l'assimilation de l'élément considéré.

\*Cinétique de l'assimilation: les flacons subissent le même traitement avec des temps d'incubation variables de 0.2 à 24.2 heures.

#### 4-2 Expériences réalisées lors des points fixes

Lors du premier point fixe (0°-167°E), le principal traceur utilisé fut l'ammonium (<sup>15</sup>N-NH<sub>4</sub>). A l'inverse, lors du deuxième point fixe (0°-150°W), le principal traceur fut le nitrate (<sup>15</sup>N-NO3). Les échantillons inoculés sont incubés dans le milieu naturel le long d'une ligne de production. Durant les 13 jours en station fixe, tous les matins, à l'aube, deux lignes de production sont mises à l'eau immédiatement après l'inoculation. Une ligne dérivante est relevée après 6 heures d'incubation. Sur ces flacons, l'assimilation et la régénération sont mesurées.

La deuxième ligne est relevée au coucher du soleil. Différents paramètres ont été mesurés en fin d'expérience sur ces échantillons incubés pendant 12 heures dans le milieu naturel et d'autres incubés sur le pont:

- mesure de l'absorption des différentes formes d'azote minéral (C. Navarette).

- fluorimétrie (A. Le Bouteiller) : mesure de la chlorophylle a totale.

- cytométrie en flux (J. Blanchot) : mesure de l'abondance cellulaire *Prochlorococcus*, des *Synechococcus* et des microalgues eucaryotes et de la fluorescence chlorophyllienne de ces 3 groupes phytoplanctoniques.

- spectrofluorométrie (J. Neveux) : étude fine des pigments.

Dans les zones oligotrophes, nous avons choisi de travailler avec de forts enrichissements en azote-15 sauf au niveau du maximum de chlorophylle. Nous avons en effet préféré une modification du milieu naturel à un épuisement en nutritifs en fin d'incubation.

Dans les zones mésotrophes, nous avons pu pratiquer des enrichissements de l'ordre de 10% en nutritifs par rapport à la concentration ambiante de l'élément considéré. Ceci ne concerne en aucun cas l'ammonium, du fait des faibles teneurs mesurées dans le milieu  $(0,1\mu M)$ . Aussi les enrichissements ontils varié de 15 à 100%.

Lors des mesures simultanées d'assimilation et de régénération, nous avons choisi des temps d'incubation relativement courts ( de l'ordre de quelques heures) afin d'éviter que l'azote enrichi en azote-15 et absorbé par les organismes ne retourne au cours de l'expérience dans la phase dissoute par régénération, ce qui irait à l'encontre du principe de la dilution isotopique.

Au niveau du maximum de chlorophylle, il nous a été possible de réduire les volumes filtrés. Aussi des échantillons ont-ils été incubés sur le pont parallèlement aux incubations dans le milieu naturel. Ceci devrait nous permettre une validation et une correction des mesures effectuées sur le pont par comparaison avec les mesures *in situ*.

Lors des points fixes, un seul sel par profondeur était utilisé en raison des grands volumes nécessaires pour chaque échantillon.

Lors des radiales, nous avons pu prélever plusieurs bouteilles à la même profondeur et travailler avec 1,2 et/ou 3 sels selon l'expérimentation. En effet certaines expériences ont nécessité 40 litres !

#### 4-3 Tableaux résumant les expériences effectuées dans les différentes zones

Dans ces tableaux, nous avons simplifié la liste des expérimentations réalisées lors de la campagne FLUPAC (cf 4-2) par commodité de lecture. Les personnes désirant des renseignements supplémentaires pourront s'adresser directement à l'auteur (C. Navarette).

#### Tableau 1: Expérimentations effectuées lors de FLUPAC (radiale méridienne et premier point fixe 0°-167°E)

1: Assimilation

2: Mesure de l'assimilation et de la régénération

3: Comparaison de l'assimilation en in situ et in situ simulée

4: Fractionnement de taille

5: Analyse de sels nutritifs en fin d'incubation (S. Bonnet, H. Lemonnier, P. Gérard)

6: Analyse de Chla en fin d'incubation (A. Le Bouteiller)

7: Analyse de cytométrie en flux en fin d'incubation (J. Blanchot)

8: Analyse de spectrofluorimétrie en fin d'incubation (J. Neveux)

| Z(m)  | 5          | 10         | 15         | 20         | 30         | 40         | 50         | 60         | 70         | 80         | 90 | 100         | 110 | 120         | 130 | 140 | 150        | 160 |
|-------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----|-------------|-----|-------------|-----|-----|------------|-----|
| n° st |            |            |            |            |            |            |            |            |            |            |    |             |     |             |     |     |            |     |
| 3     | 25         |            |            |            |            | 25         |            | 25         |            | 25         | 25 | 25          | 25  | 25          |     | 25  |            | 25  |
| 4     |            |            |            |            |            | 1          |            |            |            |            | 1  |             |     |             |     |     |            |     |
| 8     |            |            |            |            |            | 25         |            |            | 25         |            |    |             |     |             |     |     |            |     |
| 10    |            |            |            |            |            | 1          |            | 1          | 1          |            |    |             |     |             |     |     |            |     |
| 11    |            |            |            |            |            | 25         |            |            | 25         |            |    |             |     |             |     |     |            |     |
| 14    |            |            |            |            |            | 1          |            |            | 1          | 1          | 1  |             |     |             |     |     |            |     |
| 16    |            |            |            | 25         |            |            |            |            |            | 25         | 25 | 25          | 25  | 25          | 25  | 25  |            |     |
| 17    |            |            |            |            |            | 14         |            |            |            |            | _  |             |     |             |     |     |            |     |
| 20    |            |            |            |            |            | 1          |            |            |            |            |    |             |     |             |     |     |            |     |
| 21    |            |            |            |            |            | 4          |            |            |            |            |    | 4           |     |             |     |     |            |     |
| 23    | 125<br>67  | 125<br>67  |            | 125<br>67  | 12567      | 125<br>67  | 125<br>67  | 125<br>67  |            | 125<br>67  |    | 125<br>67   |     | 125<br>67   |     |     | 125<br>67  |     |
| 29    | 125<br>678 |            | 125<br>678 |    | 1235<br>678 |     | 125<br>678  |     |     | 125<br>678 |     |
| 33    |            |            |            |            |            | 25         |            | 25         |            | 25         |    | 25          |     | 25          | 25  | 25  |            |     |
| 35    | 125<br>678 | 125<br>678 |            | 125<br>678 |    | 1235<br>678 |     | 1235<br>678 |     |     | 125<br>678 |     |
| 41    | 125<br>78  | 125<br>78  |            | 125<br>78  | 125<br>78  | 125<br>78  | 125<br>78  | 125<br>78  | 123<br>578 | 123<br>578 |    | 1235<br>78  |     | 1257<br>8   |     |     | 125<br>78  |     |
| 47    | 125<br>678 | 125<br>678 |            | 125<br>678 |    | 1235<br>678 |     | 1235<br>678 |     |     | 125<br>678 |     |
| 53    | 125<br>678 | 125<br>678 |            | 125<br>678 |            | 125<br>678 | 125<br>678 | 125<br>678 | 125<br>678 | 125<br>678 |    | 1235<br>678 |     | 125<br>678  |     |     | 125<br>678 |     |
| 59    | 25         |            |            |            |            | 25         | 25         | 25         | 25         | 25         |    | 25          |     | 25          | 25  | 25  |            |     |

Tableau 2: Expérimentations effectuées lors de FLUPAC (radiale équatoriale et deuxième point fixe 0°-150°W)

1: Assimilation

2: Mesure de l'assimilation et de la régénération

3: Comparaison de l'assimilation en in situ et in situ simulée

4: Fractionnement de taille

5: Analyse de sels nutritifs en fin d'incubation (S. Bonnet, H. Lemonnier, P. Gérard)

6: Analyse de Chla en fin d'incubation (A. Le Bouteiller)

7: Analyse de cytométrie en flux en fin d'incubation (J. Blanchot)

8: Analyse de spectrofluorimétrie en fin d'incubation (J. Neveux)

| Z(m)  | 5          | 10         | 15 | 20          | 30          | 40         | 50         | 60         | 70         | 80         | 90       | 100        | 110      | 120        | 130      | 140      | 150        | 160      |
|-------|------------|------------|----|-------------|-------------|------------|------------|------------|------------|------------|----------|------------|----------|------------|----------|----------|------------|----------|
| n° st |            |            |    |             |             |            |            |            |            |            |          |            |          |            |          |          |            |          |
| 62    |            |            |    |             |             |            |            |            |            |            |          | 1          |          |            |          |          |            |          |
| 64    |            |            |    |             |             |            |            |            | 1          |            | 1        | 1          |          |            |          |          |            |          |
| 66    |            |            |    |             |             |            |            |            |            |            |          |            | 14       |            |          |          |            |          |
| 68    |            |            |    |             |             |            |            |            |            |            |          |            | 125      |            |          |          |            |          |
| 70    |            |            |    |             |             | 25         |            |            |            |            |          |            |          |            |          |          |            |          |
| 72    |            |            |    |             |             | 1254       |            |            |            |            |          |            |          |            |          |          |            |          |
| 74    |            |            |    |             |             |            | 1257       |            |            |            |          |            |          |            |          |          |            |          |
| 76    |            |            |    | 1256        | 1256        |            |            |            |            |            |          |            |          |            |          |          |            |          |
| 78    |            |            |    | 125         | 125         | 125        |            |            |            |            |          |            |          |            |          |          |            |          |
| 80    |            |            |    | 4           | 4           |            |            |            |            |            |          |            |          |            |          |          |            |          |
| 82    | 125<br>678 | 125<br>678 |    | 1235<br>678 | 1235<br>678 | 1256<br>78 | 125<br>678 | 125<br>678 | 125<br>678 | 125<br>678 |          | 125<br>678 |          | 125<br>678 |          |          | 125<br>678 |          |
| 88    | 125        | 125        |    | 1235        | 1235        | 1256       | 125        | 125        | 125        | 125        |          | 125        |          |            |          |          |            |          |
|       | 678        | 678        |    | 678         | 678         | 78         | 678        | 678        | 678        | 678        |          | 678        |          |            |          |          |            |          |
| 92    |            |            |    | 25          | 25          | 25         | 25         |            | 25         | 25         |          | 25         |          | 25         |          | 25       |            |          |
| 94    | 125<br>678 | 125<br>678 |    | 1235<br>678 | 1235<br>678 | 1256<br>78 | 125<br>678 | 125<br>678 | 125<br>678 | 125<br>678 |          | 125<br>678 |          |            |          |          |            |          |
| 100   | 125        | 125        |    | 1235        |             | 1235       | 125        | 125        | 125        | 125        |          | 125        |          |            |          |          |            |          |
|       | 678        | 678        |    | 678         |             | 678        | 678        | 678        | 678        | 678        | <u> </u> | 678        | L        |            | <b> </b> |          | <u> </u>   |          |
| 104   |            |            |    | 25          | 25          | 25         |            | 25         | 25         | 25         |          | 25         |          | 25         |          | 25       |            |          |
| 106   | 125        | 125        |    | 1235        |             | 1235       | 125        | 125        | 125        | 125        |          | 125        |          |            |          |          |            |          |
|       | 678        | 678        |    | 678         |             | 678        | 678        | 678        | 678        | 678        |          | 678        | <u> </u> |            |          | <u> </u> |            | $\mid$   |
| 112   | 125        | 125        |    | 1235        | 1235        | 1256       | 125        | 125        | 125        | 125        |          | 125        |          |            |          |          |            |          |
| 440   | 678        | 678        |    | 678         | 678         | 18         | 678        | 678        | 678        | 678        |          | 678        | <u> </u> |            |          |          |            | <b>├</b> |
| 118   | 125<br>687 | 678        |    | 678         | 678         | 78         | 678        | 678        | 678        | 678        |          | 678        |          |            |          |          |            |          |

#### **5-RESULTATS**

5-1 Unités

Les résultats sont exprimés en micromoles d'azote par m<sup>3</sup> et par heure ( $\mu$ mol N m<sup>-3</sup>h<sup>-1</sup>)

#### 5-2 Problèmes rencontrés

- 1- manque de fiabilité des Noex (mélanges d'eau et/ou mauvaise profondeur échantillonnée)
- 2- mise au point en milieu naturel de l'extraction des nitrates .
- 3- manque de fiabilité des analyses de NH4.

En raison de ces 3 points, l'obtention des taux de régénération des différents sels est fortement compromise mais fait encore l'objet d'une étude. C'est pourquoi, la régénération n'est pas évoquée dans ce paragraphe.

#### 5-3 Profils moyens d'assimilation azotée

En raison des valeurs d'assimilation azotée non corrigées (cf 3-6), nous avons choisi de ne présenter que les profils moyens d'assimilation obtenus lors des points fixes.



<u>Figures 1a et 1b</u>: Assimilation moyenne mesurée dans les flacons après 6 et 12 heures d'incubation dans la zone oligotrophe lors du premier point fixe(0°-165°E): × d'ammonium (NH<sub>4</sub><sup>+</sup>),  $\blacksquare$  de nitrate (NO<sub>3</sub><sup>-</sup>), O de nitrite (NO<sub>2</sub><sup>-</sup>).



<u>Figure 2a et 2b</u>: Assimilation moyenne mesurée dans les flacons après 6 heures et 12 heures d'incubation dans la zone mésotrophe lors du deuxième point fixe (0°-150°W): × d'ammonium (NH<sub>4</sub><sup>+</sup>),  $\blacksquare$  de nitrate (NO<sub>3</sub><sup>-</sup>), O de nitrite (NO<sub>2</sub><sup>-</sup>)

Afin de compléter ces profils, quelques valeurs proviennent d'expérimentations de la radiale équatoriale.

#### **6-REFERENCES BIBLIOGRAPHIQUES**

- Bremner J.M., 1965. Isotope ratio analysis of nitrogen in nitrogen-15 tracer investigation. pp. 1256-1286, in: « Methods of soil analysis. 2. Chemical and microbiological properties », (C.A. Black et al, eds), Am. Soc. Agron., Madison, Wis., 1572 pp.
- Dugdale R.C. & F.P. Wilkerson, 1986. The use of Nitrogen-15 to measure nitrogen uptake in euphotic oceans experimental considerations. *Limnol. Oceanogr.*, **31**(4): 673-689.
- Harrison W.G., 1978. Experimental measurements of nitrogen remineralization in coastal waters. *Limnol. Oceanogr.*,23(4): 684-694.
- L'Helguen S., 1991. Absorption et régénération de l'azote dans les écosystèmes pélagiques du plateau continental de la Manche occidentale. Relations avec le régime vertical de mélange des masses d'eau cas du front thermique d'Ouessant. Thèse Doct. ès-Sciences, Univ. de Bretagne occidentale, Brest, 212 pp.
- Lipschultz F., 1984. Environnmental factors affecting rates of nitrogen cycling. Ph. D. Thesis, Haward University, Cambridge, Masszchussetts.
- Paasche E. & S. Kristiansen, 1982c. Ammonium Regeneration by Microzooplankton in the Oslofjord. Mar. Biol., 69: 55-63.
- Shell D.M., 1978. Chemical and isotopic methods in nitrification studies. In: «Microbiology», (Schlessinger D., ed.), Amer. Soc. Microbiol., Washington, D.C., 292-295.

Sheppard C.W., 1962. Basic principles of the tracer methods. Wiley, New York, 282 p.

#### 7- REMERCIEMENTS

Je remercie toutes les personnes qui ont permis l'acquisition de ces données: Jean Blanchot et Hongbin Liu (cytométrie en flux), Aubert Le Bouteiller (chlorophylle), Jacques Neveux (spectrofluorimétrie), Sylvain Bonnet, Philippe Gérard, Hugues Lemonnier et Martine Rodier (sels nutritifs), Jean-Yves Panche (électronicien).

**Chapitre 14** 

## ASSIMILATION DU SILICIUM

Stéphane BLAIN

Laboratoire d'océanographie chimique Faculté des Sciences et Techniques Université de Bretagne Occidentale 29275 Brest, France (Tél : (33) 98 31 61 52 - Fax : (33) 98 31 66 36 - Email : blain@cassis-gw.univ-brest.fr)

#### Matériel et méthode

Les mesures d'assimilation du silicium par le plancton ont été réalisées selon deux méthodes d'incubation différentes:

Méthode d'incubation in-situ simulée pour les stations 62, 64, 66, 68, 70, 72, 74, 76, 78, 80. Six niveaux d'éclairement 0%, 1%, 3%, 10%, 25%, 100 % étaient simulés à l'aide de trame métallique enveloppant individuellement des flacons de polycarbonate (250 ml). La température durant la durée de l'incubation était maintenue égale à celle de l'eau de surface par circulation d'eau de mer dans un incubateur en plexiglas.

Pour les stations 23, 29, 35, 41, 47, 53, 82, 88, 112, les mesures ont été réalisées par incubation *in-situ* dans des flacons en polycarbonate fixés à 6 ou 12 profondeurs sur une ligne lestée. Dans les deux cas, dès la fin du prélèvement de l'eau de mer, un ajout de  ${}^{32}Si$  correspondant à une activité d'environ 40 000 dpm était réalisé. Les échantillons étaient ensuite mis à incuber au voisinage du lever du soleil. Après incubation (24 heures pour incubation *in-situ* simulée et 12 heures pour incubation *in-situ*), la solution était filtrée sur filtre polycarbonate 0,6 µm. Le filtre, après rinçage à l'eau de mer filtrée, était stocké dans une fiole à scintillation en polyéthylène. Les activités finales des filtres ont été mesurées six mois plus tard par effet Cerenkov à l'aide d'un compteur Packard. La vitesse d'assimilation de Si est alors calculée à partir de l'activité de l'ajout de  ${}^{32}Si$ , de l'activité finale et de la concentration en acide silicique. La mesure de la biomasse de Si biogénique (cf. recueil de données tome 1) permet de calculer les vitesses d'assimilation spécifique.

## Résultats

| N°station | profondeur | assimilation | production | N°station | profondeur | assimilation | production |
|-----------|------------|--------------|------------|-----------|------------|--------------|------------|
|           | m          | nM/l/h       | h-1        |           | m          | nM/l/h       | h-1        |
| 23        | 5          | 0,04         | 0,002      | 66        | 5          | 0,22         | 0,028      |
|           | 20         | 0,06         | 0,003      |           | 30         | 0,36         | 0,036      |
|           | 40         | 0,03         | 0,002      |           | 60         | 0,25         | 0,025      |
|           | 60         | 0,02         | 0,001      |           | 80         | 0,29         | 0,013      |
|           | 100        | 0,07         | 0,003      |           | 100        | 0,65         | 0,039      |
|           | 150        | 0,05         | 0,002      |           | 140        | 0,69         | 0,030      |
| 29        | 5          | 0,04         | 0,003      | 68        | 5          | 0,55         | 0,074      |
|           | 20         | 0,03         | 0,002      |           | 20         | 0,38         | 0,058      |
|           | 40         | 0,05         | 0,006      |           | 50         | 0,45         | 0,068      |
|           | 60         | 0,03         | 0,002      |           | 80         | 0,29         | 0,022      |
|           | 100        | 0,12         | 0,006      |           | 110        | 0,47         | 0,019      |
|           | 150        | 0,02         | 0,001      |           | 140        | 0,65         | 0,034      |
| 35        | 5          | 0,03         | 0,002      | 70        | 5          | 0,21         | 0,019      |
|           | 20         | 0,02         | 0,001      |           | 30         | 0,45         | 0,031      |
|           | 40         | 0,01         | 0,001      |           | 50         | 0,16         | 0,012      |
|           | 60         | 0,05         | 0,003      |           | 80         | 0,20         | 0,008      |
|           | 100        | 0,03         | 0,001      |           | 90         | 0,62         | 0,025      |
|           | 150        | 0,00         | 0,000      |           | 140        | 1,06         | 0,038      |
| 41        | 5          | 0,04         | 0,003      | 72        | 5          | 0,57         | 0,029      |
|           | 20         | 0,03         | 0,002      |           | 30         | 0,60         | 0,032      |
|           | 40         | 0,03         | 0,001      |           | 50         | 0,45         | 0,019      |
|           | 60         | 0,04         | 0,002      |           | 80         | 0,42         | 0,016      |
|           | 100        | 0,47         | 0,012      |           | 120        | 0,47         | 0,028      |
|           | 150        | 0,07         | 0,003      |           | 160        | 1,03         | 0,040      |
| 47        | 5          | 0,07         | 0,006      | 74        | 5          | 0,44         | 0,028      |
|           | 20         | 0,06         | 0,005      |           | 20         | 0,43         | 0,026      |
|           | 40         | 0,12         | 0,011      |           | 40         | 0,30         | 0,013      |
|           | 60         | 0,19         | 0,015      |           | 60         | 0,40         | 0,010      |
|           | 100        | 0,51         | 0,015      |           | 80         | 0,39         | 0,016      |
|           | 150        | 0,57         | 0,028      |           | 120        | 0,33         | 0,017      |
| 53        | 5          | 0,20         | 0,017      | 76        | 5          | 1,98         | 0,132      |
|           | 20         | 0,23         | 0,016      |           | 20         | 1,93         | 0,030      |
|           | 40         | 0,20         | 0,016      |           | 20         | 2,69         | 0,042      |
|           | 60         | 0,18         | 0,012      |           | 40         | 0,92         | 0,011      |
|           | 100        | 0,68         | 0,020      |           | 60         | 0,63         | 0,025      |
|           | 150        | 0,69         | 0,032      |           | 100        | 0,42         | 0,024      |
| 62        | 5          | 0,15         | 0,007      | 78        | 5          | 3,54         | 0,029      |
|           | 30         | 0,20         | 0,010      |           | 20         | 2,75         | 0,021      |
|           | 60         | 0,19         | 0,013      |           | 30         | 1,93         | 0,014      |
|           | 70         | 0,17         | 0,009      |           | 50         | 0,88         | 0,006      |
|           | 100        | 0,34         | 0,005      |           | 60         | 0,78         | 0,008      |
|           | 140        | 0,31         | 0,016      |           | 100        | 0,52         | 0,019      |
| 64        | 5          | 0,15         | 0,020      | 80        | 5          | 3,40         | 0,022      |
|           | 30         | 0,20         | 0,023      |           | 20         | 2,45         | 0,017      |
|           | 60         | 0,23         | 0,019      |           | 50         | 3,64         | 0,018      |
|           | 80         | 0,22         | 0,009      |           | 60         | 1,31         | 0,007      |
|           | 100        | 0,40         | 0,011      |           | 80         | 0,69         | 0,007      |
|           | 140        | 0,61         | 0,034      |           | 100        | 0,76         | 0,017      |

| N°station | profondeur | assimilation | production |
|-----------|------------|--------------|------------|
|           | m          | nM/I/h       | h-1        |
| 82        | 5          | 3,48         | 0,040      |
|           | 10         | 2,88         | 0,033      |
|           | 20         | 1,02         | 0,012      |
|           | 30         | 4,41         | 0,050      |
|           | 40         | 3,27         | 0,037      |
|           | 50         | 2,27         | 0,026      |
|           | 60         | 1,86         | 0,019      |
|           | 70         | 1,37         | 0,023      |
|           | 80         | 1,63         | 0,033      |
|           | 100        | 1,88         | 0,077      |
|           | 120        | 2,13         | 0,091      |
|           | 150        | 3,47         | 0,127      |
| 88        | 5          | 3,42         | 0,044      |
|           | 10         | 3,11         | 0,028      |
|           | 20         | 3,34         | 0,043      |
|           | 30         | 3,37         | 0,033      |
|           | 40         | 2,61         | 0,026      |
|           | 50         | 2,80         | 0,035      |
|           | 60         | 2,23         | 0,028      |
|           | 70         | 2,19         | 0,031      |
|           | 80         | 1,75         | 0,028      |
|           | 100        | 3,29         | 0,137      |
|           | 120        | 2,92         | 0,069      |
|           | 150        | 3,92         | 0,182      |
| 112       | 5          | 4,39         | 0,043      |
|           | 10         | 3,02         | 0,048      |
|           | 20         | 3,84         | 0,050      |
|           | 30         | 5,44         | 0,070      |
|           | 40         | 3,92         | 0,055      |
|           | 50         | 2,97         | 0,038      |
|           | 60         | 7,13         | 0,099      |
|           | 70         | 3,11         | 0,038      |
|           | 80         | 2,28         | 0,037      |
|           | 100        | 2,26         | 0,070      |
|           | 120        | 2,37         | 0,089      |

# Chapitre 15

## P/B VS E

## Jean-Michel ANDRE\* et Nora SADOUDI\*\*

\*Centre ORSTOM de Nouméa B.P. A5 98848 Nouméa cedex, Nouvelle-Calédonie (Tél : (687) 26 10 00 - Fax : (687) 26 43 26 - Emaill : andre@noumea.orstom.uc)

\*\*Laboratoires de Physique et Chimie marines Université Pierre et Marie Curie B.P. 8 06230 Villefranche-sur-Mer, France

(Tél : (33) 93 76 37 12 - Fax : (33) 93 76 37 39 - Email : nora@ccrv.vlfr-obs.fr)

Les mesures effectuées permettent d'étudier les variations de la production primaire (P, mgC.m<sup>-3</sup>.h<sup>-1</sup>) en fonction de la lumière (PAR, 400-700 nm,  $\mu$ Einstein.m<sup>-2</sup>.s<sup>-1</sup>). Le but est d'estimer les paramètres de base de la photosynthèse (pente initiale et maximum de la courbe Pb-vs-E, rendement quantique) pour nourrir une modélisation ultérieure de la production. L'échantillonnage est conçu pour résoudre la variabilité régionale de ces paramètres, sur la verticale et, dans une moindre mesure, au cours de la journée.

Une brève description du protocole est proposée, plus de détails seront trouvés dans Babin et al. (1994).

Les résultats sont présentés sous forme de graphes: production ramenée à l'unité de Chla, Pb ( $gC.(gChla)^{-1}.h^{-1}$ .) en fonction de l'éclairement.

Les valeurs de Pb ont été calculées selon:

Pb = (1/Chla) \* (DPM-DPMo)\*DIC / (Dt\*DPMi)

| DPM: | nb de désintégrations | par mn pour | le flacon d | considéré |
|------|-----------------------|-------------|-------------|-----------|
|------|-----------------------|-------------|-------------|-----------|

DPMo: idem pour le flacon incubé à l'obscurité

DPMi: idem pour l'activité initiale

Dt: durée de l'incubation

DIC: dissolved inorganic carbon

(valeur moyenne provisoirement utilisée: 24000 mgC.m<sup>-3</sup>)

Les concentrations en Chla (mg.m<sup>-3</sup>) ont été mesurées par A. Le Bouteiller (recueil de données FLUPAC, tome I).

#### **ECHANTILLONNAGE**

Pour les stations figurant sur le Tableau 1, 2 à 4 incubations ont été effectuées en laboratoire.

#### DESCRIPTIF DE L APPAREILLAGE

Le laboratoire de mesure a été installé dans le conteneur "isotopes" sur la plage arrière de l'Atalante.

La Figure 1 (Babin et al. 1994) dessine une vue de dessus de l'appareillage et du profil d'une chambre). Les chambres d'incubation sont disposées sur une platine en aluminium, autour d'une lampe. 12 flacons à incubation sont disposés dans chaque chambre et baignent dans une

eau distillée. Le gradient d'éclairement est créé par la série des flacons. L'éclairement maximal dans chaque chambre est ajusté à l'aide d'un filtre placé sur sa face antérieure . Lampe utilisée: OSRAM, HQI-T 250W. Filtres neutres, atténuations: 10,20,50% Les chambres d'incubations sont thermostatées (bains circulant d'eau distillée).

## PROTOCOLE

Pour chaque courbe, la série suivante d'opérations a été répétée:

### Préparation de l'échantillon:

Un litre d'eau de mer est prélevé sur l'une des bouteilles NOEX de la sonde-rosette.

Un échantillon de 850 ml est préparé dans un flacon de verre ambré de 11 en inoculant 100 mCurie (nominal) de  $C^{14}$  sous forme de bicarbonate de sodium (AMERSHAM, 0.1 ml prélevés directement dans l'ampoule originale conservée au froid et à l'obscurité).

### Activité initiale:

3 sous-échantillons sont préparés dans des fioles à scintillation liquide pour mesure de l'activité initiale: 50 ml de la solution inoculée + 50 ml d'éthanol-amine (base organique qui prévient la transformation du bicarbonate en  $CO_2$ ) + 0.5 ml d'H<sub>2</sub>O distillée + 10 ml de liquide à scintillation (AQUASOL, sous hotte).

### Incubation:

12 + 1 sous-prélèvements de 50 ml de l'échantillon original sont distribués (à l'aide d'une dispensette) dans les flacons à culture (NUNC). 12 flacons sont disposés dans les chambres pour une incubation de 60 à 120 mn, le 13<sup>ième</sup> passera autant de temps à l'obscurité.

La température dans les chambres est maintenue constante. C'est en général la température *in situ* à la profondeur de prélèvement de l'échantillon.

Un filtre neutre est placé entre lampe et chambre de façon à imposer un gradient de lumière (flacons 1 à 12) en rapport avec celui que les algues rencontrent *in situ* à la profondeur du prélèvement au cours de la journée.

## Filtration et préparation pour comptage:

En fin d'incubation, le contenu de chaque flacon est filtré sur GFF. Chaque filtre est déposé dans une fiole où l'on injecte 1 ml de HCl (0.5N, sous la hotte, à la repipette à seringue) et les fioles sont agitées pendant une heure (l'opération permet d'évacuer, sous forme de CO<sub>2</sub>, le carbone non fixé dans la matière organique).10 ml d'AQUASOL sont ensuite ajoutés (à la dispensette)

Comptage:

Dans les 24h, 10 mn par filtre (Compteur à scintillation: Packard TRI-CARB 1600 TR).

Eclairement:

Les éclairements sont mesurés dans les chambres à l'aide d'un quantamètre scalaire (Biospherical QSL-100).

## **REFERENCES**

BABIN M., A. MORAL AND R. GAGNON. 1994. An incubator designed for extensive and sensitive measurements of phytoplankton photosynthetic parameters. Limnol. Oceanogr., 39, 694-702.


Figure 1: In: Babin et al.,1994

Schematic view of (A) an incubation chamber and of (B) the whole radial photosynthetron.

| _   |            |       |       |       |       |   |      |        |       |       |   |        |        |        |        |
|-----|------------|-------|-------|-------|-------|---|------|--------|-------|-------|---|--------|--------|--------|--------|
|     | No Station | z (m) | z (m) | z (m) | 2 (m) | L | Tro  | T (°C) | T(°C) | T(°C) | T | đt (h) | dt (h) | dt (h) | dt (h) |
| 0   | 2          | 20    | 80    | 120   |       |   | 25   | 15     | 15    |       | t | 1.57   | 1.53   | 1.72   |        |
| 1   | 8          | 20    | 80    | 140   |       | Г | 25   | 25     | 25    |       | F | 1.65   | 1.7    | 1.68   |        |
| 2   | 11         | 20    | 80    | 80    |       | Γ | 29   | 28.5   | 28    |       | F | 1.65   | 1.73   | 1.77   |        |
| 3   | 15         | 20    | 60    | 80    |       | Γ | 29   | 29     | 29    |       | T | 1.5    | 1.57   | 1.58   |        |
| - 4 | 18         | 20    | 70    | 80    |       |   | 28.5 | 28.5   | 28.5  |       |   | 1.48   | 1.53   | 1.62   |        |
| 5   | 21         | 20    | 60    | 90    |       |   | 28.5 | 28.5   | 28.5  |       | Γ | 1.45   | 1.48   | 1.6    |        |
| 6   | 24         | 20    | 60    | 90    |       | Г | 28.5 | 28.5   | 28.5  |       | F | 1.67   | 1.85   | 1.88   |        |
| 7   | 25         | 20    | 60    | 100   |       | Г | 28.5 | 28.5   | 28.5  |       | Γ | 1.9    | 2.21   | 2.42   |        |
| 8   | 30         | 20    | 60    | 90    |       |   | 28.5 | 28.5   | 28.5  |       | F | 1.42   | 1.62   | 1.68   |        |
| 9   | 31         | 20    | 60    | 90    |       |   | 28.5 | 28.5   | 28.5  |       |   | 1.93   | 1.88   | 1.95   |        |
| 10  | 36         | 20    | 60    | 90    |       |   | 28.5 | 28.5   | 28.5  |       |   | 1.63   | 1.8    | 1.88   |        |
| 11  | 37         | 20    | 100   | 120   |       |   | 28.5 | 28.5   | 28.5  |       |   | 1.92   | 1.98   | 2.18   |        |
| 12  | 42         | 20    | 60    | 90    |       |   | 20   | 20     | 20    |       |   | 1.57   | 1.53   | 1.43   |        |
| 13  | 43         | 20    | 100   | 120   |       |   | 20   | 20     | 20    |       |   | 1.68   | 1.78   | 1.88   |        |
| 14  | 48         | 20    | 60    | 100   |       |   | 28.5 | 28.5   | 28.5  |       |   | 1.78   | 1.77   | 1.87   |        |
| 15  | 50         | 20    | 90    | 100   |       |   | 28.5 | 28.5   | 28.5  |       |   | 1.38   | 1.48   | 1.53   |        |
| 16  | 54         | 20    | 90    | 100   |       |   | 28.5 | 28.5   | 28.5  |       |   | 1.75   | 1.78   | 1.92   |        |
| 17  | 55         | 20    | 100   | 110   |       |   | 28.5 | 28.5   | 28.5  |       |   | 1.8    | 1.85   | 1.97   |        |
| 18  | 57         | 20    | 90    | 100   |       |   | 28.5 | 28.5   | 28.5  |       |   | 1.62   | 1.72   | 1.78   |        |
| 19  | 58         | 20    | 90    | 100   |       |   | 28.5 | 28.5   | 28.5  |       |   | 1.77   | 1.9    | 1.98   |        |
| 20  | 63         | 20    | 90    | 110   |       |   | 30   | 30     | 30    |       |   | 2.08   | 2.17   | 2.3    |        |
| 21  | 65         | 30    | 100   | 110   | 110   |   | 29   | 29     | 29    | 24    |   | 2.08   | 2.12   | 2.07   | 2.13   |
| 22  | 67         | 20    | 90    | 110   | 110   |   | 28   | 28     | 28    | 23    |   | 2.03   | 2.17   | 2.2    | 2.27   |
| 23  | 69         | 20    | 90    | 110   | 110   |   | 28   | 28     | 28    | 23    |   | 2.08   | 2.15   | 2.18   | 2.27   |
| 24  | 71         | 20    | 60    | 100   |       |   | 29   | 29     | 29    |       |   | 1.52   | 1.55   | 1.62   |        |
| 25  | 73         | 20    | 60    | 100   | 100   |   | 28.5 | 28.5   | 28.5  | 28.5  |   | 2.18   | 2.28   | 2.23   | 2.4    |
| 26  | 75         | 20    | 60    | 100   | 60    |   | 28.5 | 28.5   | 28.5  | 28.5  |   | 2      | 2.03   | 2.12   | 2.12   |
| 27  | 77         | 20    | 60    | 100   | 140   |   | 28.5 | 28.5   | 28.5  | 23    |   |        |        |        |        |
| 28  | 81         | 5     | 20    | 60    | 100   |   | 27.5 | 27.5   | 27.5  | 27.5  |   | 2.23   | 2.33   | 2.4    | 2.48   |
| 29  | 83         | 20    | 60    | 100   |       |   | 27.5 | 27.5   | 27.5  |       |   | 2.23   | 2.2    | 2.28   |        |
| 30  | 85         | 20    | 60    | 100   |       |   | 27.5 | 27.5   | 27.5  |       |   | 2_2    | 2.32   | 2.37   |        |
| 31  | 89         | 20    | 60    | 100   |       |   | 27.5 | 27.5   | 27.5  |       |   | 2.23   | 2.27   | 2.32   |        |
| 32  | 90         | 5     | 20    | 30    |       |   | 27.5 | 27.5   | 27.5  |       |   | 2.37   | 2.48   | 2.53   |        |
| 33  | 95         | 20    | 60    | 100   | 20    |   | 27.5 | 27.5   | 27.5  | 27.5  |   | 2.13   | 2.28   | 2.3    | 2.2    |
| 34  | 97         | 20    | 60    | 100   | 20    |   | 27.5 | 27.5   | 27.5  | 27.5  |   | 1.52   | 1.63   | 1.67   | 1.75   |
| 35  | 101        | 20    | 60    | 100   |       |   | 27.5 | 27.5   | 27.5  |       |   | 1.82   | 1.95   | 1.97   |        |
| 36  | 102        | 20    | 60    | 100   |       |   | 27.5 | 27.5   | 27.5  |       |   | 2      | 2.12   | 2.13   |        |
| 37  | 103        | 20    | 60    | 100   |       |   | 27.5 | 27.5   | 27.5  |       |   | 1.67   | 1.7    | 1.73   |        |
| 38  | 107        | 20    | 60    | 100   | 25    |   | 27.5 | 27.5   | 27.5  | 27.5  |   | 2.12   | 2.18   | 2.27   | 2.32   |
| 39  | 109        | 20    | 60    | 100   | 20    |   | 27.5 | 27.5   | 27.5  | 27.5  |   | 2.02   | 2      | 1.98   | 2      |
| 40  | 113        | 20    | 60    | 100   | 20    |   | 27.5 | 27.5   | 27.5  | 27.5  |   | 2.13   | 2.17   | 2.18   | 2.23   |
| 41  | 115        | 20    | 60    | 100   | 20    |   | 27.5 | 27.5   | 27.5  | 27.5  |   | 2.03   | 2.07   | 2.1    | 2.15   |
| 42  | 119        | 5     | 10    |       |       | _ | 27.5 | 27.5   |       |       | _ | 1.85   | 1.92   |        |        |
| 43  | 119 bis    | 5     | 10    |       |       | _ | 27.5 | 27.5   |       |       |   | 1.43   | 1.5    |        |        |
| 44  | 120        | 5     | 10    |       |       | _ | 27.5 | 27.5   |       |       |   | 1.62   | 1.65   |        |        |
| 45  | 121        | 5     | 10    |       |       |   | 27.5 | 27.5   | 1     |       |   | 1.5    | 1.57   |        |        |
| 46  | 122        | 5     | 10    |       |       |   | 27.5 | 27.5   |       |       |   | 1.6    | 1.67   |        |        |
| 47  | 123        | 5     | 10    |       |       |   | 27.5 | 2751   |       |       |   | 1 48   | 1 6 9  |        |        |

Tableau 1:

de gauche à droite, n° de station, profondeurs de prélèvement (z), températures d'incubation (T), durées d'incubation (dt).







100 Te.





.







































.

# **STATION 42**

<del>.</del> .

















.





















•



161











**STATION 75** 





166





















172












.













.

.





# **STATION 119**

# **STATION 119.5**











.

# **Chapitre 16**

# MESURES DES COEFFICIENTS D'ABSORPTION SPECIFIQUES DU PHYTOPLANCTON DANS L'UPWELLING EQUATORIAL

Les coefficients d'absorption spécifique du phytoplancton ont été mesurés lors de la campagne FLUPAC par deux méthodes différentes. Les résultats sont présentés successivement dans ce chapitre, leur inter-comparaison étant actuellement en cours :

Méthode des filtres GF/F, par Cécile Dupouy-Douchement

Méthode nouvelle des lames, par Karima Allali, Nora Sadoudi et Annick Bricaud

Chapitre 16a

# Coefficients d'absorption spécifique du phytoplancton dans le Pacifique Equatorial Méthode des filtres GF/F

# Cécile DUPOUY-DOUCHEMENT Centre ORSTOM de Nouméa BP A5 98848 Nouméa Cédex, Nouvelle-Calédonie (Tel : (687) 26 10 00 - Fax : (687) 26 43 26 - Email : dupouy@noumea.orstom.nc)

## **1 - OBJECTIFS**

L'absorption de la lumière solaire par le phytoplancton est à l'origine de la photosynthèse. La lumière disponible pour la photosynthèse (PAR, 400-700 nm) est transformée par les pigments contenus dans la cellule en énergie utilisable par la photosynthèse (PUR, 400-700 nm). La modification du PAR en PUR se fait de manière différente à l'intérieur du domaine visible 400-700 nm, avec des maxima d'absorption dans la région bleue, vers 440 et dans la région rouge, vers 670 nm. D'autres pigments complètent l'absorption dans d'autres domaines du spectre, chlorophylles et divinyl-chlorophylles b et c, dont le maximum d'absorption de la région bleue est décalé vers 480 nm et 470 nm ou caroténoides photosynthétiques qui dominent en profondeur, caroténoides photoprotectants qui dominent en surface ....

Les coefficients spectraux d'absorption constituent un paramètre clef des lois reliant photosynthèse et lumière (Morel, 1991). Ils sont mesurés depuis peu dans le milieu tropical du large (Bricaud et Stramski, 1990), et à l'équateur (EQPAC en 1992). Ils ont été mesurés à FLUPAC dans des conditions représentatives d'un continuum de populations spécifiques d'un milieu oligotrophe (hors upwelling) et mésotrophe (dans l'upwelling), afin - d'analyser leur variation spatiale à 165°E de part et d'autre de l'équateur, le long de l'équateur entre 167°E et 150°W, et leur variation temporelle aux points fixes à 167°E et 150°W (tableau 2), - de calculer le rendement quantique de photosynthèse aux profondeurs où les courbes photosynthèse/lumière ont été réalisées (J.M. André et N. Sadoudi, ce volume), - d'interpréter les mesures d'éclairements aux longueurs d'onde du MER-1012 (E. Pouliquen, ce volume).

# 2 - PRINCIPE DE LA METHODE

La concentration des particules est si faible dans l'eau de mer pour une mesure directe au spectrophotomètre qu'il est nécessaire de concentrer l'échantillon. On mesure alors l'absorption du matériel retenu sur un filtre. La méthode de Kishino *et al.* (1985,1986) est utilisée pour déterminer les différentes composantes de l'absorption, particulaire et détritique. On a repris ici la technique décrite par Bricaud et Stramski (1990) en l'adaptant au spectrophotomètre Beckman DU 26 du laboratoire de Biotechnologie Marine de l'ORSTOM. Cette technique requiert une correction *a posteriori* de l'effet bêta (provenant de la multidiffusion à travers le filtre, voir plus loin). Les algorithmes de correction résultent de la comparaison des spectres de particules en suspension avec ceux obtenus sur les particules retenues sur un filtre. Cette étude requérant l'utilisation d'une sphère intégrante, n'a pas été développée à l'ORSTOM. On a eu recours à l'algorithme de Mitchell (1990), que l'on compare à l'algorithme de Moore *et al.* (1995).

# **3- ECHANTILLONNAGE**

L'eau a été prélevée à l'aide des bouteilles NOEX de 10,7 L. Cinq litres d'eau de mer ont été filtrés systématiquement lors de FLUPAC, ceci dans le but d'obtenir des densités optiques suffisantes sur l'ensemble du spectre d'absorption (350-800nm). La filtration a eu lieu sur filtre Whatmann GF/F de 25 mm sous un vide réduit (< 20 hPa). Celle-ci est interrompue avant l'assèchement du filtre pour préserver l'état des cellules sur le filtre (un film de substrat est laissé sur le filtre). Malgré le grand volume filtré, un seul colmatage a été observé à 20 m à la station 97 du point fixe 2 à 15:00. Deux ralentissements de la filtration ont été observés : l'un à 30 m à la station 90, l'autre à 40 m à la station 92 : l'examen au microscope à épifluorescence a permis d'observer de nombreux amas de *Synechococcus*. Aucune dégradation de la composition pigmentaire des échantillons n'a été observée au cours de la campagne.

## 4 - MESURE DES SPECTRES DE LA DENSITE OPTIQUE SUR FILTRES GF/F

#### 4-1 - Spectres de la densité optique du matériel particulaire

Les spectres de la densité optique du matériel particulaire sur filtre (Dofiltrep ( $\lambda$ )) ont été mesurés directement sur les filtres au sortir de la filtration sur un spectrophotomètre BECKMAN DU 26, sur l'ensemble du spectre visible (350-800 nm). Le spectrophotomètre était équipé d'un porte-filtre spécialement conçu pour rapprocher suffisamment les filtres du photodétecteur, ceci pour minimiser la perte de lumière due à la diffusion. Dans cette configuration, le filtre blanc et le filtre échantillon font face au photodétecteur. Un filtre blanc saturé d'eau de mer filtrée (EMF) servait de référence et était changé à chaque série de 6 à 8 échantillons (typiquement, une station). Le filtre échantillon était également re-saturé d'EMF avant sa mesure (pas trop pour conserver son adhésion au porte-filtre par capillarité). A ces conditions, la reproductibilité des mesures est assurée. Une ligne de base moyenne représentative de mesures sur filtres a été obtenue en utilisant deux filtres blancs également saturés d'EMF. Les résultats sont reportés en figure 1 pour 17 lignes de base. La dérive de la DO entre 800 à 350 nm n'est significative (légère pente positive de 800 à 350 nm) que lorsque la saturation en eau disparaît (tendance au séchage au cours de la mesure). Elle reste négligeable en regard des DO mesurées dans les conditions de saturation maximale des filtres en EMF.



Figure 1. Dérive moyenne de la densité optique lors du défilement des longueurs d'onde de 800 à 350 nm pour deux filtres blancs saturés d'eau de mer filtrée. Effet de l'assèchement du filtre en cours de mesure.

## Effet du volume sur la densité optique mesurée sur filtre GF/F

En eau oligotrophe, il est nécessaire de filtrer un grand volume, afin que la densité optique sur filtre dépasse la valeur seuil de 0,2 (au-dessus de laquelle l'effet bêta\* se stabilise) et que cette condition soient assurée au moins aux maxima d'absorption. Afin de tester la proportionnalité de la DO avec le volume filtré, des filtrations de volume croissant ont été effectuées sur des échantillons d' eau oligo- et mésotrophe (figure 2 a, b).

Les volumes filtrés ont varié de 0,5 à 7 L. D'après nos mesures, on constate que la DO est proportionnelle au volume pour une eau oligotrophe contenant 0,06 mg/m<sup>3</sup> de chl *a* (figure 2a). Par contre, pour l'échantillon d'eau le plus riche de la campagne (chl a > 0,45 mg m<sup>-3</sup>), la saturation intervient à partir d'un volume filtré de 3,5 L, c'est-à-dire à partir d'une DO de 0,35 (figure 2b). Cette valeur seuil de 0,2 en DO n'a été dépassée que dans quelques cas seulement lors de FLUPAC pour certains échantillons riches en pigments. La majorité des spectres mesurés lors de la campagne n'est affectée que par un effet bêta constant et réduit à son minimum, c'est-àdire que les maxima et minima d'absorption sont bien définis lors de la mesure au spectrophotomètre. L'effet de la sous-estimation de la DO aux très fortes concentrations sur les valeurs du coefficient d'absorption est présenté au paragraphe 6-1.

\*L'effet bêta, ou allongement du trajet optique à l'intérieur du filtre dû à la multidiffusion a pour effet d'augmenter artificiellement la DO mesurée sur le filtre par rapport à la DO mesurée sur une suspension. Cet effet décroît avec la DO et se stabilise à 2 à partir d'une DO de 0.2 (Mitchell, 1990).

# 4-2- Spectres de densité optique du matériel détritique

L'absorption de la lumière par le phytoplancton n'est pas due aux seuls pigments photosynthétiques, mais pour une part non négligeable (Kishino *et al.*, 1985, 1986 ; Bricaud et Stramski, 1990) aux détritus présents dans l'eau de mer. En bref, on rappelle que par la méthode de Kishino, les spectres d'absorption obtenus après extraction dans le méthanol sont influencés par un ensemble de matériel détritique d'origine mixte, comprenant : 1) les détritus contenus dans l'eau de mer, 2) les cellules algales dépigmentées (parois cellulaires), 3) les pigments non extractibles par le méthanol (pigments accessoires tels les phycobilines). Les phéopigments et les pigments dégradés contenus dans l'eau de mer étant extraits par le méthanol sont exclus de la mesure de la partie détritique.

Moins de 3 mois après la campagne, les spectres de la densité optique du matériel détritique (DO<sub>filtrep</sub> ( $\lambda$ )), ont été mesurés par la méthode de Kishino *et al.* (1985, 1986) sur les filtres ayant servi pour mesurer la densité optique du matériel particulaire à bord, conservés pendant la campagne à -60°C, puis transférés à -20°C. Ceux-ci ont été décongelés directement par immersion dans le méthanol 90%. Les volumes d'extraction ont varié de 50 ml à 100 ml (200 ml dans les cas d'une eau mésotrophe : chl a > 0,2 mg m<sup>-3</sup>). Une légère agitation a été apportée aux récipients contenant les filtres. L'extraction durait en moyenne 30 mn (l'allongement du temps d'extraction à 12h n'a pas apporté de modification significative des spectres). Les spectres de DO<sub>filtre</sub>d présentent parfois une absorption résiduelle à 670 nm et à 430 nm : il s'agit des spectres de DO<sub>filtre</sub>d mesurés à bord où la dégradation totale des pigments n'a pas été complète (stations 21, 30, 31, 37, 42, 54, 63). L'ensemble des spectres de Dod mesurés au laboratoire présente une décroissance exponentielle de 350 à 800 nm (Bricaud et Stramski, 1990).



**Figure 2 a,b**. Effet du volume filtré sur la densité optique et le coefficient d'absorption particulaire. a) eau oligotrophe prélevée à 20m (au-dessus du maximum de chlorophylle) (b) eau prélevée à 90 m (dans le maximum de chlorophylle). Station 45 du point fixe 1.

### 5 - TRAITEMENT DES SPECTRES DE DOp ET DOd

La connexion spectrophotomètre-AT a été réalisée grâce à une carte d'acquisition analogique-numérique pour PC (Metrabyte). Le pas d'échantillonnage était de 0.10466 nm (fréquence de 16 Hz). Le déclenchement de l'enregistrement, manuel, correspond à 800 nm. Les spectres sont recalés en longueurs d'onde, connaissant le t0 de départ et la vitesse de défilement (100 nm/mn). Les spectres sont ensuite filtrés du bruit instrumental (variations haute-fréquence dues à la forte sensibilité de l'appareil) par un filtre d'ordre 3 (librairie Fortran NAG) avec un écart-type moyen de 2,3  $10^{-4}$  pour les spectres de DOp mesurés à bord et de 4  $10^{-4}$  pour les spectres de DOfiltred mesurés au laboratoire. Les spectres sont ré-échantillonnés avec un pas en longueur d'onde de 1 nm. Ils sont ensuite groupés par station afin de faciliter leur traitement automatique, consistant en : 1) soustraction de la DOfiltrep,d (798 nm) (à 798 nm, une absorption résiduelle spectralement neutre peut subsister) et 2) une élimination des valeurs enregistrées audessus de 350 nm.

#### 6- CALCUL DES COEFFICIENTS D'ABSORPTION

#### 6-1- Absorption particulaire et détritique, ap et ad

Les DOfiltrep,d ( $\lambda$ ) ont été transformées en valeurs d'absorption ap,d ( $\lambda$ ) par (1) :

ap,d (
$$\lambda$$
) = 2,3 DOp,d ( $\lambda$ ) s/V en m<sup>-1</sup> (1)

2,3 permettant de passer de log10 à loge, s la surface utilisée pour la filtration (en m<sup>2</sup>), V le volume total filtré (en m<sup>3</sup>). Le calcul des densités optiques d'une suspension équivalente à celles mesurées à l'aide des filtres Whatmann GF/F (correction de l'effet bêta) a été faite en utilisant l'équation du polynôme de second degré (2) avec les coefficients de Mitchell (1990). Les coefficients de Cleveland et Weidemann (1994) n'ont pas été retenus car très proches de ceux de Mitchell. Cet algorithme s'applique aux valeurs de DOf<sub>filtre</sub> comprises entre 0,05 et 0,4, ce qui correspond à l'intervalle de valeurs mesurées à FLUPAC.

| DO suspension ( $\lambda$ ) = C1 * DO filtre ( $\lambda$ ) + C2 ( DO filtre ( $\lambda$ | $())^{2}$ ( | (2) |
|-----------------------------------------------------------------------------------------|-------------|-----|
|-----------------------------------------------------------------------------------------|-------------|-----|

| Auteurs                      | C1    | C2    |
|------------------------------|-------|-------|
| Cleveland & Weidemann (1994) | 0,378 | 0,523 |
| Mitchell (1990)              | 0,392 | 0,655 |
| Moore et al. (1995) :        |       |       |
| - Prochlorococcus marinus    | 0,291 | 0,051 |
| - Synechococcus WH8103       | 0,304 | 0,450 |
| - Thalassiosira weissflogii  | 0,299 | 0,746 |

Tableau 1. Différents coefficients C1 et C2 utilisés pour la correction de l'effet bêta.

On a donc :

ap (d) ( $\lambda$ ) = C1 DO filtre ( $\lambda$ ) + C2 (DO filtre ( $\lambda$ ))<sup>2</sup> \* s / V en m<sup>-1</sup> (3)

La différence entre les spectres ap  $(\lambda)$  et ad  $(\lambda)$  avant et après extraction est considérée comme une estimation de l'absorption du phytoplancton seul (4) :

aphy  $(\lambda) = ap(\lambda) - ad(\lambda)$  en m<sup>-1</sup> (4)

Le coefficient d'absorption spécifique est obtenu par normalisation par la concentration en pigments photosynthétiques, classiquement par :

 $a^{*}ph(\lambda) = aphy(\lambda) / (chla+div-chla)$  en m<sup>2</sup> mg (chla+div-chla)<sup>-1</sup> (5)

### 6-2- Effet du volume, de l'effet bêta et de l'algorithme employé sur ap,ad et a\*ph

La figure 2 a, b permet de montrer la diminution du coefficient d'absorption particulaire à 440 nm pour des volumes filtrés croissants de 0,5 à 7 L. Pour un volume de 5 L, la sousestimation de ap atteint 17% en eau oligotrophe et mésotrophe.

La figure 3 a, b présente l'effet de la correction de l'effet bêta sur les spectres d'absorption pour un volume filtré croissant, dans le cas d'une eau oligotrophe (a) et d'une eau mésotrophe (chl a > 0,2 mg m-3 (b). La figure montre qu'une filtration de 5 L est nécessaire même pour une eau mésotrophe pour obtenir une correction efficace de l'effet beta (meilleure définition des maxima dans la région bleue et des minima entre 500 et 600 nm).



**Figure 3 a, b.** Effet de la correction de l'effet bêta (coefficients de Mitchell, 1990) pour différents volumes filtrés de la station 45 du point fixe 1. Les concentrations en chl *a* sont celles de la station 44. a) eau oligotrophe prélevée à 20 m, au-dessus du maximum de chlorophylle, et contenant 0,06 mg m<sup>-3</sup> de chl *a*, et b) eau prélevée à 90 m , dans le maximum profond de chlorophylle , et contenant 0,40 mg m<sup>-3</sup> de chl *a*. *L'effet bêta diminue avec la DO et se stabilise à 2 pour une DO de 0,2. Son effet est donc plus faible aux maxima d'absorption et au contraire plus important aux minima. On constate qu'à partir d'un volume filtré de 5 L, les spectres d'absorption atteignent une forme stable.* 

# Comparaison des algorithmes de Mitchell (1990) et Moore et al. (1995)

Deux algorithmes du tableau 1 (Mitchell) et (Moore-Prochlorococcus) ont été utilisés pour une station de la zone oligotrophe dont la biomasse est dominée par Prochlorococcus (station 68 de la radiale équatoriale : entre 70 000 et 150 000 Prochlorococcus/ml, entre 600 et 4000 Synechococcus/ml et environ 500 microalgues/ml, données de cytométrie en flux, données fournies par J. Blanchot), à laquelle s'applique particulièrement l'algorithme Moore-Prochlorococcus.

L'utilisation de l'algorithme de Moore-Prochlorococcus donne des coefficients d'absorption deux fois plus faibles que ceux calculés avec l'algorithme de Mitchell, et donc des valeurs du coefficient d'absorption spécifique deux fois plus élevées que l'algorithme de Moore *et al.* (1995). A la station 68, on obtient : a\*ph (440 nm) Mitchell =0.16 m<sup>2</sup> mg (chla+div-chla)<sup>-1</sup>, a\*ph (440 nm) Moore = 0.08 m<sup>2</sup> mg (chla+div-chla)<sup>-1</sup>.

# 7 - MESURES DE DENSITE OPTIQUE PARTICULAIRE (A BORD) ET DETRITIQUE (AU LABORATOIRE).

L'ensemble des mesures de  $ap(\lambda)$  et  $ad(\lambda)$  effectuées à FLUPAC est représenté au **tableau** 2. 88 stations (sur la totalité des 126) ont été échantillonnées, également réparties sur l'ensemble de la campagne. En moyenne, 8 profondeurs par station ont été échantillonnées, ce qui a permis de résoudre raisonnablement la variation verticale des coefficients d'absorption.

620 spectres de ap ont été mesurés à bord, et 600 spectres de ad ont été mesurés au laboratoire.

## **8 - FICHIERS DE DONNEES**

Pour chaque station, deux fichiers de format identique correspondant aux spectres des coefficients d'absorption particulaire et détritique obtenus aux différentes profondeurs sont stockés dans la base de données. Chaque spectre de ap (ad) est stocké au pas de 1 nm sur l'intervalle 800-350 nm (450 valeurs de ap et de ad). Les spectres de a\*ph ne sont pas stockés puisque facilement obtenus par normalisation par les concentrations en pigments (chla+div-chla, en mg m<sup>-3</sup>).

Pour calculer les coefficients d'absorption, les valeurs des différents paramètres suivants ont été prises :

- coefficients C1 et C2 de Mitchell, 1990

- surface de filtration unique et égale
  - $s = 294,756 \ 10^{-6} \ m^2$

- V = 5 L pour tous les échantillons sauf aux stations 2 à 5m (3,5 L), station 37 à 5m (4,5 L), station 43 à 5m (2,5 L), station 67 à 5 m (4,25 L), station 71 à 5m (4,5 L), station 75 à 5 m (2,5 L), station 77 à 20m (4,5 L), station 81 à 5m (4,5 L), station 98 à toutes les profondeurs (2,5 L).

<u>Unités</u> :

| Les résult | ats sont exprimés en :               |
|------------|--------------------------------------|
| ар         | $\mathbf{m}^{-1}$                    |
| ad         | $m^{-1}$                             |
| a*ph       | $[m^2 mg (chl a + div chl a)^{-1})]$ |

| Tat           | Tableau 2. Mesures des coefficients d'absorption du phytoplancton pendant la campagne FLUPAC |        |           |            |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                     |                    |          |            |                    |                     |           |
|---------------|----------------------------------------------------------------------------------------------|--------|-----------|------------|---------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|--------------------|----------|------------|--------------------|---------------------|-----------|
| 04 × /D × × 6 | **                                                                                           | mesure | des spect | tres de DO | D particul    | aire à bor    | d et détri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tique au l          | aboratoir           | 9                  |          | en grisé,  | courbes            | P/1                 |           |
| Sta/Prof      | 180m                                                                                         | 160m   | 140m      | 120m       | 110m          | 100m          | 90m_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80m                 | 70m                 | 60m                | 50m      | 40m        | 30m                | 20m                 | <u>5m</u> |
| 2             | **                                                                                           |        | ••        |            | **            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ••                  |                     | ••                 |          |            |                    | **                  |           |
| 4             |                                                                                              |        | -         |            |               | ••            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | **                  | **                 |          |            |                    |                     |           |
| 5             |                                                                                              |        |           |            |               |               | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                     |                    |          |            |                    |                     |           |
| 8             |                                                                                              |        |           |            |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. 1                |                     |                    |          |            |                    | (                   | * *       |
| 9             |                                                                                              | -      |           | ••         | ē (           | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                  |                     |                    |          | ••         |                    | ** ]                |           |
| 11            |                                                                                              |        | ••        | **         |               |               | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                     | **                 |          |            |                    |                     |           |
| 12            |                                                                                              |        |           | **:        | I             |               | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | **                  | ••                 |          |            |                    | ••                  | **        |
| 14            |                                                                                              |        |           |            |               | **            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and a second second |                     |                    | ••       |            |                    |                     |           |
| 15            |                                                                                              |        |           |            |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                   | and the owner water | 1999 - A.          |          |            |                    |                     | **        |
| 10            |                                                                                              | 1.000  |           | **         |               |               | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                     |                    | -        |            | _                  |                     |           |
| 21            |                                                                                              |        |           | ••         |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                  |                     |                    | -        | 1.000      |                    | 1                   |           |
| 22            |                                                                                              | **     |           | **         | **            | **            | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | **                  |                     | ••                 |          |            |                    | 1                   |           |
| 24            |                                                                                              |        | **        |            | * *           |               | Protection of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | **                  |                     |                    |          | • •        |                    |                     | * *       |
| 25            |                                                                                              |        | ••        |            | **            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ••                  |                     |                    |          | ••         |                    |                     | ••        |
| 26            |                                                                                              | **     | ••        |            | ••            | **            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ••                  |                     | **                 |          | ••         |                    | **                  | **        |
| 27            |                                                                                              |        |           |            | ••            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                     |                    |          |            |                    |                     |           |
| 30            | ••                                                                                           | **     |           | **         |               |               | DA MER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                     |                    |          | **         |                    | Sec.                |           |
| 33            |                                                                                              |        | • •       | **         | ••            |               | A Real Property lines and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                     |                    | **       | ••         |                    | A CONTRACTOR        | _         |
| 36            |                                                                                              |        | **        | ••         | ••            | ••            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                     |                    |          |            |                    |                     | • •       |
| 37            | **                                                                                           |        | • •       |            | **            | **            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • •                 |                     | **                 |          |            |                    | 1.0                 | **        |
| 39            | * *                                                                                          |        | **        |            |               | **            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ••                  |                     | ••                 | **       |            | 1                  |                     |           |
| 42            |                                                                                              |        | **        |            | ••            | ••            | Service of the servic | ••                  |                     |                    |          | **         |                    |                     | • •       |
| 43            |                                                                                              | **     | **        |            | **            | ALC: NO.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                  |                     | ••                 |          |            |                    | STAR I              | * *       |
| 45            | 90m                                                                                          | 500ml  | 1L        | 2L         | 3L            | 4L            | 5L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6L                  | 7L                  |                    |          |            |                    |                     |           |
| 45            | 20m                                                                                          | 500ml  | 1L        | 2L         | 3L            | 4L            | 5L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6L                  | /L                  | and the second     |          |            |                    | in the second       |           |
| 40            |                                                                                              |        | **        | **         | •••           | ••            | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | <u> </u>            |                    |          |            |                    | •• [                |           |
| 50            |                                                                                              | ••     | **        |            | **            | 1.0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                     |                    |          |            |                    | 10000               | ••        |
| 54            |                                                                                              |        | **        | **         | ••            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                  |                     | **                 |          | **         |                    |                     | •         |
| 56            |                                                                                              | ·      |           | •          |               |               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>            | •                   | *                  |          | *          |                    |                     | •         |
| 57            |                                                                                              | •      |           |            |               | ALL THE       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                   |                     |                    |          | ••         |                    |                     | ••        |
| 59            |                                                                                              |        | ••        | **         |               | N REAL        | ET LOD BI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | ••                  | **                 |          | ••         |                    |                     |           |
| 62            |                                                                                              | ••     |           |            |               |               | Contraction of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                     |                    |          |            | and the second     |                     | -         |
| 63            |                                                                                              |        |           | **         | CONTRACTOR OF | **            | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | <u> </u>            |                    |          |            |                    |                     | **        |
| 65            |                                                                                              | • •    | ••        | **         |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                  | **                  | * •                |          |            |                    | 1                   | ••        |
| 66            | <u> </u>                                                                                     |        | ••        |            |               | **            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>            |                     |                    |          |            | **                 |                     | **        |
| 67            | _                                                                                            | ••     | •         | **         | Carlo and     |               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | **                  | **                  |                    | ••       |            |                    | Constant.           | **        |
| 68            |                                                                                              |        | * *       | ••         |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | ••                  |                    |          |            |                    |                     |           |
| 69            |                                                                                              |        | ••        |            |               |               | 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · ·               |                     | **                 |          |            |                    | 2000                | **        |
| 70            |                                                                                              |        | ••        |            |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 **                |                     |                    |          |            |                    |                     |           |
| 71            |                                                                                              | •      |           |            | -             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | <u> </u>            |                    |          |            |                    |                     |           |
| 72            | <u> </u>                                                                                     | **     |           | ••         |               |               | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | **                  | 1                   |                    |          | <b>.</b> . |                    | Contraction of the  | ••        |
| 74            |                                                                                              |        | •••       |            | ••            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                  |                     |                    |          |            | 1                  | **                  |           |
| 75            |                                                                                              | **     | •         | ••         |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                  |                     |                    |          | **         | • •                |                     | * *       |
| 76            |                                                                                              |        |           | **         |               | **            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                     | **                 | 1        | * *        |                    |                     | • •       |
| 77            |                                                                                              |        | ••        | ••         |               | 0.4.4.00      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ••                  |                     |                    | **       | **         |                    |                     | • •       |
| 78            |                                                                                              | ••     |           | **         |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                     |                    |          | ••         | ļ                  | **                  | ••        |
| 79            |                                                                                              |        |           | **         |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | <u> </u>            |                    |          |            |                    |                     |           |
| 80            |                                                                                              |        |           |            | -             |               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +                   |                     |                    |          |            |                    |                     |           |
| 83            |                                                                                              |        | •         | +          |               | S             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | **                  |                     |                    |          | **         |                    |                     |           |
| 84            | -                                                                                            | 1      | * •       |            |               | **            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • •                 |                     | **                 | -        | **         | +                  |                     | <b>.</b>  |
| 85            |                                                                                              |        | ••        |            |               | T. O.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                  |                     |                    |          |            | ••                 | 0 19.00             |           |
| 86            |                                                                                              |        | **        |            |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | **                  |                     |                    | ••       |            |                    | •• ]                |           |
| 89            |                                                                                              |        | ••        |            |               |               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | **                  |                     | Range              |          | +          | 1 **               | Same .              | **        |
| 90            |                                                                                              |        | **        |            |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                     |                    |          |            | Contraction of the |                     |           |
| 92            |                                                                                              | +      | **        | +          |               | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                     |                    |          | **         | **                 |                     | **        |
| 96            |                                                                                              |        | **        |            |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ••                  |                     | **                 |          | **         | 1                  | 1                   | **        |
| 97            |                                                                                              |        | **        |            |               | The second    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • •                 |                     |                    |          | ••         |                    |                     | • •       |
| 98            |                                                                                              |        | * *       |            |               | •             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | **                  | ••                  | 1                  | 1 **     | ••         | • •                |                     | ••        |
| 101           |                                                                                              |        |           | ••         |               | Constant of   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ••                  | ļ                   |                    |          | **         |                    |                     | **        |
| 102           |                                                                                              |        | **        |            |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ••                  |                     | 1. 20-             |          |            |                    | The second          | **        |
| 103           |                                                                                              |        | **        |            |               | **            | ι <u>μ</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | **                  | +                   | Contraction of the |          | + *        | **                 | and all the         | **        |
| 104           | +                                                                                            | + -    | **        |            |               |               | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                     | **                 |          | **         | 1                  |                     | **        |
| 108           | 1                                                                                            | +      | •         |            |               |               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                   |                     |                    | 5        | •          |                    | -                   | *         |
| 109           | 1                                                                                            |        | ••        |            |               | No the second | ř                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | **                  |                     | 10.000             |          | **         |                    |                     |           |
| 110           |                                                                                              |        | •         |            |               |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                   |                     |                    | 1        | •          |                    | 1 • ]               | *         |
| 113           |                                                                                              |        | ••        |            | _             | **            | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                     | - X*1              | L        | •          |                    | **                  | ••        |
| 114           |                                                                                              | -      | ••        |            | -             |               | Ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | +                   |                    | 2        | **         |                    | 1                   |           |
| 115           |                                                                                              | +      |           | -          |               | Mark Street   | ų — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +                   |                     | and the same       | ι        |            | **                 | 1                   |           |
| 115           | +                                                                                            |        |           | •          | +             |               | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                     | 1                  | +        | +          | <u> &lt;əµ</u>     | sip                 |           |
| 119           | 1                                                                                            | +      |           |            | <u> </u>      |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                   |                     | •                  | <u> </u> |            | •                  |                     |           |
| 1195          |                                                                                              |        |           |            |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                     | **                 |          |            | **                 | 1                   | 200       |
| 120           |                                                                                              |        |           |            |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                     | **                 |          |            | **                 |                     |           |
| 121           |                                                                                              |        |           |            |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                     |                    |          |            | •                  |                     | -         |
| 122           |                                                                                              |        |           |            |               |               | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                     | <u>  * &lt;1</u> µ | ·        |            |                    | <u>  * * &lt;1µ</u> | 100       |
| 123           |                                                                                              |        |           | -          |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                     |                    | +        |            |                    | +                   |           |
| 124           | · · ·                                                                                        |        | +         |            | +             |               | + -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                     | **                 |          |            |                    |                     | ••        |

ふうみ 橋口

# 9 - EXEMPLE DE SPECTRES D'ABSORPTION ap, ad, ET a\*ph.

ł

A titre d'exemple, la figure 4 a,b,c présente les spectres d'absorption a) particulaire, b) détritique et c) spécifique de la station 68 de la radiale équatoriale (structure stratifiée). On note que les spectres de ap de l'eau de surface et du maximum profond de chlorophylle (situé à 110 m) présentent des maxima à 443 et 670 nm (figure 4 a, voir Dupouy-Douchement, 1995). Pour les eaux situées en dessous (120 et 140m), on note l'apparition du deuxième pic de la région bleue à 480 nm, causée par l'augmentation en profondeur de la concentration en chlorophylle b et divinyl chl b relativement à la chlorophylle a. Les spectres de ad (figure 4b) présentent une forme exponentielle décroissante (le spectre obtenu à 100 m est nettement plus fort que ceux obtenus aux autres profondeurs, sa charge en matériel détritique était visuellement importante à cette profondeur. Les spectres du coefficient d'absorption spécifique (figure 4c) sont nettement plus élevés pour les eaux de surface (a\*ph (440) =  $0.15 \text{ m}^2 \text{ mg} (\text{chl } a + \text{div chl } a)^{-1}$ ), qu'au maximum de chlorophylle ( $0.075 \text{ m}^2 \text{ mg} (\text{chl } a + \text{div chl } a)^{-1}$ ).

La figure 5 a, b montre que les spectres d'absorption spécifique, a\*ph, obtenus pour une eau oligotrophe stratifiée (station 68, chl a = 0,06 mg m<sup>-3</sup> en surface, et 0,3 mg m<sup>-3</sup> au maximum profond) et une eau riche en chlorophylle du haut en bas de la zone euphotique, située dans l'upwelling (station 81, chl a = 0,3 mg m<sup>-3</sup>) diffèrent essentiellement par l'intensité des coefficients d'absorption des eaux de surface à 20 m (Dupouy-Douchement *et al.*, 1995).

La figure 6 a, b montre que la variation verticale de a\*ph (440nm) est importante en eaux oligotrophe, et plus faible en eau riche en chlorophylle dans l'upwelling (station 81).

## **10 - PRESENTATION DES RESULTATS**

Sont présentées aux **figures 7abc**, **8abc**, **9abc**, **10abc**, les coupes verticales des coefficients d'absorption spécifique a\*ph, particulaire ap, et détritique ad, pour la radiale à 165°E, le point fixe 1 à 167°E, la radiale équatoriale entre 167°E et 152°W, et le point fixe 2 à 152°W. Les caractéristiques des interpolations (logiciel Spyglass, filtre Kernel) sont, en horizontal, de 1° en latitude ou en longitude pour les radiales, de 1 station pour les points fixes, et en vertical de 10m (profondeur). Les points de mesure sont indiqués.

#### REMERCIEMENTS

Je remercie Annick Bricaud, Directeur de Recherche CNRS, de m'avoir initié à la méthode de mesure de l'absorption lors de mon stage à Villefranche-sur-Mer, Cécile Debitus, responsable du laboratoire de Biotechnologies Marines de l'ORSTOM de nous avoir prêté le spectrophotomètre Beckman DU 26 du SMIB pour l'année de test (1993) et l'embarquement sur l'Atalante. L'adaptation du spectrophotomètre et la liaison spectrophotomètre/AT ont été réalisés par Jean Yves Panché et Pierre Desfontaines, du laboratoire d'électronique du Centre ORSTOM de Nouméa, et le logiciel d'acquisition par Bruno Buisson, informaticien du Centre ORSTOM de Nouméa. Les coefficients d'absorption spécifique du phytoplancton sont normalisés grâce aux concentrations en pigments mesurés par spectrofluorométrie fournis par Jacques Neveux (CNRS, Banyuls-sur-Mer).



Figure 4 a, b, c. Exemples de spectres des coefficients d'absorption a) particulaire b) détritique et c) spécifique (normalisé par la somme chl a + div chl a). Station 68 à 178,53 ° W de la radiale équatoriale. Le maximum profond de chlorophylle (0,3 mg m<sup>-3</sup>) est situé à 110 m.

En trait plein, spectres d'échantillons prélevés au-dessus du maximum profond de chlorophylle, aux profondeurs 20 m, 70 m, 80 m , et 100 m, dans le maximum profond de chlorophylle à 110m; en tiretés, spectres d'échantillons prélevés en dessous du maximum profond de chlorophylle. à 120 m et 140 m.



Figure 5 a, b. Comparaison de spectres obtenus dans le cas a) d'une eau oligotrophe ( chl  $a = 0,06 \text{ mg m}^{-3}$ ) avec maximum profond de chlorophylle. Station 68 à 178.53°W et b) d'une eau mésotrophe homogène (chl  $a = 0, 30 \text{ mg m}^{-3}$ ). Station 81 à 153.01°W. Radiale équatoriale.

FLUPAC 0 178.53W station 68, 24 h FLUPAC 0 153.01W station 81, 12 h Pacifique Ouest Pacifique Central 0.20 b a 0.15 a\*ph (440 nm) 0.10 0.05 0.00 0 50 100 150 0 50 100 150 prof (m) prof (m)

Figure 6 a, b. Profils verticaux des coefficients d'absorption spécifiques à 440 nm, a\*ph (440 nm), obtenus dans le cas a) d'une eau oligotrophe ( chl  $a = 0.06 \text{ mg m}^{-3}$ ) Station 68 à 178,53°W b) d'une eau mésotrophe ( chl  $a = 0.30 \text{ mg m}^{-3}$ ) à la station 81 à 153.01°W. Radiale équatoriale.

# REFERENCES

- BRICAUD A. and D. STRAMSKI, 1990. Spectral absorption coefficients of living phytoplankton and non algal biogenous matter : A comparison between the Peru upwelling area and Sargasso Sea. *Limnology and Oceanography*, 35, 562-582.
- DUPOUY-DOUCHEMENT C., 1995. Phytoplankton absorption properties in the western Equatorial Pacific at an oligotrophic site (October 1994, Equator, 166°), *in* : "Structure and dynamics of oligotrophic ecosystems : evolution of concepts", A. Bricaud (Ed., Actes du colloque Villefranche s/m : 12-13 janv. 1995, p. 68-71.
- DUPOUY-DOUCHEMENT C., BLANCHOT J., NEVEUX J. and A. LE BOUTEILLER, 1995. Phytoplankton absorption properties from oligotrophy to mesotrophy along the Equator as related to algal counts and pigments. *in* : "Carbon cycle of the equatorial Pacific ocean". NATO-ARW, Nouméa : 19-23 juin 1995.
- DUPOUY-DOUCHEMENT C., BLANCHOT J., LE BOUTEILLER A. and J. NEVEUX, 1995. Variations in the light absorption properties of phytoplankton in the equatorial Pacific : oligoto mesotrophy. *in* : "Photosynthesis and remote sensing. Satellite meeting of the 10th International congress of photosynthesis ", Montpellier : 28-30 août 1995. (sous presse).
- KISHINO M., TAKAHASHI M., OKAMI N., and S. ICHIMURA, 1985. Estimation of the spectral absorption coefficients of phytoplankton in the sea. *Bull. Mar. Sci.* 37: 634-642.
- KISHINO M., OKAMI N., TAKAHASHI M. and ICHIMURA S., 1986. Light utilization efficiency and quantum yield of phytoplankton in the sea. *Bull. Mar. Sci.* 37, 634-642.
- MITCHELL, G. 1990. Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique. *Applied Optics* X, SPIE, 1302, 137-148.
- MOORE L.R., GOERICKE R., and S.W CHISOLM, 1995. Comparative physiology of *Synechococcus* and *Prochlorococcus* : influence of light and temperature on growth, pigments, fluorescence and absorptive properties. *Mar. Ecol. Prog. Ser.*, 116, 259-275.
- MOREL A., 1991. Light and marine photosynthesis : a spectral model with geochemical and climatological implications. *Prog. Oceanogr.* 26, 263-306.

Figure 7 : a, b, c



latitude en degrés (S/N)

Figure 8 : a, b, c



198

Figure 9 : a, b, c





Chapitre 16b

# Coefficients d'absorption spécifiques du phytoplancton dans le Pacifique équatorial Méthode des lames

Karima ALLALI, Nora SADOUDI, Annick BRICAUD Laboratoire de Physique et Chimie Marines Université Pierre et Marie Curie et CNRS BP 8 06230 Villefranche-sur-Mer, France (Tel : (33) 93 76 37 12 - Fax : (33) 93 76 37 39 - Email : karima@ccrv.vlfr-obs.fr, nora@ccrv.vlfr-obs.fr, annick@ccrv.vlfr-obs.fr)

## **INTRODUCTION**

Le travail effectué durant la campagne FLUPAC a été centré sur les objectifs suivants :

- Déterminer les coefficients spectraux d'absorption des populations naturelles en utilisant une nouvelle technique de mesure d'absorption récemment développée (Allali *et al.*, sous presse).
- Quantifier les variations spatiales des coefficients d'absorption spécifique du phytoplancton le long de la radiale parcourue.
- Permettre, en combinant les mesures des coefficients d'absorption et des courbes lumièrephotosynthèse (N. Sadoudi et J. M. André), le calcul du rendement quantique de fixation de carbone et l'étude de ses variations spatiales.

#### **METHODOLOGIE**

Les prélèvements d'eau ont été réalisés à l'aide de bouteilles NOEX le long de la radiale équatoriale entre 170°E et 153°W, simultanément à ceux effectués pour les courbes lumière-photosynthèse. Les stations ont été échantillonnées à trois profondeurs, au niveau et de part et d'autre du maximum profond de chlorophylle.

Les coefficients d'absorption de la matière particulaire totale ont été déterminés en utilisant une nouvelle technique de mesure (Allali *et al.*, sous presse). Brièvement, celle-ci consiste à concentrer les particules marines sur filtre Nuclepore (porosité =  $0.4\mu$ m), transférer ensuite le matériel filtré sur une lame de microscope en utilisant la congélation dans l'azote liquide et enfin mesurer le spectre d'absorption particulaire sur la lame, en référence à la même lame sans dépôt; les spectres ont été mesurés entre 350 et 750 nm, en utilisant une sphère intégratrice connectée par fibre optique à un spectroradiomètre LICOR (LI-1800UW) (cf. Lazarra *et al.*, soumis).

A partir de ces spectres, les coefficients d'absorption du phytoplancton vivant et des particules non-pigmentées ont été déterminés en utilisant une technique de décomposition numérique (Bricaud et Stramski, 1990). Les coefficients d'absorption du phytoplancton vivant ont été normalisés par la concentration en chlorophylle a + divinyl chlorophylle a, déterminée par HPLC (H. Claustre), afin d'obtenir les coefficients d'absorption spécifiques.

# **EXEMPLE DE RESULTATS**

La figure 1 représentant la station 21 (165°E), illustre les variations verticales des coefficients d'absorption de la matière particulaire totale  $(a_p)$ , des particules non-pigmentées  $(a_d)$ , et les coefficients d'absorption spécifiques du phytoplancton  $(a_{ph} *)$ .



Figure 1. Coefficients spectraux d'absorption de la matière particulaire  $(a_p)$ , des particules non-pigmentées  $(a_d)$  et coefficients d'absorption spécifiques du phytoplancton  $(a_{ph}^*)$ , mesurés à la station 21 (165°E) à trois profondeurs.

| STATION | PROF (m) | STATION | PROF (m) | STATION | PROF (m) |
|---------|----------|---------|----------|---------|----------|
| 11      | 20       | 63      | 30       | 113     | 20       |
|         | 60       |         | 90       |         | 60       |
|         | 80       |         | 110      |         | 100      |
| 15      | 20       | 65      | 30       | 115     | 20       |
|         | 60       |         | 100      |         | 60       |
|         | 80       |         | 110      |         | 100      |
| 18      | 20       | 67      | 20       | 119     | 5        |
|         | 70       |         | 90       |         | 10       |
|         | 80       |         | 110      |         |          |
| 21      | 20       | 69      | 20       | 120     | 5        |
|         | 60       |         | 90       |         | 10       |
|         | 90       |         | 110      |         |          |
| 30      | 20       | 71      | 20       | 122     | 5        |
|         | 60       |         | 60       |         | 10       |
|         | 90       |         | 100      |         |          |
| 31      | 20       | 75      | 20       |         |          |
|         | 60       |         | 60       |         |          |
|         | 90       |         | 100      |         |          |
| 36      | 20       | 81      | 5        |         |          |
|         | 60       |         | 20       |         |          |
|         | 100      |         | 60       |         |          |
| 37      | 20       | 83      | 20       |         |          |
|         | 100      |         | 60       |         |          |
|         | 120      |         | 100      |         |          |
| 42      | 20       | 85      | 20       |         |          |
|         | 60       |         | 60       |         |          |
|         | 90       |         | 100      |         |          |
| 43      | 20       | 97      |          |         |          |
|         | 100      |         | 60       |         |          |
|         | 120      |         | 100      |         |          |
| 48      | 20       | 101     | 20       |         |          |
|         | 60       |         | 60       |         |          |
|         | 90       |         | 100      |         |          |
| 50      | 20       | 102     | 20       |         |          |
|         | 90       |         | 60       |         |          |
|         | 100      |         | 100      |         |          |
| 57      | 20       | 103     | 20       |         |          |
|         | 90       |         | 60       |         |          |
|         | 100      |         | 100      |         |          |

# Table 1. Liste des mesures de spectres d'absorption effectuéespendant la campagne Flupac.

Les valeurs spectrales de  $a_{ph}$  \* sont élevées en surface, comparables à celles observées durant la campagne OLIPAC (0.10-0.18 m<sup>2</sup> mg (chla+divchla)<sup>-1</sup>, Allali *et al.*, 1995) ; elles montrent une décroissance quant la profondeur augmente, avec également une déformation spectrale vers 480, 600 et 650 nm, due essentiellement à la chlorophylle *b* et divinyl chlorophylle *b*. Cette décroissance est régie par deux facteurs importants :

- changement dans la composition pigmentaire (en particulier, diminution de la concentration relative en zéaxanthine).
- influence de l'effet de discrétisation de la matière pigmentée ("package effect") qui résulte d'une augmentation de la concentration intracellulaire en (chl *a*+div chl *a*), en réponse à la diminution de l'éclairement disponible (photoadaptation).

# REFERENCES

- ALLALI, K., A. BRICAUD, H. CLAUSTRE, 1995. Vertical variations in the Specific Absorption Coefficients for Natural Phytoplankton in the Equatorial Pacific. First JGOFS International Scientific Symposium, Villefranche-sur-Mer, 8-12 mai 1995. Abstract volume, 39-40.
- ALLALI, K., A. BRICAUD, M. BABIN, A. MOREL, P. CHANG. A new method for measuring spectral absorption coefficients of marine particles. *Limnol. Oceanogr. in press.*
- BRICAUD, A., D. STRAMSKI, 1990. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: A comparison between the Peru upwelling area and Sargasso Sea. *Limnol. Oceanogr.* 35: 562-582.
- LAZARRA, L., A. BRICAUD, H. CLAUSTRE. Spectral absorption and fluorescence excitation properties of phytoplanktonic populations at a mesotrophic and an oligotrophic site in the Tropical North Atlantic (Eumeli program). Soumis à *Deep-Sea Res*.

**Chapitre 17** 

# **PIEGES A SEDIMENTS**

# Martine RODIER

Centre ORSTOM de Nouméa B.P. A5 98848 Nouméa Cedex, Nouvelle-Calédonie (Tél : (687) 26 : 0 00 - Fax : (687) 26 43 26 - Email : rodier@noumea.orstom.nc)

.

.

.





# **INTRODUCTION**

Les pièges à sédiments (ou pièges à particules) sont des instruments qui captent à profondeur choisie, les multiples particules qui sédimentent passivement vers le fond des océans. Pendant la campagne FLUPAC, nous avons mis à l'eau des pièges dérivants constitués de quatre batteries de collecteurs déployées à quatre profondeurs en dessous de la couche euphotique. Les pièges ont été immergés plusieurs fois au cours des deux stations en "point fixe" à l'équateur (167°E et 150°W), pour une durée d'environ 45 h. Après élimination manuelle des "nageurs" et des cadavres de zooplancton, le matériel collecté a été soumis à différentes analyses et observations. Les résultats sont généralement exprimés en termes de flux.

# **MATERIEL ET METHODES**

# 1 - Opérations en mer

# 1.1 - Matériel

Les prélèvements ont été réalisés au moyen d'une ligne dérivante de pièges à sédiments dont le schéma général est donné sur la figure 1. Le système de repérage par balises et lampes flash permet de suivre la dérive de la ligne de mouillage.

Les pièges utilisés (Fig. 2) ont été mis au point par la société TECHNICAP (Cap d'Ail, France). Ces prototypes sont de simples collecteurs cylindriques d'une section de 0.00503 m<sup>2</sup> et d'un volume de 2,850 l, munis d'un système de fermeture (couvercle). Le rapport entre la hauteur et le diamètre, H/D ("aspect ratio"), est de 54 cm / 8 cm, soit 6,5. Six à huit collecteurs individuels répartis autour d'un cadre en inox constituent une "batterie de pièges".


#### Site oligotrophe (167°E)

#### I : 1er déploiement

- Mise à l'eau : 3/10/1995 à 6h50
- Fermeture : 5/10/1995 à 3h30
- Temps de collecte : 44,7 h

#### II : 2ème déploiement

- Mise à l'eau : 5/10/1995 à 9h20
- Fermeture : 7/10/1995 à 3h30
- Temps de collecte : 42,2 h

#### III : 3ème déploiement

- Mise à l'eau : 7/10/1995 à 8h35
- Fermeture : 9/10/1995 à 0h00
- Temps de collecte : 39,4 h

Temps en heure locale (TU + 11)



#### Site mésotrophe (150°W)

#### I : 1er déploiement

Mise à l'eau : 19/10/1995 à 5h30 Fermeture : 21/10/1995 à 3h30 Temps de collecte : 46 h

#### II : 2ème déploiement

Mise à l'eau : 21/10/1995 à 8h42 Fermeture : 23/10/1995 à 3h30 Temps de collecte : 42,8

#### III : 3ème déploiement

Mise à l'eau : 23/10/1995 à 8h30 Fermeture : 25/10/1995 à 3h30 Temps de collecte : 43h

#### IV : 4ème déploiement

Mise à l'eau : 25/10/1995 à 8h30 Fermeture : 25/10/1995 à 21h30 Temps de collecte : 13h

Temps en heure locale (TU -10)

**Tableau 1 :** Déroulement dans le tempsdes différents déploiements



Figure 3 : Dérive du bateau au cours des stations en « point fixe ». Les croix indiquent la position du bateau au moment des remises à l'eau des pièges. Chaque déploiement est numéroté par un chiffre romain. La fermeture des pièges peut être programmée à l'avance grâce à une commande électronique gérée par un microprocesseur. Ce système, intégré dans un boitier étanche et fixé sur la ligne de mouillage au-dessus des pièges (horloge sur Fig.1), libère au bout d'un temps prédéterminé, un messager qui provoque, par l'intermédiaire d'autres messagers, la fermeture en cascade de l'ensemble des pièges.

La ligne de mouillage est équipée de deux capteurs de pression-température de marque Micrel, immergés au niveau des lère et 3ème séries de pièges. Ces capteurs permettent de suivre les mouvements verticaux de l'ensemble du dispositif (voir Annexes 1 et 2).

#### 1.2 - Préparation des pièges avant leur mise à l'eau

Avant chaque mise à l'eau, les pièges sont lavés avec de l'acide HCl 1N puis rincés abondamment avec de l'eau déminéralisée. Chacun des collecteurs est ensuite rempli aux ~ 2/3 avec de l'eau de mer de surface filtrée sur Nuclépore de  $\emptyset = 142 \,\mu\text{m}$  (porosité 0,2  $\mu\text{m}$ ). Afin de ralentir l'activité bactérienne et freiner la perte de particules par lessivage, 1000 ml d'une solution sursalée (eau de surface filtrée + 50 g l<sup>-1</sup> NaCl) sont versés au fond de chaque piège à l'aide d'un long tube en verre muni d'un entonnoir à son extrémité. Aucun autre conservateur ou poison n'a été utilisé.

#### 1.3 - Mise à l'eau, déploiement et récupération

La mise à l'eau de la ligne de mouillage (Fig .1) s'effectue en immergeant en premier le lest et les pièges les plus profonds. A chaque fin de section, la ligne est bossée afin de permettre la fixation des autres pièges. Le groupe de flottabilité principal, puis les flotteurs de surface ainsi que les deux bouées de tête, sont mis à l'eau en dernier. La récupération de la ligne se fait en sens inverse en commençant par la tête de mouillage.

Les pièges sont déployés couvercles ouverts (comme sur la Fig. 2). Cependant afin d'éviter toute contamination au moment de la descente, les pièges sont descendus recouverts d'un morceau de "film plastique alimentaire", retenu par un élastique relié à un bonbon de marque Life-Saver. Quelque temps après la mise à l'eau, le bonbon fond, libérant la feuille de protection : la collecte des particules devient alors effective.

Les pièges sont remontés fermés afin de minimiser les risques de contamination et de perte de matériel lors de la récupération. La fermeture programmée par un système d'horloge électronique est déclenchée peu de temps avant la récupération de la ligne. Le temps de collecte est fixé à  $\sim 2$  jours, sauf pour la dernière mise à l'eau du 2ème point fixe qui ne durera que 13 h (Fig. 3)

Aux cours des deux stations en "point fixe ", les pièges ont été déployés plusieurs fois, pour une durée d'environ 45 h : (Fig. 3, Tableau 1)

- trois fois à 167°E (site oligotrophe)

- quatre fois à 150°W (site mésotrophe).



Figure 4 : Schéma de traitement du contenu des pièges par niveau d'immersion

212

Les déploiements se succèdent dans le temps ; l'intervalle entre la récupération et la remise à l'eau de la ligne de mouillage ne dépasse pas cinq heures. Cet intervalle minimum correspond au temps nécessaire au soutirage et au reconditionnement des pièges.

Aux deux sites, les mouillages ont dérivé de façon siginificative. Leur dérive générale au cours de chaque déploiement est donnée par les positions successives du navire, ce dernier se recalant de façon régulière grâce au système de repérage par balises et lampes flash (Fig.3). La dérive est W-NW à 167°E, et E-SE à 150°W et semble due essentiellement au courant de surface.

#### 1.4 - Traitement des échantillons (Fig. 4)

Au moment de la récupération des pièges, chaque collecteur est vidé, par le fond, dans un flacon en polypropylène de 4 l après tamisage sur une soie de 700  $\mu$ m. Les organismes retenus sur les soies sont comptés, déterminés et pesés, mais ne sont pas pris en compte dans le calcul des flux car ces organismes nageurs (zooplancton et micronecton) sont considérés comme ne faisant pas partie du matériel sédimentant "passivement". Après tamisage, le contenu des pièges est conservé à l'obscurité avant de procéder au sous-échantillonnage qui permettra d'effectuer les analyses et observations qui sont au nombre d'une douzaine par profondeur (Fig. 4). Le choix des analyses effectuées par piège et niveau donné, est fait de façon aléatoire, chacune des analyses étant au minimum réalisée sur trois fractions aliquotes.

#### 2 - Observations et analyses

#### 2.1 - Identifications et comptages des organismes zooplanctoniques

Les organismes recueillis sur les soies de 700  $\mu$ m et 100  $\mu$ m sont identifiés puis récupérés sur des filtres GF/C prépesés, en vue de la détermination de leur masse au laboratoire. Les échantillons ainsi recueillis ont également fait l'objet de mesures de phosphore, carbone et azote total (voir §2.6). En raison de leur masse importante, les échantillons de la fraction >700  $\mu$ m ont préalablement été fractionnés : transférés dans un Potter, ils ont été broyés et dilués de façon à fournir plusieurs sous-échantillons sur lesquels les différentes analyses ont été effectuées.

#### 2.2 - Observations en microscopie optique et électronique

Volume du sous-échantillon : 100 ml.

Le protocole d'analyse est décrit dans le chapitre "Microscopie optique et électronique" de M.J. Dinet (ce volume).

#### 2.3 - Comptages et mesures en cytométrie de flux

Volume du sous-échantillon : 100 ml.

Les analyses sont effectuées immédiatement à bord par J. Blanchot à l'aide du cytofluorimètre conformément au protococole décrit dans le paragraphe "composition du phytoplancton obtenue en cytofluorimétrie" (Tome 1, § 7.2.8, page 26).

#### 2.4 - Analyses de la composition pigmentaire

Trois approches différentes ont été utilisées pour déterminer la composition pigmentaire du matériel sédimentant. Dans les trois cas, les échantillons destinés au dosage des pigments ont été soigneusement préservés à l'obscurité et filtrés sur Whatman GF/F (25 mm).

*dosage de la chlorophylle par fluorimétrie,* après extraction dans le méthanol par A. Le Bouteiller :

Volume du sous-échantillon : 250 ml.

Le protocole est décrit dans le chapitre "Pigments chlorophylliens" (Tome 1, § 7.2.7, page 25) et le dosage est effectué à bord.

#### dosage des pigments par spectrofluorimétrie :

Volume du sous-échantillon : 250 ml.

Le protocole est décrit par J. Neveux dans le chapitre "Pigments photosynthétiques et acides nucléiques mesurés par spectrofluorimétrie" (ce Tome). Le dosage est effectué à bord.

#### dosage des pigments par HPLC :

Volume du sous-échantillon : 700 à 1200 ml.

Les filtres ont été conservés dans l'azote liquide et expédiés aux Etats-Unis (Jan Newton, School of Oceanography, University of Washington) pour analyse.

#### 2.5 - Détermination de la masse : poids sec (PS) et poids sec sans cendre (PSSC)

Volume du sous-échantillon : 500 ou 1000 ml.

Les échantillons sont filtrés sur Whatman GF/F de 25 mm (calcinés et pesés) puis rincés avec 25 ml de formiate d'ammonium afin d'éliminer le chlorure de sodium. Les filtres sont ensuite observés à la loupe binoculaire pour en retirer d'éventuels "nageurs" avant d'être séchés à l'étuve (à 60°C) pendant 24 h ; ils sont ensuite conservés à - 4°C. La pesée est réalisée au laboratoire avec une électro-balance Perkin Elmer ( $\pm 3 \mu g$ ). Le poids sec sans cendre est obtenu après passage au four à 450°C pendant 4 h. Les données de PS et PSSC sont obtenues à partir du même filtre.

#### 2.6 - Analyses de Carbone (C), Azote (N) et Phosphore (P), total et organique

Volume du sous-échantillon : 500 ou 1000 ml.

Les échantillons sont recueillis sur filtres de 25 mm Whatman GF/F (calcinés et pesés) et subissent avant analyse le même traitement que les filtres destinés à la détermination de la masse.

L'analyse du carbone et de l'azote total et organique est effectuée au laboratoire avec un analyseur élementaire CHN Perkin Elmer selon le protocole décrit dans le chapitre "Composition élémentaire du matériel particulaire" (Tome 1, § 7.2.6, page 24). Le carbone organique est déterminé après acidification des filtres et élimination des carbonates selon un protocole adapté de celui décrit par Verardo *et al.* (1990) pour les sédiments. L'acidification des filtres est réalisée par ajouts successifs de gouttes d'acide sulfureux ( $H_2SO_3$ ) sur le filtre. Au cours de cette opération, les filtres sont passés deux fois à l'étuve (pendant 3 h puis 12 h). Le volume maximum d'acide ajouté entre chaque passage à l'étuve est de 200 µl.

La mesure du phosphore total est effectuée à bord par "oxydation humide" selon la méthode décrite dans le chapitre " Composition élémentaire du matériel particulaire" (Tome 1, § 7.2.6, page 24).

#### 2.7 - Mesure de la Silice biogène (SiB)

Volume du sous-échantillon : 500 ml.

Les échantillons sont récupérés sur des filtres en polycarbonate de 0.6  $\mu$ m qui sont ensuite séchés et conservés pour des analyses au laboratoire. Le protocole d'analyse utilisé par S. Blain est décrit dans le chapitre "Composition élémentaire du matériel particulaire" (Tome 1, § 7.2.6, page 24).

#### MODE DE CALCUL DES FLUX

Les flux de masse sont calculés comme suit :

Flux (mgPS  $m^{-2} j^{-1}$ ) = [(Pe -Pf) - Pb] \* Vp] / [Vf \* 0,00503 \* 1000 \* t]

avec  $Pe = Poids du filtre + particules (\mu g)$   $Pf = Poids du filtre sans particules (\mu g)$   $Pb = Poids net du blanc* (\mu g)$  Vp = Volume du piège (1) = 2,850 1 Vf = Volume d'eau filtré pour l'échantillon (1) 0,00503 = section du collecteur (m<sup>2</sup>) 1000 = facteur de conversion ( µg mg<sup>-1</sup>)t = temps de collecte (j)

Les flux de C, N, P et SiB sont calculés comme suit :

Flux (mg C (ou N, P, SiB)  $m^{-2} j^{-1}$ ) = [(Ce -Cb) \* Vp] / [Vf \* 0,00503 \* t]

avec Ce = Carbone (mg) de l'échantillon<math>Cb = Carbone (mg) du blanc\* Vp = Volume du piège (1) = 2,850 1 Vf = Volume filtré d'échantillon (1) 0,00503 = section du collecteur (m<sup>2</sup>)t = temps de collecte (j)

\* Pour chacune des analyses, les blancs sont obtenus par filtration d'un volume approprié d'eau de mer ayant servi au remplissage des pièges (2/3 d'eau de mer de surface + 1/3 d'eau de mer sursalée); ils sont ensuite traités selon le même protocole que les échantillons.

#### PRESENTATION DES RESULTATS

Les différentes valeurs de flux ont été regroupées dans les tableaux 2 et 3, respectivement pour le site oligotrophe (167°E) et le site mésotrophe (150°W).

Les résultats correspondent à la moyenne et à l'écart-type des flux calculés à partir de n échantillons prélevés sur la même batterie de pièges mais dans des collecteurs différents.

Seules ont été présentées les valeurs de flux de masse, de C, N, P totaux (inorganique + organique) et de SiB. Les flux de Corganique (Fig. 5) peuvent être calculés à partir des rapports moyens Cinorganique/Ctotal donnés dans les tableaux 2 et 3.

#### REMERCIEMENTS

Ont contribué à cette étude :

J.Y. Panché pour la préparation et la mise à l'eau des mouillages ; S. Blain, S. Bonnet, P. Gérard et A. Hauvespre pour la composition élémentaire ; A. Lapetite et R. Le Borgne pour le traitement des échantillons de zooplancton ; A. Le Bouteiller, J. Neveux et J. Newton pour la composition pigmentaire ; J. Blanchot et M.J. Dinet pour la composition floristique.

#### **REFERENCES CITEES**

VERARDO, D. J., FROELICH, P. N. & McINTYRE, A. 1990 - Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 Analyzer. *Deep-Sea Res.*, 37,157-165.

4



Figure 5 : Flux de carbone organique (POC) mesurés au cours des deux point fixes (moyenne +/- ecart-type)

217

Tableau 2: Flux de particules sédimentant, calculés au site oligotrophe (167°E, 0°). Les valeurs indiquées pour chaque profondeur correspondent à la moyenne (en gras) et l'écart-type (en italiques) des flux calculés à partir de n échantillons prélevés sur la même batterie de pièges mais dans des collecteurs différents.

| N۹  | Profondeur | 1    | flux de masse               | PSSC/PS                   | flux de C*                | flux de N               | C/N                      | flux de P               | flux de SiB             |
|-----|------------|------|-----------------------------|---------------------------|---------------------------|-------------------------|--------------------------|-------------------------|-------------------------|
|     | m          | h    | mg (PS) m-2 j-1             | \$%                       | mg C m-2 j-1              | mg N m-2 j-1            | (rapp. mol.)             | mg P m-2 j-1            | mg SiB m-2 j-1          |
| I   | 125        | 44,7 | <b>244</b><br>39 (4)        | <b>57</b><br>7 (3)        | <b>62,37</b><br>5,51 (2)  | <b>9,67</b><br>1,45 (2) | <b>7,60</b><br>0,47 (2)  | <b>2,75</b><br>0,75 (3) | <b>1,74</b><br>0,34 (2) |
| I   | 175        | 44,7 | <b>299</b><br>42 (4)        | <b>46</b><br>7 (3)        | <b>49,35</b><br>0,63 (2)  | <b>6,23</b><br>0,08 (2) | <b>9,36</b><br>0,0 (2)   | <b>1,61</b><br>0,39 (3) | <b>1,87</b><br>0,08 (2) |
| Ι   | 240        | 44,7 | <b>222</b><br>24 (3)        | <b>51</b><br>1 (2)        | <b>42,84</b><br>2,18 (3)  | <b>5,80</b><br>0,47 (3) | <b>8,65</b><br>0,35 (3)  | <b>0,89</b><br>0,15 (2) | <b>2,28</b><br>0,71 (2) |
| ł   | 340        | 44,7 | <b>348</b><br>29 (3)        | <b>40</b><br>2 (2)        | <b>57,41</b><br>10,21 (3) | 5,65<br>1,55 (3)        | <b>9,94</b><br>1,21 (3)  | <b>0,38</b><br>0,01 (2) | <b>3,04</b><br>0,34(2)  |
| 11  | 120        | 42,2 | <b>265</b><br>74 (3)        | <b>60</b><br><i>8 (3)</i> | <b>81,84</b><br>(1)       | <b>13,87</b><br>(1)     | <b>6,89</b><br>(1)       | <b>2,55</b><br>0,50 (2) | <b>2,50</b><br>0,14 (2) |
| 11  | 170        | 42,2 | <b>305</b><br>22 (3)        | <b>50</b><br>8 (3)        | <b>48,50</b><br>2,64 (2)  | <b>6,58</b><br>0,61 (2) | <b>8,62</b><br>0,33 (2)  | <b>1,38</b><br>0,22 (2) | <b>3,08</b><br>0,11 (2) |
| 11  | 240        | 42,2 | <b>346</b><br><i>34 (5)</i> | <b>45</b><br>11 (5)       | <b>68,69</b><br>8,43 (3)  | <b>7,97</b><br>2,07 (3) | <b>10,64</b><br>2,75 (3) | <b>0,73</b><br>0,23 (2) | <b>3,72</b><br>0,14 (2) |
| 11  | 345        | 42,2 | <b>343</b><br>49 (4)        | <b>45</b><br>6 (4)        | <b>65,36</b><br>7,60 (2)  | <b>7,83</b><br>1,11 (2) | <b>9,77</b><br>0,26 (2)  | <b>0,72</b><br>0,15 (3) | <b>4,49</b><br>0,07 (2) |
| 111 | 125        | 39,4 | <b>320</b><br><i>89 (3)</i> | <b>55</b><br>5 (5)        | <b>46,00</b><br>2,70 (3)  | <b>6,10</b><br>0,81 (3) | <b>8,90</b><br>0,76 (3)  | <b>1,27</b><br>0,23 (3) | <b>1,91</b><br>0,62 (2) |
| 111 | 175        | 39,4 | <b>338</b><br>140 (5)       | <b>51</b><br>9 (4)        | <b>43,80</b><br>5,40 (3)  | <b>6,15</b><br>1,00 (3) | <b>8,37</b><br>0,51 (3)  | <b>1,11</b><br>0,27 (3) | <b>1,02</b><br>0,24 (2) |
| 111 | 230        | 39,4 | <b>308</b><br>41 (3)        | <b>45</b><br>4 (2)        | <b>43,74</b><br>0,98 (2)  | <b>5,41</b><br>0,18 (2) | <b>9,43</b><br>0,11 (2)  | <b>0,79</b><br>(1)      | <b>2,21</b><br>0,22 (2) |
| 111 | 330        | 39,4 | <b>281</b><br>22 (3)        | <b>43</b><br>3 (3)        | <b>42,45</b><br>5,33 (3)  | <b>3,93</b><br>0,52 (3) | <b>12,62</b><br>0,27 (3) | <b>0,95</b><br>(1)      | <b>3,22</b><br>0,45 (2) |

\* rapport moyen Cinorganique/Ctotal : 125m = 30,0% ; 175m = 31,3% ; 240m = 26,6% ; 340m = 38,7%.

-

Tableau 3: Flux de particules sédimentant mesurés au site mésotrophe (150°W, 0°). Les valeurs indiquées pour chaque profondeur correspondent à la moyenne (en gras) et l'écart-type (en italiques) des flux calculés à partir des n échantillons prélevés sur la même batterie de pièges mais dans des collecteurs différents.

| N°  | Depth<br>(m) | t<br>(h) | flux de masse<br>mg (PS) m-2 i-1 | PSSC/PS               | flux de C*<br>mg C m-2 i-1        | flux de N<br>mg N m-2 j-1 | C/N<br>(rapp. mol.)     | flux de P<br>mg P m-2 j-1 | flux de SIB<br>mg SiB m-2 j-1    |
|-----|--------------|----------|----------------------------------|-----------------------|-----------------------------------|---------------------------|-------------------------|---------------------------|----------------------------------|
| 1   | 105          | 46       | <b>912</b><br>67 (2)             | <b>74</b><br>13 (4)   | <b>308,97</b><br>4,32 (2)         | <b>58,24</b><br>1,71 (2)  | <b>6,20</b><br>0,27 (2) | <b>8,05</b><br>0,35 (2)   | <b>52,46</b><br>12,35 (2)        |
| I   | 155          | 46       | <b>408</b><br>59 (5)             | <b>59</b><br>4 (5)    | <b>121,73</b><br>22,92 (3)        | <b>22,01</b><br>3,87 (3)  | <b>6,44</b><br>0,35 (3) | <b>3,54</b><br>0,41(3)    | <b>17,79</b><br>1,19 (2)         |
| I   | 225          | 46       | <b>395</b><br>149 (3)            | <b>50</b><br>12 (3)   | <b>61,51</b><br>6,44 (3)          | <b>8,77</b><br>1,25 (3)   | <b>8,23</b><br>0,36 (3) | <b>1,48</b><br>0,28 (2)   | <b>20,18</b><br>8,8 (2)          |
| I   | 320          | 46       | <b>377</b><br>59 (3)             | <b>44</b><br>2 (3)    | <b>66,57</b><br>0,59 (2)          | <b>9,62</b><br>0,35 (2)   | <b>8,08</b><br>0,23 (2) | <b>0,92</b><br>0,04 (2)   | <b>17,78</b><br>1,30 (2)         |
| П   | 105          | 42,8     | <b>1051</b><br>145 (4)           | <b>64</b><br>6 (5)    | <b>247,07</b><br>26,44 (2)        | <b>46,47</b><br>4,18 (2)  | <b>6,19</b><br>0,11     | <b>8,62</b><br>0,90 (4)   | <b>44,92</b><br>, (1)            |
| 11  | 155          | 42,8     | <b>865</b><br>273 (4)            | <b>64</b><br>2 (3)    | <b>221,16</b><br>(1)              | <b>47,9</b> 9<br>(1)      | <b>5,38</b><br>(1)      | <b>7,11</b><br>0,73 (2)   | <b>20,60</b><br>3,94 (2)         |
| 11  | 220          | 42,8     | <b>452</b><br>51 (3)             | <b>44</b><br>2 (2)    | <b>74,49</b><br>2,46 (2)          | <b>9,67</b><br>0,78 (2)   | <b>9,02</b><br>0,73     | <b>1,61</b><br>0,35 (2)   | <b>23,37</b><br>3,17 (2)         |
| 11  | 320          | 42,8     | <b>283</b><br>14 (3)             | <b>43</b><br>1 (3)    | <b>64,46</b><br>0,65 (3)          | <b>9,03</b><br>0,65 (3)   | <b>8,35</b><br>0,51 (3) | <b>1,12</b><br>0,02 (2)   | <b>21,49</b><br>1, <i>32 (2)</i> |
| Ш   | 105          | 43       | <b>1015</b><br>88 (5)            | <b>59</b><br>8 (7)    | <b>288,43</b><br>0,58 (2)         | <b>60,97</b><br>1,98 (2)  | <b>5,52</b><br>0,17 (2) | <b>9,90</b><br>0,87 (4)   | <b>26,34</b><br>0,56 (2)         |
| Ш   | 155          | 43       | <b>690</b><br>143 (5)            | <b>63</b><br>0,42 (2) | <b>214,93</b><br>(1)              | <b>44,00</b><br>(1)       | <b>5,70</b><br>(1)      | <b>10,77</b><br>2,22 (3)  | <b>21,03</b><br>1,30 (2)         |
| 10  | 220          | 43       | <b>306</b><br><i>35 (3)</i>      | <b>43</b><br>4,30 (3) | <b>67,94</b><br>2,32 (3)          | <b>9,30</b><br>0,41 (3)   | <b>8,54</b><br>0,34 (3) | <b>1,63</b><br>0,33 (2)   | <b>13,70</b><br>1,81 (2)         |
| ()) | 320          | 43       | <b>246</b><br>5 (2)              | <b>46</b><br>7,75 (3) | <b>55,29</b><br>6,46 (3)          | <b>8,27</b><br>1,10 (3)   | <b>7,82</b><br>0,14 (3) | <b>1,70</b><br>0,34 (2)   | <b>10,71</b><br>0,81 (2)         |
| IV  | 105          | 13       | <b>1175</b><br>251 (4)           | <b>58</b><br>4,09 (4) | <b>319,07</b><br><i>85,25 (3)</i> | <b>54,0</b><br>6,74 (3)   | <b>6,93</b><br>0,44 (3) | <b>9,71</b><br>1,52 (3)   | <b>47,81</b><br>11,42 (2)        |
| ١V  | 155          | 13       | <b>1031</b><br>19 (3)            | <b>55</b><br>7,66 (3) | <b>310,42</b><br>61,23 (2)        | <b>57,1</b><br>23,30 (2)  | <b>6,41</b><br>0,27 (2) | <b>10,28</b><br>2,88 (2)  | <b>16,48</b><br>2,41 (2)         |
| IV  | 220          | 13       | <b>819</b><br>268 (3)            | <b>50</b><br>7,14 (3) | <b>146,60</b><br>18,64 (2)        | <b>23,9</b><br>4,11 (2)   | <b>7,22</b><br>0,33 (2) | <b>4,07</b><br>0,04 (2)   | <b>21,08</b><br>0,26 (2)         |

\* rapport moyen Cinorganique/Ctotal : 105m = 9,5%; 155m = 19,7%; 225m = 18,1%; 320m = 33,1%.

## 1er déploiement (03/10/94)



Annexe 1 : variations temporelles de l'immersion de la première et de la troisième batterie de pièges à sédiments, lors des trois déploiements réalisés au premier point fixe (167° E)



# 2ème déploiement (05/10/94)



Annexe 1 (suite) : point fixe à 167° E



## 3ème déploiement (07/10/94)



Annexe 1 (suite) : point fixe à 167° E



## 1er déploiement (19/10/94)

Annexe 2 : variations temporelles de l'immersion de la première et de la troisième batterie de pièges à sédiments, lors des quatre déploiements réalisés au second point fixe (150° W)



# 2ème déploiement (21/10/94)



Annexe 2 (suite): point fixe à 150° W



# 3ème déploiement (23/10/94)



Annexe 2 (suite): point fixe à 150° W



# 4ème déploiement (25/10/94)



Annexe 2 (suite): point fixe à 150° W

.

## Chapitre 18

# THORIUM 234 WATER COLUMN AND TRAPS MEASUREMENTS

John DUNNE

School of Oceanography University of Washington Seattle, Wa. 98195, U.S.A. (Fax : (206) 543 6073 - Email : jdunne@ocean.washington.edu)

#### A - Thorium(234) water column sampling and analysis Procedure for FLUPAC:

#### At Sea :

Preparing the cubitainers :

Two 20 l cubitainers are presoaked with 10% HCl and rinsed five times with distilled water after semi-inflating them.

#### Sampling :

Two cubitainers are fully inflated and placed in milk crates. The cubitainers are filled with water to obtain an 'integrated signal' of 0 - 100 m and 100 - 150 m. An acid cleaned and DZD water rinsed 1.8 l container is filled to overflowing a total of twenty times and emptied into the cubitainers: In one cubitainer 1.8 l is added one time each from 10 Niskins that have been tripped at 0 - 100 m at 10 m intervals. In the second cubitainer 1.8 l is added twice each from 5 Niskins that have been tripped at 100 - 150 m at 10 m intervals. The cubitainers are labelled and their labels and sampling time recorded.

#### Spiking the Samples :

50 ml of concentrated HCl, 2 ml of an iron spike (1 M FeCl3 containing a spike of 230Th of known activity, ~30 dpm) and 0.5 ml of extra 1 M FeCl3 are added to each cubitainer. So that the spikes are added quantitatively, each spike container is rinsed into the cubitainer with DZD water. The cubitainers are then mixed thoroughly by tipping repeatedly. The spike number and spiking time are recorded. These now acidified samples are then allowed to equilibrate for at least six hours.

#### Adding NH4OH :

After equilibration, the pH of the samples is adjusted to approximately 8.5 with the addition of approximately 50 ml of concentrated NH4OH so that thesolution turns a faint amber color. The pH is confirmed by testing with pH paper. The neutralization time is recorded. The iron with adsorbed thorium is then allowed to precipitate (from one to ten hours).

#### Reducing to small volume :

After precipitation is complete, the seawater is decanted from the precipitate using a hand vacuum pumpto start the flow into another cubitainer until there is less than 2 l of liquid left. This residue is then shaken and transfered to an acid cleaned and DZD water rinsed, labelled 2 l plastic container. The liquid is carefully poured out as the iron is allowed to settle. When there is only about 200 ml of liquid left, the residue is transfered to a labelled 250 ml teflon beaker which has been pre-cleaned by fuming with concentrated HNO3. (Fuming is performed by the addition of about 4 ml of concentrated HNO3 to the beaker which is placed on a hotplate a capped with a teflon watchglass for 15 min.). The volume of liquid transfered in portions to an acid cleaned and DZD water rinsed, labelled centrifuge tube where the liquid is removed by repeated steps of centrifugation and decanting of the residue into until there is minimal liquid left. The time of being approximately half through this procedure is written down.

#### Digesting with acid :

The iron prepipitate is transferred using concentrated HCl back into the teflon beaker. Concentrated HCl, HNO3 and a little HF are added to the beaker to obtain a total volume of about 50 ml. The acid solution is boiled on a hotplate to small volume, approximately 25 ml.

#### Reprecipitation :

The digested sample is transferred quantitatively back into the centrifuge tube with a small acid rinse. Concentrated NH4OH is added to the centrifuge tube to neutralize the solution and precipitate the iron. The sludge is then transferred back into the centrifuge tube and rinsed three times with DZD water, shaken and centrifuged.

#### Column #1 - separating thorium from Fe and U (Po) :

The volume of the liquid is then quadrupled by the addition of concentrated HCl to end up with a 9 N HCl solution. AG 1-X8 ion exchange resin is preconditioned for an hour in a separate container with 9 N HCl. The resin is poured into the column to fill it about 4/5 up the length and a rinse of 9N HCl is added (about 50 ml). The sample is then added to the column. The centrifuge tube is quickly rinsed with 9 N HCl and the rinsate added to the column. The eluant which contains the thorium (and lead) is then collected in a labelled, 125 ml plastic container. (When polonium and lead samples were taken, the column was then rinsed with 50 ml of 0.1N HCl to remove the uranium and iron. Then the column was rinsed with at least 300 ml of 0.01-0.1N HNO3 to remove the Polonium. The eluant was collected in a 500 ml Naldene bottle.). The columns are rinsed 3 times with 9 N HCl (about 35 ml each time) into the 125 ml plastic container. The end time of the first column is recorded.

#### Cleaning :

The columns and funnels are rinsed of the used resin and placed in an acid bath of 20% HNO3. The teflon beakers are rinsed and fumed as previously discussed above. The cubitainers, centrifuge tubes and 21 containers are acid and DZD rinsed.

#### In Seattle :

Replacing the 9 N HCl solution with a 8N HNO3 solution :

The thorium (and lead) solution was poured into a teflon beaker. The bottle was rinsed with about 20 ml of concentrated HNO3 (16 N). The solution was boiled down to small volume (about 3 ml). 20 ml of concentrated acid was then added and let boil down again to small volume. This procedure is repeated so as to remove the HCl. The final small volume of concentrated HNO3 is doubled by adding DZD. The total volume is increased to about 20 ml by adding 8N HNO3.

#### Column #2 : separating thorium from Po :

A slurry of AG 1-X8 ion exchange resin is preconditioned for an hour in a separate container with 9 N HCl. The resin is poured into the column to fill it about 4/5 up the length and a rinse of 8N HNO3 is added (about 50 ml). The sample in 8N HNO3 is then added to the column. The teflon beaker tube is quickly rinsed with 8N HNO3 and the rinsate added to the column. The eluant containing only the lead is then collected in the original 125 ml plastic container and stored away as a precautionary measure. (If lead samples were to be taken, the eluant was collected in a 60 ml Nalgene bottle) The columns are rinsed twice with 8N HCl (about 35 ml each time) into the 125 ml plastic container (or the lead container, if taken). The column was then rinsed three times with 15-20 ml of 9N HCl to remove the thorium. The eluant was collected in a labelled 50 ml teflon beaker.

#### Replacing the 9 N HCl solution with a 8N HNO3 solution :

The thorium (and lead) solution was poured into a teflon beaker. The bottle was rinsed with about 20 ml of concentrated HNO3 (16 N). The solution was boiled down to small volume (about 3 ml). 20 ml of concentrated acid was then added and let boil down again to

small volume. This procedure is repeated twice so as to remove all of the HCl. The volume was ruded to one drop of solution.

#### Extracting (purifying) the thorium :

One ml of 0.01 N HNO3 is added to the drop of solution, and the solution is transfered to a labelled test tube. The teflon beaker is rinsed with one ml of 0.01 N HNO3 which is then added to the test tube. 2 ml of TTA in benzene are added to the test tube using a pipet to complex the thorium. The test tube is shaken using an agitator and then spinned down in a clean centrifuge tube in the centrifuge for about thirty seconds. Another pipet is used to transfer the (upper) benzene solution to another dry, labelled test tube. The pipet can be left in the second test tube. Once again 2 ml of TTA in benzene are added to the test tube using the first pipet to complex the remaining thorium. The test tube is again shaken using an agitator and then spinned down in a clean centrifuge tube in the centrifuge for about thirty seconds. The second pipet is used to transfer the (upper) benzene solution to the second test tube. The remaining acid solution is stored as a prcautionary measure.

#### Plating the thorium samples :

The test tube containing the benzene was set in a pyrex beaker and warmed on the hot plate so as to reduce the volume to a few drops. The pipet (with bulb still attached) acted as a boiling stone. When this was done, the beaker was allowed to cool so that the remaining liquid was pulled into the pipet by the creation of vaccuum during cooling. A silver disk was prepared by removing the plastic from the 'clean' side. The 'clean' side was quickly rinsed with soap and DZD and placed on a hand-held 'plate warmer' (clean side up) to dry. Once dry, the pipet was used to consequtively drop all of the TTA solution onto the plate. The plate was kept level so that the TTA solution evaporated at the center of the plate. During evaporation, the TTA solution was kept at a constant volume on the plate so that the solution didn't splatter (if too little) or spill over (if too much). Once the TTA solution was completely dry, the plate is removed from the 'plate warmer' using tweezers. The plate was allowed to cool. The TTA was then baked off the plate (so that it doesn't interfere in counting) by placing the plate (plated side up) over a gas flame. The plate was heated evenly until the plate turned from blackish to silverish or until it started to glow. The plate was then let cool and labelled on the back.

#### Counting :

The plates were first beta counted for 234Th (lower limit 700-1000 total counts) and then alpha counted for 230Th. Both alpha and beta counters were checked for blanks (beta counter - 0.3 counts/min, alpha counter - 0.0 cnts/min) and counter efficiency (beta counter - 60%, alpha counter - 32%) so as to limit counting errors to less than 2%. Water column samples were consequtively counted 5 times over the course of two half lives of 234Th to eliminate contamination errors by other betas. (When 234Th decay was fitted against measured decay, regressions for all samples gave chi-squared's better than 0.99 except for one sample, which had been drpped during firing and was afterwards considered lost.)

#### **B** - Thorium(234) trap sampling Procedure for FLUPAC:

#### At sea :

#### Preparing fill solutions :

Two 20 l cubitainers are filled with about 19 l of seawater filtered through a 0.4 mm millipore filter. The water should be taken from a depth below the euphotic zone to limit clogging of the filter. 1200 g of NaCl is added to one of the cubitainers of filtered seawater and both are fitted with spigots and stored for use.

#### Preparing the traps :

The trap is numbered. The trap bottom is fitted with a mesh screen with the addition of a little DZD water from a squeeze bottle to keep it in place. A preweighed 0.45 mm Nucleopore filter is placed on top of the mesh screen with the use of two pairs of tweezers and the addition of a little more DZD water. The filter number is recorded along with the trap and event number. The trap top is fitted with an o-ring and is placed on top of the trap bottom, being careful to assure that the o-ring remains in place. Three plastic nuts and bolts are used to affix the two pieces and are screwed to finger tightness. The small piece of tygon tubing at the trap bottom is doubled over and a wrapped several times by doubling over a rubber band to prohibit flow.

#### Filling the traps :

The trap column is filled to the black line (about 3/4 of the length) with filtered seawater. A portion of tygon tubing is then lowered through the trap column to the bottom. Filtered seawater-NaCl solution is then poured from the spigot through the tubing so that the solution fills the bottom quarter of the trap column. The portion of tygon tubing is then carefully removed so as to leave two density layers of saltwater in the trap column.

#### Closing the traps :

On top of the trap column is placed a square section of plastic baggie. The baggie is affixed to the trap through the use of a rubber band and a lifesaver. This is performed by passing the rubber band through the lifesaver so that when the rubber band is stretched between the thumb and index finger, the lifsaver hangs in the middle. The thumb is then closed with the index finger. The now doubled-over rubber band is stretched between both hands and placed over the baggie so that the rubber band stretches around the circumference of the top of the trap column keeping the baggie snugly over the mouth. The rubber band must not cross the hole through the middle of the lifesaver, so that when the lifesaver melts during trap deployment, the rubber band becomes no longer attached, and the baggie drifts off the mouth of the trap.

#### Deploying the traps :

The trap holder is affixed to the cabling line, and the two traps are seated in the arms of the trap holder by means of a bungee.

#### Retrieving the traps :

Once the traps are removed from the trap holders and brought to the lab, the rubber band at the trap bottom is removed from the piece of tygon tubing, and the trap allowed to gravity filter through the 0.45 mm Nucleopore filter. The rest of the liquid is then removed by vacuum filtration. Vacuum filtration is continued as the trap top is then removed by unscrewing the plastic bolts, and the Nucleopore filter is rinsed from a squeeze bottle with a buffer solution of about 1 gram NaHCO3 in 10 1 (buffered at pH = 8). Rinsing must be done

assuring that the DZD rinse water does not pass over the edge of the filter so that it can pass material off the filter. The nucleopore filter is then scanned visually for swimmers which are picked off the filter with two pairs of tweezers and placed in a labelled petri dish. As there are two traps per depth per deployment, swimmers from both traps are combined in one petri dish. The filter is then folded over four times and placed in a separate, labelled petri dish and stored for salt-corrected weighing and thorium (234) analysis.

#### Cleaning :

The trap top, bottom and mesh screen are then rinsed with DZD water for later use.

#### In Seattle :

Weighing and salt corrections :

The filters were weighed and placed in a labelled teflon beaker with 10 ml DZD, folded well and fully moistened and let sit overnight, covered with a teflon watchglass. The next day, 2 ml of the DZD/salt solution was removed and the salt later analyzed using a chloridometer. Filter and sample digestion.

Filters were broken up by adding 20 ml of concentrated NH4OH and letting the filters sit for at least an hour. The covered teflon beaker was then placed on a hotplate to dissolve the remaining bits of filter. The covers were then removed to allow the solution to cook down to small volume. About 20 ml of 2N HNO3 was added to rinse down the beaker walls and acidify the solution. The 230Th spike (and iron) was then added with an extra HNO3 rinse of the spike container. The nitric acid was allowed to cook down on a hotplate in a perchloric fume hood. The beaker was taken off the hotplate, and 5-10 ml of concentrated HClO4 was added carefully to the beaker. The solution was set to boil. First the HNO3 boiled off. Once the thick, cotton-like fumes of HClO4 were seen, the beakers were covered and let fume for 15 minutes. The beaker was taken off the hotplate and allowed to cool for a few minutes. A squirt of concentrated HF was added, and the beaker was returned to the hotplate (covered) and let fume for another 15 minutes. The beaker was again taken off the hotplate and allowed to cool before 10 ml of concentrated HNO3 were added. The solution was again set to boil. Once the fumes of HClO4 were seen, the beaker walls were washed down again with HNO3. The beaker was heated again until the solution boiled down to small volume. The beaker was allowed to cool.

#### Iron precipitation :

About 10-15 ml of 2N HCl were added until the solution turned yellow (presense of aqua regia). The solution was transfered to a clean, labelled centrifuge tube with a 2N HCl rinse, being careful not to exceed half of the total centrifuge tube volume. Concentrated NH4OH was added to precipitate the iron. The centrifuge tube was allowed to cool for a few minutes and then placed in a centrifuge for 3 minutes. The overlying solution was poured off. The solution was then re-acidified with 9N HCl, precipitated again with NH4OH, centrifuged and then rinsed and centrifuged three times with DZD to purify the iron precipitate.

#### Columns and plating :

The same procedure was followed for the trap samples from this point as was followed for the water column samples except the same-resin was used for both columns with a DZD rinse in between uses.

|              | N           | ASS FLUX SUMMA | RY               |             |               |
|--------------|-------------|----------------|------------------|-------------|---------------|
|              |             | measured       | 234Th calibrated |             |               |
| long-deploy. | depth       | trap Mass Flux | model Mass Flux  | "trap bias" | Mass/Th-traps |
| degree - #   | m           | mg/m2/d        | mg/m2/d          | trap/model  | mg/dpm        |
| 167 E -1     | 110         | 540            | 323              | 1,67        | 0,19          |
| 167 E -1     | 160         | 351            | 315              | 1,11        | 0,15          |
| 167 E -1     | 210         | 226            | 305              | 0,74        | 0,14          |
| 167 E -2     | <b>1</b> 10 | 429            | 252              | 1,70        | 0,23          |
| 167 E -2     | 160         | 357            | 225              | 1,59        | 0,16          |
| 167 E -2     | 210         | 330            | 396              | 0,83        | 0,27          |
| 166 E -3     | 110         | 388            | 206              | 1,88        | 0,14          |
| 166 E -3     | 160         | 382            | 261              | 1,47        | 0,16          |
| 166 E -3     | 210         | 254            | 247              | 1,03        | 0,14          |
| 150 W -1     | 100         | 5990           | 326              | 18,36       | 0,18          |
| 150 W -1     | 160         | 1923           | 600              | 3,20        | 0,29          |
| 150 W -1     | 210         | 954            | 385              | 2,48        | 0,19          |
| 150 W -2     | 100         | 3238           | 330              | 9,80        | 0,23          |
| 150 W -2     | 160         | 3371           | 819              | 4,12        | 0,40          |
| 150 W -2     | <b>2</b> 10 | 2049           | 772              | 2,65        | 0,41          |
| 150 W -3     | 100         | 741            | 353              | 2,10        | 0,18          |
| 150 W -3     | 160         | 908            | 857              | 1,06        | 0,35          |
| 150 W -3     | 210         | 352            | 607              | 0,58        | 0,23          |
| 149 W -4     | 100         | 343            | 131              | 2.61        | 0.06          |
| 149 W -4     | 160         | 231            | 314              | 0.73        | 0,12          |

| . 1                 | WATER COLUMN 234Th ACTIVITIES (dpm/I) SUMMARY |           |           |       |  |  |  |  |  |
|---------------------|-----------------------------------------------|-----------|-----------|-------|--|--|--|--|--|
| <b>167 E</b><br>day | 0-110 m                                       | 110-160 m | 160-210 m | 500m  |  |  |  |  |  |
| 1                   | 2,44                                          | 2,88      | 2,30      |       |  |  |  |  |  |
| 2                   | 1,84                                          | 2,23      | 2,45      | 2.22  |  |  |  |  |  |
| 3                   | 2,06                                          | 2,42      | 2,54      |       |  |  |  |  |  |
| 4                   | 2,04                                          | 2,18      | 2,31      | 2.13  |  |  |  |  |  |
| 5                   | 1,89                                          | 2,43      | 2,45      |       |  |  |  |  |  |
| 6                   | 1,96                                          | 2,38      | 2,24      |       |  |  |  |  |  |
| average             | 2,04                                          | 2,42      | 2,38      |       |  |  |  |  |  |
| average w/o 1       | 1,96                                          | 2,33      | 2,40      |       |  |  |  |  |  |
| 152 W               | 0-100 m                                       | 100-160 m | 160-200 m | 500 m |  |  |  |  |  |
| day                 |                                               |           |           |       |  |  |  |  |  |
| 1                   | 1,65                                          | 2,28      | 2,39      | 2,26  |  |  |  |  |  |
| 2                   | 2,03                                          | 2,36      | 2,53      |       |  |  |  |  |  |
| 3                   | 1,97                                          | 2,12      | 2,57      |       |  |  |  |  |  |
| 5                   | 1,92                                          | 2,17      | - 2,37    |       |  |  |  |  |  |
| 6                   | 1,66                                          | 2,20      | 2,36      | 2,25  |  |  |  |  |  |
| 7                   | 1,23                                          | 2,26      | 2.44      |       |  |  |  |  |  |
| average             | 1,74                                          | 2,23      | 2.44      |       |  |  |  |  |  |
| average w/o 7       | 1,85                                          |           |           |       |  |  |  |  |  |
|                     |                                               |           | average   | 2,22  |  |  |  |  |  |

.

**Chapitre 19** 

# ESTIMATION OF PICOPHYTOPLANKTON GROWTH AND MICROZOOPLANKTOL GRAZING IN THE EQUATORIAL PACIFIC

Hongbin LIU

Department of Oceanography University of Hawaii at Manoa 1000 Pope Road Honolulu, Hi 96822, USA (Tél : (808) 94 8433 - Fax : (808) 956 4104 - Email : hliu@soest.hawaii.edu) Pico-phytoplankton, including *Prochlorococcus*, *Synechococcus* and picoeucaryotes (<3 μm), has been found the dominant component of biomass and primary production in equatorial and subtropical Pacific Ocean (Peña et al., 1990; Le Bouteiller et al., 1992; Campbell et al., 1994; Ishizaka et al., 1994). However, assessment of their population growth rate is difficult because almost all the cells produced are quickly grazed by nano-protozoan, known mainly heterotrophic flagellates and ciliates. Moreover, the grazing process has been proposed to be the proximate control on the standing crop of phytoplankton in equatorial Pacific (Cullen et al., 1992), and a key variable in microbial loop (Banse, 1992).

In order to get a better understand of the interaction between pico-phytoplankton growth and nano-protozoan grazing, three approaches, i.e., dilution technique (Landry and Hassett, 1982), selective inhibitor technique (Fuhrman and McManus, 1984) and cell cycle analysis (Carpenter and Chang, 1988) were deployed during the French JGOFS' FLUPAC cruise on board l'Atalante in equatorial Pacific from September 23 to October 29, 1994 (see details of investigated area in volume 1 of this data report).

#### SAMPLING FREQUENCY AND STRATEGY

Dilution experiments were performed in 9 stations along two transects (see table 1). Two sets of metabolic inhibitor experiments were conducted at each time-series station. Sample time was selected to be in midnight or early morning to avoid the sample being explosured under strong sunlight. Samples for cell cycle analysis were collected on the last day in the time period occupied at each time-series station. Total 10 time points were sampled within a 24 hour period with a time interval between 1.5 to 5 hours. The most frequent sampling took place from noon through midnight because it is reported that *Prochlorococcus* progressed to DNA synthesis around early afternoon and cell division occurred in early night (Vaulot et al., 1995). 10-liter Noex bottles were used to collect waters for dilution and inhibitor experiments, while the samples for cell cycle analysis were taken from either Noex or Niskin bottles.

For both dilution and selective inhibitor experiments, all containers and silicone tubing were precleaned by a protocol consisting of sequential overnight soaks in Microdetergentdistilled deionized water (DDW), 10% HCl-DDW, 2% nitric acid-DDW and DDW, with at least three rinses with DDW between each step. Incubation bottles and tubing were soaked between uses in 10% HCl-distilled water and rinsed three times with distilled water and finally with filtered seawater (or natural seawater in the inhibitor experiments).

#### **METHODS**

#### 1. Dilution Experiment

Seawater was collected from 3 10-liter Noex bottles mounted on a trace-metal free rosette. Seawater was gravity filtered directly from the Noex bottles to clean carboys via a closed system consisting of silicone tubing and an in-line 0.2-µm Critcap (Gelman) filter. New filter capsules were prepared for each experiment by rinsing thoroughly with 10% HCl and distilled water. In addition, the first several liters filtered through each new filter were discarded.

Each experiment was set-up in 11 2.3-liter polycarbonate bottles. Eight of the bottles were used for the nutrient-enriched dilution series. Filtered seawater was added by volume to replicate bottles to achieve final plankton densities of 25, 50, 75 and 100% ambient levels. Unfiltered seawater was added to the bottles from the Noex bottles by silicone tubing which reached to the bottlem of the bottles to avoid damaging the grazers during transfer. Two bottles were filled with unfiltered seawater and incubated as natural seawater controls and another bottle was filled with filtered seawater to account for organisms that passed through the filter. Each bottle in the dilution series received an amendment of nutrient (final concentration). Fluorescently labeled bacteria (FLB) were added to each incubation bottles in final concentration of  $5 \times 10^3$  cells ml<sup>-1</sup>. FLB was prepared from *Vibrio damsella* in laboratory before the cruise following the protocol of Sherr et al. (1987). At Station 111, a whole set of dilution series with no nutrients addition were conduct for comparison.

After taking 1 ml initial sample from each bottle for flow cytometric analysis (FCM), experimental bottles were tightly capped and incubated in a shipboard incubators for 24 h under simulated (neutral density screening and blue Plexglass) in situ light conditions, and cooling by running seawater. Replicate chlorophyll samples (100 ml) were taken from unfiltered and filtered seawater at the start of an experiment and from all of the 11 bottles at the end. Samples for FCM (1 ml) were taken from each of the bottles before and after the incubation.

Chlorophyll *a* concentration was measured fluorometrically by Dr. Aubert Le Bouteiller. The abundance of *Prochlorococcus*, *Synechococcus* and picoeucaryotes (microalgae) were enumerated using a shipboard Facscan flow cytometer as described in volume 1 of this report. Assuming an exponential growth, net rates of change (k,  $d^{-1}$ ) of all measured parameters were determined as

### $k = 1/t \ln N_t / N_0$

where t is the duration of the experiment (1 day) and  $N_0$  and  $N_t$  are the initial and final estimates of each parameter, respectively. The dilution factor was achieved by comparing initial FCM population estimates of *Prochlorococcus* from dilution treatments to those in undiluted samples. Population densities in the filtered water were insignificant (less than 0.44% of natural *Prochlorococcus* cell concentrations). Model I regression theory was used to compute growth and mortality rates from net growth and dilution factor (growth rate,  $\mu = Y$  axis intercept and grazing mortality, m = slope). Because the data of FLB disappearance in most experiment gave inconsistent rate due to insufficient mixing at initial sampling, Model II regression (as described in Landry et al., 1995) approach was not applied in our data analyses.

#### 2. Inhibitor Experiment

Selective metabolic inhibitor experiments using kanamycin (Sigma, K-4000) as procaryotic inhibitor were conducted follow the procedure described in Liu et al. (1995). Kanamycin stock solution (50mg ml<sup>-1</sup>) were made fresh prior to use by dissolving kanamycin in DDW and sterilized by filtering through 0.2µm Acrodisc filter (Gelman).

Seawater was taken before dawn from 8 depth using Noex bottles. Six 250 ml polycarbonate bottles were filled with seawater from each depth. Three bottles were treated with the addition of kanamycin (final concentration 0.8 mg ml<sup>-1</sup>), and other three bottles were used as control. FLB were added to each bottle to monitor the effect of inhibitor to protozoan grazing. After taking an initial 1 ml sample for flow cytometric analysis bottles were sent to the *in situ* incubation line before sunrise. Dawn-to-dusk *in situ* incubation were followed by shipboard incubation after dark to complete a 24 h incubation period. Subsamples from the beginning and end of incubation were analyzed with a shipboard Facscan flow cytometry as described in 7.2.8 of the Data Report No.1. The change of the abundance of *Prochlorococcus, Synechococcus*, and FLB in 24 h incubation were counted. Net rates of change (k), growth ( $\mu$ ) and mortality (m) rates of *Prochlorococcus* and *Synechococcus* were calculated according to Campbell and Carpenter (1986).

Due to the decrease of red fluorescence after incubated with inhibitor, the *Prochlorococcus* population in the surface waters of first time-series station (0°20.4'N, 166°22.2'E), which was extremely dim, become undetectable by the Facscan flow cytometer.

#### 3. Diel Cell Cycle Analysis

Because the cell cycle of *Prochlorococcus* spp. is in phase with the daily light cycle (Vaulot et al., 1995), cell division rates can be estimated from the fractions of cells in each cell cycle stage during a 24 h sampling period (Carpenter and Chang, 1988). To practice this approach, samples of 1 ml were taken from 9 depth at two time-series stations as described early in this report. Samples were preserved with 0.2% (final concentration) paraformaldehyde in cryvial, quick frozen in liquid nitrogen and stored at -80°C.

Samples were analyzed back in the laboratory using a Coulter EPICS 753 flow cytometer equipped with two 5 W Argon lasers and MSDS automatic sampling. The flow cytometer was set up for UV (225 mW) and 488 nm (1 W) colinear analysis. Hoechst 33342 were added to thawed sample as DNA specific fluorochrome in final concentration of 1  $\mu$ g ml<sup>-1</sup> and incubated for 1 h at room temperature in dark. In order to achieve better CV's of fluorescence, slower delivery rate (10  $\mu$ l per minute) were applied. For statistical reason, 10,000 events of gated *Prochlorococcus* population were collected, except for the deep samples containing fewer *Prochlorococcus* that makes 10,000 counts practically difficult. In addition to the log scale of red and blue fluorescence and 90 degree light scatter signals, linear integrated blue fluorescence data from *Prochlorococcus* were also collected in a histogram gated on a set of bitmaps around *Prochlorococcus* population in different parameters.

The one parameter histogram files containing the DNA fluorescence data for *Prochlorococcus* were analyzed using MCYCLE software (Phoenix Flow Systems, San Diego, CA) and cell fractions in G<sub>1</sub>, S and G<sub>2</sub> phases were computed from DNA distributions. The combination of the S and G<sub>2</sub> phases was chosen as the terminal phase and its duration  $(t_{S+G_2})$  was computed as twice the distance between the peak of cells in S and the peak of cells in G<sub>2</sub> (see Fig. 3 and 4). Because the distance between the two peaks are obviously affected by the time interval between sampling, therefore the inaccuracy in the estimation of  $t_{S+G_2}$  is the major error source for growth rate calculation. Our solution in practice was to collect surface bucket sample more frequency, i.e. every hour during *Prochlorococcus* DNA replication (17:00 - 22:00 local time) for cell cycle analysis. Average  $t_{S+G_2}$  of 6 hour was used for *Prochlorococcus* in upper 100 m in our calculation, that is the same time period used by Vaulot et al. (1995). For deep samples (150 m),  $t_{S+G_2}$  was set at 10 h. Growth rates ( $\mu$ , d<sup>-1</sup>) was computed as

$$\mu(d^{-1}) = \frac{1}{t_{S}^{+}G_{2}} \qquad \int_{0}^{24} In \left[1 + F_{S+G_{2}}(t)\right]. dt$$

where  $F_{S+G_2}(t)$  is the fraction of cells in  $S + G_2$  at each time point in the 24h sampling period.

The 150 m data from both stations should only be treated as qualitative estimation for the following two reasons. First, the samples were collected from 140 m at some time point. Second, only a few hundred cells were counted from each sample.

#### RESULTS

Growth and grazing rate estimates for total chlorophyll, *Prochlorococcus*, *Synechococcus* and picoeucaryotes (microalgae) from the regression analyses of dilution experiments are presented in table 2. Figs. 1 and 2 show an example of the analyses of the dilution experiment. The growth and grazing rates of *Prochlorococcus* and *Synechococcus* estimated from selective metabolic inhibitor experiments are presented in tables 3 to 6, respectively. The diel percentage of *Prochlorococcus* cells in S and G<sub>2</sub> phases in each depth of the water column are plotted for two time-series stations in Figs. 3 and 4. *Prochlorococcus* growth rates estimated from the cell cycle analysis are shown in Fig. 5.

#### REFERENCE

- BANSE K. (1992). Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open sea. In: *Primary Production and Biogeochemical Cycles in the Sea*. edited by P.G. Falkowski and A.D. Woodhead, Plenum Press, New York.
- CAMPBELL L., CARPENTER E.J. (1986). Estimating the grazing pressure of heterotrophic nanoplankton on Synechococcus spp. using the sea water dilution and selective inhibitor techniques. Mar. Ecol. Prog. Ser., 33: 121-129.
- CAMPBELL L., NOLLA H.A., VAULOT D. (1994). The importance of *Prochlorococcus* to community structure in the central North Pacific Ocean. *Limnol. Oceanogr.*, 39: 954-961.
- CARPENTER E.J., CHANG J. (1988). Species-specific phytoplankton growth rates via diel DNA synthesis cycles. I. Concept of the method. *Mar. Ecol. Prog. Ser.* 32: 139-148.
- CULLEN J.J., LEWIS M.R., DAVIS C.O., BARBER R.T., (1992). Photosynthetic characteristics and estimated growth rates indicate grazing is the proximate control of primary production in the equatorial Pacific. J. Geophys. Res., 97: 639-654.
- FUHRMAN J.A., MCMANUS G.B. (1984). Do bacteria-sized marine eukaryotes consume significant bacterial production? *Science* 224: 1257-1260.
- ISHIZAKA J., KIYOSAWA H., ISHIDA K., ISHIKAWA K., TAKAHASHI M. (1994). Meridional distribution and carbon biomass of autotrophic picoplankton in the Central North Pacific Ocean during Late Northern Summer 1990. Deep-Sea Research, 41: 1745-1766.
- LANDRY M.R., HASSETT R.P. (1982). Estimating the grazing impact of marine microzooplankton. *Mar. Biol.* 67: 283-288.

- LANDRY M.R., KIRSHTEIN J., CONSTANTINOU J. (1995). A refined dilution technique for measuring the community grazing impact of microzooplankton, with experimental test in the central equatorial Pacific. *Mar. Ecol. Prog. Ser.* 120: 53-63.
- LE BOUTEILLER A., BLANCHOT J., RODIER M. (1992). Size distribution patterns of phytoplankton in the western Pacific: towards a generalization for the tropical open ocean. *Deep-Sea Research*, 39: 805-823.
- LIU H., CAMPBELL L., LANDRY M.R. (1995). Growth and mortality rates of Prochlorococcus and Synechococcus measured with a selective inhibitor technique. Mar. Ecol. Prog. Ser. 116: 277-287.
- SHERR B.F., SHERR E.B., FALLON R.D. (1987). Use of monodispersed, fluorescently labeled bacteria to estimate *in situ* protozoan bacterivory. *Appl. Environ. Microbiol.* 53: 958-965.
- VAULOT D., MARIE D., OLSON R.J., CHISHOLM S.W. (1995). Growth of *Prochlorococcus*, a photosynthetic prokaryote, in the Equatorial Pacific Ocean. *Science*. 268: 1480-1482.

Table 1. Information for selected dilution experiments conducted during FLUPAC 94 cruise. Time = time of water collection for experimental setup; Depth = depth of water sampling; Chl = initial chlorophyll concentration;  $%I_0$  = light intensity during shipboard incubation.

| Station | Location             | Data    | Time | Depth (m) | Chl (µg/L) | %I <sub>0</sub> |
|---------|----------------------|---------|------|-----------|------------|-----------------|
| 1       | 15°S, 165°E          | 25 Sep. | 0830 | 30        | 0.081      | 25              |
| 7       | 9°S, 165°E           | 27 Sep. | 0430 | 25        | 0.098      | 25              |
| 20      | 4°N, 165°E           | 01 Oct. | 0400 | 20        | 0.119      | 25              |
| 43      | 0°7.2'N, 166°40'E    | 06 Oct. | 0030 | 60        | 0.111      | 3               |
| 64      | 0°0.6'N, 173°52.3'E  | 11 Oct. | 0030 | 20        | 0.044      | 25              |
| 66      | 0°0.3'N, 177°29.4'E  | 12 Oct. | 0000 | 70        | 0.152      | 3               |
| 70      | 0°0.2'S, 174°20.7'W  | 13 Oct. | 0000 | 60        | 0.154      | 7               |
| 78      | 0°S, 158°55'W        | 16 Oct. | 2330 | 20        | 0.296      | 25              |
| 111     | 0°20.5'S, 149°34.4'W | 24 Oct. | 0000 | 20        | 0.223      | 15              |

Table 2. Phytoplankton growth ( $\mu$ ) and grazing (m) estimated from regression analyses of dilution experiments. Parentheses give the standard error (SE) of rate estimates. CHL = total chlorophyll; PRO = *Prochlorococcus* spp.; SYN = *Synechococcus* spp.; MIC = microalgae. For Station 111, rates estimated from dilution experiment without addition of nutrients are also given under Sta. 111\*.

| Station | Phytoplankton | $\mu(d^{-1})$ | m(d <sup>-1</sup> ) | r <sup>2</sup> |
|---------|---------------|---------------|---------------------|----------------|
|         |               | · ·           |                     |                |
| 1       | CHL           | 0.59 (0.06)   | 0.26 (0.09)         | 0.60           |
|         | PRO           |               |                     |                |
|         | SYN           | 0.78 (0.06)   | 0.78 (0.09)         | 0.98           |
|         | MIC           | 0.16 (0.55)   | 1.31 (0.81)         | 0.57           |
| 7       | CHL           | 0.99 (0.10)   | 0.34 (0.16)         | 0.47           |
|         | PRO           | 0.34 (0.12)   | 0.40 (0.20)         | 0.45           |
|         | SYN           | 0.33 (0.12)   | 0.29 (0.18)         | 0.57           |
|         | MIC           | 1.13 (0.52)   | 1.68 (0.88)         | 0.43           |
| 20      | CHL           | 1.15 (0.07)   | 0.40 (0.10)         | 0.63           |
|         | PRO           | 0.70 (0.08)   | 0.60 (0.11)         | 0.80           |
|         | SYN           | 0.37 (0.15)   | 0.37 (0.21)         | 0.32           |
|         | MIC           | 0.52 (0.16)   | 0.36 (0.22)         | 0.58           |
| 43      | CHL           | 0.89 (0.06)   | 0.25 (0.09)         | 0.78           |
|         | PRO           | 0.19 (0.02)   | 0.28 (0.01)         | 0.98           |
|         | SYN           | 0.56 (0.08)   | 0.49 (0.10)         | 0.82           |
|         | MIC           | 0.34 (0.06)   | 0.16 (0.07)         | 0.71           |
| 64      | CHL           | 0.96 (0.05)   | 0.17 (0.08)         | 0.48           |
|         | PRO           | 1.25 (0.12)   | 0.20 (0.17)         | 0.22           |
|         | SYN           | 1.13 (0.05)   | 0.40 (0.06)         | 0.97           |
|         | MIC           | 0.18 (0.04)   | 0.06 (0.05)         | 0.44           |
| 66      | CHL           | 0.53 (0.06)   | 0.09 (0.09)         | 0.22           |
|         | PRO           | -0.06 (0.02)  | 0.09 (0.03)         | 0.60           |
|         | SYN           | 0.19 (0.15)   | 0.32 (0.24)         | 0.27           |
|         | MIC           | 0.58 (0.25)   | 0.81 (0.36)         | 0.46           |
| 70      | CHL           | 0.45 (0.17)   | 0.37 (0.26)         | 0.32           |
|         | PRO           |               |                     |                |
|         | SYN           | 0.13 (0.02)   | 0.09 (0.02)         | 0.81           |
|         | MIC           | 0.85 (0.14)   | 0.46 (0.21)         | 0.50           |
| 78      | CHL           | 0.79 (0.06)   | 0.36 (0.09)         | 0.79           |
|         | PRO           | -0.34 (0.12)  | 0.30 (0.18)         | 0.32           |
|         | SYN           | 0.19 (0.06)   | 0.14 (0.08)         | 0.37           |
|         | MIC           | 0.36 (0.12)   | 0.15 (0.18)         | 0.25           |
| 111     | CHL           | 1.04 (0.04)   | 0.16 (0.06)         | 0.64           |
|         | PRO           | 0.17 (0.06)   | 0.31 (0.09)         | 0.67           |
|         | SYN           | 0.45 (0.04)   | 0.29 (0.05)         | 0.83           |
|         | MIC           | 0.41 (0.06)   | 0.23 (0.08)         | 0.67           |
| 111*    | CHL           | 1.20 (0.04)   | 0.50 (0.06)         | 0.93           |
|         | PRO           | 0.33 (0.06)   | 0.54 (0.09)         | 0.85           |
|         | SYN           | 0.44 (0.09)   | 0.36 (0.13)         | 0.55           |
|         | MIC           | 0.29 (0.09)   | 0.25 (0.13)         | 0.37           |

Table 3. Result of inhibitor experiment 1 conducted at first time-series station (Station 34, 0°1.8'S, 166°40.6'E) on October 5, 1994. k = net rates of change;  $\mu$  = growth rates; m = mortality rates; mean = the mean of triplicates; SD = standard deviation. FLB = fluorescently labeled bacteria; control = grazing rates (d<sup>-1</sup>) on FLB in the control bottles; inhibitor = grazing rates (d<sup>-1</sup>) on FLB in the bottles with the addition of metabolic inhibitor.

REAL POINT AN

| Depth (m) | k (c  | 1 <sup>-1</sup> ) | m (     | d <sup>-1</sup> ) | μ(    | d-1) |
|-----------|-------|-------------------|---------|-------------------|-------|------|
|           | mean  | SD                | mean    | SD                | mean  | SD   |
|           |       |                   |         |                   |       |      |
|           |       |                   | Prochle | prococcus         |       |      |
|           |       |                   |         |                   |       |      |
| 5         | 0.28  | 0.04              |         |                   |       |      |
| 20        | 0.23  | 0.20              |         |                   |       |      |
| 40        | 0.13  | 0.22              | 0.55    | 0.23              | 0.68  | 0.32 |
| 60        | -0.10 | 0.06              | 0.23    | 0.05              | 0.13  | 0.08 |
| 80        | 0.24  | 0.11              | 0.51    | 0.19              | 0.75  | 0.22 |
| 100       | -0.07 | 0.10              | 0.30    | 0.08              | 0.23  | 0.13 |
| 120       | 0.05  | 0.13              | 0.06    | 0.07              | 0.01  | 0.14 |
| 150       | -0.18 | 0.09              | 0.06    | 0.06              | -0.11 | 0.11 |
|           | _     |                   |         |                   |       |      |
|           |       |                   | Synech  | nococcus          |       |      |
| 5         | 0.51  | 0.08              | 1.25    | 0.70              | 1.76  | 0.71 |
| 20        | 0.53  | 0.07              | 1.36    | 0.12              | 1.88  | 0.14 |
| 40        | 0.16  | 0.23              | 0.07    | 0.04              | 0.23  | 0.23 |
| 60        | 0.09  | 0.26              | 0.13    | 0.09              | 0.22  | 0.28 |
| 80        | 0.56  | 0.14              | 0.07    | 0.01              | 0.63  | 0.14 |
| 100       | 0.55  | 0.31              | 0.26    |                   | 0.81  | 0.31 |
| 120       | 0.05  | 0.10              | 0.05    |                   | 0.10  | 0.10 |
| 150       |       |                   |         |                   |       |      |

|     |      |      | F         | LB   |  |
|-----|------|------|-----------|------|--|
|     | cont | rol  | inhibitor |      |  |
|     | mean | SD   | mean      | SD   |  |
|     |      |      |           |      |  |
| 5   | 0.44 | 0.27 | 0.47      | 0.12 |  |
| 20  | 0.74 | 0.26 | 0.69      | 0.03 |  |
| 40  | 0.70 |      | 0.62      |      |  |
| 60  | 0.17 | 0.03 | 0.29      | 0.05 |  |
| 80  | 0.82 | 0.30 | 0.47      | 0.25 |  |
| 100 | 0.05 |      | 0.51      | 0.41 |  |
| 120 | 0.24 | 0.04 |           |      |  |
| 150 | 0.15 | 0.20 | 0.18      | 0.09 |  |
|     |      |      |           |      |  |

\* 5 and 80 m water is collected from Niskin bottles.

Table 4. Result of inhibitor experiment 2 conducted at first time-series station (Station 52, 0°20.4'N, 166°22.2'E) on October 8, 1994. k = net rates of change;  $\mu$  = growth rates; m = mortality rates; mean = the mean of triplicates; SD = standard deviation. FLB = fluorescently labeled bacteria; control = grazing rates (d<sup>-1</sup>) on FLB in the control bottles; inhibitor = grazing rates (d<sup>-1</sup>) on FLB in the bottles with the addition of metabolic inhibitor.

| Depth (m) | k (d  | I <sup>-1</sup> ) | m (     | d <sup>-1</sup> ) | μ(α  | l <sup>-1</sup> ) |
|-----------|-------|-------------------|---------|-------------------|------|-------------------|
|           | mean  | SD                | mean    | SD                | mean | SD                |
|           |       |                   | Prochlo | prococcus         |      |                   |
| 5         | 0.39  | 0.16              |         |                   |      |                   |
| 20        | 0.75  | 0.20              |         |                   |      |                   |
| 40        | 0.99  | 0.05              |         |                   |      |                   |
| 60        | 0.69  | 0.06              |         |                   |      |                   |
| 80        | 0.01  | 0.17              | 0.69    | 0.06              | 0.70 | 0.18              |
| 100       | 0.21  | 0.08              | 0.08    | 0.01              | 0.29 | 0.08              |
| 120       | 0.22  | 0.03              | 0.05    | 0.02              | 0.27 | 0.04              |
| 150       | 0.01  | 0.05              | 0.05    | 0.05              | 0.06 | 0.07              |
|           |       |                   | Synech  | 10COCCUS          |      |                   |
| 5         | 0.21  | 0.13              | 0.58    | 0.50              | 0.78 | 0.51              |
| 20        | 0.29  | 0.15              | 0.27    | 0.19              | 0.56 | 0.25              |
| 40        | 0.14  | 0.11              | 0.17    |                   | 0.31 | 0.19              |
| 60        | 0.15  | 0.20              | 0.26    | 0.13              | 0.42 | 0.24              |
| 80        | -0.16 | 0.07              | 0.29    | 0.03              | 0.13 | 0.08              |
| 100       | 0.58  | 0.37              | 0.06    | 0.36              | 0.64 | 0.52              |
| 120       |       |                   |         |                   |      |                   |
| 150       |       |                   |         |                   |      |                   |

|     |      |      | F         | LB   |
|-----|------|------|-----------|------|
|     | con  | trol | inhibitor |      |
|     | mean | SD   | mean      | SD   |
|     |      |      |           |      |
| 5   | 0.19 | 0.07 | 0.26      | 0.17 |
| 20  | 0.45 | 0.14 | 0.38      | 0.27 |
| 40  | 0.25 | 0.08 | 0.13      | 0.06 |
| 60  | 0.37 | 0.01 | 0.24      | 0.03 |
| 80  | 0.29 | 0.01 | 0.26 -    | 0.05 |
| 100 | 0.26 | 0.09 | 0.27      | 0.07 |
| 120 | 0.33 | 0.23 | 0.23      | 0.07 |
| 150 | 0.20 | 0.03 | 0.25      | 0.11 |

| Table 5. Result of inhibitor experiment 3 conducted at second time-series station (Station        |
|---------------------------------------------------------------------------------------------------|
| 87, 0°1.7'N, 150°11.6'W) on October 20, 1994. k = net rates of change; $\mu$ = growth rates;      |
| m = mortality rates; mean = the mean of triplicates; SD = standard deviation. FLB =               |
| fluorescently labeled bacteria; control = grazing rates $(d^{-1})$ on FLB in the control bottles; |
| inhibitor = grazing rates $(d^{-1})$ on FLB in the bottles with the addition of metabolic         |
| inhibitor.                                                                                        |
|                                                                                                   |

| Depth (m) | k (a  | 1 <sup>-1</sup> ) | m (     | m (d <sup>-1</sup> ) |      | d-1) |
|-----------|-------|-------------------|---------|----------------------|------|------|
|           | mean  | SD                | mean    | SD                   | mean | SD   |
|           |       |                   | Prochlo | prococcus            |      |      |
| 5         | -0.12 | 0.11              |         |                      |      |      |
| 20        | 0.09  | 0.08              | 0.36    | 0.08                 | 0.46 | 0.11 |
| 40        | 0.02  | 0.12              | 0.29    | 0.07                 | 0.31 | 0.14 |
| 60        | 0.07  | 0.07              | 0.14    | 0.04                 | 0.22 | 0.08 |
| 80        | 0.04  | 0.00              | 0.09    | 0.07                 | 0.13 | 0.07 |
| 100       | 0.03  | 0.12              | 0.08    | 0.04                 | 0.11 | 0.13 |
| 120       | 0.09  | 0.04              | 0.07    | 0.01                 | 0.16 | 0.04 |
| 150       | 0.02  | 0.04              | 0.10    | 0.06                 | 0.12 | 0.07 |
|           |       |                   | Synech  | ococcus              |      |      |
| 5         | 0.40  | 0.07              |         |                      |      |      |
| 20        | 0.27  | 0.08              | 0.18    | 0.09                 | 0.45 | 0.12 |
| 40        | 0.17  | 0.08              | 0.12    | 0.08                 | 0.28 | 0.12 |
| 60        | -0.01 | 0.04              | 0.13    | 0.09                 | 0.12 | 0.10 |
| 80        | 0.03  | 0.23              | 0.15    | 0.10                 | 0.18 | 0.25 |
| 100       | 0.19  | 0.02              | 0.09    |                      | 0.28 | 0.02 |
| 120       |       |                   |         |                      |      |      |
| 150       |       |                   |         |                      |      |      |

|     |         |      | FLB       |      |
|-----|---------|------|-----------|------|
|     | control |      | inhibitor |      |
|     | mean    | SD   | mean      | SD   |
|     |         |      |           |      |
| 5   | 0.61    | 0.10 | 0.73      | 0.25 |
| 20  | 0.50    | 0.15 | 0.32      | 0.04 |
| 40  | 0.34    | 0.08 | 0.27      | 0.23 |
| 60  | 0.11    | 0.03 | 0.24      | 0.13 |
| 80  | 0.10    | 0.04 | 0.17      | 0.12 |
| 100 | 0.10    | 0.11 | 0.15      | 0.11 |
| 120 | 0.07    | 0.18 | 0.07      | 0.06 |
| 150 | 0.18    | 0.15 | 0.23      | 0.09 |
Table 6. Result of inhibitor experiment 4 conducted at second time-series station (Station 99, 0°1.4'S, 149°51.6'W) on October 22, 1994. k = net rates of change;  $\mu$  = growth rates; m = mortality rates; mean = the mean of triplicates; SD = standard deviation. FLB = fluorescently labeled bacteria; control = grazing rates (d<sup>-1</sup>) on FLB in the control bottles; inhibitor = grazing rates (d<sup>-1</sup>) on FLB in the bottles with the addition of metabolic inhibitor.

| Depth (m) | k (c  | l <sup>-1</sup> ) | m (     | d <sup>-1</sup> ) | μ(α  | d <sup>-1</sup> ) |
|-----------|-------|-------------------|---------|-------------------|------|-------------------|
|           | mean  | SD                | mean    | SD                | mean | SD                |
|           |       |                   | Prochlo | prococcus         |      |                   |
| 5         | -0.36 | 0.07              |         |                   |      |                   |
| 20        | 0.01  | 0.09              | 0.76    | 0.03              | 0.77 | 0.09              |
| 30        | -0.15 | 0.14              | 0.63    | 0.11              | 0.48 | 0.18              |
| 60        | 0.03  | 0.01              | 0.08    | 0.02              | 0.11 | 0.02              |
| 70        | 0.03  | 0.07              | 0.10    | 0.03              | 0.14 | 0.07              |
| 80        | 0.08  | 0.14              | 0.07    | 0.02              | 0.15 | 0.14              |
| 100       | 0.17  | 0.11              | 0.05    | 0.02              | 0.21 | 0.11              |
| 120       | 0.13  | 0.04              | 0.05    | 0.02              | 0.19 | 0.04              |
|           |       |                   | Synech  | nococcus          |      |                   |
| 5         | 0.16  | 0.07              |         |                   |      |                   |
| 20        | 0.36  | 0.04              | 0.43    | 0.20              | 0.79 | 0.20              |
| 30        | 0.13  | 0.08              | 0.18    | 0.06              | 0.30 | 0.10              |
| 60        | 0.16  | 0.11              | 0.02    | 0.01              | 0.17 | 0.11              |
| 70        | 0.16  | 0.11              | 0.16    | 0.13              | 0.31 | 0.17              |
| 80        | 0.19  | 0.09              | 0.28    | 0.14              | 0.47 | 0.17              |
| 100       | 0.12  | 0.14              | 0.10    | 0.01              | 0.22 | 0.14              |
| 120       |       |                   |         |                   |      |                   |

|     |       |      | FI    | LB    |
|-----|-------|------|-------|-------|
|     | con   | trol | inhib | oitor |
|     | mean  | SD   | mean  | SD    |
|     |       |      |       |       |
| 5   | 0.53  | 0.24 | 0.60  | 0.08  |
| 20  | 0.36  | 0.27 | 0.48  | 0.03  |
| 30  | 0.15  | 0.01 | 0.24  | 0.08  |
| 60  | -0.02 | 0.04 | 0.08  | 0.06  |
| 70  | 0.02  | 0.03 | 0.31  | 0.08  |
| 80  | 0.07  | 0.05 | 0.10- | 0.06  |
| 100 | 0.07  | 0.02 | 0.12  | 0.11  |
| 120 | 0.17  | 0.03 | 0.12  | 0.08  |



Fig.1 Analyses of dilution experiment at Station 111 (0°20.5'S, 149°34.4'W) with nutrients addition by linear regression approach.



Fig.2 Analyses of dilution experiment at Station 111 (0°20.5'S, 149°34.4'W) without nutrients addition by linear regression approach.





Fig.3 Percentage of *Prochlorococcus* cells in S and G<sub>2</sub> phases for a depth profile at the first time-series station (CTD stations 052 - 061, see data report 1 for detail). Cell fractions were computed from DNA distribution using MCYCLE (Phoenix Flow Systems, San Diego, CA). Time = hours from midnight; % = percentage of cells in S and G<sub>2</sub> phases.



Fig.4 As Fig. 3, but for a depth profile at the second time-series station (CTD stations 117 - 126, see data report 1 for detail).



Fig.5 Depth profile of *Prochlorococcus* division rate (μ, d<sup>-1</sup>) estimated from cell cycle analysis. A. Time-series Station 1 (0°20'N, 166°15'E); B. Time-series Station 2 (0° 30'S, 149°20'W).

251

**Chapitre 20** 

# ZOOPLANCTON ET PRODUCTION SECONDAIRE

Robert LE BORGNE\*, Alain LAPETITE\* et Isabelle PALAZZOLI\*\*

\*Centre ORSTOM de Nouméa B.P. A5 98848 Nouméa Cedex, Nouvelle-Calédonie 5Tél : (687) 26 19 00 - Fax : (687) 26 43 26 - Email : leborgne@noumea.orstom.nc)

> \*\*CNRS, Station Zoologique B.P. 28 06230 Villefranche-sur-Mer, France (Tél : (33) 93 55 56 56 - Fax : 93 76 38 34)

Les mesures effectuées sur le zooplancton lors de la campagne FLUPAC, ont eu pour objet d'en évaluer la biomasse, la composition élémentaire et faunistique et les taux métaboliques (quantités de matière respirées ou excrétées par unité de masse et de temps). Leurs sont associées des études de distribution verticale et de variations nycthémérales, réalisées lors des deux stations en dérive.

## PLAN DE L'ECHANTILLONNAGE

Sur les deux radiales descriptives, le long de 165°E (15°S-6°N) et de l'équateur (167°E-150°W), un trait vertical (0-500m) a été fait à chaque station, avec le filet triple, WP-2. Les échantillons recueillis ont été traîtés pour les mesures de :

- biomasse exprimée en poids sec (PS) et poids sec sans cendre (PSSC)
- composition élémentaire (quelques stations seulement)
- composition faunistique.

Lors des stations en dérive ( $167^{\circ}E$  et  $150^{\circ}W$ ), deux séries quotidiennes de prélèvements ont eu lieu le matin (9.00 à 10.30) et le soir (20.00 à 21.00) avec trois types de filets :  $35\mu$ m, WP-2 (maille de 200 $\mu$ m) et filet à nappes (maille de 200 $\mu$ m). Les échantillons recueillis ont servi aux mesures de :

- biomasse, exprimée en poids (PS) sec et poids sec sans cendre (PSSC) pour les couches 0-100m (trois filets), 0-200m (filet de 35μm), 0-500m (WP-2) et 100-200, 200-300, 300-400 et 400-500m (filet à nappes)
- composition élémentaire (filets de 35µm et WP-2)
- composition taxonomique (idem)
- taux métaboliques (idem).

## PRELEVEMENTS

Il y a eu trois types de prélèvements utilisant :

- les filets triples de 35μm, en traits verticaux 0-100 et 0-200m. Il s'agit de filets coniques, de section d'ouverture de 0,09m<sup>2</sup> et de 2,61m de long, conçus et décrits par BLANCHOT *et al.* (1989).
- les filets triples WP-2 (ANONYME, 1968) en traits verticaux 0-100 et 0-500m. Ces filets ont une section d'ouverture de 0,25m<sup>2</sup> et une longueur de 2,61m. Ils sont gréés en soie de 200µm de vide de maille.
- les filets à nappes HYDROBIOS (WEIKERT et JOHN, 1981) en traits verticaux, gréés en soie de 200µm de vide de maille. Ce dispositif comprend 5 filets dont l'ouverture est déclenchée à partir du bord par l'intermédiaire du câble électro-porteur. Ce dernier transmet également les données de pression, permettant le choix de la profondeur d'ouverture de chaque filet.

Tous les traits de filet ont été faits avec des débitmètres afin de connaître le volume filtré : débitmètre T.S.K. pour les filet de 35µm et WP-2 et HYDROBIOS pour les filets à nappes. Les débitmètres ont été étalonnés en début de campagne, en baie du Santal (Lifou).

La profondeur était connue en temps réel pour le filet à nappes et en différé, à partir d'enregistreurs de pression de marque MICREL, placés sur le cadre supérieur des filets de  $35\mu m$  et WP-2.

#### BIOMASSES

Exprimées en poids sec (PS), les mesures concernent des échantillons de un, deux ou trois filets, passés sur des tamis métalliques de 200 ou 2000 $\mu$ m selon que l'on considère respectivement, le filet de 35 $\mu$ m ou le WP-2. Notons que sur les échantillons recueillis par le filet WP-2, on a séparé systématiquement par tamisage (grille métallique de 500 $\mu$ m) les fractions [200-500 $\mu$ m] et [500-2000 $\mu$ m]. Il n'y a pas eu de tamisage sur le plancton du filet à nappes.

Rincé avec 100ml d'eau douce, le plancton, qui est recueilli sur une soie prépesée, est ensuite séché à l'étuve à 60°C pendant 24h, conservé à -20°C jusqu'au retour à terre. A FLUPAC, les échantillons ont été transportés de Papeete à Nouméa dans une glacière remplie de "carboglace" et stockés en chambre froide dès leur arrivée. Il n'y a donc pas eu de décongélation avant le nouveau passage à l'étuve (24h, 60°C) qui a précédé un séjour de quelques heures en dessicateur et la pesée (précision de lecture de 0,1mg).

Le poids sec sans cendre (PSSC) a été déterminé sur ces mêmes échantillons (à l'exception de ceux, trop petits, du filet à nappes), une fois transférés dans des coupelles en aluminium, puis passés au four pendant 1h30mn à 550°C.

Les données de biomasse sont ramenées au volume d'eau échantillonné, tel que mesuré par les débitmètres et donc exprimés en mg/m<sup>3</sup>. Les valeurs par mètre-carré ont trait à la colonne d'eau échantillonnée par le filet.

## **COMPOSITION ELEMENTAIRE (C,N,P)**

Elle est déterminée sur des broyats de plancton réalisés à bord. Dilués dans de l'eau distillée, ces broyats sont mis dans des nacelles d'une centaine de microlitres, séchés à 60°C, puis conservés comme les échantillons de biomasse. La teneur du poids sec en phosphore a été déterminée à terre par la méthode de MENZEL et CORWIN (1965), 1 an après les prélèvements<sup>1</sup>, celle du carbone et de l'azote, avec un analyseur "CHN" PERKIN-ELMER 2400, 6 mois après. Le poids sec a été déterminé en utilisant une électrobalance PERKIN-ELMER ELMER AD4, précise à 0,001mg.

Les données de composition élémentaire sont exprimées en pourcentages du poids sec en carbone, azote ou phosphore.

## **COMPOSITION TAXONOMIQUE**

Les échantillons destinés à l'identification des principales entités taxonomiques ont été fixés au formol à 10%, neutralisé au borax. Les comptages à la loupe binoculaire ont été faits

<sup>&</sup>lt;sup>1</sup> Pour une raison encore non élucidée, il s'est avéré que la méthode de PUJO-PAY et RAIMBAULT (1994) utilisée pour le phosphore total dissous, donnait avec les échantillons de zooplancton, des rendements beaucoup plus faibles que la méthode de MENZEL et CORWIN (1965) qui lui a donc été préférée.

sur la totalité des échantillons de la fraction >200 $\mu$ m, à l'exception des copépodes dont le dénombrement n'a porté que sur une fraction obtenue à la poire (méthode de FRONTIER, 1972). La totalité des individus d'une même entité taxonomique ont été pesés avec une électrobalance, dans certains cas, afin d'obtenir le poids sec individuel moyen. Pour ces échantillons, les détritus qui pouvaient être présents dans le prélèvement, ont été pesés à part. Les individus ou les détritus ont été recueillis sur des filtres GF/F de 25mm (prépesés), puis rincés avec une solution isotonique de formiate d'ammonium (68g/l). Les pesées ont concerné des échantillons qui avaient séjourné au moins 6 mois dans le formol, de sorte que l'on peut admettre que le poids individuel des différents taxons est constant.

Les calculs des pourcentages pondéraux figurant sur les tableaux des résultats des comptages de zooplancton, ont été obtenus de la façon suivante :

$$i\% = 100 e_i w_i / \Sigma e_i w_i$$

avec :

i % : pourcentage du taxon i dans l'échantillon total

e; : effectif du taxon i

wi : poids individuel du taxon i

 $\Sigma e_i w_i$ : somme des poids des n taxons

## TAUX DE RESPIRATION ET D'EXCRETION

Ils ont été déterminés sur des animaux mis en incubation dans des flacons de l (fraction 35-200µm) ou 2 litres (fractions 200-500 et 500-2000µm), dans de l'eau filtrée sur Gelman en fibres de verre (porosité ~ 0,7µm), par pression afin de ne pas désoxygéner le milieu. Les expériences ont duré une vingtaine d'heures, à l'obscurité, dans des bacs maintenus à température constante, soit par circulation d'eau de surface, soit avec une sonde réfrigérée et thermostatée. La quantité d'animaux mis en incubation est exprimée par le poids sec après recueil sur soie de 35µm ou filtre en fibres de verre, prépesés. L'excrétion d'ammonium (NH4), d'azote total (NT), de phosphore minéral (PO<sub>4</sub>), de phosphore total (PT) est la différence des concentrations, observée entre les flacons avec animaux et les flacons sans animaux à la fin de l'expérience. De la même façon, la respiration (0) est la différence des concentrations en oxygène dissous. NH4 a été mesuré sur autoanalyseur Technicon selon la méthode décrite par GRASSHOFF *et al.* (1983) et PO<sub>4</sub>, également sur Technicon, par la méthode décrite dans STRICKLAND et PARSONS (1972). NT et PT sont obtenus par la méthode d'oxydation humide (PUJO-PAY et RAIMBAULT, 1994). L'oxygène dissous, enfin, est mesuré avec une sonde YSI, calibrée une fois par jour par la méthode de Winkler.

On trouvera tout détail complémentaire concernant ces méthodes d'analyses dans le Tome 1 du recueil de données de la campagne FLUPAC.

Les quantités d'oxygène respiré ou d'azote et de phosphore excrété sont rapportées à 24h et à 1mg de poids sec de plancton.

## PRESENTATION DES RESULTATS

Au moment de l'édition de ce recueil, manquent encore un certain nombre de données sur la composition taxonomique. Le dépouillement des autres paramètres est achevé. Afin de faciliter la compréhension du lecteur, on a opté pour une présentation de figures et de tableaux dans le cas des données de biomasse. Pour les autres paramètres, seuls les tableaux sont édités.

La liste des résultats présentés est la suivante :

- Poids sec sans cendre/m<sup>2</sup> du mésozooplancton (200-2000µm) sur la radiale 165°E (FIg. 1)
- Poids sec sans cendre/m<sup>2</sup> du mésozooplancton (200-2000μm) sur la radiale équatoriale (Fig.2)
- Importance (exprimée en pourcentage du total) de la fraction 500-2000µm sur la radiale équatoriale (Fig. 3)
- Variations temporelles du microzooplancton (35-200μm) lors de la première station en dérive (167°E) (Fig. 4)
- Variations temporelles du mésozooplancton (200-2000μm) capturé avec le filet WP-2 lors de la première station en dérive (167°E) (Fig. 5)
- Variations temporelles du mésozooplancton (200-2000μm) capturé avec le filet à nappes lors de la première station en dérive (167°E) (Fig. 6)
- Distribution verticale moyenne du mésozooplancton (200-2000µm) capturé avec le filet à nappes lors de la première station en dérive (167°E) (Fig. 7)
- Variations temporelles du microzooplancton (35-200µm) lors de la seconde station en dérive (150°W) (Fig. 8)
- Variations temporelles du mésozooplancton (200-2000µm) capturé avec le filet WP-2 lors de la seconde station en dérive (150°W) (Fig. 9)
- Variations temporelles du mésozooplancton (200-2000μm) capturé avec le filet à nappes lors de la seconde station en dérive (150°W) (Fig. 10)
- Distribution verticale moyenne du mésozooplancton (200-2000μm) capturé avec le filet à nappes lors de la seconde station en dérive (150°W) (Fig. 11)
- Caractéristiques des prélèvements verticaux effectués avec le filet de 35µm (Tableau 1)
- Valeurs de biomasse par mètre-cube et par mètre-carré obtenues avec le filet de 35µm (Tableau 2)
- Caractéristiques des prélèvements verticaux effectués avec le filet WP-2 (200μm) (Tableau 3)
- Valeurs de biomasse par mètre-cube et par mètre-carré obtenues avec le filet WP-2 (200μm) (Tableau 4)
- Caractéristiques des prélèvements verticaux effectués avec le filet à nappes HYDROBIOS (200µm) (Tableau 5)
- Valeurs de biomasse par mètre-cube et par mètre-carré obtenues avec le filet à nappes HYDROBIOS (200µm) (Tableau 6)
- Importance (exprimée en pourcentage du poids sec total) des fractions 200-500 et 500-2000µm dans les échantillons prélevés au filet WP-2 (Tableau 7)
- Pourcentage du poids sec en poids sec sans cendre des fractions 200-500 et 500-2000 $\mu$ m (Tableau 7)
- Pourcentage du poids sec en carbone, azote et phosphore des fractions 200-500 et 500-2000μm (Tableau 7)
- Composition taxonomique des prélèvements de mésozooplancton (filet WP-2) (Tableau 8)
- Caractéristiques des incubations de zooplancton et valeurs des taux métaboliques (Tableau 9)
- Rapports atomiques O/N, O/P, N/P et pourcentages de l'excrètion minérale par rapport au total (Tableau 10).

### Remerciements

Les analyses chimiques au Technicon ont été faites par Sylvain BONNET, Philippe GERARD et Hugues LEMONNIER. Francis GALLOIS et Jean-Yves PANCHE, électroniciens, ont mis au point le branchement du filet à nappes sur le câble électroporteur, en alternance avec la sonde CTD-rosette.

## **REFERENCES CITEES**

- ANONYME, 1968. Zooplankton sampling. *Monogr. Oceanogr. Methodol.* (UNESCO) 2 : 1-174.
- BLANCHOT J., CHARPY L. & LE BORGNE R., 1989. Size composition of particulate matter in Tikehau atoll (Tuamotu archipelago). *Mar. Biol.* 102 : 329-339.
- FRONTIER S., 1972. Calcul de l'erreur sur un comptage de zooplancton. J. exp. Mar. Biol. Ecol. 8 (2) : 121-132.
- GRASSHOFF K., EHRHARDT M. & KREMLING K., 1983. Methods of seawater analysis. Verlag Chimie, Kiel : 419 pp.
- MENZEL D.W. & CORWIN N., 1965. The measurement of total phosphorus in sea-water based on the liberation of organically bound fractions by persulfate oxidation. *Limnol. Oceanogr.* 10: 280-282.
- PUJO-PAY M. & RAIMBAULT P., 1994. Improvement of the wet-oxidation procedure for simultaneous determination of particulate organic nitrogen and phosphorus collected on filters. *Mar. Ecol. Progress Series*, 105 : 203-207.
- STRICKLAND J. & PARSONS T., 1972. A practical handbook of seawater analysis. Fish. Res. Bd. Canada Bull. 167: 310 pp.
- WEIKERT H. & JOHN H-CH., 1981. Experiences with a modified Bé multiple openingclosing plankton net. J. plankton Res. 3 (2): 167-176.

## EDITION DES DONNEES DE BIOMASSE ET DE COMPOSITION ELEMENTAIRE DU ZOOPLANCTON



Heure locale (minutes en dixièmes d'heure)

Campagne FLUPAC:

Valeurs des Biomasses (M3 et /M2)



Campagne: FLUPAC

.

Caractéristiques des traits

WP2

Vertical 35 Microns

| No  |       | Position | No    | Date                                   | Heure | Prof | Prof | Lg  | Ang | Volume | Poids | Pssc  | С       | Ν       | P    |
|-----|-------|----------|-------|----------------------------------------|-------|------|------|-----|-----|--------|-------|-------|---------|---------|------|
| St  |       |          | trait | ······································ |       | max  | min  | fil |     | filtre | Sec   | (en   | % du po | ds sec) |      |
| 24  | 0°02S | 166°57E  | Ph1   | 3/10/1994                              | 9.2   | 200  | 0    | 213 | 20  | 18.2   | 57.40 | 59.12 |         |         |      |
| 24  | 0°02S | 166°57E  | Ph2   | 3/10/1994                              | 9.5   | 100  | 0    | 100 | 0   | 8.1    | 46.30 | 57.18 |         |         |      |
| 27  | 0°05S | 166°52E  | Ph3   | 3/10/1994                              | 20.9  | 200  | 0    | 213 | 20  | 22.1   |       |       | 20.79   | 3.97    | 0.53 |
| 27  | 0°05S | 166°52E  | Ph4   | 3/10/1994                              | 21.2  | 100  | 0    | 106 | 20  | 14.7   |       |       |         |         |      |
| 30  | 0°06S | 166°45E  | Ph5   | 4/10/1994                              | 9.5   | 200  | 0    | 200 | 0   | 16.8   | 41.00 | 61.06 |         |         |      |
| 30  | 0°06S | 166°45E  | Ph6   | 4/10/1994                              | 9.8   | 100  | 0    | 100 | 0   | 10.3   | 28.00 | 65.19 |         |         |      |
| 33  | 0°02S | 166°42E  | Ph7   | 4/10/1994                              | 21.0  | 200  | 0    | 200 | 0   | 20.8   | 21.70 | 57.14 | 26.17   | 5.39    | 0.71 |
| 33  | 0°02S | 166°42E  | Ph8   | 4/10/1994                              | 21.2  | 100  | 0    | 100 | 0   | 8.6    | 29.73 | 62.52 |         |         |      |
| 36  | 0°00S | 166°47E  | Ph9   | 5/10/1994                              | 10.9  | 200  | 0    | 200 | 0   | 20.8   | 32.20 | 68.48 |         |         |      |
| 39  | 0°04S | 166°39E  | Ph10  | 5/10/1994                              | 21.4  | 200  | 0    | 200 | 0   | 17.1   | 49.00 | 64.12 | 25.52   | 5.36    | 0.75 |
| 39  | 0°04S | 166°39E  | Ph11  | 5/10/1994                              | 21.7  | 100  | 0    | 100 | 0   | 8.6    | 24.40 | 60.00 |         |         |      |
| 42  | 0°09S | 166°38E  | Ph12  | 6/10/1994                              | 8.3   | 200  | 0    | 200 | 0   | 17.1   | 36.80 | 61.05 |         |         |      |
| 42  | 0°09S | 166°38E  | Ph13  | 6/10/1994                              | 8.6   | 100  | 0    | 100 | 0   | 8.6    | 24.80 | 58.33 |         |         |      |
| 45  | 0°12S | 166°29E  | Ph14  | 6/10/1994                              | 20.8  | 100  | 0    | 100 | 0   | 8.9    |       |       | 16.46   | 2.75    | 0.39 |
| 45  | 0°12S | 166°29E  | Ph15  | 6/10/1994                              | 20.9  | 200  | 0    | 200 | 0   | 19.6   | 25.40 | 65.08 |         |         |      |
| 48  | 0°13S | 166°29E  | Ph16  | 7/10/1994                              | 9.3   | 200  | 0    | 213 | 20  | 18.0   | 29.00 | 61.54 |         |         |      |
| 48  | 0°13S | 166°29E  | Ph17  | 7/10/1994                              | 9.6   | 100  | 0    | 104 | 15  | 9.7    | 28.40 | 66.38 |         |         |      |
| 51  | 0°17S | 166°24E  | Ph18  | 7/10/1994                              | 20.9  | 200  | 0    | 200 | 0   | 17.2   |       |       | 26.17   | 5.10    | 0.45 |
| 51  | 0°17S | 166°24E  | Ph19  | 7/10/1994                              | 21.2  | 100  | 0    | 100 | 0   | 8.6    | 16.80 | 59.43 |         |         |      |
| 51  | 0°17S | 166°24E  | Ph20  | 7/10/1994                              | 22.1  | 200  | 0    | 208 | 10  | 18.1   | 29.40 | 60.33 |         |         |      |
| 54  | 0°21S | 166°18E  | Ph21  | 8/10/1994                              | 8.6   | 200  | 0    | 200 | 0   | 17.1   | 28.70 | 59.37 |         |         |      |
| 54  | 0°21S | 166°18E  | Ph22  | 8/10/1994                              | 8.8   | 100  | 0    | 100 | 0   | 8.6    | 16.60 | 59.46 |         |         |      |
| 59  | 0°28S | 166°12E  | Ph23  | 8/10/1994                              | 20.9  | 100  | 0    | 100 | 0   | 8.6    | 26.20 | 60.42 |         |         |      |
| 59  | 0°28S | 166°12E  | Ph24  | 8/10/1994                              | 21.1  | 200  | 0    | 200 | 0   | 17.1   | 28.20 | 66.67 |         |         |      |
| 83  | 0°02S | 150°18W  | Ph25  | 19/10/1994                             | 8.5   | 100  | 0    | 100 | 0   | 8.6    | 32.40 | 47.65 |         |         |      |
| 83  | 0°02S | 150°18W  | Ph26  | 19/10/1994                             | 8.9   | 200  | 0    | 200 | 0   | 17.1   | 38.60 | 58.72 |         |         |      |
| 86  | 0°01S | 150°12W  | Ph27  | 19/10/1994                             | 20.7  | 100  | 0    | 100 | 0   | 8.6    | 31.20 | 49.06 | 19.19   | 3.11    | 0.32 |
| 86  | 0°01S | 150°12W  | Ph28  | 19/10/1994                             | 20.8  | 200  | 0    | 203 | 10  | 17.4   | 34.00 | 63.45 |         |         |      |
| 89  | 0°01S | 150°10W  | Ph29  | 20/10/1994                             | 8.8   | 200  | 0    | 200 | 0   | 17.1   | 56.80 | 41.93 |         |         |      |
| 89  | 0°01S | 150°10W  | Ph30  | 20/10/1994                             | 9.0   | 100  | 0    | 100 | 0   | 8.6    | 52.10 | 49.51 |         |         |      |
| 92  | 0°01S | 150°03W  | Ph31  | 20/10/1994                             | 20.6  | 100  | 0    | 100 | 0   | 9.8    | 28.60 | 51.04 | 18.81   | 3.69    | 0.58 |
| 92  | 0°01S | 150°03W  | Ph32  | 20/10/1994                             | 20.8  | 200  | 0    | 200 | 0   | 18.8   | 29.60 | 51.44 |         |         |      |
| 95  | 0°02S | 149°57W  | Ph33  | 21/10/1994                             | 9.3   | 100  | 0    | 100 | 0   | 8.2    | 28.60 | 58.21 |         |         |      |
| 95  | 0°02S | 149°57W  | Ph34  | 21/10/1994                             | 9.4   | 200  | 0    | 200 | 0   | 19.4   | 49.60 | 42.23 |         |         |      |
| 98  | 0°00S | 149°53W  | Ph35  | 21/10/1994                             | 20.7  | 100  | 0    | 100 | 0   | 8.6    | 46.90 | 60.48 | 20.45   | 3.87    | 0.66 |
| 98  | 0°00S | 149°53W  | Ph36  | 21/10/1994                             | 21.0  | 200  | 0    | 200 | 0   | 17.1   | 54.10 | 49.29 |         |         |      |
| 101 | 0°03S | 149°48W  | Ph37  | 22/10/1994                             | 8.7   | 100  | 0    | 100 | 0   | 10.6   | 29.60 | 53.22 |         |         |      |
| 101 | 0°03S | 149°48W  | Ph38  | 22/10/1994                             | 8.0   | 200  | 0    | 200 | 0   | 20.7   | 35.90 | 54.22 |         |         |      |
| 104 | 0°16S | 149°45W  | Ph39  | 22/10/1994                             | 20.7  | 100  | 0    | 100 | 0   | 10.2   | 40.90 | 60.29 | 11.18   | 1.78    | 0.30 |
| 104 | 0°16S | 149°45W  | Ph40  | 22/10/1994                             | 20.9  | 200  | 0    | 200 | 0   | 21.4   | 54.00 | 49.52 |         |         |      |
| 107 | 0°16S | 149°39W  | Ph41  | 23/10/1994                             | 9.3   | 100  | 0    | 100 | 0   | 8.2    | 42.40 | 48.46 | 15.20   | 2.71    | 0.37 |
| 107 | 0°16S | 149°39W  | Ph42  | 23/10/1994                             | 9.5   | 200  | 0    | 200 | 0   | 18.9   | 45.20 | 50.63 |         |         |      |
| 110 | 0°21S | 149°35W  | Ph43  | 23/10/1994                             | 20.5  | 100  | 0    | 100 | 0   | 8.7    | 42.80 | 52.69 |         |         |      |
| 110 | 0°21S | 149°35W  | Ph44  | 23/10/1994                             | 20.8  | 200  | 0    | 200 | 0   | 15.3   | 51.80 | 58.46 |         |         |      |
| 113 | 0°22S | 149°29W  | Ph45  | 24/10/1994                             | 8.6   | 100  | 0    | 100 | 0   | 8.8    | 33.70 | 60.00 |         |         |      |
| 113 | 0°225 | 149°29W  | Ph46  | 24/10/1994                             | 8.8   | 200  | 0    | 200 | Ō   | 18.0   | 25.10 | 66.12 |         |         |      |
| 116 | 0°255 | 149°25W  | Ph47  | 24/10/1994                             | 20.8  | 100  | õ    | 100 | õ   | 9.9    | 29.00 | 66.20 | 18.88   | 3.71    | 0.46 |
| 116 | 0°255 | 149°25W  | Phas  | 24/10/1994                             | 21.1  | 200  | õ    | 200 | õ   | 19.6   | 40 10 | 62 84 |         | 0.11    | 0.40 |
| 110 | 0°265 | 149°21W  | Ph49  | 25/10/1994                             | 8.0   | 100  | õ    | 100 | õ   | 9.9    | 44.20 | 59 21 |         |         |      |
| 110 | 0°265 | 149°21W  | Ph50  | 25/10/1094                             | 87    | 200  | õ    | 200 | õ   | 18.2   | 48.10 | 55.66 |         |         |      |
| 123 | 0°305 | 149°19W  | Ph51  | 25/10/1994                             | 20.5  | 100  | õ    | 100 | õ   | 9.3    | 25.90 | 62.39 | 21.92   | 3,85    | 0.50 |
| 120 | 00000 | 14091014 | Dh52  | 25/10/1004                             | 20.0  | 200  | õ    | 213 | 20  | 17.8   | 45 20 | 58.05 | 21.02   | 0.00    | 0.00 |

•

e e e

| Campagne: FLUPAC | Valeurs des Biomasses /M3 et /M2 |
|------------------|----------------------------------|
|------------------|----------------------------------|

WP2 Vertical 35 Microns

,

.

| No  | No    | Date                   | Prof | -     | Valeurs | par Mètr | e-cube |                |       | Valeu | rs par Mètre | e-carré | -    | Rap.         | Atom.          |
|-----|-------|------------------------|------|-------|---------|----------|--------|----------------|-------|-------|--------------|---------|------|--------------|----------------|
| St  | trait |                        |      | P.Sec | Pssc    | С        | N      | Р              | P.Sec | Pssc  | c            | N       | Р    | C/N          | N/P            |
| 24  | Ph1   | 3/10/1994              |      | 3.154 | 1.865   |          |        |                | 631   | 373   |              |         |      |              |                |
| 24  | Ph2   | 3/10/1994              |      | 5.716 | 3.268   |          |        |                | 572   | 327   |              |         |      |              |                |
| 27  | Ph3   | 3/10/1994              |      |       |         |          |        |                |       |       |              |         |      | 6.11         | 16.59          |
| 27  | Ph4   | 3/10/1994              |      |       |         |          |        |                |       |       |              |         |      |              |                |
| 30  | Ph5   | 4/10/1994              |      | 2,440 | 1.490   |          |        |                | 488   | 298   |              |         |      |              |                |
| 30  | Ph6   | 4/10/1994              |      | 2,718 | 1.772   |          |        |                | 272   | 177   |              |         |      |              |                |
| 33  | Ph7   | 4/10/1994              |      | 1.043 | 0.596   | 0.273    | 0.056  | 0.0074         | 209   | 119   | 54.60        | 11.25   | 1 48 | 5 66         | 16.81          |
| 33  | Ph8   | 4/10/1994              |      | 3.457 | 2.161   | 0127 0   | 0.000  | 0.007          | 346   | 216   | 0,,00        |         | 1.40 | 0.00         | 10.01          |
| 36  | Ph9   | 5/10/1994              |      | 1.548 | 1.060   |          |        |                | 310   | 212   |              |         |      |              |                |
| 39  | Ph10  | 5/10/1994              |      | 2.865 | 1.837   | 0.731    | 0.154  | 0.0215         | 573   | 367   | 146 25       | 30.72   | 4 30 | 5 55         | 15.82          |
| 39  | Ph11  | 5/10/1994              |      | 2.837 | 1.702   | •••••    |        |                | 284   | 170   | 110120       | 00.72   |      | 0.00         | 10.0L          |
| 42  | Ph12  | 6/10/1994              |      | 2.152 | 1.314   |          |        |                | 430   | 263   |              |         |      |              |                |
| 42  | Ph13  | 6/10/1994              |      | 2 884 | 1.682   |          |        |                | 288   | 168   |              |         |      |              |                |
| 45  | Ph14  | 6/10/1994              |      | 2.004 | 1.002   |          |        |                | 200   | 100   |              |         |      | 6 08         | 15.61          |
| 45  | Ph15  | 6/10/1994              |      | 1 296 | 0.843   |          |        |                | 250   | 169   |              |         |      | 0.90         | 15.01          |
| 48  | Ph16  | 7/10/1004              |      | 1 611 | 0.040   |          |        |                | 200   | 103   |              |         |      |              |                |
| 49  | Ph17  | 7/10/1994              |      | 2 028 | 1 0/13  |          |        |                | 202   | 10/   |              |         |      |              |                |
| 51  | Dh19  | 7/10/1994              |      | 2.920 | 1.345   |          |        |                | 295   | 134   |              |         |      | E 00         | 05 10          |
| 51  | Ph10  | 7/10/1994              |      | 1 052 | 1 161   |          |        |                | 105   | 116   |              |         |      | 5.99         | 25.10          |
| 51  | Phoo  | 7/10/1994              |      | 1.903 | 0.000   |          |        |                | 195   | 106   |              |         |      |              |                |
| 51  | Ph20  | 7/10/1994<br>8/10/1004 |      | 1.024 | 0.900   |          |        |                | 323   | 190   |              |         |      |              |                |
| 54  | Phoo  | 8/10/1994              |      | 1.070 | 1 1 4 0 |          |        |                | 330   | 199   |              |         |      |              |                |
| 54  | Phzz  | 8/10/1994              |      | 1.930 | 1.041   |          |        |                | 193   | 115   |              |         |      |              |                |
| 59  | Ph23  | 8/10/1994              |      | 3.047 | 1.041   |          |        |                | 305   | 184   |              |         |      |              |                |
| 59  | Ph24  | 8/10/1994              |      | 0.707 | 1.099   |          |        |                | 330   | 220   |              |         |      |              |                |
| 83  | Ph25  | 19/10/1994             |      | 3.767 | 1.795   |          |        |                | 3//   | 180   |              |         |      |              |                |
| 83  | Ph26  | 19/10/1994             |      | 2.257 | 1.325   | 0.000    | 0.110  | 0.0110         | 451   | 205   | ~~~~~        | 11.00   | 1.10 | 7.00         | 01.50          |
| 80  | Ph27  | 19/10/1994             |      | 3.628 | 1.780   | 0.696    | 0.113  | 0.0116         | 363   | 178   | 69.62        | 11.28   | 1.16 | 7.20         | 21.52          |
| 86  | Ph28  | 19/10/1994             |      | 1.954 | 1.240   |          |        |                | 391   | 248   |              |         |      |              |                |
| 89  | Ph29  | 20/10/1994             |      | 3.322 | 1.393   |          |        |                | 664   | 2/9   |              |         |      |              |                |
| 89  | Ph30  | 20/10/1994             |      | 6.058 | 2.999   | 0 5 40   |        |                | 606   | 300   |              |         |      |              |                |
| 92  | Ph31  | 20/10/1994             |      | 2.918 | 1.490   | 0.549    | 0.108  | 0.0169         | 292   | 149   | 54.89        | 10.77   | 1.69 | 5.95         | 14.09          |
| 92  | Ph32  | 20/10/1994             |      | 1.5/4 | 0.810   |          |        |                | 315   | 162   |              |         |      |              |                |
| 95  | Ph33  | 21/10/1994             |      | 3.488 | 2.030   |          |        |                | 349   | 203   |              |         |      |              |                |
| 95  | Ph34  | 21/10/1994             |      | 2.557 | 1.080   |          |        |                | 511   | 216   |              |         |      |              |                |
| 98  | Ph35  | 21/10/1994             |      | 5.453 | 3.298   | 1.115    | 0.211  | 0.0360         | 545   | 330   | 111.52       | 21.11   | 3.60 | 6.16         | 12.98          |
| 98  | Ph36  | 21/10/1994             |      | 3.164 | 1.559   |          |        |                | 633   | 312   |              |         |      |              |                |
| 101 | Ph37  | 22/10/1994             |      | 2.792 | 1.486   |          |        |                | 279   | 149   |              |         |      |              |                |
| 101 | Ph38  | 22/10/1994             |      | 1.734 | 0.940   |          |        |                | 347   | 188   |              |         |      |              |                |
| 104 | Ph39  | 22/10/1994             |      | 4.010 | 2.418   | 0.448    | 0.071  | 0.0120         | 401   | 242   | 44.83        | 7.14    | 1.20 | 7.33         | 13.14          |
| 104 | Ph40  | 22/10/1994             |      | 2.523 | 1.250   |          |        |                | 505   | 250   |              |         |      |              |                |
| 107 | Ph41  | 23/10/1994             |      | 5.171 | 2.506   | 0.786    | 0.140  | 0.0191         | 517   | 251   | 78.60        | 14.01   | 1.91 | 6.54         | 16.22          |
| 107 | Ph42  | 23/10/1994             |      | 2.392 | 1.211   |          |        |                | 478   | 242   |              |         |      |              |                |
| 110 | Ph43  | 23/10/1994             |      | 4.920 | 2.592   |          |        |                | 492   | 259   |              |         |      |              |                |
| 110 | Ph44  | 23/10/1994             |      | 3.386 | 1.979   |          |        |                | 677   | 396   |              |         |      |              |                |
| 113 | Ph45  | 24/10/1994             |      | 3.830 | 2.298   |          |        |                | 383   | 230   |              |         |      |              |                |
| 113 | Ph46  | 24/10/1994             |      | 1.394 | 0.922   |          |        |                | 279   | 184   |              |         |      |              |                |
| 116 | Ph47  | 24/10/1994             |      | 2.929 | 1.939   | 0.553    | 0.109  | <b>0.01</b> 35 | 293   | 194   | 55.31        | 10.87   | 1.35 | 5. <b>94</b> | 1 <b>7.8</b> 6 |
| 116 | Ph48  | 24/10/1994             |      | 2.046 | 1.286   |          |        |                | 409   | 257   |              |         |      |              |                |
| 119 | Ph49  | 25/10/1994             |      | 4.465 | 2.644   |          |        |                | 446   | 264   |              |         |      |              |                |
| 119 | Ph50  | 25/1 <b>0/19</b> 94    |      | 2.643 | 1.471   |          |        |                | 529   | 294   |              |         |      |              |                |
| 123 | Ph51  | 25/10/1994             |      | 2.785 | 1.738   | 0.610    | 0.107  | 0.0139         | 278   | 174   | 61.05        | 10.72   | 1.39 | 6.64         | 17.05          |
| 123 | Ph52  | 25/10/1994             |      | 2.539 | 1.474   |          |        |                | 508   | 295   |              |         |      |              |                |

•

Campagne: FLUPAC

Caractéristiques des traits

#### WP2 Vertical

200 Microns

| No<br>St |        | Position | No<br>trait | Date       | Heure | Prof<br>max | Prof<br>min | Lg<br>fil | Ang | Volume<br>filtre | Poids<br>sec | Pssc<br>(en | C<br>% du poi | N<br>ds sec) | Ρ    |
|----------|--------|----------|-------------|------------|-------|-------------|-------------|-----------|-----|------------------|--------------|-------------|---------------|--------------|------|
| 1        | 15°00S | 165°00E  | WPv1        | 25/09/1994 | 6.8   | 500         | 0           | 520       | 10  | 121.1            | 229.10       | 77.64       |               | /            |      |
| 2        | 14°00S | 165°00E  | WPv2        | 25/09/1994 | 15.6  | 500         | 0           | 500       | 0   | 107.8            | 189.20       | 60.03       | 33.61         | 7.83         |      |
| 3        | 13°00S | 165°00E  | WPv3        | 25/09/1994 | 23.3  | 500         | 0           | 500       | 0   | 170.0            | 306.20       | 65.95       |               |              |      |
| 4        | 12°00S | 165°00E  | WPv4        | 26/09/1994 | 6.2   | 500         | 0           | 500       | 0   | 109.6            | 280.40       | 74.50       |               |              |      |
| 5        | 11°00S | 165°00E  | WPv5        | 26/09/1994 | 13.5  | 500         | 0           | 500       | 0   | 112.7            | 273.00       | 66.86       |               |              |      |
| 6        | 10°00S | 165°00E  | WPv6        | 26/09/1994 | 21.0  | 500         | 0           | 500       | 0   | 110.5            | 232.70       | 69.35       |               |              |      |
| 7        | 9°00S  | 165°00E  | WPv7        | 27/09/1994 | 4.1   | 500         | 0           | 500       | 0   | 113.2            | 176.50       | 74.68       |               |              |      |
| 8        | 8°00S  | 165°00E  | WPv8        | 27/09/1994 | 11.2  | 500         | 0           | 500       | 0   | 114.2            | 223.70       | 64.29       |               |              |      |
| 9        | 7°00S  | 165°00E  | WPv9        | 27/09/1994 | 18.6  | 521         | 0           |           | 0   | 108.2            | 152.80       | 69.44       |               |              |      |
| 10       | 6°00S  | 165°00E  | WPv10       | 28/09/1994 | 1.6   | 521         | 0           | 532       | 20  | 121.8            | 195.00       | 69.92       |               |              |      |
| 11       | 5°00S  | 165°00E  | WPv11       | 28/09/1994 | 8.5   | 518         | 0           |           | 0   | 111.3            | 165.10       | 70.27       |               |              |      |
| 12       | 4°00S  | 165°00E  | WPv12       | 28/09/1994 | 15.5  | 528         | 0           |           | 0   | 115.2            | 127.10       | 67.36       |               |              |      |
| 13       | 3°00S  | 165°00E  | WPv13       | 28/09/1994 | 23.6  | 500         | 0           | 500       | 0   | 123.5            | 243.40       | 76.06       |               |              |      |
| 14       | 2°00S  | 165°00E  | WPv14       | 29/09/1994 | 6.5   | 521         | 0           |           | 0   | 111.2            | 288.40       | 73.68       |               |              |      |
| 15       | 1°00S  | 165°00E  | WPv15       | 29/09/1994 | 14.3  | 500         | 0           | 517       | 15  | 118.7            | 226.50       | 67.67       |               |              |      |
| 16       | 0°00S  | 165°00E  | WPv16       | 29/09/1994 | 22.7  | 529         | 0           |           | 0   | 115.2            | 192.60       | 65.98       | 28.19         | 6.69         |      |
| 17       | 1°00N  | 165°00E  | WPv17       | 30/09/1994 | 5.7   | 524         | 0           |           | 0   | 117.9            | 222.20       | 74.60       |               |              |      |
| 18       | 2°00N  | 165°00E  | WPv18       | 30/09/1994 | 13.7  | 526         | 0           |           | 0   | 111.4            | 143.50       | 70.85       | 27.07         | 5.67         |      |
| 19       | 3°00N  | 165°00E  | WPv19       | 30/09/1994 | 21.1  | 500         | 0           | 500       | 0   | 112.9            | 271.20       | 68.56       |               |              |      |
| 20       | 4°00N  | 165°00E  | WPv20       | 1/10/1994  | 4.4   | 500         | 0           | 500       | 0   | 129.2            | 330.60       | 67.91       | 29.16         | 6.72         |      |
| 21       | 5°00N  | 165°00E  | WPv21       | 1/10/1994  | 11.6  | 500         | 0           | 500       | 0   | 134.7            | 404.50       | 81.01       |               |              |      |
| 22       | 6°00N  | 165°00E  | WPv22       | 1/10/1994  | 18.9  | 500         | 0           | 521       | 15  | 153.9            | 231.50       | 66.89       |               |              |      |
| 24       | 0°02S  | 166°57E  | WPv23       | 3/10/1994  | 8.6   | 500         | 0           | 500       | 0   | 163.6            | 223.60       | 74.71       |               |              |      |
| 27       | 0°05S  | 166°52E  | WPv24       | 3/10/1994  | 20.4  | 500         | 0           | 532       | 20  | 173.2            | 446.10       | 49.30       |               |              |      |
| 30       | 0°06S  | 166°45E  | WPv25       | 4/10/1994  | 9.0   | 500         | 0           | 500       | 0   | 132.9            | 407.10       | 49.47       |               |              |      |
| 33       | 0°02S  | 166°42E  | WPv26       | 4/10/1994  | 20.2  | 100         | 0           | 100       | 0   | 25.0             |              |             | 23.92         | 6.05         | 0.82 |
| 33       | 0°02S  | 166°42E  | WPv27       | 4/10/1994  | 20.5  | 500         | 0           | 500       | 0   | 107.1            | 184.00       | 62.49       |               |              |      |
| 36       | 0°00S  | 166°47E  | WPv28       | 5/10/1994  | 9.8   | 500         | 0           | 500       | 0   | 136.1            | 164.80       | 71.69       |               |              |      |
| 39       | 0°04S  | 166°39E  | WPv29       | 5/10/1994  | 20.7  | 100         | 0           | 100       | 0   | 25.7             |              |             | 29.73         | 7.72         | 0.81 |
| 39       | 0°04S  | 166°39E  | WPv30       | 5/10/1994  | 21.1  | 500         | 0           | 500       | 0   | 123.5            | 170.00       | 60.37       |               |              |      |
| 42       | 0°09S  | 166°38E  | WPv31       | 6/10/1994  | 7.9   | 500         | 0           | 500       | 0   | 111.2            | 131.20       | 75.17       |               |              |      |
| 45       | 0°12S  | 166°29E  | WPv32       | 6/10/1994  | 20.1  | 100         | 0           | 100       | 0   | 22.6             |              |             |               |              |      |
| 45       | 0°12S  | 166°29E  | WPv33       | 6/10/1994  | 20.4  | 500         | 0           | 500       | 0   | 117.7            | 131.70       | 74.88       | 31.15         | 7.54         | 0.71 |
| 48       | 0°13S  | 166°29E  | WPv34       | 7/10/1994  | 8.9   | 500         | 0           | 500       | 0   | 126.2            | 138.60       | 67.79       |               |              |      |
| 51       | 0°17S  | 166°24E  | WPv35       | 7/10/1994  | 20.2  | 100         | 0           | 100       | 0   | 22.3             |              |             | 31.18         | 7.74         | 0.83 |
| 51       | 0°175  | 166°24E  | WPv36       | 7/10/1994  | 20.3  | 500         | 0           | 508       | 1   | 120.7            | 190.00       | 67.53       |               |              |      |
| 54       | 0°215  | 166°18E  | WPV37       | 8/10/1994  | 8.2   | 500         | 0           | 500       | 0   | 117.4            | 137.80       | 74.22       |               |              |      |
| 59       | 0°285  | 166°12E  | WPv38       | 8/10/1994  | 20.2  | 100         | 0           | 100       | 0   | 22.3             | 101.10       | == 00       |               |              |      |
| 59       | 0°285  | 166°12E  | WPV39       | 8/10/1994  | 20.5  | 500         | 0           | 500       | 0   | 124.2            | 131.40       | 75.68       | 31.09         | 7.49         | 0.76 |
| 62       | 0.002  | 170°16E  | WPV40       | 10/10/1994 | 0.1   | 500         | 0           | 500       | 0   | 125.1            | 180.60       | 72.63       |               |              |      |
| 63       | 0.002  | 172°09E  | WPV41       | 10/10/1994 | 12.3  | 500         | 0           | 532       | 20  | 118.9            | 169.00       | 71.80       |               |              |      |
| 04<br>65 | 0.002  | 173°33E  | WPV42       | 11/10/1994 | 1.3   | 500         | 0           | 500       | 0   | 113.9            | 205.30       | /5./0       |               |              |      |
| 66       | 0 003  | 175 375  |             | 12/10/1994 | 12.0  | 500         | 0           | 500       | 0   | 100.0            | 105.00       | 70.17       |               |              |      |
| 67       | 0.002  | 170-295  |             | 12/10/1994 | 12.2  | 500         | 0           | 500       | 0   | 109.0            | 195.20       | 79.17       |               |              |      |
| 69       | 0.002  | 178 33   | WPv45       | 12/10/1994 | 0.1   | 500         | 0           | 500       | 10  | 124.0            | 201.10       | 74.79       |               |              |      |
| 60       | 2000 0 | 176°22\\ | WDv40       | 13/10/1004 | 12 /  | 500         | 0           | 500       | 0   | 109.2            | 157.00       | 70.99       |               |              |      |
| 70       | 0.002  | 17402200 | WDv48       | 13/10/1994 | 12.4  | 500         | 0           | 500       | 0   | 100.3            | 112 00       | 72.33       |               |              |      |
| 70       | 0000   | 172025\/ | WPv40       | 13/10/1994 | 12.2  | 500         | 0           | 500       | 0   | 114.7            | 250.00       | 77.00       |               |              |      |
| 72       | 00000  | 170°35W  | WPv50       | 14/10/1004 | 13    | 508         | 0           |           | 0   | 117.0            | 462.80       | 71.55       |               |              |      |
| 73       | 0.000  | 168°31W  | WPv51       | 14/10/1994 | 12.3  | 512         | 0           |           | ő   | 113.6            | 366 10       | 73.28       |               |              |      |
| 74       | 0°005  | 166°35W  | WPv52       | 15/10/1994 | 0.1   | 514         | Ő           |           | õ   | 111 1            | 528.90       | 68.91       |               |              |      |
| 75       | 0°005  | 164°31W  | WPv53       | 15/10/1994 | 12.3  | 520         | Ő           |           | õ   | 112 1            | 411 60       | 87.94       |               |              |      |
| 76       | 0°00S  | 162°30W  | WPv54       | 16/10/1994 | 0.1   | 486         | õ           | 500       | õ   | 115.6            | 341.90       | 67.95       |               |              |      |
| 77       | 0.002  | 160°31W  | WPv55       | 16/10/1994 | 12.5  | 485         | õ           | 508       | 10  | 121.5            | 460.00       | 77.53       |               |              |      |
| 78       | 0°00S  | 158°53W  | WPv56       | 16/10/1994 | 23.0  | 517         | 0           | 517       | 0   | 113.5            | 520.30       | 72.05       |               |              |      |
| 79       | 0°00S  | 156°55W  | WPv57       | 17/10/1994 | 12.6  | 500         | ō .         | 500       | 0   | 131.1            | 355.30       | 67.45       |               |              |      |
| 80       | 0°00S  | 155°23W  | WPv58       | 18/10/1994 | 0.0   | 500         | 0           | 500       | 0   | 111.0            | 679.30       | 61.89       |               |              |      |
| 81       | 0°00S  | 153°00W  | WPv59       | 18/10/1994 | 12.1  | 500         | 0           | 508       | 10  | 116.0            | 466.40       | 75.42       |               |              |      |
| 83       | 0°02S  | 150°18W  | WPv60       | 19/10/1994 | 8.2   | 500         | 0           | 500       | 0   | 113.4            | 515.20       | 69.80       | 26.95         | 5.70         | 0.66 |
| 86       | 0°01S  | 150°12W  | WPv61       | 19/10/1994 | 20.1  | 100         | 0           | 100       | 0   | 23.5             |              |             | 27.40         | 6.39         | 0.67 |
| 86       | 0°01S  | 150°12W  | WPv62       | 19/10/1994 | 20.3  | 500         | 0           | 500       | 0   | 124.0            | 538.20       | 69.09       |               |              |      |
| 89       | 0°01S  | 150°10W  | WPv63       | 20/10/1994 | 8.2   | 500         | 0           | 500       | 0   | 118.7            | 520.20       | 63.06       |               |              |      |
| 89       | 0°01S  | 150°10W  | WPv64       | 20/10/1994 | 8.6   | 100         | 0           | 100       | 0   | 23.4             | 339.90       | 60.00       |               |              |      |
| 92       | 0°01S  | 150°03W  | WPv65       | 20/10/1994 | 19.9  | 100         | 0           | 100       | 0   | 16.8             | 410.10       | 66.98       |               |              |      |
| 92       | 0°01S  | 150°03W  | WPv66       | 20/10/1994 | 20.2  | 500         | 0           | 508       | 10  | 128.3            | 760.90       | 65.53       | 28.47         | 6.78         | 0.94 |

## Tableau 3 (suite)

| Carr     | ipagne: F | LUPAC    | Carac       | téristiques de | es traits |      | WP2<br>Vertical<br>200 Micro | ons       |     |        |        |             |              |              |       |
|----------|-----------|----------|-------------|----------------|-----------|------|------------------------------|-----------|-----|--------|--------|-------------|--------------|--------------|-------|
| No<br>St |           | Position | No<br>trait | Date           | Heure     | Prof | Prof                         | Lg<br>fil | Ang | Volume | Poids  | Pssc<br>(en | C<br>% du po | N<br>ids sec | P     |
| 95       | 0°02S     | 149°57W  | WPv67       | 21/10/1994     | 8.9       | 500  | 0                            | 500       | 0   | 119.7  | 643.30 | 56.70       | 26.10        | 5.92         | 0.70  |
| 98       | 0°00S     | 149°53W  | WPv68       | 21/10/1994     | 20.0      | 100  | 0                            | 100       | 0   | 23.4   | 392.60 | 63.63       |              |              | ••••• |
| 98       | 0°00S     | 149°53W  | WPv69       | 21/10/1994     | 20.4      | 500  | 0                            | 508       | 10  | 118.7  | 551.70 | 64.27       | 28.03        | 6.44         | 0.64  |
| 101      | 0°03S     | 149°48W  | WPv70       | 22/10/1994     | 7.9       | 100  | 0                            | 100       | 0   | 24.4   | 409.40 | 73.33       | 31.59        | 8.05         |       |
| 101      | 0°03S     | 149°48W  | WPv71       | 22/10/1994     | 8.3       | 500  | 0                            | 500       | 0   | 121.1  | 631.50 | 62.12       |              |              |       |
| 104      | 0°16S     | 149°45W  | WPv72       | 22/10/1994     | 20.1      | 100  | 0                            | 100       | 0   | 27.8   | 491.70 | 75.08       | 27.61        | 7.13         |       |
| 104      | 0°16S     | 149°45W  | WPv73       | 22/10/1994     | 20.4      | 500  | 0                            | 500       | 0   | 123.0  | 665.80 | 66.55       |              |              |       |
| 107      | 0°16S     | 149°39W  | WPv74       | 23/10/1994     | 8.6       | 100  | 0                            | 100       | 0   | 21.0   | 349.90 | 72.64       | 27.07        | 6.81         | 0.74  |
| 107      | 0°16S     | 149°39W  | WPv75       | 23/10/1994     | 8.9       | 500  | 0                            | 500       | 0   | 118.5  | 552.40 | 63.43       | 34.11        | 7.84         | 0.88  |
| 110      | 0°21S     | 149°35W  | WPv76       | 23/10/1994     | 19.9      | 100  | 0                            | 100       | 0   | 26.0   | 522.00 | 71.84       | 29.91        | 7.40         | 0.77  |
| 110      | 0°21S     | 149°35W  | WPv77       | 23/10/1994     | 20.2      | 500  | 0                            | 500       | 0   | 118.0  | 594.70 | 70.35       |              |              |       |
| 113      | 0°22S     | 149°29W  | WPv78       | 24/10/1994     | 8.1       | 500  | 0                            | 500       | 0   | 115.3  | 590.00 | 69.44       |              |              |       |
| 113      | 0°22S     | 149°29W  | WPv79       | 24/10/1994     | 9.1       | 100  | 0                            | 100       | 0   | 22.5   | 420.80 | 64.39       |              |              |       |
| 116      | 0°25S     | 149°25W  | WPv80       | 24/10/1994     | 20.3      | 100  | 0                            | 100       | 0   | 23.3   | 202.70 | 68.01       | 28.79        | 7.05         | 0.71  |
| 116      | 0°25S     | 149°25W  | WPv81       | 24/10/1994     | 20.5      | 500  | 0                            | 500       | 0   | 108.9  | 717.20 | 69.49       |              |              |       |
| 119      | 0°26S     | 149°21W  | WPv82       | 25/10/1994     | 9.0       | 500  | 0                            | 500       | 0   | 113.0  | 443.80 | 66.76       | 27.48        | 6.44         | 0.65  |
| 123      | 0°30S     | 149°19W  | WPv83       | 25/10/1994     | 20.2      | 500  | 0                            | 500       | 0   | 112.2  | 555.80 | 70.23       | 27.47        | 6.27         | 0.61  |

Campagne: FLUPAC Valeurs des Biomasses /M3 et /M2

WP2 Vertical

200 Microns

| No       | No      | Date Pr    | h      | Valeurs | nar Màtr | e-cube |        |       | Volour | o nor Màtra     | aarrá  | -     | Dee  |       |
|----------|---------|------------|--------|---------|----------|--------|--------|-------|--------|-----------------|--------|-------|------|-------|
| St       | trait   | Date Th    | P Sec  | Pssc    | C C      | N N    | Р      | P Sec | Peso   | s par metre     | -carre | Б     | нар. | Atom. |
| 1        | WPv1    | 25/09/1994 | 1.892  | 1.469   |          |        |        | 946   | 734    | U               | IN .   |       | CIN  | N/P   |
| 2        | WPv2    | 25/09/1994 | 1.755  | 1.054   | 0.590    | 0 137  |        | 878   | 527    | 204 04          | 69 71  |       | E 01 |       |
| 3        | WPv3    | 25/09/1994 | 1.801  | 1 188   | 0.000    | 0.107  |        | 901   | 504    | 294.94          | 00.71  |       | 5.01 |       |
| 4        | WPv4    | 26/09/1994 | 2 560  | 1 907   |          |        |        | 1280  | 053    |                 |        |       |      |       |
| 5        | WPv5    | 26/09/1994 | 2 422  | 1 620   |          |        |        | 1211  | 933    |                 |        |       |      |       |
| 6        | WPv6    | 26/09/1994 | 2 105  | 1.460   |          |        |        | 1052  | 720    |                 |        |       |      |       |
| 7        | WPv7    | 27/09/1994 | 1 560  | 1 165   |          |        |        | 790   | 730    |                 |        |       |      |       |
| ,<br>8   | WPv8    | 27/09/1994 | 1.000  | 1.105   |          |        |        | 700   | 562    |                 |        |       |      |       |
| ä        | WPvg    | 27/00/1004 | 1,300  | 0.990   |          |        |        | 300   | 630    |                 |        |       |      |       |
| 10       | WPv10   | 28/00/1004 | 1.412  | 1 120   |          |        |        | 135   | 500    |                 |        |       |      |       |
| 11       | WPv11   | 28/09/1994 | 1.002  | 1.120   |          |        |        | 760   | 563    |                 |        |       |      |       |
| 12       | WPv12   | 28/00/100/ | 1 102  | 0.743   |          |        |        | 709   | 540    |                 |        |       |      |       |
| 13       | WPv13   | 28/09/1994 | 1.103  | 1 500   |          |        |        | 202   | 392    |                 |        |       |      |       |
| 14       | WPv14   | 20/00/1004 | 2 502  | 1.010   |          |        |        | 900   | 750    |                 |        |       |      |       |
| 15       | WDv16   | 29/09/1994 | 2.593  | 1.910   |          |        |        | 1351  | 995    |                 |        |       |      |       |
| 16       | WDv16   | 29/09/1994 | 1.900  | 1.291   | 0.474    | 0.440  |        | 954   | 646    |                 |        |       |      |       |
| 17       |         | 29/09/1994 | 1.073  | 1.104   | 0.471    | 0.112  |        | 885   | 584    | 249.42          | 59.19  |       | 4.92 |       |
| 10       |         | 30/09/1994 | 1.884  | 1.406   | 0.040    | 0.070  |        | 987   | 737    |                 |        |       |      |       |
| 10       |         | 30/09/1994 | 1.288  | 0.913   | 0.349    | 0.073  |        | 677   | 480    | 1 <b>8</b> 3.40 | 38.41  |       | 5.57 |       |
| 19       | WPV19   | 30/09/1994 | 2.403  | 1.647   | 0 7 (0   |        |        | 1201  | 824    |                 |        |       |      |       |
| 20       | WPv20   | 1/10/1994  | 2.559  | 1.738   | 0.746    | 0.1/2  |        | 1280  | 869    | 373.17          | 86.00  |       | 5.06 |       |
| 21       |         | 1/10/1994  | 3.003  | 2.433   |          |        |        | 1501  | 1216   |                 |        |       |      |       |
| 22       | WPV22   | 1/10/1994  | 1.504  | 1.006   |          |        |        | 752   | 503    |                 |        |       |      |       |
| 24       | WPV23   | 3/10/1994  | 1.367  | 1.021   |          |        |        | 683   | 511    |                 |        |       |      |       |
| 27       | WPV24   | 3/10/1994  | 2.576  | 1.270   |          |        |        | 1288  | 635    |                 |        |       |      |       |
| 30       | WPV25   | 4/10/1994  | 3.063  | 1.515   |          |        |        | 1532  | 758    |                 |        |       |      |       |
| 33       | WPV26   | 4/10/1994  |        |         |          |        |        |       |        |                 |        |       | 4.61 | 16.34 |
| 33       | WPV27   | 4/10/1994  | 1.718  | 1.074   |          |        |        | 859   | 537    |                 |        |       |      |       |
| 36       | WPV28   | 5/10/1994  | 1.211  | 0.868   |          |        |        | 605   | 434    |                 |        |       |      |       |
| 39       | WPV29   | 5/10/1994  |        |         |          |        |        |       |        |                 |        |       | 4.49 | 21.10 |
| 39       | WPv30   | 5/10/1994  | 1.377  | 0.831   |          |        |        | 688   | 416    |                 |        |       |      |       |
| 42       | WPv31   | 6/10/1994  | 1.180  | 0.887   |          |        |        | 590   | 443    |                 |        |       |      |       |
| 45       | WPv32   | 6/10/1994  |        |         |          |        |        |       |        |                 |        |       |      |       |
| 45       | WPv33   | 6/10/1994  | 1.119  | 0.838   | 0.349    | 0.084  | 0.0079 | 559   | 419    | 174.28          | 42.18  | 3.97  | 4.82 | 23.52 |
| 48       | WPv34   | 7/10/1994  | 1.098  | 0.745   |          |        |        | 549   | 372    |                 |        |       |      |       |
| 51       | WPv35   | 7/10/1994  |        |         |          |        |        |       |        |                 |        |       | 4.70 | 20.65 |
| 51       | WPv36   | 7/10/1994  | 1.574  | 1.063   |          |        |        | 787   | 532    |                 |        |       |      |       |
| 54       | WPv37   | 8/10/1994  | 1.174  | 0.871   |          |        |        | 587   | 436    |                 |        |       |      |       |
| 59       | WPv38   | 8/10/1994  |        |         |          | _      |        |       |        |                 |        |       |      |       |
| 59       | WPv39   | 8/10/1994  | 1.058  | 0.801   | 0.329    | 0.079  | 0.0080 | 529   | 400    | 164.46          | 39.62  | 4.02  | 4.84 | 21.82 |
| 62       | WPv40   | 10/10/1994 | 1.444  | 1.049   |          |        |        | 722   | 524    |                 |        |       |      |       |
| 63       | WPV41   | 10/10/1994 | 1.421  | 1.021   |          |        |        | 711   | 510    |                 |        |       |      |       |
| 64       | WPv42   | 11/10/1994 | 1.802  | 1.364   |          |        |        | 901   | 682    |                 |        |       |      |       |
| 65       | WPv43   | 11/10/1994 | 1.155  | 0.792   |          |        |        | 577   | 396    |                 |        |       |      |       |
| 66       | WPv44   | 12/10/1994 | 1.791  | 1.418   |          |        |        | 895   | 709    |                 |        |       |      |       |
| 67       | WPv45   | 12/10/1994 | 1.614  | 1.207   |          |        |        | 807   | 604    |                 |        |       |      |       |
| 68       | WPv46   | 13/10/1994 | 1.956  | 1.456   |          |        |        | 978   | 728    |                 |        |       |      |       |
| 69       | WPv47   | 13/10/1994 | 1.452  | 1.051   |          |        |        | 726   | 525    |                 |        |       |      |       |
| 70       | WPv48   | 13/10/1994 | 0.992  | 0.708   |          |        |        | 496   | 354    |                 |        |       |      |       |
| /1       | WPv49   | 13/10/1994 | 3.089  | 2.409   |          |        |        | 1575  | 1229   |                 |        |       |      |       |
| 72       | WPv50   | 14/10/1994 | 3,956  | 2.836   |          |        |        | 2009  | 1441   |                 |        |       |      |       |
| 73       | WPv51   | 14/10/1994 | 3.223  | 2.362   |          |        |        | 1650  | 1209   |                 |        |       |      |       |
| /4       | WPV52   | 15/10/1994 | 4.761  | 3.281   |          |        |        | 2447  | 1686   |                 |        |       |      |       |
| 75       | WPv53   | 15/10/1994 | 3.672  | 3.229   |          |        |        | 1909  | 1679   |                 |        |       |      |       |
| 76       | WPv54   | 16/10/1994 | 2.958  | 2.010   |          |        |        | 1437  | 977    |                 |        |       |      |       |
| //       | WPv55   | 16/10/1994 | 3.786  | 2.935   |          |        |        | 1836  | 1424   |                 |        |       |      |       |
| 78       | WPv56   | 16/10/1994 | 4.584  | 3.303   |          | •      |        | 2370  | 1708   |                 |        |       |      |       |
| /9       | WPV57   | 17/10/1994 | 2.710  | 1.828   |          |        |        | 1355  | 914    |                 |        |       |      |       |
| 80       | WPV58   | 18/10/1994 | 6.120  | 3.788   |          |        |        | 3060  | 1894   |                 |        |       |      |       |
| 81       | WPV59   | 18/10/1994 | 4.021  | 3.032   |          | 0.0    |        | 2010  | 1516   |                 |        |       |      |       |
| 83       | WPV60   | 19/10/1994 | 4.543  | 3.1/1   | 1.224    | 0.259  | 0.0300 | 2272  | 1586   | 612.20          | 129.48 | 14.99 | 5.52 | 19.12 |
| 86       | WPV61   | 19/10/1994 | 1.010  | 0.000   |          |        |        | 0475  |        |                 |        |       | 5.00 | 21.12 |
| 00       | WPV62   | 19/10/1994 | 4.340  | 2.999   |          |        |        | 21/0  | 1499   |                 |        |       |      |       |
| 09       | WPue4   | 20/10/1994 | 4.382  | 2.764   |          |        |        | 2191  | 1382   |                 |        |       |      |       |
| 09       | WDuce   | 20/10/1994 | 14.526 | 0./15   |          |        |        | 1453  | 8/2    |                 |        |       |      |       |
| 92<br>00 | WDuee   | 20/10/1994 | 24.411 | 2 000   | 1 600    | 0.400  | 0.0557 | 2441  | 1035   | 044.00          | 004 07 | 07.0- |      |       |
| 34       | 441 000 | 20/10/1394 | 0.931  | 3.000   | 1.000    | 0.402  | 0.0557 | 2905  | 1943   | 844.23          | 201.05 | 21.87 | 4.90 | 15.97 |

## Tableau 4 (suite)

Campagne: FLUPAC Valeurs des Biomasses /M3 et /M2

WP2 Vertical

## 200 Microns

| No  | No            | Date                | Prof |        | Valeurs | par Mètr | e-cube |        |       | Valeu | irs par Mètre | e-carré |       | Rap. | Atom. |
|-----|---------------|---------------------|------|--------|---------|----------|--------|--------|-------|-------|---------------|---------|-------|------|-------|
| St  | trait         |                     |      | P.Sec  | Pssc    | С        | N      | Р      | P.Sec | Pssc  | С             | N       | Р     | C/N  | N/P   |
| 95  | WPv67         | 21/10/1994          |      | 5.374  | 3.047   | 1.403    | 0.318  | 0.0376 | 2687  | 1524  | 701.34        | 159.08  | 18.81 | 5.14 | 18.73 |
| 98  | WPv68         | 21/10/1994          |      | 16.778 | 10.676  |          |        |        | 1678  | 1068  |               |         |       |      |       |
| 98  | <b>WPv6</b> 9 | 21/10/1994          |      | 4.648  | 2.987   | 1.303    | 0.299  | 0.0297 | 2324  | 1494  | 651.40        | 149.66  | 14.87 | 5.08 | 22.28 |
| 101 | WPv70         | 22/10/1994          |      | 16.779 | 12.304  | 5.300    | 1.351  | 0.0000 | 1678  | 1230  | 530.04        | 135.07  |       | 4.58 |       |
| 101 | WPv71         | 22/10/1994          |      | 5.215  | 3.239   |          |        |        | 2607  | 1620  |               |         |       |      |       |
| 104 | WPv72         | 22/10/1994          |      | 17.687 | 13.279  | 4.883    | 1.261  | 0.0000 | 1769  | 1328  | 488.34        | 126.11  |       | 4.52 |       |
| 104 | WPv73         | 22/10/1994          |      | 5.413  | 3.602   |          |        |        | 2707  | 1801  |               |         |       |      |       |
| 107 | WPv74         | 23/10/1994          |      | 16.662 | 12.103  | 4.510    | 1.135  | 0.1233 | 1666  | 1210  | 451.04        | 113.47  | 12.33 | 4.64 | 20.38 |
| 107 | <b>WPv75</b>  | 23/10/1994          |      | 4.662  | 2.957   | 1.590    | 0.365  | 0.0410 | 2331  | 1478  | 795.04        | 182.73  | 20.51 | 5.08 | 19.73 |
| 110 | WPv76         | 23/10/1994          |      | 20.077 | 14.423  | 6.005    | 1.486  | 0.1546 | 2008  | 1442  | 600.50        | 148.57  | 15.46 | 4.72 | 21.28 |
| 110 | WPv77         | 23/10/1994          |      | 5.040  | 3.546   |          |        |        | 2520  | 1773  |               |         |       |      |       |
| 113 | <b>WPv7</b> 8 | 24/10/1994          |      | 5.117  | 3.553   |          |        |        | 2559  | 1777  |               |         |       |      |       |
| 113 | WPv79         | 24/10/1994          |      | 18.702 | 12.042  |          |        |        | 1870  | 1204  |               |         |       |      |       |
| 116 | WPv80         | 24/10/1994          |      | 8.700  | 5.917   | 2.505    | 0.613  | 0.0618 | 870   | 592   | 250.46        | 61.33   | 6.18  | 4.76 | 21.99 |
| 116 | WPv81         | 24/10/1994          |      | 6.586  | 4.577   |          |        |        | 3293  | 2288  |               |         |       |      |       |
| 119 | WPv82         | 25/1 <b>0</b> /1994 |      | 3.927  | 2.622   | 1.079    | 0.253  | 0.0255 | 1964  | 1311  | 539.63        | 126.46  | 12.76 | 4.98 | 21.94 |
| 123 | WPv83         | 25/10/1994          |      | 4.954  | 3.479   | 1.361    | 0.311  | 0.0302 | 2477  | 1739  | 680.38        | 155.30  | 15.11 | 5.11 | 22.76 |

| Cam  | pagne: Fl | LUPAC    | Caracte | éristiques des         | s traits     |      | Filet à na<br>Vertical<br>200 Micro | ppes<br>ons |     |        |              |                     |
|------|-----------|----------|---------|------------------------|--------------|------|-------------------------------------|-------------|-----|--------|--------------|---------------------|
| No   |           | Position | No      | Date                   | Heure        | Prof | Prof                                | Lg          | Ang | Volume | Poids        | Pssc C N P          |
| St   | 00026     | 166%57E  | ENhut   | 2/10/1004              | 10.0         | max  | min<br>405                          | 505         | 20  | 1iltre | Sec<br>26.60 | (en % du poids sec) |
| 24   | 0.022     | 166°57E  | ENv1    | 3/10/1994              | 10.0         | 405  | 405                                 | 395<br>405  | 20  | 20.3   | 62 20        |                     |
| 24   | 0°02S     | 166°57E  | FNv1    | 3/10/1994              | 10.2         | 295  | 195                                 | 295         | ŏ   | 29.8   | 10.70        |                     |
| 24   | 0°02S     | 166°57E  | FNv1    | 3/10/1994              | 10.3         | 195  | 80                                  | 195         | 0   | 34.2   | 53.10        |                     |
| 24   | 0°02S     | 166°57E  | FNv1    | 3/10/1994              | 10.3         | 80   | 0                                   | 80          | 0   | 23.8   | 75.68        |                     |
| 27   | 0°05S     | 166°52E  | FNv2    | 3/10/1994              | 22.1         | 500  | 400                                 | 559         | 25  | 28.0   | 8.50         |                     |
| 27   | 0°05S     | 166°52E  | FNv2    | 3/10/1994              | 22.1         | 400  | 295                                 | 400         | 0   | 29.3   | 8.63         |                     |
| 27   | 0°05S     | 166°52E  | FNv2    | 3/10/1994              | 22.2         | 295  | 200                                 | 295         | 0   | 26.6   | 6.64         |                     |
| 27   | 0°05S     | 166°52E  | FNv2    | 3/10/1994              | 22.3         | 200  | 90                                  | 200         | 0   | 30.7   | 13.05        |                     |
| 27   | 0°05S     | 166°52E  | FNv2    | 3/10/1994              | 22.4         | 90   | 0                                   | 90          | 0   | 25.2   | 220.80       | 52.15               |
| 30   | 0°06S     | 166°45E  | FNv3    | 4/10/1994              | 10.4         | 500  | 400                                 | 498         | 0   | 24.9   | 13.23        |                     |
| 30   | 0°06S     | 166°45E  | FNv3    | 4/10/1994              | 10.0         | 400  | 240                                 | 400         | 0   | 39.8   | 3.14         |                     |
| 30   | 0°06S     | 166°45E  | FNv3    | 4/10/1994              | 10.5         | 240  | 195                                 | 240         | 0   | 11.2   | 3.77         |                     |
| 30   | 0°06S     | 166°45E  | FNV3    | 4/10/1994              | 10.6         | 195  | 100                                 | 195         | 0   | 23.7   | 4.07         | 44.55               |
| 30   | 0.062     | 166°45E  | ENV3    | 4/10/1994              | 10.6         | 100  | 205                                 | 100         | 0   | 24.9   | 207.80       | 44.55               |
| 33   | 0.052     | 166°42E  |         | 4/10/1994              | 21.0<br>21.9 | 305  | 395                                 | 205         | 0   | 20.4   | 3.21         |                     |
| 33   | 0.023     | 166°42E  | FNv4    | 4/10/1994<br>A/10/100A | 21.0         | 300  | 200                                 | 395         | 0   | 23.9   | 6.92         |                     |
| 33   | 0.023     | 166°42E  | FNv4    | 4/10/1994              | 21.0         | 200  | 80                                  | 200         | 0   | 30.2   | 6 72         |                     |
| 33   | 0°025     | 166°42E  | FNv4    | 4/10/1994              | 22.0         | 80   | 0                                   | 90          | õ   | 20.1   | 162 10       | 67.39               |
| 36   | 0.002     | 166°47E  | FNv5    | 5/10/1994              | 10.4         | 500  | 395                                 | 500         | õ   | 25.0   | 17.77        | 01.00               |
| 36   | 0°00S     | 166°47E  | FNv5    | 5/10/1994              | 10.5         | 395  | 290                                 | 400         | ő   | 25.0   | 21.97        |                     |
| 36   | 0°00S     | 166°47E  | FNv5    | 5/10/1994              | 10.5         | 290  | 190                                 | 300         | 0   | 25.0   | 8.60         |                     |
| 36   | 0°00S     | 166°47E  | FNv5    | 5/10/1994              | 10.6         | 190  | 98                                  | 200         | 0   | 25.5   | 8.37         |                     |
| 36   | 0°00S     | 166°47E  | FNv5    | 5/10/1994              | 10.6         | 98   | 0                                   | 100         | 0   | 24.5   | 74.80        | 72.41               |
| 39   | 0°04S     | 166°39E  | FNv6    | 5/10/1994              | 21.9         | 500  | 400                                 | 500         | 0   | 25.0   | 7.19         |                     |
| 39   | 0°04S     | 166°39E  | FNv6    | 5/10/1994              | 22.0         | 400  | 300                                 | 400         | 0   | 25.0   | 14.34        |                     |
| 39   | 0°04S     | 166°39E  | FNv6    | 5/10/1994              | 22.1         | 300  | 200                                 | 300         | 0   | 25.0   | 11.10        |                     |
| 39   | 0°04S     | 166°39E  | FNv6    | 5/10/1994              | 22.1         | 200  | 100                                 | 200         | 0   | 25.0   | 22.90        |                     |
| 39   | 0°04S     | 166°39E  | FNv6    | 5/10/1994              | 22.2         | 100  | 0                                   | 100         | 0   | 25.0   | 126.60       | 68.77               |
| 42   | 0°09S     | 166°38E  | FNv7    | 6/10/1994              | 8.9          | 500  | 400                                 | 530         | 15  | 26.5   | 14.10        |                     |
| 42   | 0°09S     | 166°38E  | FNv7    | 6/10/1994              | 9.0          | 400  | 300                                 | 400         | 0   | 26.5   | 39.10        |                     |
| 42   | 0°095     | 166°38E  | FNV7    | 6/10/1994              | 9.1          | 300  | 200                                 | 300         | 0   | 26.5   | 20.70        |                     |
| 42   | 0.082     | 166°38E  | FNV7    | 6/10/1994              | 9.1          | 200  | 05                                  | 200         | 0   | 30.5   | 30.50        | 70 55               |
| 42   | 0.092     | 166°20E  | FNV7    | 6/10/1994              | 9.2<br>21.6  | 500  | 395                                 | 525         | 15  | 22.0   | 18 70        | 72.55               |
| 45   | 0°125     | 166°29E  | FNv8    | 6/10/1994              | 21.6         | 395  | 295                                 | 400         | 0   | 26.3   | 17.00        |                     |
| 45   | 0°12S     | 166°29E  | FNv8    | 6/10/1994              | 21.7         | 295  | 195                                 | 300         | õ   | 26.3   | 12.40        |                     |
| 45   | 0°12S     | 166°29E  | FNv8    | 6/10/1994              | 21.7         | 195  | 100                                 | 200         | Ō   | 24.9   | 29.10        |                     |
| 45   | 0°12S     | 166°29E  | FNv8    | 6/10/1994              | 21.8         | 100  | 0                                   | 100         | 0   | 26.3   | 103.50       | 71.98               |
| 48   | 0°13S     | 166°29E  | FNv9    | 7/10/1994              | 9.9          | 500  | 395                                 | 500         | 0   | 26.3   | 17.50        |                     |
| 48   | 0°13S     | 166°29E  | FNv9    | 7/10/1994              | 10.0         | 395  | 300                                 | 400         | 0   | 23.8   | 29.90        |                     |
| 48   | 0°13S     | 166°29E  | FNv9    | 7/10/1994              | 10.1         | 300  | 195                                 | 300         | 0   | 26.3   | 18.20        |                     |
| 48   | 0°13S     | 166°29E  | FNv9    | 7/10/1994              | 10.1         | 195  | 90                                  | 200         | 0   | 26.3   | 22.50        |                     |
| 48   | 0°13S     | 166°29E  | FNv9    | 7/10/1994              | 10.2         | 90   | 0                                   | 100         | 0   | 22.5   | 73.80        | 60.04               |
| 51   | 0°17S     | 166°24E  | FNv10   | 7/10/1994              | 21.6         | 500  | 400                                 | 525         | 17  | 26.3   | 22.70        |                     |
| 51   | 0°17S     | 166°24E  | FNv10   | 7/10/1994              | 21.6         | 400  | 295                                 | 400         | 0   | 27.6   | 16.00        |                     |
| 51   | 0°1/S     | 166°24E  | FNV10   | 7/10/1994              | 21.7         | 295  | 200                                 | 300         | 0   | 24.9   | 8.40         |                     |
| 51   | 0°175     | 166°24E  | ENVIO   | 7/10/1994              | 21.8         | 200  | 90                                  | 200         | 0   | 28.9   | 21.20        | 75.81               |
| 51   | 0.112     | 100 24E  | ENv10   | 8/10/1994              | 21.9         | 500  | 395                                 | 500         | 0   | 23.0   | 15 10        | 75.81               |
| 54   | 0215      | 166°18E  | ENv11   | 8/10/1994              | 9.3          | 395  | 300                                 | 400         | õ   | 23.8   | 12 10        |                     |
| 54   | 0215      | 166°18E  | FNv11   | 8/10/1994              | 9.4          | 300  | 200                                 | 300         | õ   | 25.0   | 12.00        |                     |
| 54   | 0°21S     | 166°18E  | FNv11   | 8/10/1994              | 9.5          | 200  | 90                                  | 200         | 0   | 27.5   | 29.70        |                     |
| 54   | 0°21S     | 166°18E  | FNv11   | 8/10/1994              | 9.5          | 90   | 0                                   | 100         | 0   | 22.5   | 81.20        | 64.56               |
| 83   | 0°02S     | 150°18W  | FNv12   | 19/10/1994             | 9.2          | 500  | 400                                 | 521         | 16  | 26.1   | 35.30        |                     |
| 83   | 0°02S     | 150°18W  | FNv12   | 19/10/1994             | 9.5          | 400  | 290                                 |             |     | 28.7   | 64.50        |                     |
| 83   | 0°02S     | 150°18W  | FNv12   | 19/10/1994             | 9.6          | 290  | 190                                 |             |     | 26.1   | 41.80        |                     |
| 83   | 0°02S     | 150°18W  | FNv12   | 19/10/1994             | 9.6          | 190  | 83                                  |             |     | 24.2   | 57.30        | 64.87               |
| 83   | 0°02S     | 150°18W  | FNv12   | 19/10/1994             | 9.7          | 83   | 0                                   |             |     | 21.6   | 373.60       | 67.46               |
| 86   | 0°01S     | 150°12W  | FNv13   | 19/10/1994             | 21.5         | 500  | 395                                 | 530         |     | 27.8   | 15.80        |                     |
| 86   | 0°01S     | 150°12W  | FNv13   | 19/10/1994             | 21.6         | 395  | 300                                 |             |     | 25.2   | 15.20        |                     |
| 86   | 0°01S     | 150°12W  | FNv13   | 19/10/1994             | 21.6         | 300  | 195                                 |             |     | 27.8   | 12.10        |                     |
| 86   | 0.012     | 150°12W  | FNV13   | 19/10/1994             | 21.7         | 195  | 80                                  |             |     | 30.5   | 35.20        | 69.10               |
| 80   | 0.012     | 150°1200 | FNV13   | 20/10/1994             | ∠1.0<br>Q.5  | 500  | 370                                 | 595         | 10  | 21.2   | 24 10        | 03.13               |
| - 03 | 0.010     | 100 1011 |         | 20,10,1004             | 0.0          | 000  | 010                                 | 505         | 1.0 | 01.0   |              |                     |

## Tableau 5 (suite)

44,1

a .

Caractéristiques des traits

| Campagne: | FLUPAC |
|-----------|--------|

Filet à nappes Vertical 200 Microns

| No  | and the second second | Position | No                                     | Dete       | Hours | Drof | Drof | 1.0        | 4.00 | Valuese      | Detela | Dette O N D         |
|-----|-----------------------|----------|----------------------------------------|------------|-------|------|------|------------|------|--------------|--------|---------------------|
| St  |                       | FUSILION | trait                                  | Dale       | neure | mov  | min  | Eg .<br>Gi | Ang  | filtro       | Polas  | PSSC C N P          |
| 89  | 0.018                 | 150°10W  | FNv14                                  | 20/10/1094 | 9.6   | 370  | 300  | 111        |      | 10.7         | Sec    | (en % du poids sec) |
| 89  | 0.010                 | 150°10W  | ENV14                                  | 20/10/1994 | 9.6   | 300  | 105  |            |      | 10.7<br>00.1 | 44.00  |                     |
| 89  | 0°01S                 | 150°10W  | FNv14                                  | 20/10/1994 | 97    | 195  | 82   |            |      | 20.1         | 134.00 | 60.27               |
| 89  | 0°01S                 | 150°10W  | FNv14                                  | 20/10/1994 | 9.7   | 85   | 02   |            |      | 21.0         | 172 00 | 63.84               |
| 92  | 0.018                 | 150°03W  | ENv15                                  | 20/10/1994 | 21.2  | 500  | 305  |            | 0    | 26.3         | 472.30 | 03.04               |
| 92  | 0.018                 | 150°03W  | ENv15                                  | 20/10/1994 | 21.2  | 395  | 300  |            | v    | 20.0         | 67 10  |                     |
| 92  | 0°01S                 | 150°03W  | ENv15                                  | 20/10/1994 | 21.2  | 300  | 200  |            |      | 25.0         | 57 10  |                     |
| 92  | 0°01S                 | 150°03W  | FNv15                                  | 20/10/1994 | 21.3  | 200  | 88   |            |      | 28.0         | 163 30 | 70.21               |
| 92  | 0°01S                 | 150°03W  | FNv15                                  | 20/10/1994 | 21.0  | 88   | 0    |            |      | 22.0         | 511.00 | 71.74               |
| 95  | 0°02S                 | 149°57W  | FNv16                                  | 21/10/1994 | 10.0  | 500  | 400  | 503        | 0    | 25.2         | 45.30  | ,, 4                |
| 95  | 0.052                 | 149°57W  | FNv16                                  | 21/10/1994 | 10.0  | 400  | 295  | 000        | Ŭ    | 26.4         | 48.00  |                     |
| 95  | 0°02S                 | 149°57W  | FNv16                                  | 21/10/1994 | 10.0  | 295  | 200  |            |      | 23.9         | 42 30  |                     |
| 95  | 0°02S                 | 149°57W  | FNv16                                  | 21/10/1994 | 10.1  | 200  | 90   |            |      | 27.7         | 109 50 | 51 79               |
| 95  | 0°02S                 | 149°57W  | FNv16                                  | 21/10/1994 | 10.2  | 90   | 0    |            |      | 22.6         | 505.50 | 63.37               |
| 98  | 0.002                 | 149°53W  | FNv17                                  | 21/10/1994 | 21.3  | 500  | 400  | 506        |      | 25.3         | 25 50  | 00.07               |
| 98  | 0.000                 | 149°53W  | FNv17                                  | 21/10/1994 | 21.0  | 400  | 300  | 000        |      | 25.3         | 54 10  |                     |
| 98  | 0.002                 | 149°53W  | FNv17                                  | 21/10/1994 | 21.5  | 300  | 200  |            |      | 25.3         | 19.00  |                     |
| 98  | 0.002                 | 149°53W  | FNv17                                  | 21/10/1994 | 21.6  | 200  | 90   |            |      | 27.8         | 136.60 | 56.23               |
| 98  | 0.002                 | 149°53W  | FNv17                                  | 21/10/1994 | 21.6  | 90   | 0    |            |      | 22.8         | 461 50 | 60.9                |
| 101 | 0.038                 | 149°48W  | FNv18                                  | 22/10/1994 | 92    | 500  | 400  | 508        |      | 25.4         | 13.80  | 00.5                |
| 101 | 0.032                 | 149°48W  | FNv18                                  | 22/10/1994 | 9.3   | 400  | 300  | 000        |      | 25.4         | 30.90  |                     |
| 101 | 0.032                 | 149°48W  | FNv18                                  | 22/10/1994 | 9.3   | 300  | 200  |            |      | 25.4         | 17 20  |                     |
| 101 | 0.032                 | 149°48W  | FNv18                                  | 22/10/1994 | 94    | 200  | 87   |            |      | 28.7         | 100.90 | 45 25               |
| 101 | 0.032                 | 149°48W  | FNv18                                  | 22/10/1994 | 9.5   | 87   | 0    |            |      | 22.1         | 494.80 | 69.08               |
| 104 | 0°16S                 | 149°45W  | FNv19                                  | 22/10/1994 | 21.3  | 500  | 400  | 507        | 0    | 25.4         | 36 10  | 00.00               |
| 104 | 0°16S                 | 149°45W  | FNv19                                  | 22/10/1994 | 21.4  | 400  | 300  | 007        | Ŭ    | 25.4         | 37.00  | 69 59               |
| 104 | 0°16S                 | 149°45W  | FNv19                                  | 22/10/1994 | 21.4  | 300  | 200  |            |      | 25.4         | 33.50  | 00.00               |
| 104 | 0°16S                 | 149°45W  | FNv19                                  | 22/10/1994 | 21.5  | 200  | 80   |            |      | 30.4         | 135.00 | 61.47               |
| 104 | 0°16S                 | 149°45W  | FNv19                                  | 22/10/1994 | 21.5  | 80   | 0    |            |      | 20.3         | 438.00 | 70.97               |
| 107 | 0°16S                 | 149°39W  | FNv20                                  | 23/10/1994 | 9.9   | 500  | 395  | 510        | 0    | 26.8         | 38.40  |                     |
| 107 | 0°16S                 | 149°39W  | FNv20                                  | 23/10/1994 | 9.9   | 395  | 300  |            | •    | 24.2         | 54.40  |                     |
| 107 | 0°16S                 | 149°39W  | FNv20                                  | 23/10/1994 | 10.0  | 300  | 200  |            |      | 25.5         | 125.00 | 66.23               |
| 107 | 0°16S                 | 149°39W  | FNv20                                  | 23/10/1994 | 10.0  | 200  | 82   |            |      | 30.1         | 45.10  | 69.09               |
| 107 | 0°16S                 | 149°39W  | FNv20                                  | 23/10/1994 | 10.1  | 82   | 0    |            |      | 20.9         | 452.20 | 68.81               |
| 110 | 0°21S                 | 149°35W  | FNv21                                  | 23/10/1994 | 21.2  | 500  | 395  | 500        | 0    | 26.3         | 12.50  |                     |
| 110 | 0°21S                 | 149°35W  | FNv21                                  | 23/10/1994 | 21.3  | 395  | 300  |            | -    | 23.8         | 55.30  |                     |
| 110 | 0°21S                 | 149°35W  | FNv21                                  | 23/10/1994 | 21.3  | 300  | 200  |            |      | 25.0         | 22.30  |                     |
| 110 | 0°21S                 | 149°35W  | FNv21                                  | 23/10/1994 | 21.4  | 200  | 86   |            |      | 28.5         | 104.50 | 68.02               |
| 110 | 0°21S                 | 149°35W  | FNv21                                  | 23/10/1994 | 21.5  | 86   | 0    |            |      | 21.5         |        | 00.02               |
| 113 | 0°22S                 | 149°29W  | FNv22                                  | 24/10/1994 | 9.5   | 500  | 395  | 513        |      | 26.9         | 25.00  |                     |
| 113 | 0°22S                 | 149°29W  | FNv22                                  | 24/10/1994 | 9.5   | 395  | 295  |            |      | 25.7         | 45.60  |                     |
| 113 | 0°22S                 | 149°29W  | FNv22                                  | 24/10/1994 | 9.6   | 295  | 200  |            |      | 24.4         | 30.90  |                     |
| 113 | 0°22S                 | 149°29W  | FNv22                                  | 24/10/1994 | 9.7   | 200  | 86   |            |      | 29.2         | 72.40  |                     |
| 113 | 0°22S                 | 149°29W  | FNv22                                  | 24/10/1994 | 9.8   | 86   | 0    |            |      | 22.1         | 417.40 | 67.55               |
| 116 | 0°25S                 | 149°25W  | FNv23                                  | 24/10/1994 | 21.5  | 500  | 400  | 513        |      | 25.7         | 14.10  |                     |
| 116 | 0°25S                 | 149°25W  | FNv23                                  | 24/10/1994 | 21.5  | 400  | 300  |            |      | 25.7         | 41.40  |                     |
| 116 | 0°25S                 | 149°25W  | FNv23                                  | 24/10/1994 | 21.6  | 300  | 180  |            |      | 30.8         | 30.30  |                     |
| 116 | 0°25S                 | 149°25W  | FNv23                                  | 24/10/1994 | 21.6  | 180  | 82   |            |      | 25.1         | 74,80  | 76.63               |
| 116 | 0°25S                 | 149°25W  | FNv23                                  | 24/10/1994 | 21.7  | 82   | 0    |            |      | 21.0         | 688 20 | 68-86               |
| 119 | 0°26S                 | 149°21W  | FNv24                                  | 25/10/1994 | 9.5   | 500  | 400  | 506        |      | 25.3         | 28,60  |                     |
| 119 | 0°26S                 | 149°21W  | FNv24                                  | 25/10/1994 | 9.6   | 400  | 300  |            |      | 25.3         | 55.50  | 71.68               |
| 119 | 0°26S                 | 149°21W  | FNv24                                  | 25/10/1994 | 9.6   | 300  | 200  |            |      | 25.3         | 33,60  |                     |
| 119 | 0°26S                 | 149°21W  | FNv24                                  | 25/10/1994 | 9.7   | 200  | 84   |            |      | 29.3         | 81.40  | 77.67               |
| 119 | 0°26S                 | 149°21W  | FNv24                                  | 25/10/1994 | 9.8   | 84   | 0    |            |      | 20.2         | 432.50 | 65.27               |
|     |                       |          | ······································ |            |       |      |      |            |      |              |        |                     |

-

Campagne: FLUPAC Valeurs des Biomasses /M3 et /M2 Filet à nappes. Vertical 200 Microns

| No | No     | Date       | Prof |      | Valoure | ar Màtro | cubo | w1.14_00.001 |              | Voloura   | or Mater   |      | 0.00 | 0    |       |
|----|--------|------------|------|------|---------|----------|------|--------------|--------------|-----------|------------|------|------|------|-------|
| 64 | troit  | Date       |      | 600  | Deep    |          | LUDE |              | <b>D O -</b> | valeurs p | ar metre-c | arre | _    | нар. | Atom. |
| 51 |        | 0/10/1001  | P.   | Sec  | PSSC    | C        | N    | P            | P.Sec        | Pssc      | C          | N    | Р    | C/N  | N/P   |
| 24 | FNVI   | 3/10/1994  | 0.   | 940  |         |          |      |              | 89           |           |            |      |      |      |       |
| 24 | FNv1   | 3/10/1994  | 1.   | 902  |         |          |      |              | 209          |           |            |      |      |      |       |
| 24 | FNv1   | 3/10/1994  | 0.3  | 359  |         |          |      |              | 36           |           |            |      |      |      |       |
| 24 | FNv1   | 3/10/1994  | 1.   | 553  |         |          |      |              | 179          |           |            |      |      |      |       |
| 24 | FNv1   | 3/10/1994  | 3.   | 180  |         |          |      |              | 254          |           |            |      |      |      |       |
| 27 | FNv2   | 3/10/1994  | 0.   | 304  |         |          |      |              | 30           |           |            |      |      |      |       |
| 27 | FNv2   | 3/10/1994  | 0.3  | 295  |         |          |      |              | 31           |           |            |      |      |      |       |
| 27 | FNv2   | 3/10/1994  | 0    | 250  |         |          |      |              | 24           |           |            |      |      |      |       |
| 27 | ENh/2  | 3/10/1004  | 0.   | 125  |         |          |      |              | 47           |           |            |      |      |      |       |
| 27 | EN1/2  | 3/10/1994  | 0.   | 760  | 4 5 6 0 |          |      |              | 47           |           |            |      |      |      |       |
| 21 |        | 3/10/1994  | 0.   | 702  | 4.569   |          |      |              | 789          | 411       |            |      |      |      |       |
| 30 | FNV3   | 4/10/1994  | 0.   | 531  |         |          |      |              | 53           |           |            |      |      |      |       |
| 30 | FNv3   | 4/10/1994  | 0.0  | 079  |         |          |      |              | 13           |           |            |      |      |      |       |
| 30 | FNv3   | 4/10/1994  | 0.3  | 337  |         |          |      |              | 15           |           |            |      |      |      |       |
| 30 | FNv3   | 4/10/1994  | 0.   | 172  |         |          |      |              | 16           |           |            |      |      |      |       |
| 30 | FNv3   | 4/10/1994  | 8.   | 345  | 3.718   |          |      |              | 835          | 372       |            |      |      |      |       |
| 33 | FNv4   | 4/10/1994  | 0.   | 122  |         |          |      |              | 13           |           |            |      |      |      |       |
| 33 | FNv4   | 4/10/1994  | 0.3  | 331  |         |          |      |              | 31           |           |            |      |      |      |       |
| 33 | FNv4   | 4/10/1994  | 0.   | 275  |         |          |      |              | 27           |           |            |      |      |      |       |
| 33 | ENVA   | 4/10/1004  | 0.   | 202  |         |          |      |              | 27           |           |            |      |      |      |       |
| 22 | Chive  | 4/10/1994  | 0    | 223  | E 40E   |          |      |              | 27           |           |            |      |      |      |       |
| 33 |        | 4/10/1994  | 8.0  | 065  | 5.435   |          |      |              | 645          | 435       |            |      |      |      |       |
| 36 | FNv5   | 5/10/1994  | 0.   | 711  |         |          |      |              | 75           |           |            |      |      |      |       |
| 36 | FNv5   | 5/10/1994  | 0.6  | 879  |         |          |      |              | 92           |           |            |      |      |      |       |
| 36 | FNv5   | 5/10/1994  | 0.3  | 344  |         |          |      |              | 34           |           |            |      |      |      |       |
| 36 | FNv5   | 5/10/1994  | 0.3  | 328  |         |          |      |              | 30           | 0         |            |      |      |      |       |
| 36 | FNv5   | 5/10/1994  | 3.0  | 053  | 2.211   |          |      |              | 299          |           |            |      |      |      |       |
| 39 | FNv6   | 5/10/1994  | 0.3  | 288  |         |          |      |              | 29           |           |            |      |      |      |       |
| 39 | FNv6   | 5/10/1994  | 0.   | 574  |         |          |      |              | 57           |           |            |      |      |      |       |
| 39 | ENv6   | 5/10/1094  | 0.   | 44A  |         |          |      |              | 44           |           |            |      |      |      |       |
| 30 | ENVE   | 5/10/1004  | 0.0  | 016  |         |          |      |              | 44           |           |            |      |      |      |       |
| 30 |        | 5/10/1994  | 0.   | 910  | 0.400   |          |      |              | 92           | • • •     |            |      |      |      |       |
| 39 | FNV6   | 5/10/1994  | 5.0  | 064  | 3.483   |          |      |              | 506          | 348       |            |      |      |      |       |
| 42 | FNv7   | 6/10/1994  | 0.   | 532  |         |          |      |              | 53           |           |            |      |      |      |       |
| 42 | FNv7   | 6/10/1994  | 1.4  | 475  |         |          |      |              | 148          |           |            |      |      |      |       |
| 42 | FNv7   | 6/10/1994  | 0.1  | 781  |         |          |      |              | 78           |           |            |      |      |      |       |
| 42 | FNv7   | 6/10/1994  | 1.0  | 000  |         |          |      |              | 115          |           |            |      |      |      |       |
| 42 | FNv7   | 6/10/1994  | 3.   | 578  | 2.596   |          |      |              | 304          | 221       |            |      |      |      |       |
| 45 | FNv8   | 6/10/1994  | 0.0  | 678  |         |          |      |              | 71           |           |            |      |      |      |       |
| 45 | FNv8   | 6/10/1994  | 0.0  | 646  |         |          |      |              | 65           |           |            |      |      |      |       |
| 45 | ENV8   | 6/10/1004  | 0.   | 471  |         |          |      |              | 47           |           |            |      |      |      |       |
| 45 | ENIVO  | 6/10/1994  | 0    | 100  |         |          |      |              | 47           |           |            |      |      |      |       |
| 45 |        | 0/10/1994  | 1.   | 109  | 0.000   |          |      |              | 111          |           |            |      |      |      |       |
| 45 |        | 0/10/1994  | 3.   | 935  | 2.833   |          |      |              | 394          | 283       |            |      |      |      |       |
| 48 | FNV9   | 7/10/1994  | 0.0  | 665  |         |          |      |              | 70           |           |            |      |      |      |       |
| 48 | FNv9   | 7/10/1994  | 1.:  | 256  |         |          |      |              | 119          |           |            |      |      |      |       |
| 48 | FNv9   | 7/10/1994  | 0.0  | 692  |         |          |      |              | 73           |           |            |      |      |      |       |
| 48 | FNv9   | 7/10/1994  | 0.0  | 856  |         |          |      |              | 90           |           |            |      |      |      |       |
| 48 | FNv9   | 7/10/1994  | 3.3  | 280  | 1.969   |          |      |              | 295          | 177       |            |      |      |      |       |
| 51 | FNv10  | 7/10/1994  | 0.4  | 863  |         |          |      |              | 86           |           |            |      |      |      |       |
| 51 | FNv10  | 7/10/1994  | 0.5  | 580  |         |          |      |              | 61           |           |            |      |      |      |       |
| 51 | FNv10  | 7/10/1994  | 0:   | 337  |         |          |      |              | 30           |           |            |      |      |      |       |
| 51 | ENv10  | 7/10/1994  | 0.   | 734  |         |          |      |              | 81           |           |            |      |      |      |       |
| 51 | ENV10  | 7/10/1004  | 5.   | 001  | 2 952   |          |      |              | 457          | 0.47      |            |      |      |      |       |
| 51 | ENUIT  | 0/10/1994  | 5.0  |      | 3.002   |          |      |              | 457          | 347       |            |      |      |      |       |
| 54 |        | 8/10/1994  | 0.:  | 574  |         |          |      |              | 60           |           |            |      |      |      |       |
| 54 | FNVII  | 8/10/1994  | 0.9  | 508  |         |          |      |              | 48           |           |            |      |      |      |       |
| 54 | FNv11  | 8/10/1994  | 0.4  | 480  |         |          |      |              | 48           |           |            |      |      |      |       |
| 54 | FNv11  | 8/10/1994  | 1.0  | 080  |         |          |      |              | 119          |           |            |      |      |      |       |
| 54 | FNv11  | 8/10/1994  | 3.   | 609  | 2.330   |          |      |              | 325          | 210       |            |      |      |      |       |
| 83 | FNv12  | 19/10/1994 | 1.3  | 352  |         |          | •    |              | 135          |           |            |      |      |      |       |
| 83 | FNv12  | 19/10/1994 | 2.5  | 247  |         |          |      |              | 247          |           |            |      |      |      |       |
| 83 | FNv12  | 19/10/1994 | 1.0  | 602  |         |          |      |              | 160          |           |            |      |      |      |       |
| 83 | FNv12  | 19/10/1994 | 2    | 368  | 1.536   |          |      |              | 253          | 164       |            |      |      |      |       |
| 83 | FNv12  | 19/10/1004 | 17   | 296  | 11 668  |          |      |              | 1436         | 068       |            |      |      |      |       |
| 86 | ENIV12 | 19/10/1004 |      | 568  | 1.000   |          |      |              | 60           | 300       |            |      |      |      |       |
| 26 | ENUTO  | 10/10/1004 | 0.   | 603  |         |          |      |              | 67           |           |            |      |      |      |       |
| 00 | ENVIS  | 10/10/1994 | 0.0  | 405  |         |          |      |              | 5/           |           |            |      |      |      |       |
| 90 | FINV13 | 19/10/1994 | 0.   | 435  |         |          |      |              | 46           |           |            |      |      |      |       |
| 86 | FNV13  | 19/10/1994 | 1.   | 154  |         |          |      |              | 133          |           |            |      |      |      |       |
| 86 | FNv13  | 19/10/1994 | 18   | .085 | 12.513  |          |      |              | 1447         | 1001      |            |      |      |      |       |
| 89 | FNv14  | 20/10/1994 | 0.   | 693  |         |          |      |              | 90           |           |            |      |      |      |       |

## Tableau 6 (suite)

Campagne: FLUPAC Valeurs des Biomasses /M3 et /M2

. .

Filet à nappes. Vertical 200 Microns

| No   | No     | Date       | Prof |                            | Valeurs p | ar Mètre-c | ube |   |       | Valeurs | s par Mètre | -carré |   | Rap. | Atom. |
|------|--------|------------|------|----------------------------|-----------|------------|-----|---|-------|---------|-------------|--------|---|------|-------|
| St   | trait  |            |      | P.Sec                      | Pssc      | С          | Ν   | Ρ | P.Sec | Pssc    | C           | Ν      | Р | C/N  | N/P   |
| 89   | FNv14  | 20/10/1994 |      | 3.647                      |           |            |     |   | 255   |         |             |        |   |      |       |
| 89   | FNv14  | 20/10/1994 |      | 1.598                      |           |            |     |   | 168   |         |             |        |   |      |       |
| 89   | FNv14  | 20/10/1994 |      | 4.450                      | 2.682     |            |     |   | 503   | 303     |             |        |   |      |       |
| 89   | FNv14  | 20/10/1994 | 2    | 21.594                     | 13.785    |            |     |   | 1835  | 1172    |             |        |   |      |       |
| 92   | FNv15  | 20/10/1994 |      | 1.639                      |           |            |     |   | 172   |         |             |        |   |      |       |
| 92   | FNv15  | 20/10/1994 |      | 2.819                      |           |            |     |   | 268   |         |             |        |   |      |       |
| 92   | FNv15  | 20/10/1994 |      | 2.284                      |           |            |     |   | 228   |         |             |        |   |      |       |
| 92   | FNv15  | 20/10/1994 | :    | 5.832                      | 4.095     |            |     |   | 653   | 459     |             |        |   |      |       |
| 92   | FNv15  | 20/10/1994 | 2    | 23.227                     | 16.663    |            |     |   | 2044  | 1466    |             |        |   |      |       |
| 95   | FNv16  | 21/10/1994 |      | 1.798                      |           |            |     |   | 180   |         |             |        |   |      |       |
| 95   | FNv16  | 21/10/1994 |      | 1.818                      |           |            |     |   | 191   |         |             |        |   |      |       |
| 95   | FNv16  | 21/10/1994 |      | 1.770                      |           |            |     |   | 168   |         |             |        |   |      |       |
| 95   | FNv16  | 21/10/1994 |      | 3.953                      | 2.047     |            |     |   | 435   | 225     |             |        |   |      |       |
| 95   | FNv16  | 21/10/1994 | 2    | 2.367                      | 14.174    |            |     |   | 2013  | 1276    |             |        |   |      |       |
| 98   | FNv17  | 21/10/1994 | -    | 1.008                      |           |            |     |   | 101   |         |             |        |   |      |       |
| 98   | FNv17  | 21/10/1994 |      | 2.138                      |           |            |     |   | 214   |         |             |        |   |      |       |
| 98   | FNv17  | 21/10/1994 |      | 0.751                      |           |            |     |   | 75    |         |             |        |   |      |       |
| 98   | FNv17  | 21/10/1994 |      | 4.914                      | 2 763     |            |     |   | 541   | 304     |             |        |   |      |       |
| 98   | FNv17  | 21/10/1994 | . 2  | 20 241                     | 12 327    |            |     |   | 1822  | 1109    |             |        |   |      |       |
| 101  | ENv18  | 22/10/1994 | -    | 0 543                      | 12.027    |            |     |   | 54    | 1100    |             |        |   |      |       |
| 101  | FNv18  | 22/10/1994 |      | 1 217                      |           |            |     |   | 122   |         |             |        |   |      |       |
| 101  | ENv18  | 22/10/1004 |      | 0.677                      |           |            |     |   | 68    |         |             |        |   |      |       |
| 101  | FNv18  | 22/10/1004 |      | 3 516                      | 1 501     |            |     |   | 307   | 180     |             |        |   |      |       |
| 101  | ENv18  | 22/10/1004 |      | 22 380                     | 15 466    |            |     |   | 10/8  | 1346    |             |        |   |      |       |
| 104  | ENV10  | 22/10/1004 | -    | 1 421                      | 13.400    |            |     |   | 140   | 1040    |             |        |   |      |       |
| 104  | ENV10  | 22/10/1004 |      | 1.421                      | 1 014     |            |     |   | 142   | 101     |             |        |   |      |       |
| 104  | ENV10  | 22/10/1004 |      | 1 210                      | 1.014     |            |     |   | 122   | 101     |             |        |   |      |       |
| 104  | ENV19  | 22/10/1994 |      | 1.31 <del>3</del><br>A AA1 | 2 720     |            |     |   | 533   | 308     |             |        |   |      |       |
| 104  | ENV19  | 22/10/1004 |      | 7.77                       | 15 212    |            |     |   | 1726  | 1225    |             |        |   |      |       |
| 107  | EN/20  | 22/10/1004 | 2    | 1 / 32                     | 13.313    |            |     |   | 150   | 1225    |             |        |   |      |       |
| 107  | ENV20  | 23/10/1994 |      | 2.249                      |           |            |     |   | 214   |         |             |        |   |      |       |
| 107  | ENV20  | 23/10/1004 |      | 1 002                      | 2 247     |            |     |   | 400   | 225     |             |        |   |      |       |
| 107  | ENV20  | 23/10/1004 |      | 1 /02                      | 1.025     |            |     |   | 490   | 100     |             |        |   |      |       |
| 107  | ENV20  | 23/10/1004 |      | 1.430                      | 1/ 999    |            |     |   | 1774  | 1001    |             |        |   |      |       |
| 110  | ENV21  | 23/10/1994 |      | 0 475                      | 14.000    |            |     |   | 50    | 1221    |             |        |   |      |       |
| 110  | EN1/21 | 23/10/1994 |      | 0.775                      |           |            |     |   | 201   |         |             |        |   |      |       |
| 110  | ENV21  | 23/10/1994 |      | 0 902                      |           |            |     |   | 221   |         |             |        |   |      |       |
| 110  | EN6/21 | 23/10/1994 |      | 0.092                      |           |            |     |   | 410   |         |             |        |   |      |       |
| 110  |        | 23/10/1994 |      | 3.007                      |           |            |     |   | 410   |         |             |        |   |      |       |
| 110  |        | 23/10/1994 |      | 0.000                      |           |            |     |   | 00    |         |             |        |   |      |       |
| 110  | FINV22 | 24/10/1994 |      | 0.929                      |           |            |     |   | 98    |         |             |        |   |      |       |
| 110  | FINV22 | 24/10/1994 |      | 1.774                      |           |            |     |   | 1//   |         |             |        |   |      |       |
| 113  | FINV22 | 24/10/1994 |      | 1.266                      |           |            |     |   | 120   |         |             |        |   |      |       |
| 113  | FNV22  | 24/10/1994 |      | 2.479                      | 40 850    |            |     |   | 283   | 4007    |             |        |   |      |       |
| 113  | FNV22  | 24/10/1994 | 1    | 18.887                     | 12.758    |            |     |   | 1624  | 1097    |             |        |   |      |       |
| 116  | FNV23  | 24/10/1994 | I    | 0.549                      |           |            |     |   | 55    |         |             |        |   |      |       |
| 1,10 | FINV23 | 24/10/1994 |      | 1.011                      |           |            |     |   | 161   |         |             |        |   |      |       |
| 116  | FINV23 | 24/10/1994 | I    | 0.984                      | 0.00      |            |     |   | 118   |         |             |        |   |      |       |
| 116  | FNV23  | 24/10/1994 |      | 2.980                      | 2.284     |            |     |   | 292   | 224     |             |        |   |      |       |
| 116  | FNV23  | 24/10/1994 | 3    | 52.771                     | 22.566    |            |     |   | 2687  | 1850    |             |        |   |      |       |
| 119  | FNV24  | 25/10/1994 |      | 1.130                      | 4         |            |     |   | 113   | 1.55    |             |        |   |      |       |
| 119  | FNV24  | 25/10/1994 |      | 2.194                      | 1.572     |            |     |   | 219   | 157     |             |        |   |      |       |
| 119  | FNv24  | 25/10/1994 |      | 1.328                      | 0.485     |            |     |   | 133   |         |             |        |   |      |       |
| 119  | FNv24  | 25/10/1994 |      | 2.778                      | 2.158     |            |     |   | 322   | 250     |             |        |   |      |       |
| 119  | FNv24  | 25/10/1994 | 2    | 21.411                     | 13.975    |            |     |   | 1799  | 1174    |             |        |   |      |       |

•

Tableau 7: Importance, en pourcentages, des deux classes de taille du mésozooplancton, 200-500µm et 500-2000µm (col.3). Pourcentages du poids sec en poids sec sans cendre des deux classes de taille (col.4). Idem pour le carbone (C), l'azote (N) et le phosphore (P).

| Wpv1   (200-500)   28,0   75,81     Wpv1   (500-2000)   72,0   78,35     Wpv2   (200-500)   34,8   60,00     Wpv2   (500-2000)   65,2   60,04     Wpv3   (200-500)   30,4   64,83     Wpv3   (500-2000)   69,6   66,44     Wpv4   (200-500)   31,7   75,43     Wpv4   (500-2000)   68,3   74,07 | Wpv1<br>Wpv1<br>Wpv2<br>Wpv2<br>Wpv3<br>Wpv3 | (200-500)<br>(500-2000)<br>(200-500) | 28,0<br>72,0 | 75,81          | <br>· · · · · · · · · · · · · · · · · · · |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|--------------|----------------|-------------------------------------------|---|
| Wpv1   (500-2000)   72,0   78,35     Wpv2   (200-500)   34,8   60,00     Wpv2   (500-2000)   65,2   60,04     Wpv3   (200-500)   30,4   64,83     Wpv3   (500-2000)   69,6   66,44     Wpv4   (200-500)   31,7   75,43     Wpv4   (500-2000)   68,3   74,07                                     | Wpv1<br>Wpv2<br>Wpv2<br>Wpv3<br>Wpv3         | (500-2000)                           | 72,0         |                |                                           | 1 |
| Wpv2   (200-500)   34,8   60,00     Wpv2   (500-2000)   65,2   60,04     Wpv3   (200-500)   30,4   64,83     Wpv3   (500-2000)   69,6   66,44     Wpv4   (200-500)   31,7   75,43     Wpv4   (500-2000)   68,3   74,07                                                                          | Wpv2<br>Wpv2<br>Wpv3<br>Wpv3                 | (200-500)                            |              | 78,35          |                                           |   |
| Wpv2   (500-2000   65,2   60,04     Wpv3   (200-500)   30,4   64,83     Wpv3   (500-2000)   69,6   66,44     Wpv4   (200-500)   31,7   75,43     Wpv4   (500-2000)   68,3   74,07                                                                                                               | Wpv3<br>Wpv3                                 | (500,0000                            | 34,8         | 60,00          |                                           |   |
| Wpv3     (200-500)     30,4     64,83       Wpv3     (500-2000)     69,6     66,44       Wpv4     (200-500)     31,7     75,43       Wpv4     (500-2000)     68,3     74,07                                                                                                                     | Wpv3<br>Wpv3                                 | (500-2000                            | 65,2         | 60,04          |                                           |   |
| Wpv3 (300-2000) 69,6 66,44   Wpv4 (200-500) 31,7 75,43   Wpv4 (500-2000) 68.3 74.07                                                                                                                                                                                                             | laahaa                                       | (200-500)                            | 30,4         | 64,83          |                                           |   |
| VVPV4 (200-500) 31,7 75,43<br>Wpv4 (500-2000) 68.3 74.07                                                                                                                                                                                                                                        |                                              | (500-2000)                           | 09,0         | 66,44          |                                           |   |
|                                                                                                                                                                                                                                                                                                 | WpV4<br>WpV4                                 | (200-500)                            | 31,7<br>68 3 | 75,43<br>74.07 |                                           |   |
|                                                                                                                                                                                                                                                                                                 | Mpv5                                         | (200 500)                            | 00,0         | (14,07         |                                           |   |
| Wpv5 (200-300) 33,6 68,03 Wpv5 (500-2000) 66,4 66,26                                                                                                                                                                                                                                            | Wpv5                                         | (200-500)                            | 33,0<br>66,4 | 68,03<br>66,26 |                                           |   |
| Wov6 (200 500) 28 5 74 44                                                                                                                                                                                                                                                                       | Wpv6                                         | (200 500)                            | 00,T         | 74.44          |                                           |   |
| Wpv6 (500-2000) 71.5 67.31                                                                                                                                                                                                                                                                      | Wpv6                                         | (500-2000)                           | 20,5<br>71.5 | 67.31          |                                           |   |
| Wpv7 (200-500) 33.4 76.01                                                                                                                                                                                                                                                                       | Wpv7                                         | (200-500)                            | 33.4         | 76.01          |                                           |   |
| Wpv7 (500-2000) 66,6 74,01                                                                                                                                                                                                                                                                      | Wpv7                                         | (500-2000)                           | 66,6         | 74,01          |                                           |   |
| Wpv8 (200-500) 20,3 71,59                                                                                                                                                                                                                                                                       | Wpv8                                         | (200-500)                            | 20,3         | 71,59          |                                           |   |
| Wpv8 (500-2000) 79,7 62,44                                                                                                                                                                                                                                                                      | Wpv8                                         | (500-2000)                           | 79,7         | 62,44          |                                           |   |
| Wpv9 (200-500) 28,2 68,25                                                                                                                                                                                                                                                                       | Wpv9                                         | (200-500)                            | 28,2         | 68,25          |                                           |   |
| Wpv9 (500-2000) 71,8 69,90                                                                                                                                                                                                                                                                      | Wpv9                                         | (500-2000)                           | 71,8         | 69,90          |                                           |   |
| Wpv10 (200-500) 34,5 68,71                                                                                                                                                                                                                                                                      | Wpv10                                        | (200-500)                            | 34,5         | 68,71          |                                           |   |
| Wpv10 (500-2000) 65,5 70,57                                                                                                                                                                                                                                                                     | Wpv10                                        | (500-2000)                           | 65,5         | 70,57          |                                           |   |
| Wpv11 (200-500) 26,5 72,36                                                                                                                                                                                                                                                                      | Wpv11                                        | (200-500)                            | 26,5         | 72,36          |                                           |   |
| vvpv11 (500-2000) 73,5 69,53                                                                                                                                                                                                                                                                    | wpv11                                        | (500-2000)                           | 73,5         | 69,53          |                                           |   |
| Wpv12 (200-500) 24,3 74,31                                                                                                                                                                                                                                                                      | Wpv12                                        | (200-500)                            | 24,3         | 74,31          |                                           |   |
| (300-2000) 75,7 65,12                                                                                                                                                                                                                                                                           |                                              | (500-2000)                           | /5,/         | 05,12          |                                           |   |
| Wpv13 (200-500) 30,2 77,93                                                                                                                                                                                                                                                                      | Wpv13                                        | (200-500)                            | 30,2         | 77,93          |                                           |   |
| Would (000-2000) 03,8 73,24                                                                                                                                                                                                                                                                     | Mauri 4                                      | (300-2000)                           | 09,0         | 75,24          |                                           |   |
| Wpv14 (200-500) 33,3 68,76<br>Wpv14 (500-2000) 66.7 76.13                                                                                                                                                                                                                                       | Wpv14<br>Wpv14                               | (200-500)                            | 33,3<br>66.7 | 68,76<br>76,13 |                                           |   |
| Wow15 (300 500) 00 5 75 50                                                                                                                                                                                                                                                                      | Wow15                                        | (000 500)                            | 00,7<br>00,7 | 75,75          |                                           |   |
| Wpv15 (200-500) 22,5 75,52<br>Wpv15 (500-2000) 77.5 65.39                                                                                                                                                                                                                                       | Wpv15                                        | (200-500)                            | 22,5<br>77.5 | 75,52<br>65,39 |                                           |   |
| Wov16 (200-500) 27.6 60.00                                                                                                                                                                                                                                                                      | Wov16                                        | (200-500)                            | 27.6         | 60,00          |                                           |   |
| Wpv16 (500-2000) 72,4 64,45                                                                                                                                                                                                                                                                     | Wpv16                                        | (500-2000)                           | 72,4         | 64,45          |                                           |   |
| Wpv17 (200-500) 26.4 75.99                                                                                                                                                                                                                                                                      | Wpv17                                        | (200-500)                            | 26.4         | 75.99          |                                           |   |
| Wpv17 (500-2000) 73,6 74,10                                                                                                                                                                                                                                                                     | Wpv17                                        | (500-2000)                           | 73,6         | 74,10          |                                           |   |
| Wpv18 (200-500) 30,6 66,32                                                                                                                                                                                                                                                                      | Wpv18                                        | (200-500)                            | 30,6         | 66,32          |                                           |   |
| Wpv18 (500-2000) 69,4 72,85                                                                                                                                                                                                                                                                     | Wpv18                                        | (500-2000)                           | 69,4         | 72,85          |                                           |   |
| Wpv19 (200-500) 26,5 76,29 -                                                                                                                                                                                                                                                                    | Wpv19                                        | (200-500)                            | 26,5         | 76,29 -        |                                           |   |
| Wpv19 (500-2000) 73,5 65,77                                                                                                                                                                                                                                                                     | Wpv19                                        | (500-2000)                           | 73,5         | 65,77          |                                           |   |
| Wpv20 (200-500) 20,8 66,02                                                                                                                                                                                                                                                                      | Wpv20                                        | (200-500)                            | 20,8         | 66,02          |                                           |   |
| Wpv20 (500-2000) 79,2 68,41                                                                                                                                                                                                                                                                     | Wpv20                                        | (500-2000)                           | 79,2         | 68,41          |                                           |   |
| Wpv21     (200-500)     22,6     82,75       Wmv24     (500-5000)     77.4     55.51                                                                                                                                                                                                            | Wpv21                                        | (200-500)                            | 22,6         | 82,75          |                                           |   |

Tableau 7 (suite): Importance, en pourcentages, des deux classes de taille du mésozooplancton, 200-500µm et 500-2000µm (col.3). Pourcentages du poids sec en poids sec sans cendre des deux classes de taille (col.4). Idem pour le carbone (C), l'azote (N) et le phosphore (P).

ŧ

| No Traits      | Fractions                        | % du ps      | %ppsc          | %C             | %N           | %P           |
|----------------|----------------------------------|--------------|----------------|----------------|--------------|--------------|
| Wpv22<br>Wpv22 | (200-500)                        | 25,3<br>74,7 | 58,10<br>69.87 |                |              |              |
| Wpv23<br>Wpv23 | (200-500)<br>(500-2000)          | 36,0<br>64,0 | 76,51<br>74,01 |                |              |              |
| Wpv25<br>Wpv25 | (200-500)<br>(500-2000)          | 13,4<br>86,6 | 79,47<br>44,83 |                |              |              |
| Wpv26<br>Wpv26 | (200-500)<br>(500-2000)          |              |                | 30,40<br>21,46 | 7,87<br>5,36 | 0,75<br>0,69 |
| Wpv27<br>Wpv27 | (200-500)<br>(500-2000)          | 27,5<br>72,5 | 72,81<br>58,58 |                |              |              |
| Wpv28<br>Wpv28 | (200-500)<br>(500-2000)          | 39,7<br>60,3 | 72,18<br>71,55 |                |              |              |
| Wpv29<br>Wpv29 | (200-500)<br>(500-2000)          |              |                | 32,01<br>28,63 | 8,30<br>7,45 | 0,83<br>0,80 |
| Wpv30<br>Wpv30 | (200-500)<br>(500-2000)          | 32,4<br>67,6 | 69,85<br>55,83 |                |              |              |
| Wpv31<br>Wpv31 | (200-500)<br>(500-2000)          | 29,6<br>70,4 | 79,55<br>73,33 |                |              |              |
| Wpv33<br>Wpv33 | (200-500)<br>(500-2000)          | 27,3<br>72,7 | 76,67<br>74,22 | 34,31<br>29,96 | 8,23<br>7,27 | 0,68<br>0,72 |
| Wpv34<br>Wpv34 | (200-500)<br>(500-2000)          | 37,5<br>62,5 | 77,79<br>61,79 |                |              |              |
| Wpv36<br>Wpv36 | (200-500)<br>(500-2000)          | 30,3<br>69,7 | 58,80<br>71,03 |                |              |              |
| Wpv37<br>Wpv37 | (200-500)<br>(500-2000)          | 30,6<br>69,4 | 73,26<br>74,64 |                |              |              |
| Wpv39<br>Wpv39 | (200-500)<br>(500-2000)          | 23,4<br>76,6 | 73,52<br>76,35 | 29,97<br>31,44 | 6,91<br>7,67 | 0,74<br>0,79 |
| Wpv40<br>Wpv40 | (200-500)<br>(500-2000)          | 28,1<br>71,9 | 76,13<br>71,26 |                |              |              |
| Wpv41<br>Wpv41 | (200-500)<br>(500-2000)          | 25,6<br>74,4 | 77,74<br>69,62 |                |              |              |
| Wpv42<br>Wpv42 | (200-500)<br>(500-2000)          | 50,0<br>50,0 | 69,70<br>81,69 |                |              |              |
| Wpv43<br>Wpv43 | (200-500)<br>(500-2000)          | 32,3<br>67,7 | 68,21<br>68,82 |                |              |              |
| Wpv44<br>Wpv44 | (200-500)<br>(5 <b>00-</b> 2000) | 35,5<br>64,5 | 81,14<br>78,10 |                |              |              |
| Wpv45<br>Wpv45 | (200-500)<br>(500-2000)          | 28,0<br>72,0 | 74,61<br>74,86 |                |              |              |

Tableau 7 (suite): Importance, en pourcentages, des deux classes de taille du mésozooplancton, 200-500µm et 500-2000µm (col.3). Pourcentages du poids sec en poids sec sans cendre des deux classes de taille (col.4). Idem pour le carbone (C), l'azote (N) et le phosphore (P).

| No Traits | Fractions  | % du ps      | %ppsc   | %C    | %N   | %P   |
|-----------|------------|--------------|---------|-------|------|------|
| Wpv46     | (200-500)  | 30,9         | 70,63   |       |      |      |
| Wpv46     | (500-2000) | 69,1         | 76,19   |       |      |      |
| Wpv47     | (200-500)  | 26.4         | 69 24   |       |      |      |
| Wpv47     | (500-2000) | 73,6         | 73,44   |       |      |      |
| Wow48     | (200-500)  | 20.1         | 72.40   |       |      |      |
| Wpv48     | (500-2000) | 61.9         | 73,48   |       |      |      |
| Wpv40     | (200 500)  | 10.0         | 76,62   |       |      |      |
| Wpv49     | (200-500)  | 12,3         | 76,40   |       |      |      |
|           | (000 500)  | 0/,/         | 70,21   |       |      |      |
| Wpv50     | (200-500)  | 24,0<br>76.0 | 71,82   |       |      |      |
|           | (000-2000  | 70,0         | 71,04   |       |      |      |
| Wpv51     | (200-500)  | 26,5         | 72,81   |       |      |      |
|           | 500-2000)  | 73,5         | 73,45   |       |      |      |
| Wpv52     | (200-500)  | 23,0         | 74,34   |       |      |      |
| 44p452    | (300-2000) | 77,0         | 07,29   |       |      |      |
| Wpv53     | (200-500)  | 24,5         | 74,24   |       |      |      |
| wpv53     | (500-2000) | 75,5         | 92,38   |       |      |      |
| Wpv54     | (200-500)  | 30,6         | 79,59   |       |      |      |
| Wpv54     | (500-2000) | 69,4         | 62,82   |       |      |      |
| Wpv55     | (200-500)  | 17,7         | 75,52   |       |      |      |
| Wpv55     | (500-2000) | 82,3         | 77,97   |       |      |      |
| Wpv56     | (200-500)  | 23,4         | 68,89   |       |      |      |
| Wpv56     | (500-2000) | 76,6         | 73,01   |       |      |      |
| Wpv57     | (200-500)  | 24,2         | 73,66   |       |      |      |
| Wpv57     | (500-2000) | 75,8         | 65,46   |       |      |      |
| Wpv58     | (200-500)  | 24,7         | 74,23   |       |      |      |
| Wpv58     | (500-2000) | 75,3         | 57,85   |       |      |      |
| Wpv59     | (200-500   | 23,4         | 69,64   |       |      |      |
| vvpv59    | (500-2000) | 76,6         | //,18   |       |      |      |
| Wpv60     | (200-500)  | 20,6         | 67,44   | 27,44 | 6,42 | 0,66 |
| vvpv60    | (500-2000) | 79,4         | 70,42   | 26,82 | 5,51 | 0,66 |
| Wpv61     | (200-500)  |              |         | 25,01 | 6,22 | 0,64 |
|           | (500-2000) |              |         | 28,33 | 6,45 | 0,68 |
| Wpv62     | (200-500)  | 27,9         | 66,00   |       |      |      |
| Wpv62     | (500-2000) | /2,1         | 70,29   |       |      |      |
| Wpv63     | (200-500)  | 30,2         | 56,10   |       |      |      |
| Wpv63     | (500-2000) | 69,8         | 66,08   |       |      |      |
| Wpv64     | (200-500)  | 12,9         | 63,55 - |       |      |      |
| Wpv64     | (500-2000) | 87,1         | 59,47   |       |      |      |
| Wpv65     | (200-500)  | 30,5         | 56,39   |       |      |      |
| Wpv65     | (500-2000) | 69,5         | 71,63   |       |      |      |
| Wpv66     | (200-500)  | 20,6         | 60,46   | 26,35 | 5,83 | 0,58 |
| Wpv66     | (500-2000) | 79,4         | 66,86   | 29,02 | 7,02 | 1,04 |

| No Traits | Fractions  | % du ps   | %ppsc | %C    | %N   | %P   |
|-----------|------------|-----------|-------|-------|------|------|
| Wpv67     | (200-500)  | 21,8      | 61,16 | 23,54 | 5,03 | 0,65 |
| Wpv67     | (500-2000) | 78,2      | 55,46 | 26,81 | 6,17 | 0,71 |
| Wpv68     | (200-500)  | 25,7      | 61,79 |       |      |      |
| Wpv68     | (500-2000) | 74,3      | 64,26 |       |      |      |
| Wpv69     | (200-500)  | 27.5      | 60.62 | 27.73 | 6.20 | 0.60 |
| Wpv69     | (500-2000) | 72,5      | 65,66 | 28,14 | 6,54 | 0,65 |
| Wpv71     | (200-500)  | 23,5      | 64,59 |       |      |      |
| Wpv71     | (500-2000) | 76,5      | 61,36 |       |      |      |
| Wpv72     | (200-500)  | 22.5      | 74 76 |       |      |      |
| Wpv72     | (500-2000) | 77,5      | 75,17 |       |      |      |
| Wov73     | (200-500)  | 18.8      | 60.71 |       |      |      |
| Wpv73     | (500-2000) | 81,2      | 67,91 |       |      |      |
| Wov74     | (200-500)  | 23.2      | 64 75 | 25.28 | 635  | 0.64 |
| Wpv74     | (500-2000) | 76.8      | 75.03 | 27.60 | 6.95 | 0,04 |
| Wov75     | (200-500)  | ,<br>25.1 | 62.65 | 20.00 | 6.44 | 0.73 |
| Wpv75     | (500-2000) | 74,9      | 63,68 | 35,48 | 8.32 | 0.93 |
| Wov76     | (200-500)  | 31.3      | 68.39 | 32.26 | 8 17 | 0.84 |
| Wpv76     | (500-2000) | 68,7      | 73,40 | 28,84 | 7,05 | 0,74 |
| Wpv77     | (200-500)  | 25,2      | 74,86 |       |      |      |
| Wpv77     | (500-2000) | 74,8      | 68,84 |       |      |      |
| Wpv78     | (200-500)  | 21,8      | 66,85 |       |      |      |
| Wpv78     | (500-2000) | 78,2      | 70,16 |       |      |      |
| Wpv79     | (200-500)  | 21,4      | 57,42 |       |      |      |
| Wpv79     | (500-2000) | 78,6      | 66,29 |       |      |      |
| Wpv80     | (200-500)  | 27,7      | 58,73 | 30,40 | 7,47 | 0,63 |
| Wpv80     | (500-2000) | 72,3      | 71,56 | 28,17 | 6,90 | 0,74 |
| Wpv81     | (200-500)  | 21,0      | 64,43 |       |      |      |
| Wpv81     | (500-2000) | 79,0      | 70,84 |       |      |      |
| Wpv82     | (200-500)  | 9,4       | 66,52 | 25,92 | 5,57 | 0,62 |
| Wpv82     | (500-2000) | 90,6      | 66,79 | 28,07 | 6,77 | 0,66 |
| Wpv83     | (200-500)  | 12,9      | 75,29 | 25,42 | 5,34 | 0,48 |
| Wpv83     | (500-2000) | 87.1      | 69.48 | 28.25 | 6.63 | 0.65 |

Tableau 7 (suite): Importance, en pourcentages, des deux classes de taille du mésozooplancton, 200-500µm et 500-2000µm (col.3). Pourcentages du poids sec en poids sec sans cendre des deux classes de taille (col.4). Idem pour le carbone (C), l'azote (N) et le phosphore (P).

ł

1

| No station :           | 24            |             | Ca         | mpagne : FLUP | PAC           |
|------------------------|---------------|-------------|------------|---------------|---------------|
| No du trait :          | Wpv23         |             |            |               | _             |
| Volume filtré (m3) :   | 163,6         |             |            |               |               |
| Taxon                  | Effectifs /m3 | % effectifs | pds indiv. | % pondéral    | % pondéral    |
|                        |               |             | (µg)       | sans détritus | avec détritus |
| Diatomées              | 0,66          | 0,64        |            |               |               |
| Ceratium sp.           | 1,60          | 1,54        |            |               |               |
| Trichodesmium          | 1,48          | 1,43        |            |               |               |
| Noctiluques            | 8,67          | 8,39        |            |               |               |
| Radiolaires            | 4,94          | 4,78        |            |               |               |
| Acanthaires            | 0,31          | 0,30        |            |               |               |
| Foraminifères          | 1,99          | 1,92        |            |               |               |
| Total Protozoaires     | 19,65         | 19,01       |            |               |               |
| Copépodes              | 70,89         | 68,61       |            |               |               |
| Nauplii                | 0,51          | 0,50        |            |               |               |
| Cladocères             | 0,10          | 0,10        |            |               |               |
| Ostracodes             | 2,10          | 2,03        |            |               |               |
| L. Décapodes divers    | 0,01          | 0,01        |            |               |               |
| L de Sergestidae       | 0,00          | 0,00        |            |               |               |
| Euphaus. calyptopis    | 0,25          | 0,24        |            |               |               |
| Euphausiacés: furcilia | 0,25          | 0,24        |            |               |               |
| Euphausiacés: adultes  | 0,56          | 0,54        |            |               |               |
| Larves de Bivalves     | 0,01          | 0,01        |            |               |               |
| Larves de Gastropodes  | 0,01          | 0,01        |            |               |               |
| Ptéropod. thécosomes   | 0,69          | 0,67        |            |               |               |
| Creseis sp.            | 0,34          | 0,33        |            |               |               |
| Appendiculaires        | 2,70          | 2,61        |            |               |               |
| Salpes                 | 0,00          | 0,00        |            |               |               |
| Dolioles               | 0,06          | 0,06        |            |               |               |
| Total Microphages      | 78,50         | 75,97       |            |               |               |
| Hydroméduses           | 0,02          | 0,02        |            |               |               |
| Siphon <b>o</b> phores | 2,25          | 2,18        |            |               |               |
| Larves de Polychètes   | 0,46          | 0,44        |            |               |               |
| Chaetognathes          | 2,26          | 2,18        |            |               |               |
| Amphipodes             | 0,02          | 0,02        |            |               |               |
| Héteropodes (Atlanta)  | 0,10          | 0,09        |            |               |               |
| Larves de Poissons     | 0,08          | 0,08        |            |               |               |
| Total prédateurs       | 5,19          | 5,02        |            |               |               |
| Oeufs de Poissons      | 0,04          | 0,04        |            |               |               |
| ΤΟΤΑUX                 | 103,33        | 100,00      |            |               |               |
| Débris                 |               |             |            |               |               |

| No station :           | 30            |             | Ca         | mpagne : FLUF | PAC           |
|------------------------|---------------|-------------|------------|---------------|---------------|
| No du trait :          | Wpv 25        |             |            |               |               |
| Vol. filtré (m3) :     | 132,9         |             |            |               |               |
| Taxon                  | Effectifs /m3 | % effectifs | pds indiv. | % pondéral    | % pondéral    |
|                        |               |             | (µg)       | sans détritus | avec détritus |
| Diatomées              | 1,14          | 0,71        |            |               |               |
| Ceratium sp.           | 1,69          | 1,05        |            |               |               |
| Trichodesmium          | 1,57          | 0,98        |            |               |               |
| Noctiluques            | 12,26         | 7,63        |            |               |               |
| Radiolaires            | 8,31          | 5,17        |            |               |               |
| Acanthaires            | 0,54          | 0,34        |            |               |               |
| Foraminifères          | 2,27          | 1,41        |            |               |               |
| Total Protozoaires     | 27,78         | 17,28       |            |               |               |
| Copépodes              | 88,04         | 54,77       |            |               |               |
| Nauplii                | 0,63          | 0,39        |            |               |               |
| Cladocères             | 0,01          | 0,00        |            |               |               |
| Ostracodes             | 1,96          | 1,22        |            |               |               |
| L. de Décapodes div.   |               |             |            |               |               |
| L. de Sergestidae      |               |             |            |               |               |
| Euphaus. calyptopis    | 0,29          | 0,18        |            |               |               |
| Euphausiacés: furcilia | 0,10          | 0,06        |            |               |               |
| Euphausiacés: adultes  | 0,50          | 0,31        |            |               |               |
| Larves de Bivalves     | 0,01          | 0,00        |            |               |               |
| L. de Gastropodes      | 0,03          | 0,02        |            |               |               |
| Ptéropodes thécosomes  | 1,67          | 1,04        |            |               |               |
| Creseis sp.            | 1,30          | 0,81        |            |               |               |
| Appendiculaires        | 2,69          | 1,67        |            |               |               |
| Salpes                 | 0,58          | 0,36        |            |               |               |
| Dolioles               | 0,04          | 0,02        |            |               |               |
| Total Microphages      | 125,00        | 77,77       |            |               |               |
| Hydroméduses           | 0,21          | 0,13        |            |               |               |
| Siphonophores          | 3,42          | 2,13        |            |               |               |
| Larves de Polychètes   | 0,48          | 0,30        |            |               |               |
| Chaetognathes          | 3,68          | 2,29        |            |               |               |
| Amphipodes             | 0,06          | 0,04        |            |               |               |
| Héteropodes (Atlanta)  | 0,04          | 0,02        |            |               |               |
| Larves de Poissons     | 0,07          | 0,04        |            |               |               |
| Total prédateurs       | 7,95          | 4,95        |            |               |               |
| Oeufs de Poissons      | 0,05          | 0,03        |            |               |               |
| ΤΟΤΑUX                 | 160,73        | 100,00      |            |               |               |
| Débris                 |               |             |            |               |               |

| No station :             | 36            | -           | Ca         | mpagne : FLUF | PAC           |
|--------------------------|---------------|-------------|------------|---------------|---------------|
| No du trait :            | Wpv28         |             |            |               |               |
| Volume filtré (m3) :     | 136,1         |             |            |               |               |
| Taxon                    | Effectifs /m3 | % effectifs | pds indiv. | % pondéral    | % pondéral    |
|                          |               |             | (µg)       | sans détritus | avec détritus |
| Diatomées                | 0,76          | 0,75        | 2,520      | 0,20          | 0,19          |
| Ceratium sp.             | 3,08          | 3,06        | 0,322      | 0,11          | 0,10          |
| Trichodesmium *          | 1,96          | 1,95        | 0,800      | 0,17          | 0,16          |
| Noctiluques              | 11,18         | 11,10       | 0,204      | 0,24          | 0,23          |
| Radiolaires              | 4,62          | 4,59        | 2,428      | 1,19          | 1,14          |
| Acanthaires              | 0,40          | 0,40        | 1,066      | 0,05          | 0,04          |
| Foraminifères            | 1,45          | 1,44        | 6,704      | 1,03          | 0,99          |
| Total Protozoaires       | 23,45         | 23,28       |            | 2,99          | 2,86          |
| Copépodes                | 63,70         | 63,23       | 10,533     | 71,27         | 68,18         |
| Nauplii                  | 0,24          | 0,23        | 7,319      | 0,18          | 0,17          |
| Cladocères               | 0,65          | 0,65        | 2,191      | 0,15          | 0,15          |
| Ostracodes               | 1,52          | 1,51        | 16,754     | 2,71          | 2,59          |
| Larves Décapodes divers  | 0,04          | 0,04        | 24,333     | 0,09          | 0,09          |
| L. de Sergestidae        | 0,00          | 0,00        | 0,000      | 0,00          | 0,00          |
| Euphausiacés: calyptopis | 0,29          | 0,28        | 13,564     | 0,41          | 0,39          |
| Euphausiacés: furcilia   | 0,18          | 0,18        | 27,840     | 0,54          | 0,52          |
| Euphausiacés: adultes    | 0,46          | 0,45        | 75,367     | 3,65          | 3,49          |
| Larves de Bivalves *     | 0,01          | 0,01        | 2,940      | 0,01          | 0,00          |
| Larves de Gastropodes    | 0,06          | 0,06        | 101,000    | 0,63          | 0,60          |
| Ptéropodes thécosomes    | 0,72          | 0,71        | 29,710     | 2,27          | 2,17          |
| Cresels sp.              | 0,18          | 0,18        | 5,600      | 0,10          | 0,10          |
| Appendiculaires          | 1,89          | 1,87        | 3,040      | 0,61          | 0,58          |
| Salpes                   | 0,86          | 0,85        | 2,200      | 0,20          | 0,19          |
| Dolioles                 | 0,03          | 0,03        | 19,250     | 0,06          | 0,06          |
| Total Microphages        | 70,82         | 70,29       |            | 82,79         | 79,20         |
| Hydroméduses             | 0,00          | 0,00        | 0,000      | 0,00          | 0,00          |
| Siphonophores            | 3,11          | 3,09        | 10,533     | 3,48          | 3,33          |
| Larves de Polychètes     | 0,22          | 0,22        | 15,529     | 0,36          | 0,35          |
| Chaetognathes            | 2,81          | 2,79        | 31,340     | 9,34          | 8,94          |
| Amphipodes * *           | 0,01          | 0,01        | 89,500     | 0,07          | 0,07          |
| Héteropodes (Atlanta) *  | 0,12          | 0,12        | 17,000     | 0,23          | 0,22          |
| Larves de Poissons       | 0,19          | 0,19        | 26,961     | 0,55          | 0,52          |
| Total prédateurs         | 6,47          | 6,43        |            | 14,03         | 13,42         |
| Oeufs de Poissons        | 0,11          | 0,11        | 16,483     | 0,19          | 0,18          |
| ΤΟΤΑUΧ                   | 100,74        | 100,00      |            | 100,00        | 95,66         |
| Débris                   |               |             |            |               | 4,34          |

\* Poids individuel non mesuré;celui qui est utilisé provient d'une campagne antérieure .
\* \* Poids individuel du Wpv36 de FLUPAC .

-

Tableau 8 (suite)

~

| No station :          | 39            |             | Ca         | mpagne : FLUF | PAC           |
|-----------------------|---------------|-------------|------------|---------------|---------------|
| No du trait :         | Wpv30         |             |            |               | ,             |
| Volume filtré (m3) :  | 123,5         |             |            |               |               |
| Taxon                 | Effectifs /m3 | % effectifs | pds indiv. | % pondéral    | % pondéral    |
|                       |               |             | (µg)       | sans détritus | avec détritus |
| Diatomées             | 1,52          | 1,63        | 2,520      | 0,42          | 0,41          |
| Ceratium sp.          | 3,72          | 3,98        | 0,191      | 0,08          | 0,08          |
| Trichodesmium         | 1,68          | 1,79        | 0,800      | 0,15          | 0,14          |
| Noctiluques           | 10,54         | 11,28       | 0,258      | 0,30          | 0,29          |
| Radiolaires           | 4,84          | 5,18        | 2,428      | 1,30          | 1,27          |
| Acanthaires           | 0,45          | 0,48        | 1,066      | 0,05          | 0,05          |
| Foraminifères         | 1,68          | 1,80        | 6,704      | 1,25          | 1,22          |
| Total Protozoaires    | 24,43         | 26,13       |            | 3,55          | 3,47          |
| Copépodes             | 55,14         | 58,98       | 11,363     | 69,20         | 67,69         |
| Nauplii               | 0,24          | 0,26        | 7,319      | 0,20          | 0,19          |
| Cladocères            | 0,39          | 0,42        | 2,926      | 0,13          | 0,12          |
| Ostracodes            | 1,54          | 1,65        | 15,533     | 2,64          | 2,58          |
| L.Décapodes divers    | 0,01          | 0,01        | 24,333     | 0,02          | 0,02          |
| L. de Sergestidae     |               |             |            |               |               |
| Euphaus.calyptopis    | 0,15          | 0,16        | 11,440     | 0,18          | 0,18          |
| Euphaus. furcilia     | 0,12          | 0,13        | 23,740     | 0,32          | 0,31          |
| Euphausiacés: adultes | 0,62          | 0,66        | 100,925    | 6,86          | 6,71          |
| Larves de Bivalves    | 0,02          | 0,02        | 2,940      | 0,01          | 0,01          |
| L. de Gastropodes     | 0,06          | 0,06        | 101,000    | 0,63          | 0,62          |
| Ptérop. thécosomes    | 1,05          | 1,13        | 21,431     | 2,49          | 2,44          |
| Creseis sp.           | 0,22          | 0,23        | 5,600      | 0,14          | 0,13          |
| Appendiculaires       | 3,31          | 3,54        | 2,631      | 0,96          | 0,94          |
| Salpes                | 0,59          | 0,63        | 1,924      | 0,13          | 0,12          |
| Dolioles              | 0,03          | 0,03        | 19,250     | 0,07          | 0,07          |
| Total Microphages     | 63,48         | 67,90       |            | 83,97         | 82,13         |
| Hydroméduses          |               |             |            |               |               |
| Siphonophores         | 2,58          | 2,76        | 10,925     | 3,12          | 3,05          |
| Larves de Polychètes  | 0,39          | 0,42        | 15,529     | 0,67          | · 0,65        |
| Chaetognathes         | 2,15          | 2,30        | 22,285     | 5,30          | 5,18          |
| Amphipodes            | 0,04          | 0,04        | 89,500     | 0,40          | 0,39          |
| Héteropodes (Atlanta) | 0,02          | 0,03        | 17,000     | 0,05          | 0,04          |
| Larves de Poissons    | 0,39          | 0,42        | 62,575     | 2,69          | 2,63          |
| Total prédateurs      | 5,58          | 5,97        |            | 12,22         | 11,95         |
| Oeufs de Poissons     | 0,15          | 0,16        | 16,483     | 0,27          | 0,26          |
| ΤΟΤΑUX                | 93,49         | 100,00      |            | 100,00        | 97,81         |
| Débris                |               |             |            |               | 2,19          |

+ thit

\$

277

| No station :          | 42            |             | Ca         | mpagne : FLUP | PAC           |
|-----------------------|---------------|-------------|------------|---------------|---------------|
| No du trait :         | Wpv31         |             |            |               |               |
| Volume filtré (m3) :  | 111,2         |             |            |               |               |
| Taxon                 | Effectifs /m3 | % effectifs | pds indiv. | % pondéral    | % pondéral    |
|                       |               |             | (µg)       | sans détritus | avec détritus |
| Diatomées             | 2,56          | 1,71        |            |               |               |
| Ceratium sp.          | 7,50          | 5,01        |            |               |               |
| Trichodesmium         | 4,36          | 2,91        |            |               |               |
| Noctiluques           | 23,35         | 15,60       |            |               |               |
| Radiolaires           | 8,93          | 5,97        |            |               |               |
| Acanthaires           | 0,76          | 0,51        |            |               |               |
| Foraminifères         | 2,34          | 1,56        |            |               |               |
| Total Protozoaires    | 49,80         | 33,28       |            |               |               |
| Copépodes             | 80,94         | 54,09       |            |               |               |
| Nauplii               | 0,69          | 0,46        |            |               |               |
| Cladocères            | 0,76          | 0,51        |            |               |               |
| Ostracodes            | 2,88          | 1,92        |            |               |               |
| L. Décapodes divers   | 0,01          | 0,01        |            |               |               |
| L. de sergestidae     | 0,00          | 0,00        |            |               |               |
| Euphaus. calyptopis   | 0,15          | 0,10        |            |               |               |
| Euphaus. furcilia     | 0,13          | 0,08        |            |               |               |
| Euphausiacés: adultes | 0,27          | 0,18        |            |               |               |
| Larves de Bivalves    | 0,04          | 0,02        |            |               |               |
| Larves de Gastropodes | 0,04          | 0,02        |            |               |               |
| Ptéropod. thécosomes  | 0,80          | 0,53        |            |               |               |
| Creseis sp.           | 0,48          | 0,32        |            |               |               |
| Appendiculaires       | 5,63          | 3,76        |            |               |               |
| Salpes                | 0,20          | 0,13        |            |               |               |
| Dolioles              | 0,05          | 0,04        |            |               |               |
| Total Microphages     | 93,06         | 62,19       |            |               |               |
| Hydroméduses          | 0,00          | 0,00        |            |               |               |
| Siphonophores         | 3,32          | 2,22        |            |               |               |
| Larves de Polychètes  | 0,32          | 0,22        |            |               |               |
| Chaetognathes         | 2,83          | 1,89        |            |               |               |
| Amphipodes            | 0,03          | 0,02        |            |               |               |
| Héteropodes (Atlanta) | 0,08          | 0,05        |            |               |               |
| Larves de Poissons    | 0,19          | 0,13        |            |               |               |
| Total prédateurs      | 6,77          | 4,53        |            |               |               |
| Oeufs de Poissons     | 0,17          | 0,11        |            |               |               |
| TOTAUX                | 149,63        | 100,00      |            |               |               |
| Débris                |               |             |            |               |               |

•

Tableau 8 (suite)

| No station :          | 48            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
|-----------------------|---------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|--|--|
| No du trait :         | Wpv34         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Volume filtré (m3) :  | 126,2         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Taxon                 | Effectifs /m3 | % effectifs | pds indiv.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | % pondéral    | % pondéral    |  |  |
|                       |               |             | (µg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sans détritus | avec détritus |  |  |
| Diatomées             | 2,79          | 1,58        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·             |               |  |  |
| Ceratium sp.          | 8,94          | 5,05        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Trichodesmium         | 3,95          | 2,24        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Noctiluques           | 24,64         | 13,93       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Radiolaires           | 10,79         | 6,10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Acanthaires           | 0,55          | 0,31        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Foraminifères         | 1,55          | 0,87        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Total Protozoaires    | 53,20         | 30,08       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Copépodes             | 90,43         | 51,14       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Nauplii               | 0,44          | 0,25        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Cladocères            | 2,69          | 1,52        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Ostracodes            | 2,84          | 1,61        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| L. de Sergestidae     | 0,00          | 0,00        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| L. Décapodes divers   | 0,02          | 0,01        | i de la companya de la |               |               |  |  |
| Euphaus. calyptopis   | 0,41          | 0,23        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Euphaus, furcilia     | 0,05          | 0,03        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Euphaus. adultes      | 0,45          | 0,26        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Larves de Bivalves    | 0,02          | 0,01        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| L. de Gastropodes     | 0,03          | 0,02        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Ptéropod. thécosomes  | 2,00          | 1,13        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Creseis sp.           | 3,00          | 1,70        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Appendiculaires       | 12,59         | 7,12        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Salpes                | 0,77          | 0,43        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Dolioles              | 0,08          | 0,04        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Total Microphages     | 115,83        | 65,50       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Hydroméduses          | 0,00          | 0,00        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Siphonophores         | 3,34          | 1,89        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Larves de Polychètes  | 0,48          | 0,27        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Chaetognathes         | 3,76          | 2,13        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Amphipodes            | 0,04          | 0,02        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Héteropodes (Atlanta) | 0,09          | 0,05        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Larves de Poissons    | 0,10          | 0,05        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Total prédateurs      | 7,81          | 4,41        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Oeufs de Poissons     | 0,59          | 0,34        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| ΤΟΤΑUX                | 176,84        | 100,00      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |
| Débris                |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |               |  |  |

| No station :             | 51            |             | (                  | mpagne : FLUPAC                          |               |  |
|--------------------------|---------------|-------------|--------------------|------------------------------------------|---------------|--|
| No du trait :            | Wpv36         |             |                    | J. J | -             |  |
| Volume filtré (m3) :     | 120,7         |             |                    |                                          |               |  |
| Taxon                    | Effectifs /m3 | % effectifs | pds indiv.         | % pondéral                               | % pondéral    |  |
|                          |               |             | (µg)               | sans détritus                            | avec détritus |  |
| Diatomées                | 1,87          | 1,85        | 3,55               | 0,81                                     | 0,78          |  |
| Ceratium sp.             | 3,95          | 3,90        | 0,32               | 0,15                                     | 0,15          |  |
| Trichodesmium *          | 1,81          | 1,79        | 0,80               | 0,18                                     | 0,17          |  |
| Noctiluques              | 11,96         | 11,80       | 0,28               | 0,40                                     | 0,39          |  |
| Radiolaires              | 5,48          | 5,41        | 1,75               | 1,17                                     | 1,13          |  |
| Acanthaires              | 0,40          | 0,39        | 4,11               | 0,20                                     | 0,19          |  |
| Foraminifères            | 0,99          | 0,97        | 7,39               | 0,89                                     | 0,85          |  |
| Total Protozoaires       | 26,47         | 26,11       |                    | 3,79                                     | 3,65          |  |
| Copépodes                | 55,58         | 54,83       | 9,10               | 61,49                                    | 59,32         |  |
| Nauplii                  | 0,30          | 0,29        | 3,07               | 0,11                                     | 0,11          |  |
| Cladocères               | 0,36          | 0,36        | 2,11               | 0,09                                     | 0,09          |  |
| Ostracodes               | 1,67          | 1,65        | 16,51              | 3,36                                     | 3,24          |  |
| L. Décapodes divers      | 0,03          | 0,03        | 100,50             | 0,40                                     | 0,39          |  |
| Larves de Sergestidae    | 0,00          | 0,00        | 0,00               | 0,00                                     | 0,00          |  |
| Euphausiacés: calyptopis | 0,40          | 0,39        | 12,60              | 0,61                                     | 0,59          |  |
| Euphausiacés: furcilia   | 0,07          | 0,07        | 34,56              | 0,28                                     | 0,27          |  |
| Euphausiacés: adultes    | 0,41          | 0,41        | 131,68             | 6,63                                     | 6,40          |  |
| Larves de Bivalves       | 0,04          | 0,04        | 26,00              | 0,13                                     | 0,13          |  |
| Larves de Gastropodes    | 0,08          | 0,08        | 113,67             | 1,14                                     | 1,10          |  |
| Ptéropodes thécosomes    | 0,83          | 0,82        | 8,05               | 0,81                                     | 0,78          |  |
| Creseis sp.              | 2,78          | 2,75        | 2,72               | 0,92                                     | 0,89          |  |
| Appendiculaires          | 4,50          | 4,44        | 3,29               | 1,80                                     | 1,73          |  |
| Salpes                   | 0,90          | 0,89        | 5,82               | 0,64                                     | 0,62          |  |
| Dolioles                 | 0,02          | 0,02        | 7,25               | 0,02                                     | 0,02          |  |
| Total Microphages        | 67,99         | 67,07       |                    | 78,44                                    | 75,67         |  |
| Hydroméduses             | 0,00          | 0,00        | 0,00               | 0,00                                     | 0,00          |  |
| Siphonophores            | 2,61          | 2,57        | 15,49              | 4,91                                     | 4,74          |  |
| Larves de Polychètes     | 0,48          | 0,47        | 14,42 <sup>°</sup> | 0,84                                     | 0,81          |  |
| Chaetognathes            | 3,50          | 3,45        | 22,93              | 9,74                                     | 9,40          |  |
| Amphipodes               | 0,03          | 0,03        | 89,50              | 0,36                                     | 0,35          |  |
| Héteropodes (Atlanta)    | 0,16          | 0,16        | 17,00              | 0,33                                     | 0,31          |  |
| Larves de Poissons       | 0,13          | 0,13        | 56,56              | 0,91                                     | 0,88          |  |
| Total prédateurs         | 6,91          | 6,82        |                    | 17,10                                    | 16,49         |  |
| Oeufs de Poissons        | 0,23          | 0,23        | 24,00              | 0,68                                     | 0,65          |  |
| τοταυχ                   | 101,37        | 100,00      |                    | 100,00                                   | 96,47         |  |
| Débris                   |               |             |                    |                                          | 3,53          |  |

\*poids individuel non mesuré; celui qui est utilisé provient d'une campagne antérieure .

•

## Tableau 8 (suite)

| No station :          | 54            |             | Campagne : FLUPAC |               |               |
|-----------------------|---------------|-------------|-------------------|---------------|---------------|
| No du trait :         | Wpv37         |             |                   |               |               |
| Volume filtré (m3) :  | 117,4         |             |                   |               |               |
| Taxon                 | Effectifs /m3 | % effectifs | pds indiv.        | % pondéral    | % pondéral    |
|                       |               |             | (µg)              | sans détritus | avec détritus |
| Diatomées             | 3,48          | 3,48        |                   |               |               |
| Ceratium sp.          | 5,12          | 5,11        |                   |               |               |
| Trichodesmium         | 3,52          | 3,51        |                   |               |               |
| Noctiluques           | 13,53         | 13,51       |                   |               |               |
| Radiolaires           | 7,41          | 7,40        |                   |               |               |
| Acanthaires           | 0,56          | 0,56        |                   |               |               |
| Foraminifères         | 1,54          | 1,54        |                   |               |               |
| Total Protozoaires    | 33,62         | 33,58       |                   |               |               |
| Copépodes             | 48,55         | 48,49       |                   |               |               |
| Nauplii               | 0,21          | 0,21        |                   |               |               |
| Cladocères            | 0,27          | 0,27        |                   |               |               |
| Ostracodes            | 1,83          | 1,83        |                   |               |               |
| L. Décapodes divers   | 0,01          | 0,01        |                   |               |               |
| L. de Sergestidae     | 0,00          | 0,00        |                   |               |               |
| Euphaus. calyptopis   | 0,27          | 0,27        |                   |               |               |
| Euphaus. furcilia     | 0,15          | 0,15        |                   |               |               |
| Euphausiacés: adultes | 0,37          | 0,37        |                   |               |               |
| Larves de Bivalves    | 0,02          | 0,02        |                   |               |               |
| Larves de Gastropodes | 0,00          | 0,00        |                   |               |               |
| L. de Céphalopodes    | 0,02          | 0,02        |                   |               |               |
| Ptéropod. thécosomes  | 0,48          | 0,48        |                   |               |               |
| Creseis sp.           | 1,58          | 1,57        |                   |               |               |
| Appendiculaires       | 7,26          | 7,25        |                   |               |               |
| Salpes                | 0,52          | 0,52        |                   |               |               |
| Dolioles              | 0,08          | 0,08        |                   |               |               |
| Total Microphages     | 61,62         | 61,55       |                   |               | a.            |
| Hydroméduses          | 0,00          | 0,00        |                   |               |               |
| Siphonophores         | 2,11          | 2,11        |                   |               |               |
| Larves de Polychètes  | 0,32          | 0,32        |                   |               |               |
| Chaetognathes         | 2,25          | 2,25        |                   |               |               |
| Amphipodes            | 0,06          | 0,06        |                   |               |               |
| Larves de Poissons    | 0,14          | 0,14        |                   |               |               |
| Total prédateurs      | 4,88          | 4,87        |                   |               |               |
| Oeufs de Poissons     | 0,12          | 0,12        |                   |               |               |
| ΤΟΤΑUX                | 100,12        | 100,00      |                   |               |               |
| Débris                |               |             |                   |               |               |
| No station :          | 89            |             | Ca         | mpagne : FLUF | PAC           |
|-----------------------|---------------|-------------|------------|---------------|---------------|
| No du trait :         | Wpv63         |             |            |               |               |
| Volume filtré (m3) :  | 118,7         |             |            |               |               |
| Taxon                 | Effectifs /m3 | % effectifs | pds indiv. | % pondéral    | % pondéral    |
|                       |               |             | (µg)       | sans détritus | avec détritus |
| Diatomées             | 22,72         | 4,54        |            |               |               |
| Ceratium sp.          | 4,54          | 0,91        |            |               |               |
| Trichodesmium         | 12,05         | 2,41        |            |               |               |
| Noctiluques           | 78,09         | 15,60       |            |               |               |
| Radiolaires           | 165,27        | 33,03       |            |               |               |
| Acanthaires           | 7,83          | 1,56        |            |               |               |
| Foraminifères         | 23,27         | 4,65        |            |               |               |
| Total Protozoaires    | 313,76        | 62,70       |            |               |               |
| Copépodes             | 150,59        | 30,09       |            |               |               |
| Nauplii               | 3,07          | 0,61        |            |               |               |
| Cladocères            | 0,00          | 0,00        |            |               |               |
| Ostracodes            | 9,97          | 1,99        |            |               |               |
| L. Décapodes divers   | 0,16          | 0,03        |            |               |               |
| L. de Sergestidae     | 0,00          | 0,00        |            |               |               |
| Euphaus. calyptopis   | 0,44          | 0,09        |            |               |               |
| Euphaus. furcilia     | 0,49          | 0,10        |            |               |               |
| Euphausiacés: adultes | 0,60          | 0,12        |            |               |               |
| L. de Bivalves        | 0,00          | 0,00        |            |               |               |
| Larves de Gastropodes | 0,11          | 0,02        |            |               |               |
| Ptéropod. thécosomes  | 1,69          | 0,34        |            |               |               |
| Creseis sp.           | 0,33          | 0,07        |            |               |               |
| Appendiculaires       | 12,92         | 2,58        |            |               |               |
| Salpes                | 0,00          |             |            |               |               |
| Dolioles              | 0,00          | 0,05        |            |               |               |
| Total Microphages     | 180,63        | 36,10       |            |               |               |
| Hydroméduses          | 0,00          | 0,00        |            |               |               |
| Siphonophores         | 2,08          | 0,42        |            |               |               |
| Larves de Polychètes  | 0,44          | 0,09        |            |               |               |
| Chaetognathes         | 2,63          | 0,53        |            |               |               |
| Amphipodes            | 0,66          | 0,13        |            |               |               |
| Héteropodes (Atlanta) | 0,11          | 0,02        |            |               |               |
| Larves de Poissons    | 0,11          | 0,02        |            |               |               |
| Total prédateurs      | 6,02          | 1,20        |            |               |               |
| Oeufs de Poissons     | 0,27          | 0,05        |            |               |               |
| ΤΟΤΑUX                | 500,41        | 100,00      |            |               |               |
| Débris                |               |             |            |               |               |

.-

-

-

Tableau 8 (suite)

| No station :             | 101           |                   | Campagne :FLUPAC |               |               |  |  |  |  |
|--------------------------|---------------|-------------------|------------------|---------------|---------------|--|--|--|--|
| No du trait :            | Wpv71         |                   |                  |               |               |  |  |  |  |
| Volume filtré (m3) :     | 121,1         |                   |                  |               |               |  |  |  |  |
| Taxon                    | Effectifs /m3 | % effectifs       | pds indiv.       | % pondéral    | % pondéral    |  |  |  |  |
|                          |               |                   | (µg)             | sans détritus | avec détritus |  |  |  |  |
| Diatomées                | 14,59         | 3,49              | 1,79             | 0,77          | 0,76          |  |  |  |  |
| Ceratium sp. **          | 4,52          | 1,08              | 0,57             | 311,24        | 0,08          |  |  |  |  |
| Trichodesmium *          | 0,55          | 0,13              | 0,80             | 52,80         | 0,01          |  |  |  |  |
| Noctiluques              | 21,44         | 5,13              | 0,19             | 0,12          | 0,12          |  |  |  |  |
| Radiolaires              | 168,48        | 40,29             | 1,49             | 7,39          | 7,27          |  |  |  |  |
| Acanthaires              | 2,27          | 0,54              | 0,19             | 0,01          | 0,01          |  |  |  |  |
| Foraminifères            | 25,60         | 6,12              | 15,13            | 11,39         | 11,20         |  |  |  |  |
| Total Protozoaires       | 237,44        | 56,78             |                  | 19,68         | 19,35         |  |  |  |  |
| Copépodes                | 138,05        | 33,01             | 14,67            | 59,58         | 58,57         |  |  |  |  |
| Nauplii                  | 2,78          | 0,67              | 3,55             | 0,29          | 0,29          |  |  |  |  |
| Cladocères **            | 0,03          | 0,01              | 2,11             | 0,00          | 0,00          |  |  |  |  |
| Ostracodes               | 7,58          | 1,81              | 30,85            | 6,88          | 6,76          |  |  |  |  |
| Larves Décapodes divers  | 0,09          | 0,02              | 24,33            | 0,07          | 0,06          |  |  |  |  |
| Larves de Sergestidae    | 0,04          | 0,01              | 54,00            | 0,07          | 0,06          |  |  |  |  |
| Euphausiacés: calyptopis | 0,61          | 0,15              | 4,14             | 0,07          | 0,07          |  |  |  |  |
| Euphausiacés: furcilia   | 0,52          | 0,12              | 17,20            | 0,26          | 0,26          |  |  |  |  |
| Euphausiacés: adultes    | 0,24          | 0,06              | 189,40           | 1,33          | 1,31          |  |  |  |  |
| Larves de Bivalves *     | 0,01          | 0,00              | 2,94             | 0,00          | 0,00          |  |  |  |  |
| L. de Gastropodes * *    | 0,02          | 0,01              | 101,00           | 0,00          | 0,00          |  |  |  |  |
| Ptéropodes thécosomes    | 0,78          | 0,19              | 5,52             | 0,13          | 0,13          |  |  |  |  |
| Creseis sp.              | 0,09          | 0,02              | 29,00            | 0,08          | 0,08          |  |  |  |  |
| Appendiculaires          | 22,97         | 5,49              | 2,74             | 1,85          | 1,82          |  |  |  |  |
| Salpes * *               | 0,13          | 0,03              | 5,82             | 0,02          | 0,02          |  |  |  |  |
| Dolioles                 | 0,19          | 0,05              | 39,00            | 0,22          | 0,21          |  |  |  |  |
| Total Microphages        | 174,17        | 41,65             |                  | 70,90         | 69,70         |  |  |  |  |
| Hydroméduses *           | 0,03          | 0,01              | 10,76            | 0,01          | 0,01          |  |  |  |  |
| Siphonophores            | 1,35          | 0,32              | 8,73             | 0,35          | 0,34          |  |  |  |  |
| Larves de Polychètes     | 0,77          | 0,18 <sup>-</sup> | 26,24            | 0,59          | 0,58          |  |  |  |  |
| Chaetognathes            | 3,42          | 0,82              | 66,79            | 6,72          | 6,60          |  |  |  |  |
| Amphipodes               | 0,40          | 0,09              | 96,88            | 1,13          | 1,11          |  |  |  |  |
| Héteropodes (Atlanta) ** | 0,07          | 0,02              | 17,00            | 0,00          | 0,00          |  |  |  |  |
| Larves de Poissons       | 0,51          | 0,12              | 39,61            | 0,60          | 0,59          |  |  |  |  |
| Total prédateurs         | 6,55          | 1,57              |                  | 9,42          | 9,26          |  |  |  |  |
| Oeufs de Poissons        | 1,42          | 0,34              | 4,00             | 0,17          | 0,16          |  |  |  |  |
| ΤΟΤΑUX                   | 418,16        | 100,00            |                  | 100,06        | 98,31         |  |  |  |  |
| Débris                   |               |                   |                  |               | 1,72          |  |  |  |  |

3111

1

\* poids individuel non mesuré ;celui qui est utilisé provient d'une campagne antérieure \* \* poids individuel des Wpv30 et Wpv36

| No station :             | 104           |             | Campagne :FLUPAC |               |               |  |  |  |  |
|--------------------------|---------------|-------------|------------------|---------------|---------------|--|--|--|--|
| No du trait :            | Wpv73         |             |                  |               |               |  |  |  |  |
| Volume filtré (m3) :     | 123           |             |                  |               |               |  |  |  |  |
| Taxon                    | Effectifs /m3 | % effectifs | pds indiv.       | % pondéral    | % pondéral    |  |  |  |  |
|                          |               |             | (µg)             | sans détritus | avec détritus |  |  |  |  |
| Diatomées                | 9,33          | 2,93        | 1,92             | 0,78          | 0,77          |  |  |  |  |
| Ceratium sp,             | 4,05          | 1,27        | 0,57             | 0,10          | 0,10          |  |  |  |  |
| Trichodesmium *          | 6,06          | 1,90        | 0,80             | 0,21          | 0,21          |  |  |  |  |
| Noctiluques              | 34,38         | 10,78       | 0,32             | 0,47          | 0,46          |  |  |  |  |
| Radiolaires              | 38,79         | 12,16       | 0,89             | 1,48          | 1,47          |  |  |  |  |
| Acanthaires              | 18,60         | 5,83        | 0,12             | 0,09          | 0,09          |  |  |  |  |
| Foraminifères            | 15,28         | 4,79        | 36,07            | 23,85         | 23,59         |  |  |  |  |
| Total Protozoaires       | 126,50        | 39,66       |                  | 26,98         | 26,69         |  |  |  |  |
| Copépodes                | 159,07        | 49,88       | 5,25             | 36,15         | 35,76         |  |  |  |  |
| Nauplii                  | 3,49          | 1,09        | 2,48             | 0,37          | 0,37          |  |  |  |  |
| Cladocères               |               |             | [                |               |               |  |  |  |  |
| Ostracodes               | 7,25          | 2,27        | 26,56            | 8,33          | 8,24          |  |  |  |  |
| L. Décapodes divers      | 0,14          | 0,04        | 20,57            | 0,12          | 0,12          |  |  |  |  |
| Larves de Sergestidae    | 0,07          | 0,02        | 82,60            | 0,23          | 0,23          |  |  |  |  |
| Euphausiacés: calyptopis | 1,44          | 0,45        | 12,08            | 0,75          | 0,74          |  |  |  |  |
| Euphausiacés: furcilia   | 0,67          | 0,21        | 29,03            | 0,84          | 0,83          |  |  |  |  |
| Euphausiacés: adultes    | 0,77          | 0,24        | 268,30           | 8,96          | 8,87          |  |  |  |  |
| Larves de Bivalves * *   | 0,03          | 0,01        | 101,00           | 0,14          | 0,14          |  |  |  |  |
| Larves de Gastropodes    |               |             |                  |               |               |  |  |  |  |
| Ptéropodes thécosomes    | 1,59          | 0,50        | 9,91             | 0,68          | 0,67          |  |  |  |  |
| Creseis sp,              | 0,07          | 0,02        | 13,73            | 0,04          | 0,04          |  |  |  |  |
| Appendiculaires          | 12,01         | 3,77        | 4,14             | 2,15          | 2,13          |  |  |  |  |
| Salpes                   | 0,24          | 0,08        | 65,00            | 0,69          | 0,68          |  |  |  |  |
| Dolioles                 | 0,03          | 0,01        | 9,40             | 0,01          | 0,01          |  |  |  |  |
| Total Microphages        | 186,85        | 58,59       |                  | 59,33         | 58,68         |  |  |  |  |
| Hydroméduses             |               |             |                  |               |               |  |  |  |  |
| Siphonophores            | 1,23          | 0,38        | 11,87            | 0,63          | 0,62          |  |  |  |  |
| Larves de Polychètes     | 0,95          | 0,30        | 40,38            | 1,66          | 1,64          |  |  |  |  |
| Chaetognathes            | 2,57          | 0,81        | 70,04            | 7,78          | 7,70          |  |  |  |  |
| Amphipodes               | 0,38          | 0,12        | 69,47            | 1,15          | 1,14          |  |  |  |  |
| Héteropodes (Atlanta)    | 0,07          | 0,02        | 39,55            | 0,11          | 0,11          |  |  |  |  |
| Larves de Poissons       | 0,38          | 0,12        | 142,00           | 2,35          | 2,32          |  |  |  |  |
| Total prédateurs         | 5,58          | 1,75        |                  | 13,68         | 13,53         |  |  |  |  |
| Oeufs de Poissons        | 0,85          | 0,27        | 14,65            | 0,54          | 0,53          |  |  |  |  |
| ΤΟΤΑUX                   | 318,93        | 100,00      |                  | 100,00        | 98,91         |  |  |  |  |
| Débris                   |               |             |                  |               | 1,09          |  |  |  |  |

\* poids individuel non mesuré ;celui qui est utilisé provient d'une campagne antérieure . \*\* poids individuel du Wpv30 de FLUPAC

•

Tableau 8 (suite)

| No station :          | 110           |             | Campagne : FLUPAC |               |               |  |  |  |
|-----------------------|---------------|-------------|-------------------|---------------|---------------|--|--|--|
| No du trait :         | Wpv77         |             |                   |               |               |  |  |  |
| Volume filtré (m3) :  | 118           |             |                   |               |               |  |  |  |
| Taxon                 | Effectifs /m3 | % effectifs | pds indiv.        | % pondéral    | % pondéral    |  |  |  |
|                       |               |             | (µg)              | sans détritus | avec détritus |  |  |  |
| Diatomées             | 28,75         | 4,24        |                   |               |               |  |  |  |
| Ceratium sp.          | 11,87         | 1,75        |                   |               |               |  |  |  |
| Trichodesmium         | 11,81         | 1,74        |                   |               |               |  |  |  |
| Noctiluques           | 55,36         | 8,16        |                   |               |               |  |  |  |
| Radiolaires           | 209,54        | 30,89       |                   |               |               |  |  |  |
| Acanthaires           | 3,83          | 0,56        |                   |               |               |  |  |  |
| Foraminifères         | 27,69         | 4,08        |                   |               |               |  |  |  |
| Total Protozoaires    | 348,86        | 51,43       |                   |               |               |  |  |  |
| Copépodes             | 263,75        | 38,88       |                   |               |               |  |  |  |
| Nauplii               | 3,39          | 0,50        |                   |               |               |  |  |  |
| Cladocères            | 0,00          | 0,00        |                   |               |               |  |  |  |
| Ostracodes            | 9,16          | 1,35        |                   |               |               |  |  |  |
| L. Décapodes divers   | 0,11          | 0,02        |                   |               |               |  |  |  |
| L. de Sergestidae     | 0,00          | 0,00        |                   |               |               |  |  |  |
| Euphaus. calyptopis   | 0,00          | 0,00        |                   |               |               |  |  |  |
| Euphaus. furcilia     | 0,81          | 0,12        |                   |               |               |  |  |  |
| Euphausiacés: adultes | 0,59          | 0,09        |                   |               |               |  |  |  |
| Larves de Bivalves    | 0,90          | 0,13        |                   |               |               |  |  |  |
| Larves de Gastropodes | 0,06          | 0,01        |                   |               |               |  |  |  |
| Ptéropod. thécosomes  | 1,81          | 0,27        |                   |               |               |  |  |  |
| Creseis sp.           | 0,02          | 0,00        |                   |               |               |  |  |  |
| Appendiculaires       | 39,72         | 5,86        |                   |               |               |  |  |  |
| Salpes                | 0,35          | 0,05        |                   |               |               |  |  |  |
| Dolioles              | 0,04          | 0,01        |                   |               | .*            |  |  |  |
| Total Microphages     | 320,81        | 47,30       |                   |               |               |  |  |  |
| Hydroméduses          | 0,00          | 0,00        |                   |               |               |  |  |  |
| Siphonophores         | 2,29          | 0,34        |                   |               |               |  |  |  |
| Larves de Polychètes  | 1,49          | 0,22        |                   |               |               |  |  |  |
| Chaetognathes         | 3,75          | 0,55        |                   |               |               |  |  |  |
| Amphipodes            | 0,48          | 0,07        |                   |               |               |  |  |  |
| Héteropodes (Atlanta) | 0,13          | 0,02        |                   |               |               |  |  |  |
| Larves de Poissons    | 0,48          | 0,07        |                   |               |               |  |  |  |
| Total prédateurs      | 8,62          | 1,27        |                   |               |               |  |  |  |
| Oeufs de Poissons     | 0,92          | 0,14        |                   |               |               |  |  |  |
| ΤΟΤΑUX                | 678,30        | 100,00      |                   |               |               |  |  |  |
| Débris                |               |             |                   |               |               |  |  |  |

| No station :          | 113           |             | Car        | npagne : FLUF | PAC           |  |
|-----------------------|---------------|-------------|------------|---------------|---------------|--|
| No du trait :         | Wpv78         |             |            |               |               |  |
| Volume filtré (m3) :  | 115,3         |             |            |               |               |  |
| Taxon                 | Effectifs /m3 | % effectifs | pds indiv. | % pondéral    | % pondéral    |  |
|                       |               |             | (µg)       | sans détritus | avec détritus |  |
| Diatomées             | 53,33         | 6,62        | 2,56       | 3,66          | 3,62          |  |
| Ceratium sp.          | 10,94         | 1,36        | 0,18       | 0,05          | 0,05          |  |
| Trichodesmium *       | 8,96          | 1,11        | 0,8        | 0,19          | 0,19          |  |
| Noctiluques           | 107,28        | 13,32       | 0,27       | 0,78          | 0,77          |  |
| Radiolaires           | 199,79        | 24,81       | 1,22       | 6,54          | 6,46          |  |
| Acanthaires           | 7,44          | 0,92        | 1,68       | 0,34          | 0,33          |  |
| Foraminifères         | 35,68         | 4,43        | 5,06       | 4,84          | 4,79          |  |
| Total Protozoaires    | 423,42        | 52,58       |            | 16,41         | 16,21         |  |
| Copépodes             | 318,63        | 39,56       | 6,33       | 54,12         | 53,49         |  |
| Nauplii               | 5,01          | 0,62        | 1,98       | 0,27          | 0,26          |  |
| Cladocères **         | 0,11          | 0,01        | 2,11       | 0,01          | 0,01          |  |
| Ostracodes            | 10,37         | 1,29        | 35,05      | 9,76          | 9,64          |  |
| L. Décapodes divers   | 0,16          | 0,02        | 38 0,17    |               | 0,17          |  |
| Larves de Sergestidae | 0,16          | 0,02        | 7,43       | 0,03          | 0,03          |  |
| Euphaus. calyptopis   | 0,62          | 0,08        | 6,82       | 0,11          | 0,11          |  |
| Euphaus. furcilia     | 0,39          | 0,05        | 19,44      | 0,20          | 0,20          |  |
| Euphausiacés: adultes | 0,73          | 0,09        | 93,73      | 1,83          | 1,81          |  |
| L. de Bivalves        |               |             |            |               |               |  |
| Larves de Gastropodes | 0,16          | 0,02        | 53,6       | 0,24          | 0,23          |  |
| Ptéropod. thécosomes  | 3,50          | 0,43        | 9,44       | 0,89          | 0,87          |  |
| Creseis sp.           | 0,50          | 0,06        | 11,44      | 0,15          | 0,15          |  |
| Appendiculaires       | 27,40         | 3,40        | 8,25       | 6,07          | 5,99          |  |
| Salpes                | 0,95          | 0,12        | 7,82       | 0,20          | 0,20          |  |
| Dolioles              | 0,23          | 0,03        | 8,83       | 0,05          | 0,05          |  |
| Total Microphages     | 368,93        | 45,81       |            | 74,09         | 73,23         |  |
| Hydroméduses          |               |             |            |               |               |  |
| Siphonophores         | 5,92          | 0,73        | 6,69       | 1,06          | 1,05          |  |
| Larves de Polychètes  | 0,95          | 0,12        | 23,3       | 0,60          | 0,59          |  |
| Chaetognathes         | 4,67          | 0,58        | 53,21      | 6,67          | 6,60          |  |
| Amphipodes            | 0,68          | 0,08        | 36,8       | 0,67          | 0,66          |  |
| Héteropodes (Atlanta) | 0,50          | 0,06        | 16,6       | 0,22          | 0,22          |  |
| Larves de Poissons    | 0,28          | 0,03        | 13,6       | 0,10          | 0,10          |  |
| Total prédateurs      | 13,00         | 1,61        |            | 9,33          | 9,22          |  |
| Oeufs de Poissons     | 5,64          | 0,70        | 1,15       | 0,17          | 0,17          |  |
| ΤΟΤΑUX                | 805,35        | 100,00      |            | 100,00        | 98,83         |  |
| Débris                |               |             |            |               | 1,17          |  |

\* poids non mesuré ;celui qui est utilisé provient d'une campagne antérieure . \* \* poids individuel des Wpv30 et Wpv36 de FLUPAC .

•

Tableau 8 (suite)

| No station :              | 116           | _           | Campagne : FLUPAC |               |             |  |  |
|---------------------------|---------------|-------------|-------------------|---------------|-------------|--|--|
| No du trait :             | Wpv81         |             |                   |               |             |  |  |
| Volume filtré (m3) :      | 108,9         |             |                   |               |             |  |  |
| Taxon                     | Effectifs /m3 | % effectifs | pds indiv.        | % pondéral    | % pondér    |  |  |
|                           |               |             | (µg)              | sans détritus | avec détrit |  |  |
| Diatomées                 | 21,61         | 3,33        |                   |               |             |  |  |
| Ceratium sp.              | 23,64         | 3,64        |                   |               |             |  |  |
| Trichodesmium             | 11,10         | 1,71        |                   |               |             |  |  |
| Noctiluques               | 80,99         | 12,47       |                   |               |             |  |  |
| Radiolaires               | 176,01        | 27,11       |                   |               |             |  |  |
| Acanthaires               | 3,28          | 0,50        |                   |               |             |  |  |
| <sup>-</sup> oraminifères | 26,44         | 4,07        |                   |               |             |  |  |
| Total Protozoaires        | 343,07        | 52,83       |                   |               |             |  |  |
| Copépodes                 | 247,82        | 38,17       |                   |               |             |  |  |
| Nauplii                   | 3,34          | 0,51        |                   |               |             |  |  |
| Cladocères                | 11,99         | 1,85        |                   |               |             |  |  |
| Ostracodes                | 0,17          | 0,03        |                   |               |             |  |  |
| L. Décapodes divers       | 0,24          | 0,04        |                   |               |             |  |  |
| _arves de Sergestidae     | 0,60          | 0,09        |                   |               |             |  |  |
| Euphaus. calyptopis       | 0,29          | 0,05        |                   |               |             |  |  |
| Euphaus. furcilia         | 0,72          | 0,11        |                   |               |             |  |  |
| Euphausiacés: adultes     | 0,06          | 0,01        |                   |               |             |  |  |
| Larves de Bivalves        |               |             |                   |               |             |  |  |
| arves de Gastropodes      |               |             |                   |               |             |  |  |
| Ptéropod. thécosomes      | 3,88          | 0,60        |                   |               |             |  |  |
| Cresels sp.               | 0,17          | 0,03        |                   |               |             |  |  |
| Appendiculaires           | 24,47         | 3,77        |                   |               |             |  |  |
| Salpes                    | 1,25          | 0,19        |                   |               |             |  |  |
| Dolioles                  | 0,17          | 0,03        |                   |               |             |  |  |
| Total Microphages         | 295,18        | 45,46       |                   |               |             |  |  |
| Hydroméduses              |               |             |                   |               |             |  |  |
| Siphonophores             | 3,28          | 0,50        |                   |               |             |  |  |
| Larves de Polychètes      | 2,03          | 0,31        |                   |               | -           |  |  |
| Chaetognathes             | 4,71          | 0,73        |                   |               |             |  |  |
| Amphipodes                | 0,65          | 0,10        |                   |               |             |  |  |
| Héteropodes (Atlanta)     | 0,17          | 0,03        |                   |               |             |  |  |
| Larves de Poissons        | 0,24          | 0,04        |                   |               |             |  |  |
| Total prédateurs          | 11,08         | 1,71        |                   |               |             |  |  |
| Oeufs de Poissons         | 0,72          | 0,11        |                   |               |             |  |  |
| ΤΟΤΑUΧ                    | 649,33        | 100,00      |                   |               |             |  |  |
| Débris                    |               |             |                   |               |             |  |  |

i

Tableau 9 : Caractéristiques des incubations de zooplancton et valeurs des taux métaboliques (en grisé, valeurs suspectes). Les durées d'incubation sont en heures et dixièmes d'heures.

| Campagne : FLUPAC N°station : 27 |       |            |          |             |              |              |       |       |  |  |
|----------------------------------|-------|------------|----------|-------------|--------------|--------------|-------|-------|--|--|
| Taille                           | Temp. | Durée      | Poids    | Taux n      | nétaboliques | ( uatg /mg / | (])   |       |  |  |
| (µm)                             | (°C)  | incubation | sec (mg) | Respiration | ENH4         | ENT          | EPO4  | EPT   |  |  |
| > 200 µm                         | 29    | 20,1       | 1,200    | 69,3        | 9,00         | 22,05        | 0,100 | 1,910 |  |  |
| > 200 µm                         | 29    | 20,1       | 4,600    | 25,0        | 2,86         | 5,92         | 0,047 | 0,410 |  |  |
| > 200 µm                         | 20,5  | 20,1       | 7,600    | 13,7        | 1,58         | 4,13         | 0,038 | 0,264 |  |  |
| > 200 µm                         | 20,5  | 20,0       | 3,600    | 10,7        | 1,65         | 6,02         | 0,033 | 0,367 |  |  |
| 35-200 µm                        | 29    | 20,0       | 4,177    | 35,9        | 4,23         | 7,18         | 0,109 | 0,721 |  |  |
| 35-200 µm                        | 29    | 20,0       | 11,901   | 33,4        | 0,74         | 8,73         | 0,110 | 0,856 |  |  |
| 35-200 µm                        | 20,5  | 20,0       | 5,065    | 12,1        | 1,07         | 2,58         | 0,036 | 0,190 |  |  |
| 35-200 µm                        | 20,5  | 20,0       | 4,154    | 9,0         | 0,60         | 1,48         | 0,023 | 0,116 |  |  |

| Campagne :  | FLUPAC |            |          |             |                                   |      | N°station : | 33    |  |  |
|-------------|--------|------------|----------|-------------|-----------------------------------|------|-------------|-------|--|--|
| Taille      | Temp.  | Durée      | Poids    | Taux n      | Taux métaboliques (uatg /mg / j ) |      |             |       |  |  |
| (µm)        | (°C)   | incubation | sec (mg) | Respiration | ENH4                              | ENT  | EPO4        | EPT   |  |  |
| 200-500 µm  | 29,4   | 20,2       | 7,500    | 28,0        | 3,53                              | 4,08 | 0,120       | 0,304 |  |  |
| 200-500 µm  | 29,4   | 20,3       | 5,400    | 39,9        | 4,98                              | 6,01 | 0,201       | 0,416 |  |  |
| 500-2000 µm | 29,4   | 20,4       | 2,500    | 52,1        | 8,21                              | 8,59 | 0,348       | 0,687 |  |  |
| 500-2000 µm | 29,4   | 20,5       | 2,700    | 46,5        | 7,66                              | 8,39 | 0,399       | 0,676 |  |  |
| 35-200 µm   | 29,4   | 20,1       | 1,310    | 36,6        | 5,06                              | 2,97 | 0,228       | 0,419 |  |  |
| 35-200 μm   | 29,4   | 20,0       | 1,306    | 30,4        | 4,13                              | 6,39 | 0,165       | 0,377 |  |  |

| Campagne :  | FLUPAC |            |          |             |                                   |       | N°station : | 45    |  |  |
|-------------|--------|------------|----------|-------------|-----------------------------------|-------|-------------|-------|--|--|
| Taille      | Temp.  | Durée      | Poids    | Taux n      | Taux métaboliques (uatg /mg / j ) |       |             |       |  |  |
| (µm)        | (°C)   | incubation | sec (mg) | Respiration | ENH4                              | ENT   | EPO4        | EPT   |  |  |
| 200-500 µm  | 30,5   | 19,8       | 5,600    | 39,0        | 4,82                              | 6,17  | 0,169       | 0,381 |  |  |
| 200–500 µm  | 30,5   | 19,9       | 5,000    | 57,9        | 7,22                              | 23,80 | 0,275       | 0,579 |  |  |
| 500-2000 μm | 30,5   | 20,0       | 3,600    | 39,6        | 7,09                              | 6,05  | 0,180       | 0,413 |  |  |
| 500-2000 µm | 30,5   | 20,1       | 4,300    | 56,6        | 9,70                              | 14,00 | 0,244       | 0,650 |  |  |
| 35-200 μm   | 30,5   | 19,8       | 2,199    | 51,0        | 6,44                              | 9,49  | 0,259       | 0,661 |  |  |
| 35-200 µm   | 30,5   | 19,9       | 3,274    | 45,6        | 6,13                              | 9,10  | 0,262       | 0,549 |  |  |

| Campagne : | FLUPAC |            |          |             |                                  |       | N°station : | 51    |  |
|------------|--------|------------|----------|-------------|----------------------------------|-------|-------------|-------|--|
| Taille     | Temp.  | Durée      | Poids    | Taux n      | Taux métaboliques (uatg /mg / )) |       |             |       |  |
| (µm)       | (°C)   | Incubation | sec (mg) | Respiration | ENH4                             | ENT   | EPO4        | EPT   |  |
| > 200 µm   | 20,5   | 20,0       | 12,500   | 11,3        | 1,37                             | 2,34  | 0,090       | 0,182 |  |
| > 200 µm   | 20,5   | 20,0       | 13,300   | 14,3        | 1,62                             | 2,96  | 0,096       | 0,240 |  |
| > 200 µm   | 30,5   | 20,0       | 10,000   | 46,2        | 4,71                             | 9,06  | 0,257       | 0,511 |  |
| > 200 µm   | 30,5   | 20,0       | 7,000    | 51,9        | 5,47                             | 8,57  | 0,247       | 0,586 |  |
| 35-200 µm  | 20,5   | 19,4       | 4,782    | 10,0        | 1,07                             | 1,10  | 0,036       | 0,142 |  |
| 35-200 µm  | 20,5   | 19,4       | 1,667    | 32,0        | 6,25                             | 9,03  | 0,104       | 0,453 |  |
| 35-200 μm  | 30,5   | 19,4       | 0,946    | 83,4        | 8,02                             | 12,53 | 0,602       | 1,125 |  |
| 35-200 um  | 30.5   | 19.4       | 0.000    |             |                                  |       |             |       |  |

| Campagne :  | FLUPAC |            |          |             |                                    |      | N°station : | 59    |  |  |
|-------------|--------|------------|----------|-------------|------------------------------------|------|-------------|-------|--|--|
| Taille      | Temp.  | Durée      | Poids    | Taux n      | Taux métaboliques ( uatg /mg / j ) |      |             |       |  |  |
| (µm)        | (°C)   | Incubation | sec (mg) | Respiration | ENH4                               | ENT  | EPO4        | EPT   |  |  |
| 200-500 µm  | 21     | 20,1       | 19,900   | 9,5         | 1,17                               | 2,48 | 0,050       | 0,137 |  |  |
| 200-500 μm  | 21     | 20,2       | 12,400   | 14,4        | 1,59                               | 3,78 | 0,080       | 0,195 |  |  |
| 500-2000 μm | 21     | 20,2       | 2,900    | 30,7        | 2,03                               | 4,89 | 0,098       | 0,311 |  |  |
| 500-2000 µm | 21     | 20,3       | 6,600    | 17,0        | 1,63                               | 3,63 | 0,054       | 0,219 |  |  |
| 35-200 μm   | 21     | 19,8       | 3,834    | 13,8        | 1,33                               | 2,23 | 0,060       | 0,161 |  |  |
| 35-200 µm   | 21     | 19,9       | 3,125    | 15,2        | 1,35                               | 3,82 | 0,050       | 0,235 |  |  |

## Tableau 9 (suite)

| Campagne : | FLUPAC |            |          |             |                                   |       | N°station : | 86    |  |
|------------|--------|------------|----------|-------------|-----------------------------------|-------|-------------|-------|--|
| Taille     | Temp.  | Durée      | Polds    | Taux n      | Taux métaboliques (uatg /mg / j ) |       |             |       |  |
| (µm)       | (°C)   | incubation | sec (mg) | Respiration | ENH4                              | ENT   | EPO4        | EPT   |  |
| > 200 µm   | 28     | 20,1       | 6,700    | 29,4        | 3,69                              | 6,18  | 0,185       | 0,417 |  |
| > 200 µm   | 28     | 20,2       | 8,200    | 32,2        | 4,21                              | 7,01  | 0,177       | 0,411 |  |
| > 200 µm   | 19,5   | 20,3       | 6,000    | 16,3        | 1,66                              | 3,90  | 0,118       | 0,315 |  |
| > 200 µm   | 19,5   | 20,3       | 5,300    | 14,5        | 3,23                              | 5,14  | 0,129       | 0,339 |  |
| 35-200 µm  | 28     | 19,8       | 1,230    | 78,8        | 19,81                             | 20,02 | 0,631       | 1,518 |  |
| 35-200 µm  | 28     | 19,8       | 1,302    | 185,1       | 31,67                             | 12,33 | 0,521       | 0,968 |  |
| 35-200 µm  | 19,5   | 19,9       | 1,862    | 28,3        | 13,11                             | 8,64  | 0,142       | 0,518 |  |
| 35-200 µm  | 19,5   | 20,0       | 2,032    | 11,8        | 3,21                              | 4,16  | 0,130       | 0,449 |  |

| Campagne : FLUPAC N° station : 92 |       |            |          |             |                                    |      |       |       |  |  |  |
|-----------------------------------|-------|------------|----------|-------------|------------------------------------|------|-------|-------|--|--|--|
| Tailie                            | Temp. | Durée      | Poids    | Taux n      | Taux métaboliques ( uatg /mg / j ) |      |       |       |  |  |  |
| (µm)                              | (°C)  | incubation | sec (mg) | Respiration | ENH4                               | ENT  | EPO4  | EPT   |  |  |  |
| 200-500 µm                        | 21,5  | 20,1       | 8,700    | 19,2        | 3,04                               | 5,94 | 0,137 | 0,305 |  |  |  |
| 200-500 µm                        | 21,5  | 20,1       | 10,900   | 15,3        | 1,91                               | 4,46 | 0,112 | 0,226 |  |  |  |
| 500-2000 μm                       | 21,5  | 20,3       | 12,100   | 17,8        | 2,70                               | 5,18 | 0,133 | 0,260 |  |  |  |
| 500-2000 μm                       | 21,5  | 20,3       | 12,600   | 16,8        | 1,94                               | 4,49 | 0,116 | 0,216 |  |  |  |
| 35-200 µm                         | 21,5  | 19,8       | 2,452    | 22,9        | 2,07                               | 5,25 | 0,089 | 0,287 |  |  |  |
| 35-200 µm                         | 21,5  | 19,9       | 3,812    | 22,5        | 3,24                               | 5,50 | 0,130 | 0,329 |  |  |  |

| Campagne : FLUPAC N°station : 98 |                                                                      |                                                                                                                              |                                                                                                                                                     |                                                                                                                                                                                                           |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|----------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| emp.                             | Durée                                                                | Poids                                                                                                                        | Taux m                                                                                                                                              | Taux métaboliques (uatg /mg / j)                                                                                                                                                                          |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| (℃)                              | incubation                                                           | sec (mg)                                                                                                                     | Respiration                                                                                                                                         | ENH4                                                                                                                                                                                                      | ENT                                                                                                                                                                                                                                                | EPO4                                                                                                                                                                                                                                                                                                        | EPT                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 28,5                             | 19,9                                                                 | 7,000                                                                                                                        | 20,9                                                                                                                                                | 2,55                                                                                                                                                                                                      | 3,65                                                                                                                                                                                                                                               | 0,086                                                                                                                                                                                                                                                                                                       | 0,234                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 28,5                             | 19,9                                                                 | 4,700                                                                                                                        | 25,3                                                                                                                                                | 2,74                                                                                                                                                                                                      | 3,81                                                                                                                                                                                                                                               | 0,092                                                                                                                                                                                                                                                                                                       | 0,267                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 28,5                             | 20,1                                                                 | 5,100                                                                                                                        | 22,8                                                                                                                                                | 3,65                                                                                                                                                                                                      | 4,94                                                                                                                                                                                                                                               | 0,103                                                                                                                                                                                                                                                                                                       | 0,300                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 28,5                             | 20,1                                                                 | 11,700                                                                                                                       | 23,6                                                                                                                                                | 3,15                                                                                                                                                                                                      | 5,28                                                                                                                                                                                                                                               | 0,102                                                                                                                                                                                                                                                                                                       | 0,298                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 28,5                             | 19,5                                                                 | 2,161                                                                                                                        | 53,8                                                                                                                                                | 5,85                                                                                                                                                                                                      | 11,80                                                                                                                                                                                                                                              | 0,330                                                                                                                                                                                                                                                                                                       | 0,775                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 28,5                             | 19,5                                                                 | 2,343                                                                                                                        | 62,1                                                                                                                                                | 6,99                                                                                                                                                                                                      | 12,70                                                                                                                                                                                                                                              | 0,431                                                                                                                                                                                                                                                                                                       | 0,882                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                  | emp.<br>(°C)<br>28,5<br>28,5<br>28,5<br>28,5<br>28,5<br>28,5<br>28,5 | emp. Durée   (°C) incubation   28,5 19,9   28,5 20,1   28,5 20,1   28,5 19,5   28,5 19,9   28,5 19,9   28,5 19,5   28,5 19,5 | Durée Polds   (°C) incubation sec (mg)   28,5 19,9 7,000   28,5 19,9 4,700   28,5 20,1 5,100   28,5 20,1 11,700   28,5 19,5 2,161   28,5 19,5 2,343 | emp. Durée Poids Taux m   (°C) incubation sec (mg) Respiration   28,5 19,9 7,000 20,9   28,5 19,9 4,700 25,3   28,5 20,1 5,100 22,8   28,5 20,1 11,700 23,6   28,5 19,5 2,161 53,8   28,5 19,5 2,343 62,1 | Durée Poids Taux métaboliques   (°C) incubation sec (mg) Respiration ENH4   28,5 19,9 7,000 20,9 2,55   28,5 19,9 4,700 25,3 2,74   28,5 20,1 5,100 22,8 3,65   28,5 20,1 11,700 23,6 3,15   28,5 19,5 2,161 53,8 5,85   28,5 19,5 2,343 62,1 6,99 | Durée Polds Taux métaboliques (uatg /mg /<br>Respiration ENH4 ENT   28,5 19,9 7,000 20,9 2,55 3,65   28,5 19,9 7,000 20,9 2,55 3,65   28,5 19,9 4,700 25,3 2,74 3,81   28,5 20,1 5,100 22,8 3,65 4,94   28,5 20,1 11,700 23,6 3,15 5,28   28,5 19,5 2,161 53,8 5,85 11,80   28,5 19,5 2,343 62,1 6,99 12,70 | Durée Poids Taux métaboliques ( uatg /mg / j )   (°C) incubation sec (mg) Respiration ENH4 ENT EPO4   28,5 19,9 7,000 20,9 2,55 3,65 0,086   28,5 19,9 4,700 25,3 2,74 3,81 0,092   28,5 20,1 5,100 22,8 3,65 4,94 0,103   28,5 20,1 11,700 23,6 3,15 5,28 0,102   28,5 19,5 2,161 53,8 5,85 11,80 0,330   28,5 19,5 2,343 62,1 6,99 12,70 0,431 |  |  |  |

| Campagne : FLUPAC N°station : 104 |       |            |          |             |                                  |       |       |       |  |  |  |
|-----------------------------------|-------|------------|----------|-------------|----------------------------------|-------|-------|-------|--|--|--|
| Taille                            | Temp. | Durée      | Poids    | Taux n      | Taux métaboliques (uatg /mg / )) |       |       |       |  |  |  |
| (µm)                              | (°C)  | Incubation | sec (mg) | Respiration | ENH4                             | ENT   | EPO4  | EPT   |  |  |  |
| > 200 µm                          | 22,5  | 20,1       | 22,800   | 11,7        | 1,26                             | 2,48  | 0,062 | 0,141 |  |  |  |
| > 200 µm                          | 22,5  | 20,1       | 23,000   | 15,3        | 1,42                             | 3,07  | 0,089 | 0,195 |  |  |  |
| > 200 µm                          | 28,2  | 20,2       | 12,400   | 25,8        | 2,84                             | 5,39  | 0,105 | 0,274 |  |  |  |
| > 200 µm                          | 28,2  | 20,2       | 10,400   | 27,6        | 2,70                             | 4,69  | 0,103 | 0,281 |  |  |  |
| 35-200 µm                         | 22,5  | 19,7       | 2,133    | 30,7        | 3,32                             | 5,44  | 0,211 | 0,428 |  |  |  |
| 35-200 µm                         | 22,5  | 19,7       | 3,032    | 29,1        | 2,54                             | 4,94  | 0,181 | 0,406 |  |  |  |
| 35-200 µm                         | 28,2  | 19,8       | 2,053    | 51,7        | 5,00                             | 8,49  | 0,372 | 0,726 |  |  |  |
| 35-200 μm                         | 28,2  | 19,8       | 1,939    | 54,3        | 5,49                             | 10,07 | 0,319 | 0,669 |  |  |  |

| Campagne : FLUPAC N°station : 11 |       |            |          |             |                                    |      |       |       |  |  |  |
|----------------------------------|-------|------------|----------|-------------|------------------------------------|------|-------|-------|--|--|--|
| Taille                           | Temp. | Durée      | Polds    | Taux n      | Taux métaboliques ( uatg /mg / j ) |      |       |       |  |  |  |
| (µm)                             | (°C)  | Incubation | sec (mg) | Respiration | ENH4                               | ENT  | EPO4  | EPT   |  |  |  |
| 200-500 µm                       | 21    | 20,1       | 10,200   | -7,8        | 1,08                               | 2,43 | 0,077 | 0,152 |  |  |  |
| 200-500 µm                       | 21    | 20,2       | 12,100   | 7,8         | 1,39                               | 2,96 | 0,114 | 0,198 |  |  |  |
| 200-500 µm                       | 21    | 20,3       | 11,400   | 23,4        | 2,81                               | 5,78 | 0,118 | 0,353 |  |  |  |
| 500-2000 μm                      | 21    | 20,6       | 13,300   | 6,4         | 1,37                               | 3,15 | 0,079 | 0,193 |  |  |  |
| 500-2000 µm                      | 21    | 20,7       | 24,100   | 6,9         | 0,76                               | 2,20 | 0,056 | 0,115 |  |  |  |
| 500-2000 µm                      | 21    | 20,8       | 22,300   | 12,1        | 1,53                               | 3,16 | 0,077 | 0,170 |  |  |  |

## Tableau 9 (suite)

| Campagne :  | FLUPAC |            |          |             |                                  |      | N°station :    | 116   |  |  |
|-------------|--------|------------|----------|-------------|----------------------------------|------|----------------|-------|--|--|
| Taille      | Temp.  | Durée      | Poids    | Taux n      | Taux métaboliques (uatg /mg / j) |      |                |       |  |  |
| (µm)        | (°C)   | incubation | sec (mg) | Respiration | ENH4                             | ENT  | EPO4           | EPT   |  |  |
| 200-500 µm  | 28,5   | 20,0       | 5,800    | 23,0        | 2,59                             | 3,24 | 0,116          | 0,228 |  |  |
| 200-500 µm  | 28,5   | 20,1       | 6,400    | 21,5        | 2,18                             | 2,87 | 0,119          | 0,213 |  |  |
| 200-500 µm  | 28,5   | 20,1       | 5,400    | 27,1        | 2,91                             | 3,45 | 0,168          | 0,279 |  |  |
| 500-2000 µm | 28,5   | 20,2       | 10,500   | 27,3        | 2,93                             | 5,56 | 0,149          | 0,269 |  |  |
| 500-2000 µm | 28,5   | 20,5       | 16,200   | 21,5        | 2,31                             | 4,41 | 0,130          | 0,220 |  |  |
| 500-2000 µm | 28,5   | 20,6       | 14,300   | 26,5        | 2,75                             | 4,87 | 0 <u>,</u> 150 | 0,270 |  |  |

ſ

Tableau 10 : Rapports atomiques entre respiration, excrétion azotée et excrétion phosphorée. Pourcentage de l'excrétion minérale dans l'excrétion totale de N ou P. Durées d'incubation en dixième d'heures et valeurs suspectes en grisé.

| Campagne : | FLUPAC |            |       |       |             |      | N°station : | 27    |                      |         |
|------------|--------|------------|-------|-------|-------------|------|-------------|-------|----------------------|---------|
| Taille     | Temp.  | Durée      |       | Rap   | ports atomi | ques |             |       | % Excrétion minérale |         |
| (µm)       | (°C)   | Incubation | O/NH4 | O/PO4 | O/NT        | O/PT | NH4/PO4     | NT/PT | %NH4/NT              | %PO4/PT |
| > 200 µm   | 29     | 20,1       | 7,71  | 697   | 3,14        | 36   | \$0,4       | 11,5  | 40,8                 | 5,2     |
| > 200 µm   | 29     | 20,1       | 8,77  | 536   | 4,23        | 61   | 61,1        | 14,4  | 48,2                 | 11,4    |
| > 200 µm   | 20,5   | 20,1       | 8,70  | 365   | 3,33        | 52   | 41,9        | 15,7  | 38,3                 | 14,3    |
| > 200 µm   | 20,5   | 20,0       | 6,51  | 321   | 1,78        | 29   | 49,4        | 16,4  | 27,4                 | 9,1     |
| 35-200 µm  | 29     | 20,0       | 8,49  | 329   | 5,00        | 50   | 38,7        | 10,0  | 58,9                 | 15,1    |
| 35-200 µm  | 29     | 20,0       | 45,08 | 304   | 3,83        | 39   | 6,7         | 10,2  | 8,5                  | 12,8    |
| 35-200 µm  | 20,5   | 20,0       | 11,29 | 339   | 4,67        | 64   | 30,1        | 13,6  | 41,3                 | 18,8    |
| 35-200 µm  | 20,5   | 20,0       | 14,95 | 391   | 6,10        | 78   | 26,1        | 12,8  | 40,8                 | 20,0    |

| Campagne :  | FLUPAC |            |       |       |             |      | N°station : | 33    |         |                      |  |
|-------------|--------|------------|-------|-------|-------------|------|-------------|-------|---------|----------------------|--|
| Taille      | Temp.  | Durée      |       | Rap   | ports atomi | ques | ues         |       |         | % Excrétion minérale |  |
| (µm)        | (°C)   | Incubation | O/NH4 | O/PO4 | O/NT        | O/PT | NH4/PO4     | NT/PT | %NH4/NT | %PO4/PT              |  |
| 200-500 µm  | 29,4   | 20,2       | 7,94  | 233   | 6,87        | 92   | 29,3        | 13,4  | 86,5    | 39,6                 |  |
| 200-500 µm  | 29,4   | 20,3       | 8,01  | 198   | 6,63        | 96   | 24,7        | 14,5  | 82,8    | 48,4                 |  |
| 500-2000 µm | 29,4   | 20,4       | 6,35  | 150   | 6,06        | 76   | 23,6        | 12,5  | 95,5    | 50,7                 |  |
| 500-2000 µm | 29,4   | 20,5       | 6,07  | 116   | 5,54        | 69   | 19,2        | 12,4  | 91,3    | 59,0                 |  |
| 35-200 µm   | 29,4   | 20,1       | 7,24  | 161   | 12,33       | 87   | 22,2        | 7,1   | 170,2   | 54,3                 |  |
| 35-200 µm   | 29,4   | 20,0       | 7,34  | 184   | 4,75        | 81   | 25,0        | 17,0  | 64,7    | 43,9                 |  |

| Campagne :  | FLUPAC |            |       |       |      |                      | N°station : | 45    |         |         |
|-------------|--------|------------|-------|-------|------|----------------------|-------------|-------|---------|---------|
| Taitle      | Temp.  | Durée      |       | Rap   |      | % Excrétion minérale |             |       |         |         |
| (µm)        | (°C)   | incubation | O/NH4 | O/PO4 | O/NT | O/PT                 | NH4/PO4     | NT/PT | %NH4/NT | %PO4/PT |
| 200-500 µm  | 30,5   | 19,8       | 8,09  | 231   | 6,32 | 102                  | 28,5        | 16,2  | 78,1    | 44,3    |
| 200-500 µm  | 30,5   | 19,9       | 8,02  | 211   | 2,43 | 100                  | 26,2        | 41,1  | 30,3    | 47,5    |
| 500-2000 µm | 30,5   | 20,0       | 5,58  | 220   | 6,54 | 96                   | 39,4        | 14,6  | 117,2   | 43,5    |
| 500-2000 µm | 30,5   | 20,1       | 5,84  | 232   | 4,04 | 87                   | 39,7        | 21,5  | 69,3    | 37,6    |
| 35-200 µm   | 30,5   | 19,8       | 7,92  | 197   | 5,37 | 77                   | 24,9        | 14,4  | 67,8    | 39,2    |
| 35-200 µm   | 30,5   | 19,9       | 7,43  | 174   | 5,01 | 83                   | 23,5        | 16,6  | 67,4    | 47,7    |

| Campagne :   | FLUPAC |            |       |       |             |      | N°station : | 51    |                      |         |
|--------------|--------|------------|-------|-------|-------------|------|-------------|-------|----------------------|---------|
| Taille       | Temp.  | Durée      |       | Rap   | ports atomi | ques |             |       | % Excrétion minérale |         |
| <u>(</u> µm) | (°C)   | incubation | O/NH4 | O/PO4 | O/NT        | O/PT | NH4/PO4     | NT/PT | %NH4/NT              | %PO4/PT |
| > 200 µm     | 20,5   | 20,0       | 8,24  | 125   | 4,83        | 62   | 15,2        | 12,8  | 58,6                 | 49,5    |
| > 200 µm     | 20,5   | 20,0       | 8,83  | 150   | 4,84        | 60   | 17,0        | 12,3  | 54,9                 | 39,8    |
| > 200 µm     | 30,5   | 20,0       | 9,80  | 180   | 5,10        | 90   | 18,4        | 17,7  | 52,0                 | 50,2    |
| > 200 µm     | 30,5   | 20,0       | 9,49  | 210   | 6,05        | 88   | 22,1        | 14,6  | 63,7                 | 42,1    |
| 35-200 µm    | 20,5   | 19,4       | 9,36  | 277   | 9,10        | 70   | 29,6        | 7,7   | 97,2                 | 25,5    |
| 35-200 µm    | 20,5   | 19,4       | 5,12  | 308   | 3,54        | 71   | 60,1        | 20,0  | 69,2                 | 23,0    |
| 35-200 µm    | 30,5   | 19,4       | 10,40 | 139   | 6,66        | 74   | 13,3        | 11,1  | 64,0                 | 53,5    |
| 35-200 µm    | 30,5   | 19,4       | 7,78  | 163   | 9,79        | 82   | 20,9        | 8,4   | 125,9                | 50,6    |

| Campagne :  | FLUPAC |            |       |                    |      |      | N°station : | 59    |         |                      |  |
|-------------|--------|------------|-------|--------------------|------|------|-------------|-------|---------|----------------------|--|
| Tallie      | Temp.  | Durée      |       | Rapports atomiques |      |      |             |       |         | % Excrétion minérale |  |
| (µm)        | (°C)   | incubation | O/NH4 | O/PO4              | O/NT | O/PT | NH4/PO4     | NT/PT | %NH4/NT | %PO4/PT              |  |
| 200-500 µm  | 21     | 20,1       | 8,09  | 188                | 3,81 | 69   | 23,2        | 18,1  | 47,2    | 36,8                 |  |
| 200-500 μm  | 21     | 20,2       | 9,06  | 179                | 3,80 | 74   | 19,7        | 19,3  | 42,0    | 41,2 .               |  |
| 500-2000 μm | 21     | 20,2       | 15,12 | 313                | 6,28 | 99   | 20,7        | 15,7  | 41,5    | 31,6                 |  |
| 500-2000 µm | 21     | 20,3       | 10,46 | 317                | 4,69 | 78   | 30,3        | 16,6  | 44,8    | 24,6                 |  |
| 35-200 μm   | 21     | 19,8       | 10,39 | 230                | 6,21 | 86   | 22,2        | 13,8  | 59,7    | 37,3                 |  |
| 35-200 µm   | 21     | 19,9       | 11,22 | 303                | 3,98 | 65   | 27,0        | 16,2  | 35,5    | 21,3                 |  |

| Tableau | 10 | (suite) |
|---------|----|---------|
|---------|----|---------|

| Campagne : | FLUPAC | ;          |       |       |             |      | N°station : | 86    |                      |         |
|------------|--------|------------|-------|-------|-------------|------|-------------|-------|----------------------|---------|
| Taille     | Temp.  | Durée      |       | Rap   | ports atomi | ques |             |       | % Excrétion minérale |         |
| (µm)       | (°C)   | incubation | O/NH4 | O/PO4 | O/NT        | O/PT | NH4/PO4     | NT/PT | %NH4/NT              | %PO4/PT |
| > 200 µm   | 28     | 20,1       | 7,97  | 159   | 4,76        | 71   | 19,9        | 14,8  | 59,7                 | 44,4    |
| > 200 µm   | 28     | 20,2       | 7,66  | 182   | 4,60        | 78   | 23,8        | 17,0  | 60,0                 | 43,0    |
| > 200 µm   | 19,5   | 20,3       | 9,82  | 138   | 4,17        | 52   | 14,0        | 12,4  | 42,4                 | 37,5    |
| > 200 µm   | 19,5   | 20,3       | 4,50  | 112   | 2,82        | 43   | 24,9        | 15,2  | 62,8                 | 38,2    |
| 35-200 µm  | 28     | 19,8       | 3,98  | 125   | 3,94        | 52   | 31,4        | 13,2  | 98,9                 | 41,6    |
| 35-200 µm  | 28     | 19,8       | 5,84  | 355   | 15,01       | 191  | 60,8        | 12,7  | 256,9                | 53,8    |
| 35-200 μm  | 19,5   | 19,9       | 2,16  | 199   | 3,28        | 55   | 92,0        | 16,7  | 151,7                | 27,5    |
| 35-200 µm  | 19,5   | 20,0       | 3,68  | 91    | 2,84        | 26   | 24,7        | 9,3   | 77,3                 | 28,9    |

| Campagne :         | FLUPAC |            |       |       |             |      | N°station : | 92    |                      |         |  |
|--------------------|--------|------------|-------|-------|-------------|------|-------------|-------|----------------------|---------|--|
| Taille             | Temp.  | Durée      |       | Rap   | ports atomi | ques |             |       | % Excrétion minérale |         |  |
| (µm)               | (°C)   | incubation | O/NH4 | O/PO4 | O/NT        | O/PT | NH4/PO4     | NT/PT | %NH4/NT              | %PO4/PT |  |
| 200-500 µm         | 21,5   | 20,1       | 6,33  | 140   | 3,24        | 63   | 22,1        | 19,5  | 51,1                 | 45,0    |  |
| 200-500 µm         | 21,5   | 20,1       | 8,03  | 137   | 3,44        | 68   | 17,1        | 19,7  | 42,9                 | 49,5    |  |
| 500-2000 µm        | 21,5   | 20,3       | 6,59  | 134   | 3,45        | 69   | 20,4        | 19,9  | 52,2                 | 51,1    |  |
| <b>500-2000 μm</b> | 21,5   | 20,3       | 8,65  | 144   | 3,73        | 78   | 16,7        | 20,8  | 43,2                 | 53,9    |  |
| 35-200 µm          | 21,5   | 19,8       | 11,07 | 257   | 4,36        | 80   | 23,2        | 18,3  | 39,4                 | 31,0    |  |
| 35-200 µm          | 21,5   | 19,9       | 6,97  | 174   | 4,10        | 69   | 25,0        | 16,7  | 58,8                 | 39,4    |  |

| Campagne :  | FLUPAC |            |       |       |             |      | N°station : | 98    |             |          |
|-------------|--------|------------|-------|-------|-------------|------|-------------|-------|-------------|----------|
| Taille      | Temp.  | Durée      |       | Rap   | ports atomi | ques |             |       | % Excrétion | minérale |
| (µm)        | (°C)   | incubation | O/NH4 | 0/PO4 | O/NT        | O/PT | NH4/PO4     | NT/PT | %NH4/NT     | %PO4/PT  |
| 200-500 μm  | 28,5   | 19,9       | 8,18  | 243   | 5,73        | 89   | 29,6        | 15,6  | 70,0        | 36,8     |
| 200-500 μm  | 28,5   | 19,9       | 9,27  | 274   | 6,66        | 95   | 29,6        | 14,3  | 71,8        | 34,6     |
| 500-2000 μm | 28,5   | 20,1       | 6,26  | 222   | 4,62        | 76   | 35,4        | 16,5  | 73,8        | 34,4     |
| 500-2000 μm | 28,5   | 20,1       | 7,50  | 231   | 4,47        | 79   | 30,8        | 17,7  | 59,6        | 34,2     |
| 35-200 µm   | 28,5   | 19,5       | 9,19  | 163   | 4,56        | 69   | 17,7        | 15,2  | 49,6        | 42,6     |
| 35-200 µm   | 28,5   | 19,5       | 8,88  | 144   | 4,89        | 70   | 16,2        | 14,4  | 55,0        | 48,8     |

| Campagne : | FLUPAC |            |       |       |             |      | N°station : | 104   |                      |         |  |
|------------|--------|------------|-------|-------|-------------|------|-------------|-------|----------------------|---------|--|
| Taille     | Temp.  | Durée      |       | Rap   | ports atomi | ques |             |       | % Excrétion minérale |         |  |
| (µm)       | (°C)   | Incubation | O/NH4 | O/PO4 | O/NT        | Ο/ΡΤ | NH4/PO4     | NT/PT | %NH4/NT              | %PO4/PT |  |
| > 200 µm   | 22,5   | 20,1       | 9,23  | 189   | 4,70        | 82   | 20,4        | 17,5  | 51,0                 | 43,7    |  |
| > 200 µm   | 22,5   | 20,1       | 10,80 | 172   | 4,99        | 78   | 15,9        | 15,7  | 46,2                 | 45,7    |  |
| > 200 µm   | 28,2   | 20,2       | 9,07  | 244   | 4,78        | 94   | 26,9        | 19,7  | 52,7                 | 38,5    |  |
| > 200 µm   | 28,2   | 20,2       | 10,22 | 268   | 5,88        | 98   | 26,2        | 16,7  | 57,5                 | 36,6    |  |
| 35-200 µm  | 22,5   | 19,7       | 9,25  | 145   | 5,64        | 72   | 15,7        | 12,7  | 61,0                 | 49,3    |  |
| 35-200 μm  | 22,5   | 19,7       | 11,49 | 161   | 5,90        | 72   | 14,0        | 12,2  | 51,3                 | 44,6    |  |
| 35-200 μm  | 28,2   | 19,8       | 10,33 | 139   | 6,09        | 71   | 13,4        | 11,7  | 58,9                 | 51,2    |  |
| 35-200 µm  | 28,2   | 19,8       | 9,88  | 170   | 5,39        | 81   | 17,2        | 15,1  | 54,6                 | 47,7    |  |

| Campagne :  | FLUPAC |            |               |                    |      |      | N°station : | 110              |         |                      |  |  |
|-------------|--------|------------|---------------|--------------------|------|------|-------------|------------------|---------|----------------------|--|--|
| Tallle      | Temp.  | Durée      |               | Rapports atomiques |      |      |             |                  |         | % Excrétion minérale |  |  |
| (µm)        | (°C)   | incubation | O/NH4         | O/PO4              | O/NT | Ο/ΡΤ | NH4/PO4     | NT/PT            | %NH4/NT | %PO4/PT              |  |  |
| 200-500 μm  | 21     | 20,1       | 7,26          | 101                | 3,22 | 52   | 14,0        | 16,0             | 44,4    | 50,8                 |  |  |
| 200-500 µm  | 21     | 20,2       | 5,60          | 69                 | 2,64 | 39   | 12,2        | 14,9             | 47,0    | 57,4                 |  |  |
| 200-500 μm  | 21     | 20,3       | 8,32          | 198                | 4,05 | 66   | 23,8        | 16,4             | 48,7    | 33,5                 |  |  |
| 500-2000 µm | 21     | 20,6       | 4,68          | 81                 | 2,04 | 33   | 17,4        | 16,3             | 43,6    | 40,9                 |  |  |
| 500-2000 µm | 21     | 20,7       | 9,12          | 123                | 3,14 | 60   | 13,5        | 19,0             | 34,4    | 48,3                 |  |  |
| 500-2000 µm | 21     | 20,8       | 7 <u>,</u> 91 | 158                | 3,82 | 71   | 19,9        | 18, <del>6</del> | 48,3    | 45,1                 |  |  |

| Tableau 10 | (suite) |
|------------|---------|
|------------|---------|

| Campagne :  | FLUPAC |            |       |       |                      | -    | N°station : | 116   |         |         |
|-------------|--------|------------|-------|-------|----------------------|------|-------------|-------|---------|---------|
| Taille      | Temp.  | Durée      |       | Rap   | % Excrétion minérale |      |             |       |         |         |
| · (µm)      | (°C)   | incubation | O/NH4 | O/PO4 | O/NT                 | O/PT | NH4/PO4     | NT/PT | %NH4/NT | %PO4/PT |
| 200-500 µm  | 28,5   | 20,0       | 8,90  | 199   | 7,11                 | 101  | 22,3        | 14,2  | 79,9    | 50,9    |
| 200-500 μm  | 28,5   | 20,1       | 9,86  | 180   | 7,48                 | 101  | 18,2        | 13,5  | 75,8    | 56,1    |
| 200-500 µm  | 28,5   | 20,1       | 9,32  | 161   | 7,84                 | 97   | 17,3        | 12,4  | 84,1    | 60,3    |
| 500-2000 µm | 28,5   | 20,2       | 9,31  | 183   | 4,91                 | 101  | 19,6        | 20,6  | 52,8    | 55,5    |
| 500-2000 µm | 28,5   | 20,5       | 9,30  | 165   | 4,88                 | 98   | 17,8        | 20,1  | 52,5    | 59,2    |
| 500-2000 µm | 28,5   | 20,6       | 9,63  | 177   | 5,44                 | 98   | 18,3        | 18,0  | 56,5    | 55,4    |

-



Fig.1: Poids sec sans cendre du mésozooplancton sur la radiale 165°E

Fig.2: Poids sec sans cendre du mésozooplancton sur la radiale équatoriale





Fig.3: Importance (en pourcentage) de la fraction 500-2000µm sur la radiale équatoriale





Fig.7: Distribution verticale moyenne du mésozooplancton capturé avec le filet à nappes (première station en dérive)



Fig.8: Variations temporelles de la biomasse (mg PSSC/m<sup>2</sup>) du microzooplancton lors de la seconde station en dérive





Fig.10: Biomasse (mg PS/m<sup>2</sup>) du mésozooplancton (filet à nappes) à la seconde station en dérive



Fig.11: Distribution verticale moyenne du mésozooplancton capturé avec le filet à nappes (seconde station en dérive)



Chapitre 21

## CAROTTAGES PROFONDS

5

**Catherine ORGANO** 

Centre des Faibles Radioactivités Domaine du CNRS 91198 Gif-sur-Yvette, France (Fax : (33) 69 82 35 68 - Email : organo@eole.cfr.cnrs-gif.fr)

Au moment de l'impression de ce recueil, les éditeurs n'ont toujours pas reçu le texte et les données de ce chapitre

Centre ORSTOM de Nouméa B.P. A5 Nouméa Cédex, 98845, Nouvelle Calédonie © ORSTOM 1995