
DÉPARTEMENT DE LA MARTINIQUE

DIRECTION DÉPARTEMENTALE DE L'AGRICULTURE

ÉTUDE HYDROLOGIQUE DE QUATRE BASSINS VERSANTS REPRÉSENTATIFS DU SUD ET DU CENTRE DE LA MARTINIQUE

(Rapport terminal)

P. CHAPERON J.P. MOBECHE

OFFICE DE LA RECHERCHE SCIENTIFIQUE ET TECHNIQUE OUTRE-MER

MISSION HYDROLOGIQUE DE L'ORSTOM AUX ANTILLES

BUREAU CENTRAL HYDROLOGIQUE - BONDY

OFFICE DE LA RECHERCHE SCIENTIFIQUE ET TECHNIQUE OUTRE-MER

Service Hydrologie

ETUDE HYDROLOGIQUE

DE

QUATRE BASSINS VERSANTS REPRESENTATIFS

DU

SUD ET DU CENTRE DE LA MARTINIQUE

- Rapport Terminal-

par

P. CHAPERON et J.P. MOBECHE

-=-=-=-=-

Mission Hydrologique de l'ORSTOM aux ANTILLES

FORT-DE-FRANCE, Février 1980

SOMMAIRE

. .

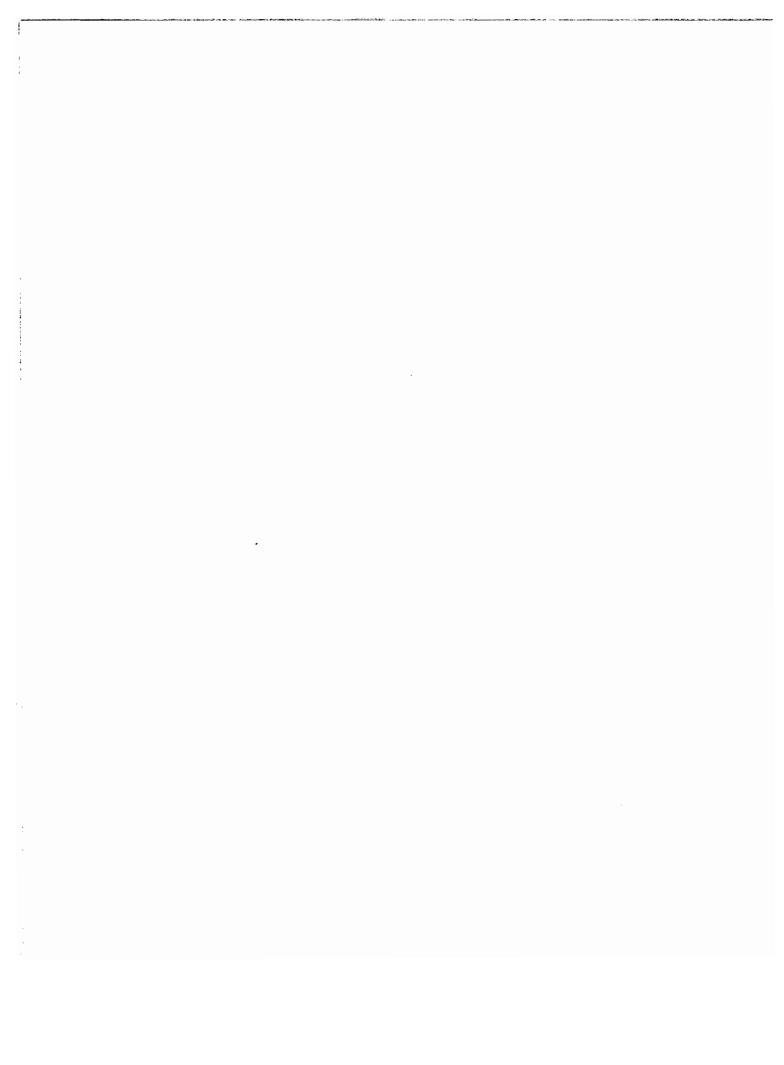
		:	paç	ges
INTRODUCTION		•••	••	.1
Ière <u>PARTIE</u> -	CARACTERISTIQUES PHYSIQUES ET CLIMATIQUES DES BASSINS		• • •	. 3
	I.1. Caractéristiques physiques			-
	1.1. Situation	• • •	• • •	3 4 .8
	I.2. Caractéristiques climatiques			
	2.1. Précipitations		• • •	23 27
II ème <u>PARTIE</u>	- EQUIPEMENT, OBSERVATIONS ET MESURES			31
	II.1. Equipement	• • •	• •	33 37
III ème <u>PARTI</u>	E - ANALYSE DES DONNEES			51
	III.1. Etude des crues			113
IV ème <u>PARTIE</u>	- ETUDE COMPAREE DES BASSINS	• • •		145
	<pre>IV.1. Caractéristiques physiques et climatiques IV.2. Crues</pre>	• • •	• •	146 151
	ANNEXES			
	I - Note sur le bassin de la DIGUE		••	157 161

INTRODUCTION

Par convention, signée le 29 mai 1975, la Direction Départementale de l'Agriculture de la MARTINIQUE a confié au Service Hydrologique de l'ORSTOM (Mission Hydrologique aux ANTILLES), l'étude de quatre bassins représentatifs situés dans le centre et le sud de l'île, afin d'analyser l'écoulement sur ces bassins et de dégager des normes applicables au remplissage des retenues collinaires qui pourraient être réalisées dans le cadre du programme général d'irrigation du Département.

Primitivement fixée à deux années (1975-1976), la durée de l'étude a été prolongée d'un an (en avenant à la convention) - nous avons pu exploiter également les résultats des observations de 1978 sur les bassins, intégrés, à l'issue de l'étude, dans le réseau permanent hydro-pluviométrique de l'île géré par l'ORSTOM.

Les quatre bassins initialement retenus étaient ceux de :


- la rivière CAROLE (presqu'île du DIAMANT)
- la rivière VAL D'OR (bassin de la rivière des COULISSES)
- la rivière du Quartier VOLTAIRE (région de VERT PRE) la rivière de la DIGUE (région de VERT PRE).

En accord avec la D.D.A., ce dernier bassin a été abandonné en début 1976 en raison des projets d'équipement d'une retenue sur la rivière LA DIGUE. Ce bassin présentait d'ailleurs certains inconvénients qui nuisaient à la qualité des observations. (Difficulté de mise en place d'une station de contrôle stable sans travaux importants en raison de la fragilité des berges et surtout recyclage artificiel sur le bassin des prélèvements opérés en aval pour l'irrigation de la bananeraie).

Il a été remplacé, en commun accord, par le bassin du Quartier LA DUCHENE, situé dans les collines du MORNE PITAULT.

Quatre rapports d'activités ont été remis au cours des deux premières campagnes.

Le présent rapport expose le bilan de l'étude.

CHAPITRE I

CARACTERISTIQUES PHYSIQUES ET CLIMATIQUES DES BASSINS

I.1. CARACTERISTIQUES PHYSIQUES

1.1. Situation : (graphique n°1) :

La rivière CAROLE au Quartier LA JOUBARDIERE

La rivière CAROLE est un petit cours d'eau côtier de la presqu'île du DIAMANT. De direction ouest-est dans sa partie supérieure, la rivière se dirige ensuite vers le sud pour rejoindre la mer des Caraībes dans l'anse du CERON, entre les pointes GRAND POINTE et PIMANTEE.

La station de contrôle du bassin versant, d'une superficie d'environ 1,5 km2, a pour coordonnées :

61°00'21" W 14°30'23" N

La rivière VAL D'OR à l'habitation BOULEVARD

La rivière VAL D'OR appartient au bassin de la rivière des COULISSES (ou rivière SALEE), située au sud de la plaine du LAMENTIN. La rivière SALEE, de direction générale est-ouest se jette dans la baie de GENIPA (baie de FORT-DE-FRANCE) au nord de la presqu'île du DIAMANT.

La rivière VAL D'OR est un petit affluent de rive gauche qui rejoint la rivière SALEE par un système de drains plus ou moins canalisés désservant les zônes de culture de canne à sucre de l'usine de rivière SALEE (PETIT BOURG).

La station de contrôle du bassin versant, d'une superficie d'environ 1,4 km2 a pour coordonnées :

60°57'50" W 14°31'58" N

La ravine du Quartier VOLTAIRE à la cote 25

La rivière, située dans la zone centre-atlantique à environ 1,5 km au sud-est de la commune de VERT PRE, est un petit cours d'eau côtier de direction générale nord-ouest - sud-est qui se jette dans le hâvre du ROBERT, au sud de cette commune.

La station de contrôle du bassin versant, d'une superficie voisine de 0,8 km2, a pour coordonnées :

60°57'27" W 14°40'41" N.

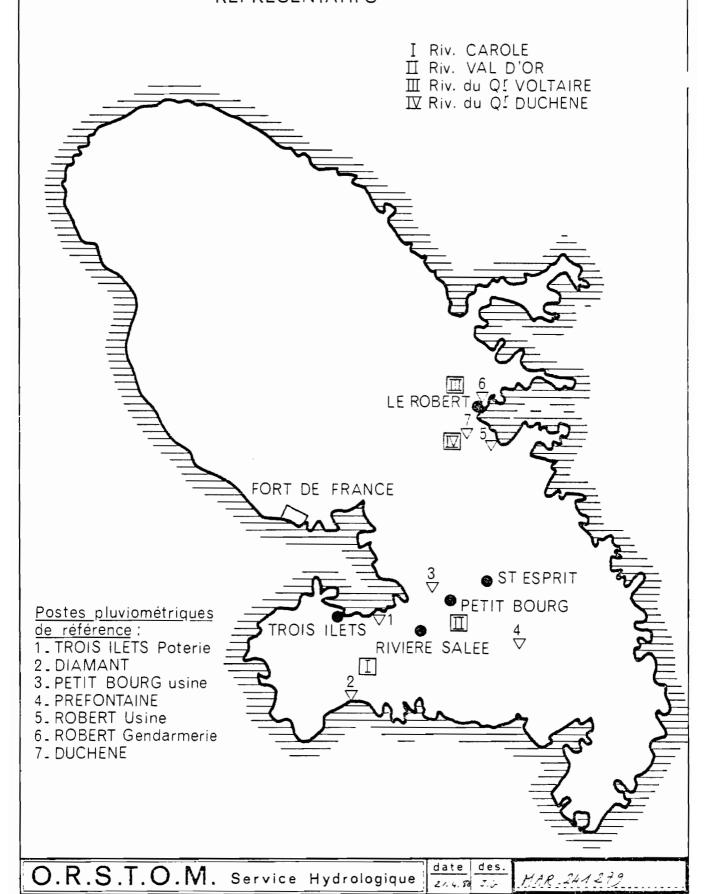
La rivière du Quartier LA DUCHENE à la cote 45

La rivière du Quartier LA DUCHENE, issue du massif du MORNE PITAULT, rejoint en rive gauche la PETITE RIVIERE, affluent rive gauche de la LEZARDE qu'elle rejoint à environ 1 km en amont de l'Habitation RESSOURCES.

La station de contrôle du bassin versant, d'une superficie d'environ 1,5 km2, a pour coordonnées :

60°57'56" W 14°38'39" N

1.2. Caractéristiques topographiques :


Le tableau, ci-dessous, présente pour les quatre bassins, les paramètres géométriques et de relief ainsi définis :

A P K _C	Superficie du bassin versant, en km2 Périmètre lissé du bassin, en km Indice de compacité (K _C = 0,28 P/ V A)
L x 1 HMAX HMIN ^H 50	Dimensions du rectangle équivalent, en km Altitude maximale du bassin, en m Altitude minimale (cote de la station de contrôle) Altitude moyenne du bassin
H ₅ , H ₉₅	Altitudes circonscrivant 90% de l'aire du bassin
D	Dénivelée D = H ₅ - H ₉₅ , en m
$^{\mathrm{I}}G$	Indice global de pente : $I_G = D/L$ en m/km
DS	Dénivelée spécifique : $D_s = I_G \sqrt{A}$ (en m)
Ip	Indice de pente (ROCHE)
R	Classe de relief de 1 à 5 (classification ORSTOM).

	CAROLE	VAL D'OR	VOLTAIRE	DUCHENE
A P K _C	1,463 5,50 1,293	1,433 5,43 1,280	0,835 3,95 1,219	1,514 5,41 1,240
L x 1 HMAX HMIN H50	2,03 x 0,72 377 75 203	2,00 x 0,717 183 4,5 44	1,36 x 0,61 218 25 111	1,91 x 0,79 334 46 170
н ₅ , н ₉₅	320,104	136,6	188,46	280,77
D I _G	216 110,8	130 65,1	142 104 , 3	203 106,1
D _S	134	78	95	130,5
I _P	0,3765	0,274	0,365	0,372
R	5	4	4 - 5	5

MARTINIQUE

SITUATION DES BASSINS REPRESENTATIFS

Les paramètres morphométriques se rapportent au "chevelu" hydrographique.

Après avoir classé (selon la méthode de SCHUMM) les différents thalwegs, on dénombre (N_i) les thalwegs de même ordre (i), on somme leur longueur dont la moyenne est \mathbf{I}_i .

La densité de drainage $\mathbf{D}_{\mathbf{d}}$ est égale à la longueur cumulée des thalwegs rapportée à la surface du bassin :

$$D_d = N_i \bar{1}_i/A \text{ en km}^{-1}$$

Le rapport de confluence est le quotient du nombre de thalwegs d'ordre i par celui des thalwegs d'ordre i + 1 :

$$R_c = N_i/N_i + 1$$

Le rapport de confluence moyen est extrait de l'alignement sur un graphique logarithmique des points $(N_i^{},\,i)$.

Rivière CAROLE

	Ni	1 (km)	1 _i (m)
1 2 3	27 6 1	5,575 1,765 2,12	206 194 2 120
1 2 3	27 6 1	1,765	2

$$D_{d} = 6,06 \text{ km}^{-1} R_{c} = 5,50$$

Le rapport de longueur est le quotient de la longueur moyenne des thalwegs d'ordre i par celle des thalwegs d'ordre i - 1

$$R_1 = \overline{1}_i / \overline{1}_{i-1}$$

Pour la rivière CAROLE dont le dispositif en arête accorde une prédominance importante au thalweg principal, le rapport moyen R_1 estimé à 4,65 est peu significatif.

Rivière VAL D'OR

Ordre des thalwegs	N.	1 (km)	ī. (m)				
or are des charmegs	,''j	((((((((((((((((((((j (''')				
1 2 3 4	54 14 3 1	6,86 4,46 3,14 0,59	127 319 1047 590				
$D_d = 10.5 \text{ km}^{-1} R_c = 3.73$ R ₁ = 2.78							

Le dispositif hydrographique du bassin comporte deux branches principales qui se rejoignent à peu de distance du point de contrôle. Le rapport de longueur est donc peu significatif.

Rivière VOLTAIRE

Ordre des thalwegs	N _i	1 (km)	ī _i (m)			
1 2 3 4	50 13 2 1	5,58 2,42 1,07 0,56	112 186 535 560			
$D_d = 11.5 \text{ km}^{-1}$ $R_c = 3.26$ $R_1 = 1.78$						

Rivière DUCHENE

Ordre des thalwegs	Ni	1 (km)	ī _i (m)				
1 2 3 4 5	136 31 6 2 1	14,72 4,33 1,98 0,90 0,91	108 140 330 48 910				
$D_d = 15,1 \text{ km}^{-1}$ $R_c = 3,10$ $R_1 = 1,71$							

Les quatre bassins présentent des indices de compacité assez voisins (inférieurs à 1,3) bien que les bassins de CAROLE et VAL D'OR soient assez sensiblement plus allongés que les deux autres. Cependant les autres caractéristiques physiques (relief, densité de drainage, organisation du réseau hydrographique) conférent à chacun des bassins une originalité qui se traduira dans la forme des crues.

Le bassin de la <u>rivière CAROLE</u> affecte la forme d'une gouttière à fortes pentes latérales. Le drain principal s'allonge dans l'axe du bassin (2 km) et est alimenté par des thalwegs perpendiculaires sur toute sa longueur (réseau en arête). En dépit de sa pente assez accentuée (i = 31,7 m/km sur les 500 derniers mètres), la longueur du drain principal tend à allonger le temps de concentration de montée et de base des crues. La densité de drainage apparente est assez faible mais ne prend pas en compte le ruissellement en nappe sur les pentes du thalweg principal. La nature du lit apparent encombré d'amas de rochers et d'arbustes déracinés,

ce qui crée un nombre important de mouilles et barrages naturels plus ou moins perméables, tend à allonger pour les crues faibles ou moyennes les temps de montée et de base. La décrue est retardée par la succession des vidanges des différentes mouilles.

Cependant pour les plus fortes crues qui surviennent en général à la fin de la saison des pluies lorsque le lit est débarrassé d'une partie des débris végétaux, l'ennoyage pour les plus fortes eaux des obstacles du lit apparent tend à raccourcir le temps de montée et modifie la forme de l'hydrogramme qui devient plus aigü.

Le bassin de la rivière VAL D'OR d'allongement comparable à celui de la rivière CAROLE, s'en distingue par une densité de drainage plus importante mais un relief général beaucoup moins accentué. La pente du lit principal sur les 500 derniers mètres est de 6,4 m/km. Le réseau hydrographique comporte deux branches principales (ravine VAL D'OR et ravine CHIEN) qui se rejoignent à proximité immédiate du point de contrôle. En raison de la modération relative du relief et du décalage des deux crues sur les formateurs du cours d'eau principal, les formes des crues observées à la station de contrôle seront plus massives que pour la CAROLE, avec un temps de montée assez long pour un bassin de cette taille et un débit de pointe écrasé.

Les bassins de la <u>rivière DUCHENE</u> et de la <u>rivière VOLTAIRE</u> présentent des caractéristiques très voisines de compacité (1,24 et 1,22) et de disposition du réseau hydrographique : thalweg principal unique alimenté par un dispositif rayonnant d'affluents secondaires.

Cependant ces deux bassins se distinguent d'une part par la densité de drainage (15,1 contre 11,5), ce qui favorisera pour DUCHENE la récupération des faibles précipitations et des ressources en eau stockées dans les premières couches du sol, d'autre part par le relief, plus accentué sur DUCHENE que sur VOLTAIRE ($D_S = 130,5$ contre 95 - pente i sur les 500 derniers mètres égale à 43,3 m/km contre 24 m/km) ce qui devrait, réserve faite de la nature des sols, favoriser le ruissellement sur DUCHENE.

Les graphiques n° 2 à 13 présentent la carte topographique, le profil en long et l'hypsométrie des quatre bassins étudiés.

1.3. Substratum, sols et végétation :

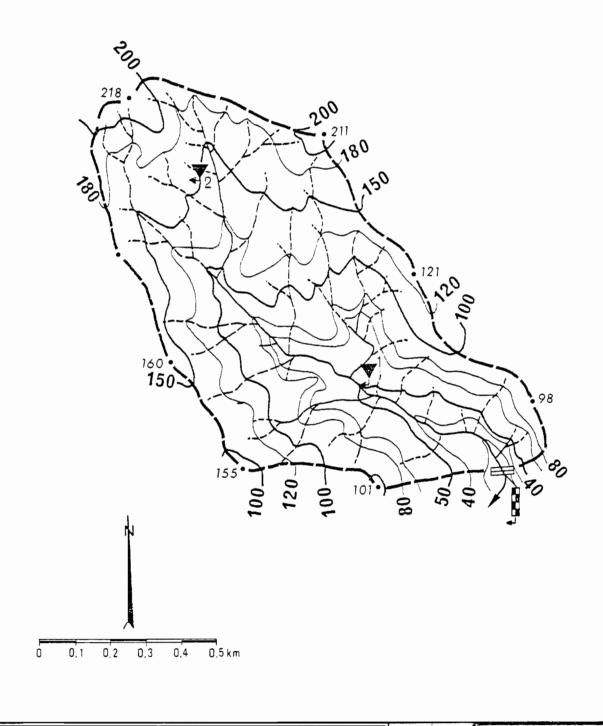
Bassin de la rivière CAROLE

Le bassin est entièrement situé sur des coulées d'andési-la bradorites à gros feldspaths assez semblables à celles du MORNE JACOB.

A l'exception des zones les plus basses où se sont formés des vertisols peu profonds, les pentes présentent des sols squelettiques peu épais.

Ces sols sont constitués d'argiles fissurées gonflantes qui, déssechées en début de saison des pluies, peuvent absorber

Gr_ 2 CARTE TOPOGRAPHIQUE ET D'EQUIPEMENT Rivière CAROLE au Quartier la JOUBARDIERE 120-150-200 250 150 266 280 -200 345 Morne des Pères •234 250 275 280 320 Mare 0,3 0,4 0 km 500 Constant O.R.S.T.O.M. Service Hydrologique MAR. 241280

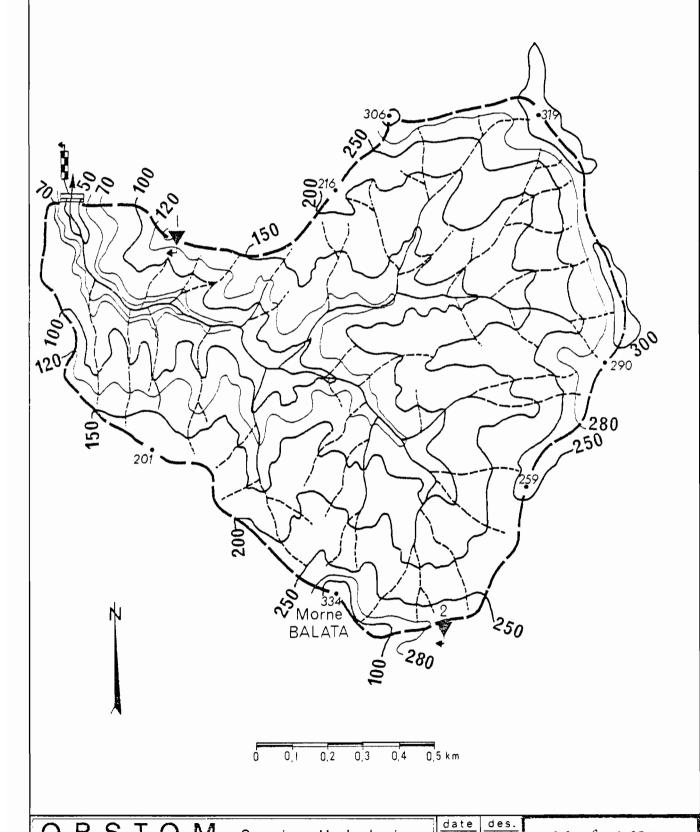

O.R.S.T.O.M. Service Hydrologique date des. J.C. MER-241281

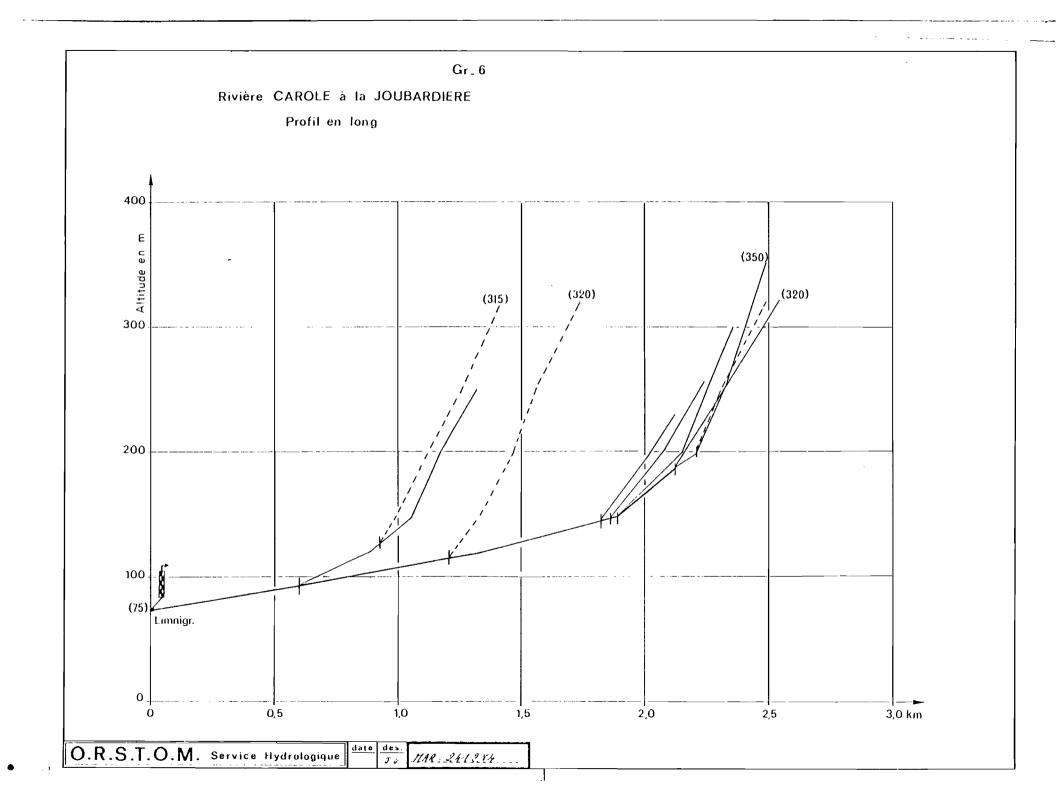
0,2 0,3 0,4 0,5 km

0,1

CARTE TOPOGRAPHIQUE ET D'EQUIPEMENT

Rivière du QUARTIER VOLTAIRE

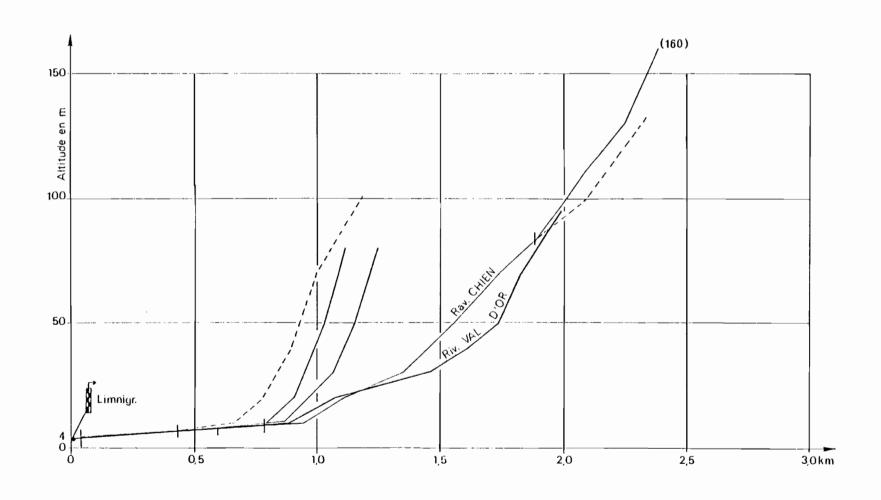

O.R.S.T.O.M. Service Hydrologique

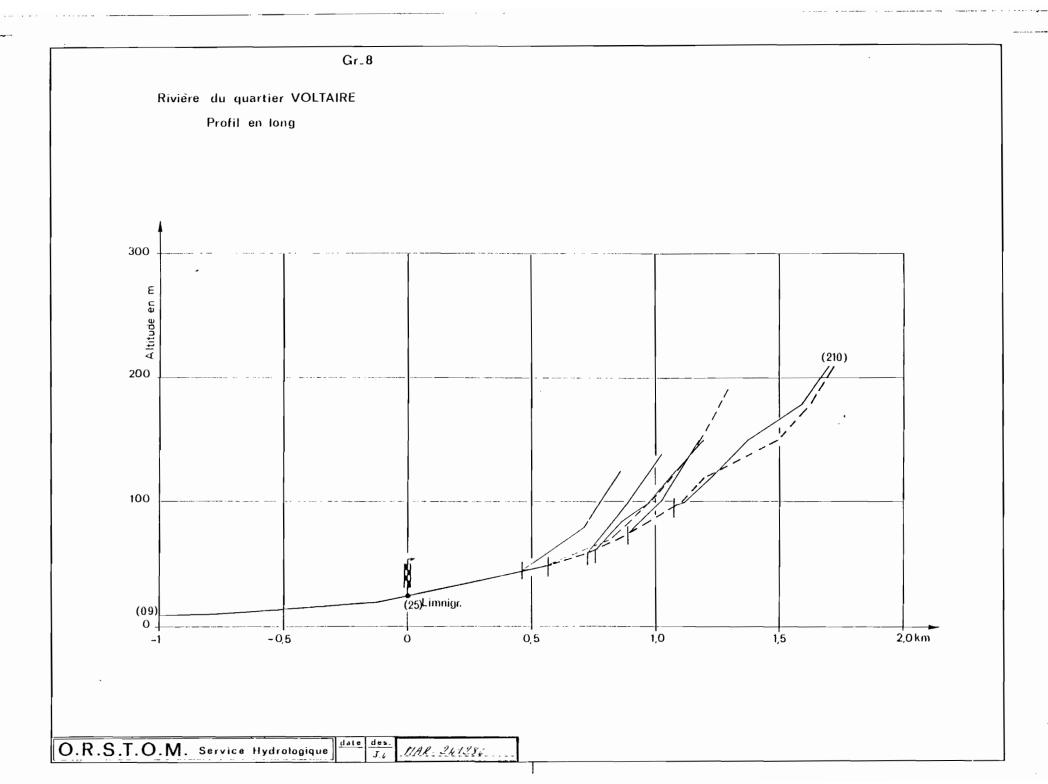

date _des.

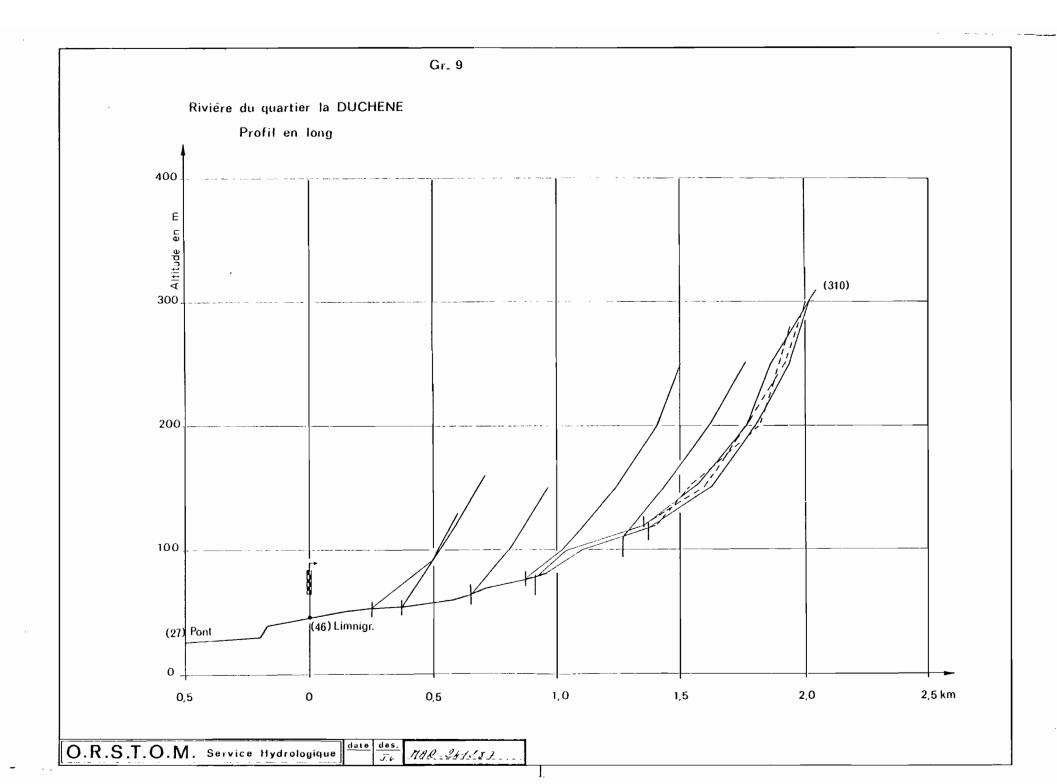
MAR - 241282

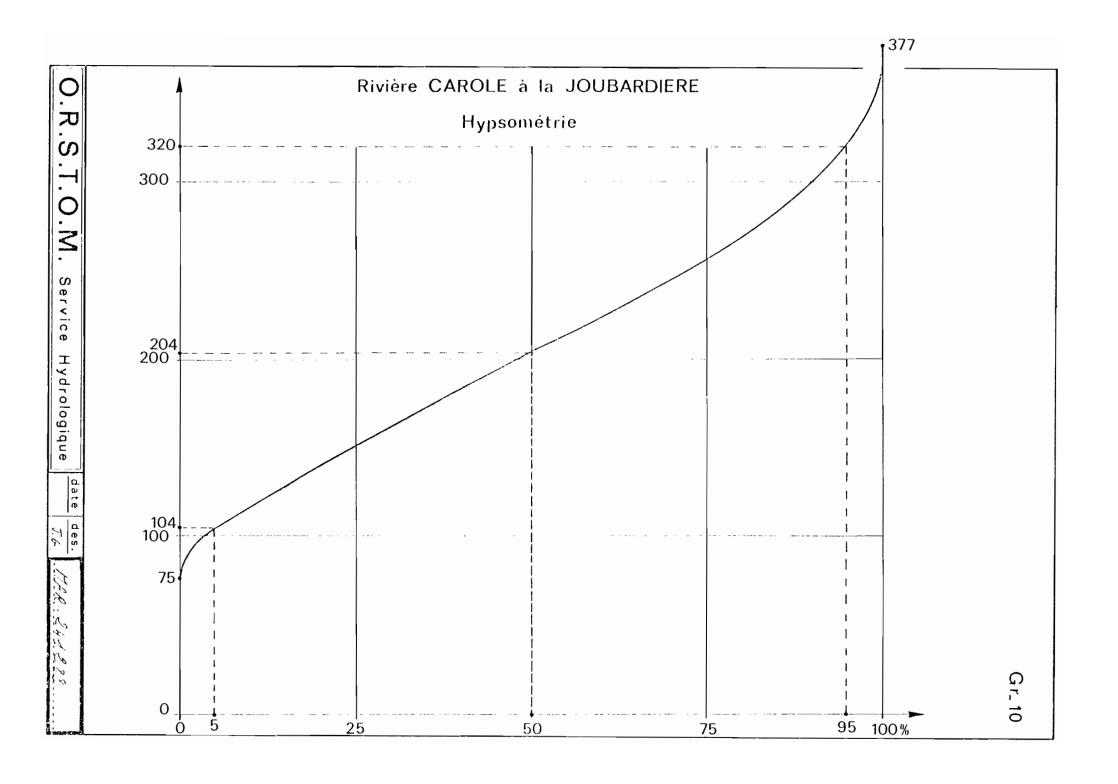
CARTE TOPOGRAPHIQUE ET D'EQUIPEMENT

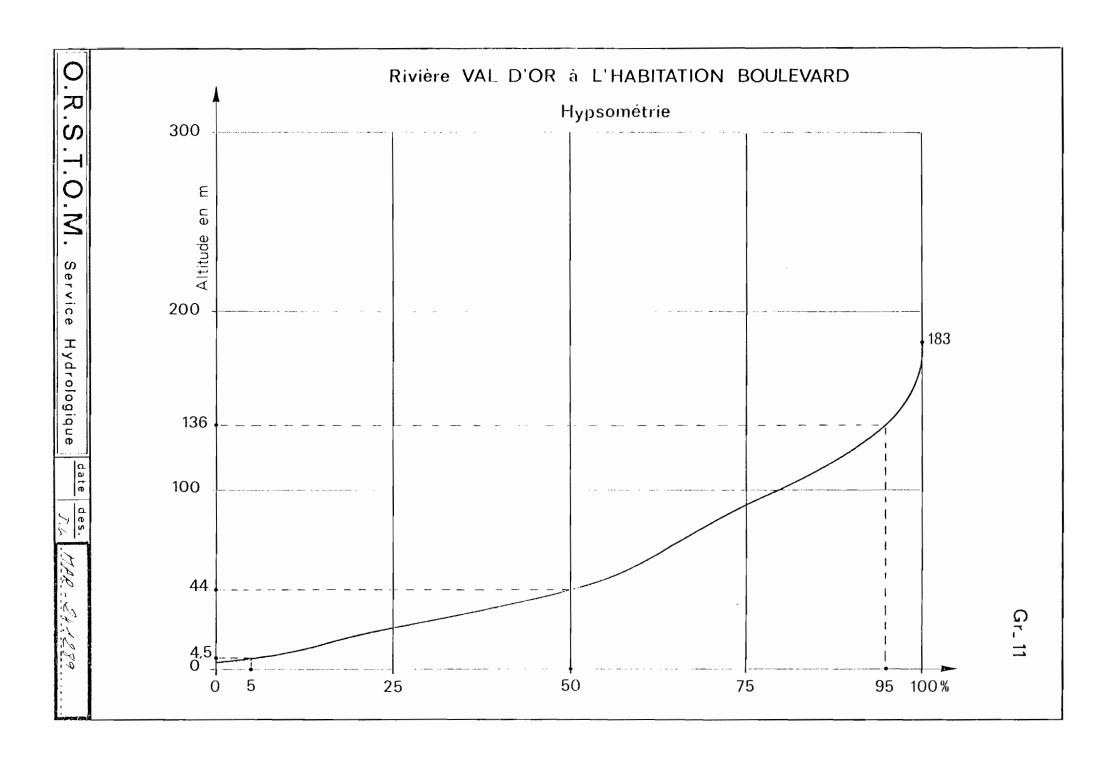
Rivière du QUARTIER LA DUCHENE

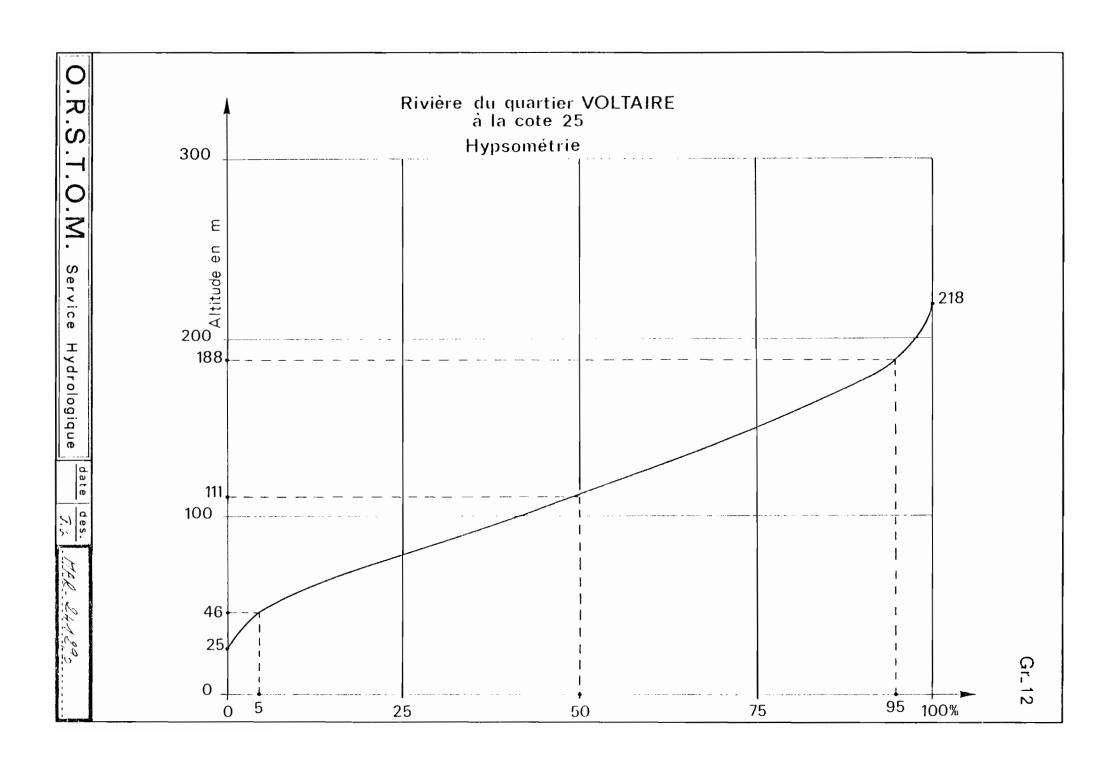


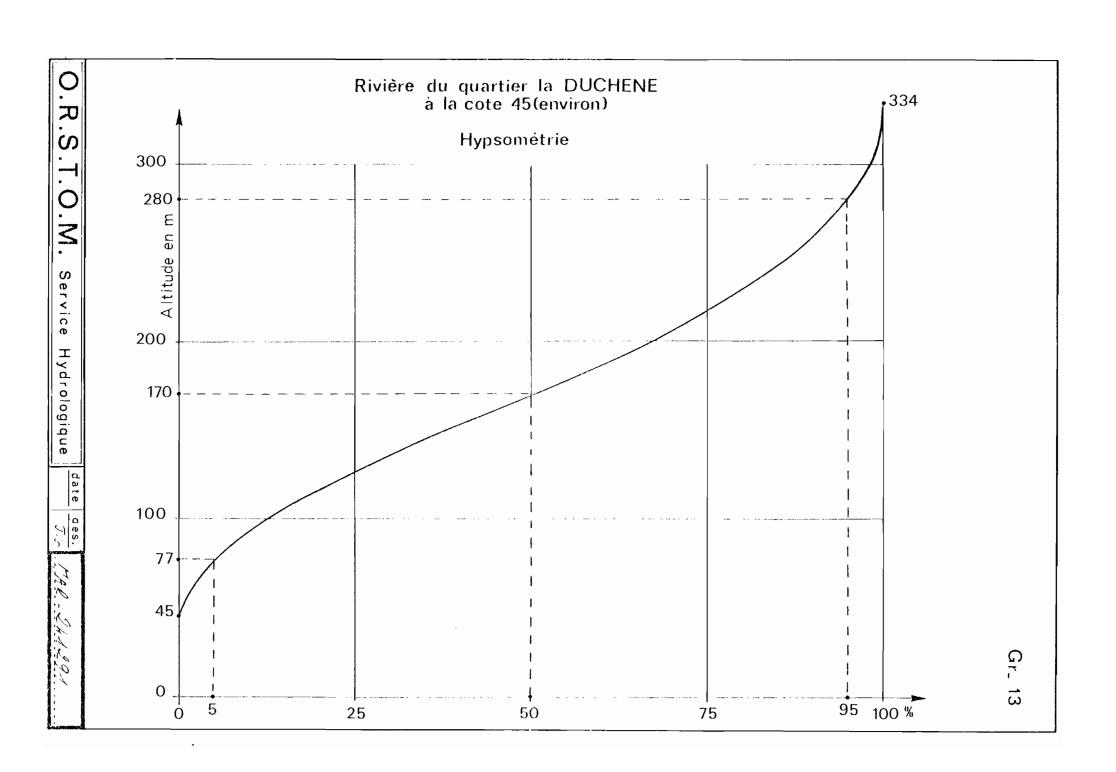



MAR 241285


Rivière VAL D'OR à L'HABITATION BOULEVARD
Profil en long


O.R.S.T.O.M. Service Hydrologique





30 à 40% de leur poids en eau. Une fois saturées ces argiles confèrent au terrain une très grande imperméabilité. Mais, une fois le ruissellement terminé, ces argiles ne permettent aucune circulation de l'eau contenue qu'elles ne cèdent que par dessiccation. On en peut s'attendre à un débit soutenu de basses eaux.

La couverture végétale est constituée de petite forêt sèche (arbres et arbustes xérophiles) sur les pentes et, au-dessous de 250 mètres, de savanes ou prairies sèches avec quelques grands arbres dans les bas-fonds.

Bassin de VAL D'OR

Le bassin est situé presqu'entièrement sur des tufs altérés très argileux, et les alluvions torrentielles et marécageuses issues de cette série.

Les sols sont représentés, à l'Est du bassin sur les collines au modelé bien marqué, par des ferrisols, au centre par des formations fersiallitiques et par des vertisols près de l'exutoire.

Ces sols sont profonds et très argileux. La teneur en argile croît en profondeur et l'on note la présence d'un horizon pratiquement imperméable surmontée d'une frange de sols plus meubles, épaisse de 30 à 40 cm. Ces sols superficiels peuvent présenter une certaine perméabilité jusqu'à leur saturation. Les eaux ainsi stockées peuvent être mobilisées et soutenir entre les crues un débit de quelques dizaines de litres-seconde. Les vertisols dans les bas-fonds près de l'exutoire sont eux pratiquement imperméables et permettent un ruissellement partiel des faibles précipitations.

Le bassin a été presqu'entièrement défriché pour la culture, à l'Est de bananeraie, à l'ouest de canne à sucre. Ces cultures sont en très nette régression. La banane a presqu'entièrement disparue et, ne subsistent, dans les zones les plus boisées de l'aval, que des parcelles de cannes à sucre, à la limite des zones de cultures de l'usine de PETIT-BOURG.

La couverture actuelle du bassin est la suivante :

-	savanes	ou	prairies	paturées	humides	75 %	
---	---------	----	----------	----------	---------	------	--

- forêt humide résiduelle (en bosquets) 15 %

- canne à sucre, friches et jardins caraïbes 10 %.

On note la présence, dans les thalwegs, d'une galerie forestière à grands arbres.

Bassin de VOLTAIRE

Le bassin est situé sur des formations de tufs éocènes altérés en argile associés à des formations conglomératiques ("complexe de base") et, sur les hauteurs, à des tufs légers lités. On note la présence de ferrisols dans les parties les plus élevées au modelé vigoureux (fortes pentes supérieures à 20 %) et de sols fersiallitiques dans les zones basses.

Les sols sont similaires à ceux de VAL D'OR mais plus perméables et moins profonds. La réponse sera donc plus faible pour les petites précipitations mais la saturation étant plus rapide, les fortes précipitations obtiendront un meilleur ruisellement. La réserve en eau des formations meubles de surface est également moins importante que sur VAL D'OR.

L'ensemble du bassin est habité avec une couverture végétale très diversifiée : petites bananeraies, cultures vivrières en petites parcelles, jardins caraïbes (arbres fruitiers), friches après cultures et forêt humide résiduelle.

Bassin du Quartier LA DUCHENE

Le bassin est entièrement situé sur les formations spécifiques du MORNE PITAULT : labradorites très basiques fortement altérées en argile blanche et rouge.

Les sols, du type fersiallitique, renferment une quantité importante de montmorillonite plus ou moins décomposée.

Ces sols sont profonds, meubles et légers, limoneux en profondeur mais assez perméables en surface. La réponse aux précipitations sera donc moins forte que sur les autres bassins et la couche meuble superficielle constitue un magasin capable de soutenir des débits de basses eaux plus importants que sur les bassins précédents.

D'autre part, l'alternance en surface de sols légers et de formations résistantes (coulées labradoritiques) a permis la création d'un réseau hydrographique assez dense de ravines relativement profondes.

Ce réseau favorisera la récupération en début de saison sèche, des eaux stockées dans la couche superficielle du sol et des petites précipitations de début carême.

L'ensemble du bassin est habité et sa couverture végétale assez diversifiée mais moins évoluée que sur le bassin de VOLTAIRE. La bananeraie, en plantation pure ou en plantation mixte, c'est-à-dire avec présence de jardins caraïbes et de grands arbres, occupe environ le quart de la superficie du bassin. La forêt humide recouvre les troisquarts restants mais est toujours trouée de petites parcelles distinctes de cultures vivrières et de bananiers.

1.2. CARACTERISTIQUES CLIMATIQUES

Les quatre bassins du centre et sud de la MARTINIQUE sont soumis à un climat tropical maritime caractérisé par une température assez uniforme modérée par les alizés, vents réguliers de secteur E-NE, une forte humidité et des précipitations moyennes annuelles comprises entre 1 350 mm (CAROLE) et 1830 mm (VOLTAIRE).

On observe deux saisons bien distinctes :

- la saison des pluies ou "hivernage" de juin à novembre caractérisée par une forte pluviosité et le passage d'ondes tropicales,
- la saison dite sèche ou "carême" de février à avril, caractérisée par une diminution importante de la pluviosité.

2.1. Précipitations :

Les données régionales établies pour les stations les plus proches des bassins versants sont les suivantes (référence : "Les ressources en eau de surface de la MARTINIQUE", ORSTOM, 1975).

2.1.1. Situation des stations de référence :

Bassin de la rivière CAROLE

DIAMANT 14°28'40" N 61°01'51" E

Altitude : 5 m

3 km au SW du bassin

TROIS ILETS 14°32'07" N POTERIE 61°00'55" E

Altitude : 3 m

4,5 km au NE du bassin

Bassin de la rivière VAL D'OR

PETIT-BOURG 14°33'19" N

Usine 60°58'46" E

Altitude : 4 m 3 km au NW du bassin

PREFONTAINE 14°30'47" N

60°54'55" E

Altitude : 150 m 5 km au SE du bassin

Bassin de la rivière VOLTAIRE

ROBERT-Usine 14°30'00" N

60°56'00" E

Altitude : 10 m 4 km au SE du bassin

ROBERT 14°40'38" N Gendarmerie 60°56'37" E

Altitude : 10 m

1,5 km au SE du bassin

Bassin de la rivière DUCHENE

DUCHENE 14°39'10" N 60°57'15" E

Altitude : 240 m

1 km à l'Est du bassin

2.1.2. Précipitations annuelles :

Pour les cinq stations dont la période d'observation est égale ou supérieure à vingt ans nous présentons dans le tableau, cidessous, les données suivantes :

N : nombre d'années d'observation

P : précipitation annuelle moyenne (en mm) S : écart-type de la loi normale (en mm) PS $_{10}$: précipitation décennale sèche (en mm) PH $_{10}$: précipitation décennale humide (en mm) C : coëfficient de variabilité C $_{V}$ = S/P

K₃ : rapport de la précipitation décennale humide à la préci-

pitation décennale sèche.

Station	N	Р	S	PS ₁₀	PH ₁₀	С	К3
DIAMANT	20	1 291	335	862	1 720	0,26	2,00
TROIS ILETS	34	1 582	281	1 223	1 942	0,18	1,59
PETIT BOURG Usine	46	1 690	269	1 345	2 035	0,16	1,51
PREFONTAINE*	24	2 576	414	3 107	2 045	0,16	1,12
ROBERT Usine	51	1 743	358	1 284	2 202	0,21	1,71

*Nota : La station de PREFONTAINE est située "au vent" de la ligne de crête MORNE HONORE - MORNE CARAIBE qui la sépare du bassin de VAL D'OR.

Pour les deux autres stations observées sur une période plus courte, les données annuelles sont les suivantes :

ROBERT Gendarmerie N = 11 P = 1 567 mm S = 183 mm

Les valeurs étendues par corrélation avec la station de FOURNIOL sont pour N = 50, P = 1 665, S = 183, C_V = 0,11.

DUCHENE N = 12, P = 1935, S = 294

Les valeurs étendues à une période de 50 ans par corrélation avec la station de GALION sont les suivantes :

 $P = 2 017 S = 340 C_V = 0.17$

2.1.3.Répartition mensuelle :

Ces variations saisonnières de la pluviométrie sont mesurées par les valeurs des précipitations mensuelles présentées dans le tableau ci-dessous :

Les valeurs, en mm, sont calculées sur la période étendue :

. Scation	J	F	М	А	М	J	Jt	А	S	0	N	D	Total
DIAMANT	55	44	38	56	70	124	171	141	138	171	133	100	1 271
TROIS ILETS	103	64	51	63	84	151	176	188	200	205	182	123	1 594
PETIT BOURG Usine	96	76	62	32	109	144	182	209	211	197	194	135	1 590
PREFONTAINE	152	101	95	145	151	220	248	256	271	300	380	188	2 539
ROBERT Usine	88	63	50	82	107	129	189	196	215	247	259	131	1 755

Le contraste pluviométrique entre la saison des pluies et le carême peut être illustré par les rapports (en%) des totaux. pluviométriques de la période février-mars-avril et de la période juillet-août-septembre (septembre-octobre-novembre pour les stations du versant atlantique où la saison des pluies est plus tardive) au total pluviométrique annuel.

Station	Carême F.M.A.	Saison des pluies Jt.A.S. ou S.O.N.*
DIAMANT TROIS ILETS PETIT BOURG PREFONTAINE ROBERT USINE	10,9 11,5 13,0 13,4 11,1	37,8 35,4 35,6 37,5 41,1

Les rapports des mois extrêmes sont voisins de 4.

DIAMANT (4,5) - TROIS ILETS (4,0) - PETIT BOURG (3,4)

PREFONTAINE (4,0) - ROBERT Usine (5,2)

2.1.4. Précipitations journalières :

Pour trois des stations de référence, les échantillons de précipitations journalières ont permis l'ajustement de lois statistiques qui fournissent les résultats suivants :

Station	lfois par an	5 ans	10 ans	20 ans	50 ans
DIAMANT	79,5	139	171	20 7	261
TROIS ILETS	86,0	136	162	189	227
PETIT BOURG	88,1	151	184	222	279

A partir de l'ensemble des postes étudiés, les lignes d'égales hauteurs journalières pour une récurrence donnée ont pu être esquissées.

Ces lignes permettent d'estimer la hauteur de précipitation journalière pour les différents bassins.

Bassin	1 fois par an	1 fois en 5 ans	1 fois en 10 ans
CAROLE	85 mm	135 mm	160 mm
VAL D'OR	88	140	165
VOLTAIRE	100	150	170
DUCHENE	95	145	170

2.1.5. <u>Intensités des averses</u> :

Sur un certain nombre de stations équipées de pluviographe les observations ont été suffisantes pour permettre l'ajustement de lois d'intensité-durée-fréquence.

Ces lois fournissent pour une durée d'averse t et une récurrence T, la hauteur H de la tranche d'averse.

Pour le sud de la MARTINIQUE (hauteur annuelle moyenne inférieure à 2 500 mm), ces lois peuvent être représentées par les relations suivantes :

$$t \le 1$$
 heure H(t, T) = 52 $t^{0,60}$ T^{0,22} + 0,07 logt

t> 1 heure
$$H(t, T) = 45 t^{0,27} T^{0,25}$$

Nous adopterons donc pour l'étude les hauteurs ci-après :

T t	0,25	0,50	0,75	1	2	3	4	5	6	7	8	9	10
1 an	22,6	34,3	44	48	55	61	65	69	73	76	79	81	84
5 ans	30	47	61	70	80	90	97	103	108	113	117	121	125
10 ans	34	54	71	80	95	106	115	122	128	134	139	143	149
20 ans	39	63	82	94	113	126	136	145	152	158	164	170	177
100 ans	51	86	116	140	168	187	202	215	226	235	244	252	265

H en mm

T récurrence

t heure

2.2. Autres données climatiques :

2.2.1.Vents:

D'après les résultats de la station météorologique du LAMENTIN, située au centre de la zone étudiée, les caractéristiques du régime des vents sont les suivantes :

<u>Direction</u>: Dans près des trois-quarts des cas, les vents proviennent du secteur E-NE. Cette situation est observée pendant toute l'année et plus particulièrement en juin-juillet. Les calmes représentent 17 % des observations à la station située, il est vrai, presqu'au niveau de la mer.

Vitesses: La vitesse moyenne des vents au sol est d'environ 7 noeuds (13 km/m). Elle est de près du double sur les reliefs à altitude supérieure \tilde{a} 100 m.

On notera que les rafales peuvent atteindre 64 km/h pendant les tempêtes tropicales et que des vitesses supérieures à 200 km/h ont été mesurées au cours des cyclones (EDITH, 1963 - DAVID, 1979).

Le bassin de la CAROLE (direction ouest-est avec ouverture à l'Est) est ouvert aux vents dominants. Celui de VAL D'OR (direction Est-ouest avec ouverture à l'ouest) est sous le vent. Le bassin de VOLTAIRE (NW-SE avec ouverture au sud-est) est perpendiculaire aux vents dominants qui balaient d'amont en aval celui de DUCHENE (Est-ouest avec ouverture à l'ouest).

2.2.2. Températures :

Le régime des températures est régularisé par le flux des alizés. La température moyenne annuelle est de 26° avec des écarts mensuels inférieurs à 2°. La température moyenne est maximale en juillet-

août et minimale en janvier-février.

Les résultats observés (1956-70) à la station du LAMENTIN sont présentés ci-après (en degrés Celsius) :

Station	J	F	М	А	М	J	Jt	А	S	0	N	D	Total
Ťx	28,0	28,1	28,8	29,4	29,8	29,8	29,7	30,2	30,3	30,0	29,6	28,6	29,3
† †	21,3	21,0	21,2	22,1	23,1	23,9	24,0	23,8	23,0	22,7	22,2	21,6	22,5
$1/2(\bar{T}_x + \bar{T}_n)$	24,7	24,5	25,0	25,8	26,5	26,8	26,8	27,0	26,6	25,3	25,9	25,1	25,9
T _x - T _n	6,7	7,1	7,6	7,3	6,9	5,9	5,7	6,4	7,3	7,3	7,4	7,0	6,8

2.2.3. Humidité de l'air :

Le degré hygrométrique est élevé et relativement uniforme avec un maximum de juillet à novembre.

	J	F	М	А	M	J	Jt	Α	S	0	N	D	Année
	77	75	73	73	75	77	79	79	79	81	80	78	77
- 1							,						, , ,

Les humidités relatives maximales moyennes sont de l'ordre de 100 % et les minimales descendent rarement au dessous de 60 %.

Au LAMENTIN, la tension de vapeur moyenne est assez élevée : 27 mb. Elle est assez uniforme (minimum : 23,8 mb en février, maximum : 29,1 mb en août).

2.2.4. Evaporation:

Les valeurs moyennes mensuelles sur appareil PICHE sont les suivantes à la station du LAMENTIN (en mm) :

J	F	M	Α	М	J	Jt	А	S	0	N	Année
107	100	114	108	105	100	96	88	72	69	72	1 120

Mesurées sur bac classe A à la station INRA de SAINTE-ANNE, les valeurs sont les suivantes (en mm/j) :

J	F	М	А	M	J	Jt	А	S	0	N	D	Moyenne annuelle
5,7	5,8	6,8	7,2	7,0	6,6	6,8	6,5	6,1	5,7	5,7	5,3	6,3

L'évaporation annuelle est de 2 300 mm avec un minimum en décembre et un maximum en avril (carême).

La station de SAINTE-ANNE est située à la pointe sud de l'île, dans le secteur le moins arrosé. Les résultats correspondent donc à un maximum d'évaporation en MARTINIQUE.

On peut considérer que l'ordre de grandeur de l'évaporation sur nappe d'eau libre dans la zone des bassins est de 1500 mm/an.

•			

CHAPITRE II

EQUIPEMENT, OBSERVATIONS ET MESURES

II.1. EQUIPEMENT

Chacun des quatre bassins a été équipé de deux pluviographes et d'une section stabilisée de contrôle des débits avec échelle limnimétrique et limnigraphe.

1.1. Bassin de la rivière CAROLE :

La section de contrôle est équipée d'un déversoir en seuil épais (0,40 m) de 1,46 m de longueur. Ce seuil est encadré de deux bajoyers en béton et repose sur une semelle cimentée de 1,50 de longueur. Un voile étanche en béton de 50 cm a été posé en amont de la semelle pour éviter les infiltrations sous la semelle.

Deux échelles limnimétriques ont été posées :

- échelle rive droite (0-1 m) pour le contrôle de la lame au-dessus du déversoir,
- échelle rive gauche en plusieurs éléments implantés sur toute la zone de débordement des plus hautes eaux et servant au calage du limnigraphe.

Le calage du seuil est :

h = 0,04 (h cote échelle rive droite)
H = 1,31 (H cote échelle rive qauche)

Le lit en amont du contrôle a été rectifié et nettoyé réqulièrement.

Un limnigraphe OTT R 16 (avancement 12 mm/h, réduction 1/10) a été mis en place le 2 juin 1975.

Les deux pluviographes PRECIS MECANIQUE à table de déroulement (10 mm/h) ont été installés le 15 juillet 1975.

PE I 61°00'31" W 14°30'21" N Altitude : 140 m PE II 61°01'23" W 14°30'07" N Altitude : 300 m

1.2. Bassin de la rivière VAL D'OR :

La section de contrôle est équipée d'un déversoir en béton de 4 m de longueur placé sous un pont. Ce déversoir présente une section trapézoïde avec goulette hémicylindrique pour le contrôle des très faibles débits. L'échelle limnimétrique est placée en rive droite. Le seuil est calé à la cote 0,01.

Le limnigraphe (OTT R 16 - avancement 12 mm/h, réduction 1/10) a été mis en place le 16 juin 1975.

Les deux pluviographes PRECIS MECANIQUE à table de déroulement (10 mm/h) ont été posés le 16 juillet 1975.

PE I 60°57'39" W 14°31'46" N 39 m PE II 60°57'08" N 14°31'42" N 72 m

1.3. Bassin de la rivière du Quartier VOLTAIRE :

La section de contrôle est équipée d'un déversoir en béton à seuil épais (0,25 m) d'une longueur de 3,90 m. Une encoche rectangulaire (0,70 x 0,26 m) située au milieu d'un déversoir facilite le contrôle des faibles débits. En aval du déversoir, une semelle avec dissipateur d'énergie a été installée afin d'éviter l'érosion régressive du lit.

L'échelle et le limnigraphe (OTT R 16 - 10 mm/h - 1/10) ont été installés en rive droite (25 août 1975).

Le seuil est calé à la cote 1,37 m (échelle de contrôle).

Les deux pluviographes PRECIS MECANIQUE ont été installés le 18 juillet 1975.

PE I 60°57'10" W 14°40'51" N 55 m PE II 60°57'56" W 14°41'07" N 160 m

1.4. Bassin de la rivière du Quartier LA DUCHENE :

La section de contrôle est équipée d'un muret déversant placé à l'entrée de la buse ARMCO du pont routier (Quartier SARRAUT-Quartier LA DUCHENE). Ce muret est muni d'une goulotte pour les très faibles débits.

Le limnigraphe OTT R 16 placé le 1er mars 1976 (10 mm/h 1/10) et l'échelle de contrôle ont été placés sur le parement amont rive droite du pont routier. Le seuil est calé à la cote 2,28 m (échelle de contrôle).

Les deux pluviographes PRECIS MECANIQUE ont été installés le 19 janvier 1976.

PE I 60°57'46" W 14°38'30" N 130 m PE II 60°57'21" W 14°37'59" N 270 m

II.2. OBSERVATIONS

Les appareils des bassins étaient visités régulièrement (2 fois par semaine en saison des pluies, 1 fois par semaine en saison sèche).

Les observations sont complètes du début de l'étude au 30 juin 1978. A la fin de l'étude, trois stations (CAROLE, VOLTAIRE et DUCHENE) ont été intégrées dans le réseau hydrométrique permanent ainsi qu'un pluviographe par bassin.

2.1. Observations pluviométriques :

Les observations effectuées permettent d'établir pour chacun des bassins les chroniques de précipitations journalières moyennes (cf. tableaux n° I à 15 de pluviométrie journalière en annexe).

Bassin de la CAROLE

Les précipitations recueillies par le pluviographe n°I sont supérieures de 20 à 30 % à celles mesurées par le pluviographe n° II, situé ω le vent du PE I et à une altitude supérieure (300 m contre 140 m).

Pour 41 couples de valeurs mensuelles, la droite de régression a pour équation :

$$P_1 = 1,14 P_2 + 8,9$$
 $(r^2 = 0,964)$

Les valeurs moyennes mensuelles observées sont les suivantes (P en mm) :

	J	F	М	А	М	J	Jt	А	S	0	N	D.	Année
1975	l						(33)	142	82	244	173	248	-
1976	67	72	45	13	28	61	50	155	179	189	177	254	1 290
1977	44	26	16	89	24	36	60	269	149	303	148	64	1 229
1978	54	25	77	62	94	118	161	213	125	174	191	67	1 362
1979	(19)	(30)	(146)	(40)	(55)	(226)							
				ļ				ļ					

<u>Nota</u>: juillet 1975 résultats partiels - total du mois

estimé

Janvier-juin 1979 - calculé d'après PE I.

Bassin de VAL D'OR

Les précipitations recueillies par le pluviographe PE I situé sous le vent du pluviographe PE II et à une altitude inférieure, sont inférieures d'environ 20 % à celles recueillies au pluviographe PE II.

Pour 35 couples de valeurs mensuelles, la droite de régression a pour équation :

$$P_1 = 0.95 P_2 - 11.8$$
 ($r^2 = 0.981$)

Les valeurs moyennes mensuelles observées sont les suivantes (P en mm) :

	J	l F	М	А	M	J	Jt	А	S	0	N	D	Année
1975							(54)	234	121	289	262	300	_
1976	127	92	81	32		100	94	181	175	259	279	338	1 801
1977 1978	65 89	40 41	33 128	101 82	58 118			i	190 170				1 565 1 819
	,			•		_ / 0		_ 30	_, 0				1 010

Bassin VOLTAIRE

Les précipitations recueillies au pluviographe n° I sont légèrement supérieure (1 à 5 %) à celles recueillies au pluviographe n° II. L'alignement des deux postes est perpendiculaire à la direction des vents dominants et PE II est à une altitude supérieure de $100\ m$ à celle de PE I.

Pour 41 valeurs mensuelles, la droite de régression a pour équation :

$$P_1 = 0.94 \quad P_2 + 7.9 \quad (\hat{r}^2 = 0.892)$$

Les valeurs moyennes mensuelles observées sont les suivantes (P en mm) :

	J	F	М	А	М	J	Jt	А	S	0	N	D	Année
1975							(56)	169	156	453	190	270	~
1976	137	120	55	57	42	88	125	183	135	343	205	194	1 775
1977	50	58	45	136	62	103	105	288	228	471	352	105	2 002
1978	89	82	144	72	104	188	159	229	240	302	204	90	1 903

Bassin de DUCHENE

Le poste n° I, situé près de l'exutoire du bassin et à une altitude inférieure à celle de PE II (130 m contre 270 m) reçoit des précipitations supérieures de 25 à 40 % à celles du poste n° II.

Pour 34 couples de valeurs mensuelles, la droite de régression a pour équation :

$$P_1 = 1,06 P_2 + 17,8$$
 ($r^2 = 0,971$)

Les valeurs moyennes mensuelles observées sont les suivantes (P en mm) :

	Ĵ	F	М	А	М	J	Jt	А	S	0	N	D	Année
1976			51	36	55	114	116	114	151	301	272	271	_
1977	56	44	36	98	62	74	61	185	170	350	260	70	1 470
1978	103	56	103	93	77	161	152	248	216	271	253	94	1 827

En comparant les tableaux mensuels observés aux normales des postes de référence, l'hydraulicité des différentes périodes est la suivante :

- 1975 : Les trois premiers mois du second semestre sont déficitaires, les trois derniers excédentaires surtout en octobre et décembre. Le semestre est excédentaire (hydraulicité 1,15).
- 1976: Les trois premiers mois de l'année sont normaux ou légèrement excédentaires. Les trois mois suivants sont nettement déficitaires. Le bilan du semestre (carême) montre un net déficit avec une hydraulicité comprise entre 0,65 et 0,75. Le second semestre reste déficitaire pour les trois premiers mois ; la deuxième partie du semestre est par contre nettement excédentaire surtout en décembre en raison des fortes pluies des 6 et 7 décembre. Le bilan du semestre est normal ou légèrement excédentaire.

L'année a une pluviométrie déficitaire pour la CAROLE (0,90) ou normale pour les trois autres bassins.

- 1977 : A l'exception du mois d'avril, excédentaire, tous les mois du premier semestre sont nettement déficitaires. Le bilan du premier semestre montre un déficit très marqué (carême très sévère) avec une hydraulicité de 0,50 à 0,70.

Le second semestre, après un mois de juillet nettement déficitaire qui prolonge le carême, est caractérisé par des excédents importants en août et octobre (en novembre également pour VOLTAIRE). Décembre est déficitaire. Le bilan pour CAROLE et VAL D'OR est normal, déficitaire pour DUCHENE. Pour VOLTAIRE, le second semestre est assez nettement excédentaire en raison de la forte pluviosité de novembre.

L'année est, en dépit du carême sévère, assez excédentaire (1,10) pour le bassin de VOLTAIRE. Pour les trois autres bassins, elle montre un déficit de 10 à 15 %.

- 1978 : Tous les mois du premier semestre sont légèrement déficitaires à l'exception de mars assez nettement excédentaire. Le bilan du semestre reste déficitaire (0,90 à 0,95) sauf pour VOLTAIRE ou le semestre est légèrement au-dessus de la normale.

Le second semestre est marqué par des excédents notables (sauf CAROLE) en octobre et un déficit marqué en décembre. Les autres mois ne s'écartent pas sensiblement de la normale. Le semestre a un bilan voisin de la normale (+ ou - 10 %). L'année est légèrement déficitaire (- 5 %) pour CAROLE, VAL D'OR et DUCHENE, légèrement excédentaire pour VOLTAIRE (+ 5 %).

Les précipitations maximales en 24 heures (08h 00 à 08h 00) de chaque année sont les suivantes :

		19	975	1976		197	7	1978		
CAROLE	I	59,0 49,5	(9-12) (9-12)	(120,0) 91,0	(7-12) (7-12)	87,0 48,5	(30-10) (30-10)		(22-10) (22-10)	
VAL D'OR	I II	65,0 53,0	(25-12) (25-12)	194,5 179,0	(7-12) (7-12)	62,0	(3-11) (3-11)	66,5 94,0	(29-10) (29-10)	
VOLTAIRE	I. II	88,5 90,0	(9-12) (9-12)	91,5 93,5	(8-11) (8-11)	73,5 86,1	(28-10) (28-11)	89,5 92,0	(12-06) (12-06)	
DUCHENE	I II			104,0 90,0	(7-12) (7-12)	68,0 74,0	(15-10) (15-10)	85,0 79,0	(17-11) (17-11)	

A l'exception de la précipitation du 7 décembre 1976 sur VAL D'OR et DUCHENE, les précipitations maximales sont inférieures ou égales à la précipitation journalière de récurrence annuelle.

Sur le bassin de VAL D'OR, la précipitation enregistrée le 7-12-76 au poste n° I atteint un total de 199,5 mm en 11 heures (de 06h 00 à 17h 00) ce qui correspond à une récurrence de 29 ans. Le total cumulé en 7 heures (08h 30 à 15h 30) est de 189,0 mm (récurrence 38 ans).

Sur DUCHENE, la précipitation enregistrée (poste n° I) en 11 heures de 05h 06 le 6 à 16h 06 le 7, atteint un total de 180,0 mm (récurrence 19 ans).

2.2. Observations limnimétriques :

Les enregistrements des hauteurs d'eau aux quatre limnigraphes sont complets aux exceptions suivantes près :

- Bassin de la CAROLE : crue du 7 décembre 1976. Le limnigraphe a été submergé par la plus forte crue observée sur le bassin (HMAX = 3,40 m). Les parties manquantes du limnigramme ont cru être complétées d'après les observations faites sur place par les hydrologues présents pendant toute la durée de la crue.
- Bassin de VOLTAIRE: Lacune d'enregistrement du 27 au 30 octobre 1978. La hauteur maximale de la crue du 30 a été enregistrée. Les débits moyens journaliers ont été estimés d'après une régression hydropluviométrique.

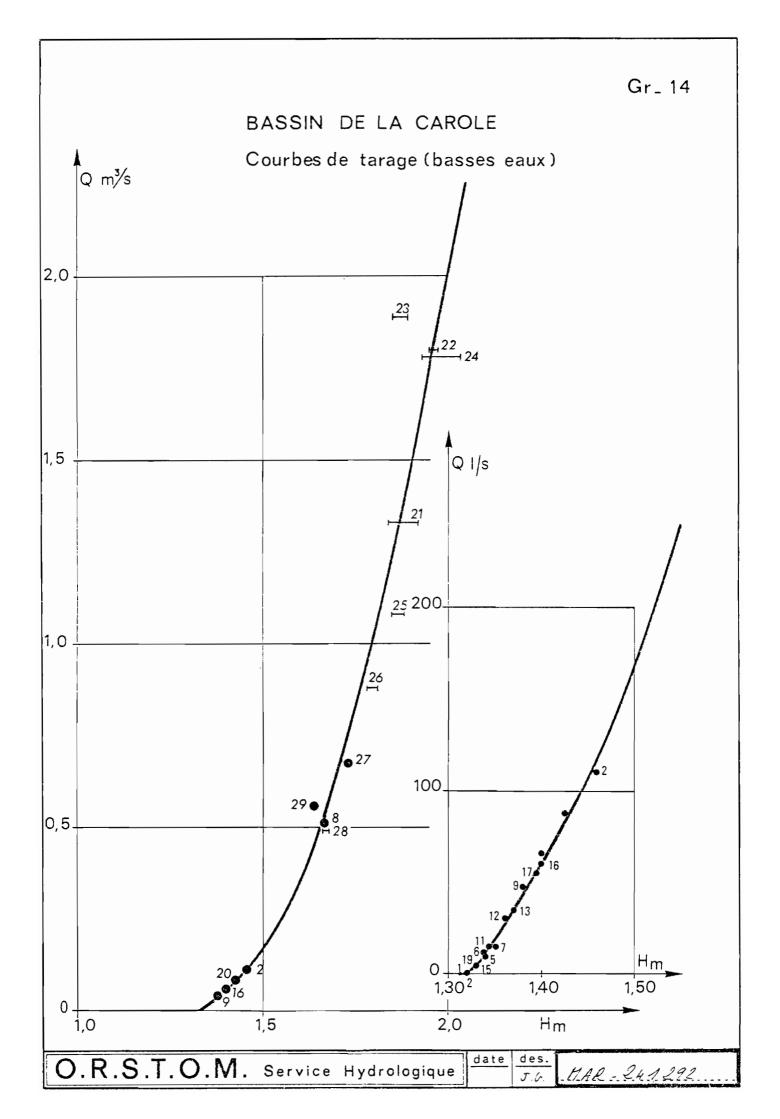
II.3. MESURES DE DEBIT

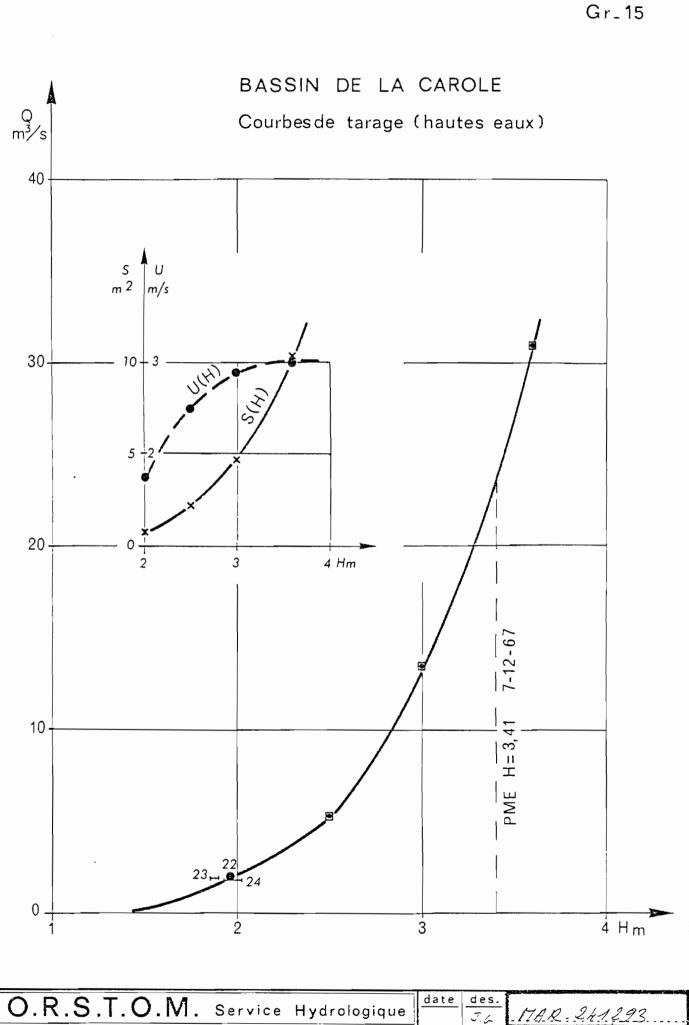
3.1. Bassin de la CAROLE :

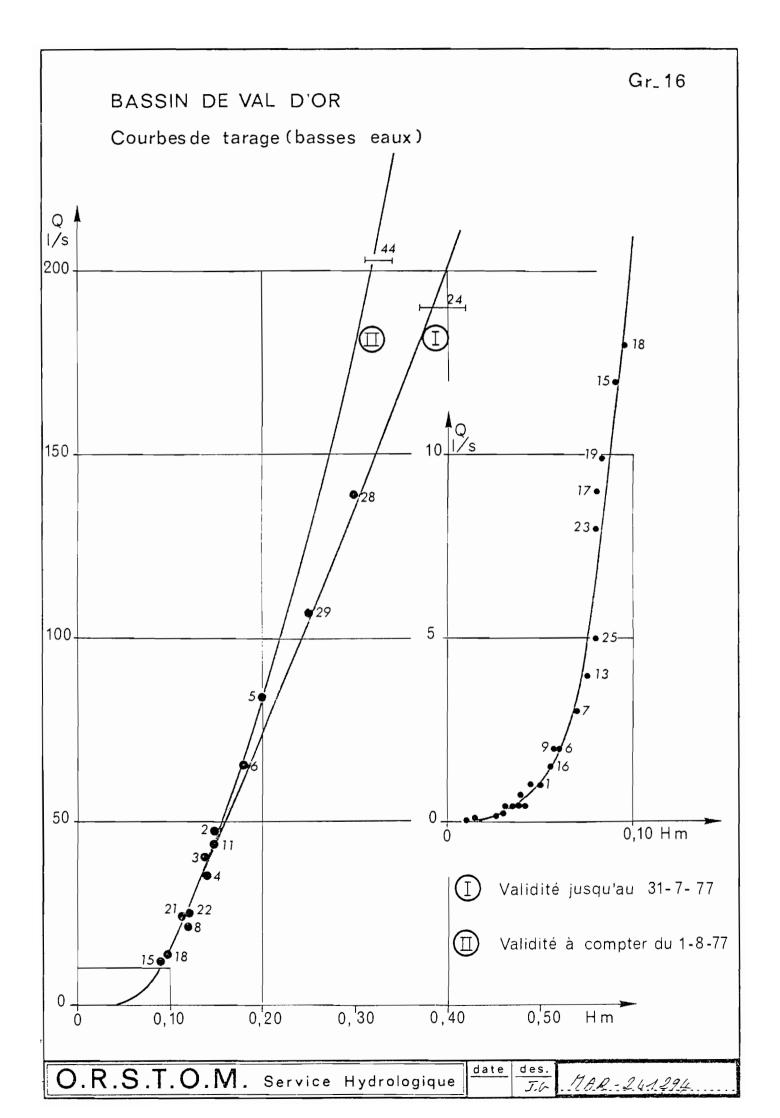
Trente mesures de débit ont été effectuées entre 1 l/s et 2 m 3/s.

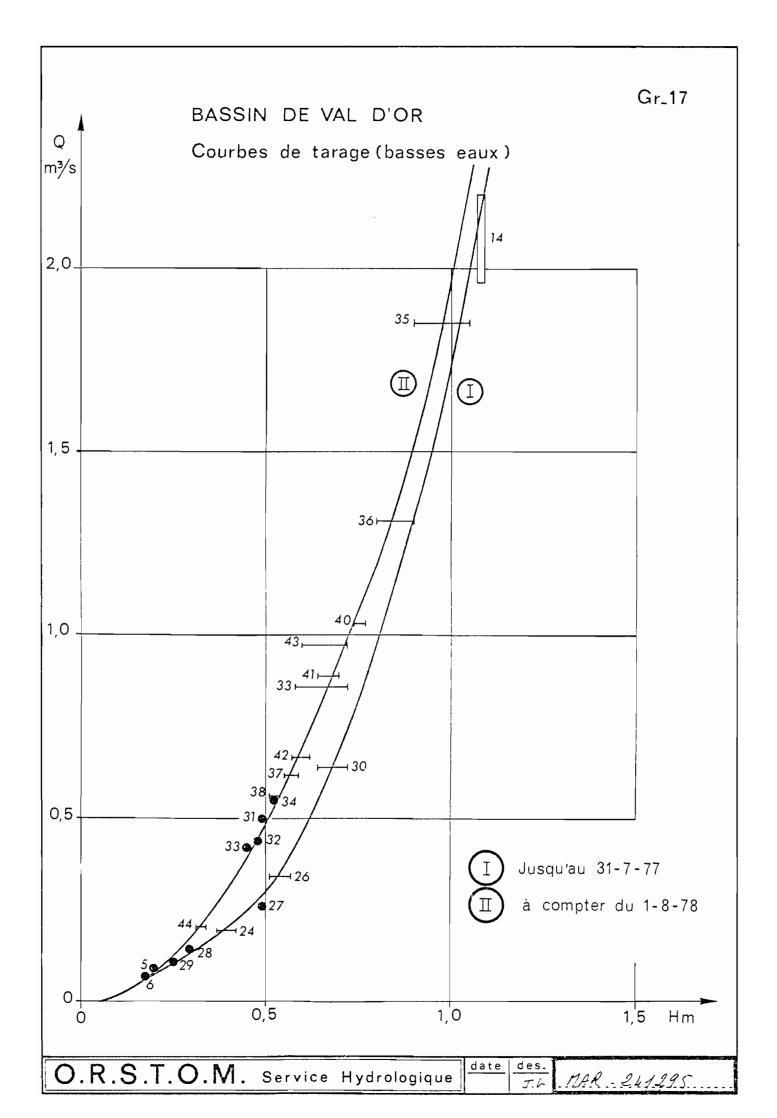
De plus, au cours de la crue du 7 décembre 1976 un nombre important de mesures de vitesse de surface ont été effectuées au moulinet en différents points de la section mouillée.

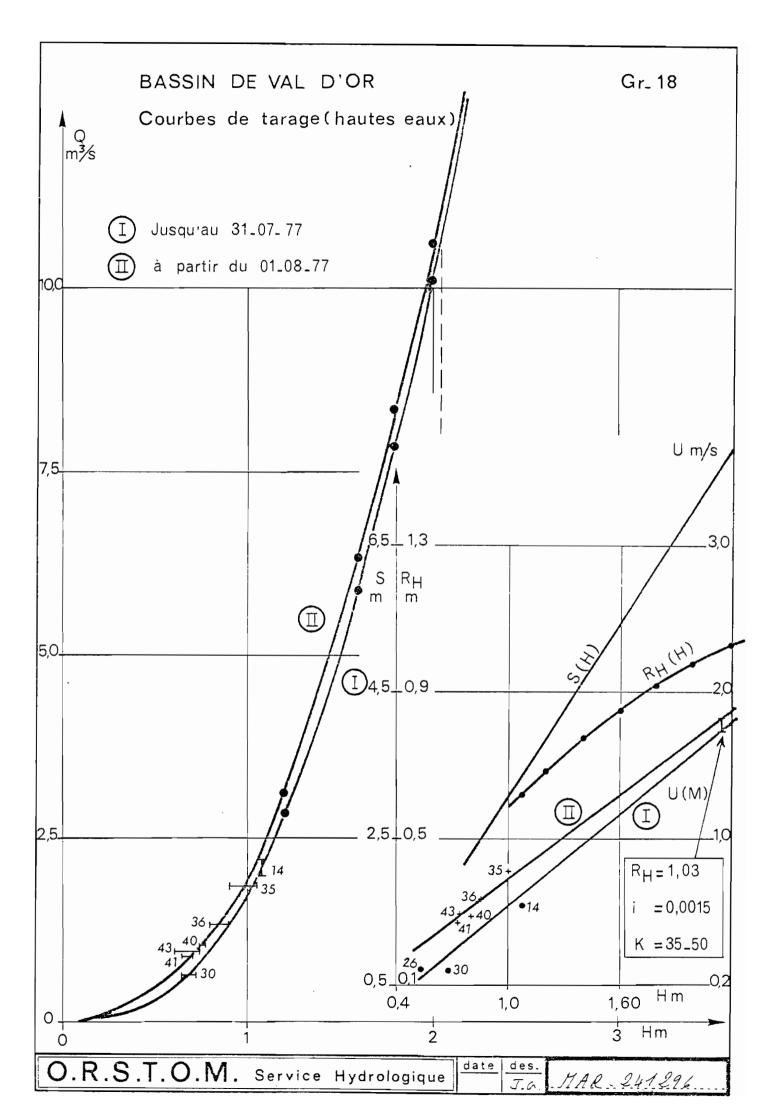
A partir de ces mesures de vitesse et du profil en travers de la section, les débits suivants ont été calculés:


H (m)	S (m ²)	U (m/s)	Q m ³ /s
2,50	2,10	2,52	5,30
3,00	4,65	2,90	13,5
3,60	10,3	3,00	31,0


La liste des jaugeages est présentée en annexe (tableau XVI). Une courbe correcte et stable a été tracée(graph. 14 et 15) pour la traduction des hauteurs limnimétriques en débits.


3.2. Bassin de VAL D'OR :


Une centaine de mesures de débit ont été effectuées à VAL D'OR jusqu'à 2 m3/s.


Ces mesures ont mis en évidence l'influence du contrôle aval de la section située à faible altitude au-dessus du niveau de la mer. Les chenaux artificiels situés en aval de la section, à faible pente et encombrés de végétation herbacée, assurent plus ou moins bien l'évacuation des crues du bassin.

Nous avons été conduits à tracer deux courbes de tarage.

La courbe n° I (valable du début des observations jusqu'au 31 juillet 1977) correspond au freinage des vitesses d'écoulement dû à l'encombrement par la végétation herbacée et les débris de canne à sucre des chenaux du périmètre de culture situé en aval de la station.

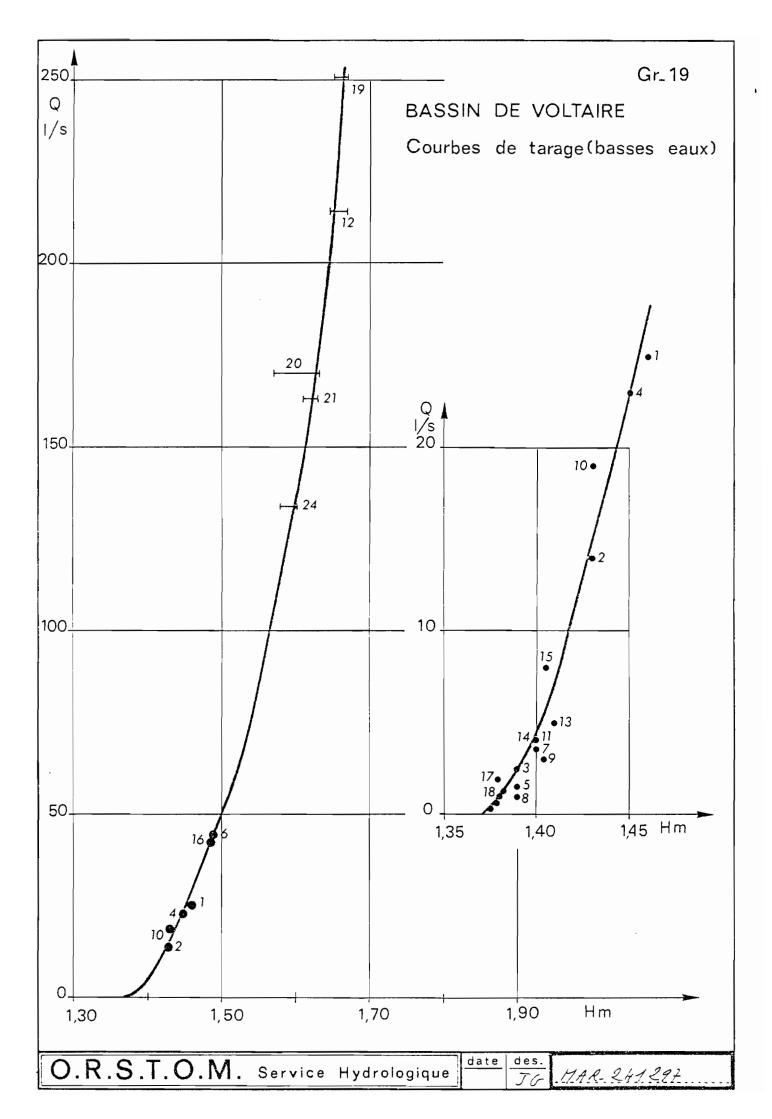
La courbe n° II (valable à compter du 1er Août 197**7**) correspond à l'amélioration des conditions d'évacuation des crues à la suite du nettoyage général des chenaux de drainage effectué en fin de carême 1977 par l'usine de PETIT BOURG.

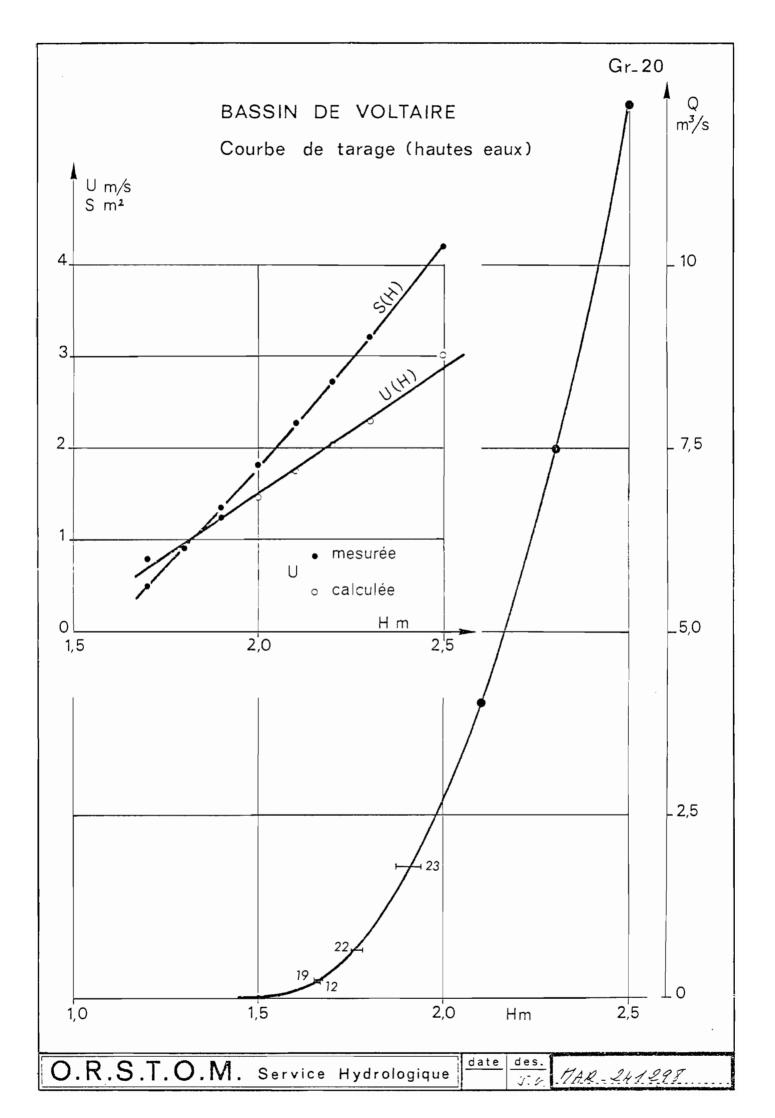
En 1978, l'achèvement des travaux routiers sur la nationale 5 à l'entrée de RIVIERE SALEE a eu pour conséquence l'ennoyage de la station au cours des fortes crues et rendu très instable l'étalonnage de la station. Nous n'avons pas conservé la station à l'issue de l'étude des petits bassins.

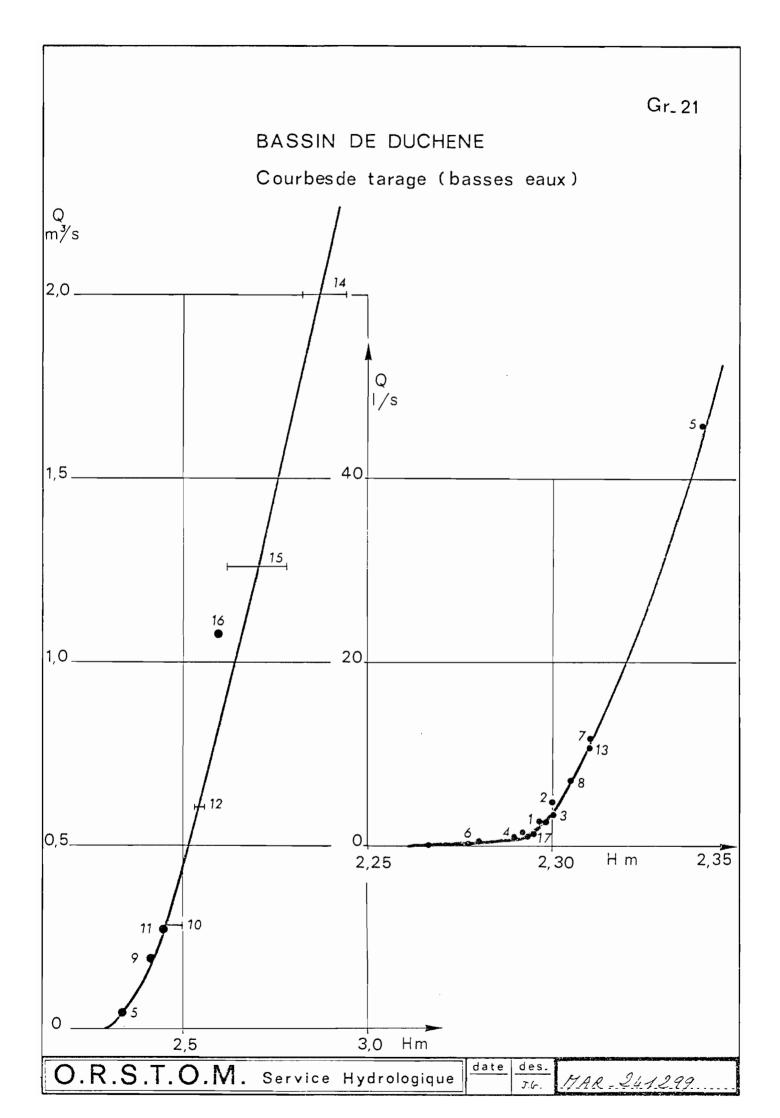
La liste des quarante quatre jaugeages ayant été utilisés pour l'établissement des courbes de tarage est fournie en annexe (tableau XVII).

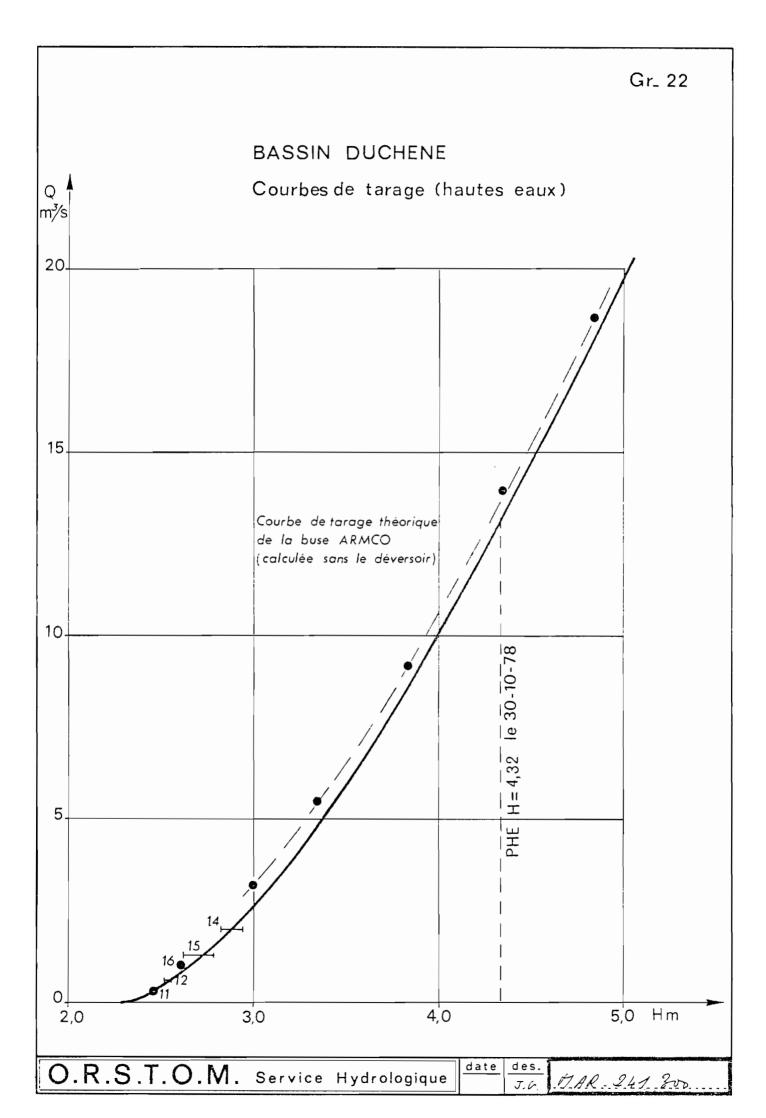
L'extrapolation des courbes de tarage a été effectuée à partir du calcul des vitesses moyennes pour les fortes cotes dans la section délimitée par le pont de la station de contrôle (graph. 16 à 18).

3.3. Bassin de VOLTAIRE


La courbe de tarage unique (graph. 19 et 20) a été établie à partir de vingt quatre mesures de débit effectuées entre 1 et 1 800 l/s liste en annexe : tableau n° XVIII et d'une extrapolation basée sur les profils en travers de la section et le calcul des vitesses moyennes au-dessus du déversoir épais.


H m	S m ²	U m/s	Q m ³ /s
2,10	2,28	1,78	4,05
2,30	3,20	2,35	7,50
2,50	4,20	2,90	12,2


Vingt cinq autres mesures de débit ont été effectuées pour la détermination des très faibles débits (inférieurs au l/s) et le contrôle de la stabilité de la courbe de tarage (variation de la pelle).


3.4. Bassin de DUCHENE

Dix sept mesures de débit (liste en annexe tableau n°XIX) permettent d'établir la courbe de tarage jusqu'à 2 m3/s - gr.21, 22. L'extrapolation a été basée sur les formules d'évacuation des buses ARMCO.

عم ا	dáhite	cuivante	ont átá	calculés	
res	debits	Sulvants	ont ete	carcures	

H échelle (m)	h ARMCO (m)	Q ₁ (m3/s)	Q ₂ (m3/s)
3,00	1,16	3,20	2,70
3,34	1,50	5,50	5,00
3,84	2,00	9,20	8,80
4,34	2,50	14,0	13,4
4,84	3,00	18,7	18,3

Les valeurs \mathbb{Q}_1 sont extraites des abaques fournies par le constructeur pour les données d'entrées suivantes :

$$D = 3 m$$
 (dimensions réelles 3,22 x 2,88)

n = 0.024

i = 0,058 (mesurée sur 19 mètres)

 $K_0 = 0.8$

Les valeurs \mathbb{Q}_2 corrigées tiennent compte de l'influence de la murette du déversoir 2 de contrôle mis en place à l'entrée de la buse ARMCO.

II.4. DEBITS JOURNALIERS

La traduction en débits des hauteurs limnimétriques permet d'obtenir les caractéristiques des crues et la chronique des débits moyens journaliers.

Les tableaux XX à XXXV, en annexe, présentent les débits moyens journaliers. Nous rappelons, ci-dessous, les valeurs mensuelles observées :

4.1. CAROLE (S = 1,463 km2) :

Débits moyens mensuels en 1/s

76	J	F	M	А	М	J	Jt	А	S	0	N	D	Moyenne annuelle
1975	(0)	(0)	(0)	(0)	(0)	(0)	(0)	0	2	33	44	68	12
1976	0	0	0	0	0	0	0	2	20	29	29	97	15
1977	0	0	0	0	0	0	0	34	20	68	40	1	14
1978	0	0	0	0	0	0	8	36	4	20	33	4	9
1979	0	0	2	0	0	9							-

4.2. VAL D'OR (S = 1,433 km2)

Débits moyens mensuels en 1/s

	J	F	М	А	М	J	Jt	А	S	0	N	D	Moyenne annuelle
1975							0	2	4	49	61	62	-
1976	7	4	3	1	0	1	1	2	7	39	67	91	19
1977	2	2	0	1	1	0	0	7	20	84	53	4	15
1978	2	.1	4 .	2	1	4							-

4.3. <u>VOLTAIRE</u> (S = 0,835 km2)

Débits moyens mensuels en 1/s

	J	F	М	А	M	J	Jt	А	S	0	N	D	Moyenne annuelle
1975									0	29	12	27	-
1976	3	7	1	0	0	0	0	1	2	13	31	23	7
1977	2	2	1	0	0	0	0	7	11	57	65	4	13
1978	3	3	3	3	2	5	3	10	14	(30)	21	6	9

4.4. $\underline{\text{DUCHENE}}$ (S = 1,514 km²):

Débits moyens mensuels en 1/s

	j	F	М	А	M	J	Jt	A	S	0	N	D	Moyenne annuelle
1976	(20)	(11)	3	1	1	1	3	3	3	35`	59	86	(19)
1977	10	8	3	3	2	0	0	3	6	56	83	12	16
1978	8	4	4	3	1	6	4	21	23	47	62	13	16

CHAPITRE III

ANALYSE DES DONNEES

III.1. ETUDE DES CRUES

Pour chacun des bassins, nous présenterons successivement les résultats de l'analyse des évènements précipitation-crue de la façon suivante :

- caractéristiques des crues :

Les tableaux comportent pour chaque crue les données

suivantes :

Colonne 1: n° de la crue,

2 : date de la crue,

3 : valeur de la précipitation moyenne (en mm),

4 : durée (en mm) de la précipitation,

5 : valeur de l'indice d'humidité initial

$$IH_{i} = P_{i-1} + IH_{i-1} e^{-kt}$$

IH en mm - t en jours

6 : volume de la crue (en 10^3 m^3),

7 : lame ruisselée $H_R = \frac{V}{5}$

8 : débit maximal ruisselée $Q_{R_2} = Q_{max} - Q_0$

9 : débit de base initial (en^{m^3}/s) ,

10 : temps de montée de la crue (en minutes),

11 : durée de la crue (en heures et minutes : h - mn)

12 : coefficient de ruissellement K_R % = $\frac{H_R}{D}$

13 : déficit de ruissellement $D_D = P - H_D$

14 : rapport de forme Q_R/H_R

15 : observations : nombre de pointes de crue.

- Présentation de quelques crues caractéristiques.
- Etude de la précipitation limite : seuil de ruissellement en fonction de l'indice d'humidité initial.
- Etude de la lame ruisselée en fonction de la précipitation.

- Etude de l'hydrogramme représentatif des crues simples.
- Estimation des caractéristiques de la crue décennale.

Nous exposerons de façon détaillée la méthodologie utilisée pour le bassin de la CAROLE, méthodologie utilisée également pour les trois autres bassins.

III.1.1. Bassin de la rivière CAROLE :

1.1.1. Caractéristiques générales des crues :

Les tableaux XXXVI à XXXIX présentent les caractéristiques des crues observées de 1975 à 1978.

Pour le bassin de la CAROLE, si la détermination du point de départ de la crue ne pose pas de problèmes, la détermination de la fin de crue est plus délicate en raison des caractéristiques de l'écoulement dans le lit de la rivière (cf. paragraphe I.1.2.). La courbe de décrue correspond à la vidange successive des différents barrages naturels crés par les obstacles (rochers, débris végétaux) du lit apparent et présente sur un graphique Débit (log) - Temps (normal) une succession de droites entre la décrue de ruissellement proprement dite et le retour à l'écoulement de base. Nous avons retenu après l'analyse de l'ensemble des crues un débit final compris entre 70 et 90 l/s.

Les caractéristiques générales des crues de la CAROLE sont les suivantes (pour quatre années 1975-78) :

H _R	> 1 mm	> 5 mm	>10 mm	> 20 mm	> 50 mm
N _b	48	33	20	10	1
%		69	42	21	2

Le nombre de crues observées est relativement faible et l'on n'observe en moyenne que 5 crues supérieures à 10 mm (14 600 m3) par an.

Les coefficients de ruissellement sont très variables (entre 10 % pour les crues de début de saison des pluies jusqu'à 90 % pour les crues survenues dans les conditions les plus favorables).

Les temps de montée des crues ne comportant que une ou deux pointes (70 % des crues) sont compris entre 30 et 90 minutes.

Les durées des mêmes crues varient entre 5 et 30 heures.

L'influence des conditions d'humectation préalable sur la réponse aux précipitations est importante. Observons les caractéristiques de trois crues produites par des précipitations de même ordre de grandeur.

Crue du 02-09-76 : la précipitation est de 42,5 mm recueillie en deux fractions 30,5 mm en 215 minutes puis 12,0 mm en 110 minutes. La crue complexe présente 4 pointes de débit. La lame ruisselée résultante est de 8,4 mm ($\rm K_R$ = 20 %) pour un indice d'humidité évalué à 16 mm. La crue, survenant au début de la saison des pluies, correspond à un déficit de ruissellement important : 34,1 mm qui a été utilisé à la saturation des argiles superficielles gonflantes et au remplissage des mouilles et lentilles gravillonaires du lit apparent du drain principal.

 $\frac{\text{Crue du } 21-09-77}{\text{crue du } 21-09-77}$: la précipitation (41,0 mm) recueillie en quatre épisodes, survient en milieu de saison des pluies, avec un indice d'humidité moyen (IH = 34 mm).

La lame ruisselée (17,8 mm) correspond à un coefficient de ruissellement de 43 %. Le déficit de ruissellement (23,2 mm) est pratiquement utilisé à la saturation des formations perméables de surface du bassin, alors que l'on peut considérer que le magasin du lit apparent est déjà rempli.

Crue du 12-12-75 : la précipitation (41,3 mm) recueillie en 75 minutes survient en fin de saison des pluies avec un indice d'humidité relativement élevé ($I_{\rm H}$ = 48). Les couches superficielles du bassin sont partiellement humectées et le complément jusqu'à saturation correspond au déficit de ruissellement constaté ($D_{\rm R}$ = 13 mm).

La lame ruisselée (H_R = 27,9 mm) correspond à un coefficient de ruissellement de 68 %.

Pour ces trois crues, on observe donc, avec une précipitation de 40 à 42 mm, une augmentation comparable du coefficient de ruissellement (20, 43 et 68 %) et de l'indice d'humidité (16, 34 et 48 mm).

Crue du 07-12-76 : il s'agit de la plus forte crue observée sur le bassin. La précipitation est estimée à 105 mm en 6 heures (récurrence 3 à 4 ans). La crue résultante présente trois pointes dont le débit maximal de 24,4 m3/s. La lame ruisselée est de 95,4 mm. Le déficit de ruissellement (9,6 mm) correspond au complément exigé pour la saturation des formations perméables de surface du bassin pour un indice d'humidité initial relativement élevé (43 mm). Le coefficient de ruissellement est élevé (91 %) pour une précipitation de récurrence modérée et atteste l'imperméabilité notable du bassin.

1.1.2. Précipitation limite :

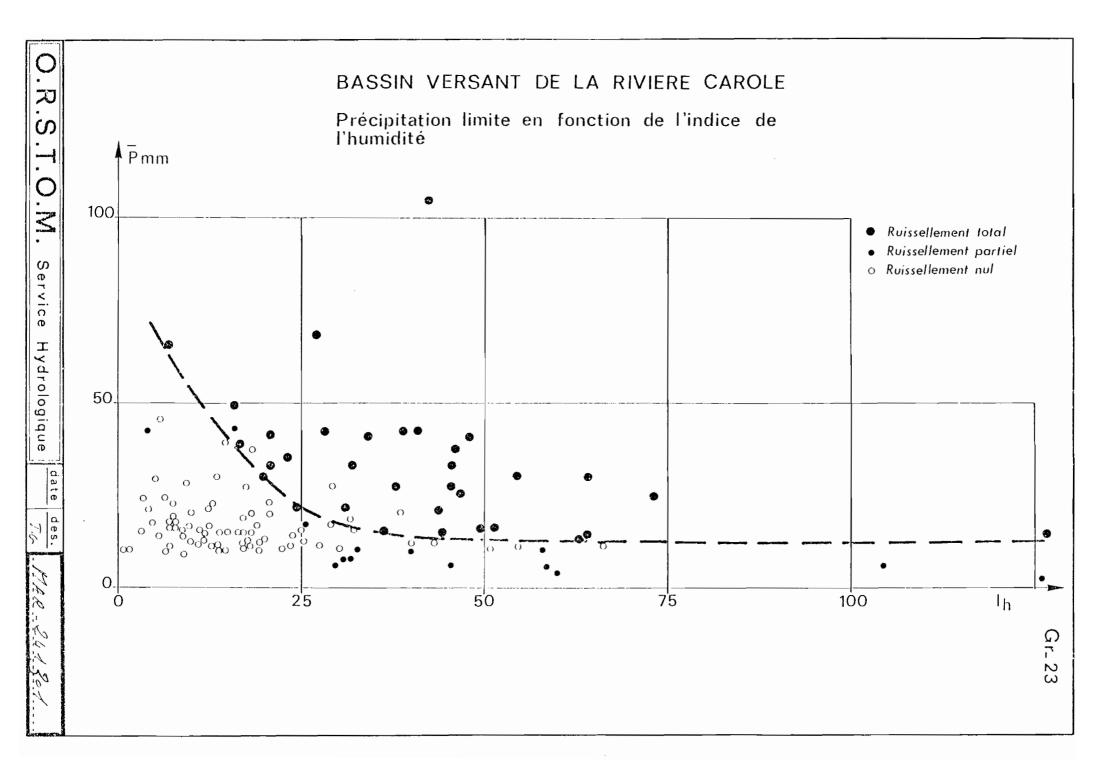
L'indice d'humidité retenu, après essais, pour le bassin de la CAROLE a pour équation :

$$IH_{i} = P_{i-1} + IH_{i-1} = -0.3t$$
 (t en jours).

Cet indice relativement rapide, ce qui correspond à la nature du bassin (couches perméables superficielles peu épaisses), varie de 10 à 1 en 7,5 jours (en l'absence de précipitations intermédiaires).

La courbe de précipitation limite séparé, sur un graphique où (les précipitations P étant en ordonnées, l'indice \mathbf{I}_{H} en abscisse) sont reportés les points représentatifs des couples P, \mathbf{I}_{H} , les précipitations ayant provoqué un ruissellement total sur le bassin des précipitations n'ayant provoqué aucune réaction de ruissellement ou bien un ruissellement faible et partiel.

Cette courbe comporte une branche à décroissance rapide (0 \leq I $_{\rm H} \leq$ 30) correspondant à l'abaissement du seuil de réaction du bassin avec l'accroissement des conditions initiales d'humectation et une branche pratiquement horizontale (I $_{\rm H} >$ 30) correspondant à la stabilisation du seuil de réaction pour une humectation croissante.


Pour I_H = 30 (indice moyen), les précipitations doivent dépasser 18 à 20 mm pour provoquer une réaction totale du bassin (graph. n° 23).

1.1.3. Etude de la lame ruisselée- Courbe de réponse du bassin

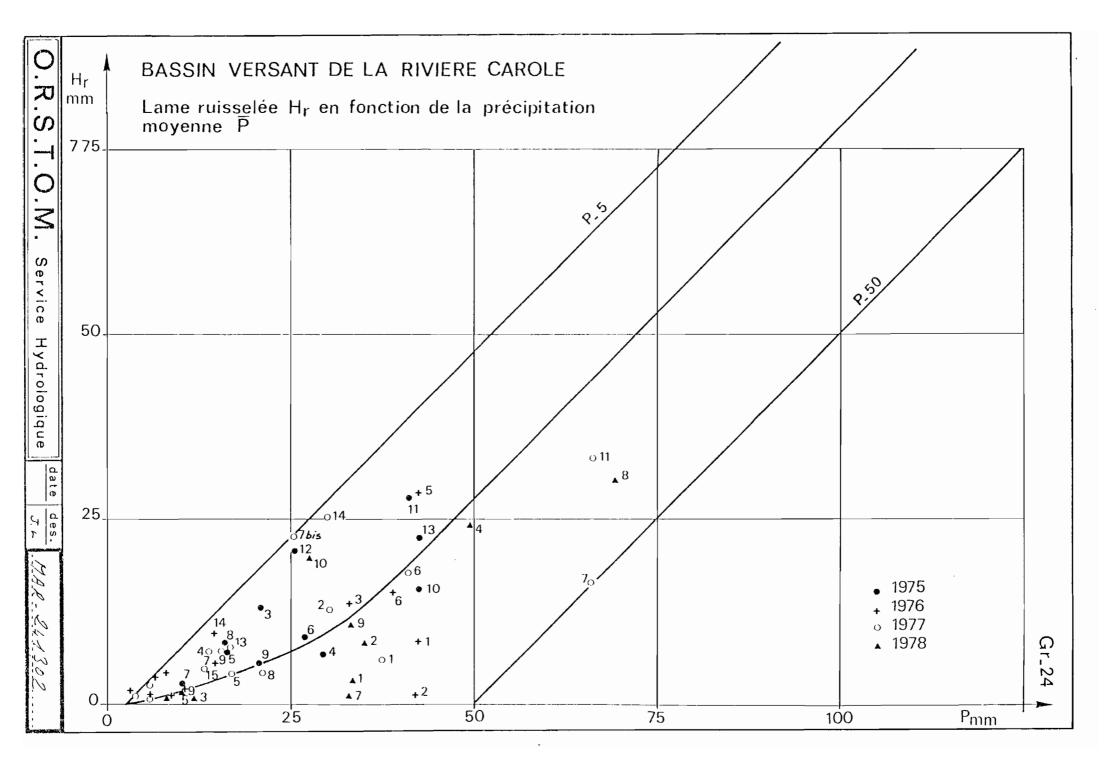
Les points représentatifs des évènements averse-crue sont reportés sur le graphique n° 24 (P en abcisse - H_R en ordonnée). Ces points s'inscrivent entre les rails P - 5 et P - 50 avec une large dispersion.

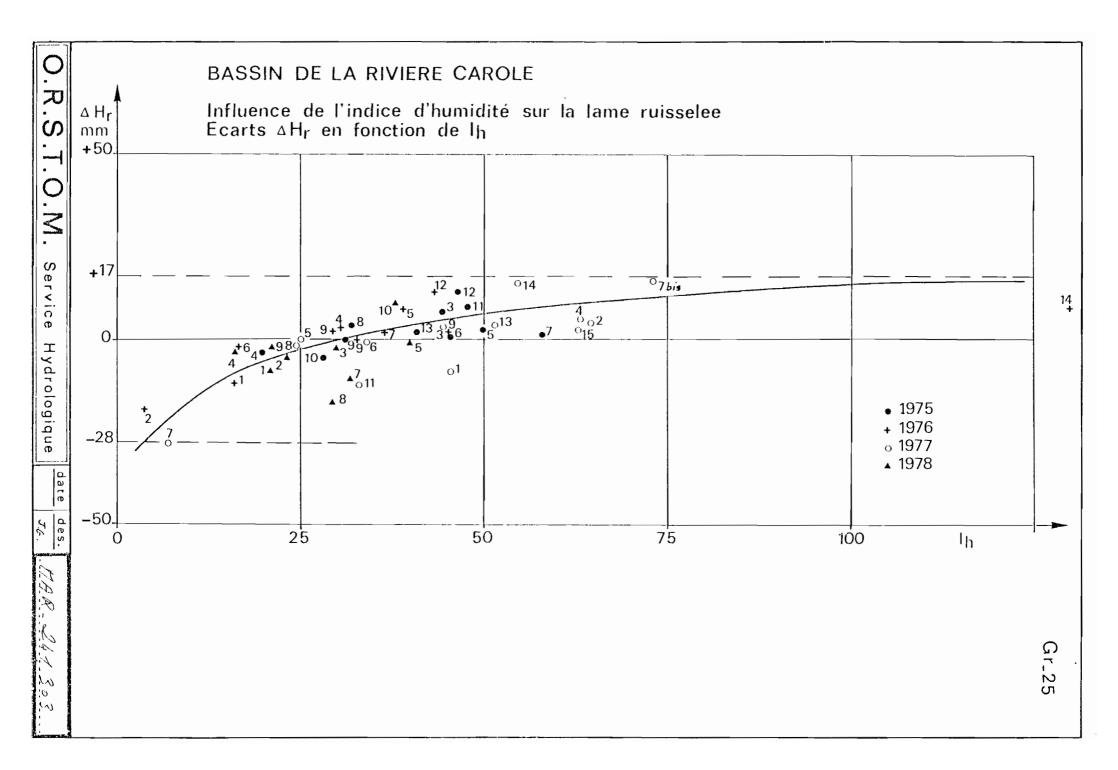
Le déficit inférieure (5 mm) correspond à la partie irréductible de la précipitation pour les meilleures conditions de saturation préalable (quasi-saturation des formations argileuses superficielles).

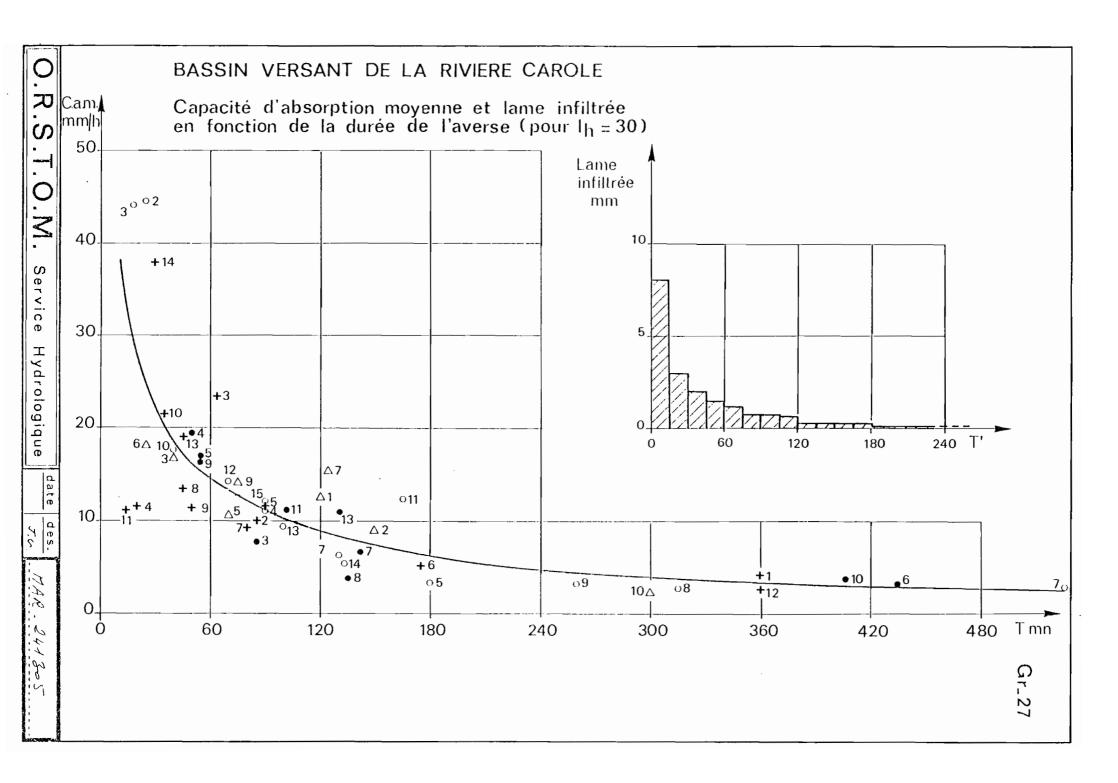
Le déficit supérieur (50 mm) correspond aux précipitations survenues au début de saison des pluies. Ce déficit est utilisé à l'humectation des formations superficielles du bassin et des lentilles perméables du lit, au remplissage des mouilles dans le lit apparent et au stockage provisoire dans les barrages naturels du lit apparent. La vidange retardée de ces barrages survenant après la fin apparente de la crue n'est pas comptabilisée dans l'évaluation de la lame ruisselée.

Les écarts à la courbe moyenne qui peut être tracée sont reportés en fonction de l'indice d'humidité I_H (graph. n° 25). La courbe moyenne Δ H_R = $f(I_H)$ s'inscrit entre les valeurs Δ H_R = - 28 mm (déficit pour les indices très faibles de début de saison des pluies) et Δ H_R = + 17 mm (humectation partielle des formations de surface au bassin).

La courbe $H_R = F(P)$ après correction (pour $I_H = 30$) s'inscrit entre les rails P-12 et P-32. La réduction de la dispersion est sensible mais les écarts à la courbe moyenne P-22 (pour P>35 mm) restent importants. Ces écarts peuvent être attribués :


- aux erreurs par défaut ou excès sur la détermination de la précipitation moyenne sur le bassin. La moyenne des précipitations mesurées sur les postes PEI et PEII qui diffèrent parfois de 20 à 30 % n'est qu'une approximation de la précipitation moyenne réelle.
- aux erreurs par défaut ou excès sur la détermination de la valeur de la lame ruisselée : imprécision du tarage - imprécision sur la fin de la crue due à la nature du lit apparent.
- et principalement à la non prise en considération de la distribution des tranches de l'averse pour un total P donné. Les précipitations ne comportant qu'un seul corps groupé provoquent des crues plus importantes que les précipitations de longue durée réparties en plusieurs corps d'averse.


La courbe résultante (gr. n° 26) fournit cependant une estimation correcte de la lame ruisselée moyenne pour une précipitation donnée – dans des conditions initiales d'humectation moyenne ($I_H = 30$):


P mm	H _R mm	K _r %
25	7,5	30,0
50	28	56,0
75	53	70,7
100	78	78,0
		L

Il est possible d'étudier l'évolution de la capacité d'absorption moyenne (en mm/h) et de la lame infiltrée en analysant les variations du déficit de ruissellement en fonction de la durée de la précipitation.

Ces tableaux XL à XLII présentent pour les principales crues observées les valeurs suivantes :

Colonne 3 : indice d'humidité initial

4 : déficit de ruissellement D_r

5 : déficit de ruissellement D' $_{\rm r}$ corrigé

pour l'indice $I_H = 30$ moyen

6 : durée de la précipitation : d

7 : capacité d'absorption moyenne (mm/h)

$$C_{am} = (D'_r/d) * 60$$

Reportés sur le graphique n° 27, les points représentatifs des couples (C_{am} en ordonnée, d en abcisse) permettent de tracer une courbe moyenne de variation de la capacité d'absorption d'où l'on extrait les valeurs des tranches de lame infiltrée pour différentes durées de l'averse.

Par exemple, pour une précipitation de 2 heures (120 minutes) la capacité d'absorption est de 9 mm/h, soit 18 mm de lame infiltrée ainsi répartie :

lère 2ème 3ème 4ème 5ème	tranche " "	de "	15	minutes " "	8 3 2 1,5 1,2	
6ème 7ème 8ème	11 11	11	14	11 11 11	0,8 0,8 0,7	mm mm
		•			18.0	mm

1.1.4. Forme des crues - Hydrogramme représentatif :

La forme des crues est représentée par l'hydrogramme, séquence des débits successivement observés à la station de contrôle du bassin entre le début et la fin du ruissellement. A partir d'un échantillon suffisant d'averses-crues, il est possible de procéder à une analyse dont l'objectif est d'obtenir une représentation des caractéristiques moyennes de la forme des crues du bassin.

La méthode consiste à ne retenir que les crues simples, dites unitaires, provoquée par une averse homogène de faible durée mais ruisselant sur la totalité de l'aire du bassin. Un hydrogramme unitaire type est ensuite retenu à partir duquel, par affinité, translation et composition, on déduit, du hyétogramme d'une averse donnée, l'hydrogramme de la crue résultante.

Ceci exige cependant que l'on puisse disposer de crues provoquées par des averses de durée suffisamment courte pour qu'elle soit nettement inférieure au temps de montée de la crue résultante. Cette condition n'est pratiquement jamais réalisée sur les bassins de superficie réduite où le temps de concentration est généralement inférieur à la durée moyenne des averses les plus simples.

Pour la CAROLE, nous utiliserons donc les crues de forme simple mais non unitaire, provoquées par des averses dont la durée utile ne dépasse pas les temps de montée les plus brefs observés sur le bassin 30 minutes environ. Ces crues peuvent être considérées comme formées de deux hydrogrammes unitaires dont les caractéristiques peuvent être facilement calculées.

Crue n° 1 : 21-10-75

$$\bar{P}$$
 = 21,0 mm H_R = 13,0 mm Q_{MAXR} = 2,41 m³/s rapport de forme 0,185

Temps de montée : 35 minutes, durée : 17 heures.

L'averse est composée de deux tranches utiles de 15 minutes provoquant les crues ${\rm HR}_1$ = 9 mm et ${\rm HR}_2$ = 4 mm.

Le rapport de forme simple est R = $\frac{1.9}{9}$ = $\frac{0.85}{4}$ = 0,215.

 $\frac{\text{Crue n} \circ 2}{P} = 33,0 \text{ mm H}_{R} = 13,4 \text{ mm } Q_{MAXR} = 3,3 \text{ m}^3/\text{s}$ rapport de forme 0,25

Temps de montée : 27 minutes, durée : 18 heures

L'averse est composée de deux tranches principales de 15 minutes provoquent les crues $HR_1 = 3.0 \text{ mm}$ et $HR_2 = 8.5 \text{ mm}$.

Le rapport de forme simple est : $R = \frac{0.84}{3} = \frac{2.38}{8.5} = 0.28$.

 $\frac{\text{Crue n}^{\circ} \ 3}{\text{P}} = 14,5 \text{ mm H}_{\text{R}} = 9,5 \text{ mm Q}_{\text{MR}} = 4,15$ rapport de forme = 0,44

Temps de montée : 33 minutes, durée : 3 h 50.

Il s'agit d'une crue de forme plus aigüe que la moyenne survenue immédiatement après la très forte crue du 7-12-76 et bénéficiant de conditions exceptionnelles de concentration.

> $\underline{\text{Crue n° 4}}$: 23-08-77 \overline{P} = 30,3 mm H_R = 12,8 mm Q_{MAXR} = 3,04 m³/s rapport de forme = 0,24

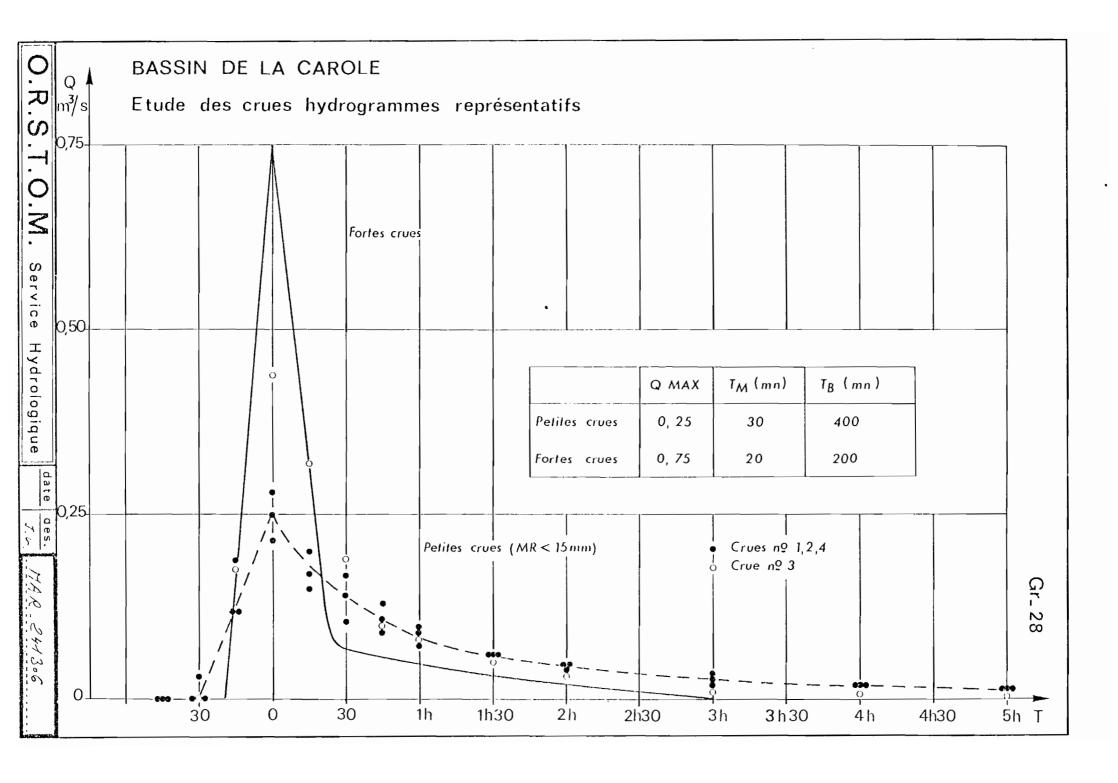
Temps de montée : 35 minutes, durée : 13 h 10

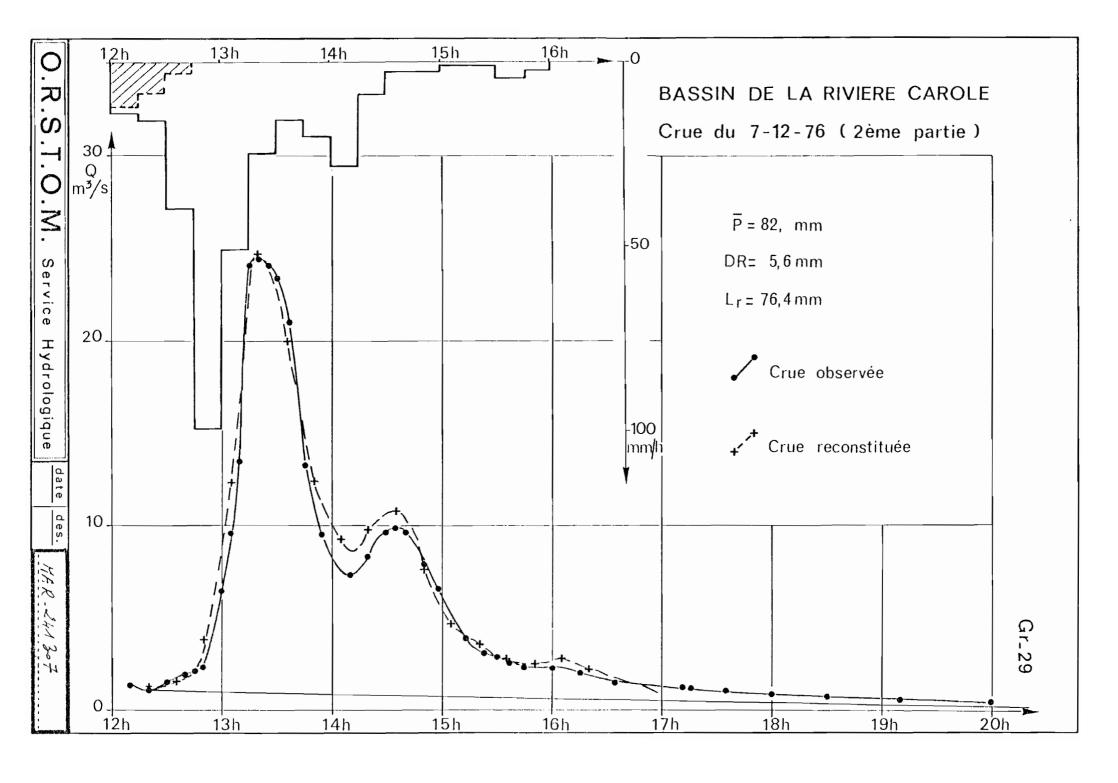
Deux tranches d'averse de 19 minutes $HR_1 = 10.8 HR_2 = 2$.

Rapportées à une lame de $1\,\text{mm}$ (1 463 m3), les hydrogrammes des crues 1, 2 et 4 permettent de définir la séquence des débits de l'hydrogramme représentatif (graph. n° 28) :

t	- 45	- 30	- 15	0	+ 15	+ 30	+ 45	+ 1h	+ 90	+ 2h00	+ 3h	+ 4h	+ 5h00
1	0	0,03	0,12	0,215	0,14	0,105	0,09	0,075	0,06	0,045	0,03	0,02	0,015
2	0	0	0,12	0,28	0,20	0,17	0,13	0,10	0,06	0,04	0,02	0,02	0,015
4	0	0	0,19	0,25	0,17	0,14	0,11	0,09	0,06	0,045	0,025	0,02	0,015
M	0	0	0,12	0,25	0,18	0,14	0,11	0,085	0,06	0,045	0,03	0,02	0,015

L'hydrogramme-type obtenu ne permet de reconstituer que les crues faibles à moyenne (H $_{\rm R}$ 15 mm).


Pour les crues plus fortes, cet hydrogramme n'est pas assez aigü en raison des modifications des conditions d'écoulement signalées dans le paragraphe I.1.2.


Nous avons dû pour obtenir l'hydrogramme "unitaire" relatif aux fortes crues, utiliser la très forte crue du 7 décembre 1976 (2ème partie). Cette crue de forme complexe est provoquée par une averse de longue durée. Nous avons individualisé 16 crues élémentaires correspondant à 16 tranches d'averse de 15 minutes.

Chacun de ces hydrogrammes a une forme simple ainsi composée (pour H_{R} = 1 mm).

t	- 30	- 15	0	+ 15	+ 30	+ 45	+ 1h00	+ 90	+ 2h	+ 3h
q	0	0,15	0,75	0,32	0,07	0,06	0,05	0,05	0,02	0

En recomposant à partir du hyétogramme de l'averse du 7 décembre, les différentes crues afférentes à chaque tranche de précipitation en 15 minutes, nous obtenons la crue globale suivante :

P	3,3	3,3	9,9	24,8	12,7	6,0	3,9	5,0	7,2
HR	0,3	1,8	9,3	24,8	12,7	6,0	3,9	5,0	7,2
Q	0,2	1,4	7,0	18,8	9,5	4,5	2,9	3,7	5,4
Q _T	0,5	2,9	11,3	23,6	19,1	11,5	8,5	8,9	10,1
P	2,2	0,6	0,5	0,3	0,3	1,1	0,5		
H _R	2,2	0,6	0,5	0,3	0,3	1,1	0,5		
Q	1,6	0,4	0,4	0,2	0,2	0,8	0,4		
Q _T	6,8	3,9	2,9	2,2	1,9	2,2	1,6		

Q : débit de pointe de la crue élémentaire Q = $0.75 \, H_{R}$

 Q_{T} : débit composé

La crue reconstituée (graph. n° 29) est voisine de la crue réellement observée et le modèle adopté est satisfaisant.

1.1.5. Crue décennale :

Si l'on dispose de nombreuses années d'observations et d'une quantité suffisante de crues, il est possible d'adapter aux échantillons de débits maximaux et de lames ruisselées des lois statistiques qui fournissent, pour une récurrence donnée, le débit maximal de la lame ruisselée et la valeur de la lame ruisselée.

Lorsque le nombre des crues observées est insuffisant (étude de courte durée sur un bassin), les caractéristiques de la crue de récurrence donnée sont établies à partir de la précipitation de même récurrence au moyen du modèle de transfert averse-crue défini par l'analyse.

Nous appellerons donc crue "décennale" la crue produite par l'averse dont les caractéristiques d'intensité-durée ont été établies pour la récurrence décennale (cf. supra paragraphe I.2.1.5.). Le modèle de transfert est déterminé par la courbe de réponse du bassin (Loi $H_R = f(P)$, la courbe d'évolution de la capacité d'absorption moyenne et l'hydrogramme-type de la crue unitaire.

La précipitation génératrice a pour valeur : 147 mm en dix heures dont 122 mm de pluie utile (somme des tranches d'averses pouvant ruisseler) en cinq heures. Nous admettrons, pour ce bassin ainsi que pour les suivants, que le coefficient d'abattement (rapport de la pluie moyenne sur le bassin à la précipitation ponctuelle de même récurrence) est égal à l'unité (abattement nul) en raison de l'exiguïté du bassin qui peut être inscrit dans un cercle de 1 km de rayon.

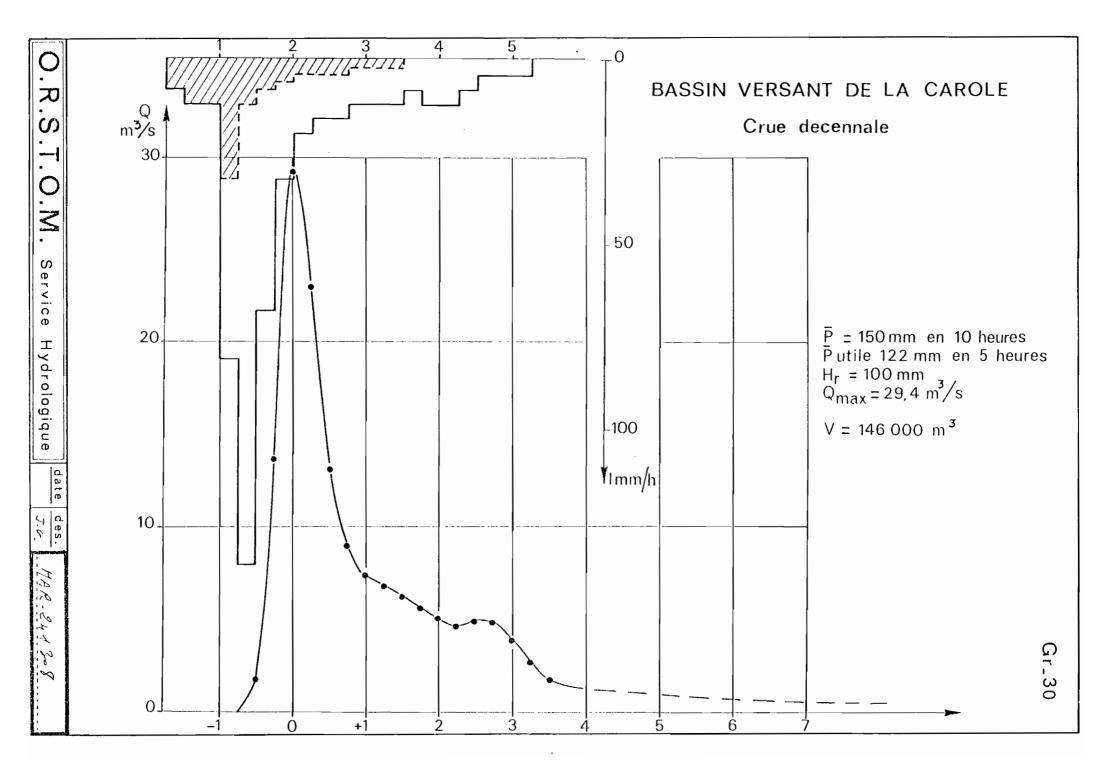
A partir de la courbe d'intensité-durée, il est possible d'établir par juxtaposition différentes formes de hyétogramme. Nous avons retenu la composition la plus favorable au ruissellement.

La lame ruisselée pour une précipitation de 122 mm est de 100 mm (pour $I_{\rm H}$ = 30, indice d'humidité moyen).

Le déficit de ruissellement (22 mm) est réparti sur les premières tranches de l'averse en se basant sur la courbe de variation de la capacité d'absorption moyenne.

A chaque tranche d'averse est ainsi attribué une lame ruisselée et, en utilisant l'hydrogramme-type, une crue simple. La composition des crues successives fournit l'hydrogramme global de la crue "decennale".

Les résultats de cette opération sont présentés dans le tableau suivant et le graphique correspondant (n° 30):


Pmin	2,0	3,0	3,0	20,2	34,1	17,0	8,0	5,0	4,0	4,0	3,0	3,0
O _R mm	(2,0)	(3,0)	(3,0)	3,2	3,0	2,0	1,5	1,0	1,0	1,0	0,5	0,5
H _R mm	0	0	0	12,0	31,1	15,0	6,5	4,0	3,0	3,0	2,5	2,5
Q _{max}	0	0	0	9,0	23,3	11,3	4,9	3,0	2,2	2,2	1,9	1,9
Q _T	0	o	1,3	13,7	29,4	23,0	13,2	9,1	7,4	6,9	6,3	5,7
P mm	3,0	2,0	3,0	3,0	2,0	1,0	1,0	1,0				
D _R mm	0,5	0	0	0	0	0	0	ŋ	Q _{max}	: débi	it max	imal de
H _R mm	2,5	2,0	3,0	3,0	2,0	1,0	1,0	1,0	la crue simple- Q _T débit composé			
Q _{max}	1,9	1,5	2,2	2,2	1,5	0,8	0,8	0,8				

Les caractéristiques générales de la crue décennale

sont donc :

 \overline{P} : 147 mm en 10 heures \overline{P} utile : 122 mm en 5 heures

H_R : 100 mm Q_{MAXR} : 29,4 m3/s V : 146 000 m3

Les caractéristiques de la crue annuelle peuvent être établies de la même façon et sont les suivantes :

Putile: 80 mm en 8 heures: 60 mm en 3 heures

H_R : 38 mm Q_{MAXR} : 10 m3/s V : 55 600 m3

Les caractéristiques des crues annuelle**s** et décennales ne s'écartent pas sensiblement des résultats obtenus sur les bassins étudiés dans la Synthèse des ressources en eau de surface de la MARTINIQUE.

En extrapolant les courbes de l'abaque de détermination du débit de pointe de crue (graphique 88, page 130) de l'ouvrage cité, nous aurions obtenu, pour un bassin de 1,46 km2, les valeurs suivantes :

Crue annuelle 6,55 m3/s.km2 soit 9,6 m3/s Crue décennale 18,3 m3/s.km2 soit 26,8 m3/s

Le débit décennal estimé pour la CAROLE est légèrement supérieur à celui de l'abaque (10 %). La méthodologie utilisée est différente mais il est possible d'y voir l'influence, dans une zone à pluviométrie moins élevée, d'une végétation beaucoup moins dense que dans la région des PITONS ce qui favorise le ruissellement et la concentration des débits (pointe de crue plus aigüe).

Les débits de pointe de récurrence cinquantennale et centennale peuvent être ainsi estimés, pour le bassin de la CAROLE, à 45 et 55~m3/s.

Ces estimations comportent évidemment une certaine marge d'imprécision. Cependant, il est probable qu'il ne s'agit pas de sousestimations pour les raisons suivantes :

- la loi intensité-durée fréquence utilisée a été calculée à partir de postes situés dans des régions proches de la limite de validité (pluviométrie annuelle inférieure à 2 500 mm). Pour la CAROLE, où la pluviométrie annuelle est proche de 1 500 mm, il est probable que les intensités des averses, à récurrence égale, sont moins élevées,
- le hyétogramme utilisé correspond à l'agencement des tranches d'averse le plus favorable au ruissellement ce qui tend à maximiser le calcul du débit de pointe.

III.1.2. Bassin de la rivière VAL D'OR :

1.2.1. Caractéristiques générales des crues :

Les tableaux XLIV à XLVI présentent les caractéristiques des crues observées de 1975 à 1978 (ler semestre).

Indice d'humidité :

L'indice d'humidité est de forme $IH_i = P_{i-1}^{+IH}_{i-1} e^{-kt}$.

Après essais, nous avons retenu pour k la valeur 0,18, ce qui correspond à une décroissance de 10 à 1 en 12,8 jours en l'absence de précipitations intermédiaires.

Cet indice, plus lent que celui de la CAROLE, traduit les caractéristiques du bassin : présence de bas-fonds à faible pente avec horizons relativement épais de sols assez perméables.

Lames ruisselées :

Le décompte des lames observées est le suivant :

1		,	•	·	`	, ,
H	>1 mm	> 5	> 10	> 20	> 30	> 50
1975	21	12	9	6	0	
1976	23	13	8	2	1	1 *
1977	23	15	8	2	1	0
Total	67	40	25	10	2	1
%		60	37	15	3	-

* 108 mm le 7-12-76

On observe une moyenne de 22 crues (>1 mm) par an (contre 12 pour la CAROLE) dont 8 supérieures à 10 mm. La réponse aux faibles précipitations est meilleure que sur le bassin précédent.

 $\frac{\text{Coefficients de ruissellement}}{\text{coefficients K}_{R}}: \text{Pour 80 \% des crues, les coefficients K}_{R} \text{ varient de 20 à 60 \% (avec des coefficients proches de 75 \% pour les meilleures conditions initiales).}$

Temps de montée : Pour les crues de forme simple le temps de montée est compris entre 60 et 90 minutes. Des durées supérieures sont observées mais correspondent en réalité à l'intervalle de temps entre le début de la crue et le débit maximal de la plus importante des crues simples composant la crue complexe.

Durée : Pour les crues simples, la durée de la crue est comprise entre 7 et 10 heures.

 $\frac{\text{Coefficients de forme}}{\text{coefficients concernent les crues de forme simple}}$ (1 seule pointe de crue).

<u>Crues caractéristiques</u> : La réponse au ruissellement du bassin pour une précipitation donnée dépend de l'état initial d'humectation du sol.

Les trois crues suivantes montrent l'évolution du coefficient de ruissellement avec la situation de l'indice initial.

Crue du 2 septembre 1976 :

La précipitation est enregistrée au début de la saison des pluies avec des sols encore relativement secs.

$$\bar{P}$$
 = 56,8 mm H_R = 5,9 mm D_R = 50,9 mm
Pour I_H = 25 K_R = 10 %

Crue du 9 décembre 1975 :

En fin de saison des pluies

$$\overline{P}$$
 = 68,5 mm H_R = 29,5 mm D_R = 39,0 mm
Pour I_H = 42 (indice moyen) K_R = 43 %.

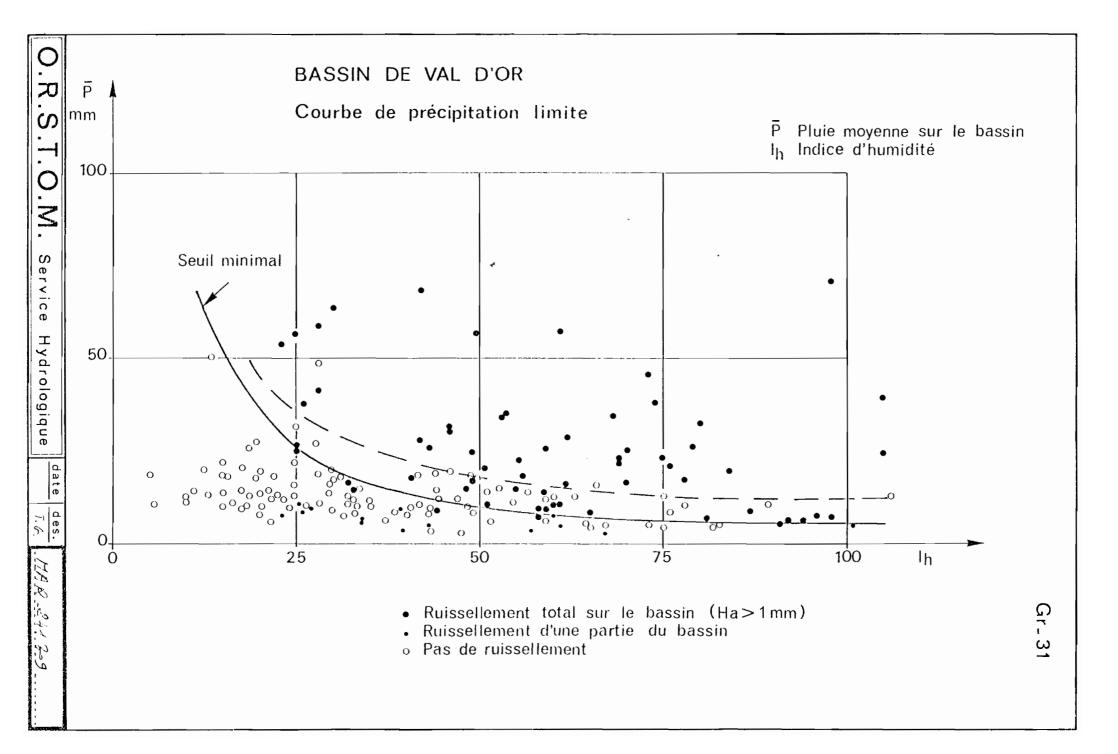
Crue du 3 novembre 1977 :

Au coeur de la saison des pluies :

$$\bar{P}$$
 = 70,8 mm H_R = 47,0 = D_R = 23,8 mm.

Les précipitations antérieures relativement proches portent l'indice : I_H à une valeur élevée : 98, K_R = 66 %.

Crue du 7 décembre 1976 :


Il s'agit de la plus importante précipitation observée sur le bassin.

P̄ = 190,8 mm (récurrence trentennale)

La crue est composée de deux crues de forme relativement simple répondant à deux corps d'averse (graph. n° 36). La lame ruisselée est de 108,3 mm (D $_{\rm R}$ = 82,5 mm). L'indice préalable est un peu au-dessus de la moyenne (I $_{\rm H}$ = 67). En dépit de l'importance de la précipitation, de déficit de ruissellement reste élevé et le coefficient de ruissellement relativement modéré (K $_{\rm R}$ = 57 %.

1.2.2. Précipitation limite (graph. n° 31)

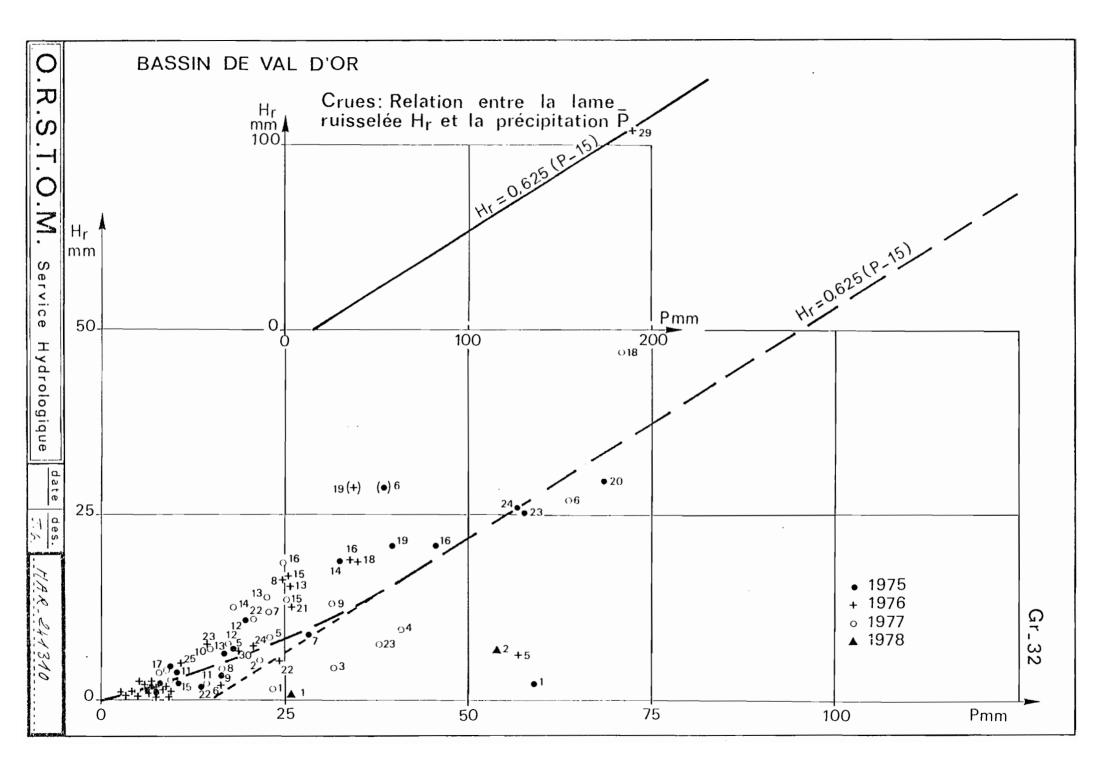
La courbe de précipitation limite décrit assez rapidement jusqu'à I_H = 35, puis avec une pente beaucoup plus faible pour ne se stabiliser que pour les valeurs élevées de I_H (> 85) avec un seuil de 5 mm. Pour la valeur moyenne I_H = 45, le seuil est de 12 mm.

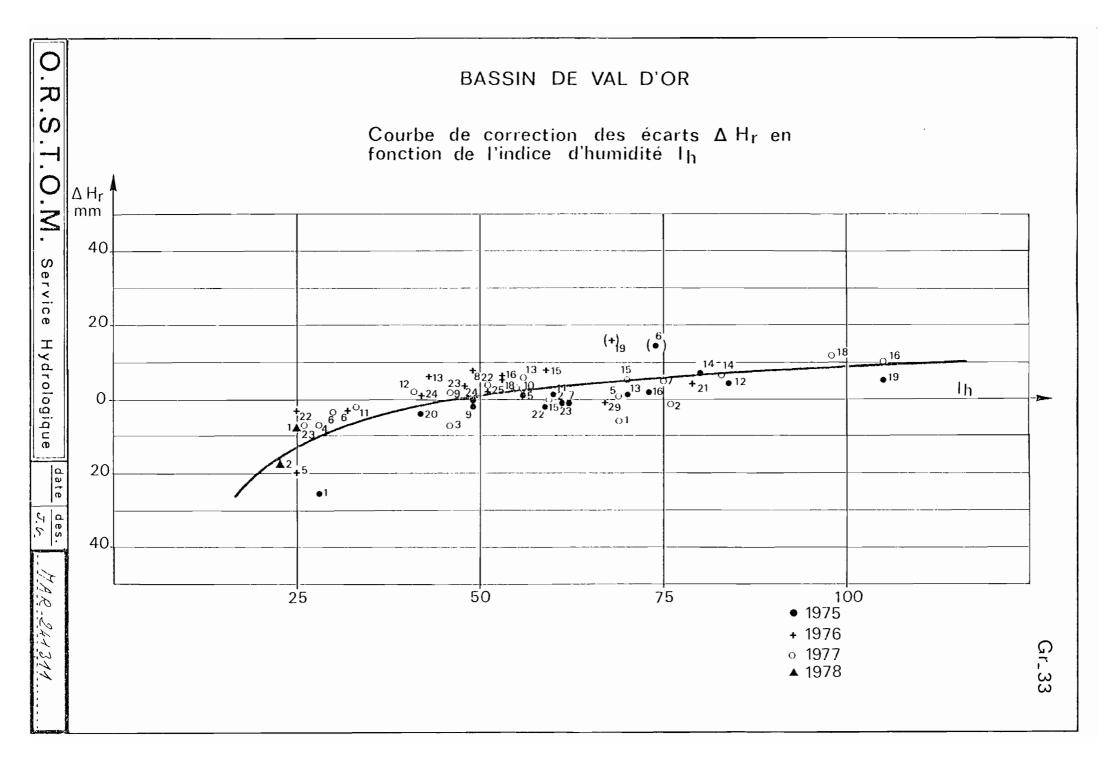
Il s'agit d'un seuil minimal de précipitation, au-dessous duquel, aucune averse ne ruisselle sur la totalité du bassin, mais un certain nombre d'averses situées en dessus de ce seuil ne déclenche pas de ruissellement généralisé probablement en raison de la forme de la précipitation (distribution des intensités).

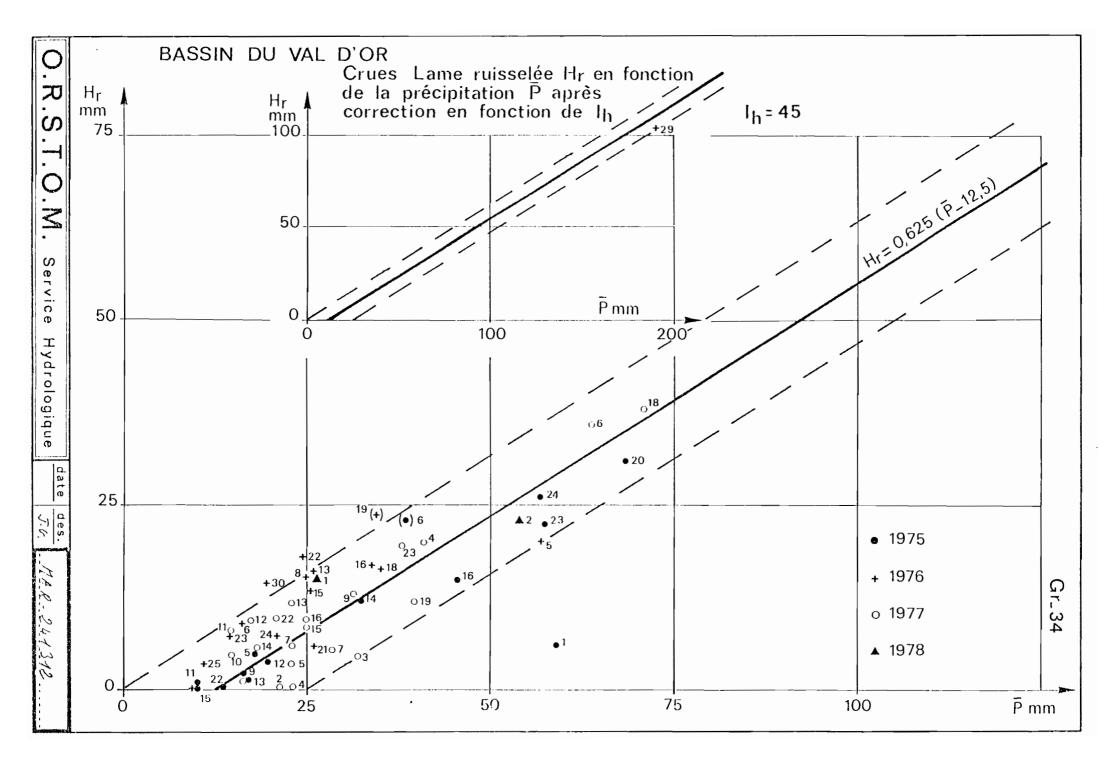
1.2.3. <u>Etude de la lame ruisselée - Courbe de réponse du bassin.</u>

Le report sur un graphique (n° 32) des points représentatifs des évènements averse-crue P précipitation moyenne en abcisse, H_{R} lame:ruisselée en ordonnée montre que ces points se distribuent avec une assez large dispersion autour d'une courbe moyenne.

Une courbe de correction des écarts en fonction de l'indice d'humidité initial (graph. n° 33) permet de réduire la dispersion qui reste cependant appréciable en raison des facteurs déjà signalés plus haut (paragraphe III.1.1.3.) : imprécision sur la précipitation moyenne et la valeur de la lame ruisselée et surtout distribution des intensités et durée de l'averse (forme de la précipitation).


La courbe de réponse résultante (graph. n° 34) permet de dégager les valeurs moyennes de la lame ruisselée pour une précipitation donnée :


P mm	H _R mm	K _R %
25	8,0	32
50	23,5	47
75	39	52
100	55	55
150	86	57

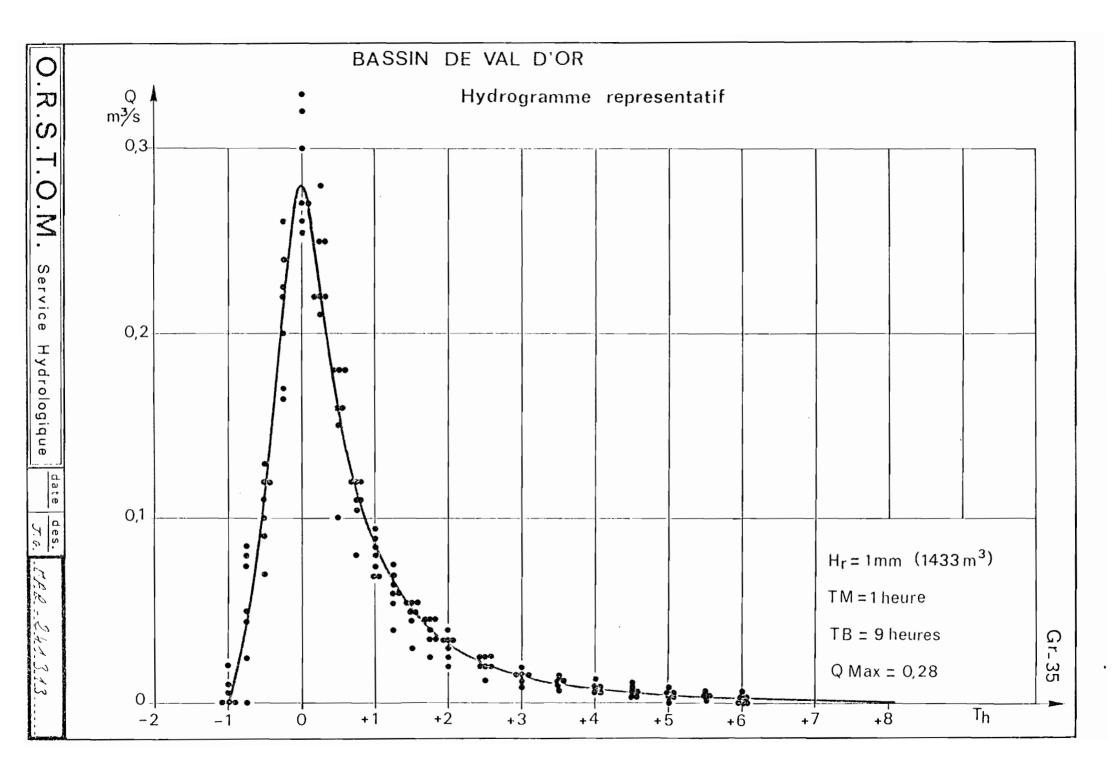

Il est possible de représenter, en simplifiant, la courbe de réponse par une droite d'équation :

$$H_{Q} = 0,625 (P - 12,5)$$

On notera que le seuil de réponse initial est relativement faible (12,5 mm) et traduit une bonne réponse du bassin aux faibles précipitations. Par contre, pour les fortes précipitations, le coefficient de ruissellement ne dépasse pas (pour un indice d'humectation moyen) la valeur $K_{\rm R}$ = 60 %. Ce qui signifie que, dans la plage pourtant large des précipitations observées (0 à 200 mm), il n'est pas possible d'atteindre le seuil supérieur du déficit de ruissellement (courbe de réponse $H_{\rm R}/P$ à pente 1/1).

La précence d'un horizon relativement perméable sur l'ensemble du bassin explique l'importance relative du déficit de ruissellement.

La saturation de cet horizon mobilise une partie notable des précipitations. Après la fin du ruissellement pur, le stock ainsi constitué alimente, par circulation horizontale sur le niveau imperméable situé à 30 ou 40 cm de profondeur, un débit relativement important de quelques dizaines de litre-secondes qui se maintient entre les crues.


Il est possible enfin que l'encombrement du lit apparent par les herbes et les débris végétaux freine les décrues et qu'ainsi, une partie du ruissellement soit retardée et non comptabilisée dans la lame ruisselée.

1.2.4. Forme des crues - Hydrogramme représentatif :

Le temps de montée des crues simples du bassin VAL D'OR étant relativement élevé pour la taille du bassin ($T_{\rm M}$ supérieur à 60 minutes), nous avons pu retenir pour la détermination de l'hydrogramme représentatif du bassin les crues provoquées par des averses d'une durée voisine de 30 minutes (1 tranche de 30 minutes) ainsi que quelques crues provoquées par des averses d'une heure (2 tranches de 30 minutes) lorsque ces crues avaient un temps de montée voisin de l'heure, une forme simple et la première tranche d'averse nettement supérieure à la seconde (coefficient de forme élevé voisin de 0,30°).

Rapportés à une lame de 1 mm, les débits des hydrogrammes "unitaires" ont la valeur suivante (en m3/s) :

date	H _R	- 1h	-45'	-30'	-15'	0	+15'	+30'	÷45'	+ 1h
5-11-75	15,5 + 3,3	0,006	0,05	0,09	0,24	0,30	0,25	0,18	0,105	0,075
18-11-75	18,0 + 2,2	0	0,08	0,12	0,165	0,32	0,28	0,18	0,12	0,07
25-12-75	21,1 + 5,0	_0,01	0,075	0,13	0,22	0,27	0,21	0,15	0,11	0,08
02-11-75	7,3 + 3,5	0,02	0,085	0,11	0,26	0,33	0,22	0,10	0,08	0,07
27-10-76	15,2	0	0,045	0,12	0,20	0,255	0,22	0,16	0,11	0,09
30 - 10 - 76	16,7	0	0	0,07	0,225	0,27	0,25	0,18	0,12	0,085
14-11-77	10,8	0	0,025	0,10	0,17	0,26	0,22	0,16	0,12	0,095
médiane		0	0,05	0,11	0,22	0,28	0,22	0,16	0,11	0,08

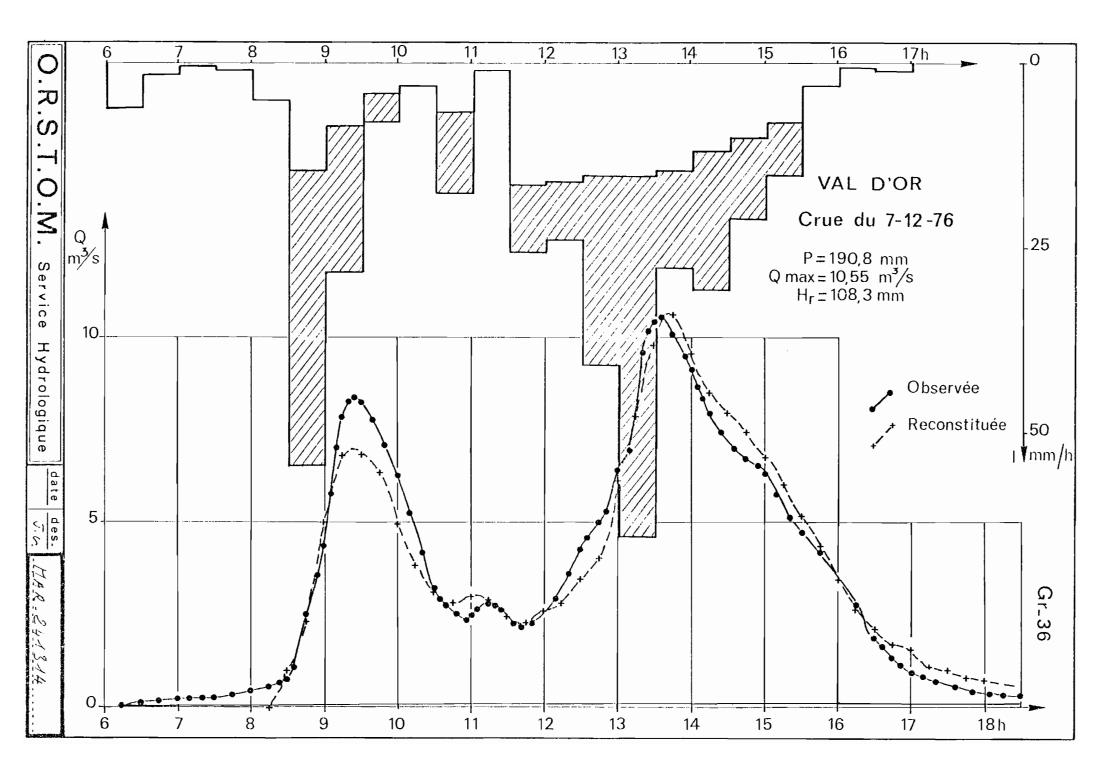
date	+-75'	+ 90'	+105'	+ 2h	+2h30	+3h00	+3h30	+4h00	+4h30	+5h00	+6h00
5-11-75	0,055	0,045	0,035	0,025	(0,02)	-		-	-	-	-
18-11-75	0,04	0,03	0,025	0,02	0,012	0,009	0,007	0,006	0,004	0,002	0
25-12-75	0,07	0,05	0,04	0,035	0,025	0,012	0,008	0,006	0,004	0,003	0
02-11-75	0,06	0,05	0,035	0,03	0,02	0,015	0,012	0,01	0,008	0,004	0
27-10-76	0,07	0,055	0,045	0,04	0,025	0,015	0,012	0,009	0,007	0,005	0,003
30-10-76	0,065	0,055	0,045	0,035	0,02	0,015	0,01	0,008	0,006	0,005	0,003
14-11-77	0,075	0,055	0,045	0,035	0,025	0,02	0,015	0,012	0,01	0,008	0,006
médiane	0,065	0,05	0,04	0,03	0,02	0,015	0,01	0,009	0,008	0,006	0,003

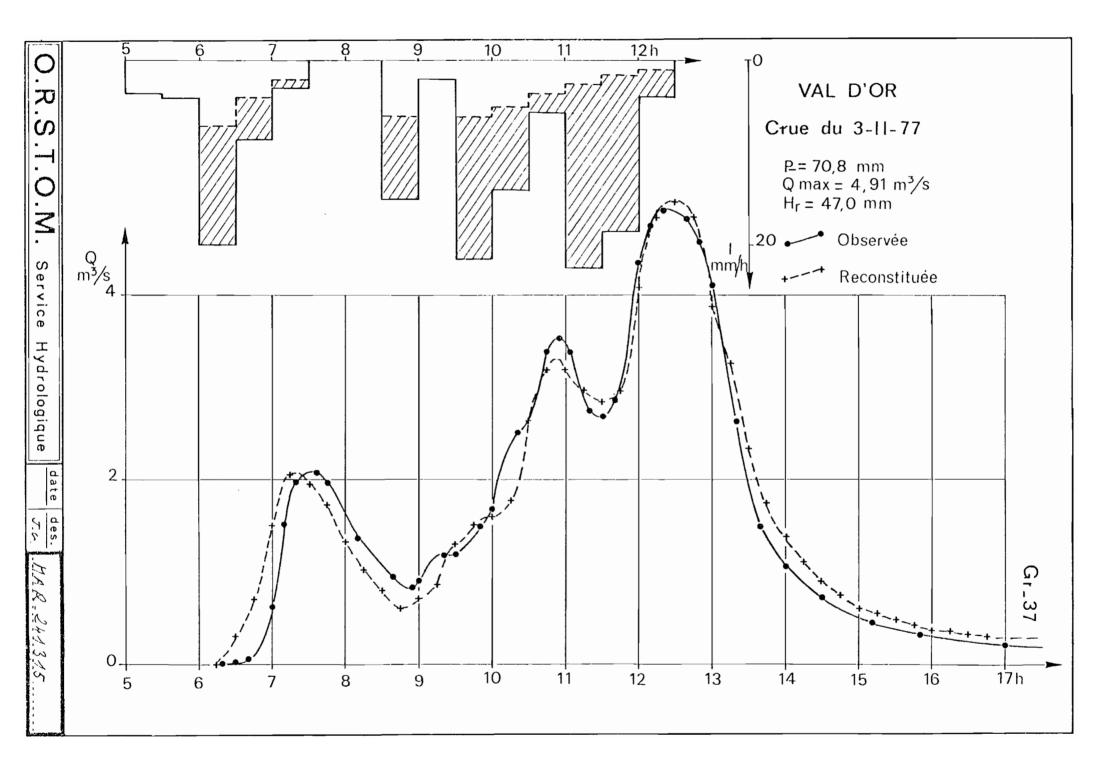
L'hydrogramme unitaire type du bassin à les caractéristiques générales suivantes (graph. n° 35) :

$$H_R = 1 \text{ mm Q}_{max} = 0.28 \text{ m3/s}$$
 $T_M = 1 \text{ heure } T_B = 9 \text{ heures}$

La reconstitution des crues complexes du 3 novembre 1977 et du 7 décembre 1976 permet de vérifier la validité de cet hydrogramme pour la composition des fortes crues.

Crue du 7 décembre 1976 (graph. n° 36)


P	3,5	0,8	0,2	0,5	2,5	27,3	14,2	4,0	1,5	8,8	0,5	12,8	12,0
D _R	•	•	•		-	7,3	4,2	2,0	(1,5)	3,4	(0,5)	8,3	8,0
HR	-	-	-	-	-	20,0	10,0	2,0	0	5,4	0	4,5	4,0
Q _{max}						5,60	2,80	0,56	0	1,26	0	1,26	1,12
Q _T		0	1,00	2,20	4,90	6,70	6,22	3,76	2,71	2,77	2,16	2,69	3,92


 \bar{P} : tranches d'averse en 30 minutes $D_{\bar{R}}$: déficit de ruissellement

 H_R : lame ruisselée Q_{max} : débit maximal de l'hydrogramme partiel

Q_T : débit composé

P	20,4	32,0	13,8	15,3	10,5	7,5	1,5	0,3	0,5
D _R	7,5	7,5	7,3	5,8	5,0	4,0	(1,5)	(0,3)	(0,5)
HR	12.,9	24,5	6,5	9,5	5,5	3,5	0	0	0
Q _{max}	3,61	6,86	1,82	2,66	1,54	0,98	0.	0	0
Q _{TOT}	7,75	10,5	8,40	7,33	5,89	4,18	2,51	1,58	1,06

Crue du 3 novembre 1977 (graphique n° 37) :

La même opération effectuée pour la crue du 3 novembre 1977 fournit également une reconstitution satisfaisante.

$$\bar{P} = 70.8 \text{ mm}$$
 H_R = 47.0 mm

	Q ^{max} observé	Q ^{max} calculé
lère pointe	2,08 m3/s	2,06
2ème pointe	3,52 m3/s	3,30
3ème pointe	4,92 m3/s	5,00

1.2.5. Crue décennale :

L'averse décennale génératrice a pour caractéristiques :

P = 147 mm en 10 heures (dont 122 mm en cinq heures). Le hyétogramme est constitué de tranches de 30 minutes agencées de la façon la plus favorable au ruissellement et en respéctant la courbe d'intensité-durée de récurrence décennale.

La courbe de réponse du bassin fournit, pour l'indice d'humectation moyen I_H = 45, les valeurs de la lame ruisselée H_R = 84 mm en 10 heures (dont 69 mm en cinq heures). Le déficit de ruissellement : 63 mm en 10 heures (dont 53 mm en cinq heures) est réparti de façon analogue aux courbes d'absorption moyenne observées sur les crues reconstituées du 7-12-76 et du 3-11-77.

La crue décennale ainsi calculée a pour caractéristiques :

$$P = 147 \text{ mm}$$
 $H_R = 84 \text{ mm}$
 $V_R = 120 000 \text{ m3}$
 $Q_{MAX} = 14,6 \text{ m3/s}$

L'hydrogramme de cette crue (graph. n° 38) est ainsi définie:

Ē	3,5	6,0	24,8	54,2	9,0	7,0	5,0	5,0	4,0	3,5	3,0	3,0	
DR	(3,5)	(6,0)	14,0	9,5	5,5	4,5	3,5	3,0	2,0	1,5	1,0	1,0	•••
H _R	0	0	10,8	44,7	3,5	2,5	1,5	2,0	2,0	2,0	2,0	2,0	
Q _{MAX}	0	0	3,02	12,52	0,98	0,70	0,42	0,56	0,56	0,56	0,56	0,56	
Q _T		1,19	7,94	14,64	9,27	5,55	3,93	2,96	2,51	2,27	2,02	2,02	

P : tranche d'averse en 30 minutes.

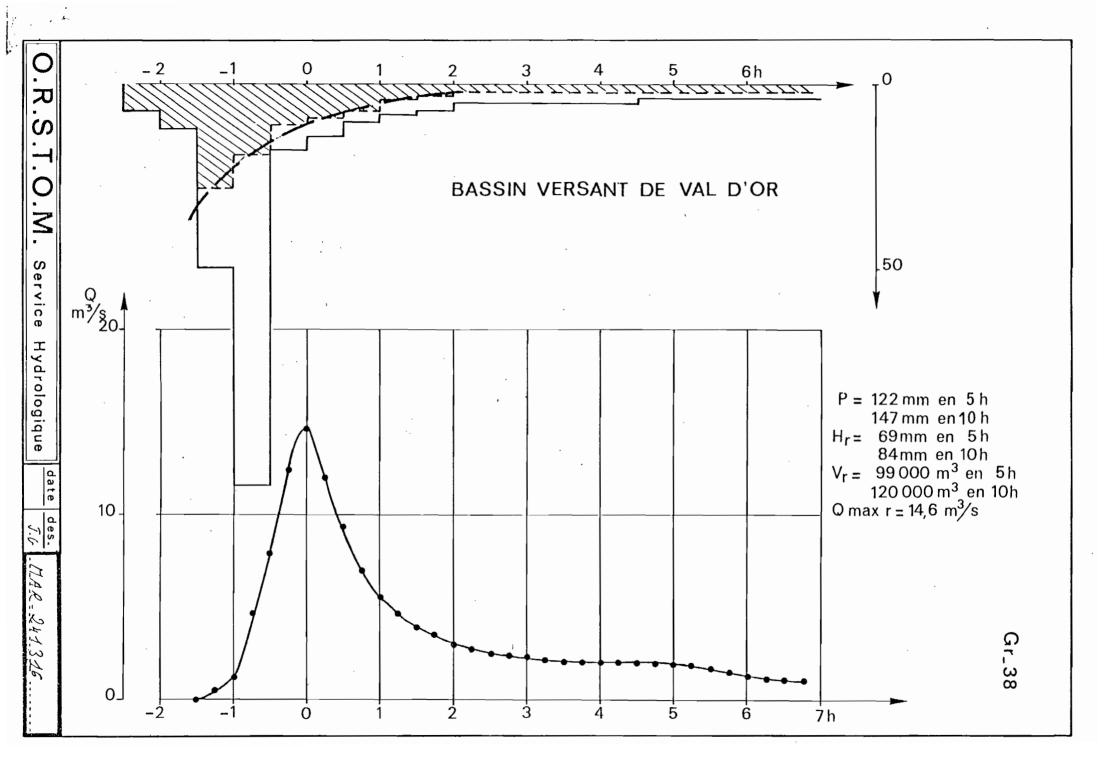
De la même façon, il est possible d'établir les caractéristiques de la crue annuelle :

> \bar{P} : 79 mm en 8 h (69 mm en 5 h) H_O: 42 mm en 3 h (36 mm en 5 h)

 $Q_{M\Delta X}$: 6,25 m3/s

Il est intéressant de comparer les valeurs ainsi calculées à celles que l'on aurait obtenu en utilisant l'abaque de la synthèse (ouvrage cité ci-dessus) pour un bassin de 1,43 km2 de caractéristiques similaires à celles des bassins de la zone des PITONS.

> Crue annuelle $Q_{MAX} = 9.4 \text{ m3/s} (6.57 \text{ m3/s.km2})$ Crue décennale $Q_{MAX} = 26.4 \text{ m3/s}$.


Les crues de VAL'D'OR de même récurrence montrent une réduction d'environ 0,6 par rapport à ces valeurs. Cette réduction peut être attribuée :

- d'une part à la diminution de la réponse globale du bassin entraînée par la présence d'un horizon relativement perméable avant saturation (stockage momentané d'une partie de la précipitation),
- d'autre part à l'écrasement des pointes de crue (freinage de la concentration et présence de deux bras avec décalage des pointes de crue immédiatement avant l'exutoire).

Avec prudence, on pourra utiliser les valeurs suivantes estimées à partir de coefficient de réduction :

Crue cinquantennale $Q_{MAX} = 25 \text{ m3/s}$

Crue centennale $Q_{MAX} = 30 \text{ m3/s}.$

III.1.3. Bassin du Quartier VOLTAIRE

1.3.1. Caractéristiques générales des crues :

Les tableaux n° XLVII à L présentent les caractéristiques des crues observées sur le bassin de 1975 à 1978.

Indice d'humidité :

$$IH_{i} = P_{i-1} + IH_{i-1} e^{-0.2 t}$$

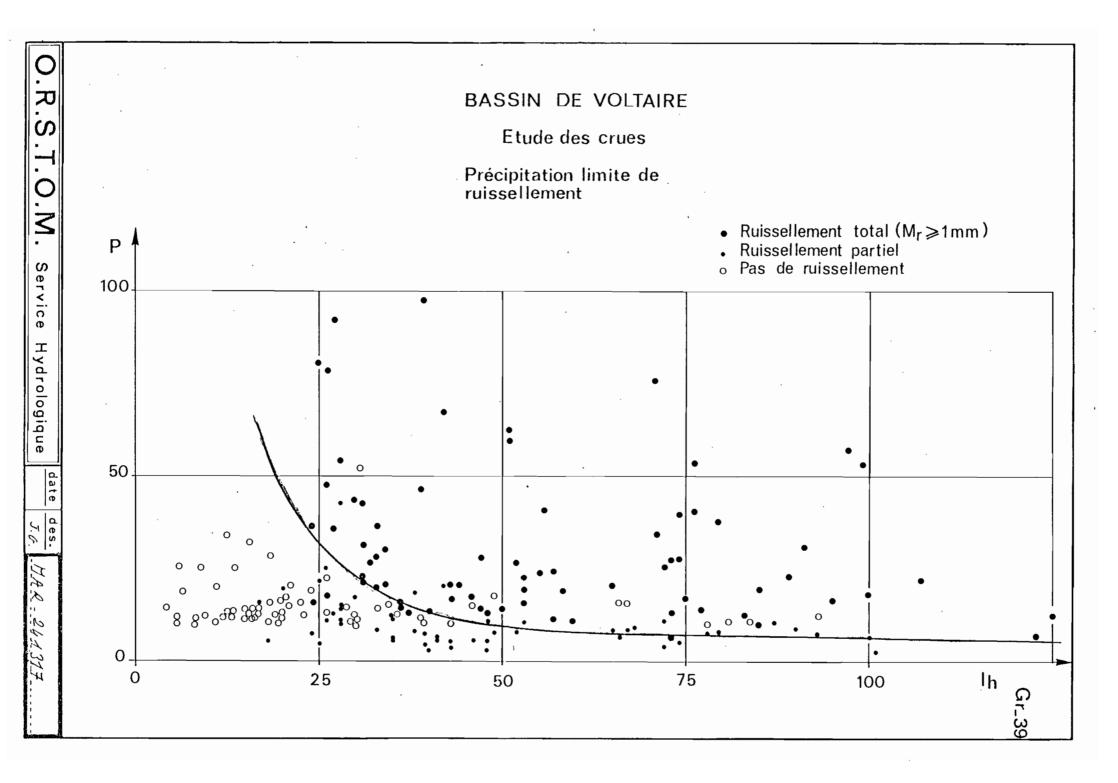
En l'absence de précipitations intermédiaires, l'indice décroit de 10 à 1 en 11,5 jours. Cet indice, légèrement plus rapide que pour VAL D'OR, traduit cependant l'importance, dans la conservation de l'humidité dans la zone superficielle du sol, de la couverture végétale du bassin.

Lames ruisselées :

H _R	> 1 mm	> 5	> 10	>20	>30	>50
1975	14	8	6	3	1	0
1976	15	6	4	3	3	1
1977	34	14	10	3	2	0
1978	19	9	5	3	0	0
Total	82	37	25	12	6	1
%		45	30,5	15	7	1

On note une moyenne de 20 crues ($> 1\,$ mm) par an dont 6 supérieures à 10 mm.

Coefficients de ruissellement :


Les coefficients (80 % des crues) sont compris entre 10 et 50 % avec un maximum de 70 % pour les crues rencontrant les meilleures conditions initiales.

Temps de montée : 20 à 30 minutes pour les crues simples.

Durée : 5 à 10 heures pour les crues simples.

Coefficient de forme : 0,25 à 0,30 pour les crues simples.

Pour les crues complexes, les différentes pointes correspondant aux épisodes pluvieux, s'individualisent assez facilement en raison du temps de montée assez bref de la crue unitaire.

Crues caractéristiques :

- début de saison des pluies (crue du 15-08-78) :

$$\bar{P} = 54,5 \text{ mm}$$
 $H_{R} = 13,5 \text{ mm}$ $D_{R} = 24,8 \text{ mm}$

L'indice d'humidité est encore faible (I $_{\rm H}$ 28). Le coefficient de ruissellement est de 25 %.

- Coeur de la saison des pluies (crue du 21-10-75) :

$$\bar{P}$$
 = 53,3 mm H_R = 21,9 mm D_R = 31,4 mm

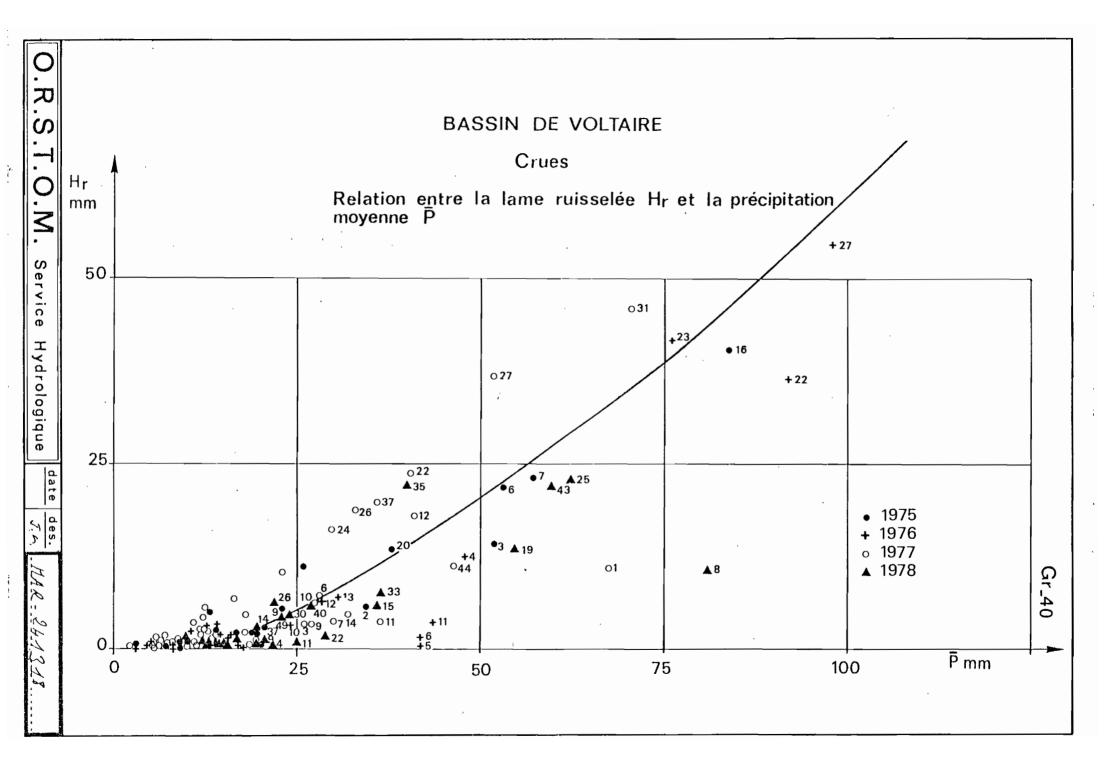
L'indice (un peu supérieur à la moyenne 60) est de $\rm I_H^{=}~76$ Le coefficient de ruissellement prend une valeur moyenne : 41 % .

- Conditions initiales très favorables (crue du 31-10-77) :

$$\bar{P}$$
 = 51,8 mm H_R = 36,9 mm D_R = 14,9 mm

L'indice d'humidité initial est élevé I $_{\rm H}$ = 173. Le coefficient de ruissellement atteint une valeur maximale K $_{\rm R}$ = 71 %.

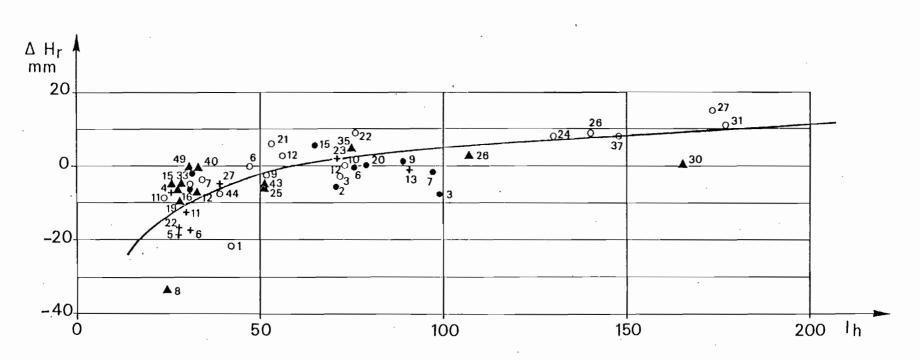
La courbe décroit rapidement jusqu'à $I_{\rm H}$ = 40 pour ne stabiliser avec un seuil de 5 à 6 mm, qui avec des valeurs élevées de $I_{\rm H}$ (> 100).


Pour l'indice moyen I_{H} = 60, le seuil de précipitation est de 8 mm.

1.3.3. Lames ruisselées - Courbe de réponse du bassin :

Les points représentatifs des couples averse-crue (H_R/P mm) montrent une large dispersion autour de la courbe moyenne de réponse (graph. n° 40). Les écarts reportés en fonction de l'indice d'humidité I_H permettent de tracer une courbe moyenne de correction (graph. n°41 H) entre - 20 et + 10 mm (I_H variant de 20 à 175) avec une correction nulle pour I_H = 60.

La courbe de réponse moyenne permet, après correction, d'estime les lames moyennes ruisselées correspondant aux précipitations recueillies sur le bassin (graph. n° 42).


P mm	H _R mm	K _R %
25	6,5	26
50	20,5	41
75	39,5	53
100	60,0	60



BASSIN DE VOLTAIRE

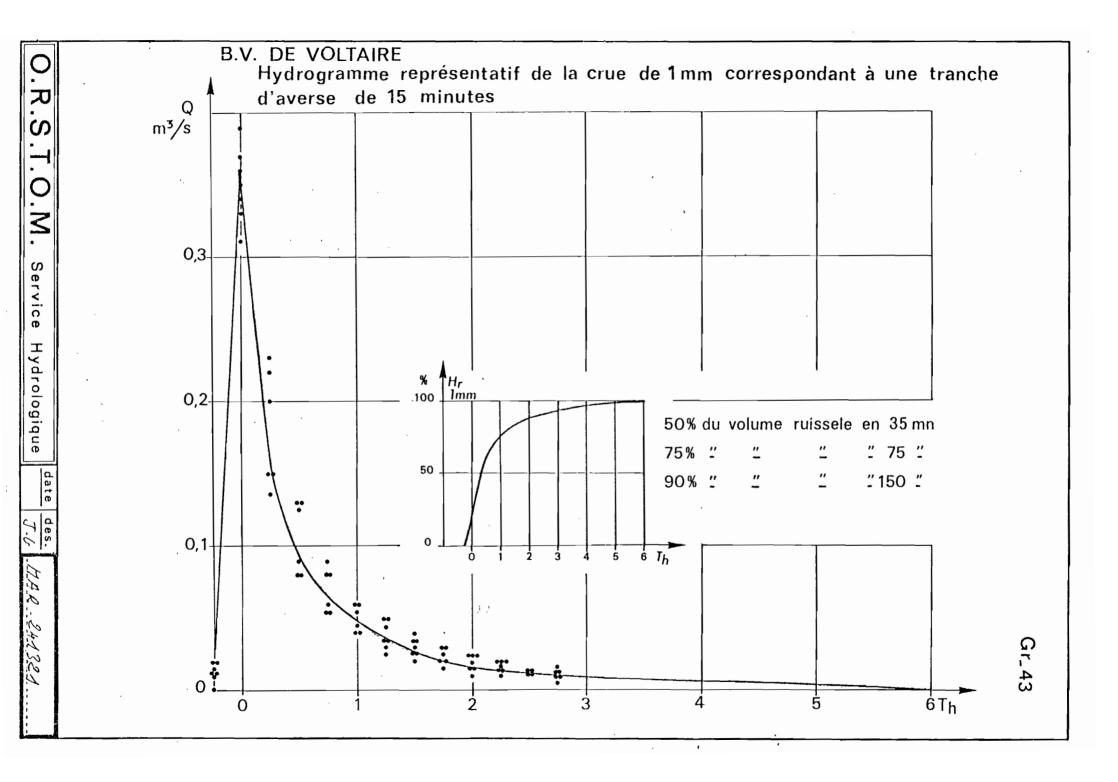
Etude des crues

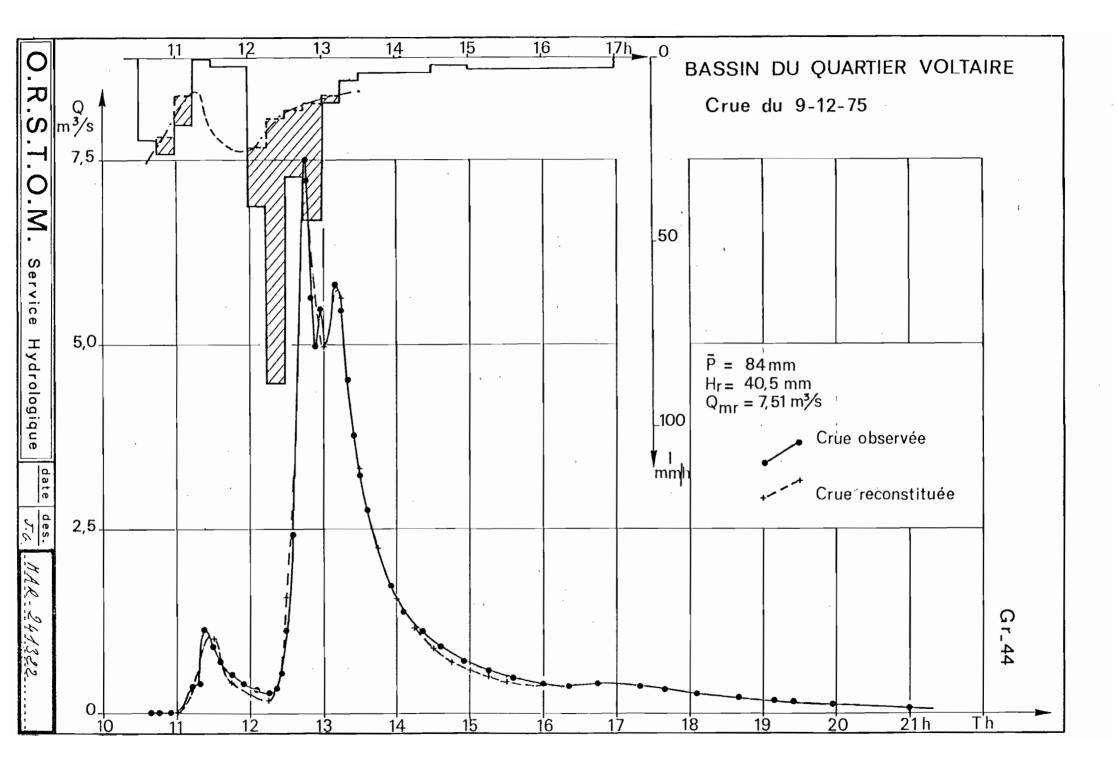
Correction de l'écart à la courbe moyenne en fonction de lh

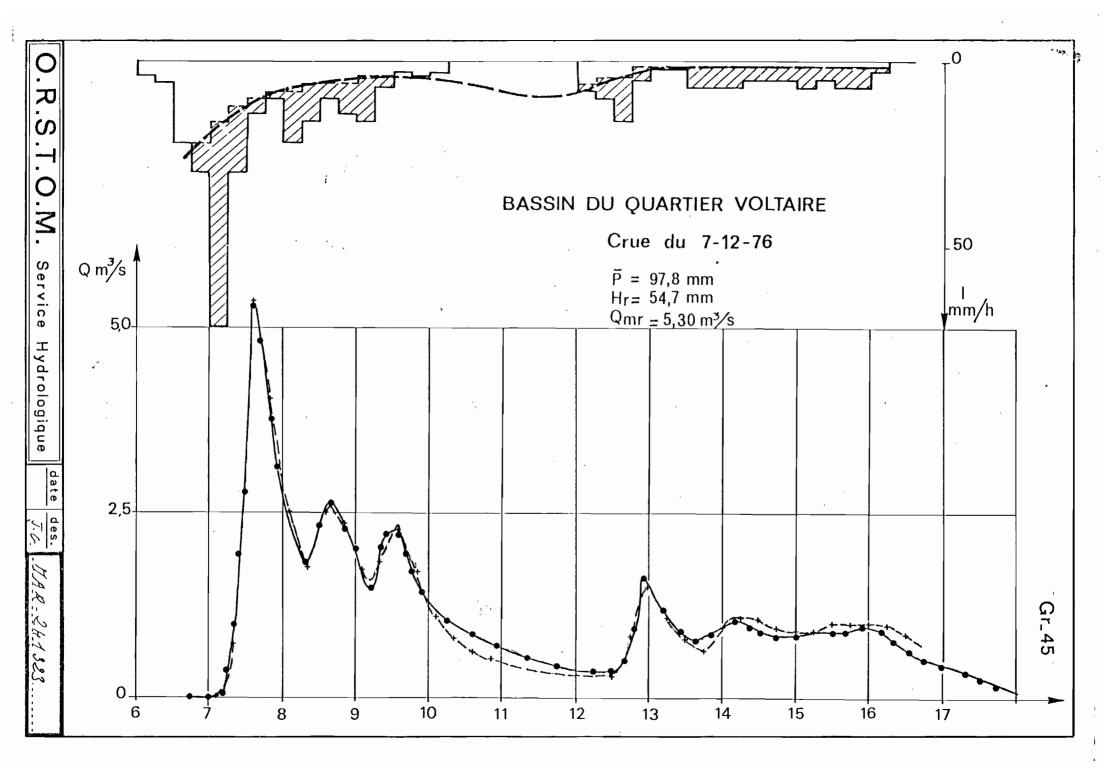
En dépit d'un relief vigouroux, le déficit de ruissellement reste relativement élevé pour les fortes précipitations. Par comparaison avec VAL D'OR où les sols sont assez semblables, on peut noter une réponse plus faible pour les précipitations inférieures à 50 mm (horizon superficiel plus perméable) et meilleure pour les fortes précipitations (l'horizon perméable moins épais est plus vite saturé). Cet horizon permet, entre les crues, le maintien d'un débit retardé d'une dizaine de litres seconde.

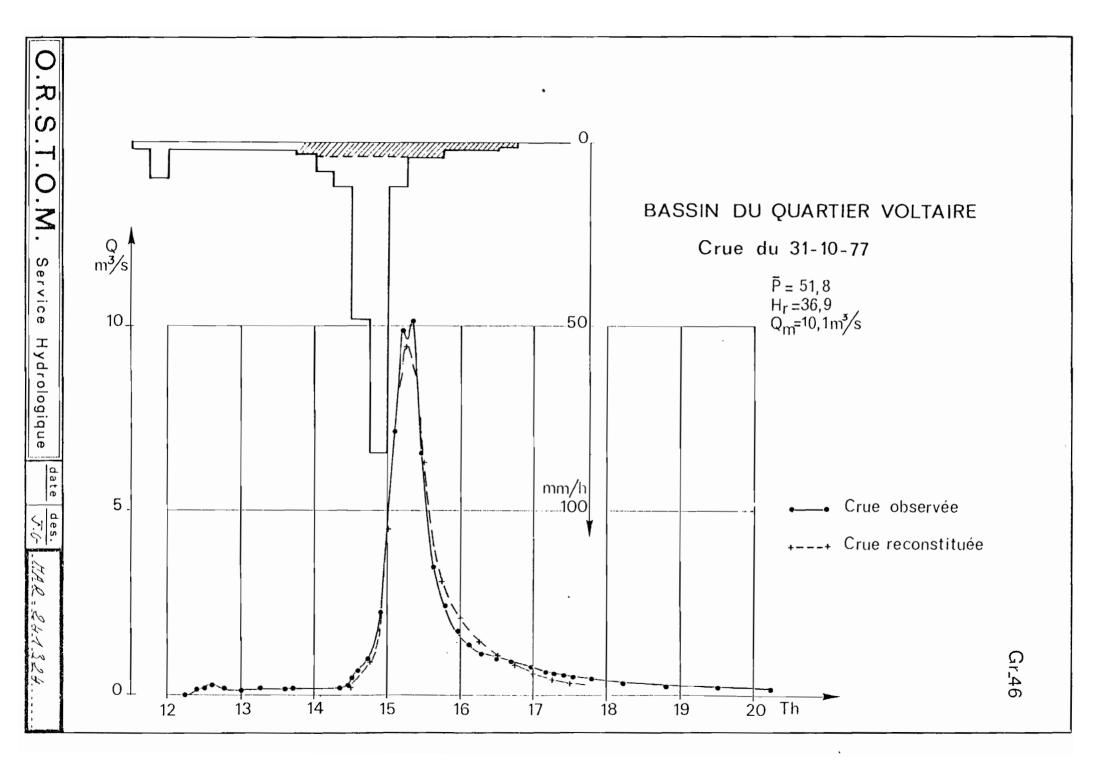
1.3.4. Forme des crues - Hydrogramme représentatif :

La brièveté du temps de montée des crues les plus simples (15 à 20 minutes) ne permet pas d'observer de crues véritablement unitaires.


Nous retiendrons pour déterminer l'hydrogramme représentatif du bassin, les crues présentant un coefficient de forme relativement élevé, un temps de montée réduit et résultant d'une averse ne présentant qu'une ou deux tranches d'averse de 15 minutes.


$C \circ c$	CKILOS	ainci	c 51 ac	tionnáac	cont	100	suivantes	
LAS	CYLLES	ainsi	82120	::onnees	SOUL	25	SHIVANESS	


Ио		Ď	HK	Q _{MAX}	Q/H	Lames partielles en 15 minutes	T _m	Ourée
15	11-11-75	26,0	11,2	2,98	0,27	9,0 + 2,2	28	9h 15
2	30-01-76	15,8	2,0	0,59	0,30	<u>1,5</u> + 0,5	28	5h 05
13	08-10-76	30,5	6,9	1,73	0,25	0,5 + 5,0+0,2+0,2+0,5+0,5	40	12h 35
16	19-10-77	13,3	1,4	0,37	0,26	0,2 + <u>1,2</u>	45	7h 00
24	30-10-77	29,8	16,0	4,63	0,29	<u>12,0</u> + 3,0+0+0,2+0,5+0,3	23	6h 47
40	14-11-78	26,8	5,8	1,81	0,31	4,8 + 1,0	31	9h 25
28	29-09-78	9,8	1,5	0,45	0,40	1,2 + 0,3	15'	7h 30


Rapportés à une lame ruisselée de 1 mm (835 m3), les débits des hydrogrammes unitaires ont les valeurs suivantes :

Crue	- 15'	0	+ 15	+ 30	+ 45	+ 1h	+ 75'	+ 90'	+ 105	+ 2h	+ 2h30
11-11-75	0,01	0,33	0,135	0,09	0,06	0,05	0,035	0,03	0,02	0,002	0,015
30-01-76	0,01	0,39	0,23	0,125	0,08	0,045	0,035	0,025	0,02	0,015	0,01
08-10-76	0,02	0,34	0,15	0,08	0,055	0,04	0,03	0,025	0,02		
19-10-77	0,013	0,31	0,20	0,13	0,09	0,06	0,05	0,04	0,03	0,025	0,015
30-10-77	0,02	0,38	0,16	0,095	0,065	0,055	0,045	0,035	0,025	0,02	0,025
29-09-78	0	0,37	0,15	0,13	0,08	0,06	0,05	0,04	0,03	0,025	0,315
14-09-78	0,01	0,36	0,22	0,08	0,055	0,04	0,025	0,02	0,015		
Médiane	0,01	0,36	0,16	0,095	0,065	0,05	0,035	0,025	0,02	0,015	0,01

L'hydrogramme unitaire représentatif du bassin a les caractéristiques suivantes (graph. 43) :

 H_{R} : 1 mm Q_{MAX} : 0,36 m3/s

T_M : 16 minutes

 T_{B} : 5 h 15

en reconstituant les crues complexes du 9-12-75, du 7-12-76 et du 31-10-77.

<u>Crue du 9-12-75</u> (graph. n° 44) :

$$\bar{P} = 34,0 \text{ mm}$$
 $H_R = 40,5 \text{ mm}$ $I_H = 31$ $Q_{MR} = 7,51 \text{ m3/s}$

Crue reconstituée

	2	_5,5		<u>+,5</u>		3,5_	0,5	10,0	22,0	8,0	11,0	3,0	1,5	1,0	1,0
	02	(5,5)	-5,3	2,5	-	(0,5)	(0,5)	5,0	4,0	3,5	3,0	2,5	1,5	1,0	1,0`
	ا ٰء ۔ ا	0	1,2	2,0	0	0	O.	1,0	18,0	4,5	3,0	0,5	0	0	0
- [-]	Q.,	<u>-0</u>	ე, <u>⊥3</u>	0,72	_0		ij	1,14	5,48	1,62	2,88	0,18	0	0	0
	Q	0 .	0,43	0,92	0,32	<u> </u>	o	1,5	7,2	4,95	5,65	3,35	2,25	1,55	1,95

<u>Crue du 7-12-76 (graph. n° 45)</u>:

$$\tilde{P} = 97.3 \text{ mm}$$
 H_R = 54.7 mm I_H = 39 Q_{MR} = 5.30 m3/s

٠.	· ··																
.	ρ	_1,0	1,5	5.5_	7.5	13,0_	7,5	3,5	2,5	5,5	4,0	2,5	3,5	4,0	1,75	0,75	1,0
		(1,3)	(1,5).	(1,5)	5,5	4,0_	3,0	2,5	2,3	2,3	1,5	1,5	1,5	1,0	1,0	(0,75)	(1,0)
-	_Н я-	-3)	_O	14,0_	4,5	1,3	0,5	3,5	2,5	1,0	2,0	3,0	0,75	0	0
	? _M _	3	<u> </u>	3	0,72	5,04	_i,62	0,36	0,18	1,26	0,90	0,35	0,72	1,08	0,27	0	0
	2 7_			<u> </u>	0,72	5,35	4,05	2,50	2.35	1,77	2,50	2,35	1,72	1,82	2,25	1,10	0,30

Crue du 31-10-77 (Graph. n° 46) :

$$\bar{P}$$
 = 51,8 mm H_R = 36,9 mm I_H = 173 Q_{MR} = 10,1 m3/s

Ē	0,75	2,0	3,0	12,0	21,0	3,0	1,0	1,0	0,5	
D _R	(0,75)	1,0	1,0	1,0	1,0	1,0	1,0	1,0	-	-
H _R	0	1,0	2,0	11,0	20,0	2,0	0	0		
Q _M		0,36	0,72	3,96	7,20	0,72	0	0		
Q _T		0,36	0,97	4,50	9,40	5,30	3,10	2,10	1,50	1,07

1.3.5. Crue décennale :

En utilisant l'averse décennale définie, ci-dessus, la courbe de réponse du bassin et l'hydrogramme représentatif des crues unitaires, nous pouvons estimer les caractéristiques de la crue décennale (graph. n° 47).

Ρ̄	2,0	3,0	3,0	20,2	34,1	17,0	8,0	5,0	4,0	4,0	3,0	3,0	
D _R	(2,0)	(3,0)	(3,0)	5,0	4,0	3,0	2,5	2,5	2,0	2,0	2,0	2,0	
H _R	0	0	0	15,2	30,1	14,0	5,5	2,5	2,0	2,0	1,0	1,0	
Q _{MAX}				5,47	10,8	5,04	1,98	0,90	0,72	0,72	0,36	0,36	
Q _T			0	5,5	13,3	11,3	8,1	5,83	4,59	3,77	2,85	2,38	

Soit:

P : 147 mm en 10 heures

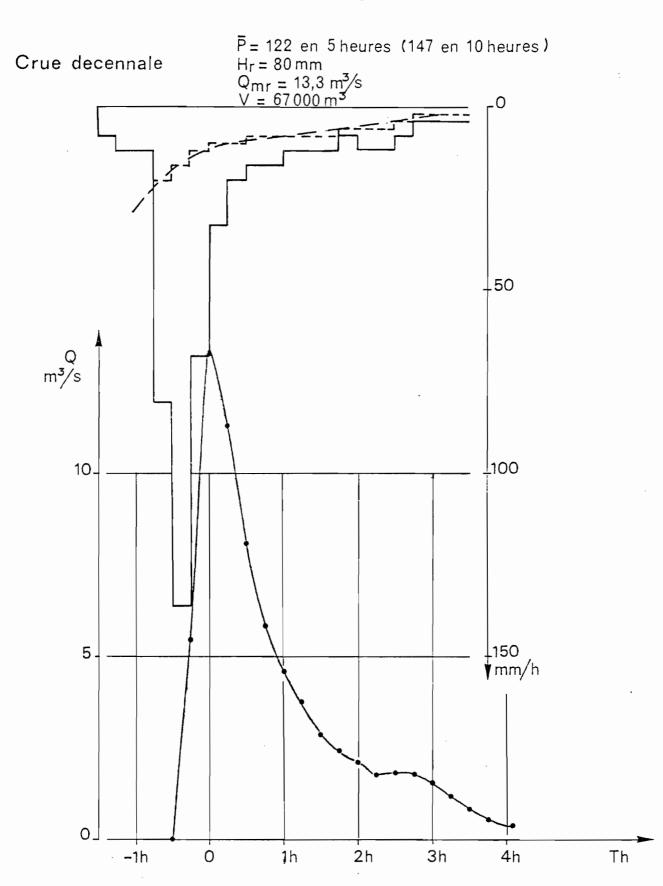
 \bar{P}_{ii} : 122 mm en 5 heures

 $H_{\rm p}$: 80 mm en 5 heures

 Q_{MAX} : 13,3 m3/s

 T_{M} : 30 minutes

Pour la crue_annuelle les caractéristiques sont les


suivantes :

P : 69 mm en 5 heures

 H_R : 35 mm

 Q_{MAX} : 6,8 m3/s

BASSIN DU QUARTIER VOLTAIRE

O.R.S.T.O.M. Service Hydrologique

date des.

MAR-241325

En extrapolant l'abaque de la synthèse, nous aurions obtenu pour un bassin de 0,835 km2, les valeurs suivantes :

> Crue annuelle Q = 6.2 m3/s (q sp = 7.4 m3/s.km2) Crue décennale Q = 17.3 m3/sCrue centennale Q = 32.8 m3/s

La valeur calculée pour la crue décennale est sensiblement inférieure (77 %) à la valeur tirée de l'abaque qu'il faut utiliser avec prudence pour des bassins de superficie inférieure au kilomètrecarré.

Cependant nous devons tenir compte des observations suivantes :

- des débits de pointe voisins ou même supérieurs au débit décennal calculé ont été observés de 1975 à 1978 pour des précipitations inférieures à la précipitation décennale retenue.

31-10-77
$$\vec{P}$$
 = 51,8 H_R = 36,9 Q_M = 10,1 m3/s
03-11-77 \vec{P} = 70,5 H_R = 45,8 Q_M = 11,1 m3/s
30-10-78 \vec{P} = 78,5 Q_M = 14,5 m3/s

 il est possible que l'hydrogramme représentatif retenu valable pour reconstituer les fortes crues du bassin (jusqu'à 55 mm), ne soit pas assez aigu pour les crues exceptionnelles (modification des conditions d'écoulement).

En utilisant l'hydrogramme plus aigu des crues du 30-01-76 et du 30-10-77, nous aurions obtenu un débit de pointe décennal de 14,8 m3/s.

En définitive, nous estimons qu'il est préférable de retenir pour le débit de pointe décennal, la valeur :

$$Q_{MAX} = 15 \text{ m3/s}$$

Ce débit, inférieur d'un peu plus de 10 % à la valeur de l'abaque, correspond à la réduction des débits de pointe qu'on peut attendre sur un bassin comportant un pourcentage non-négligeable de parcelles cultivées (petite bananeraie et jardins caraïbes).

III.1.4. Bassin du Quartier la DUCHENE :

1.4.1. Les caractéristiques générales des crues sont présentées dans les tableaux LI à LIII.

Indice d'humidité :

Après essais, l'indice d'humidité retenu est identique à celui de VOLTAIRE.

$$IH_{i} = P_{i-1} + IH_{i-1}e^{-0.20 \text{ t}}$$
 (t en jours)

Lames ruisselées :

	H _R > 0	>1 mm	> 5	> 10	>20	>30	> 40	> 50
1976	28	15	3	3	3	1	1	(80,4)
1977	2.7	12	5	4	0	0	0	0
1978	38	19	8	4	2	2	1	0
Total	93	46	16	11	5	3	2	1
%			35	24	11	6	4	2

La montée des crues observées sont inférieures à 1 mm.

Coefficient de ruissellement :

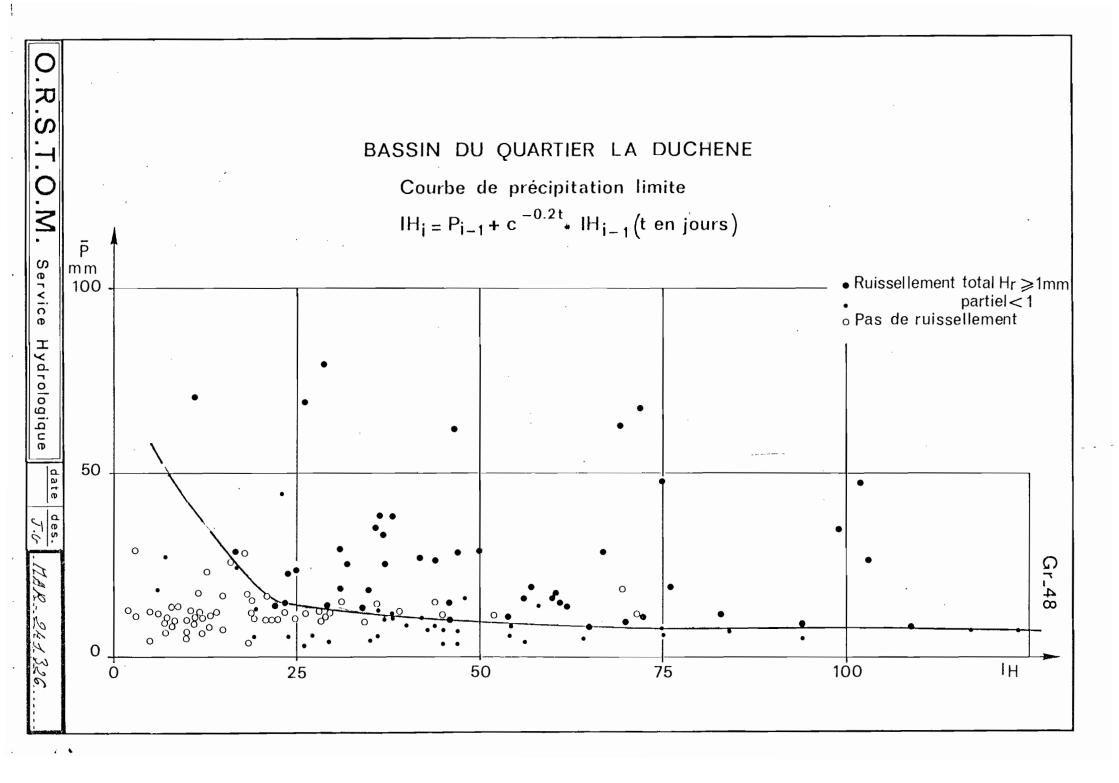
Pour les crues supérieures à 1 mm, 80 % des crues présentent des coefficients de ruissellement compris entre 10 et 40 %.

Le coefficient peut s'élever à 50 à 60 % pour les plus fortes crues (avec des indices initiaux supérieurs à la moyenne).

Temps de montée :

Les crues simples ont des temps de montée compris entre 25 et 35 minutes. Pour les crues composées à pointe unique, le temps de montée est compris entre 30 et 60 minutes.

Durée : 4 à 7 heures pour les crues simples.


 $\underline{\text{Forme}}$: Q_{MAX} /H_R = 0,5 à 0,7 pour les crues simples.

Les rapports de forme s'abaissent évidemment pour les crues complexes dont les pointes sont bien distinctes et répondent aux différentes parties de l'averse (cf. crue du 7-12-76, graph. n° 53).

Crues caractéristiques :

Pour des précipitations voisines, les crues suivantes montrent des réactions bien liées à l'indice initial d'humidité :

		IH	Ē (mm)	H _R (mm)	K _R %
12-06-78	(n° 6)	11	70,5	7,2	10
16-10-77	(n° 5)	26	69,3	17,1	25
30-10-78	(n° 28)	72	67,7	40,1	59

1.4.2. Précipitation limite (graph. n° 48)

Le seuil de précipitation décroît rapidement jusqu'à I_{μ} = 20 à 25 (P = 15 mm) puis se stabilise lentement jusqu'à un seuil limite de 8 mm.

Pour l'indice moyen (I_{H} = 40), le seuil est de 11 mm.

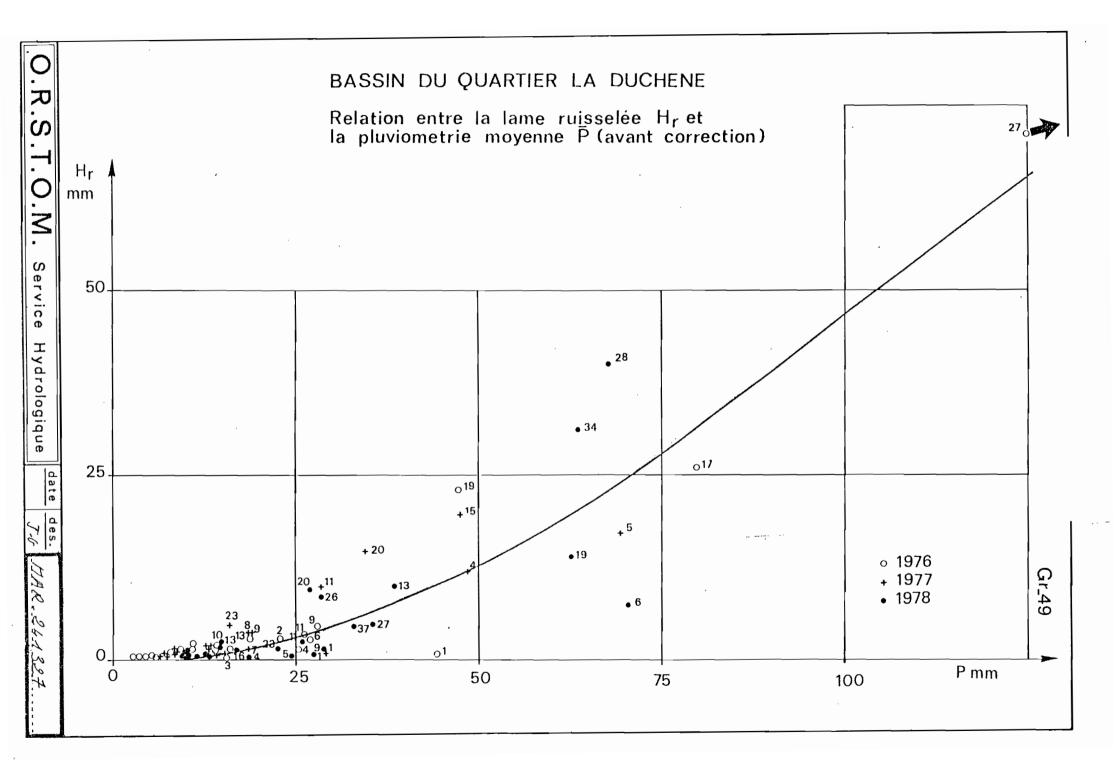
1.4.3. Lames ruisselées - Courbe de réponse du bassin :

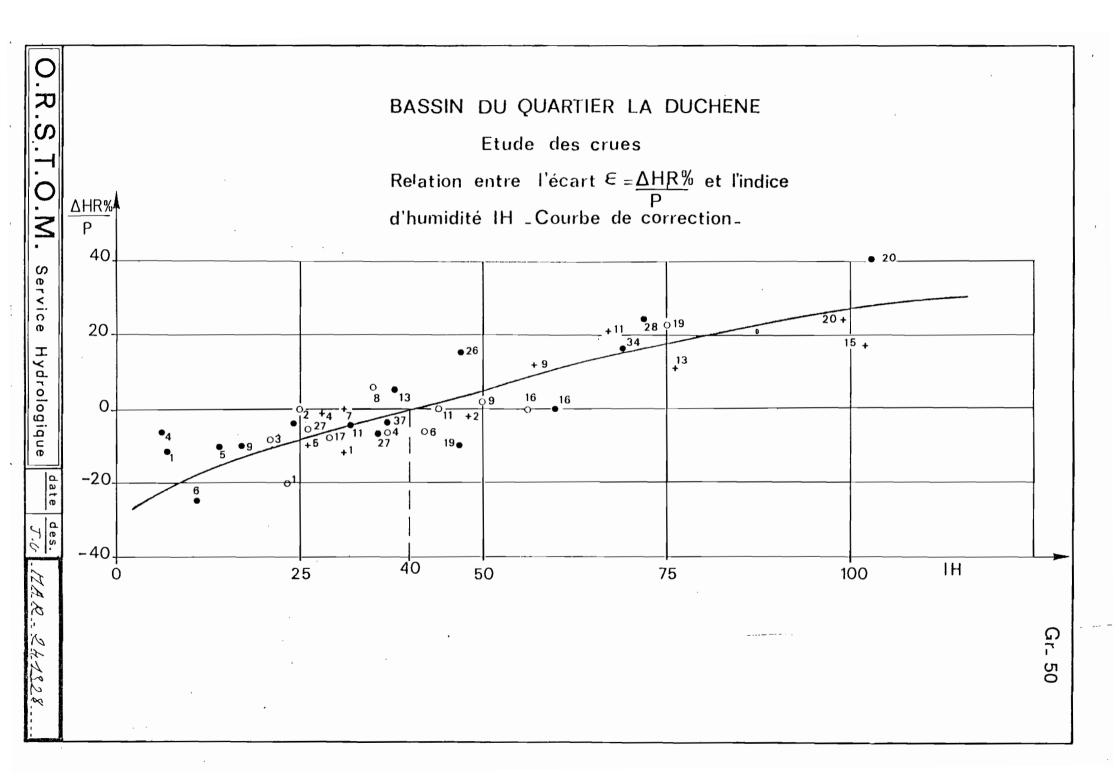
La dispersion assez large autour de la courbe moyenne représentant la relation H_R /P (graph. n° 49) peut être corrigé en portant en fonction de l'indice d'humidité I_H , l'écart relatif $e = \frac{H_R}{D}$ (en %).

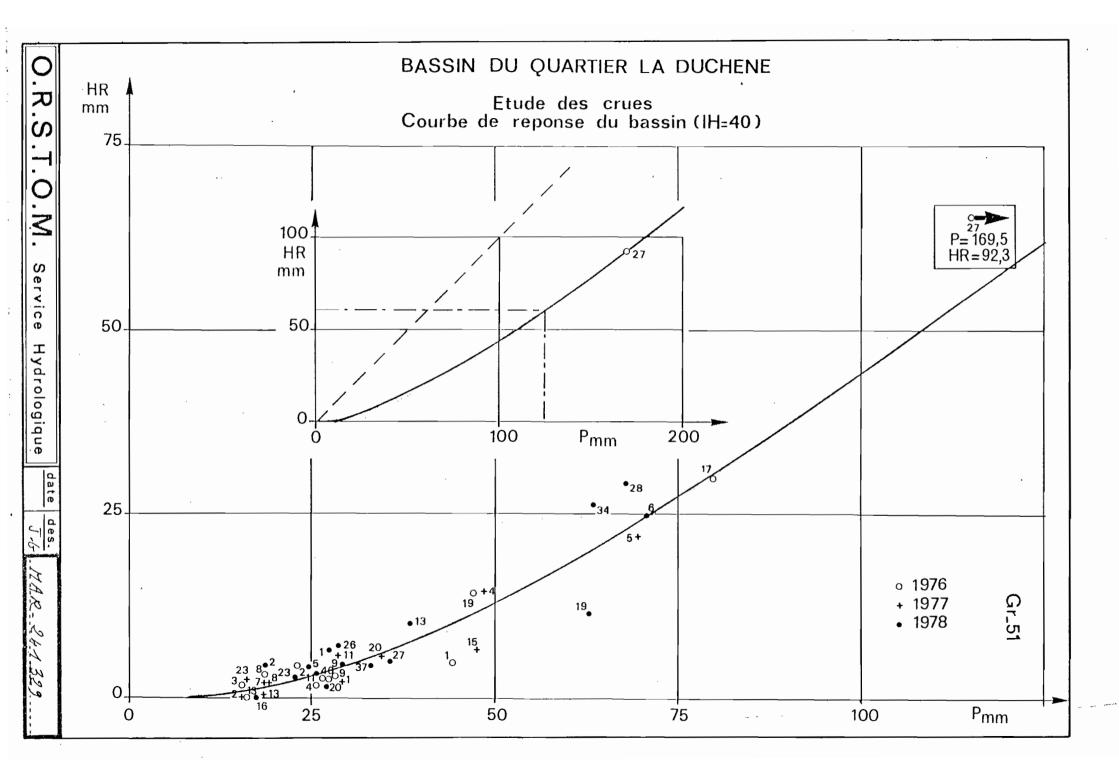
En utilisant la courbe de correction moyenne (graph.n°50), nous obtenons une courbe réponse moyenne du bassin (pour I_H = 40) qui est représentée dans le graphique n°51.

Les valeurs caractéristiques de la courbe de réponse sont les suivantes :

P (mm)	H ^X (mm)	K _R %
25	3,0	12
50	13,0	26
75	27,0	36
100	44,0	44
150	78,0	52


Le relief très accentué de ce bassin ne compense pas la perméabilité relativement importante des horizons meubles et légers du bassin. Pour une précipitation de même importance (100 mm), la lame ruisselée de DUCHENE ne représente que les 3/4 de la lame ruisselée sur VOLTAIRE.


Par contre on notera l'efficacité du réseau dense de drainage sur le ruissellement des petites précipitations (nombre important de petites crues).

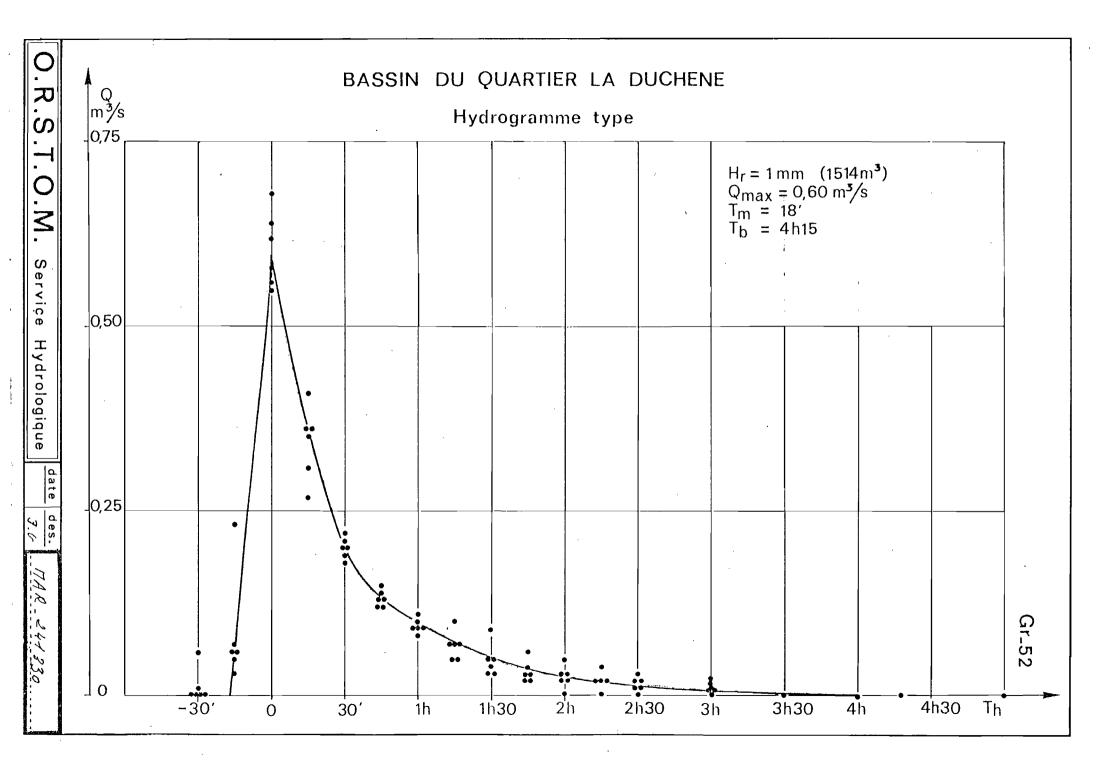

La présence d'une forêt humide résiduelle sur près des 3/4 du bassin contribue également à l'affaiblissement de la réponse.

1.4.4. Forme des crues - Hydrogramme représentatif :

La briéveté des temps de montée des crues les plus simples ne permet pas d'isoler des crues véritablement unitaires.

En étant moins rigoureux, il est possible de retenir un certain nombre de crues d'allure simple, à temps de montée réduit, à fort coefficient de forme, provoquées par des précipitations courtes où un épisode (tranches d'averse de 15 minutes) est prédominant.

Rapportées à une lame de 1 mm (1 515 m3), les séquences de débits de ces crues sont les suivantes (Gf. graphique n° 52) :

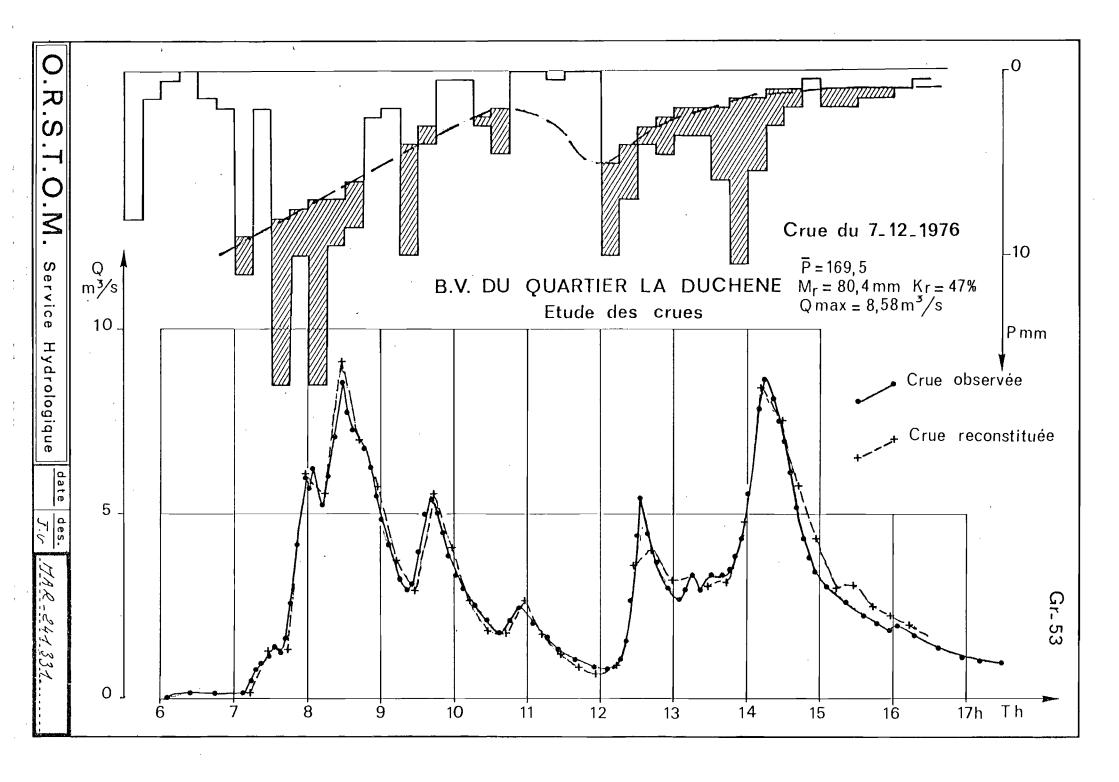

t (mm)	- 30	- 15	0	+ 15	+ 30	+ 45	+ 60	+ 75	+ 90	+ 105	+ 120
17-10-76	0	0,06	0,56	0,35	0,22	0,15	0,10	0,07	0,05	0,03	0,03
05-11-77	0,06	0,23	0,58	0,36	0,21	0,13	0,09	0,05	0,03	0,02	0
14-11-77	0	0,03	0,64	0,36	0,20	0,12	0,09	0,07	0,04	0,03	0,02
10-08-78	0	0,05	0,55	0,27	0,18	0,14	0,11	0,10	0,09	0,06	0,05
21-10-78	0	0,07	0,33	0,41	0,20	0,12	0,08	0,05	0,03	0,02	0,02
26-11-78	0,01	0,06	0,62	0,31	0,19	0,13	0,09	0,07	0,05	0,04	0,03
méd.	0	0,06	0,60	0,35	0,20	0,13	0,10	0,07	0,05	0,035	0,025

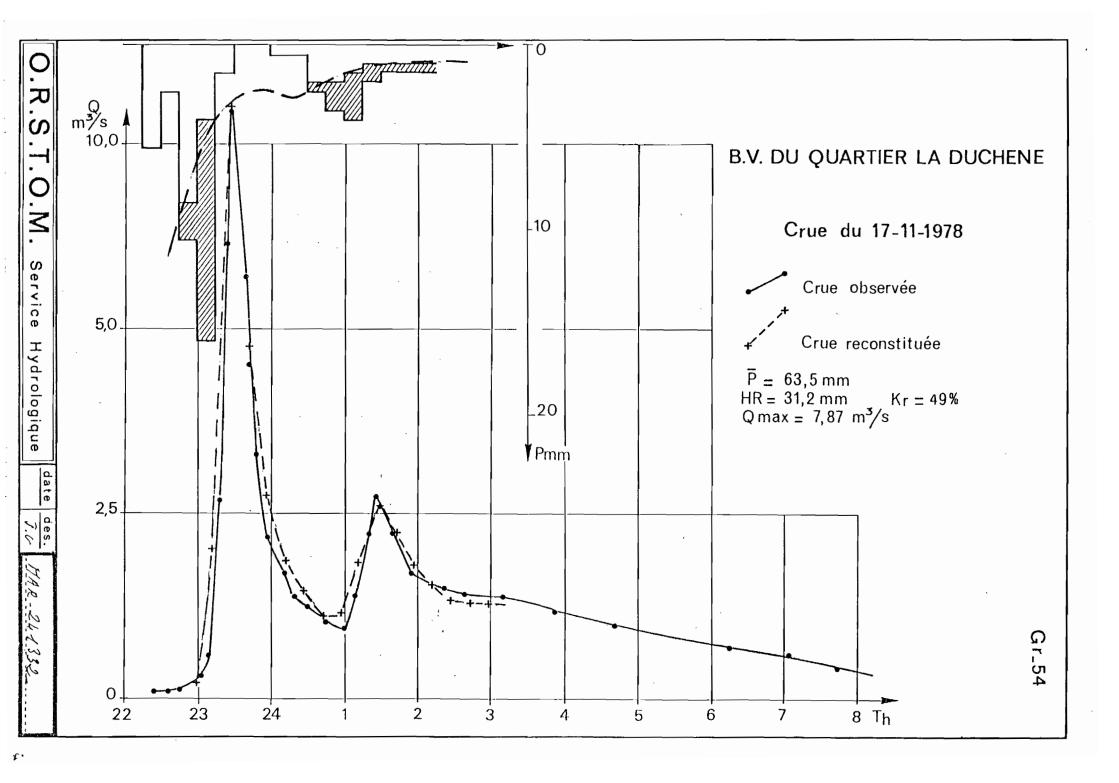
t (mm)	135	150	180	Fin à
17-10-76	0,02	0,01	0,005	+ 3 h 30
05-11-77	0	0	0	+ 2 h 00
14-11-77	0,02	0,02	0,01	+ 5 h 15
10-08-78	0,04	0,03	0,02	· 5 h 00
21-10-78	0,02	0,01	0,005	+ 4 h 20
26-11-78	0,025	0,02	0,015	+ 4 h 00
méd.	0,02	0,01	0,005	+ 4 h 00

Les résultats de l'analyse des crues permettent ainsi d'établir un modèle de transfert averse-crue (courbe de réponse du bassin-hydrogramme-type) dont nous vérifions la validité en reconstituant des crues complexes observées sur le bassin.

Crue du 7 décembre 1976 :

Averse de faible récurrence (\bar{P} = 169,5 mm en neuf heures R = 18 ans) provoquant une crue complexe à quatre pointes de débit (graph. n° 53).




<u>Crue reconstituée</u> :

ρ̈́	8,0	1,5	0,5	0	1,5	2,0	11,0	2,0	17,0	10,0	17,0	9,5	8,5	2,5	2,0	10,0
08	(8,0)	(1,5)	(0,5)	(0)	(1,5)	(2,0)	9,0	(2,0)	8,0	7,5	7.0	7,0	6,0	(2,5)	(2,0)	4,0
H ³	0	0	0	0	0	0	2,0	0	9,0	2,5	10,0	2,5	2,5	0	0	6,0
Q _M							1,20	0	5,40	1,50	6,00	1,50	1,50	0	ö	3,60
Q _T							1,20	1,24	5,95	5,51	9,03	6,96	5,71	3,63	2,37	5,43

ō	4,0	0,5 0,5	0,5	1,5 0	0	0,5	0	0	10,0 7,0	1,3 + 4,5	3,5	3,5
0,8	3,0	(0,5) (0,5)	2,3	2,0 -	-	-	-	-	5,3 4,3	3.3 2,5	2,3	2.0
Ha	1,0	0 0	0,5	2,5 0	0	o o	0	0	5,0 3,0	1,0 2,0	1,5	1.5
										0,50 1,20		
Q _T	3,98	2,47 1,71	1,57	2,5 1,61	1,03	0,71	0,55	0,74	3,16 3,35	2,97 3,04	2,88	2,97

ρ̈	6,0	10,5	5,5	3,0	2,0	0,5	2,0	2,0	1,5	1,5	-	_	_
D _R	2,0	1,5	1,5	1,0	1,0	(0,5)	1,0	1,0	1,0	1,0			
HK	4,0	9,0	4,0	2,0	1,0	0	1,0	1,0	0,5	0,5			
Q _M	2,40	5,40	2,40	1,20	0,60	0	0,60	0,60	0,30	0,30			
Q _T	4,64	8,18	7,28	5,58	4,09	2,81	2,89	2,31	2,08	1,75	1	-	-

Crue du 17 novembre 1978 :

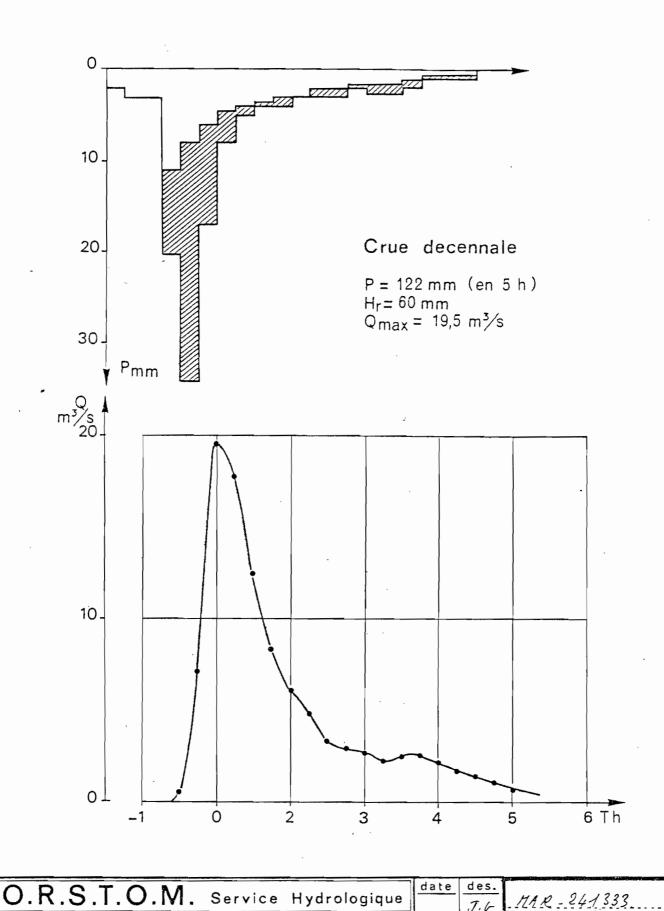
Précipitation moyenne : 63,5 mm en deux corps d'averse provoquant une crue complexe à deux pointes de débit (graphique n° 54).

1.4.5. Crue décennale :

A partir de l'averse décennale, définie ci-dessus, la crue décennale reconstituée présente les caractéristiques suivantes :

Ē	2,0	3,0	3,0	20,2	34,1	17,0	8,0	5,0	4,0	4,0	3,0	3,0	
D _R	(2,0)	(3,0)	(3,0)	11,0	8,0	.6,0	4,5	4,0	3,5	3,0	3,0	2,0	
H _R	0	0	0	9,2	26,1	11,0	3,5	1,0	0,5	1,0	0	1,0	
Q _{MAX}				5,52	15,7	6,60	2,10	0,60	0,30	0,60	0	0,60	
Q _T			0,55	7,09	19,5	17,8	12,4	8,37	6,09	4,33	3,33	2,97	

$$\bar{P}$$
 = 122 mm (en 5 heures)
 D_R = 62 mm
 H_R = 60 mm graph. n° 55
 K_R = 49 %
 Q_{MAXR} = 19,5 m3/s


Les caractéristiques de la <u>crue annuelle</u> sont les suivantes :

$$\vec{P}$$
 = 69 mm
 H_R = 23,5 mm
 K_R = 34 %
 Q_{MP} = 10,2 m3/s

L'abaque de la synthèse aurait fourni les valeurs suivantes, pour un bassin de 1,51 km2.

Crue annuelle 9,8 m3/s (6,5 m3/s.km2)
Crue décennale 27,5 m3/s
Crue centennale 52 m3/s

B.V. DU QUARTIER LA DUCHENE

Même si l'on tient compte d'une sous-estimation possible du débit de pointe décennal, (en utilisant, un coefficient de forme plus aigü - crue du 21 octobre 1978 - le débit de pointe atteint 22 m3/s), nous observons une réduction de 20 % par rapport à celui d'un bassin de même taille dans la région des PITONS. Cette réduction peut être attribuée aux facteurs suivants :

- les intensités de l'averse décennale sont moins élevées,
- les formes de crue sont moins aigües et
- <u>la réponse au ruissellement (volume de la crue) est plus faible</u> (sols remaniés par les pratiques culturales) que sur les bassins à végétation naturelle.

III.2. ETUDE DES APPORTS

Pour chacun des bassins, l'étude des apports comporte les points suivants :

- analyse des apports annuels observés,
- relations hydro-pluviométriques au pas mensuel,
- reconstitution d'une chronique historique des apports annuels à partir des observations pluviométriques des postes de référence,
- analyse de l'échantillon historique (coefficients d'écoulement annuel pour différentes valeurs de la pluviométrie Analyse statistique les lames écoulées annuelles).

III.2.1. Bassin de la CAROLE (1,46 km2) :

2.1.1. Apports annuels (période 1975-79) :

Le bilan des observations est le suivant :

	Année hyd	rologique	(juillet-juin)	Saison des pluies (Juillet-Déc.)					
	P (mm)	Ē (mm)	K _E %	P ₇₋₁₂	P _{7-12/P%}	Ē ₇₋₁₂	K _E %		
1975-76	1208,5	266,9	22,1	921,5	76,3	266,9	29,0		
1976-77 1977-78	1237,5 1425,5	321,8 292,4	26,0	1002,5	81,0 69,8	321,8 291,6	32,1		
1978-79	1449,0	213,5	14,7	931,0	64,3	194,1	20,8		

* Nota : P_{7-12} = précipitations cumulées de juillet à décembre etc...

Le volume annuel des apports est compris entre 310 et 470 000 m3. Les coefficients annuels d'écoulement variant entre 15 et 26 %.

A l'exception de 1979 (où une forte précipitation isolée est enregistrée en mars et provoque une petite crue), les écoulements sont nuls de fin décembre jusqu'à la saison des pluies (fin juin à début juillet). L'écoulement est pratiquement limité à une période de quatre à six mois.

En 1975-76, la lame écoulée, encore faible en septembre, est pratiquement répartie sur les mois d'octobre à décembre (99 % de l'écoulement). Pour une pluviométrie annuelle inférieure à la moyenne, le coefficient d'écoulement prend une valeur assez forte (22 %) en raison de la concentration des précipitations dans les trois derniers mois de l'année (décembre est particulièrement abondant). Le total pluviométrique du dernier trimestre (665 mm) représente 55 % de la précipitation annuelle et a une hydraulicité de 154 % par rapport à la même période de référence qui en année normale ne représente que 32 % du total annuel.

En 1976-77, l'écoulement est nul en juillet et reste faible en août ; la quasi-totalité de l'écoulement est répartie sur les quatre derniers mois de l'année avec un total pluviométrique nettement plus abondant que la normale (hydraulicité 133 %). Le rapport à la pluviométrie totale annuelle est de 62 % contre 45 % pour la même période en année normalement répartie.

Décembre est particulièrement abondant en raison des fortes précipitations du 6 et du 7. La lame écoulée mensuelle : 177 mm (dont 140 mm pour la seule crue du 7 décembre) représente 55 % de l'écoulement annuel.

La concentration des précipitations est là encore responsable d'un coefficient d'écoulement annuel (26 %) très supérieur à la normale.

En 1977-78, l'écoulement de juillet est nul. La lame écoulée se répartit sur les quatre mois d'août à novembre. Il n'y a plus d'écoulement en décembre. La saison des pluies efficace (4 mois) a une hydraulicité de 134 % et son total pluviométrique représente 67 % de la pluviométrie annuelle contre 48 % pour la même période en année normale. Le coefficient d'écoulement (20,5 %) doit être supérieur au coefficient moyen.

En 1978-79, la lame écoulée est répartie sur les six derniers mois de l'année. Mais si le mois d'août, en début de saison, des pluies est excédentaire, celui de décembre est nettement déficitaire.

L'hydraulicité de la période est légèrement inférieure à la normale mais la distribution médiocre des pluviométries mensuelles (mois excédentaire en début de saison des pluies, mois déficitaire en fin) donne un coefficient d'écoulement (14,7 %) inférieure à la normale.

On notera, en comparant les années 1977 et 1978 (dont la pluviométrie annuelle est'du même ordre), l'influence de la distribution des pluies mensuelles sur le coefficient d'écoulement (20 et 15 %).

Par année, la répartition de l'écoulement est la suivante :

	Ruissellement pur	Ecoulement différé	Total
1975-76	156 mm	111 mmm	267 mm
1976-77	190,5	131,5	322
1977-78	174,5	118	292,5
1978-79	121	93	214

Par ruissellement pur, nous entendons le total cumulé des lames ruisselées relatives aux crues individualisées.

L'écoulement différé regroupe :

- 1°) les très petites crues non individualisées provoquées par une précipitation faible ne ruisselant que sur les zones basses du bassin (débits maximaux inférieurs à 100 l/s);
- 2°) le débit retardé alimenté, après la fin des crues, par la vidange des différents magasins du lit principal de la CAROLE (barrages naturels, mouilles, lentilles gravillonnaires).

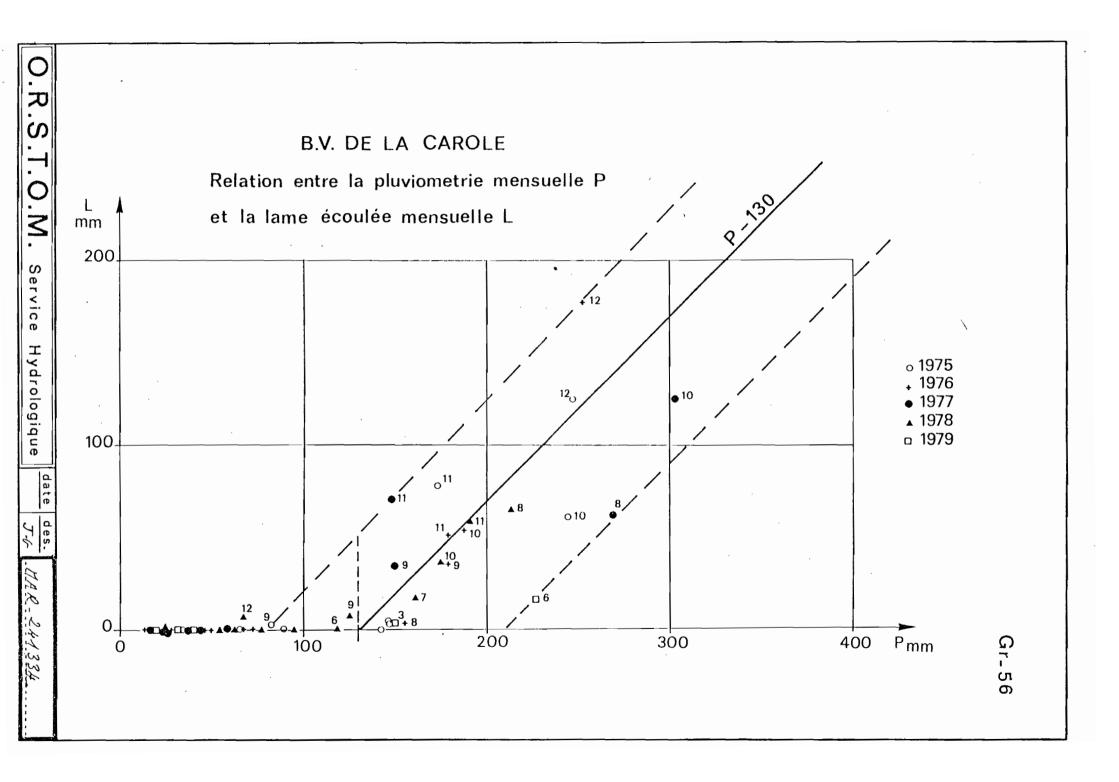
Cet écoulement différé est relativement rapide et ne subsiste que quelques jours après les crues. En l'absence de magasin perméable, le débit de base est nul.

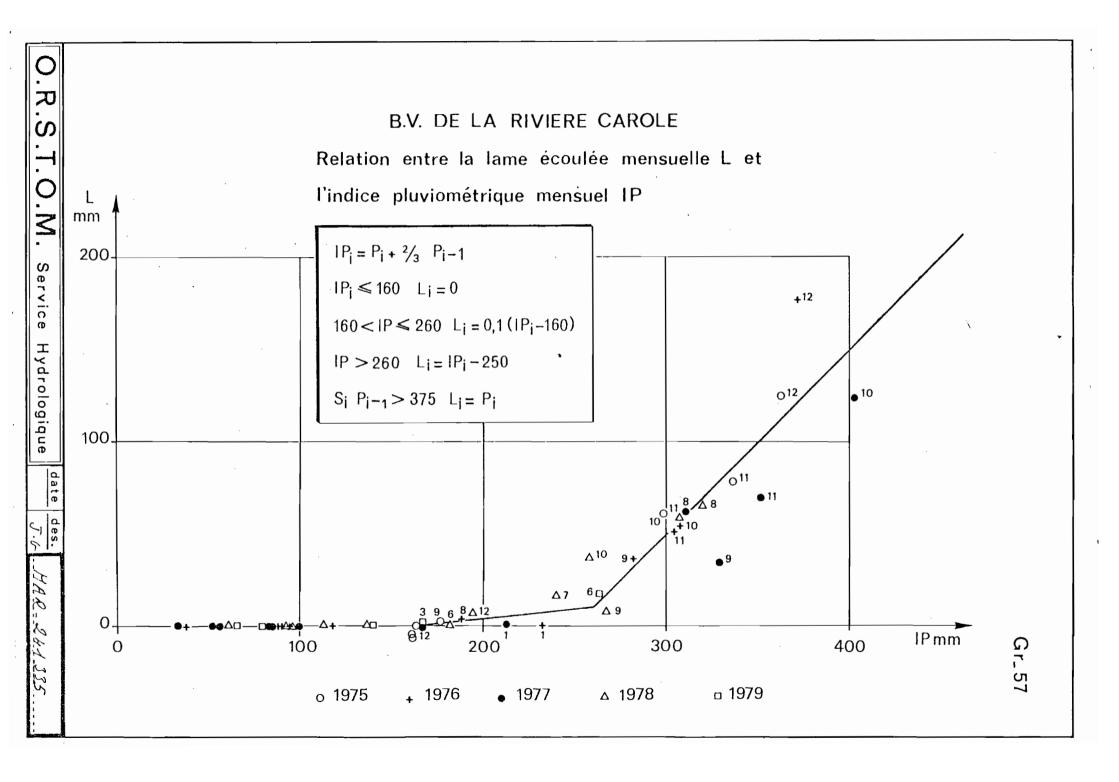
2.1.2. Relations hydropluviométriques mensuelles :

Les valeurs mensuelles de la pluviométrie et de l'écoulement sont présentées dans le tableau LIV.

PE1, PE2 pluviométrie mensuelle aux deux postes

P̄ mm pluviométrie mensuelle moyenne


L̄ mm lame écoulée mensuelle


Ke % coefficient d'écoulement mensuel

Q m3/s débit moyen journalier du mois

En reportant sur un graphique (n° 56), les points représentatifs L/P, nous observons que ces points se distribuent entre les "rails" P - 80 et P - 210. Les écarts à la droite médiane P - 130 sont dus à l'influence de la pluviométrie des mois précédents. Une étude des écarts montre que la majeure partie de la déviation est due

à la pluviométrie P_{i - 1} du mois précédent.

En retenant, pour la commodité des calculs ultérieurs (extension hydropluviométrique), un indice pluviométrique ainsi calculé :

$$I_p = P_i + 2/3 P_{i-1}$$

Nous obtenons entre la lame écoulée \bar{L} et l'indice I_p une relation graphique satisfaisante (graph. n° 57).

Pour :

$$IP_{i} < 160 \quad L_{i} = 0$$

$$160 \gg IP_{i} > 260 \quad L_{i} = 0,1 \quad (IP_{i} - 160)$$

$$IP_{i} \gg 260 \quad L_{i} = IP_{i} - 250$$

(Si
$$P_{i-1} > 375 \text{ mm } L_{i} = P_{i}$$
).

Lorsque l'indice pluviométrique mensuel IP $_i$ excède un seuil de 250 mm, la relation \bar{L} = P(I_p) correspond à une droite de pente 1/1.

Cette relation analogue à celle qui fait correspondre pour les fortes crues la valeur de la lame ruisselée à la hauteur de l'averse génératrice, traduit la réaction d'un bassin à très faible perméabilité.

Nous pouvons attribuer les écarts, qui restent notables :

- 1°) à la non prise en considération dans le total pluviométrique mensuel de la distribution et de la position dans le mois, des précipitations journalières. La concentration des précipitations en quelques fortes averses favorise l'écoulement, surtout si ces averses surviennent en début de mois et profitent ainsi de conditions d'humectation améliorées (ex.: décembre 1976);
- 2°) du fait de n'avoir établi, en raison de la taille réduite des échantillons mensuels (4 années), qu'une seule relation hydropluviométrique pour tous les mois de l'année. Les deux droites représentatives correspondent en réalité à la position médiane d'un faisceau de droites ou courbes propres à chaque mois de la saison des pluies.

La relation établie, toutes réserves faites ci-dessus, permet à partir des hauteurs pluviométriques mensuelles d'estimer les lames écoulées correspondantes (tableau LIII et LIV) pour les années observées. On peut estimer, que pour un nombre suffisamment important d'années, les écarts se compenseront pour donner des valeurs moyennes correctes, avec toutefois une réduction de la variance des valeurs calculées par rapport à la variance vraie des lames écoulées annuelles réelles, si celles-ci avaient pu être observées.

2.1.3. Reconstitution d'une chronique historique des apports annuels :

Le bassin de la CAROLE est situé à mi-distance entre les postes météorologiques de référence de TROIS-ILETS et du DIAMANT.

Il est possible d'établir une régression entre les valeurs mensuelles de la pluviométrie moyenne sur le bassin et les valeurs correspondantes d'un indice pluviométrique (moyenne des totaux mensuels des deux postes de référence).

Pour 32 couples de valeurs (août 75 à mars 78, fermeture du poste du DIAMANT), le coefficient de corrélation est :

$$r^2 = 0.97$$

La droite de régression a pour équation :

$$Y = 0,927 \times + 7,5$$

Y pluviométrie moyenne mensuelle sur le bassin X moyenne mensuelle de TROIS-ILETS et DIAMANT

Il est alors possible pour chaque mois de la période allant de juillet 1952 à juin 1975, d'estimer, à partir des valeurs mensuelles de la pluviométrie de TROIS-ILETS et du DIAMANT, les valeurs mensuelles de la pluviométrie moyenne sur le bassin et de la lame écoulée mensuelle correspondante.

Les résultats de cette opération sont présentés dans le tableau n° LV.

Nous obtenons ainsi, en y ajoutant les années observées, 27 valeurs annuelles de la pluviométrie et de la lame écoulée (tableau n° LVI).

2.1.4. Analyse statistique des résultats :

a) pluviométrie annuelle :

L'ajustement d'une loi normale aux 27 valeurs reconstituées fournit les valeurs suivantes :

Moyenne 1 359 mm Ecart-type : 230 mm

$$C_{V} = 0.17$$

Décennale humide 1 654 mm

Quinquennale humide 1 553 mm

Normale 1 359 mm

Quinquennale séche 1 165 mm

Décennale sèche 1 064 mm

K3

1,55

(K₃: rapport des ^{1,55} décennales humides et sèches).

Pour la période étendue 1921-1970, la hauteur annuelle moyenne de pluie peut être estimée, d'après la synthèse, à 1500 mm. (Par interpolation entre les isohyètes interannuelles).

b) Déficit d'écoulement annuel :

La loi normale ajustée aux 27 valeurs 52-79 a les paramètres suivants :

Moyenne 1112 mm Ecart-type 124 mm

$$C_{V} = 0.11$$

Décennale humide	1271	mm
Quinquennale humide	1216	mm
Normale	1112	mm
Quinquennale sèche	1008	mm
Décennale sèche	953	mm

$$K_3 = 1,33$$

c) Lame écoulée annuelle :

Aux 27 valeurs de l'échantillon ont été ajustées les lois suivantes :

Loi normale :

$$F(x) = \frac{1}{\sqrt{2}\pi} \int_{-\infty}^{u} e^{-\frac{u^2}{2}} du \quad u = \frac{x - x_0}{\sigma}$$

$$\frac{\text{Loi de GUMBEL}}{F(x) = e^{-e^{-u}}} : \frac{x - x_0}{u = \frac{S}{S}}$$

Loi de GALTON (log-normale) :

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-\frac{u^2}{2}} du \ u = a \log (x - x_0) + b$$

Loi de GOODRICH :

F (x) = 1 -
$$e^{-u^{1/\delta}}$$
 $u = \frac{x - x_0}{S}$
s>0 δ >0 $x>x_0$

Loi de PEARSON III (GAMMA incomplète) :

$$F(x) = \frac{1}{\Gamma(x)} \qquad \int_{0}^{u} u^{x} - 1 \quad e^{-u} \quad du \quad u = \frac{x - x_{0}}{S}$$

Les paramètres ont été calculés par la méthode des moments. La loi de distribution la plus représentative de l'échantillon a été choisie en testant la qualité de l'ajustement par la maximisation de l'indice:

$$i = \frac{2 \cdot n \cdot P}{N(N-1)}$$

n plus petit nombre des points situés du même côté de la courbe d'ajustement,

N nombre total des points (27),

P nombre d'intersection avec la courbe de la ligne brisée joignant tous les points,

N - 1 nombre maximal possible d'intersections.

Cf. F. MONIOD - Ressources en eau de surface de la MARTINIQUE - page 98.

La loi la plus représentative est celle de PEARSON III (i = 0,278) avec les paramètres suivants :

$$X = 4,086$$
 s = 96,7 $X_0 = -139,2$

Les valeurs remarquables sont les suivantes :

Récurrence	Valeur de la lame écoulée (mm)
Décennale humide	518
Quinquennale humide	405
Médiane	225
Quinquennale sèche	90
Décennale humide	34,5

La lame annuelle est pratiquement nulle une fois tous les vingt ans.

d) Coefficient d'écoulement annuel :

A partir de l'échantillon reconstitué de 27 années, en reportant sur un graphique les coefficients d'écoulement en fonction

de la pluviométrie annuelle, nous obtenons une courbe moyenne des coefficients. Les écarts à cette courbe moyenne peuvent être réduits en prenant en compte la concentration pluviométrique mensuelle rapport des cinq mois utiles de la saison des pluies au total annuel.

Pour une concentration moyenne de 61 % ($P_5/\bar{P}_{annuelle}$), la courbe de réponse du bassin fournit pour des valeurs remarquables de la pluviométrie annuelle, les valeurs suivantes :

Récurrence	P̄ année	K _e %
Décennale humide	1 655	30
Quinquennale humide	1 550	25
Médiane	1 360	16,5
Quinquennale sèche	1 170	8,5
Décennale sèche	1 065	5

III.2.2. Bassin de VAL D'OR (1,43 km2) :

2.2.1. Apports annuels (période 1975-78):

Le bilan des observations est le suivant :

	Année hydrol	ogique (jui	llet-juin)	Saison des pluies (Juillet-déc.)					
	P (mm)	P ₇ -12	P _{7-12/} P	Ī ₇₋₁₂	K _e %				
1975-76	1736,5	.352,2	20,6	1259,0	72,5 %	328,5	26,1		
1976-77	1682,5	391,5	23,3	1324,5	78,7 %	380,8	28,8		
1977-78	1813,5	334,2	18,4	1208,0	66,6 %	309,0	25,6		

- le volume moyen des apports est de 500 000 m3.
- 95 % des apports annuels en saison des pluies.

 $\frac{1975-76}{\text{une saison des pluies un peu excédentaire (1,10). Mais la première partie de la saison des pluies est nettement déficitaire (juillet 0,29 - Août 1,10 - Septembre 0,57) alors que les trois derniers mois de l'année sont très nettement excédentaires (octobre 1,45 - novembre 1,33 - décembre 2,14). Le total du dernier trimestre avec une hydraulicité de 1,58, représente 40 % du total annuel contre 30,0 % en année normale. Cette concentration des pluies sur les trois derniers mois de l'année est responsable d'un coefficient d'écoulement annuel (20,6 %) très nettement supérieur à la normale.$

 $\frac{1976-77}{1000}: La répartition de la pluviométrie mensuelle est semblable. Pour un total annuel légèrement inférieur à la médiane, on observe une saison des pluies excédentaire (hydraulicité 1,15) avec la même dissymétrie : première partie de la saison des pluies déficitaire (juillet 0,51 - août 0,85 - septembre 0,82) et excédent important pendant le dernier trimestre et tout particulièrement en décembre (octobre 1,30 - novembre 1,41 - décembre 2,41).$

Le total du dernier trimestre, avec une hydraulicité de 1,63 représente 52 % du total annuel contre 30 % en année normale. L'écoulement de la même période représente 93 % des apports annuels dont 44 % pour le seul mois de décembre. La crue du 7 décembre avec 108 mm représente à elle seule près de 28 % des apports annuels.

A une telle concentration de la pluviométrie répond un coefficient d'écoulement annuel très supérieur à la normale.

1977-78: Le total annuel est un peu supérieur à la normale. La répartition mensuelle est équilibrée. La saison des pluies a une hydraulicité de 1,05 avec la répartition suivante :

Juillet 0,46 - août 1,27 - septembre 0,39 - octobre 1,78 - novembre 1,20 - décembre 0,51 -

Le total pluviométrique des quatre mois d'août à novembre avec une hydraulicité de 1,28 représente 58 % du total annuel (47 % en année normale).

Les apports de cette période représente 90 % des apports annuels.

Le coefficient d'écoulement annuel doit être un peu supérieur à la normale.

La répartition de l'écoulement, par année, est la suivante, en se basant sur les résultats des crues et la répartition mensuelle de l'écoulement (tableau n° LVII) :

	Ruissellement Pur (mm)	% €	% P	Ruissellement Retardé (mm)	% E	P ڏي	Ecoul. base (mm)	# E	% P
1975-76	247,1	70,2	14,2	66,0	18,7	3,8	39,1	11,1	2,3
1976-77	288,6	73,8	17,2	64,0	16,4	3,8	38,7	9,9	2,3
1977-78	245,3	73,4	13,5	50,6	15,1	2,8	88,4	11,5	2,1

Le ruissellement pur correspond au total cumulé des lames ruisselées des crues individualisées (cf. III.1.2.1.). Il représente 75 % des apports annuels.

Le ruissellement retardé regroupe l'écoulement postérieur à la fin des crues (ressuyage du bassin, vidange rapide de l'horizon perméable) et les petites crues partielles non individualisées. Celà représente environ $15\ \%$ des apports annuels.

L'écoulement de base proprement dit (10~% des apports annuels) correspond au drainage lent des horizons perméables.

2.2.2. Relations hydropluviométriques mensuelles :

La courbe moyenne représentant la relation entre la lame écoulée mensuelle \bar{L} et la pluviométrie P est présentée sur le graphique n° 58. Les écarts à cette courbe dépendent de l'état d'humectation des sols au début du mois (influence des mois précédents) et de la distribution des pluies dans le mois.

Nous ne prendrons en compte que les totaux mensuels.

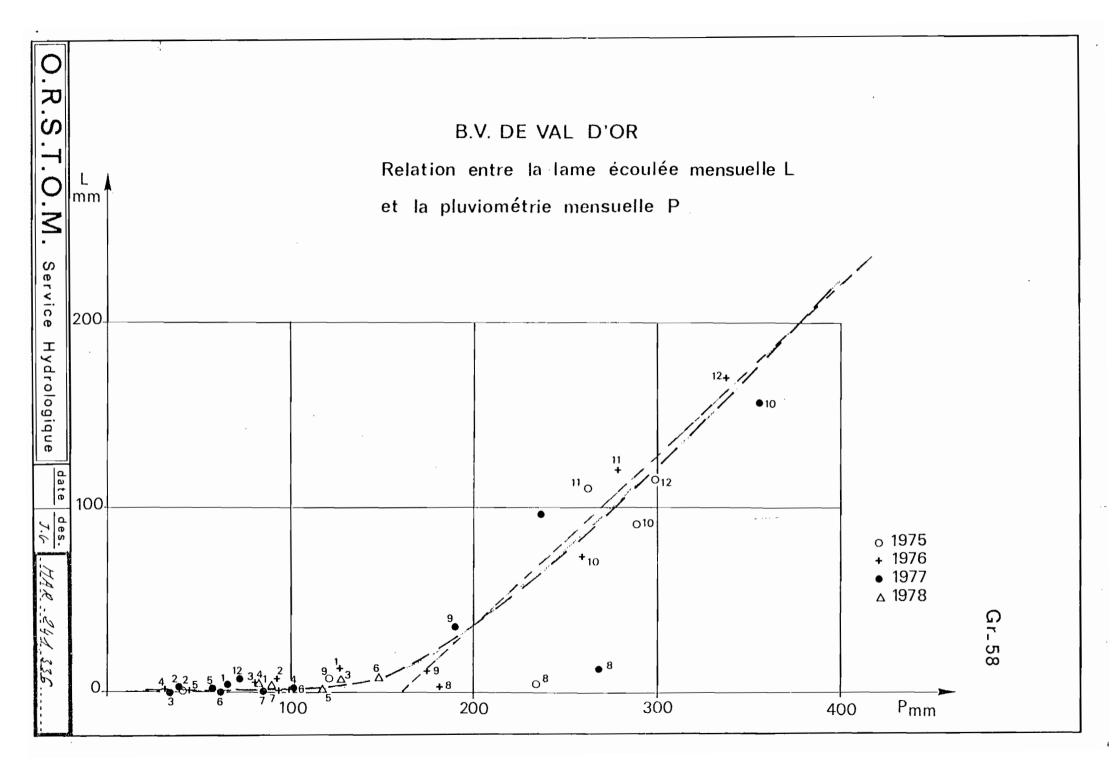
Deux relations peuvent être établies (graph. n° 59).

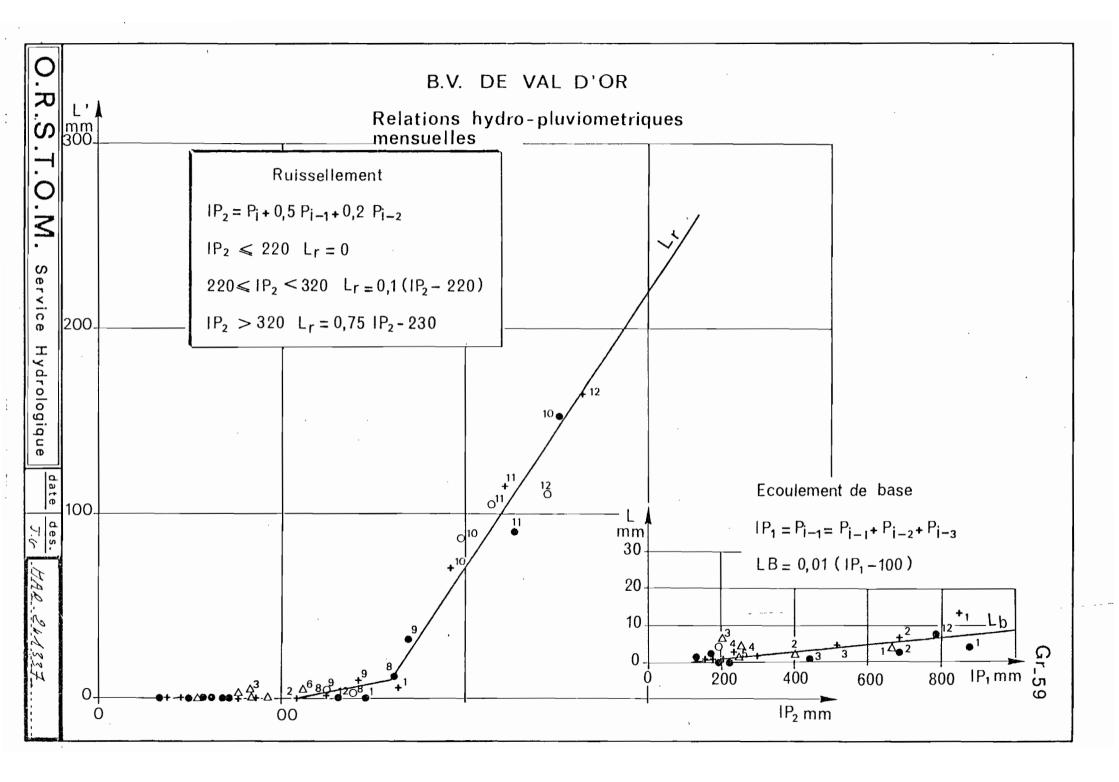
a) Ecoulement de base :

En reportant, les lames écoulées des mois de la saison "sèche" en fonction d'un indice pluviométrique IP, (somme de la pluviométrie des trois mois antérieurs), nous établissons la relation suivante :

$$IP_1 = P_i - 1 + P_i - 2 + P_i - 3$$

 $L_B = 0.01 (IP_1 - 100)$


b) Ruissellement pur et retardé :


Les résidus L' = L - $L_{\rm B}$ sont reportés en fonction d'un indice ${\rm IP}_2$.

$$IP_2 = P_i + 0.5 P_i - 1 + 0.2 P_i - 2$$
 $IP_2 < 220$
 $L_R = 0$
 $220 \le IP_2 \le 320$
 $L_R = 0.1 (IP_2 - 220)$
 $L_R = 0.75 IP_2 - 230$

2.2.3. Chronique historique des apports annuels :

La pluviométrie moyenne du bassin de VAL D'OR (valeurs mensuelles) est en bonne corrélation avec la pluviométrie du poste météo de PETIT BOURG usine.

Pour 40 couples de valeurs mensuelles, le coefficient de corrélation est $r^2 = 0,934$.

Cependant, la régression n'étant pas homoscédastique, nous avons établi graphiquement les relations suivantes :

$$Y = X + 6$$
 pour $X < 220$ mm
 $Y = 0.62 X + 90$ pour $X > 220$

Y pluviométrie moyenne mensuelle sur le bassin, X pluviométrie moyenne mensuelle à PETIT BOURG Usine.

Une relation semblable peut être établie avec TROIS ILETS PTT :

$$Y = 1,25 X + 5 X < 200 mm$$

 $Y = 0,65 X + 125 X \ge 200 mm$

(X pluviométrie mensuelle à TROIS ILETS PTT).

Ces relations nous permettent de reconstituer les valeurs mensuelles de la pluviométrie sur le bassin de VAL D'OR pour la période 1952-1975.

En utilisant les relations hydropluviométriques mensuelles établies, ci-dessus, il est possible d'évaluer pour chaque mois de la période la lame de base $L_{\rm B}$, la lame ruisselée $L_{\rm R}$ et la lame écoulée totale $L=L_{\rm R}+L_{\rm B}$. Le tableau n° LVIII présente les résultats de ce calcul.

Les vingt-six années ainsi reconstituées ou observées (1975-78) sont présentées dans le tableau n° LIX.

2.2.4. Analyse statistique:

a) Pluviométrie annuelle :

Loi normale pour un échantillon de 26 valeurs :

Moyenne 1 758 mm Ecart-type 232 mm $C_{vv} = 0,13$

Récurrence	P (mm)
Décennale humide	2 055
Quinquennale humide	1 953
Médiane	1 758
Quinquennale sèche	1 563
Décennale sèche	1 461

$$K_3 = 1,41$$

b) Déficit d'écoulement annuel :

Loi normale pour 26 valeurs :

Moyenne 1 484 mm Ecart-type 138 mm

$$C_{V} = 0.09$$

Récurrence	D _E (mm)
Décennal humide	1 661
Quinquennale humide	1 600
Médiane	1 484
Quinquennal sec	1 368
Décennal sec	1 307

$$K_3 = 1,27$$

c) Lame écoulée annuelle :

Loi de GOODRICH (i = 0,270)

$$\bar{X} = 274,2$$
 $S_x = 166,0$ $\aleph_1 = 0,503$

$$\S = 0,443$$
 S = 399,9 $X_0 = -80,07$

Récurrence	E (mm)
Décennale humide	498
Quinquennale humide	414
Médiane	260
Quinquennale sèche	126
Décennale sèche	68

$$K_3 = 7,3$$

La lame écoulée annuelle est pratiquement nulle une fois en 40 ans (F = 0,025).

d) Coefficient d'écoulement annuel :

Pour les précipitations annuelles suivantes (avec une répartition normale des hauteurs mensuelles), les coefficients d'écoulement annuels prennent les valeurs suivantes :

Récurrence	P̄ année	K _e %
Décennale humide Quinquennale humide Médiane Quinquennale sèche Décennale sèche	2 055 1 955 1 760 1 560 1 460	24 21 14 8

III.2.3. Bassin de VOLTAIRE (0,835 km2) :

2.3.1. Apports annuels (période 1975-78) :

Le bilan des observations est le suivant :

	Année hydrologique (juillet-juin)			Saison des pluies (juillet-décembre)			
	5 (mm)	Ē (mm)	K _e %	P ₇₋₁₂	P _{7-12/P%}	L ₇₋₁₂	K _e ",
1975-76	1793,0	249,3	13,9	1294,0	72,2	214,1	16,5
1976-77	1729,5	239,9	13,9	1275,0	73,7	223,0	13,3
1977-78	2228,5	516,2	23,2	1549,0	69,5	455,4	29,4
1978				1224,0	-	265,3	21,7

Les volumes écoulés varient entre 200 et 430 000 m3.

Les apports de la saison des pluies représentent 90 % du total en moyenne.

 $\frac{1975-76}{1}$: L'hydraulicité de la saison des pluies est un peu supérieure à la normale. Le dernier trimestre (octobre 1,90 - novembre 0,76 - décembre 1,94) totalise 51 % du total pluviométrique annuel contre 33 % en moyenne, Les apports du dernier trimestre représentent 86 % du total annuel.

1976-77: La répartition pluviométrique de l'année est semblable à celle de l'année 1975-76. Le dernier trimestre représente 48 % du total annuel pluviométrique et les apports 89 % du total annuel.

1977-78: La pluviométrie de l'année est très excédentaire (F = 0,985) mais sans déséquilibre notable dans la répartition mensuelle. Les apports de la saison des pluies représentent 88 % du total annuel. Le carême est relativement abondant.

La répartition des écoulements est la suivante (en mm) :

	Année					
	Ruiss. pur % Ecoul. différé					
1975-76	171,3	68,7	78,0			
1976-77	170,6	71,1	69,3			
1977-78	312,8	60,6	203,4			
1978						

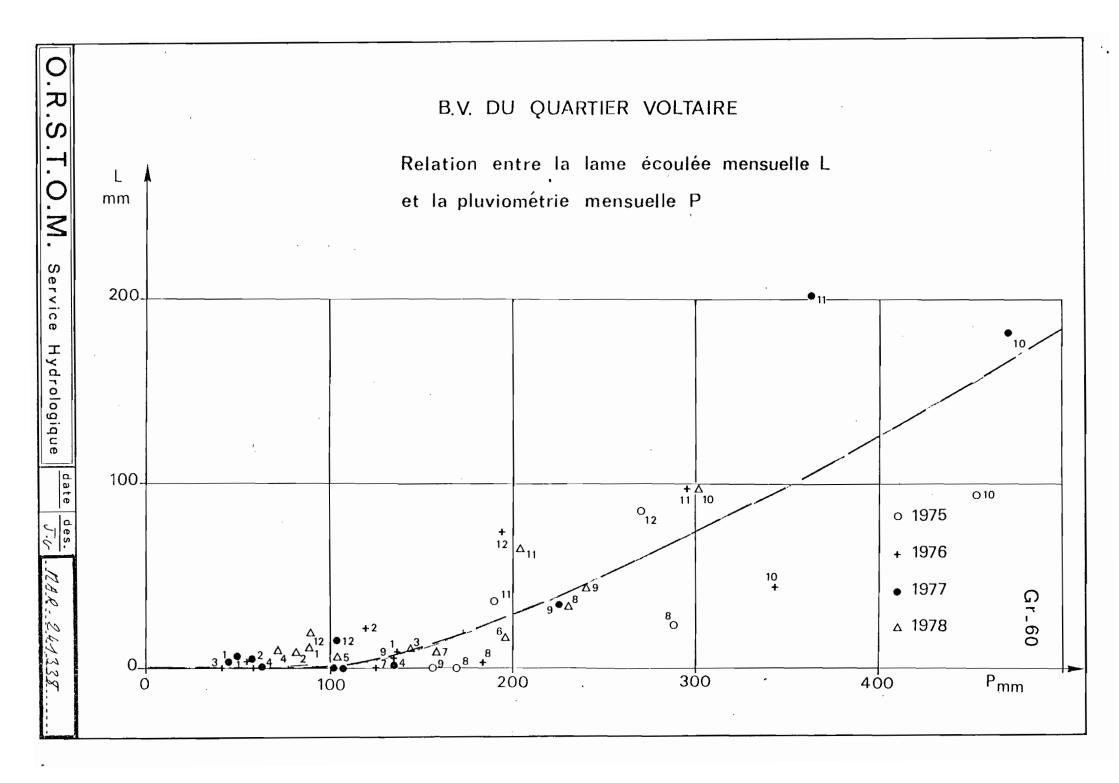
	Saison des pluies			Sa	ison	sèche
	Ruiss. pur	%	Ecoul. différé	Ruiss. pur	%	Ecoul. différé
1975-76	156,2	73	57,9	15,1	43	20,1
1976-77	170,6	76	52,4	0	0	16,9
1977-78	297,1	65	158,3	15,7	26	45,1
1978	183,1	69	82,2			

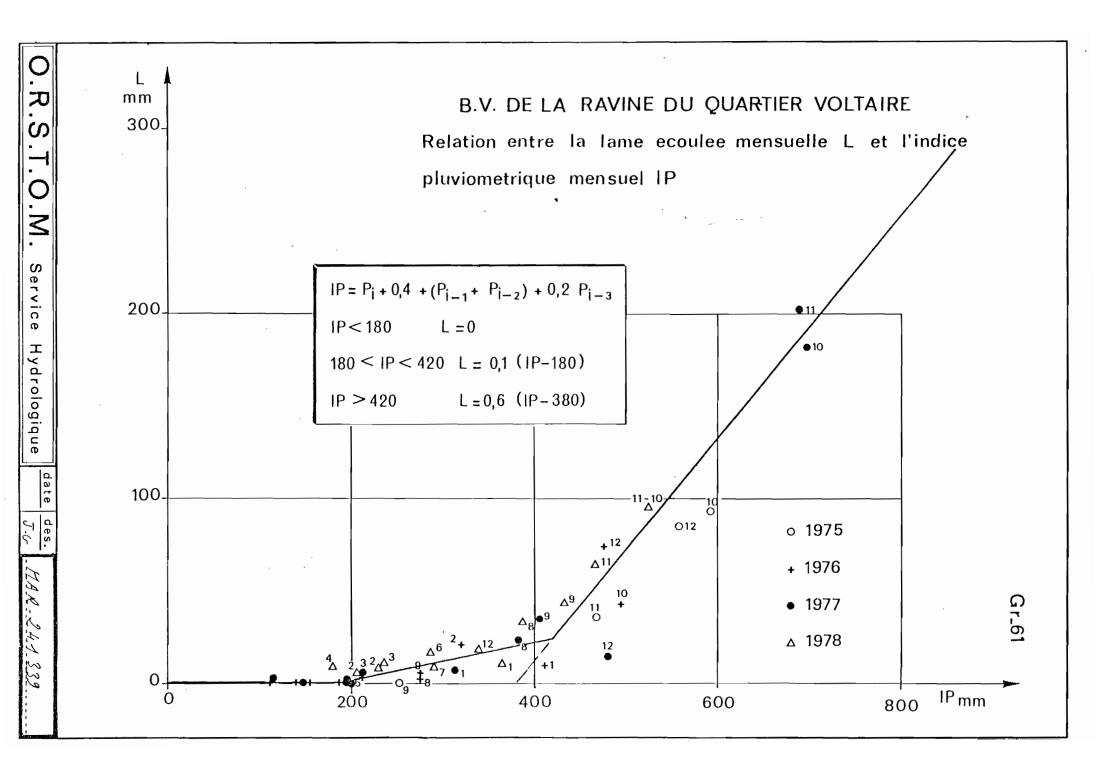
Le ruissellement pur représente le total des lames ruisselées des crues individualisées. Il est presqu'entièrement observé au cours de la saison des pluies avec quelques petites crues en début d'année ou en juin (1976 et 1978).

L'écoulement différé regroupe l'écoulement retardé (ressuyage du bassin) et le débit de base qui reste faible et s'annule pratiquement en fin mars sauf en 1978 où, en raison d'une pluviométrie de carême supérieure à la normale, subsiste jusqu'à la saison des pluies un débit de base de quelques litres seconde.

2.3.2. Relations hydropluviométriques mensuelles :

Le graphique n° 60 représente la courbe moyenne de réponse mensuelle du bassin.


En raison de la faiblesse du débit de base, une seule relation est établie entre la lame écoulée mensuelle et un indice pluviométrique qui prend en compte la pluviométrie des trois mois précédents (graphique n° 61).


$$IP = P_i + 0.4 (P_i - 1 + P_i - 2) + 0.2 P_i - 3$$

$$IP < 180 \quad L = 0$$

$$180 \le IP < 420 \quad L = 0.1 (IP - 180)$$

$$420 \le IP \qquad L = 0.6 (IP - 380)$$

Le tableau n° LX présente les caractéristiques mensuelles de l'écoulement.

2.3.3. Chronique historique des apports annuels :

La pluviométrie moyenne mensuelle du bassin de VOLTAIRE peut être mise en corrélation avec la pluviométrie mensuelle du poste météo voisin de ROBERT Gendarmerie.

Pour 38 couples de valeurs, le coefficient de corrélation est $r^2 = 0,903$.

La droite de régression (relation homoscédastique) a pour équation :

$$Y = 0.90 X + 27.6$$

- Y pluviométrie moyenne sur le bassin
- X pluviométrie mensuelle de ROBERT Gendarmerie.

Cette relation permet d'estimer, pour les années 1962 à 1975, la pluviométrie mensuelle du bassin de VOLTAIRE et à partir de la relation hydropluviométrique de reconstituer les valeurs mensuelles de l'écoulement (tableau n° LXI).

Nous obtenons ainsi (tableau n° LXII), 16 valeurs annuelelles de la pluviométrie, du déficit d'écoulement et de la lame annuelle écoulée.

2.3.4. Analyse statistique :

a) Pluviométrie annuelle :

Loi normale N = 16 $\bar{P} = 1727,5$ $S_p = 232$

Récurrence	P mm
Décennale humide	2 025
Quinquennale sèche	1 923
Médiane	1.727
Quinquennale sèche	1 532
Décennale sèche	1 430
	_

$$K_3 = 1,42$$

b) Déficit d'écoulement annuel :

Loi normale $\bar{D}_F = 1522 \text{ mm} \text{ s}_{DE} = 130$

Récurrence	D _E (mm)
Décennale humide	1 689
Quinquennale humide	1 632
Normale	1 522
Quinquennale sèche	1 413
Décennale humide	1 356

$$K_3 = 1,25$$

c) Lame écoulée annuelle :

Loi de GOODRICH (i = 0,450)
$$\bar{L} = 205 \text{ mm s}_{L} = 120 \text{ mm } \&_{1} = 1,274$$

$$\& S = 0,743 \qquad S = 174,3 \qquad X_{0} = 45,2$$

Récurrence	Ī (mm)
Décennale humide	369
Quinquennale humide	293
Médiane	178
Quinquennale sèche	102
Décennale sèche	78

$$K_3 = 4,7$$

d) Coefficient d'écoulement annuel :

Les coefficients d'écoulement annuels prennent la valeur suivante (pour une répartition normale des précipitations mensuelles) :

Récurrence	P année	K _e %
Décennale humide	2 025	17,5
Quinquennale humide	1 920	15,5
Médiane	1 730	11,5
Quinquennale sèche	1 530	8
Décennale sèche	1 430	5

III.2.4. Bassin de DUCHENE (1,51 km2) :

2.4.1. Apports annuels (période 1976-78) :

Le bilanades observations est le suivant :

	Année hydrologique (juillet-juin)			Saison des pluies (juildécembre)				
	Þ	L	K _e %	P ₇₋₁₂	P7-12/P%	Ĩ.	K _e %	
1976-77	1 592,5	373,3	23,4	1 223,5	77,0	329,6	26,9	
1977-78	1 694,0	324,9	19,2	1 100,5	65	279,8	25,4	
1978				1 233,5		295,7	24,0	

Pluviométrie et lames en mm.

Le volume écoulé est de l'ordre de 500 000 m3.

L'écoulement de saison des pluies représente 85 % des apports annuels.

 $\frac{1976-77}{1976-77}: L'hydraulicité de la saison des pluies est normale avec un déséquilibre caractérisé par un troisième trimestre déficitaire (0,56 - 0,59 - 0,69) et un dernier trimestre très excédentaire (1,33 - 1,29 - 1,72). Le dernier trimestre représente 53 % du total pluviométrique annuel (33 % en année normale) et l'écoulement des trois derniers mois représente 84 % du total annuel dont 41 % pour le seul mois de décembre (crue du 7-12).$

La saison sèche est déficitaire (0,61).

1977-78: La répartition de la pluviométrie est comparable à celle de 1976 à 3ème trimestre déficitaire et dernier trimestre excédentaire sauf décembre (1,54 - 1,24 - 0,47). Octobre et novembre représente 36 % du total annuel pluviométrique (24 % en année normale) et 75 % de l'écoulement total.

Le carême est à peu près normal (février et mai déficitaires, mais Mars très excédentaires]1,61).

1978: la saison des pluies présente un total voisin de la normale avec la répartition suivante (juillet 0,73 - aôut 1,28 - septembre 0,99 - octobre 1,19 - novembre 1,20 - décembre 0,60).

Le tableau n° LXIII présente les résultats mensuels observés.

La répartition de l'écculement est la suivante :

	Ruissel. pur (mm)	% E	% Р	Ruissel. retardé (mm)	* E	% P	Ecoul. base (mm)	% E	% P
1976-77	162,7	43,6	10,2	106,1	28,4	6,7	104,5	28,1	6,6
1977-78	112,5	34,6	6,6	106,7	32,8	6,3	105,7	32,5	6,2
1978 ∗	(158,8)	(53,7)	12,9	(56,6)	19,1	4,6	(80,3)	(27,2)	(6,5)

* 78 juillet-décembre.

- Ruissellement pur : total des lames ruisselées des crues

- Ruissellement retardé : écoulement différé (ressuyage du bassin) et très petites crues non individualisées.

- Ecoulement de base : vidange du magasin perméable du bassin.

On notera, par rapport aux bassins précédents, l'importance de l'écoulement de base qui représente 30 % des apports annuels et 6,5 % de la pluviométrie annuelle.

2.4.2. Relations hydropluviométriques mensuelles :

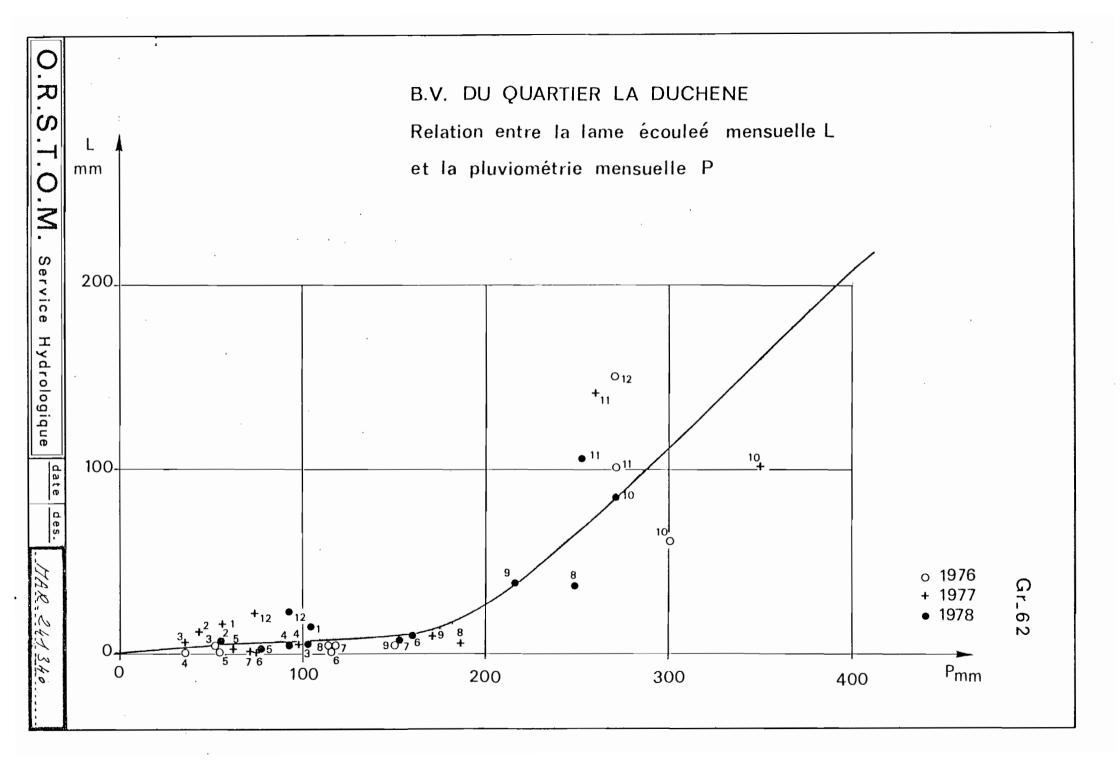
Le graphique n° 62 représente la courbe moyenne de relation entre la lame écoulée mensuelle \bar{L} et la pluviométrie mensuelle \bar{P} .

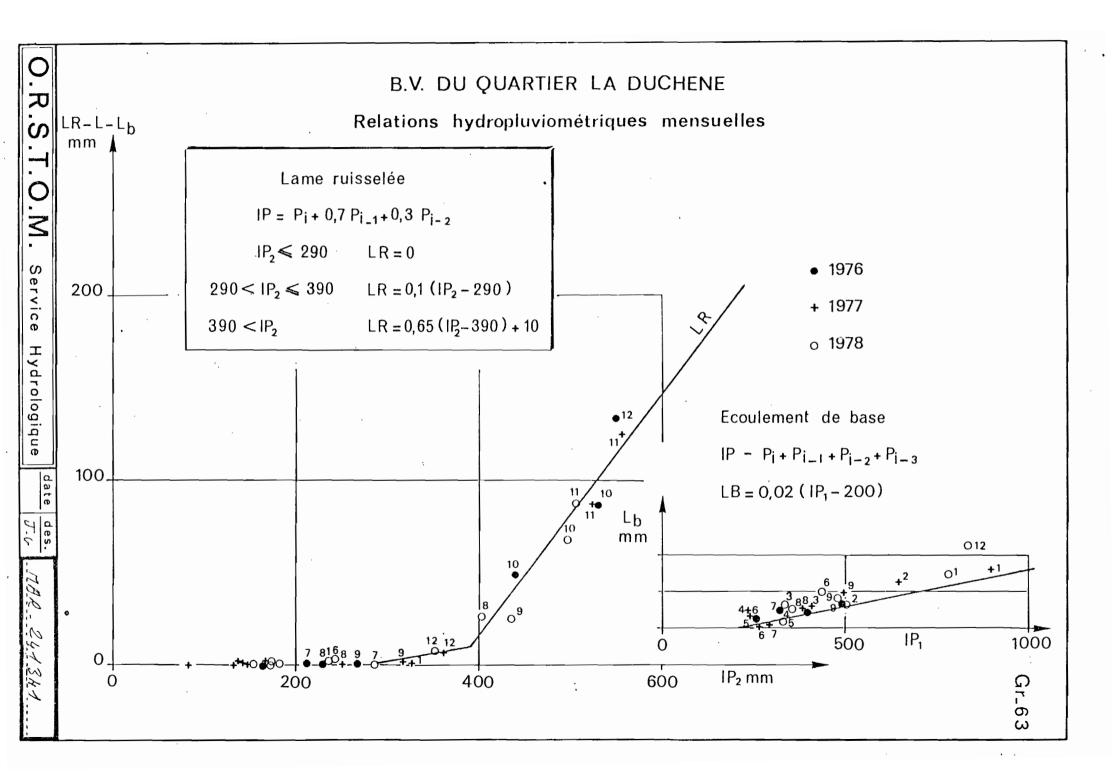
Ecoulement de base :

Les points représentatifs des écoulements mensuels pour les mois de saison sèche et les quelques mois de saison des pluies où le ruissellement est faible ou nul sont reportés en fonction d'un indice pluviométrique mensuel ${\rm IP}_1$:

$$IP_1 = P_i + P_i - 1 + P_i - 2 + P_i - 3$$

La droite enveloppe inférieure de ces points a pour équation :


$$L_{B} = 0.02 (IP_{1} - 200)$$


Ruissellement pur et retardé :

Les résidus $L_R = L - L_B$ sont reportés en fonction d'un indice IP_2 :

$$IP_2 = P_i + 0.7 P_{i-1} + 0.3 P_{i-2}$$

Les droites moyennes de relation ont pour équation :

$$IP_2 < 290 \quad L_R = 0$$

 $290 < IP_2 < 390 \quad L_R = 0,1 \quad (IP_2 - 290)$
 $390 < IP_2 \quad L_R = 0,65 \quad (IP_2 - 390) + 10$

Ces relations sont représentées sur le graphique n° 63.

2.4.3. Chronique historique des apports annuels :

Les hauteurs pluviométriques mensuelles du bassin de DUCHENE (moyenne des deux postes) et de la station météo de DUCHENE peuvent être mises en corrélation.

$$N = 34$$
 $r^2 = 0.884$
 $Y = 0.89$ $X + 17.8$

(Y moyenne sur le bassin - X pluviométrie de DUCHENE météo).

Cette relation permet d'estimer, pour les années 1960 à 1976, la pluviométrie mensuelle sur le bassin de DUCHENE et à partir des relations hydropluviométrique, de reconstituer les valeurs mensuelles de l'écoulement de base et du ruissellement (tableau n° LXIV). Nous obtenons ainsi (tableau n° LXV), dix-sept valeurs annuelles de la pluviométrie, du déficit d'écoulement et de la lame écoulée.

2.4.4. Analyse statistique:

a) Pluviométrie annuelle - Déficit d'écoulement annuel :

Lois normales N = 17
$$\bar{P}$$
 = 1825 mm S_p = 268 mm D_E = 1490 mm S_{DE} = 192 mm

Récurrence	P mm	D _E mm
Décennale humide	2.168	1 736
Quinquennale humide	2 050	1 651
Médiane	1 825	1 490
Quinquennale sèche	1 593	1 328
Décennale sèche	1 481	1 243
K ₃	1,46	1,40

b) Lame écoulée annuelle :

Loi de GOODRICH (i = 0,510)

$$\bar{L}$$
 = 335 mm s_L = 150 mm X_1 = 1,477 \hat{S} = 0,817 S = 194,8 X_0 = 153

Récurrence	Ē (mm)		
Décennale humide	538		
Quinquennale humide	440		
Médiane	297		
Quinquennale sèche	210		
Décennale sèche	184		
1			

$$K_3 = 2,9$$

La lame correspondant à l'écoulement de base est normalement distribuée \bar{L}_B = 119 mm, S_{LB} = 18,8.

Ecoulement de base décennal humide 143 mm Ecoulement de base décennal sec 95 mm

$$K_3 = 1,50$$

c) <u>Coefficient d'écoulement annuel</u> :

Les coefficients d'écoulement annuel varient entre 11 et 33 %.

L'écoulement de base est stable et représente en moyenne $6,5\,\%$ de la pluviométrie annuelle (6 à $8\,\%$).

Le coefficient de ruissellement varie entre 5 et 25 %.

Les courbes moyennes fournissent les valeurs suivantes :

Pluviométrie annuelle	Ēmm	K _e %	K _R %	K _B %
Décennale humide	2 170	23,0	16,5	6,5
Quinquennale humide	2 050	20,5	14,0	6,5
Médiane	1 825	16,4	9,9	6,5
Quinquennale sèche	1 590	13,5	7,0	6,5
Décennale sèche	1 480	12,8	6,3	6,5

III.3. ETIAGES - APPORTS DE SAISON SECHE

Il n'existe pas, sur les bassins étudiés, de magasin perméable suffisamment important pour stocker puis restituer en saison sèche des apports notables. Ces apports sont nuls pour la CAROLE qui s'assèche dès les dernières crues de décembre, faibles pour VAL D'OR et VOLTAIRE où les débits subsistants (de l'ordre du litre-seconde) peuvent être maintenus, lors d'un carême pas trop sévère, par les petites précipitations. Ces apports ne prennent une certaine importance que sur le bassin de DUCHENE, où le réseau de drainage est assez dense pour permettre de récupérer dans la première partie de la saison sèche, les apports des petites précipitations.

3.1. Bassin de la CAROLE :

A partir du débit-charnière de la dernière crue de saison des pluies ($Q_0 = 70 \text{ l/s}$), les débits décroissent de moitié en 18 heures ($Q = Q_0 \text{ e}^{-0.04 \text{ t}}$) jusqu'à 5 l/s puis de 5 à 1 en 24 heures ($Q = Q_0 \text{ e}^{-0.07 \text{ t}}$). Le volume ainsi distribué peut être estimé à 6 500m3 qui s'écoule entièrement en 5 à 6 jours.

Le <u>débit d'étiage</u> est évidemment <u>nul</u>, puisqu'on n'observe aucun écoulement de janvier jusqu'au début effectif de la saison des pluies à l'exception d'écoulements sporadiques dus à des fortes précipitations isolées (1979).

3.2. Bassin de VAL D'OR :

Les débits moyens journaliers décroissent irrégulièrement à partir de janvier 2 à 3 l/s et quelques dixièmes de l/s en fin de carême. Le <u>débit d'étiage</u> est pratiquement <u>nul</u>.

Les petites précipitations entrainent des réactions partielles sur le bassin qui peuvent faire remonter le débit journalier à une dizaine de litre/seconde.

Il n'est pas possible de déterminer une courbe de tarissement exponentielle.

Les apports sont les suivants (déduction faites des rares crues individualisées) (Lames en mm):

	Janvier	Février	Mars	Avril	Mai	Juin
1976	10,5	6,5	4,9	1,8	0,8	1,1
1977	4,0	2,9	0,5	1,1	2,0	0
1978	3,5	2,0	6,6	3,7	1,1	1,0

Les apports de saison sèche représentent :

en 1976 : 36 700 m3 (7,3 % du total annuel) en 182 j (\bar{q} = 2,3 1/s en 1977 : 15 000 m3 (2,7 % du total annuel) en 181 j (\bar{q} = 0,95 1/s en 1978 : 25 600 m3 (5,3 % du total annuel) en 181 j (\bar{q} = 1,6 1/s

3.3. Bassin de VOLTAIRE :

Les débits moyens journaliers décroissent de façon irrégulière de 2 à quelques dixièmes de l/s. L'étiage est nul en 1976 et 1977 (carême déficitaires) est descend <u>au-dessous du litre/seconde</u> en 1978 (carême excédentaire).

Les apports de saison sèche (déduction faite des crues individualisées) sont les suivants (en mm) :

	Janvier	Février	Mars	Avril	Mai	Juin
1976	7,2	8,0	4,0	0,7	0,1	0,1
1977	6,4	5,9	2,4	1,6	0,6	0
1978	8,7	7,6	9,0	9,3	5,8	4,7

Soit :

en 1976 : 16 800 m3 (8 % du total annuel) en 182 j (\bar{q} = 1,1 1/s) en 1977 : 14 100 m3 (7 % du total annuel) en 181 j (\bar{q} = 0,9 1/s) en 1978 : 37 600 m3 (8,7 % du total annuel) en 181 j (\bar{q} = 2,4 1/s)

3.4. Bassin de DUCHENE :

Les débits de basses eaux sont nettement plus soutenus que sur les bassins précédents.

Grossièrement, il est possible d'estimer la décroissance des débits moyens mensuels sur cinq mois :

$$Q = Q_0 e^{-0.015 t}$$
 (10 à 1 1/s en 150 jours)

Dans le détail, nous observons que les débits journaliers se présentent en périodes sans précipitations notables (5 mm/j) de 5 à 20 jours avec décroissance exponentielle :

$$Q = Q_0 e^{-0.077 t}$$
 (10 à 1 1/s en 30 j)

Ces périodes sont rompues durant la première partie de la saison sèche par des petites précipitations d'une dizaine de millimètres qui peuvent faire remonter le débit moyen journalier au-dessus de 10 l/s. Ce qui montre l'efficacité du réseau de drainage du bassin, beaucoup plus dense que sur les autres bassins, tant que le niveau de la réserve mobilisable ne descend pas au-dessous d'un certain seuil qui doit être atteint au début du second trimestre. Ensuite les petites précipitations ne peuvent plus déclencher la réaction et le débit descend jusqu'en dessous du litre/seconde.

Les apports de saison sèche (déduction faite des crues individualisées) sont les suivants (en mm) :

	Janvier	Février	Mars	Avril	Mai	Juin
1976	-		5,7	1,3	1,3	1,6
1977	17,0	12,6	5,9	4,8	3,2	0,6
1978	11,1	6,6	6,7	4,7	1,7	2,8

Soit:

1977 66 000 m3 (11,7 % du total annuel) (
$$\bar{q}$$
 = 4,2 1/s)
1978 51 000 m3 (10,3 % du total annuel) (\bar{q} = 3,3 1/s)

Le débit d'étiage ne s'annule pas mais reste très faible (quelques dixièmes de l/s).

		-	
	·		

CHAPITRE IV

ETUDE COMPAREE DES BASSINS

Dans un tableau comparatif, nous rappellerons les principales caractéristiques physiques et climatiques des quatre bassins étudiés. Puis nous comparerons les résultats de l'analyse des données en soulignant, dans les différences observées, l'influence des facteurs originaux de chaque bassin.

IV.1. CARACTERISTIQUES PHYSIQUES ET CLIMATIQUES

	CAROLE	VAL D'OR	VOLTAIRE	DUCHENE
Superficie du bassin (km2)	1,46	1,43	0,34	1,51
Compacité (indice de KOHLER)	1,27	1,28	1,22	1,24
Indice de pente (I _p ROCHE)	0,377	3,274	0,365	0,372
Dénivelée spécifique	134	78	95	131
Densité de drainage (Km ⁻¹)	ō,1	10,5	11,5	15,1
Rapport de confluence	5,50	3,73	3,26	3,10
Pluviométrie moyenne annuelle (mm)	1400	1760	1730	1825
Sols	argiles peu profon- des - très impermé- ables après satura- tion - Transmissi- vité nulle.	sols profonds avec niveau relativement perméable (30 à 40 cm) sur ni- veau imperméable.	sols moyennement pro- fonds et relativement perméables.	Sols légers et meubles profonds <u>assez permé-</u> <u>ables</u> .
Vēgētation et occu- pation du terrain	Petite forêt sêche Savane et prairie sêche - Très peu cultivé.		forêt humide résiduell	et cultures vivrières Forêt humide résiduelle
Réserves d'eau mobi- lisable dans le sol	Néant	tien du débit entre	Très peu importantes Soutien du débit entre les crues et début de saison sèche (qq l/s).	débit entre les crues

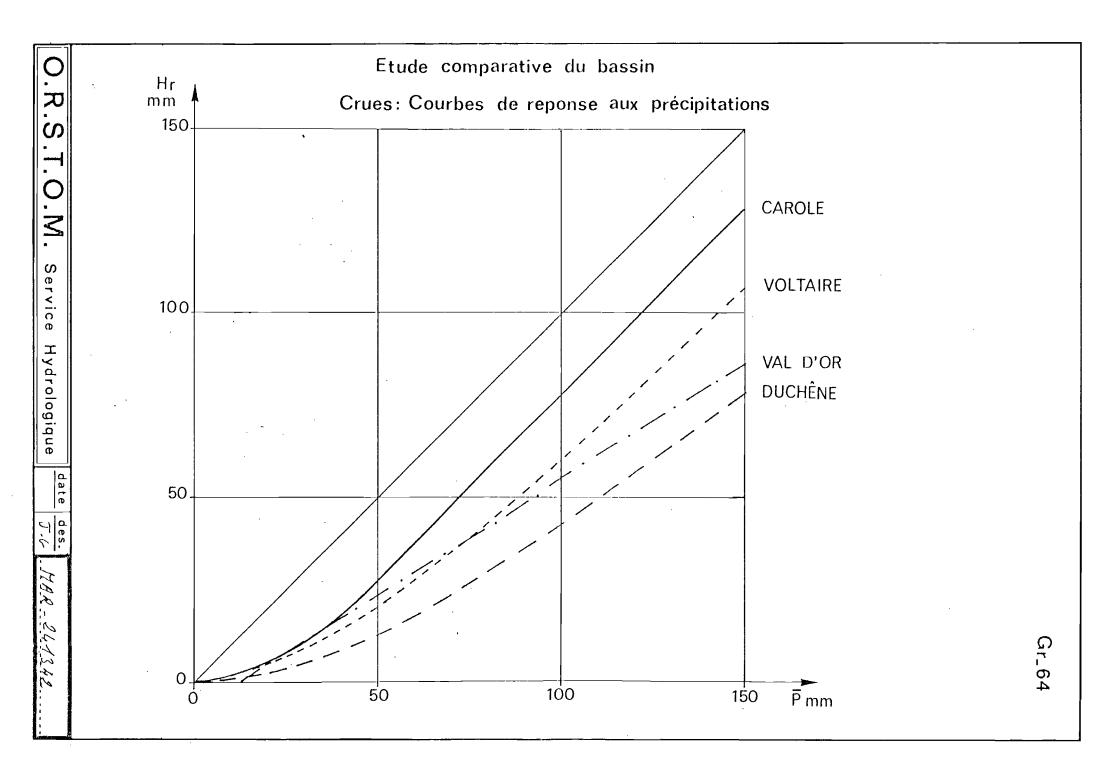
Le bassin de la <u>CAROLE</u> est représentatif des petits bassins, à fortes pentes (sols squelettiques) situés au dessous de l'isohyète 1500 mm (petite forêt sèche et savane sèche) dans le sud de la MARTINIQUE (DIAMANT, région du MARIN).

Le bassin de <u>VAL D'OR</u> est représentatif des bassins de piémont de l'arc des petites hauteurs entourant la région cultivée de PETIT BOURG et Rivière SALEE (bassins de la MANCHE et des COULISSES). Ces petits bassins ont un relief modéré mais suffisant pour empêcher l'extension de la culture mécanisée. Situés sous l'isohyète 1 800, ils sont le domaine, après défrichement de la forêt humide, des **sav**anes et prairies paturées sur sols argileux profonds.

Les bassins de <u>VOLTAIRE</u> et <u>DUCHENE</u> sont représentatifs des petits bassins à fort relief situés sur les pentes de la ligne des collines situées entre VERT PRE et SAINT ESPRIT. Ces bassins sont le domaine de la petite culture familiale diversifiée (habitat dense) en parcelles gagnées sur la forêt humide. La nature des sols, plus ou moins profonds, plus ou moins perméables, aura une influence sensible sur la réponse aux précipitations et sur les débits d'étiage qui resteront cependant très faibles.

IV.2. CRUES

2.2. Courbes de réponse aux précipitations (graphique n° 64).


La meilleure réponse est obtenue sur le bassin de la CAROLE où, une fois satisfaite les besoins du lit principal et saturées les argiles peu profondes, l'on observe un gradient de 1/1 avec un déficit constant de 22 mm.

Puis vient VOLTAIRE où les sols sont plus épais et relativement perméables, la végétation plus dense.

La courbe de réponse tend elle aussi vers la pente 1/1, mais pour des précipitations supérieures à 100~mm (stabilisation du déficit de ruissellement).

La réponse du bassin de VAL D'OR, meilleure que sur VOLTAIRE pour les précipitations inférieures à 75 mm, en raison de la moindre perméabilité des sols argileux, est nettement moins bonne pour les fortes précipitations en raison de l'importance plus grande de la couche de terrain pouvant être saturée (altération plus profonde).

Enfin, sur DUCHENE, la présence de sols profonds, légers meubles et relativement perméables, est responsable de la réduction assez sensible de la réponse, qui, pour des précipitations similaires, représente 60 % de celle de la CAROLE alors que le relief des deux bassins est également vigoureux.

2.2. Forme des crues (graphique n° 65) :

Le graphique représente les hydrogrammes-types des quatre bassins ramenés, pour la comparaison, à un volume ruissélé de 1 000 m3.

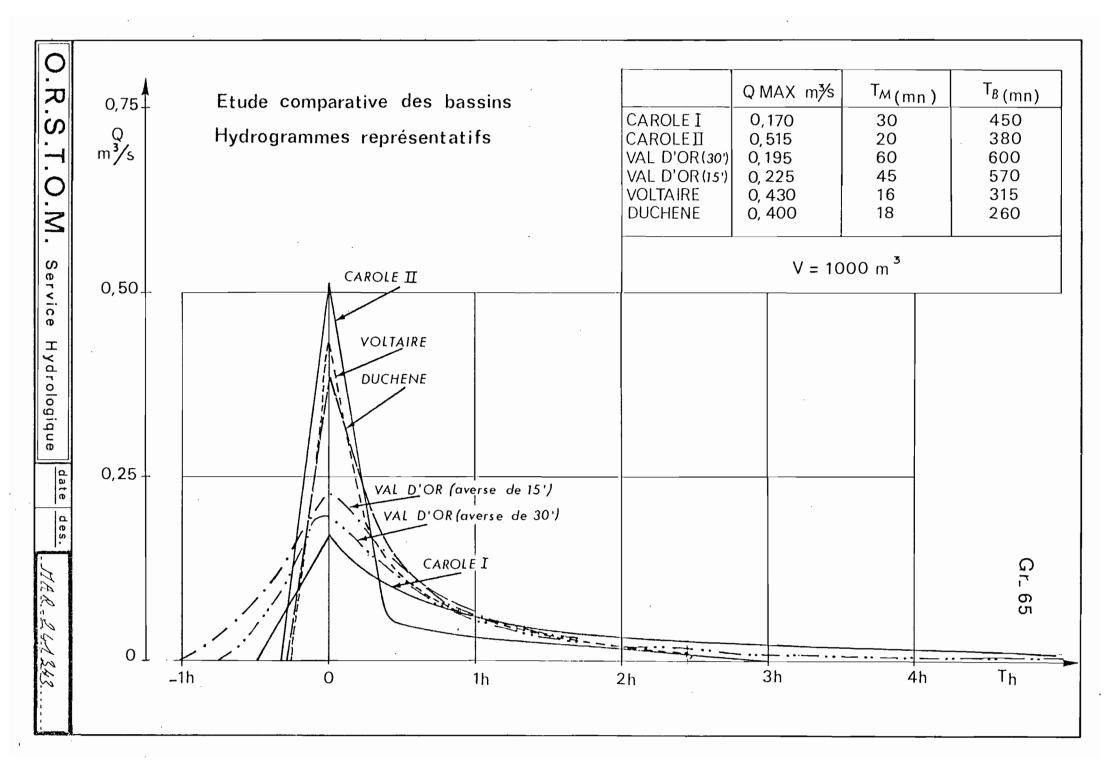
Pour la <u>CAROLE</u>, nous avons représenté les deux états de l'hydrogramme (faibles et fortes crues). Selon l'importance de la lame ruisselée et l'état de l'écoulement dans le lit principal, les hydrogrammes représentatifs relatifs à une tranche d'averse de 15 minutes se déforment pour prendre une position intermédiaire entre ces deux extrêmes. On notera que l'hydrogramme des fortes crues comporte une partie rapide (montée en 20 minutes, décrue en 30 minutes) correspondant au ruissellement en nappe et une décrue lente (entre + 30' et + 3 h) correspondant à la vidange successive des barrages et mouilles du lit principal.

VAL D'OR présente un hydrogramme mou à temps de montée relativement long pour la taille du bassin, avec un débit de pointe modéré. Cela est dû à la faible pente de la moitié aval du bassin et au décalage dans la conjonction des deux ondes de crues venant des deux formateurs.

<u>DUCHENE et VOLTAIRE</u> présentent des hydrogrammes semblables, assez pointus, à temps de montée bref (entre 15 et 20 minutes), à décrue exponentielle assez régulière.

2.3. Crues décennales (graphique n° 66) :

Les crues décennales correspondent au résultat de composition des facteurs responsables des crues (courbe de réponse + hydrogramme représentatif).


La CAROLE a la plus forte lame ruisselée et en raison d'un hydrogramme aigü, le plus fort débit maximal spécifique (20 m3/s.km2).

Vient ensuite VOLTAIRE, avec une lame plus faible (80 mm) et un débit spécifique de 16 m3/s.km2.

Le bassin de DUCHENE, avec un hydrogramme représentatif similaire à celui de VOLTAIRE, a un débit spécifique nettement plus faible en raison de la réduction sensible de la réponse (60 mm et 13 m3/s.km2).

Enfin VAL D'OR, avec une réponse plus élevée (69 mm) que sur DUCHENE, mais nettement plus faible que sur VOLTAIRE, a un débit spécifique faible (10 m/skm2) en raison de la mollesse de son hydrogramme représentatif.

En se référant aux débits de crue que l'on pourrait observer sur des bassins de tailles identiques situés dans la région des PITONS (abaque de la synthèse "Ressources en eaux de surface de la MARTINIQUE) et, toutes réserves faites sur l'extrapolation vers les petites surfaces de cet abaque, nous pouvons noter les rapports de débits suivants :

CAROLE	1,10	(bassin très imperméable à végétation xérophile)
VAL D'OR	0,60	(bassin à faible relief, deux formateurs et prairies humides).
DUCHENE	0,80	
et VOLTAIRE	0,90	(bassin à sols plus ou moins perméables avec sols remaniés par les petites cultures).

IV.3. APPORTS

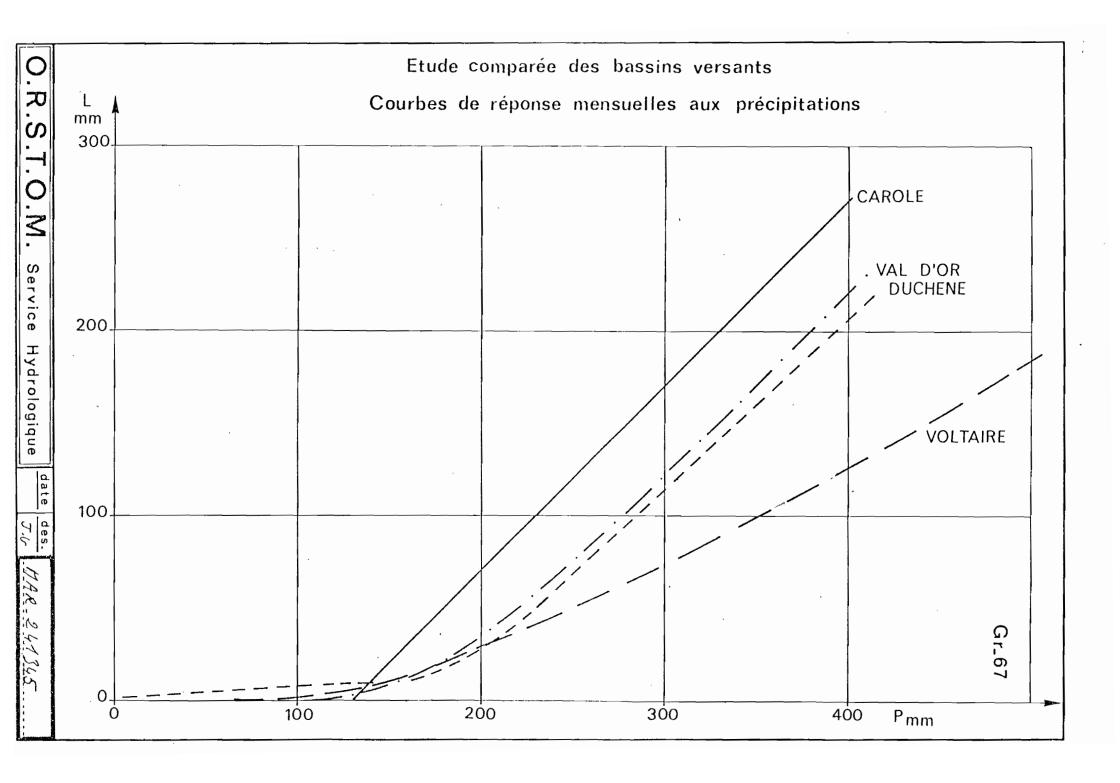
3.1. Courbes de réponse mensuelles (graphique n° 67) :

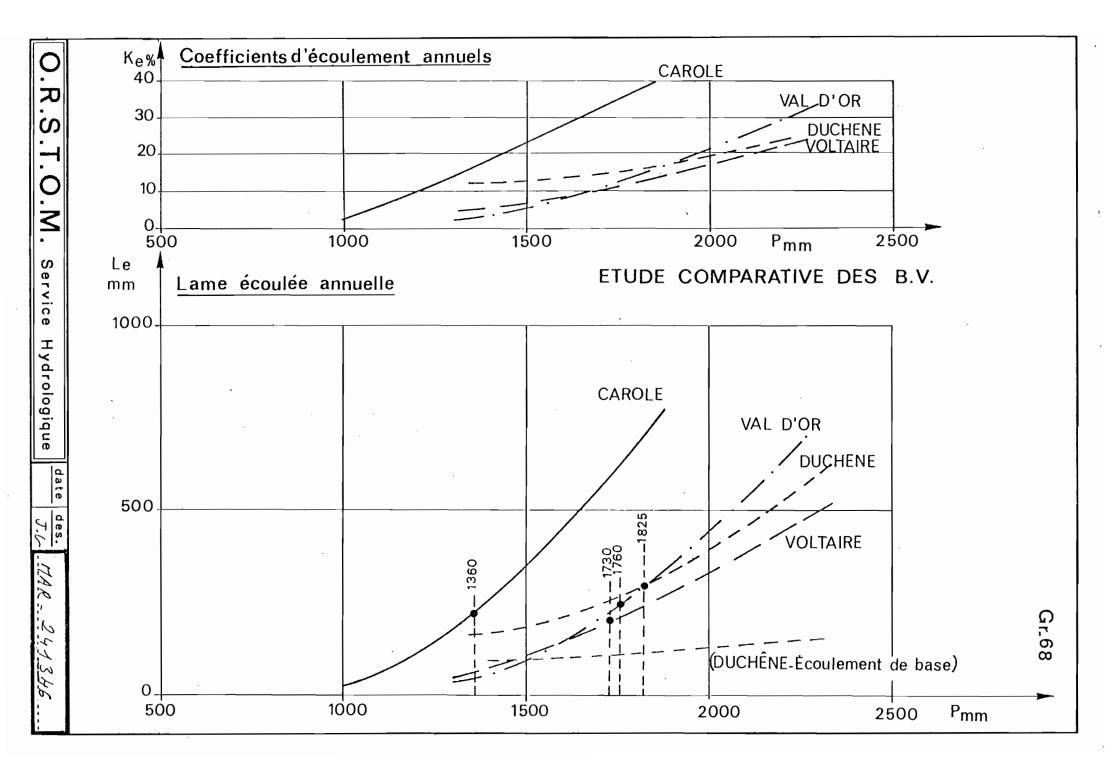
Les courbes de réponse mensuelles cumulent le ruissellement des crues et les apports de l'écoulement différé et de l'écoullement de base.

Le bassin de <u>CAROLE</u> présente la meilleur réponse avec une courbe de pente 1/1 et un déficit cumulé stable de 130 mm en moyenne.

Les bassins de <u>VAL D'OR et DUCHENE</u> viennent ensuite avec, pour des pluviométries mensuelles supérieures à 200~mm, des courbes de pente voisine de 1/1 et des déficits mensuels voisins respectivement de 170 et 180~mm.

Pour VAL D'OR, la lame mensuelle varie entre 0 et 15 mm pour des pluviométries mensuelles comprises entre 100 et 170 mm. Pour DUCHENE, vient s'ajouter un débit de base suffisant pour que la lame écoulée représente 7,5 % de la pluviométrie mensuelle entre 0 et 180 mm


Les lames écoulées mensuelles de <u>VOLTAIRE</u>, très faiblement soutenus par le débit de base et un écoulement différé modeste, sont nettement inférieures, à pluviométrie mensuelle égale, à celles des autres bassins ($K_{\rm e}$ = 31 % pour P = 400 mm).

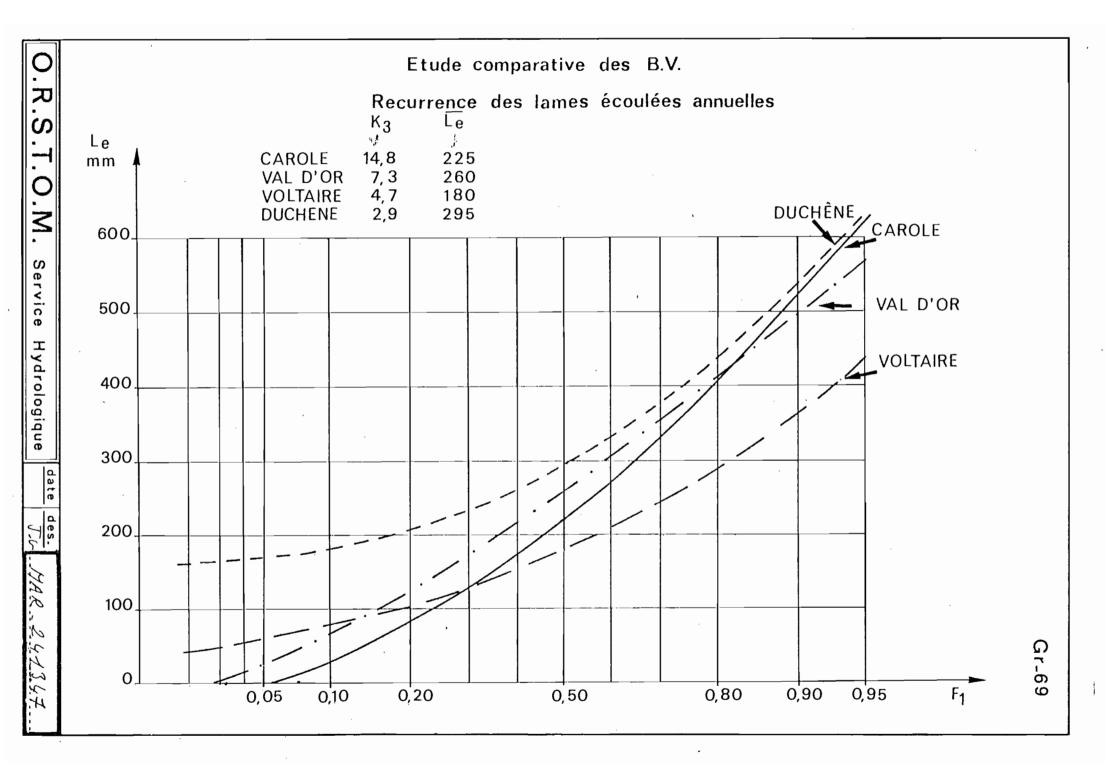

3.2. Apports annuels :

Les apports et coefficients d'écoulement annuels sont présentés sur le graphique n° 68 en regard de la pluviométrie annuelle.

Le bassin de la <u>CAROLE</u> présente le gradient le plus élevé autour du point charnière (P = $\overline{1360}$ mm - L_F = 225 mm).

Les courbes des trois autres bassins présentent des gradients plus faibles autour d'une pluviométrie moyenne comprise entre 1750 et 1850 mm.

La réponse de <u>VAL D'OR</u> semblable à celle de <u>VOLTAIRE</u> pour des pluviométries annuelles inférieures à 1 700 mm, devient ensuite nettement plus importe en raison de l'imperméabilité plus forte des sols et d'une meilleure récupération des écoulements différés (magasin plus important).


Enfin <u>DUCHENE</u>, compris entre VAL D'OR et VOLTAIRE pour les pluviométries annuelles excédentaires, a une réponse nettement supérieure à ces deux bassins pour les pluviométries annuelles déficitaires en raison de l'abondance relative de l'écoulement de base.

Sur le graphique n° 69, nous avons représenté les lames écoulées annuelles en fonction de leur récurrence.

VAL D'OR et VOLTAIRE ont une variabilité assez voisine (K3; rapport des lames décennales humides et sèches, compris entre 5 et 7); VAL D'OR étant plus abondant que VOLTAIRE ($L_{\rm E}$ = 260 mm contre 180 mm).

Les réponses de <u>DUCHENE</u> et de la <u>CAROLE</u> sont très contrastées.

Si les lames décennales humides sont voisines 520 mm pour la CAROLE - 540 mm pour DUCHENE, les lames décennales sèches sont dans un rapport de 5 à 1 en faveur de DUCHENE 184 mm contre 35 mm.

	CAROLE	VAL D'OR	VOLTAIRE	DUCHENE
Crues	- peu nombreuses - très bonne réponse aux fortes précipita- tions hydrogramme aigü pour les fortes crues avec décrue d'abord rapide puis très ra- lentie par la vidange du lit de la rivière.	bles précipitations, moyenne aux fortes pré- cipitations.	- nombreuses - assez bonne réponse aux faibles précipita- tions et bonne pour les fortes précipita- tions hydrogramme aigü à décrue exponentielle.	- nombreuses - réponse faible aux petites précipita- tions et moyenne pour les fortes pré- cipitations hydrogramme aigü à décrue exponen- tielle.
Débit différé	très faible	moyen	faible	assez bon
Débit de base	nul	faible	faible	assez bon
P̃ annuelle (mm)	1360	1760	1730	1825
L _E annuelle (mm)	225	260	180	295
L _E décennale humide (mim)	520	500	370	540
L _E décennale sèche (mm)	35	70	80	180
К3	15	7	5	3
Crue décennale H _R (mm)	100	69	80	60
Q _{MAX} (m3/s)	29,4	14,6	13,3	19,5
Q _{MAX} spécifique (m3/s.km2)	20,1	10,2	15,9	12,9

ANNEXE 1

LE BASSIN VERSANT DE LA DIGUE

Le bassin versant de la DIGUE a été équipé en juin-juillet 1975 et a été fermé en février 1976. Nous exposerons sommairement les résultats de la courte période de fonctionnement et les conclusions que l'on peut en tirer.

1. Situation et caractéristiques du bassin :

Le bassin est situé au nord et à proximité immédiate du bassin du Quartier VOLTAIRE, dont il est adjacent. Il est enserré entre les routes départementales n° 1 et 3, à l'Est du petit bourg de VERT-PRE.

La station de contrôle des débits a pour coordonnées :

60° 57' 48" W 14° 41' 22" N

Ces caractéristiques physiques du bassin sont les

suivantes:

Superficie: 0,86 km2 Périmètre 4,07 km

Indice de compacité : 1,24 Rectangle équivalent : 1,44 x 0,60 km

Altitude maximale : 311 m Altitude minimale : 154 m

Altitude moyenne : 201 m

Dénivelé $H_5 - H_{95} = 273 - 159 = 114 m$

Indice global de pente : 79,4 m Indice de pente (ROCHE): 0,307 Dénivelée spécifique : 73,6 m

Le bassin a la même constitution géologique que celui de VOLTAIRE (tufs éocènes et complexe de base). Les ferrisols argileux recouvrent tout le bassin mais sont surmontés dans la partie aval du bassin (1/3 du bassin) de sols à allophanes et de sols halloysites dérivés de tufs aériens, cendres et ponces assez perméables.

A l'exception de la tête du bassin recouverte de cultures, arbustes et jardins divers, la majeure partie du bassin est cultivée en bananeraie.

Les caractéristiques climatiques sont semblables à celles de VOLTAIRE (pluviométrie moyenne voisine de 1 900 mm).

2. Equipement et observations :

La station de contrôle a été équipée d'une lame déversante à échancrure triangulaire appuyée sur deux bajoyers et d'un limnigraphe. Les fortes crues de fin 1975 ont détruit le déversoir en déchaussant un des bajoyers implanté dans un sol relativement meuble.

Deux pluviographes avaient été mis sur le bassin.

Les résultats des mesures de débit (0 à 200 l/s) ont permis de tracer les courbes de tarage des basses et moyennes eaux. L'extrapolation a été menée pour l'estimation des débits des plus fortes crues.

عم ا	rácultat	c das	observations	sont las	cuivante	
LES	resultat	.s ues	ODSERVACIONS	Sont les	Survants	

	Juillet 75	Août	Septembre	Octobre	Novembre	Décembre
P̄ mm	(55)	158	165	436	211	303
L _e mm	(6-à 8)	(12 à 14)	15	136	(47)∗	-
K _e	(11 à 15)	(7 à 9)	9	31		-

^{*} Résultat partiel du 1 au 10 novembre pour 107 mm de précipitation.

3. Analyse sommaire des résultats :

3.1. Crues :

Les principales crues observées sont les suivantes :

Date	P moyen (mm)	H _{MAX} (mm)	Q _{MAX} (m3/s)
31-10-75	56,0	4,22	2,80
21-10-75	74,0	4,12	2,10
24-10-75	66,0	3,85	0,61
29-10-75	26,0	3,91	1,05
11-11 - 75	50,0	4,44*	(5,50)
9-12-75	94,0	4,38 *	(5 à 6)
16-12-75	48,0	3,76*	(1)

* Destruction de la lame déversante.

Les facteurs favorables au ruissellement et à la concentration des crues sont :

- les fortes pentes en tête du bassin,
- la présence dans la bananeraie qui occupe la majeure partie du bassin d'un réseau de saignées de drainage dense et soigneusement entretenu.

Par contre, nous pouvons estimer que les nombreux pieds de bananeraies doivent freiner l'écoulement des crues dans les zones de débordement du lit mineur et pour ceux qui sont arrachés et entraînés dans la ravine, créer des bouchons retardant la transmission de l'onde de crue (embâcle).

Le temps de montée des crues compris entre 30 et 40 minutes pour une durée totale d'écoulemnt de 10 à 15 heures.

Le débit maximal de récurrence annuelle peut être estimé à 5 à 6 m3/s (débit atteint par les deux plus fortes crues du bassin).

La crue décennale doit être voisine de 13 m3/s. Ces estimations, basées sur une période très courte d'observations, doivent être retenues avec prudence. Elles sont inférieures de 10 à 15 % aux valeurs correspondantes tirées de l'abaque de la synthèse régionale valable pour des bassins non cultivés.

3.2. Apports :

Les apports de saison des pluies doivent être très voisins de teux du bassin de VOLTAIRE soit 150 à 200 mm en année normale.

Pour la saison sèche, nous observons des coefficients d'écoulement mensuels nettement supérieurs à ceux de VOLTAIRE pour les raisons suivantes :

- présence sur un tiers du bassin de formations perméables sur matériaux légers peuvent constituer un magasin relativement important,
- et principalement recyclage artificiel des eaux prélevées à l'aval du contrôle et redistribuées pour l'irrigation des bananeraies. Ces apports artificiels peuvent pratiquement doubler le coefficient d'écoulement mensuel observé en saison sèche.

•		
	,	

A N N E X E II

Précipitations moyennes journalières sur le Bassin LA CAROLE - Tableau I1975 - Tableau III1977 - Tableau IV1978
Précipitations moyennes journalières sur le Bassin VAL D'OR
- Tableau V1975
- Tableau VI1976
- Tableau VII1977
- Tableau VIII1978
Précipitations moyennes journalières sur le Bassin du QUARTIER VOLTAIRE
- Tableau IX1975
- Tableau X1976
- Tableau XI1977
- Tableau XII1978
Précipitations moyennes journalières sur le Bassin du QUARTIER DUCHENE
- Tableau XIII1976
- Tableau XIV1977
- Tableau XV1978
Liste des mesures de débit sur le bassin de la Rivière CAROLE - Tableau XVI
Liste des jaugeages sur le bassin de la Rivière de VAL D'OR
- Tableau XVII
Liste des jaugeages sur le bassin de VOLTAIRE - Tableau XVIII
Liste des jaugeages sur le bassin de la Rivière DUCHENE
- Tableau XIX
- Iddiedu XIX

```
Débits moyens journaliers sur le Bassin LA CAROLE
              - Tableau XX ..........1975
              - Tableau XXI ......1976
              - Tableau XXII ......1977
              - Tableau XXIII .....1978
              - Tableau XXIV ......1979
Débits moyens journaliers sur le Bassin VAL D'OR
              - Tableau XXV ......1975
              - Tableau XXVI ......1976
              - Tableau XXVII .....1977
              - Tableau XXVIII .....1978
Débits moyens journaliers sur le Bassin de VOLTAIRE
              - Tableau XXIX ......1975
              - Tableau XXX ......1976
              - Tableau XXXI .....1977
              - Tableau XXXII .....1978
Débits moyens journaliers sur le Bassin DUCHENE
              - Tableau XXXIII .....1976
              - Tableau XXXIV .....1977
              - Tableau XXXV ......1978
Caractéristiques des crues du Bassin LA CAROLE
              - Tableau XXXVI .....1975
              - Tableau XXXVII .....1976
              - Tableau XXXVIII ....1977
              - Tableau XXXIX .....1978
Capacité d'absorption moyenne pour 1h 30 de la Rivière LA CAROLE
              - Tableau XL ......1975
              - Tableau XLI ......1976
              - Tableau XLII ......1977
              - Tableau XLIII .....1978
```

```
Caractéristiques des crues du Bassin VAL D'OR
              - Tableau XLIV ......1975
              - Tableau XLV .........1976
              - Tableau XLVI ......1977 - 1978
Caractéristiques des crues du Bassin VOLTAIRE
              - Tableau XLVII ......1975
              - Tableau XLVIII ......1976
              - Tableau XLIX ......1977
              - Tableau L ......1978
Caractéristiques des crues du Bassin DE DUCHENE
              - Tableau LI ......1976
              - Tableau LII ..........1977
              - Tableau LIII ......1978
Caractéristiques mensuelles de l'écoulement de la Rivière CAROLE
              - Tableau LIV ......1975 à 1979
Reconstitution des valeurs mensuelles de l'écoulement du Bassin LA CAROLE
              - Tableau LV ......1952 à 1975
Chronique historique reconstituée des écoulements annuels du Bassin
LA CAROLE
              - Tableau LVI ..........1952 à 1978-79
Caractéristiques mensuelles de l'écoulement du Bassin de VAL D'OR
              - Tableau LVII ......1975 à 1978
Reconstitution des valeurs mensuelles de l'écoulement du Bassin VAL D'OR
              - Tableau LVIII ........1952 à 1975
Chronique historique reconstituée des écoulements annuels du Bassin
VAL D'OR
              - Tableau LIX ......1952 à 1977-78
Caractéristiques mensuelles de l'écoulement du Bassin VOLTAIRE
              - Tableau LX ......1975 à 1978
Reconstitution des valeurs mensuelles de l'écoulement du Bassin VOLTAIRE
               - Tableau LXI ..........1962 à 1975
```

164 Chronique historique reconstituée des écoulements annuels du Bassin VOLTAIRE - Tableau LXII 1962 à 1977 - 78 Caractéristiques mensuelles de l'écoulement du Bassin DUCHENE - Tableau LXIII 1976 à 1978 Reconstitution des valeurs mensuelles de l'écoulement du Bassin DUCHENE - Tableau LXIV 1960 à 1976 Chronique reconstituée des écoulements annuels du Bassin DUCHENE

- Tableau LXV 1960 à 1977 - 78

SUR LE BASSIN en 1/10 mm

Bassin de la CAROLE

1 9 7 5

	7.041	CCV	MAD	AVO	MA T (TUNI	1111	A O I I	CLD	ОСТ	NOV	DEC	
	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	0CT	NOV	DEC	
1 2 3 4 5		ļ						12 03 12 85 163	108 117 5 0 07	75 3 82 38 137	465 0 272 130 0	0 7 8 5 8	
6 7 8 9 10								40 08 2 3 2	68 2 230 0 5	5 (0) (0) (45) (145)	10 38 32 143 182	73 0 125 533 12	Du 7 au 16/10/75 répartition journalière d'après
11 12 13 14 15							0	5 0 5 0 13	5 20 85 0	(140) (295) (470) (0) (0)	0 235 0 3 0	45 490 15 35 45	Diamant Gendarmerie
16 17 18 19 20				į			0 0 33 58 0	243 0 15 85 200	2 5 0 15 5	(0) 60 45 0 228	0 0 2 0 0	285 68 7 10 85	
21 22 23 24 25							2 3 3 12 15	93 0 0 20 43	0 0 0 0 47	285 0 7 208 13	0 0 08 0 27	0 0 25 140 438	
26 27 28 29 30 31							23 2 0 10 50 13	32 58 150 0 88 45	28 0 0 33 32	10 5 2 23 2 118	15 93 50 28 00	0 3 5 0 5	
Total								1425	819	2441	1733	2477	

TABLEAU II

Bassin de la CAROLE

SUR LE BASSIN en 1/10 mm

1 9 7 6

	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
1 2 3 4 5	0 0 0 0	3 15 2 65 8	08 15 10 10 3	0 0 0 0	0 15 0 0 8	0 0 0 7 0	5 2 48 35 5	15 30 5 0 13	298 167 25 10 13	83 40 5 173 67	0 158 2 95 55	10 5 345 22 68
6 7 8 9 10	5 65 13 0 147	0 0 3 0 35	42 7 0 43 15	5 0 3 2 20	2 35 0 0 2	5 8 13 0	0 20 5 38 0	0 5 40 243 170	35 55 13 15 2	153 427 18 0 120	2 45 450 0 0	192 1030 350 25 42
11 12 13 14 15	10 03 58 85 12	5 53 08 45 73	40 50 20 63 2	0 8 0 0 32	0 23 2 2 2 93	5 68 3 10 7	0 8 5 0	0 278 0 50 13	5 0 13 0	0 8 0 0 2	98 60 210 80 28	66 72 0 90 12
16 17 18 19 20	7 18 20 15 12	58 53 30 2 22	0 2 0 3 72	3 0 5 7 8	15 2 0 0	0 0 0 0 85	15 5 0 3 35	162 35 22 35 0	58 77 103 2 3	168 2 60 93 15	127 13 10 5 12	18 30 12 12 18
21 22 23 24 25	0 5 0 35 20	3 72 43 10 0	13 8 0 0	13 0 0 2 25	5 0 0 0	288 0 0 2 8	0 3 0 48 80	0 0 10 230 0	3 0 0 2 763	100 0 115 0 45	0 33 12 25 18	54 6 8 14 14
21 22 23 24 25 26 27 28 29 30 31	58 7 0 35 33 07	3 20 40 53	2 0 3 22 0 0	0 0 0	55 0 3 12 5	75 20 83 0 0	13 0 92 28 2 3	18 22 5 0 152	5 5 62 3 53	78 7 50 58 0 5	10 63 0 130 27	29 0 0 0 0
Total	670	724	453	133	281	607	498	1553	1790	1892	1768	2544

TOTAL ANNUEL: 1290

TABLEAU III

SUR LE BASSIN en 1/10 mm

Bassin de la CAROLE

1 9 7 7

-		7.444			4115		21.11	21.14	1	oen.	207	11011	DE6
_		JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	0CT	NOV	DEC
	1 2 3 4 5	0 3 5 7 10	10 80 28 2 27	0 0 8 5 12	0 0 5 3 42	43 0 5 0	0 3 0 0	23 0 0 57 20	48 77 43 27 8	3 10 2 150 213	13 0 465 475 15	0 70 168 367 60	18 47 18 2 3
	6 7 8 9 10	15 43 2 10 0	2 0 3 5 2	0 13 57 33 0	18 12 0 0 0	0 0 5 0	0 30 25 0 2	15 30 • Ø 0 0	0 0 17 0 200	12 20 13 2 3	65 113 9 20 13	143 25 27 3 0	2 118 30 30 0
	11 12 13 14 15	45 3 2 0 3	0 15 0 5 0	7 5 0 0	0 0 33 0	5 0 0 25 0	3 0 2 45 3	18 177 3 20 37	113 27 0 63 5	0 22 65 93 2	5 0 5 0 197	2 0 137 10 0	5 30 193 12 23
	16 17 18 19 20	0 2 0 3 0	0 0 11 0 6	0 0 0 0	0 0 0 0 17	0 0 0 25 5	5 2 3 15 5	0 0 0 53 2	17 220 13 0 207	3 0 2 103 395	38 2 53 12 0	0 3 8 0 0	12 0 10 25 0
	21 22 23 24 25	19 26 51 0 39	6 0 11 22 0	0 3 0 15 0	35 85 78 119 0	0 0 35 25 13	0 0 33 65 13	3 2 0 8 10	428 135 390 22 20	222 3 5 12 43	7 15 0 95 15	5 22 13 2 25	0 5 0 5 0
	26 27 28 29 30 31	93 2 13 5 35 8	10 13 0	0 0 0 0 0	376 0 12 0 60	27 8 20 5 25 2	30 -2 -5 -22 -43	45 42 33 0 5 0	108 335 70 32 65 5	5 12 55 3 20	158 265 220 5 678 77	88 82 38 152 35	10 25 13 50 48 10
	Total		258	158	895	243	356	603	2695	1493	3031	1485	644
-					TOTA	L ANNUE	<u>L</u> : 123	05				•	

TABLEAU IV

SUR LE BASSIN en 1/10 mm

Bassin de la CAROLE

1 9 7 8

	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	0CT	NOV	DEC_
1 2 3 4 5	28 10 2 18 5	0 0 3 32 18	8 32 0 5	0 0 0 165 0	0 0 0 105 98	5 128 7 0	90 20 50 5 113	8 215 27 375 3	3 0 0 2 0	25 3 7 40 10	8 0 7 98 52	8 72 110 10 25
6 7 8 9 10	20 12 3 10 5	0 2 48 2 0	10 10 0 30 75	0 0 63 0	2 0 30 0 0	0 113 0 0 10	425 37 15 38 2	0 92 153 20 100	0 0 0 3 5	0 0 3 5 35	135 5 340 73 57	20 18 62 43 10
11 12 13 14 15	0 5 0 30 35	10 5 3 0 0	95 45 25 0	172 10 8 25 15	0 0 43 0 12	2 458 0 10 37	5 273 40 37 12	7 18 5 47 515	0 72 70 0 50	90 110 3 5 72	5 0 95 3 40	60 27 62 3 20
16 17 18 19 20	7 18 10 0 7	0 0 0 0 7	0 0 0 0	10 0 3 40 38	18 2 33 7 18	8 2 0 10 13	5 25 25 135 10	18 17 120 123 0	18 15 17 45 98	2 18 17 28 62	148 437 8 17 3	2 5 3 27 15
21 22 23 24 25	3 0 10 0 5	8 0 0 0 10	5 25 28 0 0	5 17 0 17 18	10 17 12 298 62	22 10 0 5 40	3 102 3 27 70	82 0 0 8 52	15 145 135 422 118	300 690 0 0	8 2 0 0 10	0 33 7 0 0
26 27 28 29 30 31	52 60 160 5 0 20	0 0 102	7 18 0 5 152 183	0 7 0 8 0	15 8 130 15 2 8	180 40 50 33 0	10 30 8 50 0	13 2 13 15 7 73	5 0 2 5 3	0 15 15 120 68 0	17 175 33 125 7	10 10 3 0 0 2
Total	540	250	768	621	945	1183	1612	2128	1248	1743	1908	667
				TOT	AL ANNU	EL : 13	62					

TABLEAU V

PRECIPITATIONS MOYENNES JOURNALIERES

SUR LE BASSIN en 1/10 mm

Bassin de VAL D'OR

1 9 7 5

	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
1 2 3 4 5								30 5 38 67 258	60 115 0 5 23	25 3 175 50 150	343 0 208 380 0	0 10 33 7 8
6 7 8 9 10								25 67 10 25 5	30 0 270 0 105	85 0 0 (184) (196)	23 45 50 285 2 60	140 8 220 600 30
11 12 13 14 15								0 38 17 23 48	0 5 130 5 30	(18) (181) (135) (5) (36)	117 425 0 0	52 35 95 55 120
16 17 18 19 20							3 45 82 5	195 2 25 187 435	0 27 3 82 43	0 65 70 38 247	3 0 25 18 5	503 132 3 47 50
21 22 23 24 25							13 0 7 15 18	168 0 7 10 182	0 0 0 0 55	405 0 15 285 70	5 2 37 0 20	5 5 122 60 590
26 27 28 29 30 31							15 10 10 15 50 20	13 45 97 25 95 200	22 5 18 135 45	30 45 60 33 165 117	15 183 105 67 3	0 5 5 18 32
Total							5	2342	1213	2888	26 2 4	2995

DU BASSIN en 1/10 mm

Bassin de VAL D'OR

1 9 7 6

	JAN	FEV	MAR	AVR	MA I	JUN	JUL	AOU	SEP	ОСТ	NOV	DEC
1 2 3 4 5	23 5 0 0	18 20 5 37 10	10 13 42 15 3	0 0 0	0 3 8 0 25	0 0 0 0 8 0	28 5 60 75 20	38 12 23 0 72	388 210 15 18 5	128 110 117 95 125	0 365 0 50 130	13 5 252 5 153
6 7 8 9 10	5 122 30 0 135	5 0 3 0 47	85 20 0 63 17	19 0 0 0 58	5 27 2 3 2	4 16 37 25 0	5 20 2 15 5	3 10 60 275 147	97 48 43 72 80	85 263 15 2 100	5 775 368 37 10	195 1867 193 42 40
11 12 13 14 15	23 2 55 158 2	5 20 25 43 65	50 68 25 47 0	5 29 0 10 17	0 30 5 13 65	2 30 98 0 4	3 122 13 2 5	18 122 3 185 65	23 52 30 0	0 0 3 0 17	128 130 365 78 83	53 87 10 135 8
16 17 18 19 20	5 75 53 50 20	160 75 35 10 27	0 20 0 8 137	0 0 0 25 35	. 85 3 0 0	0 2 0 0 98	10 0 5 7 20	142 140 40 80 23	20 145 203 0 25	163 50 60 105 62	250 30 13 12 3	40 83 28 17 15
21 22 23 24 25	0 10 2 25 58	3 75 57 0 13	37 18 0 3 5	43 12 3 5 20	17 5 40 5 10	505 10 0 13 12	3 0 0 110 182	0 ,0 20 135 60	67 28 0 27 8	100 40 20 3 95	0 25 30 85 10	60 3 12 8 20
25 26 27 28 29 30 31	127 25 0 135 90 32	0 77 63 25	8 25 34 55 10 0	10 5 0 7 18	55 10 5 23 2 0	103 20 8 5	0 3 180 20 12 3	17 25 10 3 82 0	2 80 45 0 215	140 257 70 105 258 2	15 55 7 278 147	21 8 0 8 0 0
Total	1267	923	808	321	448	1000	935	1810	1746	2590	2784	3381
					TOTAL A	NNUEL	: 18013					

DU BASSIN en 1/10 mm

Bassin de VAL D'OR

1 9 7 7

	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU!	SEP	OCT	NOV	DEC
1 2 3 4 5	0 0 38 0 35	28 115 50 0	0 3 55 12 20	0 0 3 5 55	73 22 3 10 0	33 2 0 0	10 0 5 73 22	13 70 50 58 5	48 32 10 168 174	3 2 413 320 10	78 215 550 52 30	15 10 5 8 15
6 7 8 9 10	12 50 20 5 0	10 0 0 33 0	0 43 85 22 5	57 0 0 38 2	0 7 13 2 0	0 10 40 5 38	30 63 · 0 2 18	0 0 2 73 157	15 28 30 65 10	122 270 0 20 185	93 92 107 5 3	15 42 35 13 0
11 12 13 14 15	63 2 3 0 2	5 7 0 3 0	8 0 0 17 0	3 10 60 0 2	30 5 3 40 7	0 0 43 65 7	57 205 20 48 47	163 20 5 45 0	2 20 85 75 25	43 5 22 13 375	0 0 168 207 0	7 32 135 13 27
16 17 18 19 20	0 0 0 0	0 0 22 50 5	0 0 0 0	0 3 0 0 40	30 0 0 40 3	18 2 15 23 12	0 5 5 55 13	23 122 53 2 58	18 22 13 40 502	52 10 148 15 15	0 3 2 0 0	20 8 50 42 3
21 22 23 24 25	23 95 50 7 33	0 0 15 30	0 0 5 20 0	50 143 100 202 5	25 0 10 27 28	13 0 20 55 12	0 5 12 5 60	490 80 260 90 102	238 45 0; 55 5	52 0 8 180 45	0 8 12 20 45	0 0 5 22 3
26 27 28 29 30 31	137 3 17 5 50	8 17 0	0 0 35 0 0	83 0 25 10 107	80 27 40 8 50 2	28 2 20 93 57	55 3 22 0 0 8	130 338 72 110 85 10	5 3 137 0 28	220 310 167 15 253 262	90 60 50 378 100	20 47 5 38 60 22
Total	650	3 98	3 30	1003	585	610	848	2686	1898	35 55	2368	717

TOTAL ANNUEL: 15648

DU BASSIN en 1/10 mm

Bassin de VAL D'OR

1 9 7 8

	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	0CT	NOV	DEC
1 2 3 4 5	18 80 0 17 3	5 5 0 25 23	33 122 0 8 7	0 0 0 260 3	13 2 3 47 70	10 130 5 0 10	203 22 55 25 107	8 232 10 145 5	0 0 0 3 0	128 45 5 47 10	50 0 12 188 10	58 112 230 38 67
6 7 8 9 10	67 25 25 23 15	0 0 55 2 5	28 35 0 47 95	0 0 67 0	33 0 28 0	0 135 23 2 80	335 95 25 45 8	8 115 87 83 137	0 0 0 0 10	0 0 0 33 15	72 40 200 188 32	33 42 52 35 10
11 12 13 14 15	2 8 5 30 35	3 7 0 0	133 52 63 7 5	55 18 12 45 58	5 0 12 5 95	10 540 0 48 40	22 328 25 32 18	25 58 0 20 570	8 97 35 0 195	72 185 18 40 147	33 2 3 0 62	165 22 65 3 5
16 17 18 19 20	27 13 42 23 22	0 0 0 0 8	0 3 7 0 25	15 2 50 55 13	0 5 28 42 5	25 5 0 5 40	22 13 125 162 15	17 35 42 123 7	3 0 42 133 220	135 8 52 18 65	270 515 3 5	2 0 13 42 47
21 22 23 24 25	3 0 120 2 58	47 3 0 7 35	10 50 100 18 0	15 48 47 10 20	53 52 100 325 158	45 87 10 23 30	33 132 10 28 135	80 5 0 20 33	77 48 137 468 120	342 380 5 0	37 0 0 3 20	0 0 30 0
26 27 28 29 30 31	32 100 75 10 3 7	3 0 180	20 7 3 20 202 173	0 15 0 0 13	45 17 10 3 7 13	102 10 55 8 2	32 30 3 0 2	50 5 10 65 25 12	0 20 10 62 13	3 60 182 803 160 12	90 110 78 187 25	13 17 0 0 0
Total	890	413	1273	821	1176	1480	2094	2032	1701	2970	2235	1101
					TOTAL	ANNUEL	. : 18	186				

DU BASSIN en 1/10 mm

Bassin du QUARTIER VOLTAIRE

1 9 7 5

	,		,	·								
	JAN	FEV	MAR	AVR	MAI	JUIN	JUL	AOU	SEP	OCT	NOV	DEC
1 2 3 4 5								63 27 8 135 130	155 178 0 75 55	20 0 173 130 212	198 0 250 112 0	0 3 17 5 108
6 7 8 9 10								35 55 10 35 0	40 5 120 0 87	8 2 8 75 145	33 145 17 30 473	42 8 160 892 58
11 12 13 14 15								20 32 3 12 80	8 2 190 0 23	263 465 562 0 3	42 90 3 0	132 35 108 32 250
16 17 18 19 20							2 <u>0</u> . 45 0	(155) 8 7 23 170	0 27 3 105 5	2 233 10 5 97	12 5 35 18 0	363 117 3 60 32
21 22 23 24 25							0 0 3 5 27	15 8 7 40 200	32 0 0 85 3	743 0 92 643 55	2 0 78 2 130	50 15 13 25 45
26 27 28 29 30 31							15 30 3 2 120 20	18 55 90 125 12 110	42 283 0 5 35	5 45 195 252 3 87	35 98 40 52 3	2 0 28 47 8 45
Total								1688	1563	4533	1903	2703

DU BASSIN en 1/10 mm

Bassin du QUARTIER VOLTAIRE

1 9 7 6

			4								_	
	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
1 2 3 4 5	55 3 10 2 30	0 13 32 20 0	5 78 7 3 5	0 0 0 0	22 15 7 22 14	5 0 0 0	8 0 92 125 8	20 3 12 0 58	250 333 72 0 3	105 28 55 492 73	0 10 3 12 20	15 10 115 18 35
6 7 8 9 10	25 68 40 0 115	15 0 0 2 33	90 35 0 65 43	0 0 0 0 17	0 0 0 0 7	33 27 53 ∈0 45	2 18 0 40 5	10 15 30 710 90	35 102 13 42 23	330 360 22 85 80	23 107 925 30 4 0	507 553 87 10 8
11 12 13 14 15	7 13 40 122 0	0 5 8 27 607	2 3 5 45 17	11 28 0 6 39	0 29 0 10 25	20 30 60 70 3	0 60 12 0 5	33 160 27 42 18	0 0 0 0	20 3 0 0	125 48 787 150 5	77 160 5 23 12
16 17 18 19 20	23 2 133 65 10	60 13 30 13 42	5 16 21 16 42	0 39 85 5 34	25 0 0 5 0	07 0 3 57	5 50 10 13 0	152 28 47 22 3	2 38 97 3 0	345 102 60 115 33	63 27 20 0	20 18 72 30 60
21 22 23 24 25	2 3 0 17 123	43 27 30 10 0	11 10 0 5	23 0 0 11 259	3 0 0 0	343 2 5 18 17	0 12 0 103 140	0 0 8 125 10	0 5 7 98 0	114 115 147 5 194	0 40 60 8 55	30 8 37 0 10
26 27 28 29 30 31	127 10 5 215 60 48	10 55 48 57	0 16 5 0 0	0 0 0 0 17	232 0 0 0 0 0	45 0 23 15 2	5 0 522 13 0	40 7 3 8 30 117	125 15 40 5 42	128 5 255 158 0 5	22 85 3 150 135	20 0 0 0 0
Total	1373	1200	550	574	416	883	1248	1828	1350	3434	2953	1940
				TOTAL	ANNUEL	: 17749						

17,

TABLEAU XI

PRECIPITATIONS MOYENNES JOURNALIERES

DU BASSIN en 1/10 mm

Bassin du QUARTIER VOLTAIRE

1 9 7 7

	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
1 2 3 4 5	0 0 8 5	33 90 52 3 7	0 5 145 30 3	0 0 3 27 83	58 10 22 8 70	5 0 0 0	93 0 0 17 80	60 135 10 158 0	13 55 2 203 317	5 8 417 415 3	118 760 240 92 130	33 32 33 0 47
6 7 8 9 10	0 57 13 0 0	3 15 32 135 0	0 0 57 8 2	50 7 0 3 0	15 2 17 10 5	0 33 0 2 13	10 43 0 25 20	5 0 7 0 253	38 95 2 48 0	82 163 0 52 3	150 433 2 0 0	0 28 0 97 0
11 12 13 14 15	122 5 0 0	20 48 0 12 0	68 22 0 3 0	0 25 37 3 2	3 8 2 100 3	5 5 78 202 0	62 93 47 225 20	130 15 30 67 0	7 85 300 5 3	15 60 17 8 355	67 8 305 235 2	5 10 138 0 80
16 17 18 19 20	0 0 0 0	0 9 18 9	0 0 22 0 0	0 0 0 0 8	10 0 5 7 30	53 2 8 15 10	5 0 3 15	3 62 47 0 120	2 0 13 87 505	117 3 5 132 50	0 3 20 2 0	0 13 5 97 5
21 22 23 24 25 26 27 28 29	58 75 8 9 12	9 9 0 40 0	3 0 10 0 22	32 258 527 103 0	25 0 3 25 47	33 0 10 70 5	10 0 2 120 45	695 125 280 78 45	275 35 5 18 77	123 15 5 57 35	0 15 18 0 72	5 0 93 17 0
26 27 28 29 30 31	73 5 7 13 32 0	20 3 0	0 0 43 5 0	40 0 47 68 35	60. 13 35 0 22 3	87 18 7 323 47	60 50 0 0 0 8	77 338 100 32 10	40 2 18 2 23	210 150 798 392 415 598	35 173 52 518 67	28 102 13 62 68 35
Total	503	584	448	1358	618	1031	1053	2882	2275	4708	3517	1046

TOTAL ANNUEL: 20023

DU BASSIN en 1/10 mm

Bassin du QUARTIER VOLTAIRE

1 9 7 8

1 5 3 13 0 0 0 10 53 0 103 3 2 3 7 65 0 0 30 88 438 0 12 5 1 3 2 78 0 13 3 0 102 42 0 248 0 4 18 12 17 70 52 15 0 40 10 35 35 5 2 200 0 2 45 33 38 15 0 12 7 6 28 0 20 0 5 2 190 13 5 3 5 7 15 3 115 8 30 115 40 127 0 2 20 8 0 27 13 132 13 30 57 68 0 153 143 9 15 5 30 0 7 20 15 50													
2 3 7 65 0 0 30 88 438 0 12 5 1 3 2 78 0 13 3 0 102 42 0 248 0 248 0 248 0 248 0 248 0 248 0 102 42 0 248 0 245 33 38 15 0 12 7 5 5 2 190 13 5 3 5 7 15 3 115 8 30 115 40 127 0 2 20 0 8 0 27 13 132 13 30 57 68 0 153 143 9 15 5 30 0 7 20 15 50 0 45 188 17 0 52 5 32 75 12 12 0 20		JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
7 15 3 115 8 30 115 40 127 0 2 20 8 0 27 13 132 13 30 57 68 0 153 143 9 15 5 30 0 7 20 15 50 0 15 187 10 0 3 122 3 10 8 5 140 63 10 10 11 2 7 65 155 8 17 0 52 5 32 75 12 0 20 58 20 45 908 298 35 115 148 50 13 3 0 25 42 67 0 100 3 67 25 3 14 25 0 0 45 18 23 67 22 0 37 267 <td>2 3 4</td> <td>3 2 18</td> <td>7 78 12</td> <td>65 0 17</td> <td>0 13 70</td> <td>0 3 52</td> <td>30 0 15</td> <td>88 102 0</td> <td>438 42 40</td> <td>0 0 10</td> <td>12 248 35</td> <td>5 0 35</td> <td>3 177 95 20 70</td>	2 3 4	3 2 18	7 78 12	65 0 17	0 13 70	0 3 52	30 0 15	88 102 0	438 42 40	0 0 10	12 248 35	5 0 35	3 177 95 20 70
14 25 0 0 45 18 23 67 22 0 37 267 15 37 0 0 10 20 15 5 545 70 13 13 16 25 3 0 13 47 5 0 78 35 32 110 17 0 52 17 37 10 5 98 20 40 28 555 18 3 0 3 40 25 2 20 37 150 100 0 19 2 18 0 23 70 5 77 193 330 82 0 20 0 42 50 5 0 18 2 15 5 15 0 1 21 48 118 10 2 0 40 43 112 28 420 80 22 0 0 175 15 3 0 167	7 8 9	15 0 15	3 27 5	115 13 30	8 132 0	30 13 7	115 30 20	40 57 15	127 68 50	0 0 0	2 153 55	20 143 187	95 33 55 0
17 0 52 17 37 10 5 98 20 40 28 555 18 3 0 3 40 25 2 20 37 150 100 0 19 2 18 0 23 70 5 77 193 330 82 0 20 0 42 50 5 0 18 2 15 5 15 0 1 21 48 118 10 2 0 0 43 112 28 420 80 22 0 0 175 15 3 0 167 0 172 438 0 23 205 0 127 18 118 70 38 0 28 27 0 24 2 12 133 42 117 30 5 0 695 0 0 26 90 0 75 0 13 285 45	12 13 14	0 3 25	20 0 0	58 25 0	20 42 45	45 67 18	908 0 23	298 100 67	35 3 22	115 67 0	148 25 37	50 3 267	82 15 28 0
22 0 0 175 15 3 0 167 0 172 438 0 23 205 0 127 18 118 70 38 0 28 27 0 24 2 12 133 42 117 30 5 0 695 0 0 25 75 18 60 0 145 125 42 15 252 10 50 26 90 0 75 0 13 285 45 23 0 8 180 27 220 0 12 0 5 7 38 0 8 0 55 28 35 192 20 0 15 100 0 0 157 12 35 29 3 50 0 0 5 0 45 110 473 107	17 18 19	0 3 2	52 0 18	17 3 0	37 40 23	10 25 70	5 2 5	98 20 77	20 37 193	40 150 330	28 100 82	555 0 0	12 3 40 10 107
27 220 0 12 0 5 7 38 0 8 0 55 28 35 192 20 0 15 100 0 0 157 12 35 29 3 50 0 0 5 0 45 110 473 107 30 2 133 28 67 5 2 2 55 535 45	22 23	0 205 2	0 0 12	175 127 133	15 18 42	3 118 117	0 70 30	167 38 5	0 0 0	172 28 695	438 27 0	0 0 0	5 0 0 0
	27 28 29 30	220 35 3 2	0	12 20 50 133	0 0 0	5 15 0 67	7 100 5	38 0 0 2	0 0 45 2	8 157 110	0 12 473 535	55 35 107	25 23 0 0 0
Total 893 820 1440 723 1038 1878 1592 2291 2400 3018 2040 8			820		723		1878	1592		2400		2040	898

TOTAL ANNUEL: 19031

DU BASSIN en 1/10 mm

Bassin du QUARTIER DUCHENE

1 9 7 6

	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
1 2 3 4 5		,	5 18 0 5 0	0 0 0 0	138 0 0 0 0	20 0 5 0	.40 3 162 118 2	10 0 8 62 5	125 420 30 0 20	218 53 58 350 64	10 33 5 18 84	13 30 93 8 36
6 7 8 9			47 35 0 35 40	0 0 0 0 10	0 17 0 0 3	23 17 8 2 3	0 20 3 35 10	0 0 78 295 42	40 65 120 60 25	143 138 5 10 127	9 51 801 27 40	735 993 100 30 35
11 12 13 14 15			25 0 10 63 0	10 5 15 37 23	0 5 2 0 20	0 77 33 110 32	15 78 2 10 3	48 60 13 162 13	10 0 0 5 0	0 5 0 0 13	54 32 661 (161) (22)	68 72 13 55 15
16 17 18 19 20	,	33	20 22 25 3 70	2 8 17 20 48	10 0 3 35 5	18 0 0 177 0	40 20 2 0 28	140 15 0 30 5	38 75 50 0 35	340 257 28 22 20	144 (12) (12) 0 0	25 60 90 30 42
21 22 23 24 25		7 5 50 3 2	3 32 3 0	25 12 0 3 97	0 2 3 0 2	510 8 10 7 5	5 3 0 62 110	0 0 0 85 5	0 97 20 15 0	93 355 32 0 318	0 (25) 126 49 18	68 0 15 0 7
26 27 28 29 30 31		0 48 22 35	2 20 23 0 2	0 0 0 0 25	290 3 0 0 7 3	23 27 3 12 15	13 0 325 30 12 5	0 10 10 0 15 30	198 0 22 0 38	192 3 119 46 0	22 48 0 82 168	43 12 0 0 15 0
Total			508	357	548	1145	1156	1141	1508	3009	2714	2703

PRECIPITATIONS MOYENNES JOURNALIERES

DU BASSIN en 1/10 mm

Bassin du QUARTIER DUCHENE

1 9 7 7

	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
1 2 3 4 5	3 0 2 10 20	5 110 75 15 10	0 0 125 5 13	0 0 0 10 43	105 20 20 0 5	0 15 0 0 0	68 0 15 0 65	20 100 15 43 2	0 15 3 155 170	30 3 620 157 28	68 640 170 100 82	8 67 0 3 47
6 7 8 9 10	0 68 22 3 2	5 17 5 75 0	0 7 45 0 8	35 2 0 35 0	0 8 15 7 8	3 15 2 3 15	35 5 0 2 5	0 20 0 18 132	95 20 45 3 0	187 95 25 53 27	148 392 28 2 3	65 45 18 0
11 12 13 14 15	33 7 50 0 3	25 28 2 0	37 45 3 0	5 20 43 15 0	27 0 38 97 13	0 2 3 112 0	15 100 13 135 2	75 13 40 102 3	0 30 125 50 5	38 0 20 5 710	2 28 1 7 5 170 0	27 20 120 5 33
16 17 18 19 20	2 0 0 0	5 0 0 28 0	0 0 2 0	0 0 2 0 15	5 0 0 15 25	38 7 0 20 24	0 13 7 0 3	17 53 12 0 53	17 45 7 23 275	67 0 45 0 8	10 0 52 13 0	5 30 20 10 5
21 22 23 24 25	8 52 5 0 40	0 0 2 10 0	8 2 30 8 5	123 260 125 72 5	37 3 0 20 5	6 0 30 60 6	2 3 2 23 45	425 45 127 80 63	300 35 2 40 60	97 5 5 63 185	0 20 8 0 42	2 10 8 2 0
26 27 28 29 30 31	88 25 10 3 7 68 0	15 13 0	0 0 12 0 0	13 2 38 10 100	62 38 35 0 2	96 6 0 235 38	20 15 5 0 2 13	77 258 42 15 0	48 2 50 10 73	130 78 312 50 160 295	40 30 25 295 50	10 60 3 17 80 22
Total	558	445	355	973	618	736	613	1850	1703	3498	2593	742

TOTAL ANNUEL: 14684

TABLEAU XV

PRECIPITATIONS MOYENNES JOURNALIERES

DU BASSIN EN 1/10 mm

Bassin du QUARTIER DUCHENE

1 9 7 8

	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	ОСТ	NOV	DEC
1 2 3 4 5	5 5 0 10 13	5 3 5 0 65	20 43 0 0	0 0 8 245 2	3 5 0 72 8	33 35 2 0	48 20 82 55 98	38 385 67 40 0	3 0 0 35 0	60 45 10 118 0	40 25 80 55 8	3 322 48 25 37
6 7 8 9 10	92 45 3 17 0	0 0 20 10 0	2 75 30 90 120	0 0 75 3 0	0 7 5 3 0	0 70 18 0 2	187 10 23 0 25	15 113 72 18 297	0 0 2 3 52	5 0 212 33 5	5 15 105 172 15	10 38 70 2 38
11 12 13 14 15	3 15 5 22 28	2 13 0 0 30	58 47 25 2 0	140 0 7 105 98	20 0 50 17 20	30 793 0 115 60	7 165 100 83 15	60 103 10 15 387	3 40 127 0 53	32 130 8 15 72	90 28 0 267 25	70 50 0 2 0
16 17 18 19 20	2 13 10 37 3	0 7 3 30 20	0 28 7 0 23	2 8 100 7 30	13 7 25 3 17	5 10 0 32 3	40 22 50 98 27	138 112 35 180 8	22 25 110 233 37	10 3 5 45 7	168 820 0 2 0	15 3 70 10 42
21 22 23 24 25	2 8 412 18 97	70 0 0 28 10	27 120 15 3 15	5 40 28 2 3	3 7 118 22 95	5 12 40 3 22	20 125 23 27 50	80 0 2 13 32	118 167 40 643 300	340 285 0 0 5	23 0 0 2 98	5 25 0 0
26 27 28 29 30 31	15 108 22 5 18	0 0 240	32 20 18 80 95 37	0 0 0 2 25	20 38 50 2 83 55	170 5 108 17 13	35 55 0 0 13	75 10 0 10 3 165	5 22 30 40 53	15 40 45 570 538 57	155 117 23 142 45	5 35 8 0 0
Total	1035	561	1032	935	768	1603	1513	2483	2163	2710	2525	933

TOTAL ANNUEL :

18261

TABLEAU XVI

BASSIN VERSANT DE LA RIVIERE CAROLE

Liste des mesures de débit

N°	Date	Echelle rive droite	Débit m3/s
1	01-09-75	1.32	0.001
2	13-10-75	1.46	0.111
3	17-10-75	1.32	0.002
4	20-10-75	1.32	0.001
5	24-10-75	1.34	0.010
6	27-10-75	1.34	0.011
7	07-10-75	1.35	0.015
8	10-11-75	1.66 - 1.67	0.508
9	14-11-75	1.38	0.049
10	17-11-75	1.32	0.002
11	12-12-75	1.345	0.015
12	15-12-75	1.36	0.031
13	19-12-75	1.37	0.034
14	22-12-75	1.34	0.009
15	29-12-75	1.33	0.004
16	03-09-76	1.40	0.060
17	03-09-76	1.395	0.056
18	06-09-76	1.32	0.002
19	05-11-76	1.33	0.005
20	13-11-76	1.425	0.089
21	07-12-76	1.92 - 1.84	1.33
22	07-12-76	1.97 - 1.95	1.80
23	07-12-76	1.89 - 1.85	1.89
24	23-08-77	2.03 - 1.93	1.78
25	23-08-77	1.88 - 1.85	1.08
26	23-08-77	1.81 - 1.78	0.878
27	23-08-77	1.74 - 1.73	0.672
28	23-08-77	1.68 - 1.66	0.490
29	23-08-77	1.64	0.558
30	04-12-78	1.40	0.067

TABLEAU XVII

BASSIN DE LA RIVIERE DE VAL D'OR

Liste des jaugeages

N°	Date	H (m)	Q (m3/s)
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 7 18 19 20 1 22 23 4 25 27 28 29 30 31 32 33 4 35 36 37 38 9 40 42 43 44 44 44	23-06-75 21-08-75 21-08-75 21-08-75 21-08-75 21-08-75 21-08-75 21-08-75 10-09-75 15-09-75 10-10-75 13-10-75 24-10-75 03-11-75 14-11-75 15-12-75 19-12-75 19-12-75 19-12-75 19-12-75 19-01-76 30-01-76 03-09-76 08-10-76 05-11-76 13-11-76 13-11-76 17-11-76 17-11-76 17-11-76 17-11-76 17-11-76 17-11-76 17-11-76 17-11-76 17-11-76 17-11-77 21-09-77 21-09-77 21-09-77 21-09-77 21-09-77 21-09-77 21-09-77 21-09-77 21-09-77 21-09-77 21-09-77 21-09-77 21-09-77 21-09-77	0.05 0.15 0.14 0.14 0.20 0.18 0.06 0.12 0.06 0.05 0.15 0.07 0.07 1.07 - 1.09 0.09 0.055 0.08 0.09 0.08 0.09 0.08 0.09 0.08 0.00 0.11 0.12 0.08 0.42 - 0.37 0.08 0.42 - 0.37 0.08 0.42 - 0.51 0.49 0.30 0.25 0.72 - 0.64 0.49 0.48 0.45 0.525 1.05 - 0.90 0.90 - 0.80 0.57 - 0.51 0.58 - 0.72 0.77 - 0.74 0.70 - 0.64 0.62 - 0.57 0.72 - 0.60 0.34 - 0.31	0.001 0.047 0.040 0.035 0.084 0.065 0.002 0.001 0.002 0.001 0.003 0.004 1.97 à 2.20 0.012 0.001r 0.009 0.013 0.010 0.003 0.024 0.025 0.008 0.190 0.005 0.340 0.255 0.139 0.107 0.640 0.495 0.415 0.555 1:85 1:85 1.31 0.617 0.559 0.856 1.03 0.889 0.666 0.972 0.203

TABLEAU XVIII

BASSIN DE VOLTAIRE

Liste des jaugeages

N°	Date	H (m)	Q (m3/s)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	13-10-75 24-10-75 27-10-75 29-10-75 07-11-75 10-11-75 14-11-75 17-11-75 05-12-75 12-12-75 17-12-75 19-12-75 22-12-75 30-01-76 16-02-76 20-02-76 08-03-76 26-10-76 13-11-76 " 07-12-76 05-09-77	1.46 1.43 1.39 1.45 1.39 1.40 1.39 1.405 1.43 1.40 1.67 - 1.65 1.41 1.40 1.405 1.49 1.38 1.38 1.67 - 1.65 1.49 1.38 1.38 1.67 - 1.65 1.49 1.38 1.80 1.81 1.82 1.83 1.84 1.85 1.85 1.87 1.87 1.58 - 1.60	0.025 0.014 0.0025 0.023 0.0015 0.044 0.0035 0.001 0.003 0.019 0.004 0.214 0.005 0.004 0.008 0.043 0.002 0.001 0.251 0.170 0.164 0.667 1.80 0.134

TABLEAU XIX

BASSIN DE LA RIVIERE DUCHENE

Liste des jaugeages

N°	Date	H (m)	Q (m3/s)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	04-03-76 08-03-76 22-03-76 07-04-76 21-06-76 04-08-76 10-08-76 16-08-76 22-10-76 " " 05-11-7.6 07-12-76 " " 28-03-77	2.295 2.305 2.30 2.29 2.34 2.28 2.31 2.305 2.42 2.50 - 2.46 2.455 2.56 - 52.53 2.31 2.82 - 2.94 2.62 - 2.78 2.60 2.295	0.003 0.005 0.004 0.002 0.046 0.0005 0.012 0.007 0.192 0.280 0.275 0.605 0.011 2.00 1.26 1.08 0.001

1 9 7 5

	JAN	FEV	MAR	` AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
1 2 3 4 5	.000	.000	.000	.000	.000	.000	.000	.000	.001 .004 .011 .004 .001	.000 .000 .000 .000	.153 .204 .042 .214 .122	.000 .000 .000 .000
6 7 8 9 10									.000 .000 .000 .016 .006	.000 .000 .000 .000	.039 .017 .007 .011 .179	.000 .000 .000 .237 .084
11 12 13 14 15	t le mois								.003 .001 .000 .000	.036 .007 .210 .085 .020	.073 .072 .119 .040	.025 .311 .228 .058 .029
16 17 18 19 20	Débit nul tout	a a	=	=	=	=	=	=	.000 .000 .000 .000	.006 .004 .003 .002 .001	.007 .003 .001 .001	.069 .327 .101 .035 .034
21 22 23 24 25	Dél								.000 .000 .000 .000	.234 .137 .032 .020 .086	.000 .000 .000 .000	.026 .009 .004 .014 .396
26 27 28 29 30 31	.000	.000	. 000	.000	.000	.000	.000	.000	.000 .000 .000 .000	.037 .014 .004 .002 .001	.000 .000 .000 .000	.087 .026 .010 .004 .001
MOYENNE	.000	.000	.000	.000	.000	.000	.000	.000	.002	.033	.044	.068

Débit moyen annuel : 0.012 m3/s

Débit maximal instantané : 6.17 m3/s

1 9 7 6

	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
1 2 3 4 5	.000	.000	.000	.000	.000	.000	.000	.000 .000 .000 .000	.000 .157 .056 .017	.001 .000 .000 .001 .010	.003 .003 .007 .005	.009 .005 .093 .096 .054
6 7 8 9 10								.000 .000 .000 .000	.001 .001 .001 .000	.060 .087 .532 .067	.005 .004 .028 .273 .035	.063 1.88 .397 .118 .049
11 12 13 14 15	it le mois							.000 .020 .010 .003 .001	.000 .000 .000 .000	.023 .012 .006 .003 .001	.014 .022 .097 .112 .065	.058 .046 .042 .021 .029
16 17 18 19 20	Débit nul tout	=	=	=	=	=	=	.001 .013 .006 .003	.000 .000 .000 .000	.001 .005 .002 .001	.035 .081 .031 .013	.013 .006 .004 .002 .001
21 22 23 24 25	Dé							.000 .000 .000 .000	.000 .000 .000 .000 .274	.007 .010 .002 .009	.001 .001 .001 .001	.001 .001 .001 .001
26 27 28 19 30 31	.000	.000	.000	.000	.000	.000	.000	.000 .000 .001 .000 .000	.063 .013 .008 .004 .001	.008 .005 .005 .006 .005	.001 .001 .001 .001	.001 .001 .001 .001 .000
MOYENNE	.000	.000	.000	.000	.000	.000	.000	.002	.020	.029	.029	.097

Débit moyen annuel :0.015 m3/s

Débit maximal instantané :24.4 m3/s

1 9 7 7

	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
1 2 3 4 5	.000	.000	.000	.000	.000	.000	.000	.000 .000 .000 .000	.007 .002 .001 .001	.000 .000 .000 .628 .109	.096 .049 .179 .360	.008 .005 .002 .001
6 7 8 9 10								.000 .000 .000 .000	.061 .019 .007 .003 .001	.038 .042 .059 .024 .012	.1001 .107 .050 .022 .010	.001 .000 .000 .000
11 122 13 14 15	t le mois							.000 .000 .000 .000	.001 .000 .000 .000	.008 .006 .003 .001	.004 .003 .002 .005	.000 .000 .000 .001 .001
16 17 18 19 20	Débit nul tout	=	=	=	=	=	=	.000 .000 .000 .000	.000 .000 .000 .000	.004 .004 .004 .003 .002	.003 .002 .001 .001	.001 .000 .000 .000
21 22 23 24 25	Dé							.000 .137 .290 .118 .052	.282 .094 .026 .008	.001 .001 .001 .000	.001 .000 .000 .000	.000 .000 .000 .000
26 27 28 29 30 31	.000	.000	.000	.000	.000	.000	.000	.016 .073 .228 .077 .030	.001 .001 .001 .000	.000 .058 .241 .114 .045	.000 .000 .001 .001 .008	.000 .000 .000 .000 .000
MOYENNE	.000	.000	.000	.000	.000	.000	.000	.034	.020	.068	.040	.001

Débit moyen annuel : 0.014 m3/s

Débit maximal instantané : 6.28 m3/s

1 9 7 8

	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
1 2 3 4 5	.000	.000	.000	.000	.000	.000 .000 .000 .000	.000 .000 .000 .000	.000 .000 .000 .128 .067	.000 .000 .000 .000	.000 .000 .000 .000	.001 .001 .001 .001	.011 .011 .013 .032 .019
6 7 8 9 10						.000 .000 .000 .000	.009 .081 .014 .005	.013 .004 .025 .041	.000 .000 .000 .000	.000 .000 .000 .000	.000 .011 .003 .208	.011 .005 .002 .001 .001
11 12 13 14 15	le mois					.000 .000 .012 .002 .001	.001 .019 .034 .020	.029 .012 .005 .001 .355	.000 .000 .000 .000	.000 .000 .000 .000	.031 .014 .009 .012 .011	.001 .001 .001 .001
16 17 18 19 20	t nul tout	=	= .	z	=	.000 .000 .000 .000	.009 .005 .005 .005	.116 .037 .018 .063 .063	.000 .000 .000 .000	.000 .000 .000 .000	.014 .063 .408 .055	.001 .001 .001 .001
21 22 23 24 25	Débit					.000 .000 .000 .000	.005 .005 .012 .005 .003	.056 .031 .013 .006 .002	.000 .000 .000 .030 .060	.003 .461 .118 .030 .012	.012 .006 .002 .001	.000 .000 .000 .000
26 27 28 29 30 31	.000	.000	.000	.000	.000	.000 .000 .000 .000	.001 .001 .001 .001 .000	.001 .001 .000 .000	.025 .012 .005 .001	.006 .001 .001 .001 .001	.001 .003 .007 .007	.000 .000 .000 .000 .000
MOYENNE	.000	.000	.000	.000	.000	.000	.008	.036	.004	.020	.033	.004

Débit moyen annuel : 0.009 m3/S - Débit maximal instantané : 4.72 m3/s

DEBITS MOYENS JOURNALIERS DU

1 9 7 9

	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	0CT	NOV	DEC
1 2 3 4 5	.000	.000	.000 .000 .000 .000	.000	.000	.000 .000 .000 .000						
6 . 7 . 8 . 9 . 10			.000 .000 .000 .000			.000 .000 .000 .000						
11 12 13 14 15	mois		.000 .000 .000 .000	mois		.000 .000 .000 .000						
16 17 18 19 20	tout le	=	.000 .000 .000 .000	tout le	=	.000 .000 .000 .000						
21 22 23 24 25	Débit nul		.000 .000 .000 .049	Débit nul		.000 .000 .000 .000						
26 27 28 29 30 31	.000	.000	.000 .000 .000 .000 .000	.000	.000	.011 .042 .032 .007 .176						
MOYENNE	.000	.000	.002	.000	.000	.009						

DEBITS MOYENS JOURNALIERS DU

BASSIN DE VAL D'OR en (m3/s)

					•				1	1	1	<u> </u>
	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	ОСТ	NOV	DEC
1 2 3 4 5							.000	.000 .000 .000 .000	.027 .006 .013 .003	.002 .002 .001 .007 .004	.099 .224 .009 .134 .357	.002 .002 .003 .002 .001
6 7 8 9 10								.001 .001 .001 .000	.001 .001 .002 .024 .004	.005 .003 .001 .001	.010 .004 .003 .051 .388	.006 .005 .004 .534 .037
11 12 13 14 15								.000 .000 .000 .000	.008 .003 .002 .010	.003 .002 .308 .034 .006	.060 .236 .196 .011	.025 .010 .052 .016 .025
16 17 18 19 20						.000	tout le mois	.001 .001 .000 .001	.002 .001 .001 .001	.003 .002 .003 .004	.002 .002 .002 .002	.194 .328 .078 .009 .018
21 22 23 24 25						.001 .001 .001 .000	Débit nul to	.038 \ .004 \ .001 \ .001 \	.001 .001 .001 .001	.567 .093 .006 .033 .183	.002 .002 .002 .002 .002	.009 .003 .002 .038 .461
26 27 28 29 30 31						.000 .000 .000 .000	.000	.003 .001 .001 .002 .002	.001 .000 .000 .000	.019 .005 .006 .008 .067	.001 .002 .014 .004	.036 .008 .004 .003 .003
Moyenne							.000	.002	.004	.049	.061	.062

1 9 7 6

	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	0CT	NOV	DEC
1 2 3 4 5	.003 .002 .002 .002 .002	.007 .003 .003 .003	.002 .003 .004 .003	.001 .001 .001 .001	.001 .001 .001 .001	.000 .000 .000 .000	.001 .001 .001 .001	.000 .000 .000 .000	.001 .107 .010 .001	.001 .002 .013 .005	.004 .328 .012 .003	.017 .006 .123 .046 .087
6 7 8 9 10	.002 .002 .007 .003 .002	.003 .003 .002 .002	.005 .009 .004 .002	.001 .001 .001 .001	.001 .001 .001 .000	.000 .000 .000 .000	.001 .001 .000 .000	.001 .001 .001 .001	.001 .002 .001 .002	.044 .017 .282 .007 .002	.030 .004 .043 .309	.098 1.91 .150 .079 .034
11 12 13 14 15	.010 .002 .003 .010	.002 .002 .002 .002 .003	.005 .003 .004 .004	.001 .001 .001 .001	.000 .000 .000 .000	.000 .000 .002 .001	.000 .000 .001 .001	.001 .003 .001 .002 .004	.003 .003 .001 .001	.012 .002 .001 .001	.004 .041 .461 .119	.049 .021 .046 .011 .053
16 17 18 19 20	.003 .003 .015 .020	.011 .006 .015 .004 .003	.002 .002 .002 .001	.001 .001 .001 .001	.001 .001 .001 .001	.000 .000 .000 .000	.000 .000 .000 .000	.004 .008 .003 .003	.001 .001 .037 .004 .002	.019 .003 .002 .005 .010	.047 .233 .014 .005 .003	.009 .007 .028 .011 .004
21 22 23 24 25	.002 .002 .002 .002 .005	.003 .003 .008 .005 .003	.003 .002 .001 .001	.001 .001 .001 .001	.000 .000 .000 .000	.005 .002 .001 .001	.000 .000 .000 .000	.001 .001 .001 .001	.006 .001 .001 .001	.025 .014 .004 .002 .002	.003 .002 .002 .003 .007	.008 .006 .003 .003
26 27 28 29 30 31	.008 .009 .003 .002 .030	.002 .002 .005 .004	.001 .001 .001 .002 .001	.001 .001 .001 .001	.000 .000 .000 .000 .000	.001 .001 .001 .001	.002 .001 .001 .002 .001	.001 .001 .001 .001 .001	.001 .001 .002 .002 .001	.019 .284 .041 .046 .329 .017	.004 .003 .003 .003 .240	.003 .003 .003 .002 .002
MOYENNE	.007	.004	.003	.001	.000	.001	.001	.002	.007	.039	.067	.091

<u>Débit moyen annuel</u> : .019 m3/s - <u>Débit maximal instantané</u> : 10.5 m3/s

	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	0CT	NOV	DEC
1 2 3 4 5	.002 .002 .002 .003	.002 .002 .005 .003	.001 .001 .001 .001	.000 .000 .000 .000	.001 .001 .001 .001	.000	.000 .000 .000 .000	.000 .000 .000 .000	.003 .002 .002 .002 .072	.001 .001 .001 .463 .030	.115 .019 .804 .034 .022	.054 .008 .005 .003 .002
6 7 8 9 10	.003 .002 .002 .002	.002 .002 .002 .002	.001 .001 .001 .000	.000 .001 .001 .001	.001 .001 .001 .001		.000 .000 .000 .000	.000 .000 .000 .000	.017 .004 .003 .002	.004 .147 .109 .007 .005	.013 .035 .110 .027 .007	.003 .003 .003 .003
11 12 13 14 15	.002 .002 .002 .002	.002 .002 .002 .001	.000 .000 .000 .000	.001 .001 .001 .000	.001 .001 .001 .001	t le mois	.000 .000 .001 .001	.000 .000 .000 .000	.002 .001 .002 .004 .002	.075 .007 .003 .001	.006 .005 .004 .210	.002 .002 .007 .002
16 17 18 19 20	.002 .002 .002 .002 .003	.001 .001 .001 .002	.000 .000 .000 .000	.000 .000 .000 .000	.001 .001 .001 .001	Débit nul tout	.000 .000 .000 .000	.000 .000 .001 .001	.001 .001 .001 .001 .052	.227 .015 .123 .011 .005	.006 .005 .004 .003	.002 .002 .002 .002
21 22 23 24 25	.003 .003 .004 .002	.002 .001 .001 .001	.000 .000 .000 .000	.000 .001 .002 .002	.001 .001 .001 .001	Dé	.000 .000 .000 .000	.001 .005 .025 .003	.323 .056 .015 .006	.003 .003 .003 .002 .045	.003 .003 .003 .002	.002 .001 .001 .001
26 27 28 29 30 31	.001 .002 .002 .002 .001	.001 .001 .001	.000 .000 .000 .000 .000	.001 .001 .001 .001	.001 .002 .002 .001 .001	.000	.000 .000 .000 .000 .000	.002 .019 .110 .013 .020	.002 .001 .001 .003 .002	.009 .368 .285 .076 .013	.002 .002 .002 .007 .135	.002 .002 .002 .002 .002
MOYENNE	.002	.002	.000	.001	.001	.000	.000	.007	.020	.084	.053	.004

Débit moyen annuel : .015 m3/s - Débit maximal instantané : 4.89 m3/s

DEBITS MOYENS JOURNALIERS DU BASSIN DE VAL D'OR en (m3/s)

	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
1 2 3 4 5	.002 .002 .002 .002 .001	.001 .002 .002 .002 .001	.003 .002 .004 .002	.002 .002 .002 .013 .003	.000 .000 .000 .000	.000 .000 .001 .000						
6 7 8 9 10	.001 .001 .001 .001	.002 .001 .001 .001	.002 .002 .002 .002 .003	.002 .002 .002 .002 .001	.001 .001 .000 .000	.000 .000 .001 .000						
11 12. 13 14 15	.001 .001 .001 .001	.001 .001 .001 .001	.011 .012 .015 .010 .002	.001 .001 .002 .003	.000 .000 .000 .000	.001 .071 .043 .002 .001				ą		
16 17 18 19 20	.002 .002 .002 .002 .002	.001 .001 .001 .001	.001 .001 .001 .002	.006 .003 .001 .001	.000 .000 .000 .000	.001 .001 .001 .000		1	:		,	
21 22 23 24 25	.002 .001 .001 .002 .002	.001 .001 .001 .001	.002 .001 .002 .003	.002 .003 .003 .003	.000 .000 .000 .002	.000 .000 .001 .000				; ;		
26 27 28 29 30 31	.003 .003 .005 .005 .002	.001 .001 .002	.002 .002 .001 .001 .002	.001 .001 .001 .001	.005 .002 .001 .001 .001	.001 .001 .000 .001	:	,	ı			
MOYENNE	.002	.001	.004	.002	.001	.004			1	,		

DEBITS MOYENS JOURNALIERS DU BASSIN DE VOLTAIRE en (m3/s)

				_								
	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
1 2 3 4 5									.000	.000 .000 .000 .000	.025 .011 .005 .041 .021	.001 .001 .001 .001
6 7 8 9 10										.001 .000 .000 .000	.004 .006 .007 .003	.001 .001 .002 .410
11 12 13 14 15										.000 .008 .210 .007	.130 .016 .011 .005	.010 .020 .013 .010
16 17 18 19 20										.000 .000 .010 .001	.002 .001 .001 .002	.139 .121 .011 .006
21 22 23 24 25								.000		.229 .052 .003 .096	.001 .001 .002 .002	.007 .004 .004 .003 .003
26 27 28 29 30 31								.000	.000	.009 .003 .002 .080 .016	.003 .001 .002 .001	.004 .004 .003 .003 .002
MOYENNE									.000	.029	.012	.027

<u>1 9 7 6</u>

	7.00:	E EV	1400			3,,,,,		1 2011	0.55			
	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
1 2 3 4 5	.001 .002 .001 .001	.004 .004 .003 .003 .002	.002 .003 .002 .001	.000 .000 .000 .000	.000 .000 .000 .000	.000 .000 .000 .000	.000 .000 .000 .000	.000 .000 .000 .000	.000 .037 .002 .001	.000 .000 .000 .000	.004 .003 .002 .002 .001	.009 .002 .005 .003 .002
6 7 8 9 10	.001 .001 .002 .001	.002 .002 .002 .002 .001	.001 .003 .002 .001	.000 .000 .000 .000	.000 .000 .000 .000	.000 .000 .000 .000	.000 .000 .000 .000	.000 .000 .000 .012 .011	.001 .002 .002 .001	.002 .071 .075 .004	.002 .001 .116 .251	.002 .554 .031 .017 .008
11 12 13 14 15	.002 .002 .001 .001	.001 .001 .001 .001	.002 .001 .001 .001	.000 .000 .000 .000	.000 .000 .000 .000	.000 .000 .000 .000	.000 .000 .000 .000	.001 .000 .002 .001	.001 .000 .000 .000	.003 .001 .001 .001	.005 .009 .382 .082	.006 .013 .013 .005
16 . 17 . 18 . 19 . 20	.002 .002 .002 .006	.138 .003 .003 .002	.001 .001 .001 .001	.000 .000 .000 .001	.000 .000 .000 .000	.000 .000 .000 .000	.000 .000 .000 .000	.001 .001 .001 .001	.000 .000 .000 .000	.001 .027 .006 .005	.007 .007 .003 .003	.002 .002 .002 .004 .002
21 22 23 24 25	.002 .002 .001 .001	.003 .002 .002 .002	.001 .001 .001 .001	.000 .000 .000 .000	.000 .000 .000 .000	.001 .000 .000 .000	.000 .000 .000 .000	.000 .000 .000 .000	.000 .000 .000 .000	.004 .012 .024 .004	.001 .001 .002 .002	.005 .003 .002 .002
26 27 28 29 30 31	.004 .006 .002 .001 .029	.001 .002 .003 .004	.001 .001 .001 .001 .001	.002 .001 .001 .001	.000 .001 .000 .000 .000	.000 .000 .000 .000	.000 .000 .000 .006 .000	.000 .000 .000 .000	.000 .000 .000 .000	.033 .009 .006 .050 .022	.002 .002 .002 .001	.002 .002 .002 .002 .002 .002
MOYENNE	.003	.007	.001	.000	.000	.000	.000	.001	.002	.013	.031	.023

<u>Débit moyen annuel</u> : .007 m3/s - <u>Débit maximal instantané</u> : 6.18 m3/s

	JAN	FEV	MAR	AVR	MAI	JUN.	JUL	AOU	SEP	OCT	NOV	DEC
1 2 3 4 5	.002 .002 .002 .002 .002	.002 .004 .003 .002	.001 .001 .001 .003 .002	.000 .000 .000 .000	.001 .001 .001 .000	.000	.002 .000 .000 .000	.000 .000 .000 .000	.001 .001 .002 .001	.002 .001 .001 .227	.114 .055 .571 .067	.011 .008 .007 .006
6 7 8 9 10	.002 .002 .002 .002	.002 .002 .003 .003	.001 .001 .001 .001	.001 .001 .000 .000	.001 .001 .001 .000		.000 .000 .000 .000	.000 .000 .000 .000	.005 .001 .002 .001	.003 .017 .009 .003	.051 .173 .115 .033 .028	.005 .005 .005 .005
11 12 13 14 15	.002 .003 .002 .002	.002 .004 .002 .002	.002 .001 .001 .001	.000 .000 .000 .000	.000 .000 .000	le mois	.000 .000 .000 .003	.000 .001 .000 .000	.001 .001 .042 .004	.002 .001 .002 .001	.029 .028 .049 .155 .043	.003 .003 .003 .003
16 17 18 19 20	.002 .001 .001 .001	.002 .002 .002 .002 .002	.001 .001 .000 .000	.000 .000 .000 .000	.000 .000 .000 .000	nul tout	.000 .000 .000 .000	.000 .000 .000 .000	.002 .002 .001 .001 .025	.052 .024 .002 .018 .003	.035 .031 .028 .028 .028	.003 .002 .002 .002 .002
21 22 23 24 25	.001 .003 .003 .002	.002 .002 .001 .001	.000 .000 .000 .000	.000 .000 .005 .006	.000 .000 .000 .000	Débit	.000 .000 .000 .000	.001 .105 .021 .031 .002	.117 .020 .004 .002 .002	.003 .006 .002 .001	.027 .022 .016 .010	.002 .002 .002 .005 .004
26 27 28 29 30 31	.003 .002 .002 .002 .003 .002	.001 .001 .001	.000 .000 .000 .001 .001	.000 .000 .000 .000	.000 .000 .000 .000 .000	.000	.000 .000 .000 .000 .000	.001 .035 .011 .006 .001	.003 .001 .001 .002 .002	.003 .044 .069 .426 .363 .452	.005 .012 .006 .031 .094	.003 .003 .006 .005 .005
MOYENNE	.002	.002	.001	.000	.000	.000	.000	.007	.011	.057	.065	.004

Débit moyen annuel : .013 m3/s - Débit maximal instantané : 11.1 m3/s

DEBITS MOYENS JOURNALIERS DU BASSIN DE VOLTAIRE en (m3/s)

1 9 7 8

	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
1 2 3 4 5	.004 .003 .002 .002	.002 .002 .002 .002 .010	.005 .002 .003 .002 .002	.002 .002 .002 .003 .003	.001 .001 .001 .001	.002 .002 .002 .001	.001 .001 .002 .001	.001 .003 .060 .003	.001 .001 .001 .001	.009 .004 .003 .050	.018 .016 .015 .014	.004 .003 .047 .014 .006
6 7 8 9 10	.002 .002 .002 .002	.003 .002 .002 .002 .002	.002 .002 .003 .002 .002	.003 .004 .004 .005 .003	.001 .001 .001 .001	.001 .001 .003 .001	.002 .007 .003 .003	.004 .004 .008 .004 .009	.001 .001 .001 .001	.002 .002 .001 .013 .002	.013 .012 .012 .045 .015	.006 .014 .007 .005
11 12 13 14 15	.002 .002 .002 .002	.002 .002 .002 .002 .002	.007 .004 .004 .003 .002	.004 .001 .002 .004	.001 .001 .001 .001	.001 .098 .011 .001	.001 .009 .007 .007	.008 .002 .001 .001 .120	.001 .002 .004 .003	.002 .003 .011 .002	.014 .014 .012 .066	.005 .007 .005 .005
16 17 18 19 20	.002 .002 .002 .002	.002 .002 .002 .002 .003	.002 .002 .002 .002 .002	.003 .004 .002 .004	.001 .001 .001 .001	.001 .001 .001 .001	.002 .001 .003 .002	.016 .008 .003 .024 .009	.001 .001 .001 .017 .003	.002 .002 .003 .004 .003	.022 .073 .159 .009	.004 .003 .002 .002
21 22 23 24 25	.002 .002 .002 .006 .005	.006 .004 .003 .003	.004 .003 .007 .003	.005 .005 .005 .004	.002 .002 .002 .003	.001 .001 .001 .001	.001 .008 .004 .001	.012 .004 .004 .003 .002	.001 .015 .001 .221 .079	.077 .220 .024 .012 .009	.003 .006 .003 .002	.006 .003 .002 .002
26 27 28 29 30 31	.005 .015 .007 .003 .004	.004	.004 .003 .002 .001 .003	.001 .001 .002 .002	.006 .004 .004 .003 .003	.012 .004 .001 .003 .001	.003 .002 .002 .002 .001	.002 .001 .001 .001 .001	.012 .005 .005 .031 .006	.005 (.005) (.005) (.048) (.392) .022	.016 .009 .005 .009	.002 .002 .002 .002 .002
MOYENNE	.003	.003	.003	.003	.002	.005	.003	.010	.014	(.030)	.021	.006

Débit moyen annuel : .009 m3/s - Débit maximal instantané : 14.5 m3/s

DEBITS MOYENS JOURNALIERS DU BASSIN LA DUCHENE en (m3/s)

1 9 7 6

	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
1 2 3 4 5			(.004) .004 .004 .004 .004	.002 .002 .002 .002 .001	.004 .001 .001 .001	.000 .000 .000 .000	.000 .000 .000 .005 .002	.001 .001 .001 .000	.000 .042 .005 .003	.002 .014 .003 .006	.017 .016 .015 .013	.020 .014 .026 .013
6 7 8 9 10			.004 .004 .004 .004	.001 .001 .001 .001	.001 .001 .001 .001	.000 .000 .000 .000	.001 .001 .001 .001	.000 .000 .000 .008 .017	.002 .002 .001 .003 .003	.009 .028 .019 .009	.012 .013 .209 .328 .051	.011 1.54 .149 .082 .060
11 12 13 14 15			.005 .003 .002 .002 .006	.001 .001 .001 .001	.001 .001 .001 .001	.000 .000 .000 .001	.000 .000 .001 .001	.004 .005 .002 .004 .005	.003 .002 .001 .001	.014 .009 .007 .006	.039 .033 .428 .181 .068	.063 .057 .052 .038 .045
16 17 18 19 20			.004 .004 .004 .004 .003	.001 .001 .001 .001	.001 .001 .001 .000	.001 .000 .000 .000	.001 .001 .001 .000	.007 .010 .003 .002	.001 .001 .001 .001	.002 .085 .114 .014	.032 .059 .027 .021 .018	.038 .037 .037 .054 .033
21 22 23 24 25			.003 .003 .003 .003	.001 .001 .001 .001	.000 .000 .000 .000	.026 .004 .002 .001	.000 .000 .000 .000	.001 .001 .001 .001	.001 .001 .004 .002	.030 .145 .039 .023 .059	.016 .013 .016 .018	.046 .032 .026 .021
26 27 28 29 30 31			.003 .003 .002 .002 .002	.001 .001 .000 .000	.005 .000 .000 .000 .000	.001 .001 .000 .000	.002 .001 .000 .060 .002	.001 .001 .001 .001 .000	.001 .007 .003 .003 .002	.139 .083 .040 .052 .025	.012 .011 .011 .011 .052	.021 .023 .021 .021 .021
MOYENNE			.003	.001	.001	.001	.003	.003	.003	.035	.059	.086

Débit moyen annuel : (.019 m3/s) - Débit maximal instantané : 8.60 m3/s

DEBITS MOYENS JOURNALIERS DU BASSIN LA DUCHENE en (m3/s)

1 9 7 7

	JAN	FEV	MAR	AVR	MAI	JUN	JUL	AOU	SEP	0CT	NOV	DEC
1 2 3 4 5	.020 .019 .017 .016 .014	.006 .005 .009 .011	.005 .005 .004 .012 .009	.001 .001 .000 .000	.011 .007 .004 .003	.000 .000 .000 .000	.002 .001 .000 .000	.000 .000 .000 .000	.002 .001 .001 .001	.004 .004 .004 .309 .036	.167 .181 .581 .085	.023 .023 .019 .017 .015
6 7 8 9 10	.013 .014 .014 .011 .010	.008 .007 .006 .006	.007 .005 .004 .004	.001 .001 .001 .001	.003 .002 .002 .002	.000 .000 .000 .000	.001 .000 .000 .000	.000 .000 .000 .000	.008 .005 .003 .003	.027 .064 .036 .019	.091 .237 .273 .073 .053	.013 .023 .016 .012 .011
11 12 13 14 15	.010 .009 .009 .008	.007 .008 .011 .011	.004 .004 .004 .004	.001 .001 .001 .001	.001 .001 .001 .001	.000 .000 .000	.000 .000 .001 .004	.000 .001 .000 .000	.002 .001 .004 .001	.009 .008 .005 .004	.041 .033 .038 .146 .047	.011 .011 .015 .017 .011
16 17 18 19 20	.007 .007 .006 .006	.010 .009 .009 .009	.003 .003 .003 .002	.001 .001 .000 .000	.001 .001 .001 .001	.000 .000 .000	.000 .000 .000 .000	.000 .000 .000 .000	.001 .001 .002 .001	.371 .038 .021 .013	.033 .026 .021 .020	.011 .011 .011 .011
21 22 23 24 25	.005 .004 .006 .004	.008 .008 .007 .007	.002 .001 .001 .001	.001 .002 .021 .020	.001 .001 .001 .001	.000 .000 .000 .000	.000 .000 .000 .000	.000 .027 .003 .004	.059 .020 .004 .004 .004	.011 .020 .008 .006	.018 .017 .016 .015	.011 .011 .011 .010
26 27 28 29 30 31	.006 .010 .011 .010 .008	.006 .006 .005	.001 .001 .001 .001 .001	.004 .004 .004 .004	.001 .001 .001 .000 .000	.000 .000 .000 .000	.000 .000 .000 .000	.005 .022 .014 .006 .003	.004 .004 .004 .004	.040 .033 .056 .157 .118	.014 .013 .012 .057 .053	.008 .007 .007 .006 .005
MOYENNE	.010	.008	.003	.003	.002	.000	.000	.003	.006	.056	.083	.012

<u>Débit moyen annuel</u> : .016 m3/s - <u>Débit maximal instantané</u> : 11.3 m3/s

DEBITS MOYENS JOURNALIERS DU

BASSIN LA DUCHENE en (m3/s)

1 9 7 8

	JAN	FEV	MAR	AV R	MAI	JUN	JUL	AOU	SEP	OCT	NOV	DEC
1 2 3 4 5	.004 .004 .004 .004	.004 .004 .004 .004	.008 .003 .003 .002	.003 .003 .002 .013	.000 .001 .001 .001	.003 .002 .001 .000	.001 .001 .001 .001	.004 .030 .060 .007	.007 .004 .004 .003	.010 .004 .004 .004	.094 .059 .031 .033	.021 .017 .108 .021 .018
6 7 8 9 10	.005 .012 .007 .004	.006 .004 .004 .004	.003 .004 .007 .004	.004 .004 .004 .004	.001 .001 .001 .001	.000 .000 .001 .000	.010 .011 .003 .002	.004 .004 .013 .004	.003 .003 .002 .002	.004 .004 .004 .040	.012 .009 .007 .335 .045	.015 .017 .017 .011
11 12 13 14 15	.004 .004 .004 .004	.004 .004 .004 .004	.016 .005 .004 .003	.006 .004 .004 .003	.001 .001 .001 .001	.000 .119 .019 .005	.002 .003 .006 .003	.031 .011 .016 .006	.002 .001 .002 .001	.008 .005 .006 .004	.037 .029 .022 .021	.011 .026 .014 .012 .010
16 17 18 19 20	.004 .004 .004 .004	.004 .004 .004 .004	.003 .003 .002 .002	.003 .003 .003 .003	.001 .000 .001 .001	.001 .001 .001 .001	.002 .001 .001 .011	.044 .037 .032 .038 .022	.001 .001 .001 .020	.004 .004 .004 .004	.038 .211 .478 .048 .032	.007 .004 .006 .005
21 22 23 24 25	.004 .004 .014 .061	.006 .004 .003 .003	.002 .001 .005 .004	.002 .002 .002 .002 .001	.001 .001 .001 .001	.001 .001 .001 .001	.004 .011 .014 .005	.016 .004 .004 .004	.006 .022 .006 .250	.046 .181 .051 .025 .016	.028 .024 .021 .021	.005 .004 .004 .004
26 27 28 29 30 31	.021 .018 .010 .007 .005	.002 .002 .004	.003 .002 .002 .001 .004	.001 .001 .001 .001	.001 .001 .001 .000 .000	.004 .003 .001 .004	.004 .004 .004 .004 .004	.004 .004 .004 .004 .004	.044 .021 .021 .011	.008 .004 .004 .009 .871 .113	.040 .047 .021 .026 .023	.004 .004 .004 .004 .004
MOYENNE	.008	.004	.004	.003	.001	.006	.004	.021	.023	.047	.062	.013

Débit moyen annuel : .016 m3/s - Débit maximal instantané : 13.3 m3/s

<u>Caractéristiques des crues</u>
<u>1 9 7 5</u>

								··						
N°	Date	mm P	mn d	mm I	10 ³ m ³ V _r	mm H _r	m3/s Q _r	m3/s Q _o	mn tm	h.mn tb	% K _r	mm D _r	Qr/Hr	Observations
1	10.10	(14.5)		(12.3)	6.48	4.4	0.70	0	63	11.10	(30)	(10.1)	0.16	2 pointes
2	13.10	(47.0)		(52.8)	15.26	10.4	0.88	0.060	182	21.10	(22)	(36.6)	0.09	1 pointe
3	21.10	21.0	85	44.3	18.99	13.0	2.41	0.120	47	21.17	62	8.0	0.19	1 pointe
4	01.11	29.8	90	19.9	9.93	6.8	1.54	0.027	50	12.42	23	23.0	0.23	2 pointes
5	02.11	16.3	55	49.9	10.59	7.2	1.10	0.099	57	19.52	44	9.1	0.15	1 pointe
6	03.11	27.2	435	45.4	13.55	9.3	0.83	0.027	205	25.33	34	17.9	0.09	1 pointe
7	05.11	10.3	142	58.0	4.00	2.7	0.20	01089	190	19.00	26	7.6	0.07	1 pointe
8	10.11	16.0	135	32.1	12.30	8.4	0.59	0.052	125	27.05	53	7.6	0.07	1 pointe
9	12.11	20.8	55	31.1	8.84	6.0	0.48	0.027	173	21.30	29	14.8	0.08	2 pointes
10	09.12	42.5	407	28.2	22.63	15.5	1.05	0	227	24.45	36	27.0	0.07	4 pointes
11	12.12	41.0	102	48.0	40.79	27.9	6.13	0.035	39	28.50	68	13.1	0.22	1 pointe
12	16.12	25.5	835	46.5	31.62	21.6	1.11	0.027	820	45.25	85	3.9	0.05	7 pointes
13	25.12	42.5	132	40.9	33.12	22.6	3.75	0.035	58	24.08	53	19.9	0.17	2 pointes

BASSIN VERSANT DE LA CAROLE (S = 1.46 km2)

Caractéristiques des crues

N°	Date	mm P	mn d	mm Ih	10 ³ m ³	mm Hr	m3/s Qr	m3/s Qo	mn tm	h.mn tb	% Kr	mm Dr	Qr/Hr	Observations
1	02.09	42.5	360	16.0	12.30	8.4	0.45	0.001	562	25.00	20	34.1	0.05	4 pointes
2	25.09	41.8°	85	3.8	1.08	0.7	0.33	0	32	03.10	2	41.1	0.45	2 pointes
3	25.09	33.0	64	45.6	19.60	13.4	3.30	0.109	27	18.00	41	19.6	0.25	1 pointe
4	06.10	(8.0)	20	30.4	6.11	4.2	0.22	0.019	50	25.45	53	3.8	0.05	2 pointes
5	08.10	(42,5)	90	39.0	41.92	28.7	6.76	0.012	76	28.33	68	13.8	0.24	1 pointe
6	08.11	39.0	175	16.4	21.95	15.0	1.99	0.005	112	20,20	38	24.0	0.13	1 pointe
7	13.11	14.8	80	36.5	7.99	5.5	0.53	0.043	30	17.15	37	9.3	0.10	3 pointes
8	14.11	5.8	45	45.6	1.86	1.3	0.21	0.060	48	12.43	22	4.5	0.12	1 pointe
9	16.11	10.5	50	32.6	3.00	2.0	0.26	0.019	60	12.10	19	8.5	0.13	2 pointes
10	03.12	8.5	35	21.0	1.40	1.0	0.34	0.027	37	04.20	12	7.5	0.35	2 pointes
11	03.12	6.3	15	29.5	5.03	3.4	0.23	0.099	35	21.48	54	2.9	0.07	2 pointes
12	07.12	(105.0)	360	42.7	139.62	95.4	24.06	0.350	235	25.15	91	9.6	0.25	3 pointes
13	08.12	3.2	45	134.6	2.74	1.9	0.86	0.109	35	03.50	59	1.3	0 46·	2 pointes
14	08.12	14.5	30	137.8	(13.92)	(9.5)	4.15	0.179	33	06.00	66	5.0	0.44	1 pointe

Caractéristiques des crues

1977

N°	Date	mm P	mn d	mm Ih	10 ³ m ³ Vr	mm Hr	m3/s Qr	m3/s Qo	mn tm	h.mn tb	% Kr	mm Dr	Qr/Hr	Observations
1	22.08	37.5	690	45.9	8.97	6.1	0.21	0.011	(715)	24.45	16	31.4	0.03	4 pointes
2	23.08	30.3	35	64.0	18.68	12.8	3.04	0.060	35	13.08	42	17.5	0.24	1 pointe
3	27.08	5.8	18	58.6	1.43	1.0	0.13	0.089	50	08.15	17	4.8	0.14	1 pointe
4	28.08	14.0	50	63.6	10.53	7.2	0.89	0.131	60	21.00	51	6.8	0.12	1 pointe
5	05.09	17.0	180	25.1	6.29	4.3	0.21	0.001	270	20.35	25	12.7	0.05	2 pointes
6	21.09	41.0	1110	34.3	26.08	17.8	0.52	0	855	36.50	43	23.2	0.03	4 pointes
7	04.10	66.0	540	7.0	28.87	16.3	1.08	0	495	(20.30)	25	49.7	0.07	3 pointes
7b#s	04.10	25.3	130	73.0	33.54	22.9	3.70	(0.02)	45	26.15	91	2.4	0.16	2 pointes
8	27.10	21.3	315	24.5	5.95	4.1	0.34	0.001	395	17.23	19	17.2	0.08	1 pointe
9	28.10	15.5	260	44.5	10.83	7.4	0.84	0.089	249	17.47	48	8.1	0.11	1 pointe
10	29.10	4.0	40	60.0	1.76	1.2	0.11	0.120	40	16.20	30	2.8	0.09	1 pointe
11	31.10	66.3	165	32.7	48.69	33.3	6.25	0.027	44	14.34	50	33.0	0.19	1(reconstituée)
12.	31.10	6.0	70	97.0	3.35	2.3	0.21	0.142	90	25.58	38	3.7	0.09	1 pointe
13	03.11	16.5	(100)	51.2	11.13	7.6	1.36	0.070	60	22.20	46	8.9	0.18	2 pointes
14,	04.11	30.0	133	54.7	37.02	25.3	4.33	0.043	173	39.10	84	4.7	0.17	2 pointes
15	08.11	13.3	(90)	63.2	7.10	4.8	0.31	0.043	43	21.37	36	8.5	0.06	Complexe

BASSIN VERSANT DE LA CAROLE (S = 1.46 km2)

Caractéristiques des crues

N°	Date	mm P	min d	mm Ih	10 ³ m ³	mm Hr	m3/s Qr	m3/s Qo	mn tm	h.mn tb	% Kr	mm Dr	Qr/Hr	Observations
1	06.07	33.3	120	21.0	4.60	3.1	0.48	0	65	05.25	9	30.2	0.15	1 pointe
2	04.08	35.0	150	22.8	12.58	8.6	0.98	0	150	18.10	25	26.4	0.11	2 pointes
3	08.08	11.8	40	30.9	1.07	0.7	0.13	0.005	80	06.00	6	11.1	0.19	1 pointe
4	15.08	49.5	660	16.1	35.08	24.0	3.08	0.001	(165)	30.25	48	25.5	0.13	2 pointes
5	19.08	10.2	70	40.0	2.77	1.9	0.16	0.035	65	13.35	19	8.3	0.08	
6	21.08	8.2	25	31.1	1.26	0.9	0.11	0.027	70	07.40	11	7.1	0.12	
7	24.09	33.0	125	32.0	2.04	1.4	0.14	0	90	09.00	4	31.6	0.10	
8	22.10	69.0	600	29.7	44.13	30.2	4.71	0.011	40+30	27.35	44	38.8	0.16	2 pointes
9	09.11	33.5	75	21.0	15.97	10.9	2.57	0.001	52	17.17	33	22.6	0.24	1 pointe
10	18.11	27.5	300	38.2	28.87	19.7	2.45	0 . 079	53	28.07	72	7.8	0.12	2 pointes

TABLEAU XL

BASSIN DE LA RIVIERE CAROLE

Capacité d'absorption moyenne pour 1h 30

1 9 7 5

N°	Date	mm Ih	mn Dr	mm Dr	mn d	mm/h Cam
3	21.10	44.3	8.0	11.0-	85	7.8
4	01.11	19.9	23.0	17.0	90	11.3
5	02.11	49.9	9.1	15.6	55	17.0
6	03.11	45.4	17.9	23.4	435	3.2
7 *	05.11	58.0	7.6	15.6	142	6.6
8	10.11	32.1	7.6	8.6	135	3.8
9	12.11	31.1	14.8	15.0	55	16.4
10	09.12	28.2	27.0	26.0	407	3.8
11	12.12	48.0	13.1	19.1	102	11.2
12	16.12	46.5	3.9	9.9	835	0.7
13	25.12	40.9	19.9	23.9	132	10.9
* (1	ruissellem	ent parti				

TABLEAU XLI

BASSIN DE LA RIVIERE CAROLE

Capacité d'absorption moyenne pour 1 h 30

No		Date	mm I h	mn Dr	mm Dr	mn d	mm/h Cam
1		02.09	16.0	34.1	25.1	360	4.2
2		25.09	3.8	41.1	14.1	85	10.0
3		25.09	45.6	19.6	25.1	64	23.5
4	*	06.10	30.4	3.8	3.8	20	11.4
5		08.10	39.0	13.8	17.3	90	11.5
6		08.11	16.4	24.0	15.0	175	5.1
7		13.11	36.5	9.3	12.3	80	9.2
8	*	14.11	45.6	4.5	10.0	45	13.3
9	*	16.11	32.6	8.5	9.5	50	11.4
10	*	03.12	21.0	7.5	12.5	35	21.4
11	*	03.12	29.5	2.9	2.8	15	11.2
12	*	07.12	42.7	9.6	15.1	360	2.5
13	^	08.12	134.6	1.3	14.3	45	19.1
14		08.12	137.8	5.0	19.0	30	38.0 .
	* (ruisselle	ment part	iel)			

TABLEAU XLII

BASSIN DE LA RIVIERE CAROLE

Capacité d'absorption moyenne pour 1h 30

N°	Date	mm Ih	mn Dr	mm Dr	mn d	mm/h Cam
1	22.08	45.9	31.4	36.9	690	3.2
2	23.08	64.0	17.5	26.0	35	44.6
3	27.08	58.6	4.8	13.3	18	44.3
4	28.08	63.6	6.8	16.3	50	19.6
5	05.09	25.1	12.7	10.2	180	3.4
6	21.09	34.3	23.2	24.7	1110	1.3
7	04.10	7.0	49.7	28.7	540	3.2
7 bis	04.10	73.0	2.4	13.4	130	6.2
8	27.10	24.5	17.2	14.2	315	2.7
9 '	28.10	44.5	8.1	13.3	260	.3.1
10	29.10	60.0	2.8	11.8	40	17.7
11 *	31.10	32.7	33.0	34.0	165	12.4
12	31.10	97.0	3.7	16.7	70	14.3
13	03.11	51.2	8.9	15.9	100	.9.5
14	04.11	54.7	4.7	12.3	133	
15	06.11	63.2	8.5	18.0	90	12.0
* (ruissellem	ent parti	e1)			

TABLEAU XLIII

BASSIN DE LA RIVIERE CAROLE Capacité d'absoption moyenne pour 1h 30

N _o	Date	mm Ih	mn Dr	mm Dr	mn d	mm/h Cam
1	06.07	21.0	30.2	25.2	120	12.6
2	04.08	22.8	26.4	22.4	150	9.0
3	08.08	30.9	11.1	11.2	40	16.8
4	15.08	16.1	25.5	16.5	660	1.5
5. *	19.08	40.0	8.3	12.3	70	10.5
6	21.08	31.1	7.1	7.6	25	18.2
7	24.09	32.0	31.6	32.1	125	15.4
8º	22.10	29.7	38.8	38.5	600	3.9
9	09.11	21.0	22.6	17.6	75	14.1
10	18.11	38.2	∴7 .8	11.2	300	2.2
* (rt	uisselleme	nt partie	1)			

BASSIN VERSANT DE VAL D'OR (S = 1.433 km2)

Caractéristiques des crues

N°	Date	mm P	mm d	mm Ih	10 ³ m ³	mm Hr	m3/s Qr	m3/s Qo	ınm tm	h.mm tb	% Kr	mm Dr	Q/H	Observations
1	21.08	59.0	(240)	28	3.08	2.1	0.098	0.001	305	24.00	4	56.9	0.05	
2	10.10	-	-	(44)	1.29	0.9	0.099	0.001	87	12.42	-	_	0.11	
3	13.10	-	-	(49)	1.31	0.9	0.093	0.002	175	09.05	-	-	0.10	
4	13.10	-	-	(59)	23.01	16.1	2.34	0.038	360	14.45	-	-	0.15	2 Ptes
5	21.10	18.0	(45)	56	9.71	6.8	1.18	0.003	125	8.05	38	11.2	0.17	1 Pte
6	21.10	38.5	(145)	74	(41.29)	(28.8)	4.37	0.038	295	16.20	75	9.7	0.15	3 Ptes
7	24.10	28.5	720	62	12.61	8.8	0.75	0.003	753	18.08	31	19.7	0.09	1 Pte
8	25.10	6.8	40	81	2.29	1.6	0.20	0.032	180	7.55	24	5.2	0.13	2 Ptes
9	30.10	16.5	(65)	49	4.50	3.1	0.54	0.003	155	10.20	19	13.4	0.17	
10	31.10	9.3	65	58	6.29	4.4	0.89	0.032	65	6.55	47	4.9	0.20	
11	0111	10.3	45	60	5.52	3.9	0.57	0.016	130	8.35	38	6.4	0.15	1 Pte
12	02.11	19.8	70	84	15.52	10.8	2.81	0.051	83	8.25	55	9.0	0.26	1 Pte
13	03.11	16.8	(70)	70	8.88	6.2	0.89	0.003	230	16.20	37	10.6	0.14	1 Pte
14	05.11	32.5	30+15	80	26.95	18.8	4.61	0.038	67	9.17	58	13.7	0.25	2 'Ptes
15	09.11	10.5	50	61	3.05	2.1	0.38	0.003	125	8.10	20	8.4	0.18	
16	10.11	45.5	(300)	73	29.99	20.9	2.14	0.026	233	16.08	46	24.6	0.10	Complexe
17	11.11	6.5	25	92	1.97	1.4	0.26	0.026	132	6.15	22	5.1	0.19	
18	12.11	7.3	125	98	1.49	1.0	0.13	0.021	85	7.05	14	6.3	0.13	
19	12.11	39.8	30+50	105	29.81	20.8	6.09	0.021	163	9.15	52	19.0	0.29	1 Pte
20	09.12	68.5	(780)	42	42.24	29.5	4.37	0.038	360	18.58	43	39.0	0.15	4 Ptes
21	13.12	8.0	25	65	2.82	2.0	0.35	0.007	115	7.18	25	6.0	0.18	
22	15.12	13.8	(780)	59	2.39	1.7	0.18	0.016	225	13.25	12	12.1	0.11	
23	16.12	57.5	(1860)	61	36.30	25.3	1.76	0.063	1070	41.15	44	32.2	0.07	4 Ptes
24	25.23	56.8	165	49	37.34	26.1	6.30	0.011	76	10.38	46	30.7	0.24	1 Pte

Caractéristiques des crues

N°	Date	mm P	mm d	mm Ih	10 ³ m ³ Vr	mm Hr	m3/s Qr	m3/s Qo	mm tm	h.mm tb	% Kr	mm Dr	Q/H	Observations
1	26.01	7.5	55	23	0.61	0.4	0.049	0.002	245	9.25	5	7.1	0.12	P ^{Cu}
2	30.01	8.5	60	26	1.86	1.3	0.17	0.002	165	11.10	15	7.2	0.13	P ^{Cu}
3	31.01	6.5	45	34	1.56	1.1	0.15	0.003	175	9.00	17	5.4	0.14	P ^{Cu}
4	16.02	9.3	60	20	0.45	0.3	0.064	0.003	40	4.40	3	9.0	0.21	P ^{Cu}
5	02.09	56.8	570	25	8.41	5.9	0.28	0.001	123	19.25	10	50.9	0.05	C (2 Ptes)
6	18.09	16.2	130	32	2.54	1.8	0.16	0.002	180	11.45	11	14.4	0.09	C (2 Ptes)
7	06.10	8.8	(40)	44	2.44	1.7	0.20	0.003	170	9.00	19	6.1	0.12	1 Pte
8	08.10	24.8	75	49	23.07	16.1	2.98	0.003	100	11.05	65	8.7	0.19	1 Pte
9	16.10	9.5	15	27	1.48	1.0	0.21	0.001	63	9.28	11	8.5	0.21	P ^{Cu}
10	21.10	3.3	10	39	0.70	0.5	0.074	0.007	75	7.25	15	2.8	0.15	
11	21.10	5.0	20	43	0.60	0.4	0.059	0.011	40	16.10	8	4.6	0.15	
12	26.10	6.0	45	34	2.82	2.0	0.19	0.016	1 55	8.25	33	4.0	0.10	P ^{cu}
13	27.10	25.8	45	43	21.81	15.2	3.87	0.007	73	9.10	59	10.6	0.25	1 Pte
14	29.10	6.8	25	58	3.72	2.6	0.59	0.026	73	7.00	38	4.2	0.23	1 Pte
15	30.10	25.5	55	59	23.88	16.7	4.56	0.016	52	9.45	65	8.8	0.27	1 Pte
16	02.11	34.0	30	53	27.02	18.9	4.73	0.002	80	9.25	56	15.1	0.25	1 Pte
17	05.11	4.3	30	61	1.43	1.0	0.116	0.021	160	6.20	23	3.3	0.12	Pcu
18	08.11	35.0	390	53	26.65	18.6	2.27	0.003	185	14.40	53	16.4	0.12	C (2 Ptes)
19	13.11	34.5	(1320)	68	41.06	28.7	2.02	0.026	1217	31.35	83	5.8	0.07	C (5 Ptes)
20	14.11	5.3	18	91	3.27	2.3	0.24	0.032	150	10.35	43	3.0	0.10	PCU
21	16.11	26.0	(130)	79	18.24	12.7	1.96	0.011	100	17.48	49	13.3	0.15	c ^(2 Ptes)

TABLEAU XLV (suite)

N°	Date	mm P	mm d	mm Ih	10 ³ m ³ Vr	mm Hr	m3/s Qr	m3/s Qo	mm tm	h.mm tb	% Kr	mm Dr	Q/H	Observations
22 23 24 25 26 27 28 29	30.11 30.11 03.12 05.12 06.12 06.12 06.12	24.3 14.5 20.8 10.8 3.3 7.3 2.7 190.8	(300) (40) (600) (270) 15 (30) 15 (600)	25 48 42 51 57 60 67	7.30 10.41 10.17 6.86 0.82 2.02 1.62 155.17	5.1 7.3 7.1 4.8 0.6 1.4 1.1 108.3	1.02 0.91 0.70 0.73 0.08 0.25 0.20	0.003 0.057 0.003 0.011 0.038 0.063 0.088 0.094	345 215 183 350 145 130 135 440	10.15 12.30 16.20 12.30 5.10 6.45 6.10 18.15	21 50 34 44 18 19 41 57	19.2 7.2 13.7 6.0 2.7 7.9 1.6 82.5	0.20 0.12 0.10 0.15 0.13 0.18 0.18	C(2 Ptes) C (2 Ptes) C (3 Ptes) 1 Pte 1 1 Pte 3 Ptes
30	08.12	19.0	(1200)	242	9.80	6.8	0.44	0.076	450	31.30	36	12.2	0.06	c

Caractéristiques des crues

N°	Date	mm P	mm d	mm Ih	10 ³ m ³ Vr	mm Hr	m3/s Qr	m3/s Qo	mm tm	h.mm tb	% Kr	mm Dr	Q/H	Observations
1	23.08	23.3	55	69	2.02	1.4	0.17	0.002	110	16.35	6	21.9	0.12	2 Ptes
2	28.08	21.5	(120)	76	7.44	5.2	0.50	0.026	175	15.35	24	16.3	0.10	Pcu
3	05.09	31.8	(720)	46	6.07	4.2	0.34	0.003	465	21.10	13	27.6	0.08	Pcc
4	20.09	41.0	(420)	28	13.77	9.6	0.90	0.002	270	15.05	23	31.4	0.09	2 Ptes
5	21.09	22.8	(660)	69	11.97	8.4	0.50	0.100	320	18.20	37	14.4	0.06	2 Ptes
6	04.10	63.8	(810)	30	38.75	27.0	2.36	0.001	862	24.57	42	36.8	0.09	3 Ptes
7	07.10	23.0	(420)	75	16.96	11.8	0.75	0.038	132	25.25	51	11.2	0.06	2 Ptes
8	10.10	16.5	(40)	62	5.68	4.0	0.29	0.003	220	24.00	24	14.5	0.07	1 Pte
9	16.10	31.5	(210)	46	18.65	13.0	1.91	0.002	266	23.50	41	18.5	0.15	1 Pte
10	18.10	14.8	20	55	9.90	6.9	1.18	0.003	77	16.05	47	7.9	0.17	2 Ptes
11	25.10	14.5	(65)	33	3.15	2.2	0.28	0.002	212	11.52	15	12.3	0.13	1 Pte
12	27.10	17.3	(70)	41	10.79	7.5	1.22	0.011	145	12.30	43	9.8	0.16	1 Pte
13	27.10	22.7	(80)	56	19.90	13.9	1.42	0.032	335	15.55	61	8.8	0.10	2 Ptes
14	28.10	17.8	(210)	78	17.89	12.5	1.06	0.067	382	18.43	70	5.3	0.08	2 Ptes
15	31.10	25.3	60	70	19.29	13.5	2.61	0.007	75	11.53	53	11.8	0.19	1 Pte
16	31.10	24.8	(180)	105	26.58	18.5	4.46	0.038	145	16.50	75	6.3	0.24	2 Ptes
17	01.11	7.8	15	96	5.28	3.7	0.70	0.038	90	8.35	47	4.1	0.19	1 Pte
18	03.11	70.8	(300)	98	67.28	47.0	4.88	0.011	360	19.40	66	23.8	0.10	3 Ptes
19	06.11	4.8	90	101	1.43	1.0	0.096	0.021	145	9.35	21	3.8	0.10	
20	07.11	6.2	15	94	2.64	1.8	0:24	0.011	90	11.58	29	4.4	0.13	
21	08.11	9.0	30	87	5.67	4.0	0.68	0.016	95	11.17	44	5.0	0.17	
22	14.11	20.8	60	51	15.44	10.8	2.83	0.032	60	12.45	52	10.0	0.26	
23	29.11	37.8	(1020)	26	10.80	7.5	0.60	0.007	785	23.55	20	30.3	0.08	
24	01.12	9.5	60	59	3.70	2.6	0.26	0.007	130	14.05	27	6.9	0.10	

1 9 7 8

N°	Date	mm P	mm d	mm Ih	10 ³ m ³ Vr	mm Hr	m3/s Qr	m3/s Qo	mm tm	h.mm tb	% Kr	mm Dr	Q/H	Observations
1 2	04.04 12.06	25.8 54.0	240 (1560)	25 23	0.95 9.43	0.7 6.6	0.050	0.002	270 480	18.00 34.00		25,1 47.4	0.07	

BASSIN VERSANT DE VOLTAIRE (S = 0.835 km2)

Caractéristiques des crues

1 9 7 5

N°	Date	mm P	mm d	mm Ih	10 ³ m ³ Vr	mm Hr	m3/s Qr	m3/s Qo	mm tm	h.mm tb	% Kr	mm Dr	Q/H	Observations
1	05.10	20.0	50	42	0.58	0.7	0.10	0	8	17.35	3.5	19.3	0.14	
2	13.10	34.3	240	71	4.72	5.7	0.54	0.005	43	9.00	16.6	28.6	0.09	
3	13.10	51.8	300	99	11.85	14.2	2.96	0.028	45	11.10	27.4	37.6	0.21	
4	18.10	10.3	(25)	87	0.64	0.8	0.12	0.002	37	7.25	7.8	9.5	0.15	
5	21.10	19.0	30	58	1.76	2.1	0.53	0.001	50	2.48	11.1	16.9	0.25	
6	21.10	53.3	(200)	76	18.25	21.9	2.93	0.062	57	16.50	41.1	31.4	0.13	
. 7	24.10	57.3	(480)	97	19.55	23.4	2.10	0.008	30	20.00	40.8	34.1	0.09	
8	29.10	19.5	(60)	85	1.54	1.8	0.21	0.001	135	9.20	9.2	17.7	0.12	1
9	29.10	22.8	120	89	4.50	5.4	0.48	0.015	65	11.05	23.7	17.4	0.09	
10	01.11	16.8	150	75	1.48	2.1	0.17	0.008	102	9.15	12.5	14.7	0.08	,
11	03.11	9.0	60	68	0.25	0.3	0.05	0.002	235	0 3. 55	3.3	8.7	0.17	
12	04.11	13.8	60	77	2.12	2.5	0.28	0.019	55	11.50	18.1	11.3	0.11	
13	04.11	8.0	∴15	79	0.66	0.8	0.23	0.011	57	4.45	10.0	7.2	0.29	
14	10.11	20.5	150	44	2.39	2.9	0.32	0.002	130	7.50	14.1	17.6	0.11	
15	11.11	26.0	:30	65	9.39	11.2	2.98	0.011	28	9.15	43.1	14.8	0.27	
16	09.12	84.0	390	31	33.85	40.5	7.49	0.015	125	15.15	48.2	43.5	0.18	
17	12.12	6.5	(45)	100	0.57	0.7	0.07	0.011	38	7.30	10.8	5.8	0.10	
18	15.12	7.0	30	66	0.26	0.3	0.10	0.005	20	2.40	4.3	6.7	0.33	
19	16.12	13.0	40	73	4.16	5.0	1.13	0.011	80	6.40	38.5	8.0	0.23	
20	16.12	37.8	(180)	79	11.24	13.5	1.19	0.019	133	18.05	35.7	24.3	0.09	
21	17.12	2.8	15	101	0.31	0.4	0.09	0.023	15	3.15	14.3	2.4	0.18	

BASSIN VERSANT DE VOLTAIRE (S = 0.835 Km2)

Caractéristiques des crues

1 9 7 6

N°	Date	mm P	mm d	mm I h	10 ³ m ³ Vr	mm Hr	m3/s Qr	m3/s Qo	mm tm	h.mm tb	% kr	mm Dr	Q/H	Observations
1	19.01	12.8	(180)	27	0.28	0.3	0.03	0.002	130	7.05	2.3	12.5	0.10	
2	30.01	15.8	45	24	1.64	2.0	0.59	0.005	28	5.05	12.7	13.8	0.30	
3	30.01	3.0	10	40	0.16	0.2	0.05	0.015	46	2.58	6.7	2.8	0.03	
4	16.02	47.8	(180)	26	10.53	12.6	2.41	0.005	120	8.25	26.4	35.2	0.19	
5	29.07	42.3	(150)	28	0.45	0.5	0.05	0	17	10.24	1.2	41.8	0.10	
65	09.08	42.3	(140)	31	1.09	1.3	0.22	Q	46	6.41	3.1	41.0	0.17	
7	10.08	10.3	(45)	85	0.48	0.6	0.03	0.008	195	11.50	5.8	9.7	0.05	
8	01.09	17.5	15	26	0.11	0.1	0.02	0	73	6.40	0.6	17.4	0.20	
9	02.09	7.8	60	49	0.12	0.1	0.02	0.002	85	4.40	1.3	7.7	0.20	
10	02.09	24.0	90	57	2.59	3.1	0.65	0.008	30	14.45	12.9	20.7	0.21	
11	05.10	43.5	210	30	3.02	3.6	0.30	0′	257	16.00	8.3	39.9	0.08	
12	07.10	27.8	(60)	74	5.44	6.5	1.14	0.002	5 5	12.07	23.4	21.3	0.18	
13	08.10	30.5	(150)	91	5.75	6.9	1.73	0.002	40	12.35	22.6	23.6	0.25	
14	16.10	17.3	25	30	0.28	0.5	0.10	0.001	41	3.42	1.7	17.0	0.33	
15	17.10	14.3	35	47	1.58	1.9	0.26	0.011	37	11.45	13.3	12.4	0.14	
16	22.10	10.6	15	48	0.70	0.8	0.13	0.002	57	7.40	7.5	`9.8	0.16	' 1
17	23.10	15.7	55	53	1.43	1.7	0.33	0.002	50	8.10	10.8	14.0	0.19	
18	26.10	10.6	60	59	1.92	2.3	0.25	0.015	43	9.15	21.7	8.3	0.11	
19	29.10	14.0	15	50	2.73	3.3	0.78	0.011	42	7.45	23.6	10.7	0.24	
20	29.10	7.8	75	67	0.39	0.5	0:09	0.008	35	3.45	6.4	7.3	0.18	

N°	Date	mm P	mm d	mm I h	10 ³ m ³	mm Hr	m3/s Qr	m3/s Qo	mm tm	h.mm tb	% Kr	mm Dr	Q/H	Observations
21	30.10	5.0	40	74	0.50	0.6	0.05	0.023	60	10.20	12.0	4.4	0.08	
22	08.11	92.0	360	27	30.32	36.3	3.11	0.002	43	19.18	39.5	55.7	0.09	
23	13.11	76.0	540	71	34.70	41.6	6.16	0.015	468	24.30	54.7	34.4	0.15	
24	14.11	12.5	90	137	2.63	3.1	0.64	0.019	140	8.43	24.8	9.4	0.21	
25	30.11	4.5	(60)	25	0.28	0.3	0.06	0.005	30	5.35	6.7	4.2	0.20	
26	01.12	6.5	15	35	0.52	0.6	0.13	0.002	5	7.25	9.2	5.9	0.22	
27	07.12	97.8	600	39	45.71	54.7	5.30	0.002	50	16.25	55.9	43.1	0.10	

BASSIN VERSANT DE VOLTAIRE (S = 0.835 km2)

Caractéristiques des crues

1 9 7 7

N°	Date	mm P	. mm d	mm Ih	10 ³ m ³ Vr	mm Hr	m3/s Qr	m3/s Qo	mm tm	h.mm tb	% Kr	mm Dr	Q/H	Observations
1	21.08	67.5	(360)	42	8.99	10.8	0.99	0.001	313	33.30	16.0	56.7	0.09	
2	24.08	18.0	(75)	100	1.77	2.1	0.53	0.019	75	13.00	11.7	15.9	0.25	
3	27.08	25.8	(60)	72	2.78	3.3	0.55	0.002	128	15.55	12.8	22.5	0.17	
4	28.08	7.3	15	93	0.49	0.6	0.05	0.008	48	12.30	8.2	6.7	0.08	
5	05.09	18.5	(55)	38	0.57	0.7	0.12	0.001	38	4.50	3.8	17.8	0.17	
6	05.09	27.8	(330)	47	5.72	6.9	1.63	0.015	29	13.50	24.8	20.9	0.24	
7	13.09	30.0	140	34	3.11	3.7	0.54	0.001	100	7.30	12.3	26.3	0.15	
8	20.09	19.3	30	33	1.19	1.4	0.44	0.002	52	3.20	7.3	17.9	0.31	
9	20.09	26.8	(120)	52	2.86	3.4	0.38	0.028	283	13.18	12.7	23.4	0.11	
10	21.09	27.5	(630)	73	5.35	6.4	0.52	0.028	305	16.50	23.3	21.1	0.08	
11	04.10	36.3	(120)	24	3.10	3.7	0.85	0.002	60	6.20	10.2	32.6	0.23	
12	04.10	41.0	(270)	56	15.03	18.0	1.71	0.023	239	16.25	43.9	23.0	0.10	
13	07.10	10.8	(120)	72	0.5 6	0.7	0.07	0.008	257	8.05	6.5	10.1	0.10	
14	16.10	31.8	(240)	31	3.80	4.6	0.55	0.001	145	13.20	14.5	27.2	0.12	
15	17.10	11.8	(45)	57	1.62	1.9	0.33	0.005	27	10.50	16.1	9.9	0.17	
16	19.10	13.3	15	40	1.17	1.4	0.37	0.002	45	7.00	10.5	11.9	0.26	
17	22.10	5.3	15	43	0.23	0.3	0.05	0.005	45	4.30	5.7	5.0	0.17	<u> </u>
18	26.10	14.0	(30)	36	1.47	1.8	0.50	0.002	41	5.48	12.9	12.2	0.28	
19	27.10	13.0	(30)	48	1.92	2.3	0.37	0.005	46	9.25	17.7	10.7	0.16	
20	28.10	17.8	120	46	3.92	4.7	0.77	0.011	77	7.12	26.4	13.1	0.16	: 1
21	29.10	22.8	60	53	8 .6 2	10.3	2.47	0.033	72	4.52	45.2	12.5	0.24	
22	29.10	40.5	(120)	76	19.83	23.7	7.00	0.123	67	9.05	58.5	16.8	0.30	
23	29.10	7.0	(60)	123	1.50	1.8	0.26	0.076	22	5.40	25.7	5.2	0.14	
24	30.10	29.8	(90)	130	13.38	16.0	4.63	0.028	23	6.47	53.7	13.8	0.29	

BASSIN VERSANT DE VOLTAIRE (S = 0.835 km2)

<u>Caractéristiques des crues</u>

N°	Date	mm P	mm d	mm Ih	10 ³ m ³ Vr	mm Hr	m3/s Qr	m3/s Qo	mm tm	h.mm tb	% Kr	mm Dr	Q/H	Observations
1	24.01	12.8	110	13	0.18	0.2	0.02/	0.002	125	8.15	1.6	12.6	0.10	
2	27.01	15.8	60	36	1.08	1.3	0.37	0.005	45	10.05	8.2	14.5	0.28	
3	05.02	19.8	(120)	20	0.62	0.7	0.06	0.002	95	9.25	3.5	19.1	0.09	*
4	23.03	21.5	(75)	25	0.31	0.4	0.02	0.002	352	12.07	1.9	21.1	0.05	
5	25.03	12.5	20	35	0.52	0.6	0.07	0.002	45	13.00	4.8	11.9	0.12	
6	31.03	12.8	60	30	0.47	0.6	0.05	0.002	135	12.15	4.7	12.2	0.08	
7	11.04	15.5	60	17	0.25	0.3	0.03	0.002	145	9.05	1.9	15.2	0.10	
8	12.06	80.8	(600)	25	8.84	10.6	1.64	0.005	248	26.40	13.1	70.2	0.15	
9	26.06	20.5	(180)	29	0.80	1.0	0.12	0.002	151	10.32	4.9	19.5	0.12	
10	06.07	14.0	(60)	33	0.45	0.5	0.05	0.001	230	10.38	3.6	13.5	0.10	
11	12.07	25.0	(180)	26	0.68	0.8	0.04	0.001	131	12.38	3.2	24.2	0.05	
12	13.07	6.3	15	48	0.19	0.2	0.02	0.002	85	7.50	3.2	6.1	0.10	
13	14.07	4.0	15	47	0.10	0.1	0.02	0.008	5	4.55	2.5	3.9	0.20	
14	22.07	8.3	15	33	0.62	0.7	0.13	0.001	70	8.20	8.4	7.6	0.19	
15	03.08	36.0	330	27	4.92	5.9	0.85	0.002	115	16.20	16.4	30.1	0.14	
16	08.08	11.3	30	35	0.22	0.3	0.03	0.005	40	6.30	2.7	11.0	0.10	
17	09.08	4.3	15	39	0.11	0.1	0.02	0.002	30	4.10	2.3	4.2	0.20	
18	10.08	13.8	(60)	37	0.66	0.8	0.09	0.005	40	8.50	5.8	13.0	0.12	:
19	15.08	54.5	(660)	28	11.29	13.5	1.07	0.001	685	31.20	24.8	41.0	0.08	
20	19.08	19.3	(80)	53	2.16	2.6	0.24	0.001	210	11.45	13.5	16.7	0.09	
21	21.08	10.8	(30)	53	0.76	0.9	0.09	0.002	75	10.35	8.3	9.9	0.10	

N°	Date	mm P	mm d	mm Ih	10 ³ m ³	mm Hr	m3/s Qr	m3/s Qo	mm tm	h.mm tb	% Kr	mm Dr	Q/H	Observations
22	19.09	28.8	90	33	1.26	1.5	0.27	0.001	100	9.45	5.2	27.3	0.18	-
23	22.09	16.8	(45)	43	1.09	1.3	0.19	0.001	70	8.40	7.7	15.5	0.15	
24	24.09	5.5	15	46	0.11	0.1	0.03	0.005	10	2.52	1.8	5.4	0.30	1
25	24.09	62.3	(300)	51	19.09	22.9	2.31	0.005	122	19.07	36.8	39.4	0.10	
26	25.09	22.0	150	107	5.17	6.2	0.98	0.015	54	12.14	28.2	15.8	0.16	
27	29.09	7.3	45	78	0.62	0.7	0.19	0.008	15	5.15	9.6	6.6	0.27	
28	29.09	9.8	30	85	1.29	1.5	0.45	0.008	15	7.30	15.3	8.3	0.30	
29	01.10	8.5	45	67	0.42	0.5	0.06	0.002	35	7.15	5.9	8.0	0.12	
30	04.10	24.0	(75)	55	3.88	4.6	0.92	0.002	38	14.28	19.2	19.4	0.20	
31	09.10	12.3	30	37	0.92	1.1	0.24	0.001	72	9.09	8.9	11.2	0.22	
32	12.10	14.3	(90)	28	0.68	0.8	0.08	0.002	170	10.15	5.6	13.5	0.10	
33	21.10	36.5	(120)	28	6.23	7.5	1.06	0.002	157	14.20	20.5	29.0	0.14	
34	2 2. 10	8.8	(75)	65	0.49	0.6	0.04	0.011	70	8.19	6.8	8.2	0.07	
35	22.10	40.0	(300)	74	18.34	22.0	1.72	0.011	33	24.35	55.0	18.0	0.08	
35bi:	s 29.10	21.3		32		(4.0)								
35te	r 30.10	78.5		53		(41.5)	14.5			:				
36	09.11	(15.0)	30	28	0.49	0.6	0.20	0.011	51	3.13	4.0	14.4	0.33	
37	09.11	20.5	(120)	43	2.03	2.4	0.44	0.015	41	10.53	11.7	18.1	0.18	
38	11.11	6.5	15	41	0.15	0.2	0.06	0.011	35	3.30	3.1	6.3	0.30	
39	12.11	5.3	30	41	0.13	0.2	0.02	0.011	30	5.30	3.8	5.1	0.10	
40	14.11	26.8	20	32	4.84	5.8	1.81	0.011	31	9.25	21.6	21.0	0.31	

TABLEAU L (suite) 2

N°	Date	mm P	mm \	mm I h	10 ³ m ³ Vr	mm Hr	m3/s Qr	m3/s Qo	mm tm	h.mm tb	% Kr	mm Dr	Q/H	Observations
41	16.11	5.5	15	48	0.53	0.6	0.18	0.015	53	5.50	10.9	4.9	0.30	
42	17.11	3.0	15	48	0.09	0.1	0.03	0.005	45	2.40	3.3	2.9	0.30	
43	17.11	59.8	(480)	51	18.40	22.0	1.91	0.005	34	26.21	36.8	37.8	0.09	
44	22.11	8.0	60	52	0.18	0.3	0.02	0.002	38	5.42	3.8	7.7	0.07	
45	26.11	10.5	30	28	0.34	0.4	0.07	0.002	39	3.49	3.8	10.1	0.18	
46	26.11	7.5	(30)	39	0.62	0.7	0.17	0.011	49	7.23	9.3	6.8	0.24	
47	27.11	5.3	30	41	0.26	0.3	0.04	0.005	49	7.25	5.7	5.0	0.13	
48	29.11	5.5	(30)	35	0.28	0.3	0.02	0.008	68	13.28	5.5	5.2	0.07	
49	03.12	22.8	(120)	31	3.51	4.2	0.72	0.005	33	16.55	18.4	18.6	0.17	*-
50	04.12	3.8	15	43	0.31	0.4	0.05	0.015	34	7.00	10.5	3.4	0.13	·
51	07.12	8.3	20	38	0.81	0.9	0.19	0.005	46	10.37	10.8	7.4	0.21	:
52	08.12	2.5	15	37	0.19	0.2	0.02	0.005	205	8.42	8.0	2:.3	0.10	
53	12.12	7.3	30	24	0.18	0.2	0.03	0.005	34	5.54	2.7	7.1	0.15	:
54	21.12	5.3	30	18	0.10	0.1	0.01	0.005	15	6.45	1.9	5.2	0.10	:

Caractéristiques des crues

N°	Date	mm P	mm d	mm Ih	10 ³ m ³	mm Hr	m3/s Qr	m3/s Qo	mm tm	h.mm tb	% Kr	mm Dr	Q/H	Observations
1	21.06	44.3	225	23	1.41	0.9	0.41	0.021	52	5.10	2.0	43.4	0.59	
2	29.07	23.0	100	25	4.39	2.9	0.75	0.001	72	8.45	12.6	20.1	0.25	i '
3	02.09	(15.5)	30	21	0.48	0.3	0.07	0.011	68	4.53	1.9	15.2	0.23	
4	02.09	(25.5)	(90)	37	2.32	1.5	0.42	0.011	60	7.13	5.9	24.0	0.28	,
5	02.10	(5.5)	(20)	19	0.62	0.4	0.07	0.011	65	6.20	7.3	5.1	0.18	ľ
6	05.10	(27.0)	(90)	42	4.19	2.8	0.65	0.004	48	12.00	10.4	24.2	0.23	
7	07.10	(13.5)	(90)	62	1.14	0.8	0.15	0.004	57	6.55	5.9	12.7	0.19	
8	17.10	18.7	40	35	4.73	3.1	1.73	0.032	35	3.58	16.6	15.6	0.56	
9	17.10	28.0	(105)	50	6.77	4.5	1.16	0.011	192	8.57	16.1	23.5	0.26	
10	21.10	3.5	30	47	0.61	0.4	0.14	0.032	45	4.03	11.4	3.1	0.35	
11	22.10	26.3	90	44	5.13	3.4	1.15	0.011	58	4.00	12.9	22.9	0.34	
12	22.10	9.3	30	70	2.23	1.5	0.61	0.135	35	6.05	16.1	7.8	0.41	
13	25.10	16.0	90	56	2.20	1.5	0.36	0.021	50	6.03	9.4	14.5	0.24	
14	26.10	10.8	30	72	2.54	1.7	0.77	0.032	45	3.15	15.7	9.1	0.45	
15	16.10	11.0	50	83	2.66	1.8	0.66	0.057	40	3.00	16.4	9.2	0.37	
16	29.10	(7.8)	75	65	1.45	1.0	0.31	0.032	55	3.50	12.8	6.8	0.31	
17	08.11	(79.7)	300	29	39.30	26.0	5.19	0.011	50	16.50	32.60	53.7	0.20	
18	13.11	(14.1)	45	61	2.79	1.8	0.93	0.032	58	2.58	12.8	12.3	0.52	
19	13.11	(47.2)	(195)	75	34.45	22.8	5.10	0.099	118	15.43	48.3	24.4	0.22	
20	14.11	-		113	0.45	0.3	0.12	0.069	50	2.14		-	0.40	
21	14.11	-			1.27	0.8	0.43	0.099	55	2.30	-	-	0.54	

TABLEAU LI (suite)

N°	Date	mm P	mm d	mm Ih	10 ³ m ³ Vr	mm Hr	m3/s Qr	m3/s Qo	mm tm	h.mm tb	% Kr	mm Dr	Q/H	Observations
22	17.11	-		· 89	0.51	0.3	0.21	0.021	77	2.57		_	0.70	
23	17.11	-		u	0.77	0.5	0.21	0.069	55	2.31	-	-	0.42	
24	30.11	(3.0)	(30)	26	0.46	0.31	0.07	0.011	45	4.20	10.0	2.7	0.23	
25	30.11	(14.0)	45'	29	1.89	1.2	0.55	0.021	47	3.27	8.6	12.8	0.46	
26	03.12	(4.5)	15'	29	0.66	0.4	0.18	0.021	53	3.43	8.3	4.1	0.45	
27	07.12	(169.5)	660	26	121.72	80.4	8.58	0.011	162	18.07	47.4	89.1	0.11	·
28	19.12	3.3	15'	45	0.38	0.3	0.10	0.032	50	2.33	9.1	3.0	0.33	

BASSIN VERSANT DE DUCHENE (S = 1.514 Km2)

Caractéristiques des crues

)				_										- -
N°	Date	mm P	mm d	mm Ih	10 ³ m ³ Vr	mm Hr	m3/s Qr	m/3s Qo	mm tm	h.mm tb	% Kr	mm Dr	Q/H	Observations
1	22.08	29.0	75	31	1.53	1.0	0.37	0.021	46	5.25	3.4	28.0	0.37	
2	27.08	15.5	90	48	1.10	0.7	0.08	0.004	82	9.30	4.5	14.8	0.11	
3	21.09	13.8	(45)	58	1.40	0.9	0.17	0.045	127	4.47	6.5	12.9	0.19	
4	04.10	48.5	240	28	17.82	11.8	6.10	0.004	68	5.22	24.3	36.7	0.52	:
5	16.10	69.3	300	26	25.83	17.1	5.95	0.004	166	9.47	24.7	52.2	0.35	
6	22.10	7.5	15	43	0.65	0.4	0.14	0.011	56	3.55	5.3	7.1	0.35	
7	26.10	18.5	150	31	2.12	1.4	0.38	0.004	93	5.40	7.6	17.1	0.27	
8	28.10	8.3	(60)	44	1.34	0.9	0.22	0.021	54	4.38	10.8	7.4	0.24	
9	29.10	19.0	60	57	5.56	3.7	1.04	0.057	45	7.30	19.5	15.3	0.28	
10	30.10	13.3	45	62	2.84	1.9	0.75	0.057	40	3.39	14.3	11.4	0.39	:
11	31.10	28.5	240	67	15.04	9.9	1.35	0.069	115	10.35	34.7	18.6	0.14	
12	01.11	6.5	30	84	0.84	0.6	0.20	0.155	26	2.54	9.2	5.9	0.33	·
13	02.11	18.5	105	76	5.40	3.6	1.22	0.083	41	4.09	19.5	14.9	0.34	
14	03.11	8.3	45	94	2.11	1.4	0.93	0.116	41	1.45	16.9	6.9	0.66	
15	03.11	47.5	240	102	29.51	19.5	10.85	0.391	24	9.29	41.1	28.0	0.56	
16	05.11	7.8	60	109	1.45	1.0	0.58	0.069	35	2.33	12.8	6.8	0.58	:
17	06.11	7.0	25	117	1.18	0.8	0.36	0.057	53	3.00	11.4	6.2	0.45	
18	06.11	6.8	180	124	1.00	0.7	0.34	0.083	40	4.01	10.3	6.1	0.49	
19	07.11	4.8	15	94	0.43	0.3	0.13	0.069	56	2.15	6.3	4.5	0.43	,
20	07.11	34.5	(165)	99	22.46	14.8	4.91	0.069	41	11.33	42.9	19.7	0.33	
21	13.11	6.5	30	47	0.31	0.2	0.08	0.032	25	2.50	3.1	6.3	0.40	
· .														

TABLEAU LII (suite)

N°	Date	mm P	mm d	mm I h	10 ³ m ³ Vr	mm Hr	m3/s Qr	m3/s Qo	mm tm	h.mm tb	% Kr	mm Dr	Q/H	Observations
22	14.11	6.0	(30)	54	0.55	0.4	0.10	0.032	79	4.15	6.7	5.6	0.25	
23	14.11	16.0	(75)	60	6.89	4.6	2.95	0.045	37	5.51	28.8	11.4	0.64	.
24	29.11	13.0	(90)	22	2.90	1.9	0.85	0.045	103	4.20	14.6	11.1	0.45	
25	30.11	4.8	(45)	35	0.29	0.2	0.07	0.032	58	3.23	4.2	4.6	0.35	
26	30.11	7.5	50	40	1.34	0.9	0.22	0.032	47	4.48	12.0	6.6	0.24	
27	07.12	5.8	15	24	0.58	0.4	0.09	0.011	57	5.02	6.9	5.4	0.23	

Caractéristiques des crues

N°	Date	mm P	mm d	mm Ih	10 ³ m ³	mm Hr	m3/s Qr	m3/s Qo	mm tm	h.mm tb	% Kr	mm Dr	Q/H	Observations
1	23.01	27.4	75	7	1.35	0.9	0.31	0.004	87	5.33	3.3	26.5	0.34	
2	24.01	13.2	(30)	34	2.81	1.9	0.71	0.032	93	10.18	14.4	11.3	0.37	
3	27.01	5.5	(30)	36	0.69	0.5	0.05	0.004	90	8.30	9.1	5.0	0.10	
4	28.01	18.7	′ 240	6	0.59	0.4	0.04	0.001	180	8.00	2.1	18.3	0.10	
5	04.04	24.5	135	14	0.96	0.6	0.07	0.001	120	10.30	2.4	23.9	0.12	
6	12.06	70.5	(165)	11	10.94	7.2	2.31	0.004	273	31.55	10.2	63.3	0.32	
7	06.07	11.5	(30)	38	0.98	0.6	0.12	0.011	160	8.30	5.2	10.9	0.20	
8	19.07	(10.5)	30'	28	0.94	0.6	0.13	0.001	40	10.20	5.7	9.9	0.22	
9	02.08	28.8	35'	17	1.81	1.2	0.42	0.004	55	6.40	4:2	27.6	0.35	
10	03.08	14.8	(90)	46	3.54	2.3	0.26	0.021	325	14.20	15.5	12.5	0.11	
11	10.08	25.9	(40)	32	3.62	2.4	1.32	0.004	30	6.05	9.3	23.5	0.55	
12	11.08	4.0	15	56	0.52	0.3	0.07	0.032	75	6.10	7.5	3.7	0.23	
13	15.08	(38.6)	(120)	38	15.01	9.9	2.08	0.004	640	22.50	25.6	28.7	0.21	
14	17.08	(7.5)	15	75	0.91	0.6	0.26	0.021	47	4.40	8.0	6.9	0.43	
15	18.08	(6.2)	15	75	0.57	0.4	0.09	0.021	70	4.30	6.5	5.8	0.23	
16	19.08	(17.0)	(30)	60	1.89	1.2	0.34	0.011	55	7.15	7.1	15.8	0.28	
17	31.08	13.3	60'	19	0.56	0.4	0.06	0.004	80	6.45	3.0	12.9	0.15	
18	19.09	12.8	(90)	36	1.27	0.8	0.20	0.004	70	7.00	6.3	12.0	0.25	
19	24.09	(62.7)	360	47	21.06	13.9	2.87	0.004	235	15.00	22.2	48.8	0.21	
20	25.09	(27.0)	180	103	14.30	9.4	2.96	0.045	30	12.00	34.8	17.6	0.31	
21	01.10	9.4	45	54	0.53	0.4	0.09	0.004	70	4.30	4.3	9.0	0.23	

BASSIN VERSANT DE LA RIVIERE CAROLE (S = 1.46 km2)

Caractéristiques mensuelles de l'écoulement

année	mois	mm PE1	mm PE2	mm P	mm L	% Ke	m3/s Q	IP	Lc	
1975	JUILLET			(33.5)	0	0	.000	·		
	AOUT	159.0	124.5	142.5	0	0	.000	164	0	
	SEPTEMBRE	94.5	69.5	82	2.8	3.4	.002	177	2	
	OCTOBRE	247.5	240.0	244	60.6	24.8	.033	299	49	
	NOVEMBRE	170.0	176.5	173	78.3	45.3	.044	336	86	
	DECEMBRE	262.0	233.0	247.5	125.2	50.6	.068	363	113	·
	TOTAL	.	-	-	266.9		.012*		250	* débit moyen annuel
1976	JANV I ER	76.5	57.5	67	0	0	.000	232	7	
	FEVRIER	90.5	53.5	72	0	0	.000	117	0	
	MARS	60.0	32.0	46	0	. 0	.000	94	0	
	AVRIL	16.5	10.5	13.5	0	0	.000	44	0	
	MAI	37.0	19.5	28	0	0	.000	37	0	
	JUIN	71.5	49.5	60.5	0	0	.000	79	0	
	JUILLET	60.0	39.0	49.5	0	0	.000	90	0	
	AOUT	168.5	142.0	155	3.6	2.3	.002	188	3	
	SEPTEMBRE	204.5	153.0	179	35.6	19.9	.020	282	32	
	OCTOBRE	208.5	167.5	188	54.0	28.7	.029	307	57	
	NOVEMBRE	(200.5)	157.0	179	51.4	28.7	.029	304	54	
	DECEMBRE	(283.0)	221.5	252	177.2	70.3	.097	371	121	
	TOTAL	1477.0	1102.5	1290	321.8	24.9	.015*		274	* débit moyen annuel

TABLEAU LIV (suite) 2

année	mois	mm PE1	mm PE2	mm P	mm L	% Ke	m3/s Q	ΙP	Lc	
1979	JANVIER	24.5	-	(19)	0	0	.000	63	0	•
	FEVRIER MARS	36.5	-	(3 0. 5) (146.5)		0 2.0	.000	43 167	0	
	AVRIL MAI	47.0 63.5	-	(40)	0	0	.000	138	0	
	JUIN	245.5	-	(55.5) (226.5)	0 16. 4	0 7.2	.000	82 263	0 13	

BASSIN VERSANT LA CAROLE

Reconstitution des valeurs mensuelles de l'écoulement (1952-1975)

		Jt	Α	S	0	N	D	J	F	М	A	М	J	
1952	DIAMANT	249	118	228	151	113	116	.19	37	46	96	129	81	
-53	TROIS ILETS	251	176	249	200	165	167	-	-	-	-	-	-	
	CAROLE	216	152	214	172	142	144	38	55	64	113	145	98	1553
	IP	279	296	315	315	257	239	134	80	101	156	220	195	
	L	29	46	65	65	10	8	0	0	0	0	6	3	232
	Ke %													14,9 %
1953	DIAMANT	310	170	204	88	150	92	20	24	17	127	50	78	
-54	TROIS ILETS	-	-	-	-	-	-	65	35	66	79	76	162	
	CAROLE	321	185	218	105	165	109	57	31	58	69	66	140	1524
	IP	386	399	341	250	235	219	130	69	79	108	112	184	
	L	136	149	91	9	7	6	0	0	0	0	0	0	400
	Ke %													26,2 %
1954	DIAMANT	129	134	274	287	161	60	52	25	3	13	62	95	
-55	TROIS ILETS	134	235	221	211	164	86	71	47	29	19	46	175	
	CAROLE	116	202	190	181	141	75	62	41	26	17	40	151	1242
	IP	209	279	325	308	262	169	112	82	53	34	51	178	
	L	5	29	75	58	12	1	0	0	0	0	0	2	182
	Ke %													14,7 %
1955	DIAMANT	83	151	115	144	218	69	102	117	44	102	45	108	
-56	TROIS ILETS	126	115	141	269	299	53	146	134	68	134	54	203	
	CAROLE	109	99	122	231	257	46	126	116	59	116	47	175	1503
	IP	210	172	188	312	411	217	157	200	136	155	124	206	
	L	5	1	3	62	161	6	0	4	0	0	0	5	247
	Ke %													16,4 %

23(

<u> </u>		Jt	А	s	0	N	D	J	F	М	А	М	J	
1956	DIAMANT	119	342	52	149	154	154	113	22	26	49	50	143	
-57	TROIS ILETS	113	215	50	252	179	157	128	35	32	51	37	184	
	CAROLE	98	185	44	216	154	135	111	31	29	45	33	158	1239
	IP	215	250	167	245	298	238	201	105	50	64	63	180	
	L	6	9	1	8	48	8	4	0	0	0	0	2	86
	Ke %													6,9 %
1957	DIAMANT	112	186	166	128	163	183	14	9	1	106	249	244	
-58	TROIS ILET	216	286	148	316	150	148	27	11	4	96	278	207	
	CAROLE	186	245	128	271	129	128	24	11	5	83	239	178	1627
	IP	291	369	291	356	310	214	109	27	12	86	294	337	
	L	41	119	41	106	60	5	0	0	0	0	44	87	503
	Ke %			<u>'</u>	,									30,9 %
1958	DIAMANT	253	114	338	283	127	73	81	71	70	53	98	99	
- 59	TROIS ILETS	284	202	331.	358	101	97	201	110	89	98	153	106	
	CAROLE	244	174	284	307	87	84	173	95	77	85	132	92	1834
	IP	363	337	400	496	292	142	229	210	140	136	189	180	
	L	113	87	150	246	42	0	7	5	0	0	3	2	655
	Ke %													35,7 %
1959	DIAMANT	85	50	107	87	95	49	36	33	81	62	78	63	
-60	TROIS ILETS	141	70	83	145	102	94	91	105	84	70	82	76	
	CAROLE	122	61	72	125	88	81	79	91	73	61	71	66	990
	IP	183	142	113	173	171	140	133	144	134	110	112	113	
	L	2	0	0	1	1	0	0	0	0	0	0	0	4
	Ke %											,		0,4 %

		Jt	A	S	0	N	D	J	F	М	А	М	J	
1964	DIAMANT	128	135	88	136	85	34	76	23	46	41	48	157	
-65	TROIS ILETS	150	275	142	163	126	39	170	31	51	74	91	152	
	CAROLE	129	236	122	140	109	35	146	28	45	64	79	131	1264
	IP	252	322	279	221	202	108	169	125	64	94	122	184	1204
	L	9	72	29	6	4	0	1	0	0	0	0	2	123
	Ke %		, -			•								9,7 %
1965	DIAMANT	104	41 .	157	128	44	163	3	133	91	128	137	146	
-66	TROIS ILETS	184	82	193	281	66	147	5	51	77	92	235	130	
	CAROLE	158	71	166	241	58	127	5	45	67	80	202	112	1332
	IP	245	176	213	352	219	166	90	48	97	125	255	247	
	L	8	2	5	102	6	1	0	0	0	0	9	9	142
	Ke %													10,7 %
1966	DIAMANT	447	217	239	237	469	85	286	416	246	96	154	66	
-67	TROIS ILETS	359	211	252	203	409	143	220	135	96	55	67	30	
	CAROLE	308	181	216	175	350	123	189	116	83	48	58	27	1874
	IP	383	386	337	319	467	356	271	242	160	103	90	66	
	L	133	136	87	69	217	106	21	8	0	0	0	0	777
	Ke %													41,5 %
1967	DIAMANT	285	445	_	128	174	180	39	2	47	22	88	162	
-68	TROIS ILETS	86	186	506	121	206	90	76	12	71	52	138	152	
	CAROLE	75	160	433	105	177	78	66	11	62	46	119	131	1463
	IP	93	210	540	3 94	247	196	118	55	69	87	150	210	
	L	0	5	290	(105)	9	4	0	0	0	0	0	5	418
	Ke %													28,6 %

		Jt	A	S	0	N	D	J	F	М	А	М	J	
1968	DIAMANT	66	154	165	182	66	132	52	9	4	21	99	201	
-69	TROIS ILETS	88	234	184	206	46	82	64	15	8	38	99	347	
	CAROLE	76	201	158	177	40	71	56	14	8	34	86	298	1219
	IP	163	252	292	282	158	98	103	51	17	39	109	355	
	L	0	9	42	32	0	0	0	0	0	0	0	105	188
	Ke %													15,4 %
1969	DIAMANT	159	185	224	114	92	109	16	16	15	19	25	240	
- 70	TROIS ILETS	161	198	273	145	163	195	36	35	35	33	27	280	
	CAROLE	139	170	234	125	140	168	32	31	31	29	24	240	1363
	IP	338	263	347	281	223	261	144	52	52	50	43	256	
	L	88	13	97	31	6	10	0	0	0	0	0	10	255
	Ke %													18,7 %
1970	DIAMANT	241	144	140	292	188	131	70	75	31	16	46	7	
-71	TROIS ILETS	296	231	145	269	251	210	140	95	48	41	45	21	
	CAROLE	254	198	125	231	216	181	121	82	42	36	40	19	1545
	IP	414	367	257	314	370	325	242	163	97	64	64	46	
	L	154	117	10	64	120	75	8	0	0	0	0	0	548
	Ke %													35,5 %
1971	DIAMANT	93	174	104	91	1:0	185	80	105	18	62	11	82	
-72	TROIS ILETS	78	208	121	87	93	193	129	172	72	85	34	86	
	CAROLE	68	179	105	75	81	166	111	148	63	74	30	75	1175
	IP	81	224	224	145	131	220	222	222	162	116	79	95	
	L	0	6	6	0	0	6	6	6	0	0	0	0	30
	Ke %													2,6 %
	1		1	•	•		,	1				1		

		Jt	А	S	0	N	D	J	F	М	А	М	J	
1972	DIAMANT	78	109	163	152	85	75	45	17	12	58	14	75	
- 73	TROIS ILETS	97	89	216	248	52	89	59	45	15	53	24	121	
	CAROLE	84	77	186	213	46	77	52	40	14	46	22	105	962
	IP	134	133	237	337	188	108	103	75	41	55	53	120	
	L	0	0	8	87	3	0	0	0	0	0	0	0	98
	Ke %													10,2 %
1973	DIAMANT	22	86	95	88	66	51	116	40	28	32	99	49	
-74	TROIS ILETS	22	140	128	165	68	69	139	59	108	53	128	35	
	CAROLE	20	121	111	142	59	60	120	52	93	46	111	31	966
	IP	90	134	192	216	154	99	160	132	128	108	142	105	
	L	0	0	3	6	0	0	0	0	0	0	0	0	9
	Ke %													0,9 %
1974	DIAMANT	75	88	151	149	119	68	91	44	21	14	27	41	
- 75	TROIS ILETS	78	140	184	160	11/7	62	139	59	108	53	128	35	
	CAROLE	68	121	158	138	101	54	120	52	93	46	111	31	1093
	IP	89	166	239	243	193	121	156	132	128	108	142	105	
	L	0	1	8	8	3	0	0	0	0	0	0	0	20
	Ke %									ļ				1,8 %

TABLEAU LVI

BASSIN VERSANT DE LA CAROLE

Chronique historique reconstituée des écoulements annuels

1953-54 1954-55 1955-56 1956-57 1957-58 1958-59 1959-60 1960-61	553 23 524 40 242 18 503 24 239 8 627 50 834 65 990 301 23 413 7	26 2 14 7 16 6 6 3 30 5 35 4 0	.2 .7 .4 .9 .9	1321 1124 1060 1256 1153 1124 1179		1 2 3 4 5	0.19 0.56 0.93 .130 .167	1874 1834 1627 1553 1545	777 655 548 503 418
1954-55 13 1955-56 13 1956-57 13 1957-58 13 1958-59 13 1959-60 13	242 18 503 24 239 8 627 50 834 65 990 301 23	2 14 7 16 6 6 3 30 5 35 4 0	.7 .4 .9 .9	1060 1256 1153 1124		3 4 5	0.93 .130 .167	1627 1553	548 503
1955-56 1 1956-57 1 1957-58 1 1958-59 18 1959-60 1	503 24 239 8 627 50 334 65 990 301 23	7 16 6 6 3 30 5 35 4 0	.4 .9 .9	1256 1153 1124		4 5	.130 .167	1553	503
1956-57 13 1957-58 13 1958-59 13 1959-60 13	239 8 627 50 834 65 990 301 23	6 6 3 30 5 35 4 0	.9 .9 .7	1153 1124		5	.167		
1957-58 16 1958-59 18 1959-60 1960-61 13	627 50 834 65 990 301 23	3 30 5 35 4 0	.9	1124				1545	//10
1958-59 18 1959-60 1960-61 13	334 65 990 301 23	5 35	.7			6			410
1959-60 1960-61	990 301 23	1 0	- 1	1179	l 1	J	.204	1524	400
1960-61 13	301 23	1	.4			7	.241	1503	322
		2 17	٠, ١	986		8	.278	1463	309
1961-62 14	413 7		.8	1069		9	.315	1457	<u> 292</u>
l l		3 5	.5	1335		10	.352	1449	279
1962-63	.432 30	9 21	.6	1123		11	.389	1432	267
1963-64 1	.457 27	9 19	.1	1178		12	.426	<u>1425</u>	255
1964-65 1	.264 12	3 9	.7	1141		13	.463	1413	247
1965-66 13	.332 14	2 10	.7	1190		14	.500	1363	232
1966-67 18	.874 77	7 41	.5	1097		15	.537	1332	232
1967-68 1	.463 41	8 28	.6	1045		16	.574	1301	214
1968-69 1	.219 18	3 15	.4	1031		17	.611	1264	188
1969-70 1	.363 25	5 18	.7	1344		18	.648	1242	182
1970-71 1	.545 54	35	.5	997		19	.685	1239	142
1971-72 1	.175 3	0 2	.6	1145		20	.722	<u>1238</u>	123
1972-73	962 9	8 10	.2	864		21	.759	1219	98
1973-74	966	9 0	.9	957		22	.796	1209	86
1974-75 1	.093 2	0 1	.8	1073		23	.833	1175	78
1975-76 1	.208 26	7 22	.1	941		24	.870	1093	30
1976-77 1	.238 32	2 26	.0	916		25	.907	990	20
1977-78 1	.425 29	2 20	.5	1133		26	.944	966	9
1978-79 1	1449 21	4 14	.7	1235		27	.981	962	4

BASSIN VERSANT DE VAL D'OR (S = 1.433 km2)
Caractéristiques mensuelles de l'écoulement

		mm PE1	mm PE2	mm P	nm L	% Ke	m3/s Q	IP1	mm LB	L' L-LB	IP2	mm LR	mm Lc=LR+LB
1975	MA I		_	(56.5)									
	JUIN			(85)									
	JUILLET	İ		(53.5)	0	0	0						
	AOUT	225.5	243.0	234	4.2	1.8	.002	195	1.0	3.2	278	5.8	6.8
	SEPTEMBRE	117.0	125.5	121	7.4	6.1	.004	372	2.7	4.7	249	2.9	5.6
-	OCTOBRE	273.5	304.0	289	90.7	31.5	.049	408	3.1	87.6	396	67.0	70.1
	NOV EMBRE	238.5	286.0	262	110.4	42.2	.061	644	5.4	105.0	431	93.3	98.7
	DECEMBRE	286.0	313.0	299.5	115.8	38.7	.062	672	5.7	110.1	489	136.8	142.5
1976	JANV IER	101.0	152.5	127	13.3	10.5	.007	850	7.5	5.8	329	16.8	24.3
	FEVRIER	76.5	108.5	92.5	6.8	7.4	.004	688	5.9	0.9	216	0	5.9
	MARS	71.0	90.5	81	4.9	6.1	.003	519	4.2	0.7	153	0	4.2
	AVRIL	26.5	37.5	32	1.8	5.7	.001	300	2.0	(0)	91	0	2.0
	MAI	36.0	53.0	45	0.8	1.8	.000	205	1.0	(0)	77	0	1.0
	JUIN	85.4	115.5	100	1.1	1.1	.001	157	0.6	0.5	129	0	0.6
	JUILLET	82.0	105.0	93.5	1.1	1.2	.001	177	0.8	0.3	152	0	0.8
	AOUT	171.5	191.5	181	3.1	1.7	.002	238	1.4	1.7	247	2.7	4.1
	SEPTEMBRE	170.5	178.5	174.5	12.0	6.9	.007	375	2.8	9.2	284	6.4	9.2
	OCTOBRE	258.5	259.5	259	73.6	28.5	.039	449	3.5	70.1	383	57.3	60.8
	NOVEMBRE	267.0	288.5	278.5	120.5	43.4	.067	615	5.2	115.3	442	101.5	106.7
	DECEMBRE	343.5	332.5	338	170.5	50.5	.091	711	6.1	164.4	529	166.8	172.9
	TOTAL			1802.0	416.7	23.1	.019*						i

		mm PE1	mm PE2	mm P	mm L	% Ke	m3/s Q	IP1	mm LB	L-LB	IP2	mm LR	mm Lc=LR+LB
1977	JANV I ER	59.0	71.0	65	4.0	6.2	.002	875	7.7	(0)	290	7.0	14.7
	FEVRIER	34.5	45.0	40	2.9	7.3	.002	681	5.8	(0)	140	0	5.8
	MARS	29.5	36.5	33	0.5	1.5	.000	443	3.4	(0)	66	0	3.4
	AVRIL	93.0	107.5	100.5	1.1	1.1	.001	138	0.4	0.7	124	0	0.4
	MAI	48.5	68.5	5 8.5	2.0	3.4	.001	173	0.7	0.3	115	0	2.0
	JUIN	53.5	68.0	61	0	0	.000	192	0.9	(0)	110	0	0.9
	JUILLET	77.0	92.5	85	0.1	0.1	.000	220	1.2	(0)	127	0	1.2
	AOUT	253.5	283.5	268.5	12.7	4.7	.007	204	1.0	11.7	323	12.3	13.3
	SEPTEMBRE	170.5	207.5	190	35.5	18.7	.020	414	3.1	32.4	340	25.0	28.1
	OCTOBRE	332.0	379.0	355.5	156.2	43.9	.084	544	4.4	151.8	504	148.0	152.4
	NOV EMBRE	222.5	251.0	237	96.7	40.8	.053	814	7.1	89.6	453	109.8	116.9
	DECEMBRE	67.5	76.0	72	7.8	10.8	.004	783	6.8	1.0	262	4.2	11.0
	TOTAL			1506.0	319.5	21.2	.015*						
1978	JANV IER	76.5	102.0	89	3.5	3.9	.002	665	5.6	(0)	172	0	5.6
	FEVRIER	33.5	49.0	41.5	2.0	4.8	.001	399	3.0	(0)	100	0	3.0
	MARS	123.5	131.0	127.5	6.6	5.2	.004	203	1.0	5.6	166	0	1.0
	AVRIL	77.0	87.0	82	4.4	5.4	.002	255	1.5	2.9	154	0	1.5
	MAI	116.5	118.5	117.5	1.1	0.9	.001	248	1.5	(0)	184	0	1.5
	JUIN	145.5	150.5	148	7.6	5.1	.004	324	2.2	5.4	223	0.3	2.5
		* débi	t moyen	l annuel									

Reconstitution des valeurs mensuelles de l'écoulement

(1952-75)

						(1302 /								
		Jt	А	S	0	N	D	J	F	М	Α	М	J	
1952	PETIT BOURG	153	251	265	196	231	96	48	68	76	77	221	166	
-53	VAL D'OR	159	246	254	202	233	102	54	74	82	83	227	172	1888
	IP1	210	315	483	659	702	689	537	389	230	210	239	392	
	IP2	214	341	409	378	385	259	152	121	130	139	285	302	
	LB	1	2	4	6	6	6	4	3	1	1	1	3	38
	LR	0	26	77	54	59	4	0	0	(J	0	7	8	235
	L	1	28	81	60	65	10	4	3	1	1	8	11	273
1953	TROIS ILETS	(339)	(192)	(212)	(87)	(154)	(91)	65	36	66	79	76	162	
-54	VO	345	245	263	114	198	119	86	49	88	1 0,4	100	208	1919
	IP1	482	744	762	853	622	575	431	403	254	223	241	292	
	IP2	476	452	455	295	308	241	185	116	130	158	170	279	
	LB	4	6	7	8	5	5	3	3	2	1	1	2	47
	LR	127	109	111	8	9	2	0	0	0	0	0	6	372
	L	131	115	118	16	14	7	3	3	2	1	1	8	419
1954	TROIS ILETS	134	235	221	211	164	86	71	47	29	19	46	175	
~ 55	vo	173	278	269	262	210	113	94	64	41	29	63	224	1820
	IP1	412	481	659	720	809	741	585	417	271	199	134	133	
	IP2	297	406	443	452	395	279	193	134	92	62	86	261	
	LB	3	4	6	6	7	6	5	.33	2	1	0	0	43
	LR	8	75	102	109	66	5	0	0	0	0	0	4	369
	L	11	79	198	115	73	11	5	3	2	1	0	4	412

		Jt	А	S	0	N	D	J	F	М	А	М	J	
1955	TROIS ILETS	126	115	141	269	299	53	146	134	68	134	54	203	
-56	VO	163	149	181	300	319	71	188	173	90	173	73	257	2137
	IP1	316	450	536	493	630	800	672	560	414	451	436	336	
	IP2	288	275	288	429	505	273	278	278	214	253	178	328	
	LB	2	4	4	4	5	7	6	5	3	4	3	2	49
	LR	7	6	7	85	149	5	6	6	0	3	9	16	290
	L	9	10	11	89	154	12	12	11	3	7	3	18	3 3 9
1956	TROIS ILETS	113	215	50	252	179	157	128	35	32	51	3 7	184	
-57	VO	146	265	68	289	229	201	165	49	45	69	51	235	1812
	IP1	503	476	668	479	622	586	719	595	415	259	163	165	
	IP2	289	389	230	376	387	373	311	172	103	101	95	274	
	LB	4	4	6	4	5	5	6	5	3	2	1	1	46
	LR	7	62	1	52	60	50	9	0	0	0	0	5	246
	L	11	66	7	56	65	_~ 55	15	5	3	2	1	6	292
1957 -58	TROIS ILETS	216	286	148	316	159	148	27	11	4	96	278	207	
-20	VO	265	311	190	330	193	190	39	19	10	125	306	260	2238
	IP1	355	551	811	765	831	713	713	422	248	68	154	441	ŀ
	IP2	3 93	491	399	487	396	353	173	77	27	134	371	438	
	LB	3	5	7	7	7	6	6	3	1	0	0	3	48
	LR	65	138	69	135	67	35	0	0	0	0	48	99	626
	L	68	143	76	142	74	41	6	3	1	0	48	102	674

		Jt	А	S	0	N	D	J	F	М	А	М	J	
1958	PETIT BOURG	285	227	347	338	152	124	114	116	82	95	191	73	
-59	VO	267	231	305	300	158	130	120	122	88	101	197	79	2098
	PE1	590	752	677	803	836	763	588	408	372	330	311	386	
	PE2	418	400	474	499	369	269	217	208	173	169	265	198	
	LB	5	7	6	7	7	7	5	3	3	2	2	3	57
	LR	84	70	1 26	144	47	5	0	0	0	0	5	0	481
	L	89	77	132	151	54	12	5	3	3	. 2	7	3	538
1959	PETIT BOURG	132	96	150	120	102	141	79	106	73	110	65	73	
-60	VO	138	102	156	126	108	147	85	112	79	116	71	79	1319
	PE1	377	414	319	396	384	390	381	340	344	276	307	266	
	PE2	217	187	235	224	202	2261	180	184	152	178	145	138	
	LB	3	3	2	3	3	3	3	2	2	2	2	2	30
	LR	0	0	2	1	0	1	0	0	0	0	0	0	4
	L	3	3	4	4	3	4	3	2	2	2	2	2	34
1960	PETIT BOURG	273	196	162	289	71	165	131	89	62	21	82	130	
-61	VO	259	202	1 68	269	77	171	137	95	68	27	88	136	1697
	PE1	266	409	540	629	639	514	517	385	403	300	190	183	
	PE2	313	347	321	393	245	263	238	198	143	80	115	185	
	LB	2	3	4	5	5	4	4	3	3	2	1	1	37
	LR	9	30	11	65	3	4	2	0	0	0	0	0	124
	L	11	33	15	70	8	8	6	3	3	2	1	1	161

		Jt	A	S	0	N	D	J	F	М.	А	М	J	
1961	PETIT BOURG	223	160	29	211	204	170	188	103	51	83	84	306	
-62	VO	228	166	35	217	210	176	194	109	57	89	90	280	1851
	PE1	251	452	530	429	418	462	603	580	479	360	255	236	
	PE2	314	307	164	268	326	324	324	241	150	139	146	343	
	LB	2	4	4	3	3	4	5	5	4	3	2	1	40
	LR	9	9	0	5	15	13	13	2	0	0	0	27	93
	L	11	13	4	8	18	· 17	18	7	4	3	2	28	133
1962	PETIT BOURG	135	334	248	109	113	150	149	85	- 69	81	183	171	
-63	V0	141	297	244	115	119	156	155	91	75	87	189	177	1846
	PE1	459	511	718	682	656	478	390	430	402	321	253	351	
	PE2	299	424	421	296	225	239	257	200	152	143	248	289	
	LB	4	4	6	6	6	4	3	3	3	2	2	3	46
	LR	8	88	86	8	1	2	4	0	0	0	3	7	207
	L	12	92	92	14	7	6	7	3	3	2	5	10	253
1963	PETIT BOURG	232	125	295	254	111	57	49	62	94	119	87	235	
-64	VO	234	131	273	247	117	63	55	68	100	125	93	236	1742
	PE1	453	600	542	638	651	637	427	235	186	223	293	318	
	PE2	360	283	385	410	295	171	110	208	145	189	176	308	
	LB	4	5	4	5	6	5	3	1	1	1	2	2	39
	LR	40	6	59	78	8	0	0	0	0	0	0	9	200
	L	44	11	63	83	14	5	3	1	1	1	2	11	239

		Jt	A	S	0	N	D	J	F	М	А	М	J	
1964	PETIT BOURG	150	232	218	134	60	122	130	42	83	99	86	130	
-65	VO	156	234	224	140	66	128	136	48	89	105	92	136	1554
	IP1	454	485	626	614	598	430	334	330	312	273	242	286	
	IP2	293	359	372	299	181	189	213	142	140	159	162	203	
	LB	4	4	5	5	5	3	2	2	2	2	1	2	37
	LR	7	39	49	8	0	0	0	0	0	0	0	0	103
	L	11	43	54	13	5	3	2	2	2	2	1	2	140
1965	PETIT BOURG	189	146	204	205	99	106	17	169	82	135	235	153	
-66	VO	195	152	210	211	105	112	23	175	88	141	236	159	1807
	IP1	333	423	483	557	573	526	428	240	310	286	404	465	
	IP2	281	277	325	346	253	207	100	209	180	220	324	305	
	LB	2	3	4	5	5	4	3	1	2	2	3	4	38
	LR	6	6	14	30	3	0	0	0	0	0	13	9	81
	L	8	9	18	35	8	4	3	1	2	2	16	13	119
1966	PETIT BOURG	323	197	208	249	279	101	177	91	92	70	82	54	
-67	VO	290	203	214	244	263	107	183	97	98	76	88	60	1923
	IP1	536	885	652	707	661	721	614	553	387	378	271	262	
	IP2	417	380	374	392	428	287	289	210	183	144	146	119	
	LB	4	6	6	6	6	6	5	5	3	3	2	2	54
	LR	83	55	51	64	91	7	7	0	0	0	0	0	358
	L	87	61	57	79	97	13	12	5	3	3	2	2	412

		Jt	А	S	0	N	D	J	F	М	A	М	J	
1967	PETIT BOURG	105	185	428	153	195	108	81	27	111	64	142	190	
-68	vo	111	191	355	159	201	114	87	33	117	70	148	196	1782
	IP1	224	259	362	657	705	715	474	402	234	237	220	335	
	IP2	259	259	473	375	352	246	184	99	151	135	206	284	
	LB	1	2	3	6	6	6	4	3	1	1	1	2	36
	LR	0	4	125	51	34	3	0	0	0	0	0	6	223
	L	1	6	128	57	40	9	4	3	1	1	1	8	259
1968	PETIT BOURG	75	266	205	196	69	120	129	14	0	43	104	276	
-69	VO	81	255	211	202	75	126	135	20	6	49	110	261	1531
	IP1	414	425	532	547	668	488	403	336	281	161	75	165	
	IP2	209	335	355	359	218	204	213	113	43	56	136	326	
	LB	3	3	4	4	6	4	3	2	2	1	0	1	33
	LR	0:	21	36	39	0	0	0	0	0	0	0	15	111
	L	3	24	40	43	6	4	3	2	2	1	0	16	144
1969	PETIT BOURG	231	247	303	168	134	227	63	36	23	39	26	186	
-70	VO	233	243	278	174	140	231	69	42	29	45	32	192	1708
	IP1	420	604	737	754	695	592	545	440	342	190	116	106	
	IP2	386	412	446	362	283	336	213	123	64	68	60	217	
	LB	3	5	6	7	6	5	4	3	2	1	0	0	42
	LR	60	79	105	42	6	22	0	0	0	0	0	0	314
	L	63	84	111	49	12	27	4	3	2	1.	0	0	356

		Jt	A	S	0	N	D	J	F	М	А	М	J	
1970	PETIT BOURG	298	224	168	314	292	288	128	83	63	63	39	41	
-71	VO	275	229	174	285	271	269	134	89	69	69	45	47	1956
	IP1	269	499	696	678	688	730	825	674	492	292	227	183	
	IP2	377	405	344	418	448	462	323	210	140	121	93	83	
	LB	2	4	6	6	6	6	7	6	4	2	1	1	51
	LR	53	74	28	84	106	117	12	0	0	0	0	0	474
1 1	L	55	78	34	90	112	123	19	6	4	2	1	1	525
1971	PETIT BOURG	86	262	183	109	67	294	145	185	78	89	67	90	
- 72	VO .	92	252	189	115	73	272	151	191	84	95	73	96	1683
,	IP1.	161	184	3 91	533	556	377	460	496	614	426	370	252	
	IP2	125	307	333	260	168	332	302	321	210	175	137	152	
	LB.	1	1	3	4	5	3	4	4	5	3	3	2	38
	LR	0	9	20	4	0	19	8	11	0	0	0	0	71
	L	1	10	23	8	5	22	12	15	5	3	3	2	109
1972	PETIT BOURG	163	99	209	229	111	97	56	40	22	41	36	148	
-73	VO	169	105	215	232	117	103	62	46	28	47	42	154	1320
	IP1	264	338	370	489	552	564	452	282	211	136	121	117	
	IP2	232	209	301	361	276	208	137	98	63	70	71	184	
	LB	2	2	3	4	5	5	4	2	1	0	0	0	28
	LR	1	0	8	41	6	0	0	0	0	0	0	0	56
	L	3	2	11	45	11	5	4	2	1	0	0	0	84

		Jt	А	S	0	N	D	J	F	М	А	М	J	
1973	PETIT BOURG	43	143	154	196	71	111	199	71	134	74	115	78	
-74	VO	49	149	160	202	77	117	205	77	140	80	121	84	1461
	IP1	243	245	352	358	511	439	396	399	399	422	297	341	
	IP2	134	204	244	312	210	196	279	203	220	165	189	161	
	LB	1	1	3	3	4	3	3	3	3	3	2	2	31
	LR	0	0	: 2	9	0	0	6	0	0	0	0	0	17
	L	1	1	5	12	4	3	9	3	3	3 .	2	2	48
1974	PETIT BOURG	94	94	266	188	112	68	181	123	43	38	51	77	
- 75	VO	100	100	255	194	118	74	187	129	49	44	57	83	1390
	IP1	285	305	284	455	549	567	386	379	3 90	365	222	150	ļ ;
	IP2	166	167	325	342	266	172	248	237	151	94	89	120	
	LB	2	2	2	4	4	5	3	3	3	3	1	1	33
	LR	0	0	14	27	5	0	3	2	0	0	0	0	51
	L	2	2	16	31	9	5	6	5	3	3	1	1	84

TABLEAU LIX

BASSIN DE VAL D'OR

Chronique historique reconstituée des écoulements annuels

	mm P	mm L	% Ke	mm De		rang	F	Ē	L
1952-53	1888	273	14.5	1615		1	.019	2238	674
1953-54 *	1919	419	21.8	1500		2	.058	2137	538
1954-55 *	1820	412	22.6	1408		3	.096	2098	525
1955-56 *	2137	339	15.9	1798		4	.135	1956	419
1956 - 57 *	1812	292	16.1	1520		5	.173	1923	412
1957-58 *	2238	674	30.1	1564		6	.212	1919	412
1958-59	2098	538	25.6	1560	İ	7	.250	1888	391
1959-60	1319	34	2.6	1285		8	.288	1851	357
1960-61	1697	161	9.5	1536		ş	.327	1846	356
1961-62	1851	133	7.2	1718		10	.365	1820	339
1962-63	1846	253	13.7	1593		11	.404	<u>1814</u>	334
1963-64	1742	239	13.7	1503		12	.442	1812	292
1964-65	1554	140	9.0	1414		13	.481	1307	273
1965-66	1807	119	6.6	1688		14	.519	1782	259
1966-67	1923	412	21.4	1511		15	.558	1742	253
1967-68	1782	259	14.5	1523		16	.596	<u>1737</u>	239
1968-69	1531	144	9.4	1387		17	.635	1708	161
1969-70	1708	356	20.8	1352		18	.673	1697	144
1970-71	1956	525	26.8	1431		19	.712	1683	140
1971 - 72	1683	109	6.5	1574		20	.750	<u>1683</u>	133
1972 - 73	1320	84	6.4	1236		21	.788	1554	119
1973-74	1461	48	3.3	1413		22	.827	1531	109
1974-75	1390	84	6.0	1306		23	.865	1461	84
1975-76	1737	357	20.6	1380		24	.904	1390	84
1976-77	1683	391	23.3	1292		25	.942	1320	48
1977-78	1814	334	18.4	1480		26	.981	1319	34

^{*} Płuviométrie annuelle d'après TROIS ILETS PTT Valeurs soulignées : années observées

TABLEAU LX

BASSIN VERSANT DE VOLTAIRE (S = 0.835 km2)

Caractéristiques mensuelles de l'écoulement

		. mm PE1	mm PE2	min P	mm L	% Ke	m3/s Q	mm IP	mm Lc
1975	JANV IER								
	FEVRIER								
	MARS	,							,
	AVRIL								
	IAM								
	JUIN			(38)			,		
	JUILLET	(30)	(31.5)	(56)	0				
	ADUT	(159.0)	179.5	(169)	(0)	0	0.000		
	SEPTEMBRE	137.5	175.0	156	0	0	0.000	252	7.2
	OCTOBRE ·	449.0	457.5	453	92.8	20.5	.029	592	127.2
	NOVEMBRE	186.0	194.5	190	36.3	19.1	.012	468	52.8
	DECEMBRE	268.5	272.0	270	85.0	31.5	.027	558	106.8
1976	JANV IER	144.0	130.5	137	9.7	7.1	.003	411	23.1
	FEVRIER	121.0	119.0	120	20.6	17.2	.007	321	14.1
	MARS	51.5	58.5	55	4.0	7.3	.001	212	3.2
	AVRIL	51.0	64.0	57.5	0.7	1.2	.000	155	0
	MAI	35.0	48.5	41.5	0.1	0.2	.000	111	0
	JUIN	81.0	95.5	88	0.1	0.1	.000	139	0
}	JUILLET	122.0	127.5	125	0.5	0.5	.000	188	0.8
	AOUT	183.5	182.0	183	3.2	1.7	.001	276	9.6
	SEPTEMBRE	126.5	143.5	135	5.1	3.8	.002	276	9.6
	OCTOBRE	343.0	343.0	343	43.3	12.6	.013	495	69.0
	NOVEMBRE	284.5	306.0	295	97.1	32.9	.031	522	85.2
	DECEMBRE	187.0	201.0	194	73.7	38.0	.023	476	57.6
	TOTAL	1730.0	1819.0	1775	258.2	14.5	.007		272.2

TABLEAU LX (suite)

		mm PE1	mm PE2	mm P	mm L	% Ke	m3/S Q	IP	Lc
1977	JANVIER	43.0	57.5	50	6.4	12.8	.002	314	13.4
ŀ	FEVRIER	54.9	62.0	58.5	5.9	10.1	.002	212	3.2
	MARS	41.5	48.0	45	2.4	5.3	.001	115	0
	AVRIL	130.0	141.5	136	1.6	1.2	.000	196	1.6
	MAI	58.5	65.0	62	0.6	1.0	.000	150	0
	JUIN	100.5	105.5	103	0	0	.000	195	1.5
	JUILLET	105.5	105.0	105	0.5	0.5	.000	198	1.8
	AOUT	275.0	300.5	288	22.4	7.8	.007	383	20.3
	SEPTEMBRE	230.0	225.0	228	34.2	15.0	.011	405	22.5
	OCTOBRE	485.5	456.0	471	181.5	38.5	.057	698	190.8
	NOVEMBRE	340.0	363.5	352	202.6	57.6	.065	689	185.4
	DECEMBRE	107.5	101.5	105	14.2	13.5	.004	480	60.0
	TOTAL AN.	1971.9	2031.0	2002.3	472.3	23.6	.013		500.5
1978	JANV I ER	88.0	90.5	89.5	10.2	11.4	.003	366	18.6
	FEVRIER	83.5	80.5	82.0	8.3	10.1	.003	230	5.0
	MARS	142.5	146.5	144	10.6	7.4	.003	234	5.4
	AVRIL	74.0	70.5	72	9.6	13.3	.003	180	0
	MAI	93.5	114.0	104	5.8	5.6	.002	206	2.6
	JUIN	187.0	188.5	188	16.3	8.7	.005	287	10.7
	JUILLET	154.5	164.0	159	8.7	5.5	.003	290	11.0
	AOUT	235.5	222.5	229	33.4	14.6	.010	388	20.8
	SEPTEMBRE	243.5	236.5	240	43.5	18.1	.014	433	31.8
	OCTOBRE ,	299.0	304.5	302	(96.6)	32.0	.030	522	85.2
	NOVEMBRE	200.5	207.5	204	64.8	31.8	.021	467	52.2
	DECEMBRE	82.0	97.5	90	18.3	203	.006	340	16.0
	TOTAL	1883.5	1923.0	1903.1	326.1	17.1	.009		259.3

TABLEAU LXI

BASSIN VERSANT DU QUARTIER VOLTAIRE

Reconstitution des valeurs mensuelles de l'écoulement (1962-75)

		Jt	А	S	0	N	D	J	F	М	А	М	J	
1962	ROBERT	162	284.4	237.2	145.8	28.7	106.1	141.9	33.5	39.9	73.3	95.0	110.7	1
-63	VOLTAIRE	173	284	241	159	53	123	155	58	64	94	113	127	1644
	IP	300	439	459	406	270	256	275	180	174	174	188	223	
	L mm	12.	35	47	23	9	8	10	0	0	0	1	4	149
	Ke %	6.9	12.3	19.5	14.5	17.0	6.5	6.5	0	0	0	0.9	3.1	9.1
1963	ROBERT	221.9	62.4	472.9	152.4	101.2	65.9	54.3	40.5	50.5	110.0	157.7	260.9	
-64	VOLTAIRE	227	84	453	165	119	87	76	64	73	127	170	262	1907
	IP	342	248	603	425	383	291	191	153	146	197	263	395	
	L mm	16	7	134	27	20	11	1	0	0	2	8	22	248
	Ke %	7.0	8.3	29.6	16.4	16.8	12.6	1.3	0	0	1.6	4.7	8.4	13.0
1964	ROBERT	290.3	231.1	165.0	180.6	72.7	105.1	136.2	26.9	32.0	90.4	162.5	79.5	
-65	VOLTAIRE	289	236	176	190	93	122	150	52	56	109	1/4	99	1746
	IP	487	490	438	413	287	270	274	179	161	182	250	223	
	L mm	64	66	35	23	11	9	9	0	0	0	7	4	228
	Ke %	22.1	28.0	19.9	12.1	11.8	7.4	6.0	0	0	0	4.0	4.0	13.1
1965	ROBERT	94.3	121.7	325.1	194.2	30.5	104.4	7.2	150.8	125.7	176.7	133.2	176.1	
-66	VOLTAIRE	112	137	320	202	55	122	34	163	141	187	147	186	1806
	IP	243	256	439	407	291	289	145	236	244	315	311	348	
	L mm	6	8	35	23	11	11	0	6	6	14	13	17	150
	Ke %	5.4	5.8	10.9	11.4	20.0	9.0	0	3.7	4.3	7.5	8.8	9.1	8.3
1966	ROBERT	169.0	155.6	113.9	119.9	483.3	22.6	103.9	103.9	119.5	46.7	28.0	92.5	
-67	VOLTAIRE	180	168	130	136	463	4 8	121	121	135	70	53	111	1736
	IP	351	344	306	291	603	314	353	281	241	197	159	187	
	Lmm	17	16	13	11	134	13	17	10	6	2	0	1	240
	ke %	9.4	9.5	10.0	8.1	28.9	27.1	14.0	8.3	4.4	2.9	0	0.1	13.8

25

					_									
		Jt	А	S	0	N	D	J	F	М	А	М	J	
1967	ROBERT	87.1	118.3	574.3	212.9	192.5	20.3	80.4	11.5	49.0	110.0	189.8	205.2	
-68	VOLTAIRE	106	134	544	219	201	46	100	38	72	127	198	212	1997
	IP	186	231	662	511	533	323	243	137	136	191	285	356	
	L mm	1	5	169	79	92	14	6	0	0	1	11	18	396
	Ke %	0.9	3.7	31.1	36.1	45.8	30.4	6.0	0	0	0.8	5.6	8.5	19.8
1968	ROBERT	89.3	182.5	157.0	152.2	82.7	141.3	144.9	38.0	11.9	42.5	63.5	187.3	
-69	VOLTAIRE	108	192	169	165	102	155	158	62	38	66	85	196	1496
	IP	297	360	331	331	274	296	294	208	157	138	139	264	
	L mm	12	18	15	15	9	12	11	3	0	0	0	8	103
	Ke %	11.1	9.4	8.9	9.1	8.8	7.7	7.0	4.8	0	0	0	4.1	6.9
1969	ROBERT	214.5	122.3	158.0	229.7	183.3	279.0	22.8	29.8	51.0	12.5	121.8	194.5	
-70	VOLTAIRE	221	138	170	234	193	279	48	54	74	39	137	203	1790
	IP	347	322	3 53	401	382	484	284	223	171	100	193	288	
	L mm	17	14	17	22	20	62	10	4	0	0	1	11	178
	Ke %	7.7	10.1	10.0	9.4	10.4	22.2	20.8	7.4	0.	0	0.7	5.4	9.9
1970	ROBERT	260.9	214.0	121.0	211.2	210.7	301.8	102.8	174.9	36.6	82.8	61.2	16.7	
-71	VOLTAIRE	262	220	137	218	217	299	120	185	61	102	83	43	1947
	IP	406	433	370	413	403	500	370	396	243	224	185	129	
	L mm	23	32	19	23	22	72	19	22	6	4	1	0	243
	Ke %	8.8	14.5	13.9	10.6	10.1	24.1	15.8	11.9	9.8	3.9	1.2	0	12,.5
1971	ROBERT	50.7	223.7	182.7	125.6	30.5	164.5	120.4	114.2	78.6	(157.1)	93.8	62.2	
- 72	VOLTAIRE	73	229	192	141	55	176	136	130	98	169	112	84	1595
	IP	144	292	321	324	234	293	257	266	240	287	245	216	
	L mm	0	11	14	14	5	11	8	9	6	11	7	4	100
	Ke %	0	4.8	7.3	9.9	9.1	6.3	5.9	6.9	6.1	6.5	6.3	4.8	6.3

		Jt	А	S	0	N	D	J	F	М	А	М	J	
1972	ROBERT	116.4	102.9	197.9	144.7	92.3	176.2	41.7	38.7	24.6	52.6	14.1	168.9	
-73	VOLTAIRE	132	120	206	158	111	186	65	62	50	75	40	180	1385
	IP	244	229	324	315	281	335	215	185	138	133	102	236	
	L	6	5	14	14	10	16	4	1	0	0	0	6	76
	Ke %	4.5	4.2	6.8	8.9	9.0	8.6	6.2	1.6	0	0	0	3.3	5.5
1973	ROBERT	20.2	176.4	293.3	88.2	90.8	76.8	86.1	119.7	95.5	44.3	44.3	68.0	
-74	VOLTAIRE	46	186	292	107	109	97	105	135	114	67	67	89	1414
	IP	149	284	421	307	306	242	209	238	229	188	166	165	
	L	0	10	25	13	13	6	3	6	5	1	0	0	82
	Ke %	0	5.4	8.6	12.1	11.9	6.2	2.9	4.4	4.4	1.5	0	0	5.8
1974	ROBERT	94.4	82.9	280.3	159.2	91.5	103.9	132.4	133.1	24.9	35.8	41.7	34.5	
- 75	VOLTAIRE	113	102	280	171	110	121	147	147	50	60	65	59	1425
	IP	189	196	384	346	311	289	274	276	192	168	138	119	
	L	1	2	20	17	13	11	9	10	1	0	0	0	84
	Ke %	0.9	2.0	7.1	9.9	11.8	9.1	6.1	6.8	2.0	0	0	0	5.9

TABLEAU LXII

BASSIN VERSANT DU QUARTIER VOLTAIRE

Chronique historique reconstituée des écoulements annuels

	mm P	mm L	% Ke	mm De		Rang	F	Ρ̈	L
1962-53	1644	149	9.1	1495		1	.031	2229	516
1963-64	1907	248	13.0	1659		2	.094	1997	396
1964-65	1746	228	13.1	1518		3	.156	1947	249
1965-66	1806	150	8.3	1656		4	.219	1907	248
1966-67	1736	240	13.8	1496		5	.281	1806	243
1967-68	1997	396	19.8	1601		6	.344	<u>1793</u>	240
1968-69	1496	103	6.9	1393		7	.406	1790	240
1969-70	1790	178	9.9	1612		8	.469	1746	228
1970-71	1947	243	12.5	1704		9	.531	1736	178
1971-72	1595	100	6.3	1495		10	.594	1730	150
1972-73	1385	76	5.5	1309		11	.656	1644	149
1973-74	1414	82	5.8	1332		12	.719	1595	103
1974-75	1425	84	5.9	1341	ì	13	.781	1496	100
1975-76	1793	<u>249</u>	13.9	1544		14	.844	1425	84
1976-77	1730	240	13.9	1490		15	.906	1414	82
1977-78	2229	<u>516</u>	23.2	1713		16	.969	1385	76

Valeurs soulignées : années observées

BASSIN VERSANT DU QUARTIER DUCHENE (S = 1.514 km2)

Caractéristiques mensuelles de l'écoulement

		mm PE1	mm PE2	mm P	mm L	% Ke	m3/s Q	IP1	LB	L-LB	IP2	LR	Lc=LB+LR
1976	JANV I ER							 					
	FEVRIER	(29.5)	(16.1)										
	MARS	62.5	36.0	51	5.7	11.2	.003						
	AVRIL	39.0	32.5	36	1.3	3.6	.001						
	MAI	63.0	46.5	55	1.3	2.4	.001						
	JUIN	137.0	92.0	114.5	2.5	2.2	.001	256	3.1	(0)	164	0	3.1
	JUILLET	131.5	99.5	115.5	4.9	4.2	.003	321	4.4	0.5	212	0	4.4
	AOUT	137.0	91.0	114	4.6	4.0	.003	399	6.0	(0)	229	0	6.0
	SEPTEMBRE	(149.0)	150.0	151	5.8	3.8	.003	495	7.9	(0)	265	0	7.9
	OCTOBRE	(332.5)	281.0	301	61.5	20.4	.035	682	11.6	4 9.9	441	43.2	54.8
	NOV EMBRE	278.0	266.5	271.5	101.3	37.3	.059	838	14.8	86.5	528	99.7	114.5
	DECEMBRE	296.5	241.0	270.5	151.5	56.0	.086	994	17.9	133.6	551	114.7	132.6
1977	JANV I ER	60.5	51.0	56	17.0	30.4	.010	899	16.0	1.0	327	3.7	19.7
	FEVRIER	49.5	39.5	44.5	12.6	28.3	.008	643	10.9	1.7	165	0	10.9
	MARS	42.5	28.5	35.5	5.9	16.6	.003	407	6.1	(0)	83	0	6.1
	AVRIL	121.0	73.5	97.5	4.8	4.9	.003	234	2.7	2.1	136	0	2.7
	MAI	65.5	58.0	62	3.2	5.2	.002	240	2.8	0.4	141	0	2.8
	JUIN	84.0	63.5	73.5	0.2	0.3	.000	269	3.4	(0)	146	0	3.4
	JUILLET	81.5	41.0	61.5	0.6	, 1.0	.000	295	3.9	(0)	132	0	3.9
	AOUT	199.0	171.0	185	5.5	3.0	.003	382	5.6	(0)	250	0	5.6
	SEPTEMBRE	190.0	150.5	170.5	9.7	5.7	.006	491	7.8	1.9	318	2.8	10.6
	OCTOBRE	3 72.5	326.0	350	99.7	28.5	.056	767	13.3	86.4	525	97.8	111.1
	NOVEMBRE	267.5	251.0	259.5	142.3	54.8	.083	965	17.3	125	556	117.9	135.2
	DECEMBRE	78.5	70.0	74	22.0	29.7	.012	854	15.1	6.9	361	7.1	22.2
	TOTAL	1612.0	1323.5	1469.5	323.5	22.0	.016*		104.9 31.4%			229.3 68.6%	334.2

		mm PE1	mm PE2	mm P	mm L	% Ke	m3/s Q		IP1	LB	L-LB	IP2	LR	Lc=LB+LR
1978	JANV IER	104.0	103.0	103.5	14.8	14.3	.008		787	13.7	1.1	233	0	13.7
	FEVRIER	60.5	51.5	56	6.6	11.8	.004		493	7.9	(0)	151	0	7.9
	MARS	107.5	99.0	103	6.7	6.5	.004		337	4.7	2.0	173	0	4.7
	AVRIL	85.5	101.5	93.5	5.3	5.7	.003		356	5.1	0.2	182	0	5.1
	MAI	79.0	74.5	77	1.7	2.2	.001		330	4.6	(0)	173	0	4.6
	JUIN	171.5	149.0	160.5	10.0	6.2	.006		434	6.7	3.3	242	0	6.7
	JUILLET	171.5	132.0	151.5	7.2	4.8	.004		483	7.7	(0)	287	0	7.7
	AOUT	269.5	227.0	248.5	37.0	14.9	.021		638	10.8	26.2	403	18.5	29.3
	SEPTEMBRE	222.0	210.5	216.5	39.1	18.1	.023		777	13.5	25.6	436	39.9	53.4
	OCTOBRE	297.5	(246.5)	271	84.2	31.1	.047		888	15.8	68.4	497	79.6	95.4
	NOVEMBRE	262.0	243.0	252.5	105.7	41.9	.062		989	17.8	87.9	507	86.1	103.9
	DECEMBRE	113.5	73.0	93.5	22.5	24.1	.013		834	14.7	7.8	352	6.2	20.9
	TOTAL	1944.0	1710.5	1827.0	340.8	18.7	.016*			123.0 34.8 %			230.3 65.2%	353.3
		*	débit m	oyen anr	nuel			1						

BASSIN VERSANT DU QUARTIER LA DUCHENE

Reconstitution des valeurs mensuelles de l'écoulement (1960-1976)

		Jt	А	S	0	N	D	J	F	М	А	М	J	
1960	P DUCHENE	335	145	211	256	186	179	164	120	112	47	148	119	
-61	P BV	316	147	206	246	183	177	164	125	117	60	150	119	2015
	IP1	662	668	802	915	782	812	770	649	583	466	452	451	
	IP2	431	408	404	434	417	379	343	293	254	179	227	247	
	LB	11	11	14	16	14	14	13	11	10	7	7	7	135
	LR	36	22	19	39	28	9	5	0	0	0	0	0	158
	L;	47	33	33	55	42	23	18	11	10	7	7	7	293 ke=14.5%
1961	P DUCHENE	309	306	81	257	187 .	190	146	90	43	114	28	178	
-62	P BV	293	290	90	247	184	187	148	98	56	119	43	176	1931
	IP1	627	857	797	920	811	708	766	617	489	421	316	394	
	IP2	425	532	381	397	384	390	334	258	169	188	143	242	
	LB	11	15	14	16	14	12	13	10	8	6	4	6	129
	LR	33	102	9	15	9	10	4	0	0	0	0	0	182
	L	44	117	23	31	23	22	17	10	8	6	4	6	311 ke=16.1%
1962	P DUCHENE	225	231	309	163	121	139	174	74	56	123	164	98	
-63	PBV	218	223	293	1 63	125	142	173	84	68	127	164	195	1885
	IP1	556	660	910	897	804	723	603	524	467	452	443	464	
	IP2	354	428	515	435	327	278	310	248	179	200	273	258	
	LB	9	11	16	16	14	12	10	8	7	7	7	7	124
	LR	6	35	91	39	4	0	2	0	0	0	0	0	177
	L	15	46	107	55	18	12	12	8	7	7	7	7	301 Ke=16.0%
													ļ	

256

		Jt	A.	S	0	Ñ	D	J	F	М	А	М	J	
1966	P DUCHENE P BV IP1	82 91 851	127 131 810	207 202 679	217 211 635	410 383 927	143 145 941	126 130 869	109 115	142 144	106 112	72 82	45 58	1804
	IP2	369	271	321	392	591	476	346	. 7 7 3 250	534 264	501 247	453 204	396 149	
	LB	15	14	12	11	17	17	15	13	9	8	7	149	144
	LR	8	0	3	11	141	66	6	0	00	0	00	0	235
	L	23	14	15	22	158	83	21	13	9	8	7	6	379 Ke=21.0%
1967	P DUCHENE	123	151	503	204	140	97	132	22	85	198	188	272	
-68	P BV	137	152	465	199	142	104	135	37	93	194	185	260	2093
	IP1	379	419	802	943	958	910	580	418	369	459	509	732	
	IP2	192	258	610	570	421	263	250	163	159	270	349	44 8	
	LB	6	6	14	17	17	16	10	6	5	7	8	13	125
	LR	0	0	153	127	30	0	0	0	0	0	6	48	364
	L	6	6	167	144	47	16	10	6	5	7	14	61	489 Ke=23.4%
1968	P DUCHENE	139	225	217	186	175	216	144	34	21	42	141	270	
-69	P BV	142	218	211	183	174	210	146	48	36	55	143	258	1824
	IP1	781	805	831	754	786	778	713	578	440	285	282	492	
	IP2	380	395	406	396	365	387	345	213	113	95	192	375	
	LB	14	14	15	13	14	14	12	10	7	4	4	8	129
	LR	9	14	21	14	8	10	6	0	0	0	0	8	90
	L	23	28	36	27	22	24	18	10	7	4	4	16	219 Ke=12.0%

		Jt	А	S	0	N	D	J	F	М	A	М	J	,
1969	P DUCHENE	357	200	196	282	302	231	27	29	109	118	226	381	
-70	P BV	336	196	192	269	287	223	42	44	115	123	219	357	2403
	IP1	792	933	982	993	944	971	821	596	424	324	501	814	
-	IP2	560	509	430	462	533	505	284	140	158	217	340	547	
	LB	14	17	18	18	17	17	14	10	6	4	8	14	157
	LR	120	87	36	57	103	84	0	0	0	0	5	112	604
	L	134	104	54	75	120	101	14	10	6	4	13	126	761 Ke=31.7%
1970	P DUCHENE	579	360	148	457	275	308	201	215	42	130	123	37	
-71	P BV	533	338	150	425	263	292	197	209	55	134	127	51	(2774)
	IP1	1232	1447	1378	1446	1176	1130	1177	961	753	595	525	367	Pluviométrie
	IP2	849	818	547	631	606	604	480	435	260	235	237	180	considérée
	LB	23	27	26	27	22	21	22	17	13	10	9	5	comme fausse
	LR	308	288	112	167	150	149	69	39	0	0	0	0	
	L	331	315	138	194	172	170	91	56	13	10	9	5	(1504) Ke=(54.2%)
1971	P DUCHENE	103	297	164	38	22	287	265	150	200	200	156	104	
-72	P BV	109	282	164	52	37	273	254	151	196	196	157	110	1981
	IP1	421	569	606	607	535	526	616	715	874	7 97	700	659	,
	IP2	183	374	394	251	123	315	456	411	378	379	353	279	
	LB	6	9	10	10	9	9	10	12	15	14	12	11	127
	LR	0	8	13	0	0	2	53	23	9	9	6	0	1 2 3 ,
	L .	6	17	23	10	9	11	63	35	24	23	18	11	250 Ke=12.6%

-		Π		r	(<u> </u>	·	<u> </u>						
		Jt	А	S	0	N	D	J	F_	M	A	М	J	
1972	P DUCHENE	213	84	202	251	130	291	78	63	27	95	56	218	
-73	P BV	207	93	198	241	134	277	87	74	42	102	68	212	1735
	IP1	670	567	608	739	666	850	739	572	480	305	286	424	
	IP2	331	271	325	408	362	443	321	218	120	154	152	290	
	LB	11	9	10	13	11	15	13	9	8	4	4	6	113
	LR	4	0	4	21	7	45	3	0	0	0	0	0	84
	L	15	9	14	34	18	60	16	9	8	4	4	6	197 Ke=11.4%
1973	P DUCHENE	72	145	356	102	59	68	140	176	117	39	56	93	
-74	P BV	82	147	335	109	70	78	142	174	122	53	68	101	1481
	IP1	464	509	776	673	661	592	399	464	516	491	417	344	
	IP2	251	268	463	388	247	160	218	297	286	191	142	165	
	LB	7	8	14	11	11	10	6	7	8	8	6	5	100
	LR	0	0	57	10	0	0	0	1	0	0	0	0	68
	L	7	8	71	21	11	10	6	7	8	8	6	5	168 Ke=11.3%
1974	P DUCHENE	81	63	191	305	179	67	92	72	31	27	33	44	
- 75	P BV	90	74	188	289	177	77	100	82	45	42	47	57	1268
	IP1	312	333	453	641	728	731	643	436	304	269	216	191	
	IP2	181	167	267	443	436	288	207	175	132	98	90	103	
	LB	4	5	7	11	13	13	11	7	4	3	2	2	82
	LR	0	0	0	44	40	0	0	0	0	0	0	0	84
	L	4	5	7	55	53	13	11	7	4	3	2	2	166 Ke=13.1%

TABLEAU LXIV (suite) 5

		Jt	А	S	0	N	D	J	F	М	А	М	J	
1975	P DUCHENE	54	175	124	449	218	242	81	99	51	32	40	91	
-76	P BV	66	174	128	417	212	233	90	106	63	46	53	99	1687
	IP1	212	344	425	785	931	990	952	641	492	305	268	261	,
	IP2	120	237	270	559	542	507	317	239	164	122	104	150	
	LB	2	5	7	14	17	18	17	11	8	4	3	3	109
	LR	0	0	0	120	109	86	3	0	0	0	0	0	318
	L	2	5	7	134	126	104	20	11	8	4	3	3	427 Ke=25.3%

BASSIN VERSANT DL DUCHENE

Chronique reconstituée des écoulements annuels

Année	imn Imn	mm L	% Ke	MM De	MM LB	% KB	- MM LR	π KR	Rang	F	P	L
1960 - 61	2015	293	14.5	1722	135	6.7	158	7.8	1	.029	2403	761
1961 - 62	1931	311	16.1	1620	129	6.7	182	9.4	2	.088	2093	502
1962 - 63	1885	301	16.0	1584	124	6.6	177	9.4	3	.147	2054	489
1963 - 64	1995	502	25.2	1493	131	6.6	371	18.6	4	.206	2015	427
1964 - 65	1579	216	13.7	1363	111	7.0	105	6.7	5	.265	1995	379
1965 - 66	2054	324	15.8	1730	118	5.7	206	10.1	6	.324	1981	373
1966 - 67	1804	379	21.0	1425	144	8.0	235	13.0	7	.382	1931	325
1967 - 68	2093	489	23.4	1604	125	6.0	364	17.4	8	.441	1885	324
1968 - 69	1824	219	12.0	1605	129	7.1	90	4.9	9	.500	1824	311
1969 - 70	2403	761	31.7	1642	157	6.5	(604)	(25.2)	10	.559	1804	301
1970 - 71*	(2774)	(1504)	(54.2)	(1270)		-	-		11	.618	1735	293
1971 - 72	1981	250	12.6	1731	127	6.4	123	6.2	12	.676	1694	250
1972 - 73	1735	197	11.4	1538	113	6.5	84	4.9	13	.735	1687	219
1973 - 74	1481	168	11.3	1313	100	6.8	68	4.5	14	.794	<u>1593</u>	216
1974 - 75	1268	166	13.1	1102	82	6.5	84	6.6	15	.853	1579	197
1975 - 76	1687	427	25.3	1260	109	6.5	318	18.8	16	.912	1481	168
1976 - 77	1593	<u>373</u>	23.4	1220	104	6.5	269	16.9	17	.971	1268	166
1977 - 78	1694	325	19.2	1369	106	6.3	219	12.9				

^{*} Pluviométrie DUCHENE - METEO considérée comme <u>fausse</u> pour l'année 1970 Valeurs soulignées = années observées