

ORGANISATION POUR LA MISE EN VALEUR DU FLEUVE SENEGAL (O. M. V. S.)

PROGRAMME D'OPTIMISATION DE LA GESTION DES RESERVOIRS

MANUEL DE GESTION DU BARRAGE DE DIAMA

Version finale
Octobre 2001

Auteur : JC Bader

TABLE DES MATIERES

Avant-propos	<u>3</u>
1 Synthèse des résultats	3
1.1 Etalonnage des vannes	3
1.2 Relation entre le débit lâché et la cote à l'aval de l'ouvrage	3
1.3 Relation entre cote amont et cote aval en régime d'écoulement établi	
1.4 Distribution des valeurs de débit lâché et de dissipation d'énergie en régime établi, en fonction du niv	eau
amont et du réglage des vannes	4
1.5 Dépassement de la limite 1000 m ⁴ /s en régime établi	5
1.6 Energie dissipée pendant le régime transitoire succédant au changement de réglage des vannes	
1.7 Cas où le nombre de vannes utilisées est inférieur à 7	
1.8 Gestion du barrage en période d'étiage	6
1.9 Gestion du barrage en période de crue	6
1.10 Gestion du barrage en fin de crue	6
1.11 Gestion du barrage en début de crue	7
1.12 Impossibilité de laminer les débits de crue à l'aide du barrage	8
1.13 Evacuation des végétaux aquatiques flottants	
2 Etalonnage des vannes	
2.1 Mesures de débit	9
2.2 Mise en équation de l'étalonnage des vannes.	9
2.2.1 Etalonnage utilisé par la SOGED	9
2.2.2 Calage de la formule d'écoulement à partir des mesures de débit	
2.2.2.1 Ecoulement à travers les vannes complètement noyées	9
2.2.2.2 Ecoulement à travers les vannes partiellement noyées	10
2.2.2.3 Ecoulement libre par les vannes complètement ouvertes	
2.3 Conclusion	
3 Calcul des débits lâchés par le barrage entre 1986 et 1999	13
4 Influence du débit lâché sur le niveau aval en régime d'écoulement établi	13
5 Relation entre cote amont et cote aval en régime d'écoulement établi	
5.1 Vannes noyées	14
5.2 Vannes effacées	15
6 Débit lâché en régime établi, en fonction de la cote amont et du réglage des vannes	16
7 Energie dissipée en régime établi, en fonction de la cote amont et du réglage des vannes	17
8 Régime transitoire succédant au changement de réglage de vanne	18
8.1 diminution de l'ouverture des vannes	19
8.2 Augmentation de l'ouverture des vannes	19
9 Cas où le nombre de vannes utilisées est inférieur à sept	20
10 Procédures générales de gestion du barrage	21
10.1 Période d'étiage	21
10.2 Période de crue	21
10.3 Fin de crue	21
10.3.1 Rehaussement du plan d'eau à date fixe.	
10.3.2 Rehaussement à date optimale	23
10.4 Début de crue	24
10.4.1 Objectif de gestion	
10.4.2 Eléments permettant d'élaborer une stratégie optimale d'abaissement du niveau	24
10.4.3 Procédure préconisée pour abaisser le plan d'eau	
10.4.4 Dates probables de l'abaissement de niveau	26
11 Erreurs de gestion à éviter	
11.1 Laminage des débits de pointes de crue	27
11.2 Manœuvres de chasse d'eau	27
Liste des variables utilisées	
Annexe 1 : Notice d'utilisation de la feuille de calcul Excel destinée à la gestion en temps réel du barrage	67
Annexe 2 : Barème donnant le débit évacué par les vannes noyées en fonction de la dénivelée amont aval et	du
réglage des vannes	70

AVANT - PROPOS

Le premier objectif de cet étude consiste à décrire par quelques équations mathématiques, les grandes règles physiques de fonctionnement du barrage de Diama. Cette modélisation s'appuie sur une analyse de l'ensemble des données hydrologiques recueillies au barrage depuis le début de son exploitation. Un accent tout particulier est mis sur l'étalonnage des vannes.

Le second objectif, essentiel, consiste à utiliser les équations ainsi établies pour proposer des consignes d'exploitation permettant à la SOGED d'atteindre ses objectifs de gestion (maintien d'un plan d'eau amont élevé le plus longtemps possible hors période de crue), tout en respectant une importante règle de sécurité imposée par le constructeur du barrage. Celle-ci limite à $1000 \, \mathrm{m}^4/\mathrm{s}$ au maximum, le produit du débit par la dénivelée entre les plans d'eau amont et aval.

Une feuille de calcul Excel, dont la notice d'utilisation est placée en annexe 1, est par ailleurs proposée pour assister la gestion en temps réel du barrage en utilisant les résultats présentés dans ce manuel.

1 SYNTHESE DES RESULTATS

1.1 ETALONNAGE DES VANNES

Le débit lâché par le barrage peut être calculé à l'aide des formules suivantes, relatives chacune à un régime d'écoulement particulier :

Vannes noyées (plongées dans l'eau), régime établi ou transitoire (juste après modification de réglage) (voir barème en annexe 2):

Q1 =
$$1,0566 * E * N * L * (2 * g * (Hm - Hv))^{0,3761}$$

Vannes effacées, régime établi (différence de niveau entre amont et aval inférieure à 20 cm) :

$$Q2 = 9,494 * N * L * (Hm - 0,01)^{0,8293}$$

Vannes effacés, régime transitoire (différence de niveau entre amont et aval supérieure à 20 cm) :

Q3 = 1,1607 * N * L * (Hv + 8,97) * (2 * g * (Hm - Hv))
$0,4053$

Signification des paramètres:

E (m) : ouverture verticale des vannes N : nombre de vannes ouvertes L (m) : largeur des vannes, égale à 20 m g (m/s²) : accélération de pesanteur (= 9,81)

Hm (m) : cote à l'amont du barrage Hv (m) : cote à l'aval du barrage Q1, Q2, Q3 (m3/s) : débit sortant du barrage

1.2 RELATION ENTRE LE DEBIT LACHE ET LA COTE A L'AVAL DE L'OUVRAGE

A l'aval du barrage, le niveau du plan d'eau varie en fonction du débit lâché (régime établi) et des conditions imposées par la marée (tab. 2). La relation moyenne avec le débit s'exprime comme suit (fig. 3):

$$Hv = 4.907 * 10^{-8} * Q^2 + 6.099 * 10^{-4} * Q + 0.04603$$

L'influence de la marée se traduit par une dispersion des cotes aval autour de cette relation moyenne. Cette dispersion décroît avec le débit. Dans 96% des cas, le niveau aval se situe entre les cotes Hv1 et Hv2, qui sont reliées au débit lâché (régime établi) de la façon suivante (fig. 4) :

Hv1 (Q) =
$$-2,834*10^{-11}*Q^3 + 1,283*10^{-7}*Q^2 + 4,160*10^{-4}*Q + 4,857*10^{-1}$$

Hv2 (Q) = $7,975*10^{-12}*Q^3 + 1,283*10^{-7}*Q^2 + 4,160*10^{-4}*Q - 2,561*10^{-1}$

Signification des paramètres :

Hv (m) : niveau moyen du plan d'eau à l'aval du barrage, en fonction du débit

Q (m³/s): débit lâché du barrage

Hv1 (m): pour Q donné, la cote aval Hv n'a que 1 chance sur 50 d'être supérieure à Hv1 Hv2 (m): pour Q donné, la cote aval Hv n'a que 1 chance sur 50 d'être inférieure à Hv2

1.3 RELATION ENTRE COTE AMONT ET COTE AVAL EN REGIME D'ECOULEMENT ETABLI

La relation moyenne entre les deux niveaux s'exprime comme suit quand les vannes sont noyées (fig. 5A, 5B et 6):

Hv =
$$(-2.09*10^{-3} * P^2 + 8.70*10^{-2} * P - 2.42*10^{-2}) * Hm + 0.09$$

S = $2.54*10^{-4} * P^2 - 1.39*10^{-2} * P + 1.90*10^{-1}$

Quand les vannes sont effacées, cette relation est la suivante (fig.7):

$$Hv = -0.0686 * Hm^2 + 1.0644 * Hm$$

 $\sigma = 0.016$

Signification des paramètres :

Hv (m) : niveau moyen du plan d'eau à l'aval du barrage, en fonction du niveau amont

Hm (m): niveau du plan d'eau à l'amont du barrage

P : palier de réglage des vannes

 $\begin{array}{lll} S\ (m) & : & \text{\'ecart type r\'esiduel de la relation Hv(Hm) quand les vannes sont noyées} \\ \sigma\ (m) & : & \text{\'ecart type r\'esiduel de la relation Hv(Hm) quand les vannes sont effacées} \end{array}$

1.4 DISTRIBUTION DES VALEURS DE DEBIT LACHE ET DE DISSIPATION D'ENERGIE EN REGIME ETABLI, EN FONCTION DU NIVEAU AMONT ET DU REGLAGE DES VANNES

Quand les vannes sont noyées, les relations suivantes permettent d'évaluer les valeurs du débit et du produit Q*(Hm-Hv) (représentatif de l'énergie dissipée) qui sont dépassées à la fréquence f (tab. 4 ; fig 8A à 8D et 9A à 9D):

Signification des paramètres :

Hv(f,Hm,P) (m) : cote aval dépassée à la fréquence f, pour Hm et P donnés

: fréquence de dépassement (entre 0 et 1)

Hm (m) : cote du plan d'eau amont P : palier de réglage des vannes

n : paramètre associé à la fréquence de dépassement f (tab. 5)

Q1a(f,Hm,P) (m³/s) : débit dépassé à la fréquence f, pour Hm et P donnés

E (m) : ouverture verticale des vannes N : nombre de vannes ouvertes L (m) : largeur des vannes, égale à 20 m

g (m/s²) : accélération de pesanteur (= 9.81)

Hv (m) : cote à l'aval du barrage

 $[Q * (Hm-Hv)]_{(f,Hm,P)}$: valeur de Q*(Hm-Hv) dépassée à la fréquence f, pour Hm et P donnés

Quand les vannes sont effacées, le produit Q*(Hm-Hv) représentatif de la dissipation d'énergie vaut (tab. 4 ; fig 9A à 9D):

$$Q * (Hm-Hv) = 9,494 * N * L * (Hm - 0,01)^{0,8293} * (Hm - (-0,0686 * Hm2 + 1,0644 * Hm))$$

1.5 DEPASSEMENT DE LA LIMITE 1000 M⁴/S EN REGIME ETABLI

Afin de préserver la stabilité de l'ouvrage, le constructeur préconise de maintenir la valeur du produit Q*(Hm-Hv) en deçà de 1000m⁴/s. En régime établi, le risque maximum de dépassement de cette limite se situe autour des paliers de réglage 6 et 7.

Pour limiter le dépassement des 1000m⁴/s en dessous d'une fréquence donnée, le palier de réglage des vannes doit être maintenu en dehors d'une plage [P1 ; P2]. Les limites P1 et P2 sont liées à la cote Hm du plan d'eau amont de la façon suivante :

P1 = a1 + b1 *
$$(Hm - c1)^{d1}$$

P2 = a2 + b2 * $(Hm - c2)^{d2}$

Dans ces relations, les paramètres a1, b1, c1, d1, a2, b2, c2, d2 sont liés à la fréquence de dépassement de la limite 1000 m⁴/s (tab. 7 ; fig. 10 A à 10 C et 13)

1.6 ENERGIE DISSIPEE PENDANT LE REGIME TRANSITOIRE SUCCEDANT AU CHANGEMENT DE REGLAGE DES VANNES

En régime établi, le niveau aval fluctue au gré de la marée autour d'une valeur médiane liée au réglage des vannes et au niveau amont. Dès que ce réglage est modifié, le niveau aval évolue vers la valeur liée au nouveau réglage, par remplissage du bief aval (augmentation d'ouverture de vanne) ou par vidange (diminution d'ouverture). D'une façon générale, le passage du palier P (inchangé depuis quelques temps, régime établi) au palier P+x entraîne, juste après la manœuvre, la valeur moyenne suivante pour le produit Q*(Hm-Hv) :

```
Q*(Hm-Hv) = 1,0566*E(P+x)*N*L*(2*g)^{0.3761*}(Hm-((-2.09*10^{-3}*P^2 + 8.70*10^{-2}*P-2.42*10^{-2})*Hm+0.09))^{1.3761}
```

Signification des paramètres :

E(P+x) (m) : nouvelle ouverture verticale des vannes
P : ancien palier de réglage des vannes
P+x : nouveau palier de réglage des vannes

N : nombre de vannes ouvertes
L (m) : largeur des vannes, égale à 20 m
g (m/s²) : accélération de pesanteur (= 9,81)

Hm (m) : cote amont Hv (m) : cote aval Contrairement à la diminution d'ouverture, l'augmentation d'ouverture des vannes peut entraîner pendant le régime transitoire lui succédant, des valeurs de produit Q*(Hm-Hv) beaucoup plus élevées que celles du régime établi. Plus l'ouverture est brutale (valeur de x élevée), plus le risque de dépassement de la limite 1000 m⁴/s est important (fig. 11A à 11C).

1.7 CAS OU LE NOMBRE DE VANNES UTILISEES EST INFERIEUR A 7

Compte tenu des éléments disponibles, et pour aller dans le sens de la sécurité, il est préconisé de maintenir la valeur du produit Q*(Hm-Hv) en deçà de 143*N m⁴/s, quel que soit le nombre N de vannes utilisées. Ceci revient à respecter, quel que soit N, les limites P1 et P2 définies plus haut.

1.8 GESTION DU BARRAGE EN PERIODE D'ETIAGE

L'objectif consiste à maintenir un niveau élevé dans la retenue. Les manœuvres de vannes consistent à augmenter ou diminuer l'ouverture, selon que le niveau tend à passer au dessus ou au dessous du niveau objectif.

Compte tenu de la faiblesse des apports, l'ouverture des vannes reste très limitée et aucun risque de dépassement des 1000 m⁴/s n'est alors à craindre pendant cette période.

1.9 GESTION DU BARRAGE EN PERIODE DE CRUE

L'objectif consiste à maintenir le niveau amont à la cote 1,50 m. Le principe de manœuvre des vannes est le même qu'en période d'étiage tant que le débit moyen à évacuer reste inférieur à1850 m³/s. Au delà, les vannes grandes ouvertes laissent le niveau évoluer au dessus de la cote 1,50m en fonction du débit évacué.

Avec une cote amont de 1,50 m, le risque maximal de dépassement des 1000 m⁴/s en régime établi (environ 1/5) est rencontré lorsque les vannes doivent être ouvertes entre les paliers 6 et 7 pour évacuer un débit de l'ordre de 1200 m3/s. Tous les paliers de réglage peuvent donc être utilisés pour ajuster le débit évacué et maintenir le niveau à 1,50 m sans risque important..

1.10 GESTION DU BARRAGE EN FIN DE CRUE

L'objectif consiste à faire remonter le plan d'eau amont le plus tôt possible jusqu'au niveau objectif d'étiage, sans risquer de dépasser la limite des 1000 m⁴/s. La procédure préconisée, illustrée sur la figure 13, est la suivante :

Le rehaussement ne débute que lorsque les deux conditions suivantes (rencontrées entre fin septembre et fin novembre selon les années) ont été vérifiées :

- Le passage du maximum de crue doit avoir été constaté sans ambiguïté à partir des cotes relevées sur les stations de l'amont.
- Le maintien du niveau amont à la cote 1,50 m doit être fait avec un palier de réglage inférieur à 7 ou, ce qui revient au même : le réglage au palier 7 entraîne un abaissement du plan d'eau en dessous de 1,50 m.

Dès lors, il suffit dans un premier temps de poursuivre la fermeture progressive des vannes pour maintenir la cote 1,50 m, jusqu'à ce que le palier de réglage corresponde au niveau de risque accepté pour le dépassement de la limite d'énergie dissipée (fig. 10 B). Ensuite, le rythme de fermeture peut être accéléré pour rehausser le plan d'eau.

Durant le rehaussement, il doit être constamment vérifié (figure 10 B) que le niveau Hm ne dépasse pas la relation Hm1(P1) associée au niveau de risque accepté. En pratique, le rehaussement progressif mené par palier ou demi palier doit suivre les principes suivants :

- Dès que l'on constate sur une journée à palier P constant une stabilisation du niveau Hm, voire une tendance à la baisse, on diminue l'ouverture des vannes.
- Si le niveau Hm dépasse la limite Hm1 (fig. 10 B) relative au palier P de réglage en cours, on augmente l'ouverture des vannes.

Les apports de débit dans la retenue étant encore assez importants mais en phase de diminution, ce processus permet d'aboutir inévitablement, le plus rapidement possible et sans dépasser le niveau de risque accepté, au rehaussement du niveau à la cote souhaitée de 2,0 m ou plus.

1.11 GESTION DU BARRAGE EN DEBUT DE CRUE

L'objectif consiste à maintenir le plus tard possible le plan d'eau amont au niveau objectif d'étiage, avant de l'abaisser jusqu'au niveau 1,50 m sans risquer de dépasser les 1000 m⁴/s.

La solution préconisée consiste à conserver un niveau élevé permettant toutefois, si l'évolution des débits à Bakel le nécessite, d'abaisser le niveau à la cote 1,50 m en 8 jours avec un risque faible de dépassement des 1000 m⁴/s. La procédure générale d'abaissement (tab. 9 A à 9 D ; fig.14 A à 14 D) est valable quel que soit le niveau de départ. Elle est explicitée ci-dessous dans le cas où celui-ci se situe à la cote 2,00 m, pour un risque de dépassement des 1000 m4/s limité à 1/10 :

- Le plan d'eau est maintenu à la cote 2,00 m tant que la cote à l'échelle de Bakel n'a pas dépassé 356 cm. Dès que cette limite a été dépassée, le plan d'eau est abaissé jusqu'à la cote 1,95 m (palier théoriquement inférieur ou égal à 2).
- Le plan d'eau est maintenu à la cote 1,95 m tant que la cote à l'échelle de Bakel n'a pas dépassé 375 cm. Dès que cette limite a été dépassée, le plan d'eau est abaissé jusqu'à la cote 1,90 m (palier théoriquement inférieur ou égal à 2,5).
- Le plan d'eau est maintenu à la cote 1,90 m tant que la cote à l'échelle de Bakel n'a pas dépassé 379 cm. Dès que cette limite a été dépassée, le plan d'eau est abaissé jusqu'à la cote 1,85 m (palier théoriquement inférieur ou égal à 2,5).
- Le plan d'eau est maintenu à la cote 1,85 m tant que la cote à l'échelle de Bakel n'a pas dépassé 383 cm. Dès que cette limite a été dépassée, le plan d'eau est abaissé jusqu'à la cote 1,80 m (palier théoriquement inférieur ou égal à 2,5).
- Le plan d'eau est maintenu à la cote 1,80 m tant que la cote à l'échelle de Bakel n'a pas dépassé 387 cm. Dès que cette limite a été dépassée, le plan d'eau est abaissé jusqu'à la cote 1,75 m (palier théoriquement inférieur ou égal à 3).
- Le plan d'eau est maintenu à la cote 1,75 m tant que la cote à l'échelle de Bakel n'a pas dépassé 409 cm. Dès que cette limite a été dépassée, le plan d'eau est abaissé jusqu'à la cote 1,70 m (palier théoriquement inférieur ou égal à 3).
- Le plan d'eau est maintenu à la cote 1,70 m tant que la cote à l'échelle de Bakel n'a pas dépassé 412 cm. Dès que cette limite a été dépassée, le plan d'eau est abaissé jusqu'à la cote 1,65 m (palier théoriquement inférieur ou égal à 3).
- Le plan d'eau est maintenu à la cote 1,65 m tant que la cote à l'échelle de Bakel n'a pas dépassé 416 cm. Dès que cette limite a été dépassée, le plan d'eau est abaissé jusqu'à la cote 1,60 m (palier théoriquement inférieur ou égal à 3,5).
- Le plan d'eau est maintenu à la cote 1,60 m tant que la cote à l'échelle de Bakel n'a pas dépassé 441 cm. Dès que cette limite a été dépassée, le plan d'eau est abaissé jusqu'à la cote 1,55 m (palier théoriquement inférieur ou égal à 3,5).
- Le plan d'eau est maintenu à la cote 1,55 m tant que la cote à l'échelle de Bakel n'a pas dépassé 465 cm. Dès que cette limite a été dépassée, le plan d'eau est abaissé jusqu'à la cote 1,50 m (palier théoriquement inférieur ou égal à 4).

Selon les années l'abaissement de niveau ainsi réalisé en fonction de l'arrivée de la crue peut débuter entre début juillet et mi-août. Il peut durer entre 1 et 7 semaines.

1.12 IMPOSSIBILITE DE LAMINER LES DEBITS DE CRUE A L'AIDE DU BARRAGE

En tant que barrage au fil de l'eau, Diama a une capacité de stockage insuffisante pour pouvoir laminer une pointe de crue dans le but de protéger la ville de Saint-Louis. Toute tentative de laminage est à la fois inefficace (faible diminution du débit lâché, pendant un temps court) et dangereuse, du fait qu'il se traduit par un rehaussement rapide du plan d'eau amont et de la courbe de remous, pouvant entraîner un risque de submersion des digues.

1.13 EVACUATION DES VEGETAUX AQUATIQUES FLOTTANTS

Les procédures de chasse d'eau (ouverture temporaire totale d'une vanne) destinées à évacuer vers l'aval les végétaux aquatiques flottants accumulés à l'amont du barrage, ne peuvent être envisagées qu'en cas de dénivelée faible entre l'amont et l'aval.

En cas de forte dénivelée, elles s'accompagnent d'une dissipation d'énergie dépassant largement la limite autorisée. L'évacuation doit alors être effectuée par l'écluse du barrage, comme le fait déjà la SOGED.

2 ETALONNAGE DES VANNES

2.1 MESURES DE DEBIT

Entre le 30/09/1998 et le 12/10/2000, l'IRD a réalisé seize mesures de débit par la méthode ADCP, pour différentes ouvertures de vannes réparties entre le palier 0 (vannes fermées) et le palier 22 (vannes effacées). Aucune modification de réglage de vanne n'ayant été effectuée dans les 6 heures précédant chacune de ces mesures, on peut considérer que celles-ci sont toutes représentatives d'un régime d'écoulement établi. Ces jaugeages, réalisés sur une section située à quelques dizaines de mètres à l'amont du barrage, prennent en compte la totalité du débit passant par les 7 vannes de l'ouvrage, toutes réglées de façon identique. Voir le tableau 1.

2.2 MISE EN EQUATION DE L'ETALONNAGE DES VANNES.

2.2.1 ETALONNAGE UTILISE PAR LA SOGED

L'ensemble des données de la période 1986-1999, concernant le réglage des vannes et les relevés de cote à l'amont et à l'aval du barrage, a été récupéré auprès de la SOGED sous forme de tableaux Excel. Dans ces tableaux, le débit Qs passant par les vannes du barrage est calculé par la formule suivante, en m³/s :

Qs = Ks * E * N * L *
$$(2 * g * (Hm - Hv))^{0.5}$$

Ks : coefficient de débit fixé à 0,85
E (m) : ouverture verticale des vannes
N : nombre de vannes ouvertes
L (m) : largeur des vannes, égale à 20 m
g (m/s²) : accélération de pesanteur (= 9,81)

Hm (m) : cote à l'amont du barrage Hv (m) : cote à l'aval du barrage

Cette formule peut être établie à partir de la relation de Bernoulli en négligeant les pertes de charge, pour l'écoulement au travers de vannes complètement noyées. Dans les tableaux fournis par la SOGEM, elle est semble-t-il utilisée indifféremment pour ce type d'écoulement et (du 22/9 au 18/11/1999) pour certains cas où les vannes sont complètement effacées.

2.2.2 CALAGE DE LA FORMULE D'ECOULEMENT A PARTIR DES MESURES DE DEBIT

2.2.2.1 ECOULEMENT A TRAVERS LES VANNES COMPLETEMENT NOYEES

Les vannes sont dites complètement noyées quand le niveau aval est plus élevé que le point le plus haut de l'orifice d'écoulement. Parmi les 16 mesures effectuées, celles qui correspondent à ce régime sont au nombre de 10. Sur le tableau 1 et la figure 1, on constate que la formule Qs utilisée jusqu'à présent par la SOGED tend à surestimer légèrement le débit réel dans ces conditions d'écoulement. Il est donc nécessaire de recaler cette formule théorique, qui ne tient pas compte des pertes de charge. L'expérience montre en fait que l'exposant 0,5 peut prendre des valeurs n1 différentes selon la géométrie des ouvrages. La formule préconisée est la suivante :

Q1 = K1 * E * N * L *
$$(2 * g * (Hm - Hv))^{n1}$$

L'optimisation des paramètres K1 et n1 par la méthode des moindres carrés appliquée sur les 10 points mesurés, donne les résultats suivants, pour Q1 exprimé en m³/s:

```
K1 = 1,0566
n1 = 0,3761
\sigma = 23 m<sup>3</sup>/s (erreur quadratique moyenne, ou écart type résiduel sur les 10 points)
```

Cette formule est calée sur des mesures réalisées en régime d'écoulement établi. Cependant, elle reste tout à fait valable pendant le régime transitoire succédant au changement de réglage des vannes, du fait qu'elle tient compte des cotes amont et aval de façon indépendante.

2.2.2.2 ECOULEMENT A TRAVERS LES VANNES PARTIELLEMENT NOYEES

L'orifice d'écoulement est dit partiellement noyé quand le niveau aval se situe entre le bord supérieur et le bord inférieur de l'orifice, le niveau amont étant toujours plus élevé que le bord supérieur. Aucune mesure de débit n'a été effectuée dans ces conditions, qui ne concernent que cinq relevés (sur plus de douze mille) enregistrés par la SOGED entre 1986 et 1999. Il n'est cependant pas exclu que ce type d'écoulement puisse être observé fréquemment en régime transitoire, suite à une ouverture rapide des vannes.

La littérature (Lencastre, Manuel d'hydraulique générale, EDF 1986) propose pour ce type d'écoulement une formule identique à celle des vannes complètement noyées, à laquelle est ajouté un terme correctif basé sur la différence de cote entre bord supérieur de l'orifice et niveau aval. On ne dispose pas des éléments suffisants pour caler une telle formule. Aussi, en première approximation, la formule Q1 calée ci-dessus pour les vannes complètement noyées sera également utilisée dans le cas peu fréquent des vannes partiellement noyées.

2.2.2.3 ECOULEMENT LIBRE PAR LES VANNES COMPLETEMENT OUVERTES

D'après les relevés de la SOGEM, l'effacement total des vannes a été effectué durant 2,6 pourcent du temps depuis 1986, sur les trois périodes suivantes: du 22/9 au 28/10/1988; du 14/09 au 19/10/1995; du 22/9 au 18/11/1999. Le tableau 1 et la figure 1 montrent que la formule Qs utilisée par la SOGED sous-estime de façon importante les débits, lorsque les vannes sont complètement effacées.

Dans ces conditions d'écoulement, le débit lâché par le barrage ne dépend que du niveau du plan d'eau à l'amont de l'ouvrage, et des conditions aval imposées par l'onde de marée. En régime établi, l'influence des conditions aval tend à s'annuler lorsque le niveau amont augmente, et peut être négligée dès que celui-ci dépasse 0,80 m. En effet, on observe que le niveau aval ne dépasse jamais 0,60 m quand les vannes sont fermées.

Six mesures de débit ont été réalisées alors que les vannes étaient totalement ouvertes. Les niveaux amont étaient très élevés (> 1,48 m) lors de toutes ces mesures, et les débits obtenus peuvent donc être estimés sans tenir compte des conditions aval, par une formule du type suivant :

$$Q2 = K2 * N * L * (Hm - H2)^{n2}$$

L'optimisation des paramètres K2, H2 et n2 est effectuée selon les principes suivants :

Il faut minimiser l'écart type résiduel sur les 6 débits mesurés (méthode des moindres carrés).
 Ce principe à lui seul ne permet cependant pas de lever toutes les indéterminations, car pour toutes les valeurs de n2 testées entre 0,1 et 1,6, on peut trouver un couple de paramètres K2 et H2 satisfaisant, chacun de ces triplets donnant un écart type résiduel d'environ 19 m³/s sur les 6 débits reconstitués.

- Le débit évalué par la formule Q2 doit s'annuler pour une cote amont Hm proche de la médiane des cotes observées à l'aval en l'absence d'écoulement. Sur les 3102 relevés indiquant un palier de réglage nul, la médiane de Hv se situe à 0,01 m.
- Pour de faibles valeurs de cote amont Hm, bien que surestimant les débits à marée haute et sous-estimant les débits à marée basse, la formule Q2 doit rendre compte correctement des conditions moyennes d'écoulement. En particulier, il faut que la relation entre Q2 et la cote aval soit conforme à celle qui existe entre Q1 (vannes noyées) et la cote aval. Cette relation, certes fortement brouillée par l'effet de la marée, peut néanmoins être mise en évidence de façon moyenne comme on verra plus bas (figure 3), grâce au grand nombre de relevés effectués par la SOGED.

Pour Q2 exprimé en m³/s, l'application des deux premiers principes donne les résultats suivants, qui permettent en outre de respecter le troisième :

```
K2 = 9,494

H2 = 0,01

n2 = 0,8293

\sigma = 19 \text{ m}^3/\text{s} (erreur quadratique moyenne, ou écart type résiduel sur les 6 points)
```

La formule Q2 ne concerne que le régime d'écoulement établi au travers des vannes complètement ouvertes, caractérisé par une dénivelée faible (inférieure à 15 cm si Hm < 1,75 m) entre les niveaux amont et aval de la surface libre. Elle permet de calculer le débit lorsque la cote amont est supérieure à 0,80 m. Pour des cotes inférieures (situation peu probable), elle ne donne qu'une estimation du débit médian, autour duquel le débit réel fluctue en fonction du niveau aval. Cette fluctuation peut être très importante et aller même, théoriquement, jusqu'à une inversion du débit à marée haute en cas de cote amont très faible.

Une dénivelée importante entre l'amont et l'aval peut être observée après l'effacement rapide des vannes, lorsque la cote amont est élevée. Ce régime d'écoulement fortement transitoire, à éviter du fait qu'il entraîne une intense dissipation d'énergie, peut être accompagné d'un ressaut hydraulique. Le calcul du débit est alors complexe et il serait illusoire, a fortiori en l'absence de mesure, de vouloir l'effectuer ici de façon précise. Il est possible cependant d'estimer un ordre de grandeur du débit en appliquant une fois de plus la relation de Bernoulli. En première approximation, on obtient alors la formule suivante, proche de la formule de D'Aubuisson relative à l'écoulement entre les piles de pont:

```
Q3 = K3 * N * L * (Hv - Ho) * (2 * g * (Hm - Hv))^{n3}
```

K3 : coefficient de débit

N : nombre de vannes ouvertes L (m) : largeur de vanne (20 m)

Hv (m) : niveau aval

Ho (m) : niveau du fond (-8,97 m)

g (m/s²) : accélération de la pesanteur (= 9.81)

n3 : exposant égal à 0,5 d'après la relation de Bernoulli

Hm (m) : niveau amont

Faute de pouvoir caler cette formule sur des observations de régime transitoire, il faut se contenter d'ajuster les coefficients K3 et n3 à partir des 6 mesures effectuées en régime établi. Malheureusement, celles-ci présentent une dénivelée quasi-constante entre niveaux amont et aval (entre 0,06 et 0,09 m). De ce fait, elles ne suffisent pas pour déterminer les coefficients K3 et n3, et il est donc nécessaire d'introduire le critère supplémentaire suivant : pour des valeurs de cote amont et aval données, le débit Q3 correspondant aux vannes complètement effacées est logiquement supérieur ou égal au débit Q1 passant par les vannes noyées, réglées de façon à ce que celles-ci affleurent tout juste à la surface de l'eau (E = Hm-Ho). Ce critère est imposé pour des cotes amont Hm situées entre 1 m et 2,50 m, et pour des cotes aval Hv inférieures à Hm de 0,50 m à 2 m, les

deux variant au pas de 10 cm. L'ajustement sur les 6 débits jaugés donne alors les résultats suivants, pour Q3 exprimé en m^3/s :

```
K3 = 1,1607

n3 = 0,4053

\sigma = 99 \text{ m}^3/\text{s} (erreur quadratique moyenne, ou écart type résiduel sur les 6 points jaugés)
```

2.3 CONCLUSION

Les seize mesures de débit effectuées jusqu'à maintenant permettent de proposer les formules suivantes pour l'étalonnage des vannes du barrage de Diama :

En régime transitoire ou établi, la formule Q1 s'applique lorsque les vannes sont complètement noyées, et aussi, en première approximation, lorsque les vannes sont partiellement noyées (situation rare). Pour des cotes amont situés entre 1,50 m et 2,00 m, cette formule donne le débit à environ 20 m³/s près. En annexe 2 figure un barème centimétrique donnant le débit Q1 en fonction de la dénivelée entre cote amont et cote aval.

Q1 =
$$1,0566 * E * N * L * (2 * g * (Hm - Hv))^{0,3761}$$

En régime établi, la formule Q2 s'applique lorsque les vannes sont complètement effacées. Pour une cote amont située entre 1,40 m et 1,80 m, elle donne le débit à environ 20 m³/s près. Pour les cotes amont inférieures à 0,80 m, elle ne donne que l'ordre de grandeur d'un débit médian, autour duquel le débit réel fluctue en fonction de la marée.

$$Q2 = 9,494 * N * L * (Hm - 0,01)^{0,8293}$$

Pour le régime transitoire correspondant à l'effacement total des vannes associé à une forte dénivelée entre niveaux amont et aval (> 20 cm), l'ordre de grandeur du débit peut être estimé de façon très approximative par la formule Q3 :

Q3 = 1,1607 * N * L * (Hv + 8,97) *
$$(2 * g * (Hm - Hv))^{0,4053}$$

Signification des paramètres:

E (m) : ouverture verticale des vannes

N : nombre de vannes ouvertes

L (m) : largeur des vannes, égale à 20 m

g (m/s²) : accélération de pesanteur (= 9,81)

Hm (m) : cote à l'amont du barrage

Hv (m) : cote à l'aval du barrage
Q1, Q2, Q3 (m³/s) : débit sortant du barrage

Le tableau 1 et la figure 1 montrent que les débits Q1 et Q2 ainsi calculés par ces formules sont très proches des valeurs mesurées.

3 CALCUL DES DEBITS LACHES PAR LE BARRAGE ENTRE 1986 ET 1999

Suite à un contrôle graphique, dix-sept points présentant des cotes aval très douteuses ont été éliminés des relevés fournis par la SOGED. Un point (23/11/1987 à 10H10) correspondant peut-être à un état fort transitoire a dû également être éliminé. Pour trois autres points enfin, une erreur flagrante sur la cote amont a pu être corrigée. Une correction a par ailleurs été effectuée sur les relevés de 1999 correspondant au palier 3, pour lesquels l'ouverture de vanne était légèrement erronée. En tout, c'est un ensemble de 12008 relevés portant sur la période 1986-1999 qui a pu être exploité.

Chaque relevé comporte essentiellement une date, une valeur de cote amont Hm, de cote aval Hv, de nombre N de vannes manœuvrées et d'ouverture verticale E de celles-ci. Conformément aux calculs effectués par la SOGED, un débit est calculé pour chaque relevé à partir des cotes Hv et Hm de ce relevé, et des paramètres de réglage N et E du relevé précédent. Dans plus de 97% des cas, les relevés se situent plus d'une demi-heure après le dernier changement de réglage de vanne. La quasi totalité des débits ainsi calculés correspond donc à un régime d'écoulement établi.

Pour savoir si la formule Q1 ou Q2 doit être utilisée, la différence de cote entre le bas des vannes secteur (estimée à partir de l'ouverture et de la cote Ho de fermeture à -8,97 m) et la cote Hm du plan d'eau amont est calculée pour chaque relevé. Selon que cette garde est positive ou non, c'est respectivement Q2 ou Q1 qui est utilisé pour calculer le débit Q évacué.

Sur les 12008 relevés, on peut faire les constatations suivantes :

- Une cote aval Hv plus élevée que la cote amont Hm apparaît à 5 reprises (en 1987, 1988 et 1991) alors que les vannes sont noyées, ce qui entraîne alors un débit négatif.
- Le débit est nul du fait de la fermeture totale des vannes pour 3102 enregistrements, et du fait de l'égalité des cotes amont et aval (avec vannes noyées) pour 36 autres enregistrements.
- Les vannes apparaissent totalement effacées pour 342 enregistrements, avec une dénivelée Hm − Hv toujours inférieure ou égale à 13 cm. A deux reprises, une dénivelée négative de −1 cm est constatée, pouvant être due aux imprécisions de lecture. Il n'en est pas tenu compte pour appliquer la formule Q2, qui donne donc toujours un débit positif.

La figure 2 permet de comparer les débits sortants Q calculés avec les formules Q1 et Q2, a ceux qui sont donnés par la SOGED. Les différences les plus importantes concernent essentiellement des débits calculés pour de grandes ouvertures de vannes, celles-ci étant complètement effacées ou presque. Dans ce cas, les valeurs données par la SOGED correspondent soit à une utilisation abusive de la formule Qs alors que les vannes sont complètement effacées (en 1999, sous-estimation du débit), soit à des valeurs dont l'origine n'est pas indiquée (en 1988 et 1995, surestimation du débit). Hormis ces cas particuliers, l'ordre de grandeur des débits donnés par la SOGED est globalement correct, avec toutefois une tendance à surestimer les débits inférieurs à 1000 m³/s passant par les vannes noyées.

4 INFLUENCE DU DEBIT LACHE SUR LE NIVEAU AVAL EN REGIME D'ECOULEMENT ETABLI

Pour un réglage de vannes et un niveau amont donnés, le débit lâché dépend du niveau aval (voir cidessus). Réciproquement, ce niveau aval est lui-même influencé par le débit lâché et par l'onde de marée. Ceci est mis en évidence sur la figure 3, où les valeurs de cote aval Hv sont reportées graphiquement en fonction du débit lâché Q, calculé avec les formules Q1 et Q2. Une relation moyenne se dessine nettement entre ces deux variables, indépendamment de la nature de l'écoulement (vannes noyées ou complètement effacées). L 'ajustement d'un polynôme du second degré donne les résultats suivants :

$$Hv = 4,907 * 10^{-8} * Q^2 + 6,099 * 10^{-4} * Q + 0,04603$$
 (R² = 0,83)

La dispersion importante des points autour de cette relation moyenne est due essentiellement à l'effet de la marée, mais aussi à l'imprécision de mesure sur Hv (batillage) et à l'imprécision du calcul de débit Q. Pour essayer d'évaluer l'importance des fluctuations de Hv dues à la marée, l'échantillon de

12008 points analysés a été découpé par tranches de 100 m³/s sur le débit Q. Sur chacune de ces tranches, le calcul de la fonction de répartition des valeurs de Hv (tableau 2), permet de définir les valeurs extrêmes, marquant les limites de fluctuations dues à la marée. Il est ainsi possible de définir les relations Hv1(Q) et Hv2(Q) correspondant aux valeurs de cote aval qui ne sont respectivement dépassées ou non atteintes qu'une fois sur 50 (figure 4). Le calage d'un polynôme de degré 3 sur ces relations donne les résultats suivants :

Hv1 (Q) =
$$-2.834*10^{-11}*Q^3 + 1.283*10^{-7}*Q^2 + 4.160*10^{-4}*Q + 4.857*10^{-1}$$
 (R² = 0.96)

Hv2 (Q) =
$$7.975*10^{-12}*Q^3 + 1.283*10^{-7}*Q^2 + 4.160*10^{-4}*Q - 2.561*10^{-1}$$
 (R² = 0.98)

Q (m³/s) : débit lâché du barrage

Hv1 (m): pour Q donné, la cote aval Hv n'a que 1 chance sur 50 d'être supérieure à Hv1 Hv2 (m): pour Q donné, la cote aval Hv n'a que 1 chance sur 50 d'être inférieure à Hv2

En première approximation, on peut considérer que la cote aval fluctue entre les relations Hv1(Q) et Hv2(Q) au gré de la marée. Les valeurs observées en dehors de cette fourchette peuvent correspondre à des marées d'amplitude exceptionnelle, ou être dues aux imprécisions mentionnées plus haut.

L'amplitude de variation de la cote aval en fonction de la marée peut être estimée par l'écart entre les relations Hv1(Q) et Hv2(Q), qui diminue avec le débit. De l'ordre de 74 cm pour les débits inférieurs à $500 \text{ m}^3/\text{s}$, cette amplitude présente une valeur qui reste étonnamment élevée pour les forts débits. Elle se situe en effet à 45 cm pour $2000 \text{ m}^3/\text{s}$, alors que les débits jaugés autour de cette valeur montrent une relation Hv(Q) très serrée (fig 3, points jaugés). Les points correspondant à un débit supérieur à $1960 \text{ m}^3/\text{s}$ se répartissent en fait en deux groupes : les points relevés en 1999 en écoulement libre d'une part, et ceux relevés en septembre et octobre 1994 (vannes noyées, N=7, palier entre 11 et 15) d'autre part, qui pour un même débit présentent une cote aval inférieure d'environ 40 cm. Cette différence importante reste pour le moment inexpliquée.

5 RELATION ENTRE COTE AMONT ET COTE AVAL EN REGIME D'ECOULEMENT ETABLI

5.1 VANNES NOYEES

Sur l'ensemble des données disponibles, on observe une relation entre les cotes relevées simultanément à l'amont et à l'aval de l'ouvrage, variable selon l'ouverture des vannes. Cette relation tend à se relâcher à mesure que les vannes sont refermées, pour disparaître totalement en cas de fermeture totale.

Sur les 8564 enregistrements concernant les vannes noyées avec une ouverture non nulle, 70% indiquent l'utilisation simultanée des 7 vannes, et plus de 98% indiquent l'utilisation d'au moins 6 vannes. De ce fait, aucune influence du nombre de vannes utilisées n'a pu être mise en évidence sur la relation cherchée entre Hm et Hv. L'analyse est donc menée séparément pour les différentes valeurs de réglage de vannes, sur la base de toutes les données disponibles.

La relation obtenue est du type suivant :

$$Hv(Hm,P) = A(P) * Hm + B$$

P : palier de réglage (entre 1 et 21)

A : coefficient de régression , variable en fonction du palier de réglage B (m) : constante identique pour tous les paliers de réglage (B = 0.09 m)

Le tableau 3 donne les valeurs du coefficient A obtenues pour les différents paliers de réglage, ainsi que les coefficients de corrélation et les écarts types résiduels S. Ces régressions linéaires entre Hv et Hm sont représentées sur les figures 5A et 5B, ainsi que les droites distantes de 2,055 écarts types résiduels de la relation moyenne, délimitant le domaine des valeurs qui ne sont dépassées ou non atteintes qu'une fois sur cinquante dans le cas d'une distribution normale. Pour les paliers 11 à 15, certains points présentent une valeur de Hv assez nettement inférieure aux relations moyennes Hv(Hm). Ils correspondent aux enregistrements de septembre et octobre 1994 déjà signalés plus haut, pour lesquels la cote Hv se situe assez bas par rapport à la relation moyenne Hv(Q).

Les valeurs obtenues pour le coefficient de régression A et l'écart type résiduel S, peuvent être reliées de la façon suivante au palier de réglage des vannes (figure 6):

A (P) =
$$-2.09*10^{-3} * P^2 + 8.70*10^{-2} * P - 2.42*10^{-2}$$
 (R² = 0.998 sur 21 valeurs)

$$S = 2.54*10^{-4} * P^2 - 1.39*10^{-2} * P + 1.90*10^{-1}$$
 (R² = 0.974 sur 21 valeurs)

Par rapport à la régression moyenne établie en fonction de Hm, les valeurs de Hv présentent une dispersion (représentée par S) qui, principalement due aux fluctuations de marée, augmente à mesure que l'on ferme les vannes. A l'opposé, quand on va vers l'ouverture totale des vannes, cette dispersion tend vers une valeur très faible associée à l'imprécision des mesures.

Le tableau 4 donne, en fonction de la cote amont comprise entre 1 m et 2,50 m, et en fonction du palier de réglage, la valeur moyenne de la dénivelée Hm-Hv déduite de la relation A(P).

5.2 VANNES EFFACEES

La figure 7 montre la relation existant entre cote aval et cote amont quand les vannes sont complètement effacées, à partir des 342 points enregistrés dans ces conditions, avec une cote amont comprise entre 0,76 m et 1,73 m :

$$Hv = -0.0686 * Hm^2 + 1.0644 * Hm$$
 (R² = 0.994 et σ = 0.016 m)

Le tableau 4 donne en fonction de la cote amont, la dénivelée moyenne Hm-Hv déduite de cette relation.

La dispersion des valeurs de Hv autour de cette relation moyenne est principalement due aux imprécisions de mesure. Pour des cotes Hm inférieures à 0,94 m, la dénivelée entre cote amont et cote aval peut être considérée comme nulle.

6 DEBIT LACHE EN REGIME ETABLI, EN FONCTION DE LA COTE AMONT ET DU REGLAGE DES VANNES

Pour calculer le débit qui passe –ou est passé- par les vannes du barrage, il suffit d'appliquer les étalonnages Q1, Q2 et Q3 présentés plus haut, en utilisant les valeurs observées et connues de cote amont, cote aval et réglage de vanne.

Cependant, la connaissance en temps réel et a posteriori du débit lâché ne suffit pas pour gérer le barrage. Le maintien ou la modification du réglage des vannes doit tenir compte en permanence de l'évolution du débit qui découlera de cette opération :

- Maintien du réglage des vannes : malgré une cote amont peu variable à l'horizon de quelques dizaines de minutes, le régime d'écoulement va évoluer progressivement du fait des variations de la cote aval, soumise à l'effet de marée.
- Modification du réglage des vannes : il y a rupture du régime d'écoulement établi, dans lequel la cote aval fluctuait au gré de la marée autour d'une valeur moyenne directement liée à la cote amont et à l'ancien réglage de vanne. Un régime transitoire s'installe (pendant quelques dizaines de minutes probablement), le temps que la cote aval évolue vers la valeur moyenne correspondant à la cote amont (peu modifiée) et au nouveau réglage de vanne. Un nouveau régime établi s'installe alors, et on se retrouve dans le cas précédent.

On ne dispose pas, à l'heure actuelle, des données suffisantes pour établir une modélisation déterministe concernant les fluctuations de la cote aval et du débit, dues à l'effet de marée en régime d'écoulement établi. Ces fluctuations sont donc traitées de façon statistique, en utilisant les résultats obtenus ci-dessus pour la relation entre cote aval et cote amont.

Pour l'écoulement par les vannes noyées, la valeur de cote aval dépassée avec une fréquence donnée est estimée de la façon suivante en fonction de la cote amont et du réglage des vannes :

```
 \begin{aligned} \text{Hv (f, Hm, P)} &= & \text{A(P) * Hm + B + n(f) * S(P)} \\ &= & (-2.09*10^{-3} * \text{P}^2 + 8.70*10^{-2} * \text{P} - 2.42*10^{-2}) * \text{Hm + 0.09 + n(f) * (2.54*10^{-4} * \text{P}^2 - 1.39*10^{-2} * \text{P} + 1.90*10^{-1})} \end{aligned}
```

Hv (m) : cote aval

f : fréquence de dépassement (entre 0 et 1)

Hm (m) : cote amont P : palier de réglage

n : paramètre associé à la fréquence de dépassement f (voir tableau 5)

Les valeurs du paramètre n sont déterminées en fonction de la fréquence de dépassement f, en faisant l'hypothèse que pour chaque palier de réglage, l'écart entre la cote aval et sa valeur moyenne liée à la cote amont et au réglage de vanne, est distribué suivant une loi normale. Le paramètre n correspond alors au nombre d'écarts types séparant une valeur de fréquence f de la valeur moyenne, dans une distribution normale. La relation n(f) est donnée dans le tableau 5.

A cote amont et réglage de vanne constants, le débit lâché par les vannes noyées varie dans le sens inverse de la cote aval. Le débit dépassé avec la fréquence f correspond donc à la cote aval dépassée avec la fréquence 1–f. Ainsi :

```
Q1a (f, Hm, P) = Q1 (Hv (1-f, Hm, P), Hm, P)
= 1,0566 * E(P) * N * L * (2 * g * (Hm - Hv (1-f, Hm, P)))^{0,3761}
```

Q1a (m³/s) : débit par vannes noyées, estimé à partir des relations Q1(Hv,Hm,E) et Hv(Hm,P)

f : fréquence de dépassement du débit

Hm (m) : cote à l'amont du barrage P : palier de réglage des vannes

E (m) : ouverture verticale des vannes : nombre de vannes ouvertes L (m) : largeur des vannes, égale à 20 m g (m/s²): accélération de pesanteur (= 9,81) : cote à l'aval du barrage

Hv (m)

Pour le cas où toutes les sept vannes sont ouvertes, cette relation est représentée sous forme d'abaques sur les planches de figures 8A à 8D, ainsi que dans le tableau 4 pour les valeurs

moyennes de débit (f=0,5). Sur ces graphiques et ce tableau figurent également les points représentatifs de l'écoulement quand les vannes sont complètement effacées. Dans ce cas, le débit est directement estimé à partir de la cote amont en utilisant la formule Q2. Les points jaugés ont également été portés sur les figures correspondant aux valeurs de cote amont les plus proches.

Par ailleurs, le débit lâché du barrage peut également être estimé de façon moyenne en fonction de la cote amont et du réglage des vannes en utilisant la relation établie plus haut entre le débit et la cote aval. Les relations entre cote amont et cote aval ne sont alors plus utilisées :

```
Hv = 4.907 * 10^{-8} * Q^2 + 6.099 * 10^{-4} * Q + 0.04603
Q1 = 1,0566 * E(P) * N * L * ( 2 * g * ( Hm - Hv ) ) ^{0,3761}
=> E(P) = Q/(1,0566 * N * L * (2 * g * (Hm - Hv))^{0,3761})
              = Q/(1,0566*N*L*(2*g*(Hm-(4,907*10^{-8}*Q^2+6,099*10^{-4}*Q+0,04603)))^{0,3761})
```

La résolution numérique de cette relation moyenne entre P, Q et Hm permet d'estimer directement Q en fonction de P et Hm. Cette estimation, notée Q1b, est également portée sur les figures 8A à 8D.

L'estimation Q1a du débit effectuée à partir des relations Q1(Hv,Hm,E) et Hv(Hm,P) présente une légère décroissance entre les paliers de réglage 14 et 19, pour les cotes amont Hm inférieures à 1,40 m (figure 8D). L'estimation Q1b donne quant à elle des débits légèrement supérieurs aux valeurs relatives à l'écoulement libre (vannes effacées) pour des paliers de réglage supérieurs à 17. Enfin, des différences assez nettes s'observent entre les estimations Q1a et Q1b. Ces différentes anomalies résultent de l'imprécision des modèles utilisés, inévitable dans les domaines où ils sont calés sur des mesures peu nombreuses ou très dispersées, et a fortiori dans leurs parties extrapolées.

Du fait que la relation Hv(Hm,P) semble calée de facon plus précise que la relation Hv(Q), c'est l'estimation Q1a qui sera désormais utilisée, plutôt que Q1b.

Schématiquement, le débit lâché augmente rapidement en fonction du palier de réglage, jusqu'au palier 10. Cette augmentation devient ensuite de plus en plus faible, à mesure que l'on se rapproche de l'ouverture totale des vannes.

7 ENERGIE DISSIPEE EN REGIME ETABLI, EN FONCTION DE LA COTE AMONT ET DU REGLAGE DES VANNES

Si l'on néglige les différences de vitesse moyenne d'écoulement entre l'amont et l'aval de l'ouvrage, le produit du débit par la différence de cote entre amont et aval est directement proportionnel à l'énergie dissipée au passage du barrage, sous forme de frottements à l'intérieur et sur les parois de l'écoulement. Afin que cette dissipation d'énergie n'entraîne pas de danger pour l'ouvrage lui-même, le constructeur a donné comme consigne de toujours maintenir le produit Q*(Hm-Hv) en dessous de 1000 m⁴/s, sous-entendu pour 7 vannes ouvertes. Autrement dit, pour N vannes ouvertes, le produit Q*(Hm-Hv) doit rester en dessous de 1000 * N / 7 (voir plus bas).

Il est donc important de prévoir l'effet des manœuvres de vannes sur l'évolution du produit Q*(Hm-Hv). Cette prévision doit être faite de façon de statistique, pour les raisons déjà invoquées plus haut pour le débit.

Pour l'écoulement par les vannes noyées en régime établi, la valeur du produit Q*(Hm-Hv) dépassée avec la fréquence f peut être estimée de la façon suivante à partir des relations Q1(Hv,Hm,E) et Hv(Hm,P):

$$[Q * (Hm-Hv)]_{(f,Hm,P)} = Q1a (f, Hm, p) * (Hm - Hv (1-f, Hm, P))$$

Dans le cas où les sept vannes sont ouvertes, cette relation est représentée sous forme d'abaques sur les planches de figures 9A à 9D, ainsi que dans le tableau 4 pour les valeurs moyennes (f=0,5). Sur ces graphiques et ce tableau figurent également les points représentatifs de l'écoulement quand les vannes sont complètement effacées.. Dans ce cas, le produit du débit par la dénivelée est estimé de la façon suivante, pour des valeurs de Hm supérieures à 0,94 m:

$$Q * (Hm-Hv) = 9,494 * N * L * (Hm - 0,01) ^{0,8293} * (Hm - (-0,0686 * Hm2 + 1,0644 * Hm))$$

Pour des cotes inférieures à 0,94 m, le produit du débit par la dénivelée peut être considéré comme nul lorsque les vannes sont complètement effacées.

Enfin, comme il a été fait plus haut pour le débit avec l'estimation Q1b, il est possible d'estimer le produit $Q^*(Hm-Hv)$ en fonction de P et Hm en utilisant la relation Hv(Q) au lieu des relations Hv(Hm,P). Les points correspondants , notés $Q1b^*(Hm-Hv(Q))$, sont eux aussi portés sur les figures 9A à 9D, à titre indicatif.

Les figures 9A à 9D montrent que le maximum d'énergie dissipée se situe toujours entre les paliers de réglage 6 et 7, quelle que soit la cote amont. Le produit Q * (Hm – Hv) dépasse un seuil donné avec une certaine fréquence, lorsque le palier de réglage des vannes se situe entre deux limites P1 et P2, variables en fonction de ce seuil et de cette fréquence. Le tableau 6 et les figures 10 A à 10 C donnent les valeurs de P1 et P2 relatives aux seuils 800, 1000 et 1200 m⁴/s, pour différentes fréquences de dépassement.

En vue d'un calcul automatique des réglages de vannes compatibles avec une limite d'énergie, les valeurs de P1 et P2 correspondantes ont été modélisées en fonction de la cote amont (notée alors Hm1 ou Hm2), de la limite d'énergie et de la fréquence de dépassement de celle-ci. On obtient les résultats suivants :

P1 = a1 + b1 *
$$(Hm1 - c1)^{d1}$$
 \leftrightarrow $Hm1 = c1 + $((P1 - a1)/b1)^{(1/d1)}$$

$$P2 = a2 + b2 * (Hm2 - c2)^{d2}$$
 \leftrightarrow $Hm2 = c2 + ((P2 - a2)/b2)^{(1/d2)}$

Sur les figures 10 A à 10 C, le report de ces relations (utilisant les valeurs de paramètres a1, b1, c1, d1, a2, b2, c2 et d2 données dans le tableau 7) montre un bon ajustement sur les valeurs de P1 et P2.

8 REGIME TRANSITOIRE SUCCEDANT AU CHANGEMENT DE REGLAGE DE VANNE

Lorsque le réglage des vannes reste constant, le niveau aval fluctue au gré de la marée autour d'une valeur médiane liée à la cote amont (lentement variable) et au réglage. On peut alors parler d'un régime d'écoulement établi, assez lentement variable.

A partir du moment où le réglage des vannes est modifié, la cote aval va fluctuer autour d'une médiane qui cette fois va évoluer, partant de la valeur correspondant à l'ancien réglage, pour arriver à la valeur correspondant au nouveau réglage. Cette évolution peut s'étaler sur plusieurs dizaines de minutes, cette durée augmentant avec l'importance de la modification de réglage.

On voit donc qu'avant de changer le réglage des vannes, il importe de se soucier à la fois de la dissipation d'énergie qui sera associée après plusieurs dizaines de minutes au nouveau régime établi (voir plus haut), et à celle qui va se produire dans les instants succédant à la modification, au début du régime transitoire.

8.1 DIMINUTION DE L'OUVERTURE DES VANNES

Lorsque le changement de réglage va dans le sens d'une fermeture des vannes, le régime transitoire présente une cote aval plus haute que celle du nouveau régime établi, et une dissipation d'énergie plus faible que celui-ci. Il suffit alors de s'assurer que la dissipation associée au nouveau régime établi sera plus faible que la limite autorisée, le régime transitoire ne posant aucun problème.

8.2 AUGMENTATION DE L'OUVERTURE DES VANNES

Juste après une augmentation d'ouverture des vannes, le niveau aval se situe en dessous de la valeur médiane qui sera atteinte pendant le nouveau régime établi. Le débit et l'énergie dissipée peuvent alors se situer bien au dessus de leurs nouvelles valeurs d'équilibre, si l'augmentation d'ouverture a été importante.

Lorsque l'on envisage de faire modifier le réglage des vannes en passant du palier P au palier P+x, alors que l'on connaît les cotes amont Hm et aval Hv, il est possible d'estimer l'énergie dissipée au début du régime transitoire qui va succéder à cette manœuvre, en calculant le produit Q *(Hm-Hv) de la façon suivante:

$$Q * (Hm-Hv) = Q1 * (Hm - Hv)$$

$$= K1 * E(P+x) * N * L * (2 * g * (Hm - Hv))^{n1} * (Hm - Hv)$$

$$= 1,0566 * E(P+x) * N * L * (2 * g * (Hm - Hv))^{0,3761} * (Hm - Hv)$$

$$= 1,0566 * E(P+x) * N * L * (2 * g)^{0,3761} * (Hm - Hv)^{1,3761}$$

E(P+x) (m) : nouvelle ouverture verticale des vannes P : ancien palier de réglage des vannes P+x : nouveau palier de réglage des vannes

N : nombre de vannes ouvertes L (m) : largeur des vannes, égale à 20 m g (m/s 2) : accélération de pesanteur (= 9,81)

Hm (m) : cote amont observée avant nouveau réglage Hv (m) : cote aval observée avant nouveau réglage

Lorsque l'on envisage à l'avance une manœuvre d'ouverture, par exemple pour abaisser le niveau de la retenue en début de crue, on ne sait pas précisément à quel niveau se situera la surface libre à l'aval de l'ouvrage au moment de cette opération. Il suffit alors d'utiliser la valeur médiane de cote aval Hv du régime établi lié au réglage avant manœuvre (relation Hv(Hm,P)), pour avoir une estimation générale du produit Q*(Hm-Hv) juste après la manœuvre :

$$Q * (Hm-Hv) = 1,0566 * E(P+x) * N * L * (2 * g)^{0,3761} * (Hm - Hv)^{1,3761}$$

Les résultats de ce calcul sont présentés sur la figures 11A à 11C, pour différentes augmentations x de palier de réglage. Ces figures montrent que l'on a toujours intérêt à ouvrir les vannes de façon très progressive pour éviter un excès de dissipation d'énergie en régime transitoire. Concrètement, la vitesse d'ouverture des vannes doit être limitée pour tenir compte des délais de remplissage progressif du bief à l'aval de l'ouvrage.

9 CAS OU LE NOMBRE DE VANNES UTILISEES EST INFERIEUR A SEPT

En première approximation, le produit Q*(Hm-Hv) est proportionnel à l'énergie dissipée par l'écoulement au passage de l'ouvrage, sous forme de frottements au sein et sur les parois de l'écoulement. Le maintien de ce produit en dessous de la limite de 1000 m⁴/s imposée par le constructeur, est destiné à éviter des frottements trop importants sur le radier aval de l'ouvrage, qui risqueraient de provoquer des affouillements.

Lorsque les sept vannes sont utilisées simultanément et laissent toutes passer le même débit, la limite de dissipation d'énergie s'exprime de la façon suivante :

$$Q^* (H_m - H_v) \le 1000$$

$$\Leftrightarrow \left(\sum_{i=1}^7 Q_i\right)^* (H_m - H_v) \le 1000$$

$$\Leftrightarrow \sum_{i=1}^7 (Q_i c) \le 1000$$

$$\Leftrightarrow Q_i^* (H_m - H_v) \le 1000 / 7...... \forall i$$

Q : débit total

Qi : débit passant par la vanne de rang i

Le produit Qi*(Hm-Hv) doit donc être limité à 1000/7 (= 143 m⁴/s) sur chacune des vannes lorsque les 7 vannes sont utilisées. Qu'en est-il lorsqu'une seule vanne est ouverte? La limite à prendre en compte est-elle 1000 ou bien 143 m⁴/s?

Pour une valeur donnée du produit Q*(Hm-Hv), la dissipation d'énergie risque évidemment d'avoir des effets beaucoup plus dévastateurs si elle est concentrée à l'aval d'une seule vanne, plutôt que répartie sur l'ensemble des vannes. Quand une seule vanne est utilisée, la valeur maximale admissible pour le produit Q*(Hm-Hv) se situe donc forcément bien en dessous de 1000 m⁴/s.

Pour autant, il peut sembler un peu trop pessimiste d'envisager pour Q*(Hm-Hv) une limite directement proportionnelle au nombre de vannes utilisées (et donc 143 m⁴/s pour une seule vanne). Ce sont en effet les frottements sur le fond qui posent problème. Or les frottement au sein de la masse liquide doivent logiquement représenter une fraction plus importante de la dissipation d'énergie, quand l'écoulement se fait par une seule vanne plutôt que par les sept.

Enfin, que ce soit pour le régime d'écoulement établi ou transitoire, les paliers limites de réglage définis plus haut en fonction de la cote amont pour respecter la limite de 1000 m⁴/s, ont été calculés en utilisant la relation Hv(Hm,P). Cette relation a été établie sur la base d'observations essentiellement représentatives de l'utilisation simultanée de 6 ou 7 vannes. Les quelques points disponibles avec moins de 6 vannes utilisées, insuffisants pour préciser l'influence du paramètre N, montrent néanmoins une tendance à des valeurs de cote aval Hv légèrement plus faibles que la relation Hv(Hm,P). Par conséquent, les résultats présentés plus haut peuvent légèrement sousestimer le débit Q et le produit Q*(Hm-Hv) quand le nombre de vannes utilisées est très inférieur à 7.

Au vu de ces différentes considérations, faute d'éléments supplémentaires et pour aller dans le sens de la sécurité, on peut préconiser ce qui suit :

- Pour un nombre N de vannes utilisées, le produit Q*(Hm-Hv) doit rester inférieur à : 1000*N/7
- Les résultats présentés plus haut concernant les paliers limites de réglage P1 et P2 relatifs au respect des 1000 m⁴/s, pourront être utilisés quel que soit le nombre de vannes ouvertes.

10 PROCEDURES GENERALES DE GESTION DU BARRAGE

10.1 PERIODE D'ETIAGE

Pendant l'étiage, l'objectif de gestion consiste à maintenir le plan d'eau amont à un niveau élevé (vers 2,0 m actuellement) pour faciliter l'alimentation des périmètres irrigués. Le gestionnaire doit donc augmenter l'ouverture des vannes s'il constate une tendance au dépassement du niveau objectif amont, et la diminuer dans le cas inverse. Du fait des faibles débits arrivant de l'amont, l'ouverture des vannes reste donc réduite durant toute cette période, et leur fermeture totale est même très fréquente.

Le produit Q*(Hm-Hv) étant toujours faible pour les petites valeurs de palier de réglage P (fig. 9B), aucun problème ne se pose pour la dissipation d'énergie à l'aval du barrage pendant l'étiage.

10.2 PERIODE DE CRUE

Pendant le passage de la crue, l'objectif de gestion consiste à maintenir le plan d'eau amont à la cote 1,50 m. Comme pendant l'étiage, le gestionnaire doit augmenter l'ouverture des vannes s'il constate une tendance au dépassement du niveau objectif amont, et la diminuer dans le cas inverse. Cette procédure permet de maintenir le plan d'eau à la cote désirée tant que le débit moyen à évacuer reste inférieur à environ 1850 m³/s. Au delà, les vannes sont complètement effacées et le niveau évolue au dessus de 1,50 m en fonction du débit, tant que celui-ci reste supérieur à 1850 m³/s.

Pour maintenir un niveau amont constant en période de crue, il faut pouvoir utiliser toute la gamme des paliers de réglage pour compenser l'amplitude de variation des débits arrivant de l'amont. Comme le montre la figure 9C, une cote amont de 1,50 m (contrairement à 2,0 m) permet d'utiliser tous les paliers avec très peu de risque de dépassement de la limite de 1000 m⁴/s par le produit Q*(Hm-Hv) en régime d'écoulement établi. Tout au plus, ce risque s'élève à environ 1/5 lorsque les vannes doivent être ouvertes entre les paliers 6 et 7 pour évacuer un débit de l'ordre de 1100 à 1250 m3/s (tab. 4) La seule précaution à prendre consiste donc à effectuer des augmentations d'ouverture progressives pour éviter les dépassements en régime transitoire.

10.3 FIN DE CRUE

A la fin de la crue, l'objectif de gestion consiste à faire remonter le plus rapidement possible le niveau du plan d'eau à l'amont du barrage, tout en ne prenant aucun risque de dépassement de la limite admise pour la dissipation d'énergie. Les deux situations suivantes doivent donc être évitées :

- Une diminution trop précoce de l'ouverture des vannes peut entraîner le risque de devoir évacuer du barrage des débits encore très forts alors que le niveau amont aura déjà été rehaussé de façon importante. Il y a alors un risque élevé de dépassement de la dissipation d'énergie autorisée.
- Une diminution trop tardive de l'ouverture des vannes représente certes une sécurité vis-à-vis de la dissipation d'énergie, mais pénalise de façon superflue l'agriculture irriquée du delta.

La cote 1,50 m est maintenue à l'amont de l'ouvrage en évacuant en permanence, par ajustement du réglage des vannes, un débit égal (aux prélèvements et pertes près) à celui qui entre dans la retenue. Tant que le maintien de cette cote nécessite une ouverture des vannes supérieure ou égale à celle du palier 7, il est imprudent d'engager le rehaussement du niveau par diminution de l'ouverture. En effet, les figures 9A à 9D montrent qu'au delà de ce palier, la diminution de P entraîne une

augmentation du produit Q*(Hm-Hv), qui s'amplifie encore en cas de rehaussement simultané de la cote Hm du plan d'eau. Le risque de dépassement des 1000 m^4 /s est alors important. Au palier 7 il est de l'ordre de : une fois sur 3 pour Hm=1,60 m ; 1 fois sur 2 pour Hm=1,70 m ; 2 fois sur 3 pour Hm = 1,80 m.

La première condition à respecter pour pouvoir engager le rehaussement du plan d'eau est donc de voir le maintien de la cote 1,50 m réalisé à l'aide d'un palier de réglage inférieur à 7 sur l'ensemble des vannes, ce qui correspond à un débit évacué inférieur à 1242 m³/s en moyenne (tableau 4).

La seconde condition concerne la certitude de décroissance des apports de l'amont. Le rehaussement ne peut être engagé qu'après le passage du maximum de crue, qui peut facilement être repéré par suivi des niveaux observés aux stations hydrométriques de l'amont, en particulier celle de Rosso.

10.3.1 REHAUSSEMENT DU PLAN D'EAU A DATE FIXE.

La date d'occurrence des deux conditions énoncées ci-dessus peut être analysée à partir des données enregistrées depuis 1987. Il s'agit de trouver chaque année à partir de quelle date, après le passage du maximum de crue, le débit entrant dans la retenue (diminué des pertes et prélèvements) devient inférieur à 1242 m³/s. Ce débit entrant peut être estimé à la station de Rosso par une modélisation basée sur les équations suivantes, qui traduisent respectivement la relation de Manning et la conservation des volumes entre Rosso et Diama :

$$Qr = k * I * (Hr - Hf)^{m1} * ((Hr - Hm) / D)^{m2}$$

$$Qr - Q = Prd + D * I * (grad(Hm) + grad(Hr)) / 2$$

Qr (m³/s) : débit du Sénégal à Rosso

k : coefficient de Manning Strickler

Hr (m) : cote du Sénégal à Rosso

Hf (m) : cote du fond représentative du bief Rosso-Diama

Hm (m) : cote du plan d'eau à l'amont de Diama

m1 : exposant égal à 5/3 dans la formule de Manning Strickler
 m2 : exposant égal à 0,5 dans la formule de Manning Strickler

Q (m³/s) : débit passant par les vannes de Diama

Prd (m³/s) : débit représentatif des pertes et prélèvements entre Rosso et Diama

D (m) : longueur du bief Diama-Rosso, fixée à 105000

I (m) : largeur moyenne représentative du bief entre Rosso et Diama grad(Hm) (m/s) : vitesse de variation de la cote du plan d'eau à l'amont de Diama

grad(Hr) (m/s) : vitesse de variation de la cote du Sénégal à Rosso

Ces deux équations permettent donc d'exprimer le débit lâché à Diama de la façon suivante, à partir des 6 paramètres k, m1, m2, Hf, Prd et I :

$$Q = k * I * (Hr - Hf)^{m1} * ((Hr - Hm) / D)^{m2} - Prd - D * I * (grad(Hm) + grad(Hr)) / 2$$

Les valeurs des 6 paramètres peuvent être déterminées en minimisant les écarts entre les débits de Diama ainsi estimés, et ceux qui sont calculés de façon précise à partir de l'étalonnage des vannes

(méthode des moindres carrés). Cette optimisation, effectuée au pas de temps journalier sur la période 1986-1999, donne les résultats suivants avec un écart absolu moyen de 134 m³/s sur un total de 2759 points:

```
k = 7,799

m1 = 1,629

m2 = 0,539

Hf = -13,88 \text{ m}

L = 1440 \text{ m}

Prd = 120 \text{ m}^3/\text{s}
```

La figure12 permet de comparer les débits journaliers du barrage calculés par les deux méthodes, sur l'échantillon de 2759 points utilisés pour faire l'ajustement des 6 paramètres.

En utilisant les valeurs déterminées pour les paramètres k, l, Hf, m1 et m2, la formule donnée plus haut permet de calculer les débits journaliers passés à Rosso à partir des cotes Hr et Hm relevées à Rosso et Diama amont. Ceci permet de déterminer pour chaque année de 1987 à 1999, la date souhaitable de début de rehaussement du plan d'eau. Il suffit pour cela de repérer, après le maximum de crue, le passage du débit en dessous de 1362 m³/s (= 1242+120). Comme le montre le tableau 8, la plupart de ces dates se répartissent de façon assez régulière entre le 21 septembre et le 2 novembre. Elles peuvent cependant être beaucoup plus précoces en cas de faible crue (12 septembre 1996) ou beaucoup plus tardives en cas de forte crue (26 novembre 1999).

Au vu de ces résultats, le fait de fixer à l'avance le début du rehaussement du plan d'eau à l'amont de Diama ne paraît pas être une bonne solution, puisque cela conduit selon les années à pénaliser inutilement l'irrigation, ou à prendre des risques au niveau de la dissipation d'énergie. La solution à préconiser est celle d'un rehaussement effectué à date optimale, dont la procédure est expliquée cidessous.

10.3.2 REHAUSSEMENT A DATE OPTIMALE

Les deux critères énoncés plus haut doivent être vérifiés avant d'entamer la procédure de rehaussement :

- Le passage du maximum de crue doit avoir été constaté sans ambiguïté à partir des cotes relevées sur les stations de l'amont.
- Le maintien du niveau amont à la cote 1,50 m doit être fait avec un palier de réglage inférieur à 7 ou, ce qui revient au même : le réglage au palier 7 entraîne un abaissement du plan d'eau en dessous de 1,50 m.

Dès lors, il suffit dans un premier temps de poursuivre la fermeture progressive des vannes pour maintenir la cote 1,50 m, jusqu'à ce que le palier de réglage corresponde au niveau de risque accepté pour le dépassement de la limite d'énergie dissipée (fig. 10 A à 10 C). Ensuite, le rythme de fermeture peut être accéléré pour rehausser le plan d'eau.

Durant le rehaussement, il doit être constamment vérifié (sur figure 10 A à 10 C, selon la limite d'énergie envisagée) que le niveau Hm ne dépasse pas la relation Hm1(P1) associée au niveau de risque accepté. En pratique, le rehaussement progressif mené par palier ou demi palier doit suivre les principes suivants :

- Dès que l'on constate sur une journée à palier P constant une stabilisation du niveau Hm, voire une tendance à la baisse, on diminue l'ouverture des vannes.
- Si le niveau Hm dépasse la limite Hm1 (fig. 10 A à 10 C) relative au palier P de réglage en cours, on augmente l'ouverture des vannes.

Les apports de débit dans la retenue étant encore assez importants mais en phase de diminution, ce processus permet d'aboutir inévitablement, le plus rapidement possible et sans dépasser le niveau de risque accepté, au rehaussement du niveau à la cote souhaitée de 2,0 m ou plus.

A titre d'exemple, la figure 13 illustre la procédure à suivre pour rehausser la cote amont de 1,50 m à 2,10 m dans le cas d'une énergie dissipée limitée à 1000 m4/s, avec un risque de dépassement de 1/5 ou de 1/25.

Remarque: comme le montrent les figures 10 A à 10 C, le risque de dépassement de la limite d'énergie dissipée est de l'ordre de ½ pour 800 m4/s, 1/5 pour 1000 m4/s et 1/25 pour 1200 m4/s, lorsqu'on maintient un niveau 1,50 m alors que le débit à évacuer se situe autour de 1200 m3/s. Ce risque se présente en fin de crue durant une durée assez brève, avant même le début de la remontée du plan d'eau. Il devient très faible dès que le débit à évacuer passe en dessous de 1000 m3/s. La seule façon de l'annuler complètement serait d'accepter un abaissement du plan d'eau en dessous de 1.50 m.

10.4 DEBUT DE CRUE

10.4.1 OBJECTIF DE GESTION

Au début de la crue, l'objectif de gestion consiste à faire baisser le plus tard possible le niveau du plan d'eau à l'amont du barrage, tout en ne prenant aucun risque de dépassement de la limite admise pour la dissipation d'énergie. Les deux situations suivantes doivent donc être évitées :

- Une augmentation trop tardive de l'ouverture des vannes peut entraîner le risque de devoir évacuer du barrage des débits déjà très forts alors que le niveau amont est encore très élevé.
 Il y a alors un risque important de dépassement de la dissipation d'énergie autorisée.
- Une augmentation trop précoce de l'ouverture des vannes représente certes une sécurité visà-vis de la dissipation d'énergie, mais pénalise de façon superflue l'agriculture irriguée du delta.

Pour éviter ces deux écueils, il est nécessaire de coordonner l'abaissement du plan d'eau avec l'arrivée de la crue. Celle-ci se produisant à une date variable suivant les années (Manantali ne contrôle que la moitié des apports), la solution d'un abaissement à date prédéterminée ne peut être préconisée.

10.4.2 ELEMENTS PERMETTANT D'ELABORER UNE STRATEGIE OPTIMALE D'ABAISSEMENT DU NIVEAU

Par un raisonnement analogue à celui qui a été mené pour la fin de la crue, on voit que le plan d'eau amont doit avoir été abaissé à la cote 1,50 m avant que les débits entrant dans la retenue ne dépassent le seuil de 1242 m³/s. Pendant cette phase d'abaissement du niveau, le barrage doit évacuer, aux pertes et prélèvements près, un volume d'eau équivalent à celui des apports de l'amont, augmenté du volume que représente la tranche d'eau comprise entre les cotes 1,50 m et 2,00 m dans la retenue. En faisant l'hypothèse d'une retenue s'étendant sur 350 km de long pendant l'étiage, avec une largeur au miroir de 400 m en moyenne, le volume de cette tranche d'eau de 50 cm peut être évalué très grossièrement à 0,07 km³ (70 millions de m³).

Au démarrage de la crue, la propagation des débits s'effectue dans le lit mineur à une vitesse assez rapide. Ainsi, le temps de propagation entre Bakel et Rosso est de l'ordre de 10 jours pour une cote de 4 m à l'échelle de Bakel (débit de 660 m³/s environ). Pour aller dans le sens de la sécurité, le laminage des débits sera négligé. Ceci compense en outre le fait que les apports de débit non connus arrivant entre Bakel et Diama, généralement faibles, seront toujours négligés. En première approximation, un débit observé à Bakel en début de crue sera donc attendu 10 jours plus tard dans la retenue de Diama, diminué des pertes et prélèvements intermédiaires.

Comme pour la phase de remontée du niveau en fin de crue, l'abaissement sera effectué de telle sorte que le couple de paramètres (P , Hm) reste compatible avec le niveau de risque accepté pour le dépassement des 1000 m⁴/s en régime établi. La relation entre Hm et P1 correspondant à ce niveau de risque (fig. 10 A à 10 C, selon l'énergie limite envisagée), identique à celle donnée plus haut pour la remontée du niveau, permet de déterminer le palier d'ouverture maximal en fonction de la cote amont. On en déduit (tableaux 9A à 9D, selon le niveau de risque envisagé, pour une limite de 1000 m4/s) la succession des différents réglages effectués par demi-paliers, qui permettent d'abaisser le niveau amont Hm entre les cotes 2,50 m et 1,50 m. Le fait d'augmenter l'ouverture des vannes par

demi-paliers, minimise les risques de dépassement de l'énergie limite en régime transitoire (figure 11A), et permet un abaissement de niveau plus rapide que le réglage par paliers entiers.

Pour les différents réglages permettant d'effectuer l'abaissement jusqu'à la cote 1,50 m, il est possible de calculer le débit lâché médian et le produit Q*(Hm-Hv) médian (tableaux 9A à 9D) en appliquant la relation Q1a(f,Hm,P) définie plus haut. Il suffit pour cela de fixer la fréquence f à la valeur 0,5, et d'effectuer le calcul pour les cotes Hm relatives au début et à la fin de chaque demi-palier.

Compte tenu du temps de propagation de 10 jours entre Bakel et la retenue, et afin de conserver une marge de sécurité de 2 jours, il est souhaitable d'être à tout moment en mesure d'abaisser le niveau à la cote 1,50 m en moins de 8 jours (192 heures). Or, la durée de l'abaissement effectué avec les paliers de réglage indiqués dans les tableaux 9A à 9D dépend des apports, des prélèvements et des pertes dans la retenue. Dans l'hypothèse d'un débit constant passant à Bakel, et de pertes et prélèvements constants entre Bakel et Diama, on a ainsi la relation suivante :

$$(T2 - T1) = ((Hm(T1) - Hm(T2)) * Z * Y / (Q - Qbak + Pbd)) / 3600$$

T1 (heures) : date

T2 (heures) : date postérieure à T1

Hm(T1) (m) : niveau du plan d'eau amont à la date T1 Hm(T2) (m) : niveau du plan d'eau amont à la date T2

Z (m) : longueur du plan d'eau à abaisser (ordre de grandeur : 350000 m)

Y (m) : largeur du plan d'eau à abaisser (ordre de grandeur : 400 m)

Q (m³/s) : débit moyen lâché du barrage entre les dates T1 et T2

Qbak (m³/s) : débit constant passant à Bakel

Pbd (m³/s) : débit des prélèvements et pertes entre Bakel et Diama

En première approximation, le débit Pbd des pertes et prélèvements peut être estimé de l'ordre de 100 m³/s entre Bakel et Diama pendant le mois de juillet, pour une superficie totale irriguée de 130000 ha (scénario A2 de SCP). La relation ci-dessus permet alors de calculer en fonction d'un débit constant à Bakel, la durée de chaque demi-palier de réglage défini dans les tableaux 9A à 9D. Inversement, il suffit de déterminer la valeur de débit constant à Bakel pour laquelle la somme des durées des différents demi-paliers est égale à 192 heures. Ces résultats sont indiqués dans les tableaux 9A à 9D.

En début de crue, les débits passant à Bakel sont à tendance croissante, et non pas constants comme envisagé ci-dessus. Les résultats obtenus avec des débits constants (tableaux 9A à 9D) peuvent néanmoins être utilisés pour abaisser le plan d'eau en se plaçant en situation de sécurité. Il suffit pour cela d'envisager le cas très pessimiste et fortement improbable (en montée de crue) où le débit à évacuer du barrage entre les jours j et j+7 correspond au débit observé à Bakel le jour j. La procédure à suivre, déduite des tableaux 9A à 9D, est décrite ci-dessous.

10.4.3 PROCEDURE PRECONISEE POUR ABAISSER LE PLAN D'EAU

Pour différents risques de dépassement de 1000 m4/s d'énergie dissipée (resp. 1/5, 1/10, 1/25 , 1/50), les figures 14 A à 14 D résument la procédure à respecter pour abaisser le plan d'eau jusqu'à la cote 1,50 m quelle que soit sa cote initiale. Cette procédure est explicitée ci-dessous pour un risque 1/10 de dépassement de 1000 m4/s, dans le cas où la cote de départ, maintenue jusqu'à la fin de l'étiage, se situe à 2,00 m :

• Le plan d'eau est maintenu à la cote 2,00 m tant que la cote à l'échelle de Bakel n'a pas dépassé 356 cm. Dès que cette limite a été dépassée, le plan d'eau est abaissé jusqu'à la cote 1,95 m (palier théoriquement inférieur ou égal à 2).

- Le plan d'eau est maintenu à la cote 1,95 m tant que la cote à l'échelle de Bakel n'a pas dépassé 375 cm. Dès que cette limite a été dépassée, le plan d'eau est abaissé jusqu'à la cote 1,90 m (palier théoriquement inférieur ou égal à 2,5).
- Le plan d'eau est maintenu à la cote 1,90 m tant que la cote à l'échelle de Bakel n'a pas dépassé 379 cm. Dès que cette limite a été dépassée, le plan d'eau est abaissé jusqu'à la cote 1,85 m (palier théoriquement inférieur ou égal à 2,5).
- Le plan d'eau est maintenu à la cote 1,85 m tant que la cote à l'échelle de Bakel n'a pas dépassé 383 cm. Dès que cette limite a été dépassée, le plan d'eau est abaissé jusqu'à la cote 1,80 m (palier théoriquement inférieur ou égal à 2,5).
- Le plan d'eau est maintenu à la cote 1,80 m tant que la cote à l'échelle de Bakel n'a pas dépassé 387 cm. Dès que cette limite a été dépassée, le plan d'eau est abaissé jusqu'à la cote 1,75 m (palier théoriquement inférieur ou égal à 3).
- Le plan d'eau est maintenu à la cote 1,75 m tant que la cote à l'échelle de Bakel n'a pas dépassé 409 cm. Dès que cette limite a été dépassée, le plan d'eau est abaissé jusqu'à la cote 1,70 m (palier théoriquement inférieur ou égal à 3).
- Le plan d'eau est maintenu à la cote 1,70 m tant que la cote à l'échelle de Bakel n'a pas dépassé 412 cm. Dès que cette limite a été dépassée, le plan d'eau est abaissé jusqu'à la cote 1,65 m (palier théoriquement inférieur ou égal à 3).
- Le plan d'eau est maintenu à la cote 1,65 m tant que la cote à l'échelle de Bakel n'a pas dépassé 416 cm. Dès que cette limite a été dépassée, le plan d'eau est abaissé jusqu'à la cote 1,60 m (palier théoriquement inférieur ou égal à 3,5).
- Le plan d'eau est maintenu à la cote 1,60 m tant que la cote à l'échelle de Bakel n'a pas dépassé 441 cm. Dès que cette limite a été dépassée, le plan d'eau est abaissé jusqu'à la cote 1,55 m (palier théoriquement inférieur ou égal à 3,5).
- Le plan d'eau est maintenu à la cote 1,55 m tant que la cote à l'échelle de Bakel n'a pas dépassé 465 cm. Dès que cette limite a été dépassée, le plan d'eau est abaissé jusqu'à la cote 1,50 m (palier théoriquement inférieur ou égal à 4).

10.4.4 DATES PROBABLES DE L'ABAISSEMENT DE NIVEAU

L'analyse des débits observés à Bakel de 1986 à 1999, permet de repérer les dates de dépassement des débits seuils indiqués dans le tableau 9 B (procédure d'abaissement relative à un risque 1/10 de dépassement de 1000 m4/s d'énergie dissipée). Ces dates sont celles à partir desquelles l'abaissement de niveau aurait été déclenché selon la procédure décrite ci-dessus. Elles sont données année par année dans le tableau 10, et leurs fonctions de répartition sont représentées sur la figure 15.

Selon les années, la date à partir de laquelle le niveau ne peut être maintenu au dessus de 2,00 m (début de l'abaissement) se situe entre le 3 juillet et le 18 août. Celle à partir de laquelle le niveau ne peut être maintenu au dessus de 1,55 m (quasi fin de l'abaissement) se situe entre le 1er août et le 2 septembre.

La durée de l'abaissement est également très variable. Pour une année comme 1987, la cote à Bakel passant en 5 jours de 205 à 412 cm, l'abaissement du niveau de la retenue, déclenché le 18 août, doit être effectué en 8 jours. Lors d'une année comme 1992, il peut s'écouler 52 jours entre le moment où le niveau passe en dessous de 2,00 m, et celui où il passe en dessous de 1,55 m.

11 ERREURS DE GESTION A EVITER

11.1 LAMINAGE DES DEBITS DE POINTES DE CRUE

La capacité de stockage du barrage de Diama est très limitée. En considérant, en première approximation, un réservoir de 350 km de long sur 400 m de large, on peut estimer qu'une tranche d'eau de 50 cm y représente un volume de 70 millions de m³. Cela signifie par exemple que le niveau amont augmente de 50 cm lorsque le débit entrant diminué des pertes et prélèvements, dépasse le débit lâché de 810 m³/s pendant 24 heures, ou de 1620 m³/s pendant 12 heures. De ce fait , il est complètement illusoire de vouloir protéger la ville de Saint-Louis contre les crues en limitant le débit lâché par le barrage. Ceci peut être illustré par l'exemple suivant :

On envisage le cas où le niveau amont Hm est stabilisé à la cote 1,85 m, alors que toutes les vannes sont grandes ouvertes (palier P = 22). Ceci correspond à un débit lâché constant de 2204 m³/s, égal au débit entrant Qe diminué des pertes et prélèvements Pe dans la retenue, eux-mêmes également constants. A partir du temps T = 0, on décide de limiter le débit lâché en réglant désormais les sept vannes au palier 20, 16 ou 13. A partir de cet instant, l'évolution du niveau amont, du débit lâché et du produit Q*(Hm-Hv) peut être décrite par une modélisation simple (régime transitoire négligé) basée sur les relations Q1(Hm ;P) et Hv(f=0,5 ; Hm ; P) , ainsi que sur une relation Q(Qe ; Pe ; dHm/dt) traduisant le bilan d'eau dans la retenue. Pour cette dernière relation, on envisage une longueur de réservoir de 150 km au lieu de 350, car on peut considérer que pour des débits transités de l'ordre de 2000 m³/s., l'influence de la cote maintenue à Diama devient négligeable au delà de cette distance. Les résultats de la modélisation (figure 16) montrent à la fois l'inefficacité et le danger d'une telle tentative de laminage de crue :

Inefficacité: la diminution du débit lâché est relativement peu importante et limitée aux premières heures suivant la manœuvre. Les apports et pertes étant constants, un stockage et un rehaussement du plan d'eau se produisent dans la retenue, entraînant une augmentation du débit lâché. Cette évolution se poursuit jusqu'à ce que le débit lâché ait rattrapé sa valeur initiale.

Danger. Le rehaussement du plan d'eau amont entraîné par la manœuvre, peut aboutir au dépassement de la limite autorisée de 1000 m⁴/s. Un risque de submersion des digues à l'amont de l'ouvrage peut également se présenter du fait du rehaussement du remous sur une assez longue distance.

11.2 MANŒUVRES DE CHASSE D'EAU

Depuis quelques années, on constate une prolifération de végétaux aquatiques flottants dans la retenue de Diama. Lorsque les vannes sont noyées, et a fortiori quand elles sont fermées ou presque, le passage de l'eau en dessous des vannes ne permet pas d'évacuer ces végétaux ver l'aval, et ceux-ci s'accumulent derrière l'ouvrage.

Des procédures de chasse d'eau, consistant à effacer complètement une vanne de façon temporaire, ont été envisagées pour combattre ce fléau. Ceci ne doit cependant pas être effectué lorsqu'une dénivelée importante existe entre les plans d'eau amont et aval, car on rencontre alors les problèmes décrits plus haut pour le régime transitoire, même si une seule vanne est ouverte. Ceci peut être illustré par la situation suivante, rencontrée lors d'une de ces chasses opérée en 2000 :

Une vanne est grande ouverte, les six autres restant fermées. Les plans d'eau amont et aval se situent respectivement aux cotes 2,00 m et 0,30 m. La formule Q3 permet alors d'évaluer à 892 m³/s le débit passant par cette unique vanne. Le produit Q3*(Hm-Hv) s'élève quant-à lui à 1516 m⁴/s, dépassant de 960 % la limite envisagée par vanne (voir plus haut), et dépassant même de 52% la limite autorisée pour l'ensemble des 7 vannes. Pour un niveau amont restant fixé à 2 m, ce débit transitoire diminue jusqu'à l'obtention d'un régime établi qu'on peut approximativement situer (en utilisant les relations Hv(Q) et Q3(Hm,Hv)) vers : Q= 851 m³/s ; Hv = 0,60 m ; Q*(Hm-Hv) = 1191 m⁴/s.

Lorsqu'une dénivelée importante existe entre l'amont et l'aval, la meilleure solution pour évacuer les végétaux flottants consiste à utiliser l'écluse du barrage, comme le fait la SOGED depuis quelque temps. La chasse par une vanne grande ouverte doit être évitée, du fait qu'elle s'accompagne d'une dissipation d'énergie pouvant dépasser largement la limite autorisée par le constructeur du barrage.

LISTE DES VARIABLES UTILISEES

A : pente de variation de la cote aval en fonction de la cote amont (cas des vannes noyées)

a1 : paramètre de la relation P1(Hm)a2 : paramètre de la relation P2(Hm)

B : constante dans la relation entre cote amont et cote aval (cas des vannes noyées)

b1 : paramètre de la relation P1(Hm)
b2 : paramètre de la relation P2(Hm)
c1 : paramètre de la relation P1(Hm)
c2 : paramètre de la relation P2(Hm)
D : longueur du bief Diama-Rosso
d1 : paramètre de la relation P1(Hm)

E : ouverture verticale des vannes (entre 0 (vannes fermées) et 11,25 m)

f : fréquence de dépassement

d2

g : accélération de pesanteur (= 9,81 m)

paramètre de la relation P2(Hm)

grad(Hm) : vitesse de variation de la cote du plan d'eau à l'amont de Diama

grad(Hr): vitesse de variation de la cote du Sénégal à Rosso Hf: cote du fond représentative du bief Rosso-Diama

Hm : cote à l'amont du barrage

Hm1 : niveau amont maximal qui, pour un palier de réglage donné, permet de dépasser la limite

1000 m⁴/s avec un risque inférieur à 1 sur 5

Hm2 : niveau du plan d'eau amont à la date T2

Hr : cote du Sénégal à Rosso

H2 : cote amont pour laquelle s'annule la formule de débit Q2

Ho : niveau du fond, où reposent les vannes fermées (= -8,97 m)

Hv : cote à l'aval du barrage

Hv1 : cote à l'aval du barrage, qui pour un débit lâché donné, n'est dépassée qu'une fois sur 50

Hv2 : cote à l'aval du barrage, qui pour un débit lâché donné, est dépassée 49 fois sur 50

k : coefficient de Manning Strickler

Ks : coefficient de débit dans la formule Qs
 K1 : coefficient de débit dans la formule Q1
 K2 : coefficient de débit dans la formule Q2
 K3 : coefficient de débit dans la formule Q3

L : largeur de vanne (= 20 m)

I : largeur moyenne représentative du bief entre Rosso et Diama

m1 : exposant égal à 5/3 dans la formule de Manning Strickler
 m2 : exposant égal à 0,5 dans la formule de Manning Strickler

N : nombre de vannes ouvertes

n : nombre d'écarts types séparant une valeur (dépassée à la fréquence f) de la valeur

moyenne, dans le cas d'une distribution normale

n1 : exposant de la dénivelée (cote amont moins cote aval), dans la formule Q1

n2 : exposant de la cote amont dans la formule Q2

n3 : exposant de la dénivelée (cote amont moins cote aval), dans la formule Q3

P: palier de réglage des vannes (entre 0 (vannes fermées) et 23)

Pe : débit des prélèvements et pertes dans la retenue.

Pbd : débit des prélèvements et pertes entre Bakel et Diama

Prd : débit représentatif des pertes et prélèvements moyens entre Rosso et Diama

P1 : palier maximal de réglage de vanne permettant, pour une cote amont donnée, de maintenir

la valeur du produit Q*(Hm-Hv) en dessous de 1000 m4/s avec une probabilité donnée

P2 : palier minimal de réglage de vanne permettant, pour une cote amont donnée, de maintenir

la valeur du produit Q*(Hm-Hv) en dessous de 1000 m4/s avec une probabilité donnée

Q : débit lâché par le barrage

Qbak : débit constant passant à Bakel

Qe: débit entrant dans la retnue

Qi : débit lâché par la vanne de rang i

Qr : débit du Sénégal à Rosso

Qs : débit lâché par le barrage, formule utilisée par la SOGEM

Q1 : débit lâché par le barrage, calculé à partir de Hm, Hv et E. Formule utilisée dans le cas des

vannes noyées

Q1a : débit par vannes noyées, estimé à partir des relations Q1(Hv,Hm,E) et Hv(Hm,P)

Q1b: débit par vannes novées, estimé à partir des relations Q1(Hv,Hm,E) et Hv(Q)

Q2 : débit lâché par le barrage en régime établi, calculé à partir de Hm. Formule utilisée dans le

cas des vannes effacées

Q3 : débit lâché par le barrage en régime transitoire, calculé à partir de Hm, Hv et E. Formule

utilisée dans le cas des vannes effacées

 σ : écart type résiduel (écart type des erreurs d'ajustement d'une formule par rapport aux

valeurs mesurées)

S : écart type résiduel de la relation donnant la cote aval à partir de la cote amont (cas des

vannes noyées)

T1: date

T2 : date postérieure à T1

Y: largeur du plan d'eau à abaisser (ordre de grandeur : 400 m)

Z: longueur du plan d'eau à abaisser (ordre de grandeur : 350000 m)

x : nombre de paliers associé à la modification de réglage des vannes

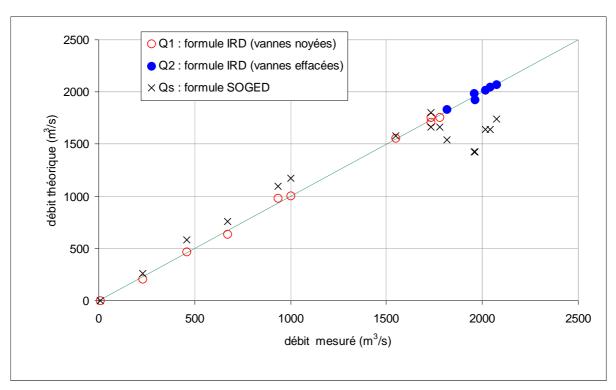


figure 1 : comparaison des valeurs de débit mesurées et des valeurs théoriques obtenues par les formules Q1 et Q2 (calage IRD) et Qs (utilisé par SOGED).

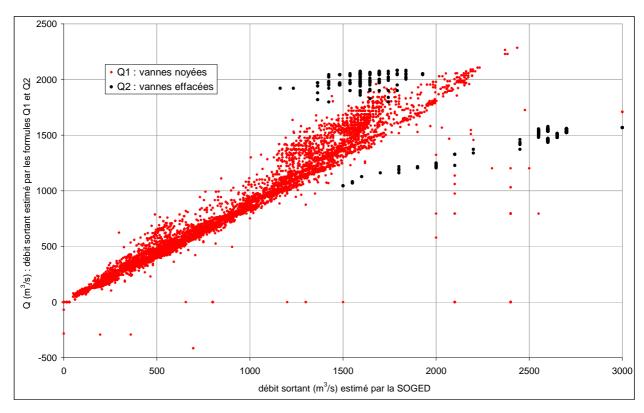


figure 2 : Comparaison des débits sortants estimés par la SOGED et par l'IRD, sur 12008 relevés effectués entre 1986 et 1999.

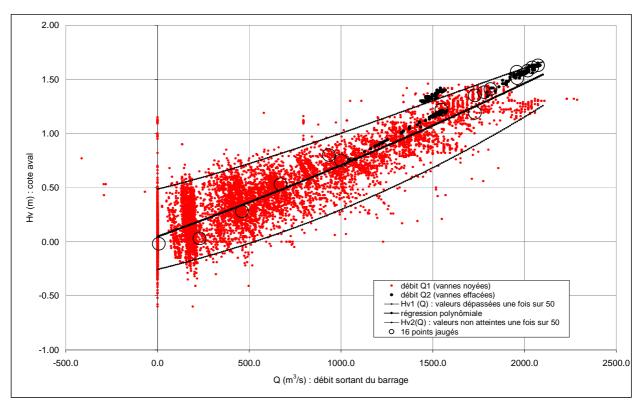


figure 3 : relation entre le débit sortant du barrage (calculé par les formules Q1 et Q2) et la cote relevée à l'aval de l'ouvrage

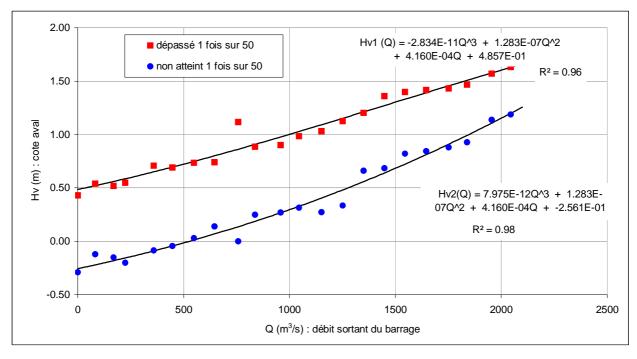


figure 4 : Valeurs extrêmes (quantiles 1/50 et 49/50) de la cote aval Hv, en fonction du débit sortant du barrage.

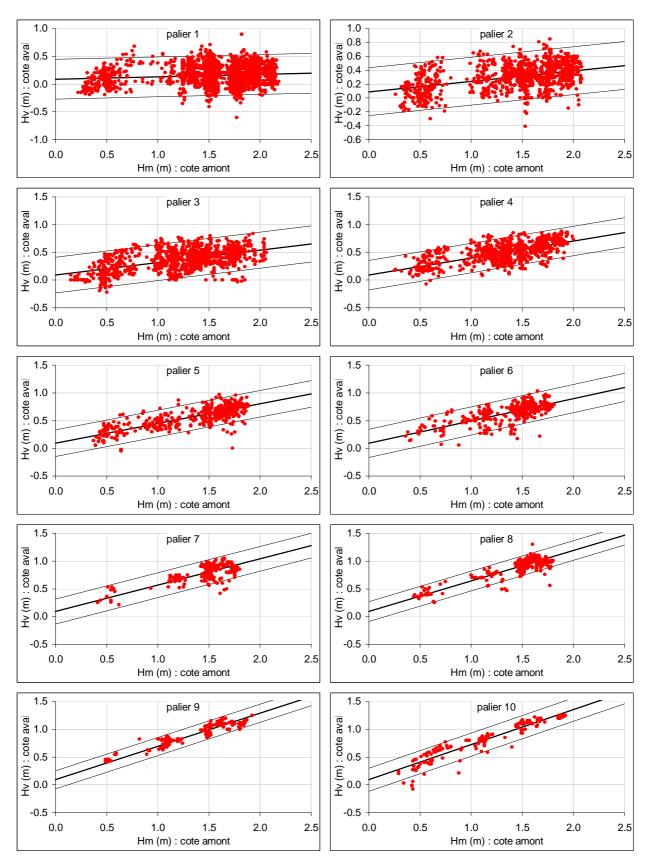


figure 5A : relation entre les cotes amont et aval, pour des paliers de réglage de vannes situés entre 1 et 10. Régression linéaire moyenne plus ou moins 2,055 écarts types résiduels (fréquence 1/50)

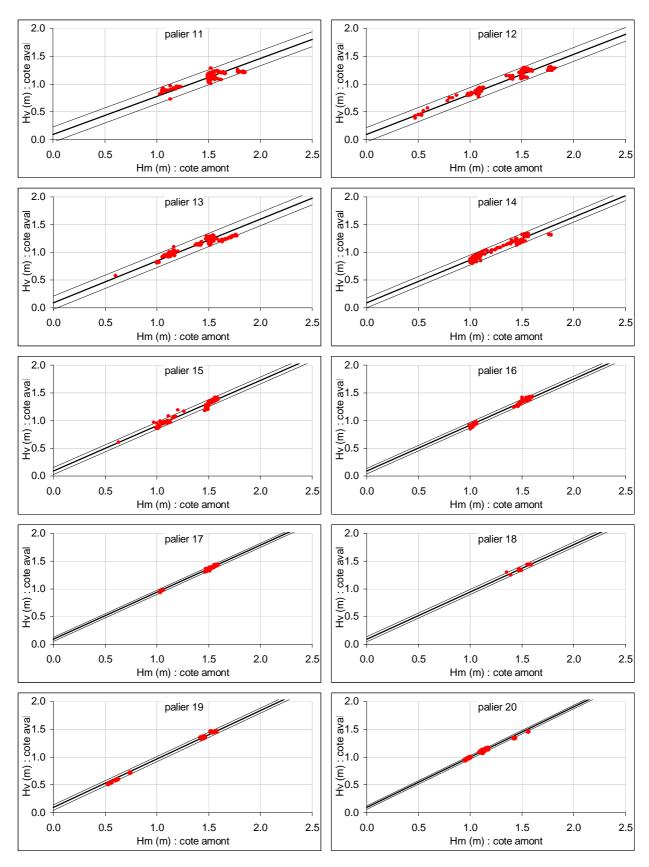


figure 5B : relation entre les cotes amont et aval, pour des paliers de réglage de vannes situés entre 11 et 20. Régression linéaire moyenne plus ou moins 2,055 écarts types résiduels (fréquence 1/50)

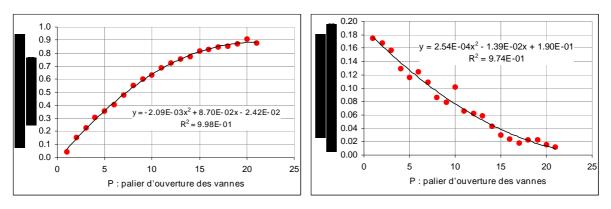


figure 6 : détermination du coefficient de régression A et de l'écart type résiduel S de la relation Hv = A * Hm + B, en fonction du palier de réglage P des vannes

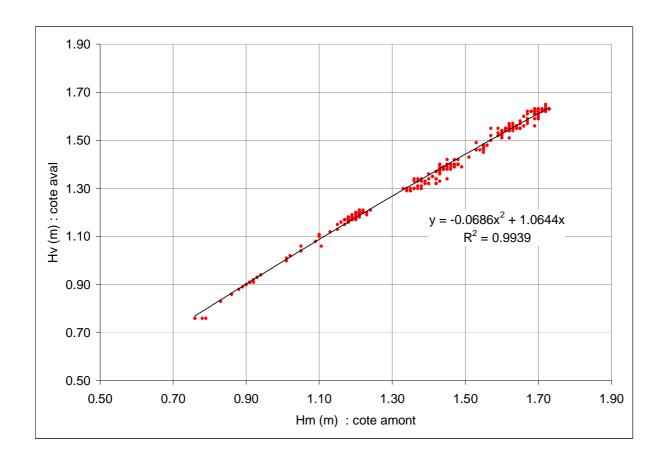


figure 7 : relation entre cotes amont et aval quand les vannes sont effacées

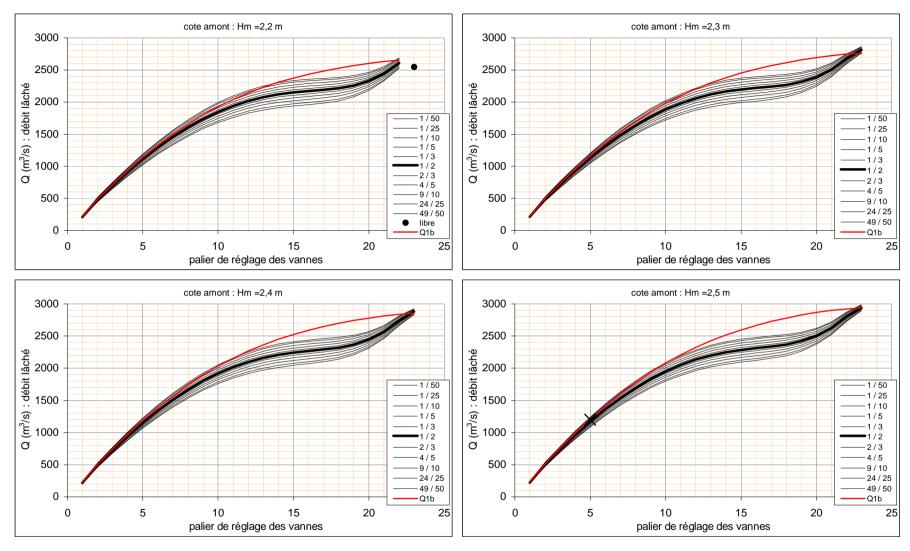


figure 8A : débit dépassé en régime établi (estimation Q1a à partir des relations Q1(Hv,Hm,E) et Hv(Hm,P)) pour différentes récurrences en fonction du palier de réglage des vannes, pour une cote amont égale à 220, 230, 240 ou 250 cm, dans le cas où les 7 vannes sont ouvertes.

Exemple d'interprétation (X) : pour une cote amont de 250 cm, le réglage des vannes au palier 5 donne Q > 1200 m³/s 1 fois sur 5

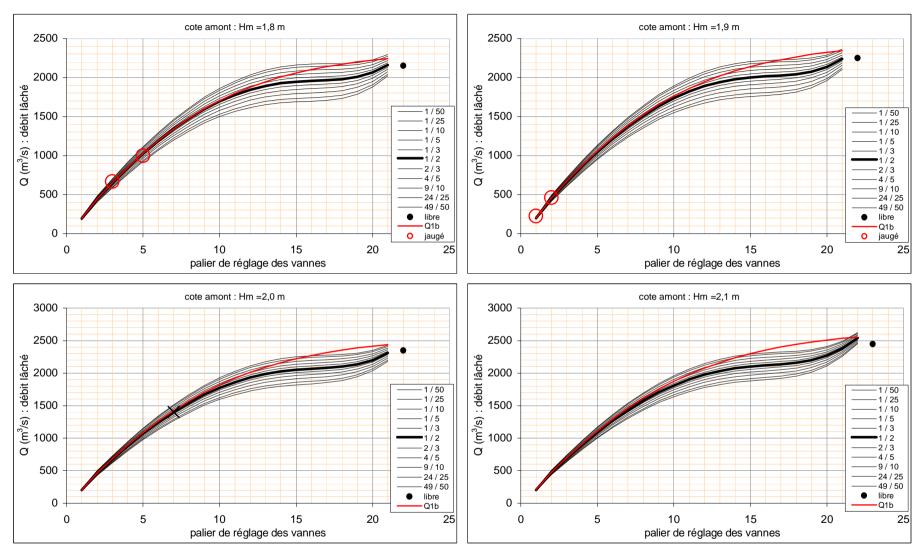


figure 8B: débit dépassé en régime établi (estimation Q1a à partir des relations Q1(Hv,Hm,E) et Hv(Hm,P)) pour différentes récurrences en fonction du palier de réglage des vannes, pour une cote amont égale à 180, 190, 200 ou 210 cm, dans le cas où les 7 vannes sont ouvertes.

Exemple d'interprétation (X): pour une cote amont de 200 cm, le réglage des vannes au palier 7 donne Q > 1401 m³/s 1 fois sur 2

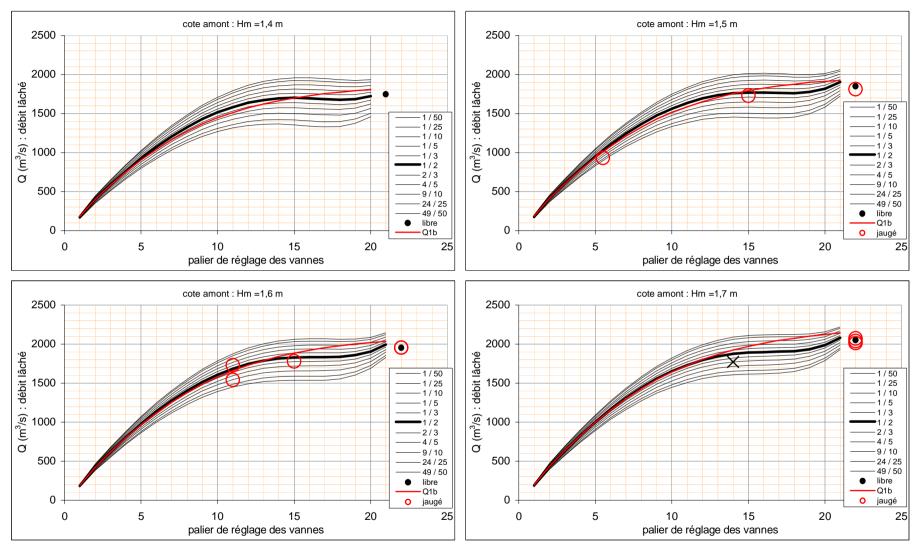


figure 8C : débit dépassé en régime établi (estimation Q1a à partir des relations Q1(Hv,Hm,E) et Hv(Hm,P)) pour différentes récurrences en fonction du palier de réglage des vannes, pour une cote amont égale à 140, 150, 160 ou 170 cm, dans le cas où les 7 vannes sont ouvertes.

Exemple d'interprétation (X): pour une cote amont de 170 cm, le réglage des vannes au palier 14 donne Q > 1773 m³/s 4 fois sur 5

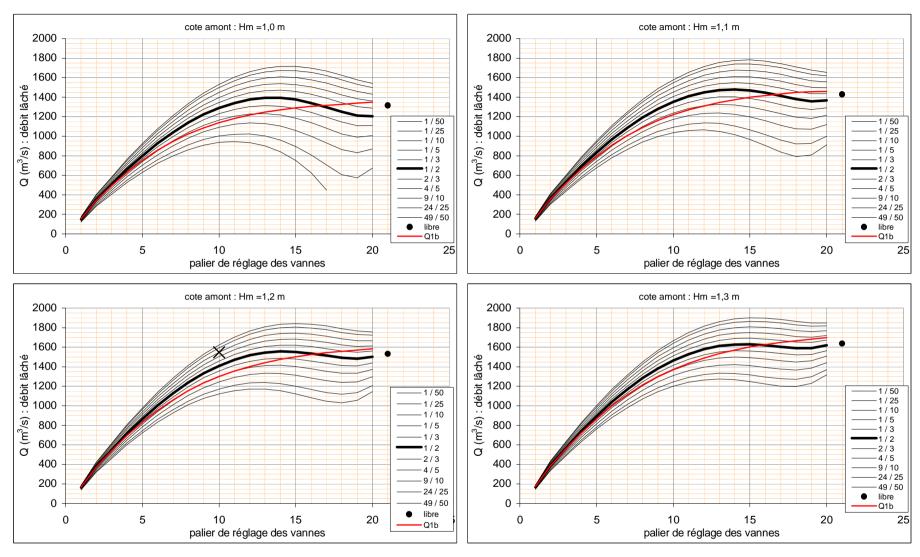


figure 8D : débit dépassé en régime établi (estimation Q1a à partir des relations Q1(Hv,Hm,E) et Hv(Hm,P)) pour différentes récurrences en fonction du palier de réglage des vannes, pour une cote amont égale à 100, 110, 120 ou 130 cm, dans le cas où les 7 vannes sont ouvertes.

Exemple d'interprétation (X): pour une cote amont de 120 cm, le réglage des vannes au palier 10 donne Q > 1549 m³/s une fois sur 10

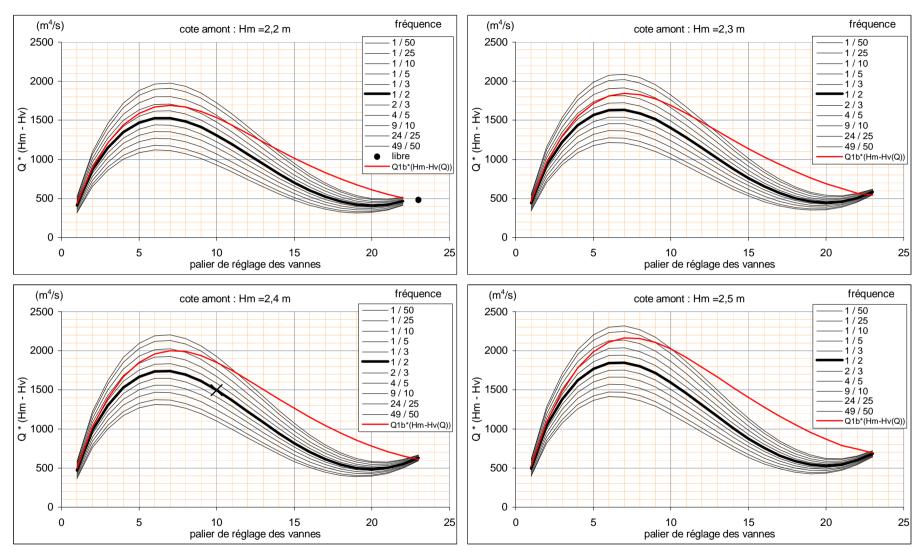


figure 9A : valeurs du produit Q*(Hm-Hv) dépassées en régime établi pour différentes récurrences en fonction du palier de réglage des vannes, pour une cote amont égale à 220, 230, 240 ou 250 cm, dans le cas où les 7 vannes sont ouvertes.

Exemple d'interprétation (X): pour une cote amont de 240 cm, le réglage des vannes au palier 10 donne Q * (Hm – Hv) > 1498 m⁴/s 1 fois sur 2

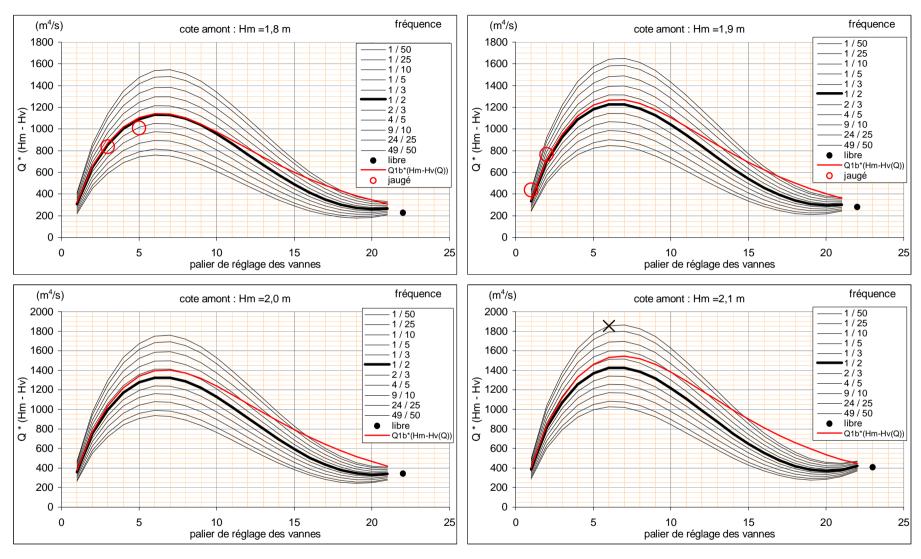


figure 9B : valeurs du produit Q*(Hm-Hv) dépassées en régime établi pour différentes récurrences en fonction du palier de réglage des vannes, pour une cote amont égale à 180, 190, 200 ou 210 cm, dans le cas où les 7 vannes sont ouvertes.

Exemple d'interprétation (X): pour une cote amont de 210 cm, le réglage des vannes au palier 6 donne Q * (Hm – Hv) > 1856 m⁴/s 1 fois sur 50

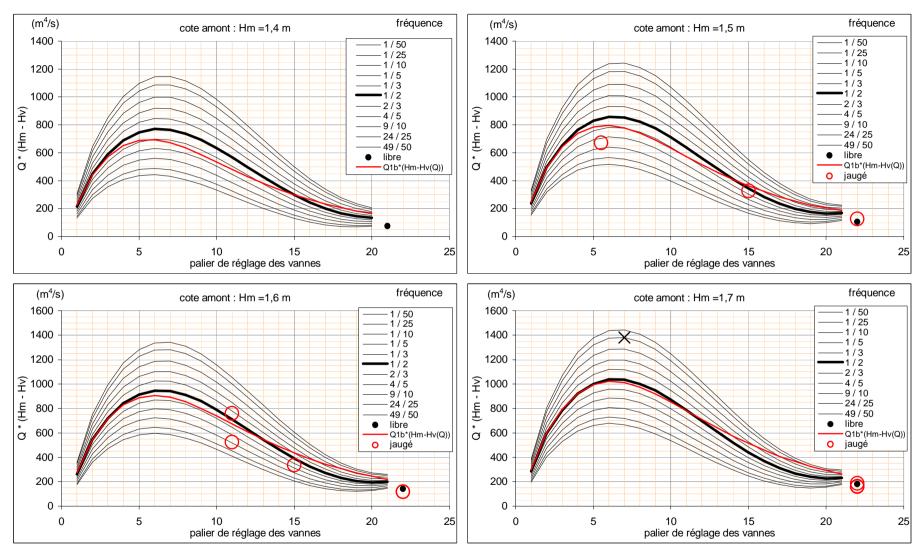


figure 9C : valeurs du produit Q*(Hm-Hv) dépassées en régime établi pour différentes récurrences en fonction du palier de réglage des vannes, pour une cote amont égale à 140, 150, 160 ou 170 cm, dans le cas où les 7 vannes sont ouvertes.

Exemple d'interprétation (X): pour une cote amont de 170 cm, le réglage des vannes au palier 7 donne Q * (Hm – Hv) > 1380 m⁴/s 1 fois sur 25

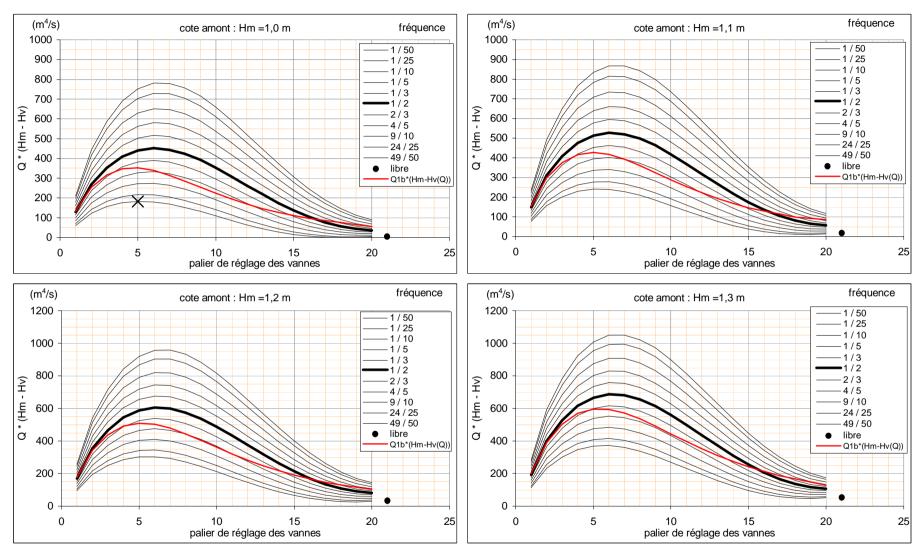


figure 9D : valeurs du produit Q*(Hm-Hv) dépassées en régime établi pour différentes récurrences en fonction du palier de réglage des vannes, pour une cote amont égale à 100, 110, 120 ou 130 cm, dans le cas où les 7 vannes sont ouvertes.

Exemple d'interprétation (X): pour une cote amont de 100 cm, le réglage des vannes au palier 5 donne Q * (Hm – Hv) > 183 m⁴/s 49 fois sur 50

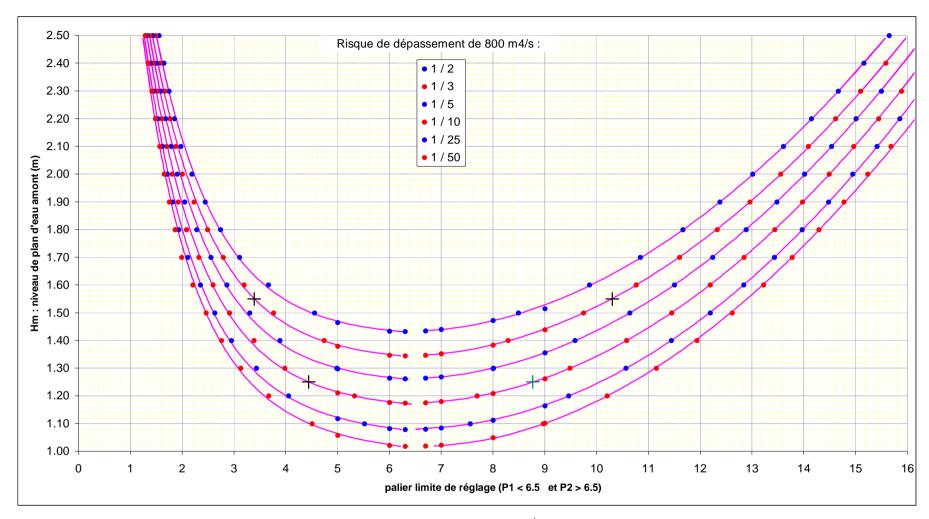


figure 10 A : paliers limites de réglage des vannes associés au dépassement de **800** m⁴/s en régime établi à diverses récurrences, en fonction de la cote amont Hm. Relations P1(Hm1) pour P1<6,5 et P2(Hm2) pour P2>6,5

Exemples d'interprétation (+): pour limiter à 1 sur 10 le risque de dépassement de 800 m4/s quand la cote amont vaut 1,25 m, il est nécessaire de régler les vannes à un palier soit inférieur à P1 = 4,4, soit supérieur à P2 = 8,8; pour limiter à 1 sur 3 ce risque quand la cote amont vaut 1,55 m, il faut régler les vannes à un palier soit inférieur à P1 = 3,4, soit supérieur à P2 = 10,3.

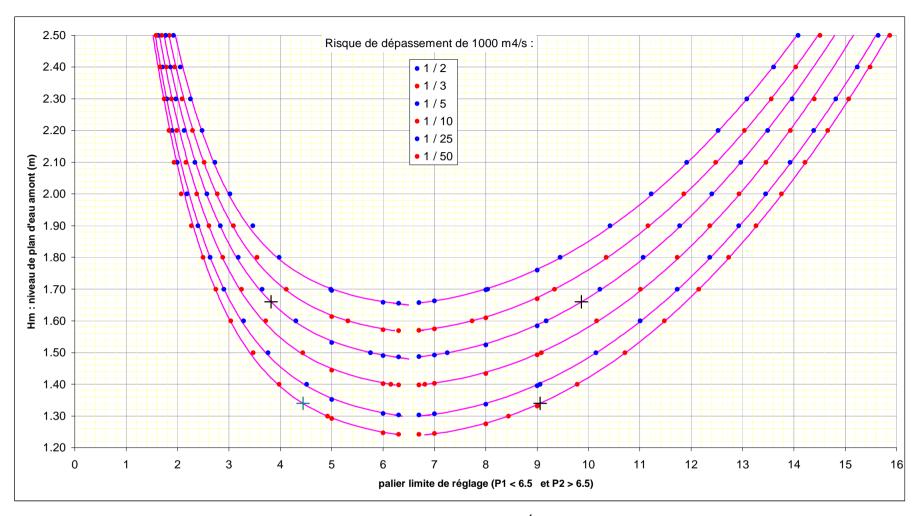


figure 10 B : paliers limites de réglage des vannes associés au dépassement de **1000** m⁴/s en régime établi à diverses récurrences, en fonction de la cote amont Hm. Relations P1(Hm1) pour P1<6,5 et P2(Hm2) pour P2>6,5

Exemples d'interprétation (+): pour limiter à 1 sur 50 le risque de dépassement de 1000 m4/s quand la cote amont vaut 1,34 m, il est nécessaire de régler les vannes à un palier soit inférieur à P1 = 4,4, soit supérieur à P2 = 9,1; pour limiter à 1 sur 5 le risque de dépassement de 1000 m4/s avec une cote amont de 1,66 m, il faut régler les vannes à un palier soit inférieur à P1 = 3,8, soit supérieur à P2 = 9,9.

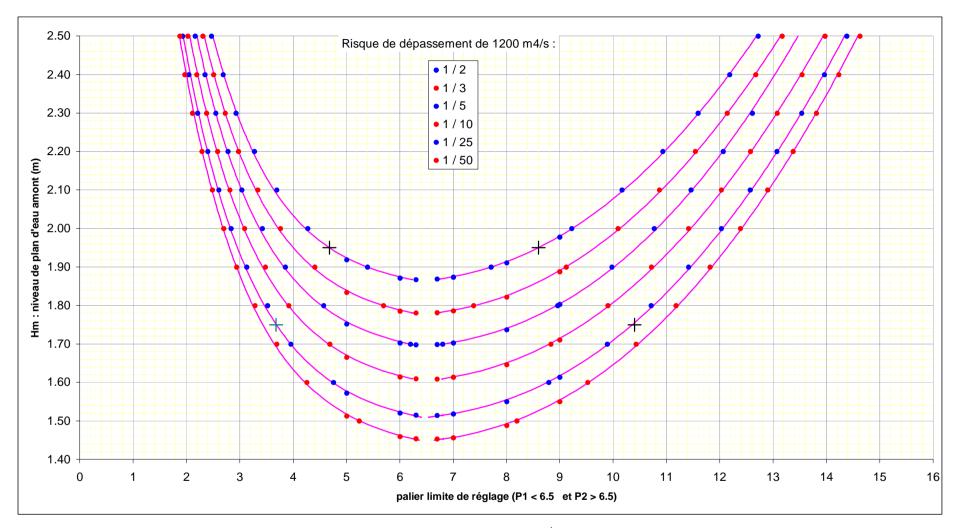


figure 10 C : paliers limites de réglage des vannes associés au dépassement de **1200** m⁴/s en régime établi à diverses récurrences, en fonction de la cote amont Hm. Relations P1(Hm1) pour P1<6,5 et P2(Hm2) pour P2>6,5

Exemples d'interprétation (+): pour limiter à 1 sur 25 le risque de dépassement de 1200 m4/s quand la cote amont vaut 1,75 m, il est nécessaire de régler les vannes à un palier soit inférieur à P1 = 3.7, soit supérieur à P2 = 10,4; pour limiter à 1 sur 2 le risque de dépassement de 1200 m4/s quand la cote amont vaut 1,95m, il faut régler les vannes à un palier soit inférieur à P1 = 4,7, soit supérieur à P2 = 8,6.

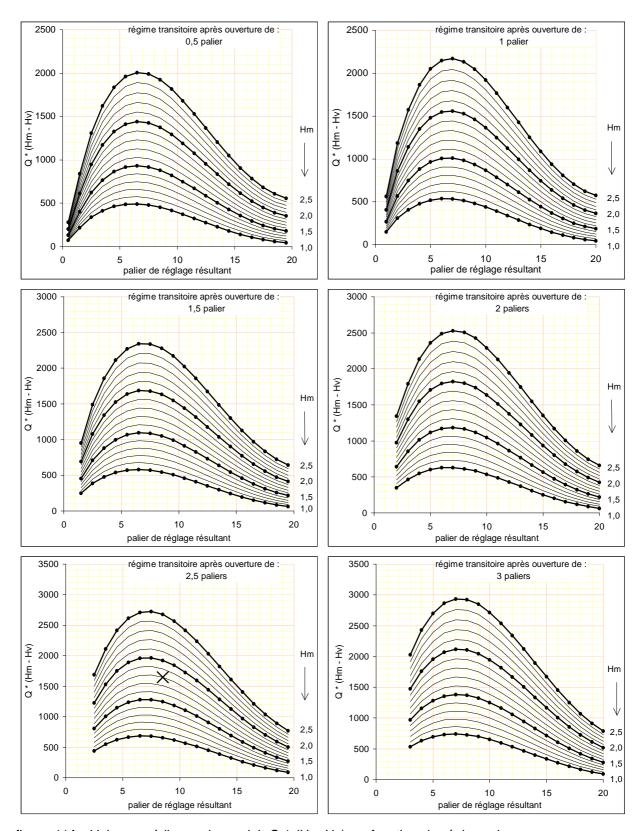


figure 11A : Valeurs médianes du produit Q * (Hm-Hv) en fonction du réglage des vannes pour une cote amont Hm située entre 1,0 m et 2,5 m, au début du régime transitoire consécutif à une augmentation d'ouverture des 7 vannes comprise entre 0,5 et 3 paliers.

Exemple d'interprétation (X): pour une cote amont de 1,80 m et un régime d'écoulement établi au palier de réglage 6, le passage instantané au palier 8,5 (augmentation de 2,5) se traduit par un régime transitoire au début duquel le produit $Q^*(Hm-Hv)$ se situe probablement vers 1644 m^4/s

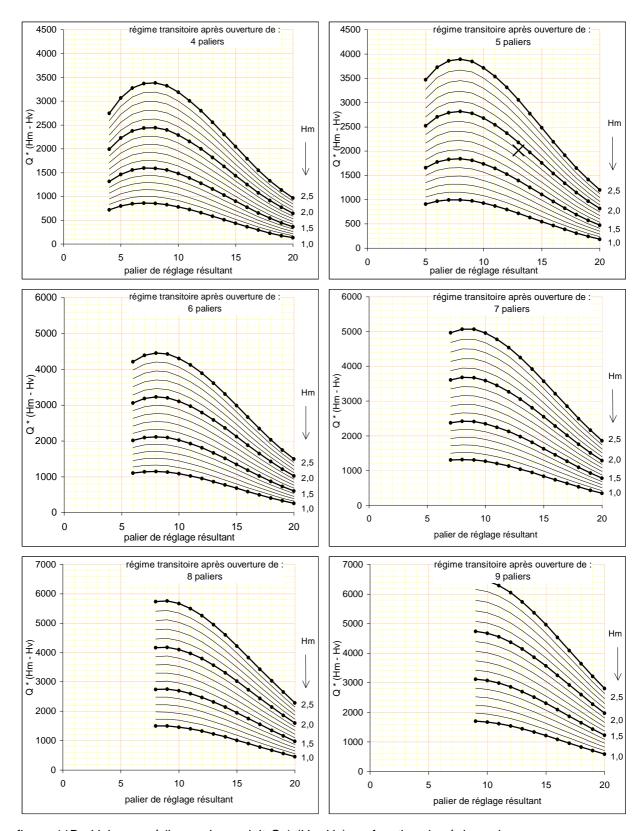


figure 11B : Valeurs médianes du produit Q * (Hm-Hv) en fonction du réglage des vannes pour une cote amont Hm située entre 1,0 m et 2,5 m, au début du régime transitoire consécutif à une augmentation d'ouverture des 7 vannes comprise entre 4 et 9 paliers.

Exemple d'interprétation (X): pour une cote amont de 1,90 m et un régime d'écoulement établi au palier de réglage 8, le passage instantané au palier 13 (augmentation de 5) se traduit par un régime transitoire au début duquel le produit $Q^*(Hm-Hv)$ se situe probablement vers 2017 m^4/s .

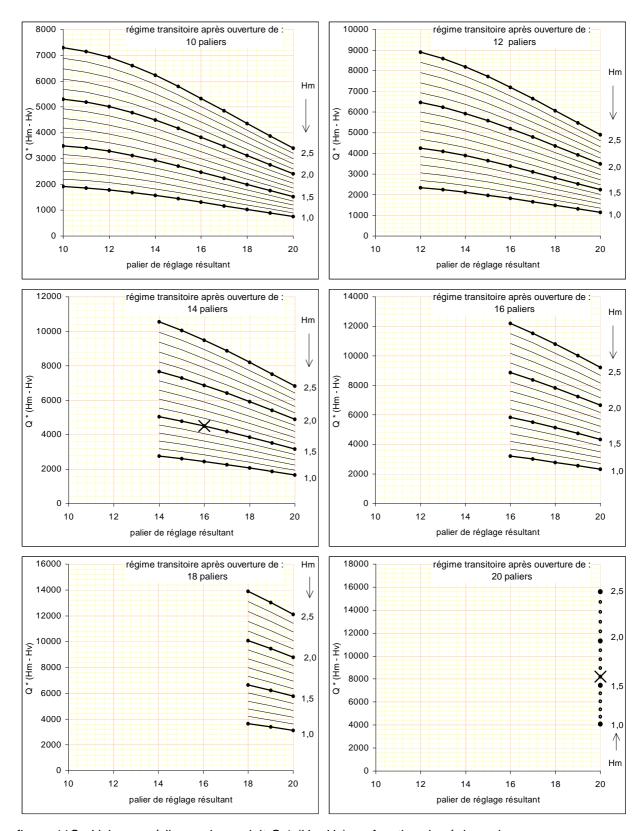


figure 11C : Valeurs médianes du produit Q * (Hm-Hv) en fonction du réglage des vannes pour une cote amont Hm située entre 1,0 m et 2,5 m, au début du régime transitoire consécutif à une augmentation d'ouverture des 7 vannes comprise entre 10 et 20 paliers.

Exemple d'interprétation (X) : pour une cote amont de 1,50 m et un régime d'écoulement établi au palier de réglage 2, le passage instantané au palier 16 (augmentation de 14) se traduit par un régime transitoire au début duquel le produit $Q^*(Hm-Hv)$ se situe probablement vers 4506 m^4/s . Pour une cote Hm de 1,60 m, le passage instantané du palier 0 au palier 20 donne 8205 m^4/s

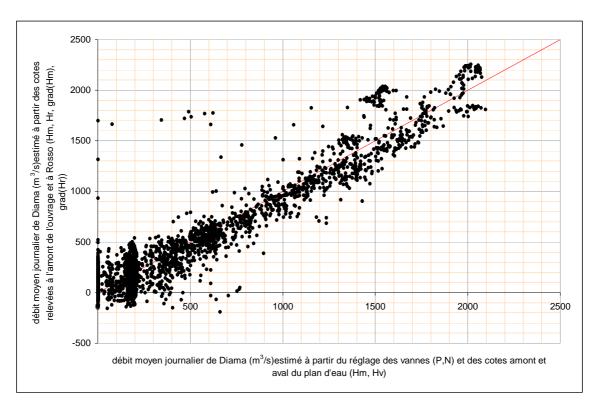
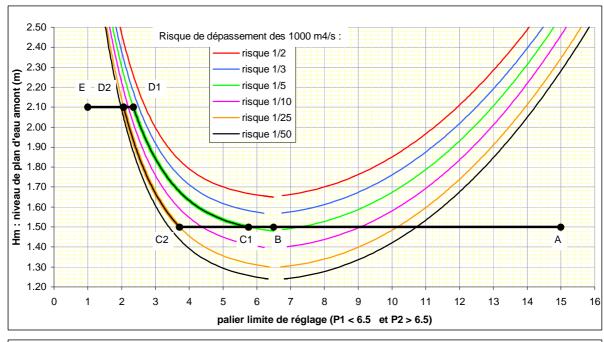



figure 12 : débits journaliers lâchés à Diama entre 1986 et 1999. Comparaison sur 2759 points, des estimations effectuées à partir des variables P, N, Hm et Hv d'une part, et Hr, Hm, grad(Hr) et grad(Hm) d 'autre part.

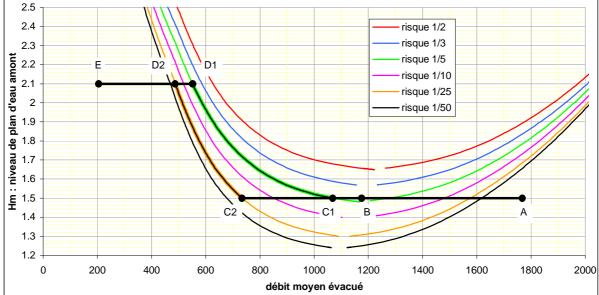


figure 13 : exemple de procédure de rehaussement de la cote amont de 1,50 m à 2,10 m en début de décrue, pour une énergie dissipée limitée à 1000 m4/s.

phase précédant la remontée : Une fois passé le maximum de crue, le débit à évacuer du barrage diminue assez régulièrement. A partir d'une situation initiale représentée par le point A (Hm = 1,50 m ; palier 15 ; Q =1770 m3/s), le maintien du niveau 1,50 m est alors obtenu par une fermeture progressive des vannes. Durant cette fermeture, le risque de dépassement de 1000 m4/s augmente tant que le palier reste supérieur à 6,5, passant d'une valeur inférieure à 1/50 (point A) à environ 1/5 (point B). A partir du point B (Hm = 1,50 m ; palier 6,5 ; Q = 1176 m3/s), la fermeture progressive des vannes s'accompagne au contraire d'une diminution de ce risque. La cote 1,50 m est donc maintenue jusqu'à ce que le risque atteigne la valeur désirée : point C1 (Hm = 1,50 m ; palier 5,8 ; Q = 1069 m3/s) pour un risque 1/5 ; point C2 (Hm = 1,50 m ; palier 3,7 ; Q = 734 m3/s) pour un risque 1/25.

<u>Phase de remontée du niveau</u>: par ajustements successifs de la fermeture des vannes, le niveau est remonté en veillant à ce qu'il reste toujours confondu ou en dessous de la courbe Hm1(P1) correspondant au niveau de risque accepté pour le dépassement des 1000 m4/s: courbe C1 D1 pour un risque 1/5; courbe C2 D2 pour un risque 1/25.

<u>Phase succédant à la remontée</u>: à partir du point D1 (Hm = 2,10 m; palier 2,3; Q = 551 m3/s) ou du point D2 (Hm = 2,10 m; palier 2,1; Q = 487 m3/s), le niveau est maintenu à 2,10 m en poursuivant la fermeture des vannes. Durant cette phase, le risque de dépassement des 1000 m4/s diminue de nouveau.

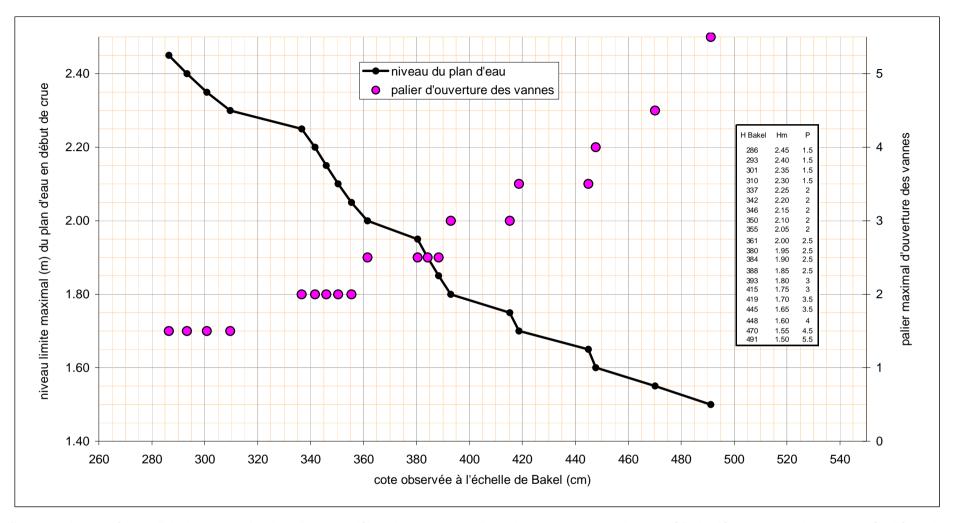


figure 14 A : procédure d'abaissement du plan d'eau en début de crue par paliers de 5 cm, pour un risque 1 / 5 de dépassement de 1000 m4/s d'énergie dissipée. Niveau limite maximal à viser en fonction de la cote dépassée à l'échelle de Bakel, et palier maximal d'ouverture des vannes associé.

Exemple d'interprétation : dès que la cote 380 cm est dépassée à Bakel, le plan d'eau doit être abaissé jusqu'à la cote 1,95 m, avec un palier d'ouverture des vannes théoriquement inférieur ou égal à 2,5 (respecter la courbe P1 (Hm) associée au risque 1/5, fig. 10 B)

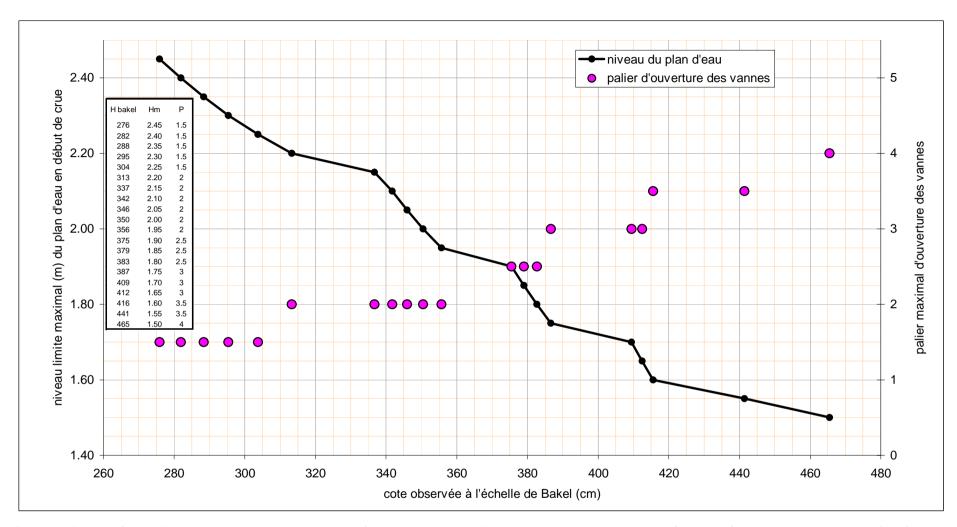


figure 14 B : procédure d'abaissement du plan d'eau en début de crue par paliers de 5 cm, pour un risque 1 / 10 de dépassement de 1000 m4/s d'énergie dissipée. Niveau limite maximal à viser en fonction de la cote dépassée à l'échelle de Bakel, et palier maximal d'ouverture des vannes associé.

Exemple d'interprétation : dès que la cote 350 cm est dépassée à Bakel, le plan d'eau doit être abaissé jusqu'à la cote 2,00 m, avec un palier d'ouverture des vannes théoriquement inférieur ou égal à 2 (respecter la courbe P1 (Hm) associée au risque 1/10, fig. 10 B)

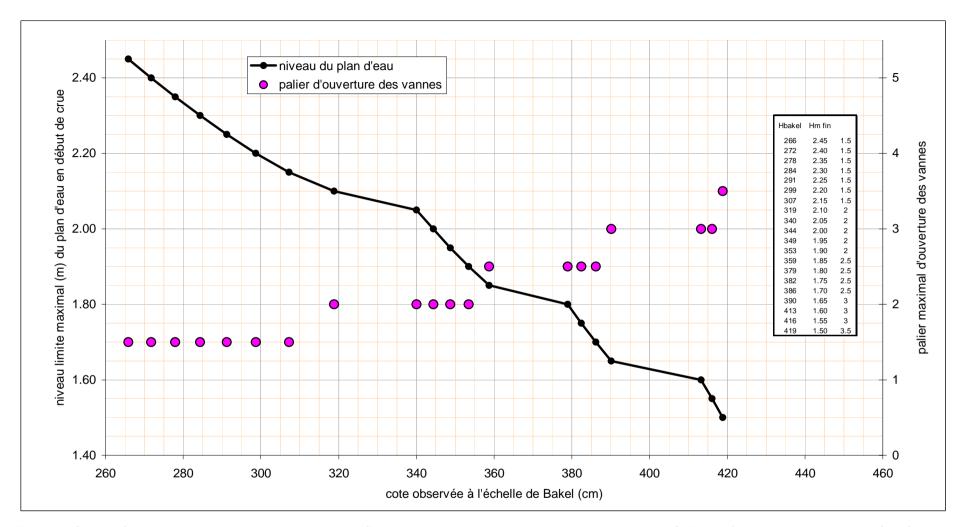


figure 14 C : procédure d'abaissement du plan d'eau en début de crue par paliers de 5 cm, pour un risque 1 / 25 de dépassement de 1000 m4/s d'énergie dissipée. Niveau limite maximal à viser en fonction de la cote dépassée à l'échelle de Bakel, et palier maximal d'ouverture des vannes associé.

Exemple d'interprétation : dès que la cote 390 cm est dépassée à Bakel, le plan d'eau doit être abaissé jusqu'à la cote 1,65 m, avec un palier d'ouverture des vannes théoriquement inférieur ou égal à 3 (respecter la courbe P1 (Hm) associée au risque 1/25, fig. 10 B)

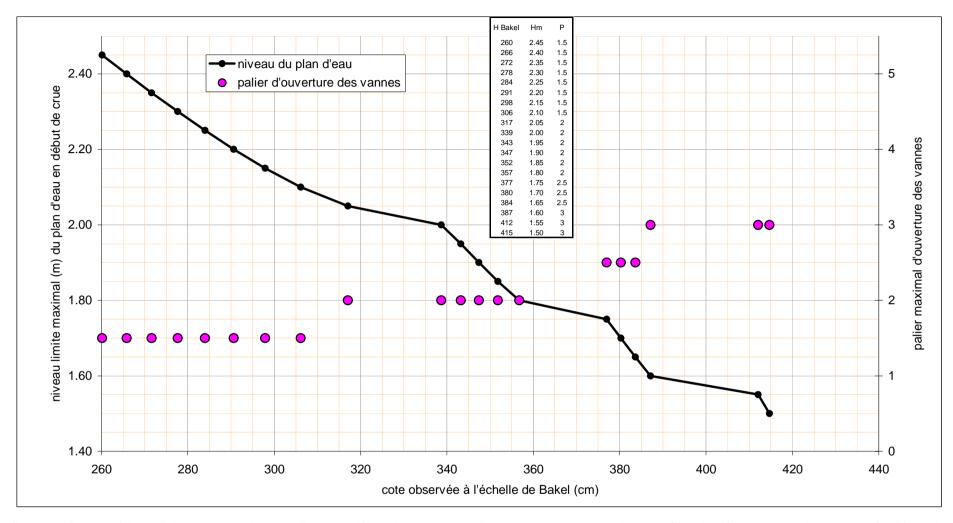


figure 14 D : procédure d'abaissement du plan d'eau en début de crue par paliers de 5 cm, pour un risque 1 / 50 de dépassement de 1000 m4/s d'énergie dissipée. Niveau limite maximal à viser en fonction de la cote dépassée à l'échelle de Bakel, et palier maximal d'ouverture des vannes associé.

Exemple d'interprétation : dès que la cote 357 cm est dépassée à Bakel, le plan d'eau doit être abaissé jusqu'à la cote 1,80 m, avec un palier d'ouverture des vannes théoriquement inférieur ou égal à 2 (respecter la courbe P1 (Hm) associée au risque 1/50, fig. 10 B)

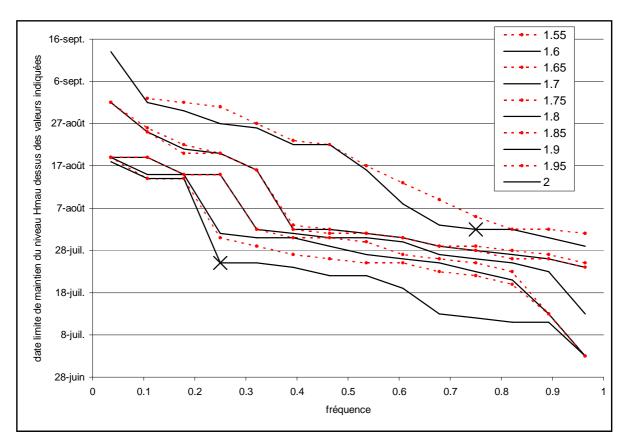


figure 15 : fonctions de répartition des dates limites les plus tardives jusqu'auxquelles le niveau Hm peut être maintenu au dessus des cotes 2,00 ; 1,95 ; et 1,55 m, dans le cas de la procédure optimale d'abaissement opérée en début de crue (énergie limite 1000 m4/s ; risque 1/10). Analyse effectuée sur la base des cotes observées à Bakel entre 1986 et 1999 ;

Exemple d'interprétation (X) : dans 25 % des cas la procédure d'abaissement optimisée permet de conserver un niveau Hm supérieur à 2,00 m au moins jusqu'au 25 juillet. Dans 75 % des cas, elle permet de conserver un niveau Hm supérieur à 1,60 m au moins jusqu'au 2 août.

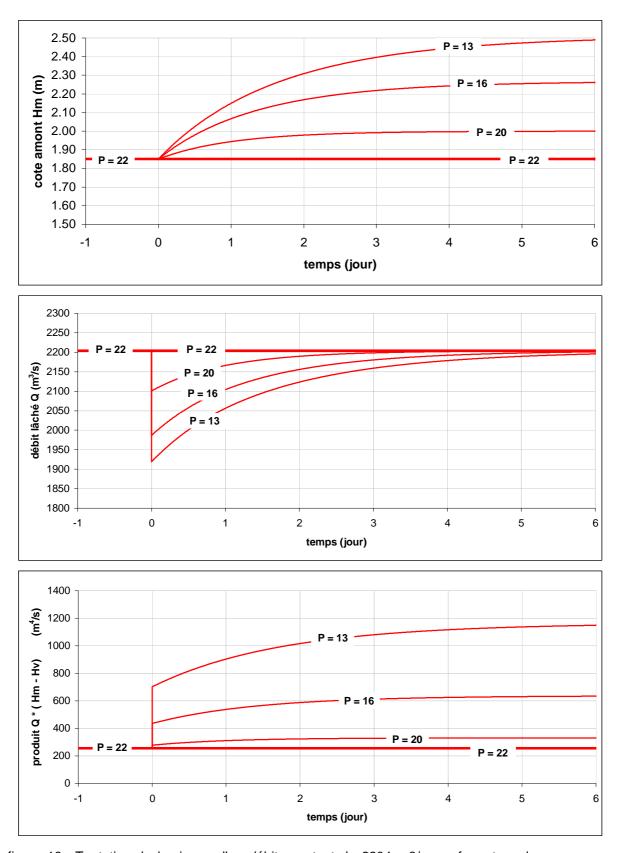


figure 16 : Tentative de laminage d'un débit constant de 2204 m3/s par fermeture des vannes au palier 20, 16 ou 13. Evolution de la cote amont, du débit et du produit Q*(Hm-Hv)

transect	appareil	Date	Heure	Hm cote amont (cm)	Hv cote aval (cm)	N nombre de vannes ouvertes	P palier	E ouverture (m)	débit mesuré (m³/s)	Q1 (m³/s) vannes noyées	Q2 (m³/s) vannes effacées	Qs (m ³ /s) formule utilisée par la SOGED
T4	Mon	30/09/98	17 h 25	154	135	7	15	7.23	1730	1754		1661
T4	Mon	16/10/98	15 h 30	156	122	7	11	5.14	1547	1554		1581
T4	Mon	30/10/98	14 h 40	194	28	7	2	0.85	461	468		580
T4	Mon	13/11/98	17 h 05	195	3	7	1	0.36	229	207		261
T4	Mon	18/12/98	17 h 10	203	-2	7	0	0.00	7.02	0		0
T4	Mon	19/08/99	14 h 15	176	75	7	5	2.21	1001	1005		1170
T4	Mon	03/09/99	13 h 30	163	119	7	11	5.14	1730	1712		1799
T4	Mon	10/09/99	17 h 00	157	138	7	15	7.23	1780	1754		1661
T4	Mon	25/09/99	09 h 00	157	151	7	22	11.03	1960		1922	1424
T4	Rio	06/10/99	12 h 00	166	158	7	22	11.03	2017		2014	1644
T4	Rio	06/10/99	17 h 00	163	157	7	22	11.03	1959		1983	1424
T4	Mon	10/10/99	10 h 00	169	161	7	22	11.03	2042		2044	1644
T4	Mon	23/10/99	13 h 15	172	163	7	22	11.03	2074		2074	1744
T4	Mon	16/11/99	09 h 00	148	141	7	22	11.03	1814		1830	1538
T4	Mon	08/12/99	15 h 50	178	53	7	3	1.29	670	636		760
T4	Mon	12/10/00	11 h 50	152	80	7	5.5	2.45	934	979		1094

tableau 1 : Débit lâché par le barrage de Diama. Valeurs mesurées et valeurs théoriques.

s)	bo	orne sup	2300	2100	2000	1900	1800	1700	1600	1500	1400	1300	1200	1100	1000	900	800	700	600	500	400	300	200	100	0
(m3/s)	b	orne inf	2100	2000	1900	1800			1500		1300	1200	1100	1000	900	800	700	600	500	400	300	200	100	0	0
Ø		ovenne	2206		1955				1546		1350	1251	1151		957	837	757	645	549	446	359	224	169	82	0
débit		effectif	6	117	115	92	235	298	418	305	364	237	283	289	307	390	334	619	550	842	501	584	1854		3142
		ovenne	1.31	1.46	1.40	1.32	1.31	1.20	1.16	1.03	0.94	0.86	0.76	0.69	0.66		0.54		0.38	0.35	0.31	0.12	0.18	0.16	0.03
		nédiane	1.32	1.58	1.47	1.36	1.34	1.25	1.19	1.00	0.94	0.90	0.77	0.71	0.68	0.62		-	0.39	0.35	0.31	0.10	0.18	0.16	
		0.02		1.19	1.14	0.93	0.88	0.84	0.82	0.69	0.66	0.33	0.27	0.32	0.27		0.00		0.03	-0.04	-0.08	-0.20		-0.12	
		0.07		1.22	1.16	1.19	1.10	0.89	0.88	0.82	0.79	0.63	0.54	0.43	0.40	0.32	0.22	0.26	0.10	0.08	0.00	-0.12	-0.09	-0.08	-0.20
		0.12	1.30	1.24	1.20	1.20	1.20	1.04	0.93	0.87	0.81	0.72	0.62	0.48	0.45	0.39	0.31	0.30	0.16	0.15	0.03	-0.08	-0.04	-0.03	-0.15
		0.17	1.30	1.25	1.22	1.22	1.22	1.09	1.00	0.89	0.83	0.75	0.64	0.54	0.52	0.44	0.35	0.33	0.21	0.19	0.10	-0.03	0.00	0.00	-0.12
		0.22	1.30	1.25	1.25	1.22	1.25	1.13	1.10	0.93	0.85	0.76	0.65	0.58	0.57	0.50	0.36	0.36	0.25	0.22	0.14	0.00	0.02	0.03	-0.10
	ent	0.27	1.30	1.27	1.28	1.24	1.30	1.15	1.13	0.94	0.89	0.78	0.68	0.61	0.61	0.53	0.40	0.40	0.27	0.25	0.18	0.00	0.05	0.06	-0.08
ε	dépasssement	0.32	1.30	1.29	1.29	1.28	1.32	1.18	1.16	0.95	0.90	0.80	0.69	0.65	0.62	0.55	0.42	0.42	0.29	0.27	0.21	0.01	0.08	0.08	-0.05
cote aval Hv (m)	assa	0.37	1.31	1.30	1.30	1.29	1.33	1.20	1.17	0.96	0.92	0.83	0.70	0.67	0.64	0.58	0.45	0.44	0.32	0.29	0.25	0.04	0.10	0.10	-0.03
aval		0.42	1.31	1.32	1.36	1.34	1.33	1.21	1.18	0.98	0.93	0.87	0.71	0.69	0.65	0.60	0.49	0.45	0.35	0.31	0.27	0.06	0.13	0.12	0.00
ote	ı non	0.5	1.32	1.58	1.47	1.36	1.34	1.25	1.19	1.00	0.94	0.90	0.77	0.71	0.68	0.62	0.53	0.49	0.39	0.35	0.31	0.10	0.18	0.16	0.02
ਁ	e au	0.58	1.32	1.61	1.52	1.38	1.35	1.26	1.19	1.05	0.96	0.92	0.80	0.74	0.70	0.64	0.58	0.50	0.42	0.38	0.37	0.13	0.22	0.20	0.05
	íréquence	0.63	1.32	1.61	1.53	1.39	1.36	1.27	1.20	1.08	0.97	0.94	0.81	0.76	0.72	0.66	0.61	0.53	0.44	0.41	0.39	0.15	0.25	0.21	0.08
	frégi	0.68	1.32	1.62	1.54	1.39	1.36	1.27	1.22	1.09	0.99	0.95	0.84	0.77	0.73	0.67	0.64		0.46	0.44	0.42	0.18	0.28	0.23	0.10
		0.73		1.62	1.54	1.40	1.37	1.28	1.25	1.11	1.00	0.97	0.88	0.79			0.67		0.48	0.46	0.45	0.20	0.30	0.27	0.12
		0.78	1.32	1.62	1.55	1.40	1.38	1.28	1.27	1.12	1.02	1.00	0.90	0.80	0.78	0.70		0.57	0.50	0.48	0.49	0.25	0.33	0.29	0.15
		0.83	1.32	1.63	1.55	1.41	1.39	1.30	1.29	1.17	1.04	1.03	0.91	0.83	0.79		0.72		0.53	0.51	0.51	0.30	0.36	0.30	0.19
		0.88	_	1.63	1.55	1.42	1.40	1.32	1.34	1.29	1.05	1.05	0.93	0.86	0.82	0.74		0.61	0.58	0.54	0.55	0.33	0.40	0.34	0.22
		0.93		1.63	1.56	1.44	1.42	1.35	1.38	1.32	1.10	1.08	0.95	0.91	0.85		0.82		0.64	0.59	0.60	0.41	0.43	0.41	0.28
		0.98		1.63	1.57	1.47	1.43	1.42	1.40	1.36	1.20	1.13	1.03	0.98	0.90	0.89	1.12	U./4	0.74	0.69	0.71	0.55	0.52	0.54	0.43

tableau 2 : analyse statistique de la cote aval Hv par tranche de débit Q lâché, en régime d'écoulement établi

Exemple d'interprétation : pour un débit lâché situé entre 1300 et 1400 m³/s, la cote aval se situe en moyenne à 0,94 m. Elle est inférieure à 1,10 m environ 93% du temps.

palier	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Α	0.04	0.15	0.22	0.31	0.36	0.40	0.48	0.55	0.60	0.63	0.69	0.72	0.75	0.77	0.82	0.83	0.85	0.85	0.87	0.91	0.88
B (m)	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09	0.09
R ²	0.02	0.21	0.28	0.43	0.62	0.49	0.51	0.77	0.85	0.90	0.71	0.92	0.84	0.94	0.97	0.99	0.98	0.83	1.00	0.97	0.86
écart type résiduel S (m)	0.17	0.17	0.16	0.13	0.12	0.12	0.11	0.09	0.08	0.10	0.07	0.06	0.06	0.04	0.03	0.02	0.02	0.02	0.02	0.02	0.01
nombre de points	2296	1057	1176	894	514	380	261	364	210	191	150	200	259	182	180	106	51	16	19	53	5

tableau 3 : coefficients de la régression linéaire entre cote amont et cote aval (Hv = A * Hm + B), pour chaque palier de réglage de vanne situé entre 1 et 21, pour l'écoulement par vannes noyées.

Р	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	L
Hm										vannes	noyées										vann	es effa	cées	
(m) 1.00	0.85	0.77	0.69	0.62	0.55	0.49	0.43	0.37	0.32	0.27	0.23	0.19	0.16	0.13	0.10	0.08	0.06	0.05	0.04	0.03	0.00	0.00	0.00	
1.10	0.94	0.85	0.77	0.69	0.62	0.55	0.48	0.42	0.36	0.31	0.26	0.22	0.18	0.15	0.12	0.09	0.07	0.06	0.05	0.04	0.01	0.01	0.01	<u></u>
1.20	1.04	0.94	0.85	0.76	0.68	0.60	0.53	0.46	0.40	0.35	0.29	0.25	0.21	0.17	0.14	0.11	0.09	0.07	0.06	0.05	0.02	0.02	0.02	Œ
1.30	1.13	1.03	0.93	0.83	0.74	0.66	0.58	0.51	0.44	0.38	0.33	0.28	0.23	0.19	0.16	0.13	0.10	0.09	0.07	0.07	0.03	0.03	0.03	1
1.40	1.23	1.11	1.00	0.90	0.81	0.72	0.63	0.56	0.48	0.42	0.36	0.30	0.25	0.21	0.18	0.14	0.12	0.10	0.09	0.08	0.04	0.04	0.04	1
1.50	1.32	1.20	1.08	0.97	0.87	0.78	0.69	0.60	0.53	0.45	0.39	0.33	0.28	0.23	0.19	0.16	0.13	0.11	0.10	0.09	0.09	0.06	0.06	>
1.60	1.41	1.28	1.16	1.05	0.94	0.83	0.74	0.65	0.57	0.49	0.42	0.36	0.30	0.26	0.21	0.18	0.15	0.13	0.11	0.10	0.10	0.07	0.07	Ť
1.70	1.51	1.37	1.24	1.12	1.00	0.89	0.79	0.70	0.61	0.53	0.45	0.39	0.33	0.28	0.23	0.19	0.16	0.14	0.12	0.11	0.11	0.09	0.09	dénivelée Hm - Hv
1.80	1.60	1.46	1.32	1.19	1.06	0.95	0.84	0.74	0.65	0.56	0.49	0.42	0.35	0.30	0.25	0.21	0.18	0.15	0.14	0.13	0.12	0.11	0.11	<u>ө</u>
1.90	1.69	1.54	1.40	1.26	1.13	1.01	0.89	0.79	0.69	0.60	0.52	0.44	0.38	0.32	0.27	0.23	0.19	0.17	0.15	0.14	0.14	0.13	0.13	elé
2.00	1.79	1.63	1.47	1.33	1.19	1.06	0.95	0.83	0.73	0.64	0.55	0.47	0.40	0.34	0.29	0.24	0.21	0.18	0.16	0.15	0.15	0.15	0.15	- ≧
2.10	1.88	1.71	1.55	1.40	1.26	1.12	1.00	0.88	0.77	0.67	0.58	0.50	0.43	0.36	0.31	0.26	0.22	0.19	0.17	0.16	0.16	0.17	0.17	ф
2.20	1.98	1.80	1.63	1.47	1.32	1.18	1.05	0.93	0.81	0.71	0.61	0.53	0.45	0.38	0.33	0.28	0.24	0.21	0.19	0.17	0.17	0.18	0.19	4
2.30	2.07	1.88	1.71	1.54	1.39	1.24	1.10	0.97	0.85	0.75	0.65	0.56	0.48	0.41	0.35	0.29	0.25	0.22	0.20	0.19	0.18	0.19	0.21	
2.40	2.16	1.97 2.06	1.79	1.61	1.45	1.30	1.15	1.02	0.90	0.78	0.68	0.58	0.50	0.43	0.36	0.31	0.27	0.23	0.21	0.20	0.20	0.20	0.22	1
2.50 Hm	2.26	2.06	1.87	1.68	1.51	1.35	1.20	1.06	0.94	0.82	0.71	0.61	0.53	0.45	0.38	0.33	0.28	0.25	0.22	0.21	0.21	0.21	0.23	
(m)										vannes	noyées										vann	es effa	cées	
1.00	152	350	509	662	800	927	1040	1139	1225	1290	1341	1377	1394	1393	1375	1341	1298	1250	1212	1205	1318	1318	1318	1
1.10	158	365	530	689	834	967	1085	1190	1281	1352	1409	1450	1473	1479	1468	1444	1413	1379	1358	1367	1428	1428	1428	1
1.20	164	378	549	715	866	1005	1128	1238	1334	1410	1471	1517	1545	1557	1552	1536	1514	1490	1482	1502	1535	1535	1535	1
1.30	170	391	568	739	895	1040	1168	1283	1384	1464	1529	1580	1613	1629	1630	1619	1604	1589	1590	1619	1642	1642	1642	(s)
1.40	175	403	586	762	924	1073	1206	1325	1431	1515	1584	1639	1675	1696	1701	1696	1687	1679	1687	1724	1747	1747	1747	(m3/s)
1.50	180	414	602	784	951	1105	1242	1366	1475	1563	1636	1694	1735	1759	1768	1768	1764	1762	1776	1819	1904	1850	1850	_
1.60	184	425	618	805	976	1135	1276	1404	1517	1609	1685	1747	1791	1818	1831	1835	1836	1838	1858	1907	1997	1953	1953	1
1.70	189	435	634	825	1001	1164	1309	1441	1558	1653	1732	1797	1844	1874	1891	1898	1903	1910	1935	1988	2083	2054	2054	σ
1.80	193	445	648	845	1025	1192	1341	1476	1597	1694	1777	1845	1895	1928	1948	1958	1966	1977	2006	2064	2163	2154	2154	
1.90	198	455	663	863	1047	1218	1371	1510	1634	1735	1820	1891	1943	1979	2002	2015	2027	2041	2074	2136	2239	2254	2254	débit
2.00	202	464	676	881	1069	1244	1401	1543	1670	1774	1862	1935	1990	2028	2053	2069	2084	2102	2138	2204	2311	2352	2352	ľ
2.10	205	474	690	899	1091	1269	1429	1574	1704	1811	1902	1977	2035	2076	2103	2121	2139	2160	2200	2269	2379	2542	2450	
2.20	209	482 491	703 715	916 932	1111	1293 1317	1457 1483	1605 1635	1738 1770	1847 1882	1941 1978	2019	2078 2120	2121 2165	2151	2171	2192 2242	2215 2268	2258	2330	2444 2506	2611 2677	2546 2815	4
2.40	217	491	715	932	1151	1340	1509	1664	1802	1916	2014	2097	2161	2208	2241	2266	2291	2320	2368	2446	2566	2740	2880	1
2.50	220	507	739	964	1170	1362	1534	1691	1833	1949	2050	2134	2200	2249	2285	2311	2338	2369	2420	2501	2624	2801	2943	1
Hm	220	307	100	304	1170	1302	1004	1031	1000			2104	2200	2243	2200	2011	2000	2303	2420	2501				
(m)										vannes	noyées										vann	es effa	cées	
1.00	129	269	352	410	441	452	445	424	392	353	309	263	218	175	137	104	77	57	43	36	6	6	6	1
1.10	149	311	408	476	513	527	520	498	463	419	369	318	267	218	174	136	105	81	66	58	17	17	17	(ffts)
1.20	170	355	466	544	588	606	599	575	537	488	433	375	318	263	213	170	135	108	90	81	33	33	33	#_
1.30	192	401	526	615	666	687	681	655	614	559	499	435	371	310	255	206	167	137	117	107	53	53	53	
1.40	214	448	588	689	746	771	765	738	693	634	567	498	427	360	298	244	201	167	145	135	77	77	77	_
1.50	237	496	652	764	829	857	853	823	775	711	638	562	485	411	343	284	236	199	175	164	168	107	107	
1.60	261	545	718	842	914	946	942	911	860	790	711	629	545	464	390	326	273	233	206	195	200	142	142	
1.70	285	596	785	922	1001	1038	1034	1002	947	872	787	697	606	519	439	369	311	268	239	227	233	182	182	Q*(Hm-
1.80	309	648	854	1003	1091	1131	1129	1095	1036	955	864	768	670	576	489	413	351	304	273	261	268	229	229	*
1.90	335	701	925	1087	1182	1227	1225	1190	1127	1041	943	840	735	634	540	459	392	341	309	296	304	282	282	
2.00	360	756	997	1172	1276	1325	1324	1287	1221	1129	1024	914	802	693	593	506	434	380	345	331	341	342	342	荳
2.10	387	811	1071	1259 1347	1371 1468	1425	1425	1386 1487	1316	1218	1107	990 1067	870 940	754 816	647	554	478	420 460	383	368 407	380	421	410	produit
2.20	414	868	1145			1527	1528		1413	1310	1192	1146			703 760	603	522	502	421	446	419	464	485	₫
	441	925 984	1222 1299	1438 1529	1567 1668	1630 1736	1632 1739	1590 1695	1512 1613	1403	1278 1366	1146	1011	880 945	817	654 706	568 614	545	461 501	446	460 501	509 554	581 631	l
2.40	469	1043	1378	1623	1770	1843	1847	1801	1716	1594	1456	1308	1157	1011	876	758	662	588	543	526	544	600	683	
2.00	451	1043	13/0	1023	1770	1043	104/	1001	1710	1054	1400	1300	110/	1011	010	100	002	500	040	020	J44	000	003	

tableau 4 : valeurs moyennes de la dénivelée Hm-Hv, du débit Q et du produit Q*(Hm-Hv) en régime d'écoulement établi avec 7 vannes ouvertes, en fonction du palier de réglage P et de la cote amont Hm

récurrence de dépassement	49 / 50	24 / 25	9/10	4/5	2/3	1/2	1/3	1/5	1 / 10	1 / 25	1 / 50
f : fréquence de dépassement	0.980	0.960	0.900	0.800	0.667	0.500	0.333	0.200	0.100	0.040	0.020
n	-2.054	-1.751	-1.282	-0.842	-0.431	0.000	0.431	0.842	1.282	1.751	2.054

tableau 5 : nombre n d'écarts types séparant une valeur de fréquence de dépassement f de la valeur moyenne, dans le cas d'une distribution normale

énergie limite (m4/s)	risque de dépassement de l'énergie limite	Hm(m) : cote amont	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.5
	1 / 50	P1	4.5	3.7	3.1	2.8	2.5	2.2	2.0	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.3
	1 / 50	P2	9.0	10.2	11.2	11.9	12.6	13.2	13.8	14.3	14.8	15.2	15.7	16.1	16.6	17.0	17.4
	1 / 25	P1	5.5	4.1	3.4	2.9	2.6	2.3	2.1	1.9	1.8	1.7	1.6	1.5	1.5	1.4	1.3
	1 / 23	P2	7.6	9.5	10.6	11.4	12.2	12.8	13.4	14.0	14.5	14.9	15.4	15.9	16.3	16.7	17.2
	1 / 10	P1		5.3	4.0	3.4	2.9	2.6	2.3	2.1	1.9	1.8	1.7	1.6	1.5	1.4	1.4
800	1710	P2		7.7	9.5	10.6	11.4	12.2	12.8	13.4	14.0	14.5	15.0	15.4	15.9	16.3	16.8
000	1 / 5	P1			5.0	3.9	3.3	2.9	2.6	2.3	2.0	1.9	1.8	1.7	1.6	1.5	1.4
	173	P2			8.0	9.6	10.6	11.5	12.2	12.9	13.5	14.0	14.5	15.0	15.5	15.9	16.4
	1/3	P1				4.7	3.8	3.2	2.8	2.5	2.2	2.0	1.9	1.8	1.7	1.6	1.5
		P2				8.3	9.7	10.8	11.6	12.3	13.0	13.6	14.1	14.6	15.1	15.6	16.0
	1/2	P1					4.6	3.7	3.1	2.7	2.4	2.2	2.0	1.9	1.7	1.6	1.6
	1,72	P2					8.5	9.9	10.8	11.7	12.4	13.0	13.6	14.1	14.7	15.2	15.6
	1 / 50	P1			4.9	4.0	3.5	3.0	2.7	2.5	2.3	2.1	1.9	1.8	1.7	1.7	1.6
	1700	P2			8.4	9.8	10.7	11.5	12.1	12.7	13.3	13.8	14.2	14.7	15.1	15.5	15.9
	1 / 25	P1				4.5	3.8	3.3	2.9	2.6	2.4	2.2	2.0	1.9	1.8	1.7	1.6
	1720	P2				9.1	10.1	11.0	11.7	12.4	12.9	13.4	13.9	14.4	14.8	15.2	15.6
	1 / 10	P1				6.2	4.4	3.7	3.2	2.9	2.6	2.4	2.2	2.0	1.9	1.8	1.7
1000	.,	P2				6.8	9.1	10.2	11.0	11.7	12.4	12.9	13.5	13.9	14.4	14.8	15.3
	1/5	P1					5.8	4.3	3.6	3.2	2.8	2.6	2.3	2.1	2.0	1.9	1.8
		P2					7.2	9.2	10.2	11.1	11.8	12.4	13.0	13.5	14.0	14.4	14.9
	1/3	P1						5.3	4.1	3.5	3.1	2.8	2.5	2.3	2.1	1.9	1.8
		P2						7.7	9.3	10.3	11.2	11.9	12.5	13.0	13.6	14.0	14.5
	1/2	P1							5.0	4.0	3.5	3.0	2.7	2.5	2.3	2.1	1.9
		P2							8.0	9.4	10.4	11.2	11.9	12.5	13.1	13.6	14.1
	1 / 50	P1					5.2	4.3	3.7	3.3	2.9	2.7	2.5	2.3	2.1	2.0	1.9
		P2					8.2	9.5	10.4	11.2	11.8	12.4	12.9	13.4	13.8	14.2	14.6
	1 / 25	P1						4.8	4.0	3.5	3.1	2.8	2.6	2.4	2.2	2.0	1.9
		P2						8.8	9.9	10.7	11.4	12.0	12.6	13.1	13.5	14.0	14.4
	1 / 10	P1							4.7	3.9	3.5	3.1	2.8	2.6	2.4	2.2	2.0
1200		P2							8.8	9.9	10.7	11.4	12.0	12.6	13.1	13.5	14.0
	1/5	P1							6.2	4.6	3.9	3.4	3.0	2.8	2.5	2.3	2.2
		P2							6.8	9.0	10.0	10.8	11.5	12.1	12.6	13.1	13.6
	1/3	P1								5.7	4.4	3.8	3.3	3.0	2.7	2.5	2.3
		P2								7.4	9.1	10.1	10.9	11.5	12.1	12.7	13.2
	1/2	P1									5.4	4.3	3.7	3.3	2.9	2.7	2.5
		P2									7.7	9.2	10.2	10.9	11.6	12.2	12.7

tableau 6 : valeurs extrêmes de réglage de vanne P1 et P2 permettant de limiter, en régime d'écoulement établi, le risque de dépassement de 800, 1000 ou 1200 m⁴/s par le produit Q * (Hm - Hv)

Exemples d'interprétations :

Pour une cote amont de 1,60 m, le risque de dépassement de 800 m 4 /s est inférieur ou égal à 1/10, si le réglage des vannes se situe soit en dessous de P1 = 2,6 soit au dessus de P2 = 12,2.

Pour une cote amont de 1,4 m, le risque de dépassement de 1000 m4/s est toujours inférieur à 1/5 quel que soit le réglage.

Pour une cote amont de 2,10 m, le risque de dépassement de 1200 m4/s est inférieur à 1/50 si le réglage se situe soit en dessous de P1 = 2,5, soit au dessus de P2 = 12,9

énergie limite (m4/s)	risque de dépassement de l'énergie limite	a1	b1	c1	d1	a2	b2	c2	d2
	1 / 50	-5.106	6.805	0.972	-0.165415	6.633	8.723	1.018	0.523611
	1 / 25	-8.086	9.770	1.043	-0.115444	6.261	9.066	1.079	0.491907
800	1 / 10	-14.168	15.832	1.144	-0.072108	6.202	9.107	1.172	0.494760
800	1/5	-112.965	114.604	1.241	-0.010236	6.263	9.045	1.262	0.505209
	1/3	-149.694	151.313	1.323	-0.007866	6.271	9.047	1.345	0.512765
	1/2	-190.595	192.197	1.410	-0.006207	6.369	8.940	1.433	0.520790
	1 / 50	-45.423	47.264	1.208	-0.026446	5.884	8.915	1.232	0.463531
	1 / 25	-48.348	50.177	1.268	-0.025297	5.836	8.953	1.294	0.461449
1000	1 / 10	-55.494	57.305	1.363	-0.022152	5.544	9.176	1.388	0.437757
1000	1/5	-115.926	117.719	1.453	-0.010808	5.578	9.119	1.477	0.444035
	1/3	-152.372	154.155	1.538	-0.008163	5.673	9.052	1.560	0.459148
	1/2	-191.207	192.995	1.628	-0.006280	5.692	9.005	1.648	0.462680
	1 / 50	-54.303	56.288	1.408	-0.023621	5.642	8.730	1.443	0.435733
	1 / 25	-61.772	63.749	1.471	-0.020715	5.633	8.722	1.504	0.436422
1200	1 / 10	-78.293	80.262	1.567	-0.016356	5.635	8.690	1.599	0.438733
1200	1/5	-116.440	118.412	1.659	-0.010908	5.510	8.688	1.688	0.422664
	1/3	-154.161	156.139	1.743	-0.008167	5.626	8.640	1.772	0.442402
	1/2	-194.375	196.367	1.833	-0.006335	5.652	8.579	1.859	0.446608

tableau 7 : valeurs des paramètres des relations : P1 = a1 + b1 * (Hm - c1) d1 P2 = a2 + b2 * (Hm - c2) d2

	passage du débit en	maximum de crue,
année	dessous de 1362 m ³ /s	inférieur à 1362 m ³ /s
1987		03-oct
1988	27-oct	
1989	17-oct	
1990		07-oct
1991	21-sept	
1992	29-sept	
1993	27-sept	
1994	02-nov	
1995	26-oct	
1996		12-sept
1997	11-oct	
1998	19-oct	
1999	26-nov	

tableau 8 : date souhaitable du début de rehaussement du plan d'eau à l'amont du barrage de Diama, déterminée à partir des débits estimés à Rosso sur la période 1986-1999.

		Hm (m)	début	2.50	2.45	2.40	2.35	2.30	2.25	2.20	2.15	2.10	2.05	2.03	2.00	1.95	1.90	1.85	1.84	1.80	1.75	1.72	1.70	1.65	1.63	1.60	1.58	1.55	1.54	1.51
		1 1111 (111)	fin	2.45	2.40	2.35	2.30	2.25	2.20	2.15	2.10	2.05	2.03	2.00	1.95	1.90	1.85	1.84	1.80	1.75	1.72	1.70	1.65	1.63	1.60	1.58	1.55	1.54	1.51	1.50
		réglage	Р	1.5	1.5	1.5	1.5	2	2	2	2	2	2	2.5	2.5	2.5	2.5	2.5	3	3	3	3.5	3.5	3.5	4	4	4.5	4.5	5	5.5
		regiage	E (m)	0.61	0.61	0.61	0.61	0.85	0.85	0.85	0.85	0.85	0.85	1.07	1.07	1.07	1.07	1.07	1.29	1.29	1.29	1.52	1.52	1.52	1.75	1.75	1.98	1.98	2.21	2.45
		débit lâché Q	début	366	363	360	358	491	487	482	478	474	469	576	573	567	561	555	655	648	641	735	732	723	812	805	887	881	960	1033
		médian (m ³ /s)	fin	363	360	358	354	487	482	478	474	469	467	573	567	561	555	554	648	641	636	732	723	720	805	800	881	878	953	1030
		median (m /s)	moyen	365	362	359	356	489	484	480	476	471	468	574	570	564	558	555	652	645	639	733	727	721	809	803	884	880	957	1031
débit	cote à	produit Q*(Hm-	début	790	767	745	723	925	896	868	839	811	783	906	887	855	823	792	884	854	820	874	861	824	868	842	864	843	860	857
entrant	l'échelle	Hv) médian	uebut	7 90	101	743	123	923	090	000	039	011	103	900	007	033	023	132	004	034	020	0/4	001	024	000	042	004	043	000	031
(m ³ /s)	de Bakel	(m ⁴ /s)	fin	767	745	723	701	896	868	839	811	783	771	887	855	823	792	787	854	820	797	861	824	811	842	823	843	832	838	848
(111 /5)	(cm)	(111 /5)	III	707	745	123	701	896	808	839	011	763	771	007	800	623	792	767	854	820	191	801	824	011	842	623	043	832	030	040
371	286			21	21	22	23	9	9	9	10	10	4	4	7	7	7	1	4	5	3	1	4	1	2	2	2	1	1	1
387	293				26	27	28	10	10	10	10	11	5	4	7	7	7	1	5	5	4	2	4	2	2	2	2	1	2	1
404	301					35	37	11	11	11	11	12	5	4	7	7	8	1	5	6	4	2	5	2	3	2	2	1	2	1
424	310						61	12	12	12	13	13	6	4	8	8	8	1	5	6	4	2	5	2	3	2	2	1	2	1
485	337							19	20	20	21	23	10	6	11	11	11	2	6	7	5	2	6	2	3	2	2	1	2	1
497	342								22	23	25	26	12	6	11	12	12	2	7	8	5	2	6	2	3	2	2	1	2	1
510	346									28	29	32	14	7	12	13	13	2	7	8	6	2	6	2	3	2	2	1	2	1
523	350										37	41	19	7	13	14	14	2	7	9	6	2	6	2	3	3	2	1	2	1
538	355											59	29	8	15	15	16	2	8	9	6	2	7	2	3	3	2	1	2	1
557	361												75	9	17	18	19	3	9	10	7	2	7	3	4	3	2	1	2	1
608	378													17	31	35	39	6	12	14	10	3	9	3	4	3	3	1	2	1
614	380	durée des ét													35	39	44	7	12	15	10	3	9	3	4	3	3	1	2	1
625	384	d'abaissement (50	60	10	13	16	11	3	10	3	5	3	3	1	2	1
638	388	pour une durée															96	17	15	18	13	3	10	4	5	4	3	2	2	1
652	393	192 heure																104	17	21	15	4	11	4	5	4	3	2	3	1
711	412	192 116016	53																41	57	45	6	17	6	6	5	4	2	3	1
719	415																			76	64	6	18	7	7	5	4	2	3	1
729	419																				136	7	20	7	7	6	4	2	3	1
806	444																					24	89	42	12	10	6	3	4	1
809	445																						103	52	13	10	6	3	4	1
817	448																							152	14	11	6	3	4	1
892	469																								77	90	11	6	6	2
897	470																									166	11	6	6	2
974	490																										93	85	12	3
977	491																											177	13	3
1051	511																												187	5
1129	531																													192
		_																												

tableau 9 A : procédures d'abaissement en 192 heures du niveau amont jusqu'à la cote 1,50 m, compatibles avec un <u>risque inférieur à 1 sur 5</u> de dépassement de la limite des 1000 m⁴/s, dans le cas d'un débit amont constant entrant dans la retenue, et pour des prélèvements et pertes évalués à 100 m³/s.

L'abaissement de la cote 1,70 à la cote 1,65 peut être effectué avec les 7 vannes ouvertes au palier 3,5 (ouverture 1,52 m), avec un débit lâché médian Q passant de 732 à 723 m³/s (moyenne 727 m³/s) et un produit Q*(Hm-Hv) médian passant de 861 à 824 m⁴/s. Avec des pertes et prélèvements de 100 m³/s entre Bakel et Diama, cet abaissement dure respectivement 20, 89 et 103 heures si le débit constant à Bakel vaut 729, 806 et 809 m³/s.

Avec des pertes et prélèvements de 100 m³/s entre Bakel et Diama, et pour un débit constant de 809 m³/s passant à Bakel (cote 445 à l'échelle), l'abaissement de la cote 1,70 à la cote 1,50 du niveau amont Hm peut être mené en 192 heures en effectuant les réglages de palier suivants : 155 heures (=103+52) au palier 3,5 ; 23 heures (= 13+10) au palier 4 ; 9 heures (=6+3) au palier 4,5 ; 5 heures (=4+1) au palier 5.

		Hm (m)	début	2.50	2.45	2.40	2.35	2.30	2.25	2.22	2.20	2.15	2.10	2.05	2.00	1.95	1.90	1.85	1.80	1.76	1.75	1.70	1.65	1.63	1.60	1.55
		()	fin	2.45	2.40	2.35	2.30	2.25	2.22	2.20	2.15	2.10	2.05	2.00	1.95	1.90	1.85	1.80	1.76	1.75	1.70	1.65	1.63	1.60	1.55	1.50
		réglage	Р	1.5	1.5	1.5	1.5	1.5	1.5	2	2	2	2	2	2	2.5	2.5	2.5	2.5	3	3	3	3	3.5	3.5	4
		regiage	E (m)	0.61	0.61	0.61	0.61	0.61	0.61	0.85	0.85	0.85	0.85	0.85	0.85	1.07	1.07	1.07	1.07	1.29	1.29	1.29	1.29	1.52	1.52	1.75
		débit lâché Q	début	366	363	360	358	354	351	484	482	478	474	469	464	567	561	555	549	642	641	634	626	720	714	795
		médian (m³/s)	fin	363	360	358	354	351	350	482	478	474	469	464	460	561	555	549	544	641	634	626	623	714	705	784
		median (m /3)	moyen	365	362	359	356	353	351	483	480	476	471	467	462	564	558	552	546	642	637	630	625	717	709	790
débit entrant	cote à l'échelle de Bakel	produit Q*(Hm- Hv) médian	début	790	767	745	723	701	679	882	868	839	811	783	756	855	823	792	761	826	820	785	752	811	787	803
(m ³ /s)	(cm)	(m ⁴ /s)	fin	767	745	723	701	679	668	868	839	811	783	756	728	823	792	761	735	820	785	752	740	787	751	764
348	276			17	17	17	18	18	10	4	8	9	9	9	9	6	6	6	5	1	5	5	2	3	4	4
361	282				19	20	21	21	11	4	9	9	9	9	10	6	7	7	6	1	5	5	2	3	4	4
376	288					23	24	25	13	5	10	10	10	10	10	7	7	7	6	1	5	5	2	3	4	4
392	295						30	32	17	5	10	11	11	11	11	7	7	7	6	1	6	6	2	3	5	4
411	304							45	24	6	11	12	12	12	13	8	8	8	7	1	6	6	2	3	5	4
432	313								53	6	13	14	14	14	15	8	9	9	8	1	6	7	2	3	5	4
480	334									9	19	20	21	22	24	11	11	11	10	1	8	8	3	4	6	5
485	337										20	21	23	24	25	11	11	12	10	1	8	8	3	4	6	5
497	342											25	26	28	30	12	12	13	11	1	8	8	3	4	6	5
510	346	durée des ét	anes										32	34	37	13	13	14	12	1	9	9	3	4	6	5
524	350	d'abaissement (45	50	14	14	15	13	2	9	9	3	4	7	5
539	356	pour une durée f	, , ,												85	16	16	17	15	2	10	10	4	5	7	6
599	375	192 heure														30	33	37	34	2	14	15	5	6	9	7
610	379	102 110010															40	46	44	3	15	16	6	6	10	7
621	383																	62	62	3	17	18	7	6	10	7
633	387																		117	3	19	20	7	7	11	8
700	409																			8	52	65	28	11	18	10
702	409																				54	69	30	11	18	10
711	412																					101	49	12	20	11
720	416																						146	13	22	11
793	440																							53	119	20
798	441																								171	21
880	465																									192

tableau 9 B: procédures d'abaissement en 192 heures du niveau amont jusqu'à la cote 1,50 m, compatibles avec un <u>risque inférieur à 1 sur 10</u> de dépassement de la limite des 1000 m⁴/s, dans le cas d'un débit amont constant entrant dans la retenue, et pour des prélèvements et pertes évalués à 100 m³/s.

L'abaissement de la cote 2,10 à la cote 2,05 peut être effectué avec les 7 vannes ouvertes au palier 2 (ouverture 0,85 m), avec un débit lâché médian Q passant de 474 à 469 m³/s (moyenne 471 m³/s) et un produit Q*(Hm-Hv) médian passant de 811 à 783 m⁴/s. Avec des pertes et prélèvements de 100 m³/s entre Bakel et Diama, cet abaissement dure respectivement 9, 11 et 26 heures si le débit constant à Bakel vaut 348, 392 et 497 m³/s.

Avec des pertes et prélèvements de 100 m³/s entre Bakel et Diama, et pour un débit constant de 793 m³/s passant à Bakel (cote 440 à l'échelle), l'abaissement de la cote 1,63 à la cote 1,50 du niveau amont Hm peut être mené en 192 heures en effectuant les réglages de palier suivants : 172 heures (=53+119) au palier 3,5 ; 20 heures au palier 4.

		Hm (m)	début	2.50	2.45	2.40	2.35	2.30	2.25	2.20	2.15	2.14	2.10	2.05	2.00	1.95	1.90	1.86	1.85	1.80	1.75	1.70	1.67	1.65	1.60	1.55	1.54
		1 1111 (111)	fin	2.45	2.40	2.35	2.30	2.25	2.20	2.15	2.14	2.10	2.05	2.00	1.95	1.90	1.86	1.85	1.80	1.75	1.70	1.67	1.65	1.60	1.55	1.54	1.50
		réglage	Р	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	2	2	2	2	2	2	2.5	2.5	2.5	2.5	2.5	3	3	3	3	3.5
		regiage	E (m)	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.85	0.85	0.85	0.85	0.85	0.85	1.07	1.07	1.07	1.07	1.07	1.29	1.29	1.29	1.29	1.52
		débit lâché Q	début	366	363	360	358	354	351	348	345	477	474	469	464	460	455	556	555	549	543	537	629	626	618	610	703
		médian (m ³ /s)	fin	363	360	358	354	351	348	345	345	474	469	464	460	455	451	555	549	543	537	533	626	618	610	609	695
		median (m /3)	moyen	365	362	359	356	353	350	347	345	475	471	467	462	457	453	556	552	546	540	535	628	622	614	610	699
débit	cote à	produit Q*(Hm-	début	790	767	745	723	701	679	657	636	834	811	783	756	728	701	797	792	761	730	699	764	752	718	685	745
entrant	l'échelle	Hv) médian	debut	130	707	745	125	701	013	037	030	004	011	700	750	720	701	131	132	701	750	033	704	132	710	000	743
(m ³ /s)	de Bakel	(m ⁴ /s)	fin	767	745	723	701	679	657	636	632	811	783	756	728	701	679	792	761	730	699	681	752	718	685	679	715
` '	(cm)	(,0)		707	7-10	720	701		001	000	002	011	700	700	720	701	0.0	102	701	700	000	001	702	7.10	000	0.0	7.10
325	266			14	14	15	15	15	16	16	3	6	8	8	8	8	7	1	6	6	6	4	2	5	5	1	3
338	272				16	16	16	17	17	18	3	7	8	8	9	9	7	1	6	6	6	4	2	5	5	1	3
352	278					18	18	19	20	20	4	7	9	9	9	9	8	1	6	7	7	4	2	5	5	1	4
367	284						21	22	23	23	4	8	9	10	10	10	8	1	7	7	7	4	2	5	6	1	4
382	291							26	27	28	5	8	10	10	11	11	9	1	7	7	7	5	2	6	6	1	4
399	299								35	37	7	9	11	11	12	12	10	1	8	8	8	5	2	6	6	1	4
419	307									57	10	10	12	13	13	13	11	1	8	8	9	5	2	6	6	1	4
445	319										47	12	15	15	16	16	14	2	9	9	10	6	3	7	7	1	4
483	336											16	20	21	22	23	20	2	11	11	12	8	3	8	8	1	5
493	340												22	23	25	26	23	2	12	12	12	8	3	8	8	1	5
505	344	durée des ét												27	29	31	28	2	12	13	13	9	3	9	9	2	5
518	349	d'abaissement (35	39	35	2	13	14	15	9	3	9	9	2	5
532	353	pour une durée														53	49	3	15	15	16	11	4	10	10	2	6
548	359	192 heure	es														91	3	17	18	19	12	4	10	11	2	6
607	378																	5	33	37	41	29	6	15	16	3	8
609	379																		34	38	43	30	6	15	16	3	8
620	382																			46	55	39	6	16	18	3	8
631	386																				77	59	7	18	19	4	9
643	390																					130	7	20	22	4	9
709	412																						20	60	80	17	15
713	413																							66	90	20	15
721	416																								139	36	16
730	419																									174	18
814	447																										192

tableau 9 C : procédures d'abaissement en 192 heures du niveau amont jusqu'à la cote 1,50 m, compatibles avec un <u>risque inférieur à 1 sur 25</u> de dépassement de la limite des 1000 m⁴/s, dans le cas d'un débit amont constant entrant dans la retenue, et pour des prélèvements et pertes évalués à 100 m³/s.

L'abaissement de la cote 1,75 à la cote 1,70 peut être effectué avec les 7 vannes ouvertes au palier 2,5 (ouverture 1,07 m), avec un débit lâché médian Q passant de 543 à 537 m³/s (moyenne 540 m³/s) et un produit Q*(Hm-Hv) médian passant de 730 à 699 m⁴/s. Avec des pertes et prélèvements de 100 m³/s entre Bakel et Diama, cet abaissement dure respectivement 6, 15 et 77 heures si le débit constant à Bakel vaut 325, 518 et 631 m³/s.

Avec des pertes et prélèvements de 100 m³/s entre Bakel et Diama, et pour un débit constant de 352 m³/s passant à Bakel (cote 278 à l'échelle), l'abaissement de la cote 2,40 à la cote 1,50 du niveau amont Hm peut être mené en 192 heures en effectuant les réglages de palier suivants : 99 heures au palier 1,5 ; 51 heures au palier 2 ; 25 heures au palier 2,5 ; 13 heures au palier 3 ; 4 heures au palier 3,5.

			171 -	0.55	0.45	0.40	0.05	0.00	0.05	0.00	0.45	0.46	0.00	0.05	0.00	1.05	1.00	1.05		4.75	4 76	4.05	4.0:	1.00	4 ==
		Hm (m)	début	2.50	2.45	2.40	2.35	2.30	2.25	2.20	2.15	2.10	2.09	2.05	2.00	1.95	1.90	1.85	1.80	1.75	1.70	1.65	1.61	1.60	1.55
			fin	2.45	2.40	2.35	2.30	2.25	2.20	2.15	2.10	2.09	2.05	2.00	1.95	1.90	1.85	1.80	1.75	1.70	1.65	1.61	1.60	1.55	1.50
		réglage	P	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	2	2	2	2	2	2	2.5	2.5	2.5	2.5	3	3	3
			E (m)	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.85	0.85	0.85	0.85	0.85	0.85	1.07	1.07	1.07	1.07	1.29	1.29	1.29
		débit lâché Q	début	366	363	360	358	354	351	348	345	342	473	469	464	460	455	450	549	543	537	530	620	618	610
		médian (m ³ /s)	fin	363	360	358	354	351	348	345	342	341	469	464	460	455	450	445	543	537	530	525	618	610	602
		, ,	moyen	365	362	359	356	353	350	347	344	342	471	467	462	457	453	448	546	540	533	527	619	614	606
débit	cote à	produit Q*(Hm-	début	790	767	745	723	701	679	657	636	614	805	783	756	728	701	675	761	730	699	669	723	718	685
entrant	l'échelle	Hv) médian																							
(m^3/s)	de Bakel	(m ⁴ /s)	fin	767	745	723	701	679	657	636	614	610	783	756	728	701	675	648	730	699	669	644	718	685	652
0.40	(cm)	` '		4.0	40	- 40										_		_							_
312	260			13	13	13	14	14	14	14	15	3	6	8	8	8	8	8	6	6	6	5	1	5	5
325	266				14	14	15	15	15	16	16	4	6	8	8	8	8	9	6	6	6	5	1	5	5
338	272					16	16	17	17	18	18	4	6	8	9	9	9	9	6	6	7	6	1	5	5
352	278						18	19	19	20	20	5	7	9	9	9	10	10	7 7	7	7	6	1	5	5
366	284							21	22	23	24	6	•	9	10	10	10	10		7	7	6	1	6	6
381	291								26	27	29	/	8	10	10	11	11	11	7	7	8	7	1	6	6
397	298									35	37	9	8	11	11	12	12	12	8	8	8	7	1	6	6
416	306										56	14	9	12	13	13	14	14	8	8	9	8	1	6	7
441	317											51	11	15	15	16	16	17	9	9	10	8	1	7	7
481	335	durée des ét											15	20	21	23	24	26	11	12	12	11	1	8	8
490	339	d'abaissement (pour une durée t	, , ,											22	24	25	27	29	12	12	13	11	1	8	9
502		192 heure													27	29	31	34	13	13	14	12	1	9	9
514	347	192 neure	38													35	39	43	14	14	15	13	1	9	10
528	352																51	58	15	16	16	15	1	10	10
542	357																	100	17	17	19	17	2	10	11
604	377																		34	38	43	42	2	15	17
613	380																			46	54	55	2	17	18
624	384																				73	79	3	18	19
634	387																					148	3	20	22
707	411																						10	75	108
709	412																							78	114
717	415																								192

tableau 9 D: procédures d'abaissement en 192 heures du niveau amont jusqu'à la cote 1,50 m, compatibles avec un <u>risque inférieur à 1 sur 50</u> de dépassement de la limite des 1000 m⁴/s, dans le cas d'un débit amont constant entrant dans la retenue, et pour des prélèvements et pertes évalués à 100 m³/s.

L'abaissement de la cote 1,55 à la cote 1,50 peut être effectué avec les 7 vannes ouvertes au palier 3 (ouverture 1,29 m), avec un débit lâché médian Q passant de 610 à 602 m³/s (moyenne 606 m³/s) et un produit Q*(Hm-Hv) médian passant de 685 à 652 m⁴/s. Avec des pertes et prélèvements de 100 m³/s entre Bakel et Diama, cet abaissement dure respectivement 5, 10 et 114 heures si le débit constant à Bakel vaut 312, 528 et 709 m³/s.

Avec des pertes et prélèvements de 100 m³/s entre Bakel et Diama, et pour un débit constant de 613 m³/s passant à Bakel (cote 380 à l'échelle), l'abaissement de la cote 1,75 à la cote 1,50 du niveau amont Hm peut être mené en 192 heures en effectuant les réglages de palier suivants : 155 heures (= 46+54+55) au palier 2,5 ; 37 heures (= 2+17+18) au palier 3.

cote à Bakel (cm)	356	375	379	383	387	409	412	416	441	465
niveau Hm (m)	2	1.95	1.9	1.85	1.8	1.75	1.7	1.65	1.6	1.55
année										
1986	14-août	14-août	15-août	15-août	15-août	25-août	25-août	26-août	26-août	27-août
1987	18-août	19-août	19-août	19-août	19-août	20-août	21-août	22-août	22-août	22-août
1988	24-juil.	25-juil.	31-juil.	31-juil.	31-juil.	1-août	2-août	3-août	22-août	23-août
1989	14-août	14-août	15-août	15-août	15-août	16-août	16-août	16-août	16-août	17-août
1990	19-juil.	20-juil.	21-juil.	19-août	19-août	20-août	20-août	20-août	13-sept.	
1991	13-juil.	31-juil.	1-août							
1992	11-juil.	29-juil.	29-juil.	30-juil.	30-juil.	1-sept.	1-sept.	1-sept.	1-sept.	1-sept.
1993	11-juil.	27-juil.	27-juil.	27-juil.	27-juil.	28-juil.	28-juil.	29-juil.	27-août	2-sept.
1994	12-juil.	13-juil.	13-juil.	13-juil.	13-juil.	29-juil.	29-juil.	29-juil.	8-août	9-août
1995	22-juil.	22-juil.	23-juil.	23-juil.	23-juil.	24-juil.	24-juil.	25-juil.	3-août	5-août
1996	25-juil.	26-juil.	26-juil.	26-juil.	26-juil.	26-juil.	27-juil.	27-juil.	30-août	31-août
1997	22-juil.	23-juil.	1-août	2-août	2-août	2-août	2-août	2-août	2-août	2-août
1998	25-juil.	25-juil.	25-juil.	25-juil.	25-juil.	26-juil.	26-juil.	28-juil.	29-juil.	13-août
1999	3-juil.	3-juil.	3-juil.	3-juil.	1-août	1-août	1-août	1-août	2-août	2-août

Tableau 10 : date de dépassement des cotes limites à l'échelle de Bakel, associées à la procédure d'abaissement du plan d'eau de Diama (énergie limite : 1000 m4/s ; risque 1/10). Période 1986 - 1999.

En 1990, la procédure d'abaissement optimisé respectant un risque 1/10 de dépassement de 1000 m4/s d'énergie dissipée, aurait pu se dérouler de la façon suivante : maintien du niveau 2,00 m jusqu'au 18/07 ; à partir du 19/07 baisse visant le niveau 1,95 ; à partir du 20/07, la baisse vise le niveau 1,90. A partir du 21 juillet, elle vise le niveau 1,85 m qui, une fois atteint, peut être maintenu jusqu'au 18 août. A partir du 19 août, baisse visant le niveau 1,75. A partir du 20 août, la baisse vise le niveau 1,60 qui, une fois atteint, est maintenu jusqu'au 12 septembre. A partir du 13 septembre, l'abaissement est poursuivi jusqu'au niveau 1,55 qui une fois atteint, est maintenu jusqu'à la fin de la crue puisque la cote 465 n'est jamais atteinte à Bakel cette année là.

En 1999, la procédure aurait été la suivante : maintien du niveau 2,0 m jusqu'au 2 juillet ; à partir du 3 juillet, baisse vers le niveau 1,80 qui peut être maintenu jusqu'au 31 juillet ; à partir du 1^{er} août, poursuite de l'abaissement visant le niveau 1,60 ; à partir du 2 août, l'abaissement vise le niveau 1,50.

ANNEXE 1 : NOTICE D'UTILISATION DE LA FEUILLE DE CALCUL EXCEL DESTINEE A LA GESTION EN TEMPS REEL DU BARRAGE

STRUCTURE GENERALE DE LA FEUILLE DE CALCUL

La feuille est constituée de trois plages distinctes (colonnes A à X, colonnes Y à AD et colonnes AE à AY), dédiées respectivement aux valeurs instantanées, aux valeurs journalières et aux paramètres de modélisation.

Certaines cellules (caractères gras) sont verrouillées pour empêcher toute modification de leur contenu. Le fond coloré de chaque cellule est associé à la nature du contenu de celle-ci, selon un code expliqué dans la plage des paramètres de modélisation.

Dans la plage des valeurs instantanées ainsi que dans la plage des valeurs journalières, chaque ligne correspond à une date, instantanée dans le premier cas et journalière dans l'autre.

PLAGE DES VALEURS INSTANTANEES

SAISIE DES DONNEES

La saisie des données doit être effectuée à partir de la ligne 7 dans les colonnes A à I de cette plage (zone sur fond jaune).

Pour le premier enregistrement (ligne 7), la saisie des données suivantes est obligatoire : année ; mois ; jour ; heure ; minute ; cote aval ; cote amont ; palier de réglage des vannes ; nombre de vannes ouvertes.

Pour les enregistrements suivants, obligatoirement effectués par ordre chronologique sans saut de ligne, il est inutile de saisir l'année lorsque celle-ci ne diffère pas de l'enregistrement précédent. De même pour le mois et le jour. Il est par contre toujours nécessaire de saisir l'heure, la minute, les cotes aval et amont, ainsi que le palier de réglage et le nombre de vannes ouvertes.

Même en cas où le réglage des vannes reste inchangé, il est nécessaire de saisir plusieurs enregistrements par jour pour évaluer les débits avec suffisamment de précision.

Lorsqu'un changement de réglage est effectué, il est indispensable de saisir un enregistrement correspondant à l'instant de la manœuvre. Dans ce cas, les valeurs de cote amont et cote aval sont celles qui ont été relevées juste avant la manœuvre. Les valeurs de palier et de nombre de vannes sont celles qui correspondent au nouveau réglage.

VARIABLES CALCULEES AUTOMATIQUEMENT

Pour chaque enregistrement de données saisies, un calcul automatique donne pour la même date instantanée, et donc sur la même ligne, les valeurs des variables suivantes (colonnes J à X):

- Ouverture verticale des vannes
- Débit estimé juste avant et juste après la date de l'enregistrement. Ces deux valeurs sont identiques lorsque l'enregistrement ne correspond pas à une modification de réglage des vannes. Dans le cas contraire, la seconde valeur est relative au début du régime transitoire succédant à la modification, et peut donc différer de la première, relative à un régime d'écoulement éventuellement établi.
- Débit prévu. Il s'agit là d'une estimation du débit moyen en régime établi, correspondant aux valeurs de cote amont (supposée maintenue), palier et nombre de vannes. Dans le cas où l'enregistrement correspond à un changement de réglage, ceci donne la valeur moyenne vers laquelle va tendre le débit au bout d'un certain temps, nécessaire pour l'installation d'un nouveau régime établi.

- Valeurs du produit Q*(Hm-Hv) par vanne ouverte, associé à l'énergie dissipée dans l'écoulement au passage de celle-ci. Comme pour le débit, trois valeurs sont données : juste avant et juste après la date d'enregistrement, ainsi que la valeur moyenne prévue en régime établi. Conformément aux recommandations formulées dans le manuel de gestion de Diama, il est souhaitable que les valeurs de ce produit Q*(Hm-Hv) par vanne soient toujours maintenues en deçà d'une limite de 143 m⁴/s.
- Valeurs des paliers limites de réglage P1 et P2. Ces paliers limites sont calculés en fonction de la cote amont. Pour maintenir le risque de dépassement de la norme 1000 m⁴/s en dessous de 1 sur 5, il est nécessaire de régler les vannes à un palier soit inférieur à P1, soit supérieur à P2.
- Risque : un message 'DANGER' est affiché lorsque le palier de réglage se situe entre les limites P1 et P2
- Date
- Volume lâché cumulé depuis la date du premier enregistrement
- Cote prévue à l'aval. Il s'agit de la valeur moyenne autour de laquelle fluctue le niveau aval en régime d'écoulement établi, en fonction de la cote amont et du réglage des vannes.
- Mauvaise date : un message 'Date!' est affiché lorsque une saisie erronée aboutit à une date antérieure ou égale à celle de l'enregistrement précédent.
- Rang de l'enregistrement.

PLAGE DES VALEURS JOURNALIERES

Cette plage ne contient que des données journalières calculées automatiquement. La première ligne est toujours relative à la date ronde du premier enregistrement des valeurs instantanées de la feuille, et les dates des lignes suivantes sont incrémentées au pas de 1 jour.

Chaque ligne de données journalières contient les valeurs des variables suivantes :

- Rang de l'enregistrement de données instantanées, immédiatement antérieur à la date journalière considérée à 0 heure.
- Date
- Débit moyen journalier lâché
- Volume lâché cumulé à 0 heure, depuis la date du premier enregistrement de données instantanées.
- Cote amont à 0 heure
- Délai trop long: le message 'délai' est affiché lorsque les deux enregistrements instantanés utilisés pour évaluer le volume lâché cumulé à 0 heure (et donc le débit moyen journalier) sont séparés par plus de 48 heures. Ceci permet de repérer des valeurs journalières évaluées de façon trop imprécise, du fait d'une fréquence trop faible de relevés instantanés.

EXTENSION DE LA FEUILLE DE CALCUL

Il est possible de saisir autant d'enregistrements instantanés que l'on souhaite dans la feuille de calcul. On peut cependant conseiller, lorsque la taille de la feuille devient trop importante, d'utiliser une nouvelle feuille pour faire les saisies suivantes.

Attention: si l'on désire utiliser une feuille par année comme il a été fait jusqu'à présent, il faut penser à saisir un premier enregistrement correspondant à la fin de l'année précédente, ainsi qu'à poursuivre les enregistrements jusqu'au début de l'année suivante. Ceci permet au calcul automatique des débits journaliers d'être effectués du 1^{er} janvier au 31 décembre **inclus**.

Les formules de calcul automatique utilisées (colonnes J à X, cellules mauves) dans la plage des valeurs instantanées, doivent être tirées **ensemble** vers le bas lorsque nécessaire, de façon à toujours dépasser les données saisies (colonnes A à I, cellules jaunes). Si besoin est (cellules

corrompues par une fausse manœuvre), les formules peuvent être tirées à partir de la ligne 8, où elles sont conservées inviolées (cellules verrouillées).

Indépendamment, les formules utilisées dans la plage des valeurs journalières (colonnes Y à AD) peuvent également être tirées ensemble vers le bas, pour obtenir les valeurs journalières jusqu'à la date désirée. Ces formules sont également conservées de façon inviolée dans la ligne 8.

ANNEXE 2 : BAREME DONNANT LE DEBIT EVACUE PAR LES VANNES NOYEES EN FONCTION DE LA DENIVELEE AMONT AVAL ET DU REGLAGE DES VANNES

Débit (m3/s) passant par 7 vannes noyées Dénivelée amont aval comprise entre 0,00 et 0,59 m Palier de réglage compris entre 0 et 11

	0.0 0.00	0.5 0.18	1.0 0.36	1.5 0.61	2.0 0.85	2.5 1.07	3.0 1.29	3.5 1.52	4.0 1.75	4.5 1.98	5.0 2.21	5.5 2.45	6.0 2.68	6.5 2.92	7.0 3.16	7.5 3.40	8.0 3.65	8.5 3.90	9.0 4.15	9.5 4.39	10.0 4.64	10.5 4.89	11.0 5.14	énergi > à
dénivelée (m) 0.00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ē
0.01	0	14	29	49	68	86	103	122	140	159	177	196	215	234	253	273	292	312	332	352	372	392	412	
0.02	0	19	37	63	89	112	134	158	182	206	230	254	279	304	329	354	379	405	431	457	483	509	535	
0.03	0	22	43	73	103	130	156	184	212	240	268	296	325	354	383	412	442	472	502	532	562	593	623	
0.04	0	24	48	82	115	145	174	205	236	267	298	330	362	394	426	459	492	526	560	593	626	661	695	
0.05	0	26	52	89	125	157	189	223	257	291	324	359	394	429	464	500	535	572	609	645	681	718	756	
0.06	0	28	56	95	134	169	203	239	275	311	347	385	422	459	497	535	573	613	652	691	730	769	809	
0.07 0.08	0	30 31	60 63	101 106	142 150	179 188	215 226	253 266	291 306	330 347	368 387	408 429	447 470	487 512	526 553	567 596	608 639	649 683	691 727	732 770	773 813	815 857	857 902	
0.09	0	33	65	111	156	196	236	278	320	362	405	448	491	535	578	623	668	714	759	805	850	896	942	
0.10	0	34	68	115	163	204	246	290	333	377	421	466	511	557	602	648	695	743	790	837	884	932	981	
0.11	0	35	71	120	169	212	255	300	345	391	436	483	530	577	624	672	720	770	819	868	916	966	1016	
0.12	0	36	73	124	174	219	263	310	357	404	451	499	547	596	645	694	744	795	846	897	947	999	1050	
0.13	0	38	75	127	180	225	271	320	368	416	465	514	564	614	664	716	767	820	872	924	976	1029	1082	0
0.14	0	39	77	131	185	232	279	329	378	428	478	529	580	632	683	736	789	843	897	950	1003	1058	1113	
0.15	0	40	79	134	189	238	286	337	388	439	490	543	595	648	701	755	809	865	920	975	1030	1086	1142	
0.16	0	41	81	138	194	244	293	345	398	450	502	556	610	664	718	774	829	886	943	999	1055	1113	1170	
0.17 0.18	0	42 42	83 85	141 144	199 203	249 255	300 307	353 361	407 416	460 470	514 525	569 581	624 638	679 694	735 751	792 809	848 867	907 926	965 986	1022 1044	1080 1103	1138 1163	1197 1223	
0.18	0	43	87	147	207	260	313	369	424	480	536	593	651	708	766	825	885	945	1006	1044	1126	1187	1248	
0.20	0	44	88	150	211	265	319	376	432	489	546	605	663	722	781	841	902	964	1026	1087	1148	1210	1273	
0.21	0	45	90	153	215	270	325	383	440	498	556	616	676	736	796	857	919	982	1045	1107	1169	1232	1296	
0.22	0	46	92	155	219	275	331	389	448	507	566	627	688	749	810	872	935	999	1063	1126	1189	1254	1319	
0.23	0	47	93	158	223	279	336	396	456	516	576	638	699	761	823	887	950	1016	1081	1145	1209	1275	1341	
0.24	0	47	95	160	226	284	342	402	463	524	585	648	710	774	837	901	966	1032	1098	1164	1229	1296	1363	
0.25	0	48	96	163	230	288	347	409	470	532	594	658	721	785	849	915	981	1048	1115	1182	1248	1316	1384	
0.26	0	49	98	165	233	293	352	415	477	540	603	668	732	797	862	929	995	1064	1132	1199	1267	1336	1405	
0.27	0	49	99	168	236	297	357	421	484	548	612	677	743	809	874	942	1010	1079	1148	1216		1355	1425	
0.28	0	50	100	170	240	301	362	426	491	555	620	686	753	820	886	955	1023	1094	1164	1233		1373	1444	
0.29 0.30	0	51 51	102	172 174	243	305 309	367 372	432 438	497 504	563 570	628 636	696 705	763 773	831	910	968 980	1037	1108	1179 1194	1249 1266	1320 1337	1392 1409	1463 1482	
0.30	0	52	103	177	249	313	376	443	510	577	644	713	782	852	921	992	1063	1136	1209	1281	1353	1427	1501	
0.32	0	53	106	179	252	316	381	448	516	584	652	722	792	862	932	1004	1076	1150	1224	1297	1369	1444	1519	
0.33	0	53	107	181	255	320	385	454	522	591	660	730	801	872	943	1016	1089	1163	1238	1312	1385	1461	1536	
0.34	0	54	108	183	258	324	390	459	528	597	667	738	810	882	954	1027	1101	1177	1252	1327	1401	1477	1554	4
0.35	0	55	109	185	261	327	394	464	534	604	674	747	819	891	964	1039	1113	1189	1266	1341	1416	1494	1571	400
0.36	0	55	110	187	263	331	398	469	539	610	682	755	828	901	974	1050	1125	1202	1279	1355	1431	1509	1587	
0.37	0	56	111	189	266	334	402	474	545	617	689	762	836	910	984	1061	1137	1215	1293	1369	1446	1525	1604	
0.38	0	56	113	191	269	338	406	478	550	623	696	770	845	919	994	1071	1148	1227	1306	1383	1461	1540	1620	
0.39	0	57	114	193	271	341	410	483	556	629	702	778	853	928	1004	1082	1159	1239	1318	1397	1475	1556	1636	
0.40	0	57	115	194	274	344	414	488	561	635	709	785	861	937	1014	1092	1170	1251	1331	1410	1489	1570	1652	
0.41 0.42	0	58 58	116 117	196 198	277 279	347 350	418 422	492 497	566 572	641 647	716 722	792 800	869 877	946 955	1023	1102 1112	1181 1192	1262 1274	1343 1356	1423 1436	1503 1517	1585 1600	1667 1682	
0.42	0	59	118	200	282	354	426	501	577	653	729	807	885	963	1033	11122	1203	1274	1368	1449	1530	1614	1697	
0.44	0	59	119	201	284	357	429	505	582	658	735	814	892	972	1051	1132	1213	1296	1380	1462	1544	1628	1712	
0.45	0	60	120	203	286	360	433	510	587	664	741	821	900	980	1060	1142	1223	1307	1391	1474	1557	1642	1726	
0.46	0	60	121	205	289	363	436	514	591	669	747	827	907	988	1068	1151	1234	1318	1403	1486	1570	1655	1741	
0.47	0	61	122	207	291	366	440	518	596	675	753	834	915	996	1077	1160	1244	1329	1414	1498	1582	1669	1755	7
0.48	0	61	123	208	293	369	444	522	601	680	759	841	922	1004	1086	1170	1253	1		1510	1595	1682	1769	700
0.49	0	62	124	210	296	371	447	526	606	685	765	847	929	1012		1179	-	1350		1522	_	1695	1783	
0.50	0	62	125	211	298	374	450	530	610	691	771	854	936	1019				1360		1534			1796	
0.51 0.52	0	63 63	126 127	213 215	300 302	377 380	454 457	534 538	615 619	696 701	777 783	860 866	943 950				1282 1292				1632 1644		1810 1823	
0.52	0	64	127	216	302	383	460	542	624	701	788	873	950				1301		1480		1656			
0.54	0	64	128	218	307	385	464	546	628	711	794	879	964	1049			1310		1490	1579				
0.55	0	65	129	219	309	388	467	550	633	716	799	885	971	1057	1143	1231	1319	1410	1500	1590	1679	1770	1862	
0.56	0	65	130	221	311	391	470	553	637	721	805	891	977				1328				1690			10
0.57 0.58	0	66 66	131 132	222 224	313 315	393 396	473 476	557 561	641 645	726 730	810 815	897 903	984 990				1337 1346		1521 1531		1702 1713			1000
0.59	0	66	133	225	317	398	479	564	649	735	821	909	996		1173		1355		1540		1724			
énergie > à					0							40	00					700				1000		

Débit (m3/s) passant par 7 vannes noyées Dénivelée amont aval comprise entre 0,60 et 1,19 m Palier de réglage compris entre 0 et 11

palier ouverture (m)	0.0 0.00	0.5 0.18	1.0 0.36	1.5 0.61	2.0 0.85	2.5 1.07	3.0 1.29	3.5 1.52	4.0 1.75	4.5 1.98	5.0 2.21	5.5 2.45	6.0 2.68	6.5 2.92	7.0 3.16	7.5 3.40	8.0 3.65	8.5 3.90	9.0 4.15	9.5 4.39	10.0 4.64	10.5 4.89	11.0 5.14	énergi > à
dénivelée (m)																								gie
0.60	0	67	134	226	319 321	401	482 485	568	654 658	740 744	826 831	914 920	1003 1009	1092 1099	1181	1272	1363 1372	1457	1550	1642 1653	1735 1745	1829 1841	1924 1936	
0.61 0.62	0	67 68	134 135	228 229	323	403 406	488	572 575	662	749	836	926	1009	1105	1188 1195	1280 1288	1372	1466 1475	1560 1569	1663	1756	1852	1936	
0.63	0	68	136	231	325	408	491	578	666	753	841	931	1021	1112	1203	1296	1388	1484	1579	1673	1767	1863	1959	
0.64	0	68	137	232	327	411	494	582	670	758	846	937	1027	1119	1210	1303	1397	1493	1588	1683	1777	1874	1971	
0.65	0	69	138	233	329	413	497	585	674	762	851	942	1033	1125	1217	1311	1405	1501	1598	1693	1788	1885	1982	
0.66	0	69	139	235	331	415	500	589	677	767	856	948	1039	1132	1224	1318	1413	1510	1607	1702	1798	1896	1994	
0.67	0	70	139	236	333	418	503	592	681	771	861	953	1045	1138	1231	1326	1421	1518	1616	1712	1808	1907	2005	
0.68	0	70	140	237	335	420	506	595	685	775	866	958	1051	1144	1238	1333	1429	1527	1625	1722	1818	1917	2016	
0.69	0	70	141	239	336	422	508	599	689	780	870	964	1057	1151	1244	1341	1437	1535	1634	1731	1828	1928	2027	
0.70	0	71	142	240	338	425	511	602	693	784	875	969	1063	1157	1251	1348	1445	1544	1643	1740	1838	1938	2038	
0.71	0	71	142	241	340	427	514	605	696	788	880	974	1068	1163	1258	1355	1452	1552	1652	1750	1848	1949	2049	
0.72	0	72	143	242	342	429	517	608	700	792	885	979	1074	1169	1265	1362	1460	1560	1660	1759	1858	1959	2060	
0.73	0	72	144	244	344	431	519	611	704	796	889	984	1080	1175	1271	1369	1468	1568	1669	1768	1867	1969	2071	
0.74	0	72	145	245	345	434	522	615	707	800	894	989	1085	1181	1278	1376	1475	1576	1677	1777	1877	1979	2081	1000
0.75	0	73	145	246	347	436	525	618	711	804	898	994	1091	1187	1284	1383	1483	1584	1686	1786	1887	1989	2092	0
0.76	0	73	146	247	349	438	527	621	714	809	903	999	1096	1193	1291	1390	1490	1592	1694	1795	1896	1999	2102	
0.77	0	73	147	249	351	440	530	624	718	812	907	1004	1101	1199	1297	1397	1497	1600	1703	1804	1905	2009	2113	
0.78	0	74	148	250	352	442	532	627	721	816	912	1009	1107	1205	1303	1404	1505	1608	1711	1813	1915	2019	2123	
0.79 0.80	0	74 74	148	251 252	354 356	444	535 537	630 633	725 728	820 824	916 920	1014	1112	1211 1217	1309 1316	1411 1417	1512 1519	1616 1623	1719 1727	1821 1830	1924 1933	2029	2133 2143	
0.81	0	75	150	253	357	449	540	636	732	828	925	1024	1123	1222	1322	1424	1526	1631	1735	1839	1942	2048	2153	
0.82	0	75	150	255	359	451	543	639	735	832	929	1028	1128	1228	1328	1431	1533	1638	1743	1847	1951	2057	2163	
0.83	0	76	151	256	361	453	545	642	738	836	933	1033	1133	1233	1334	1437	1540	1646	1751	1856	1960	2067	2173	
0.84	0	76	152	257	362	455	547	645	742	840	937	1038	1138	1239	1340	1444	1547	1653	1759	1864	1969	2076	2183	
0.85	0	76	152	258	364	457	550	647	745	843	942	1042	1143	1245	1346	1450	1554	1661	1767	1872	1977	2085	2193	
0.86	0	77	153	259	365	459	552	650	748	847	946	1047	1148	1250	1352	1456	1561	1668	1775	1881	1986	2094	2203	
0.87	0	77	154	260	367	461	555	653	752	851	950	1051	1153	1256	1358	1463	1568	1675	1783	1889	1995	2103	2212	
0.88	0	77	154	261	369	463	557	656	755	854	954	1056	1158	1261	1364	1469	1574	1682	1790	1897	2003	2113	2222	
0.89	0	78	155	263	370	465	559	659	758	858	958	1061	1163	1266	1369	1475	1581	1690	1798	1905	2012	2122	2231	
0.90	0	78	156	264	372	467	562	662	761	862	962	1065	1168	1272	1375	1482	1588	1697	1806	1913	2020	2130	2241	
0.91	0	78	156	265	373	469	564	664	764	865	966	1069	1173	1277	1381	1488	1594	1704	1813	1921	2029	2139	2250	
0.92	0	78	157	266	375	471	566	667	768	869	970	1074	1178	1282	1387	1494	1601	1711	1821	1929	2037	2148	2259	
0.93	0	79	158	267	376	473	569	670	771	872	974	1078	1182	1287	1392	1500	1607	1718	1828	1937		2157	2268	
0.94	0	79	158	268	378	474	571	672	774	876	978	1083	1187	1293	1398	1506	1614	1725	1835	1945	2054	2166	2277	
0.95 0.96	0	79	159	269	379	476	573	675	777	879	982	1087	1192	1298 1303	1403	1512	1620	1732	1843	1952	2062 2070	2174 2183	2287	
	0	80 80	159 160	270 271	381 382	478 480	576 578	678 680	780 783	883 886	986 989	1091 1095	1197 1201	1303	1409 1415	1518 1524	1627 1633	1738 1745	1850 1857	1960 1968	2078		2296 2305	
0.97 0.98	0	80	161	272	384	482	580	683	786	890	993	1100	1206	1313	1420	1530	1639	1752	1864	1975	2086	2200	2313	
0.99	0	81	161	273	385	484	582	686	789	893	997	1104	1211	1318	1425	1536	1646	1759	1871	1983	2094	2208	2322	
1.00	0	81	162	274	387	486	585	688	792	896	1001	1108	1215	1323	1431	1541	1652	1765	1879	1990	2102	2217	2331	
1.01	0	81	163	275	388	487	587	691	795	900	1005	1112	1220	1328	1436	1547	1658	1772	1886	1998	2110	2225	2340	
1.02	0	82	163	276	390	489	589	693	798	903	1008	1116	1224	1333	1442	1553	1664	1778	1893	2005	2118	2233	2349	
1.03	0	82	164	277	391	491	591	696	801	906	1012	1120	1229	1338	1447	1559	1670	1785	1900	2013	2126	2241	2357	2
1.04	0	82	164	278	393	493	593	699	804	910	1016	1124	1233	1343	1452	1564	1677	1792	1906	2020	2133	2250	2366	2000
1.05	0	82	165	279	394	495	595	701	807	913	1019	1129	1238	1348	1457	1570	1683	1798	1913	2027	2141	2258	2374	
1.06	0	83	166	280	395	496	597	704	810												2149		2383	
1.07	0	83	166	281	397	498	600	706	812												2156		2391	
1.08	0	83	167	282	398	500	602	708	815		1030										2164			
1.09	0	84	167	283	400	502	604	711	818	926	1034	1145	1255	1367		1592			1940		_	2290	2408	
1.10	0	84 84	168	284 285	401 402	503 505	606 608	713 716	821 824	929 932	1037	1148	1260	1371 1376	1483				1947		2179 2186		2416 2424	
1.11 1.12	0	85	168 169	286	402	507	610	718	826	935			1268				1716					2313		
1.13	0	85	170	287	405	509	612	721	829	939		1160		1385							2201		2441	
1.14	0	85	170	288	406	510	614	723	832	942	1051	1164	1277	1390	1503		1735		1973		2208	2329	2449	
1.15	0	85	171	289	408	512	616	725	835	945	1055	1168	1281	1394			1741			2098			2457	
1.16 1.17	0	86 86	171 172	290 291	409 410	514 515	618 620	728 730	837 840	948 951	1058 1062	1172 1175	1285 1289	1399 1403	1513	1630 1635	1747	1867	1986	2105	2223 2230		2465 2473	
1.18	0	86	172	292	412	517	622	732	843	954				1408								2359		
1.19	0	86	173	293	413	518	624	735	846	957	1069	1183	1297						2006	2125		2366	2489	
énergie > à		()		40	00	70	00				10	00							2000				

Débit (m3/s) passant par 7 vannes noyées Dénivelée amont aval comprise entre 1,20 et 1,79 m Palier de réglage compris entre 0 et 11

palier	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0	10.5	11.0	Φ,
ouverture (m)	0.00	0.18	0.36	0.61	0.85	1.07	1.29	1.52	1.75	1.98	2.21	2.45	2.68	2.92	3.16	3.40	3.65	3.90	4.15	4.39	4.64	4.89	5.14	énergi > à
dénivelée (m)																								gi-
1.20	0	87	173	294	414	520	626	737	848	960	1072	1187	1301	1417	1532	1651	1769	1891	2012	2132		2374	2497	
1.21	0	87	174	295	416	522	628	739	851	963	1075	1190	1306	1421	1537	1656	1775	1896	2018	2138	2258	2381	2504	
1.22 1.23	0	87 88	175 175	296 297	417 418	523 525	630 632	742 744	854 856	966 969	1079 1082	1194 1198	1310 1314	1426 1430	1542 1547	1661 1666	1780 1786	1902 1908	2024 2031	2145 2151	2265 2272	2389 2396	2512 2520	
1.24	0	88	176	297	419	527	634	746	859	972	1085	1201	1318	1435	1551	1671	1791	1914	2037	2158		2403	2528	
1.25	0	88	176	298	421	528	636	749	861	975	1088	1205	1322	1439	1556	1676	1797	1920	2043	2165	_	2411	2535	
1.26	0	88	177	299	422	530	638	751	864	978	1092	1209	1326	1443	1561	1681	1802	1926	2049	2171	2293	2418	2543	
1.27	0	89	177	300	423	531	640	753	866	981	1095	1212	1329	1447	1565	1686	1807	1931	2055	2178	2300	2425	2550	
1.28	0	89	178	301	424	533	641	755	869	984	1098	1216	1333	1452	1570	1691	1813	1937	2061	2184	2307	2432	2558	
1.29	0	89	178	302	426	534	643	757	872	987	1101	1219	1337	1456	1575	1696	1818	1943	2067	2190	2313	2439	2565	
1.30	0	89	179	303	427	536	645	760	874	989	1105	1223	1341	1460	1579	1701	1823	1948	2073	2197	2320	2446	2573	
1.31	0	90	179	304	428	538	647	762	877	992	1108	1226	1345	1464	1584	1706	1829	1954	2079	2203	2327	2454	2580	
1.32	0	90	180	305	429	539	649	764	879	995	1111	1230	1349	1469	1588	1711	1834	1960	2085	2209		2461	2588	
1.33	0	90	180	305	431	541	651	766	882	998	1114	1233	1353	1473	1593	1716	1839	1965	2091	2216	2340	2468	2595	
1.34	0	90	181	306	432	542	653	768	884	1001	1117	1237	1357	1477	1597	1721	1844	1971	2097	2222	2347	2475	2602	3000
1.35	0	91	181	307	433	544	654	771	887	1004	1120	1240	1360	1481	1602	1726	1849	1976	2103	2228	2353	2481	2610	0
1.36 1.37	0	91 91	182 182	308 309	434 435	545 547	656 658	773 775	889 892	1006 1009	1124 1127	1244	1364 1368	1485 1489	1606	1730 1735	1854 1860	1982 1987	2109 2115	2234 2241	2360 2366	2488 2495	2617 2624	
1.37	0	91	183	310	435	548	660	777	894	1009	1130	1247 1251	1372	1493	1611 1615	1740	1865	1993	2115	2241	2373	2502	2624	
1.39	0	92	183	311	438	550	662	779	896	1015	1133	1254	1375	1497	1619	1745	1870	1998	2126	2253	2379	2509	2638	
1.40	0	92	184	311	439	551	663	781	899	1017	1136	1257	1379	1501	1624	1749	1875		2132	2259	2386	2516	2646	
1.41	0	92	184	312	440	553	665	783	901	1020	1139	1261	1383	1506	1628	1754	1880	2009	2138	2265	2392	2522	2653	
1.42	0	92	185	313	441	554	667	785	904	1023	1142	1264	1387	1510	1633	1759	1885	2014	2143	2271	2398	2529	2660	
1.43	0	93	185	314	442	556	669	787	906	1025	1145	1268	1390	1514	1637	1763	1890	2019	2149	2277	2405	2536	2667	
1.44	0	93	186	315	444	557	670	789	908	1028	1148	1271	1394	1517	1641	1768	1895	2025	2155	2283	2411	2542	2674	
1.45	0	93	186	316	445	558	672	792	911	1031	1151	1274	1397	1521	1645	1773	1900	2030	2160	2289	2417	2549	2681	
1.46	0	93	187	316	446	560	674	794	913	1034	1154	1278	1401	1525	1650	1777	1905	2035	2166	2295	2424	2556	2688	
1.47	0	94	187	317	447	561	676	796	915	1036	1157	1281	1405	1529	1654	1782	1910	2041	2171	2301	2430	2562	2695	
1.48	0	94	188	318	448	563	677	798	918	1039	1160	1284	1408	1533	1658	1786	1914	2046	2177	2307		2569	2701	
1.49	0	94	188	319	449	564	679	800	920	1041	1163	1287	1412	1537	1662	1791	1919	2051	2183	2312	2442	2575	2708	
1.50 1.51	0	94 95	189 189	320 320	450 452	566 567	681 683	802 804	922 925	1044 1047	1166 1169	1291 1294	1415 1419	1541 1545	1667 1671	1795 1800	1924 1929	2056 2061	2188 2194	2318 2324		2582 2588	2715 2722	
1.52	0	95	190	321	452	568	684	806	927	1047	1172	1294	1422	1549	1675	1804	1929	2066	2194	2330		2595	2729	
1.53	0	95	190	322	454	570	686	808	929	1052		1300	1426	1552	1679	1809	1938	2071	2204	2336			2735	
1.54	0	95	191	323	455	571	688	810	932	1054	1177	1303	1429	1556	1683	1813	1943	2077	2210	2341		2607	2742	
1.55	0	95	191	324	456	573	689	812	934	1057	_	1307	1433	1560	1687	1818	1948	2082	2215	2347	2479	2614	2749	
1.56	0	96	191	324	457	574	691	814	936	1060	1183	1310	1436	1564	1691	1822	1953	2087	2221	2353	2485	2620	2755	
1.57	0	96	192	325	458	575	693	816	938	1062	1186	1313	1440	1568	1695	1826	1957	2092	2226	2358	2491	2626	2762	
1.58	0	96	192	326	459	577	694	817	941	1065	1189	1316	1443	1571	1699	1831	1962	2097	2231	2364	2497	2633	2769	
1.59	0	96	193	327	460	578	696	819	943	1067	1192	1319	1447	1575	1703	1835	1967	2102	2237	2370		2639	2775	
1.60	0	97	193	327	462	580	698	821	945	1070	1194	1322	1450	1579	1707	1839	1971	2107	2242	2375		2645	2782	4
1.61	0	97	194	328	463	581	699 701	823	947	1072	1197	1325	1454	1583	1712	1844	1976		2247	2381	2514	2651	2788	4000
1.62 1.63	0	97 97	194 195	329 330	464 465	582 584	701	825 827	950 952	1075 1077	1200 1203	1328 1332	1457 1460	1586 1590	1715 1719	1848 1852		2116 2121	2252 2258	2386 2392	2520 2526	2658 2664	2795 2801	
1.64	0	98	195	330	466	585	704	829	954	1080	1205	1335	1464	1594	1723	1857	1990	2126	2263	2397	2532	2670	2808	
1.65	0	98	196	331	467	586	706	831	956	1082	1208	1338	1467	1597	1727	1861	1994	2131	2268	2403	2538	2676	2814	
1.66	0	98	196	332	468	588	707	833	958		_										2544			
1.67	0	98	196	333	469	589	709	835	960												2549			
1.68	0	98	197	333	470	590	710	837	963		1216		1477								2555			
1.69	0	99	197	334	471	592	712	838	965			1350	1480	1612	1743	1878	2012		2288			2700		
1.70	0	99	198	335	472	593	714	840	967		1222	1353	1484	1615		1882			2294			2706		
1.71	0	99	198	336	473	594	715	842	969												2572			
1.72 1.73	0	99 100	199 199	336 337	474 475	596 597	717 718	844 846	971 973		1227 1230	1359 1362	1490		1755 1758		2026				2578	2718		
1.73 1.74	0	100	199	337	475 476	597 598	718	848	973		1230	1362		1629		1894			2309			2724		
1.75	0	100	200	339	477	599	721	850	978	1106	1235	1368	1500	1633	1766	1902	2039	2179	2319	2457	2595	2736	2877	
1.76	0	100	200	339	478	601	723	851 853	980												2600 2606			5000
1.77 1.78	0	100 101	201 201	340 341	479 480	602 603	725 726	853 855	982 984	1111 1114											2606			00
1.79	0	101	202	342	481	605	728	857	986												2617			
énergie > à		0		400	700			1000				20	000			30	000			40	000			

Débit (m3/s) passant par 7 vannes noyées Dénivelée amont aval comprise entre 1,80 et 2,39 m Palier de réglage compris entre 0 et 11

palier	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0	10.5	11.0	énergi > à
ouverture (m) dénivelée (m)	0.00	0.18	0.36	0.61	0.85	1.07	1.29	1.52	1.75	1.98	2.21	2.45	2.68	2.92	3.16	3.40	3.65	3.90	4.15	4.39	4.64	4.89	5.14	ergie • à
1.80	0	101	202	342	482	606	729	859	988	1118	1248	1382	1516	1650	1785	1923	2061	2202	2343	2483	2622	2765	2908	U
1.81	0	101	202	343	483	607	731	860	990	1121	1251	1385	1519	1654	1789	1927	2065	2207	2348	2488	2628	2771	2914	
1.82	0	101	203	344	484	608	732	862	992	1123	1254	1388	1522	1657	1792	1931	2069	2211	2353	2493	2633	2777	2920	
1.83	0	102	203	344	485	610	734	864	994	1125	1256	1391	1525	1661	1796	1935	2074	2216	2358	2498	2639	2782	2926	
1.84	0	102	204	345	486	611	735	866	996	1127	1259	1394	1528	1664	1800	1939	2078	2220	2363	2503	2644	2788	2932	
1.85	0	102	204	346	487	612	737	867	998	1130	1261	1396	1532	1667	1803	1943	2082	2225	2368	2508	2649	2794	2938	
1.86	0	102	205	346	488	613	738	869	1000	1132	1264	1399	1535	1671	1807	1947	2086	2229	2372	2514	2655	2799	2944	
1.87	0	102	205	347	489	615	740	871	1002	1134	1267	1402	1538	1674	1811	1951	2090	2234	2377	2519	2660	2805	2950	
1.88	0	103	205	348	490	616	741	873	1004	1137	1269	1405	1541	1678	1814	1954		2238	2382	2524	2665	2811	2956	Οī
1.89	0	103	206	349	491	617	743	874	1006	1139	1272	1408	1544	1681	1818	1958	2099	2243	2387	2529	2671	2816	2962	5000
1.90	0	103	206	349	492	618	744	876	1008	1141	1274	1411	1547	1684	1822	1962	2103	2247	2391	2534	2676	2822	2968	
1.91	0	103	207	350	493	619	746	878	1010	1143	1277	1413	1550	1688	1825		2107	2252	2396	2539	2681	2827	2973	
1.92	0	103	207	351	494	621	747	880	1012	1146	1279	1416	1553	1691	1829	1970	2111	2256	2401	2544	2687	2833	2979	
1.93	0	104	207	351	495	622	749	881	1014	1148	1282	1419	1556	1694	1832	1974	2115	2261	2406	2549	2692	2838	2985	
1.94	0	104	208	352	496	623	750	883	1016	1150	1284	1422	1559	1697	1836	1978	2120	2265	2410	2554	2697	2844	2991	
1.95	0	104	208	353	497	624	751	885	1018	1152	1287	1424	1562	1701	1839	1982	2124	2269	2415	2559	2702	2849	2997	
1.96	0	104	209	353	498	626	753	887	1020	1155	1289	1427	1565	1704	1843	1985	2128	2274	2420	2564	2708	2855	3002	
1.97	0	105	209	354	499	627	754	888	1022	1157	1292	1430	1568	1707	1846		2132	2278	2424	2568	2713	2860	3008	
1.98	0	105	209	355	500	628	756	890	1024	1159	1294	1433	1571	1711	1850	1993	2136	2282	2429	2573	2718	2866	3014	
1.99	0	105	210	355	501	629	757	892	1026	1161	1296	1435	1574	1714	1853	1997	2140	2287	2433	2578	2723	2871	3020	
2.00	0	105	210	356	502	630	759	893	1028	1163	1299	1438	1577	1717	1857	2000	2144	2291	2438	2583	2728	2877	3025	
2.01	0	105	211	357	503	631	760	895	1030	1166	1301	1441	1580	1720	1860	2004	2148	2295	2443	2588	2733	2882	3031	
2.02	0	105	211	357	504	633	761	897	1032	1168	1304	1443	1583	1723	1864	2008	2152	2300	2447	2593	2738		3037	
2.03	0	106	211	358	505	634	763	898	1034	1170	1306	1446	1586	1727	1867	2012	2156	2304	2452	2598	2743	2893	3042	
2.04	0	106	212	359	506	635	764	900	1036	1172	1309	1449	1589	1730	1871	2015 2019	2160 2164	2308	2456	2602 2607	2749 2754	2898 2904	3048	
2.05 2.06	0	106 106	212 213	359 360	507 508	636 637	766 767	902 903	1037 1039	1174 1176	1311 1313	1451 1454	1592 1595	1733 1736	1874 1878	2019	2168	2312 2317	2461 2465	2612	2759	2904	3054 3059	
2.00	0	106	213	361	509	639	769	905	1039	1179	1316	1457	1598	1739	1881	2023	2172	2321	2403	2617	2764	2909	3065	
2.07	0	107	213	361	509	640	770	907	1041	1181	1318	1459	1601	1743	1885	2030	2176	2325	2474	2622	2769	2920	3070	
2.09	0	107	214	362	510	641	771	908	1045	1183	1321	1462	1603	1746	1888	2034	2180	2329	2479	2626	2774	2925	3076	
2.10	0	107	214	363	511	642	773	910	1047	1185	1323	1465	1606	1749	1891	2038	2184	2333	2483	2631	2779	2930	3081	g
2.11	0	107	214	363	512	643	774	911	1049	1187	1325	1467	1609	1752	1895	2041	2188	2338	2488	2636	2784		3087	6000
2.12	0	107	215	364	513	644	775	913	1051	1189	1328	1470	1612	1755	1898	2045	2191	2342	2492	2640	2789	2940	3092	
2.13	0	108	215	365	514	645	777	915	1053	1191	1330	1472	1615	1758	1901	2048	2195	2346	2497	2645	2794	2946	3098	
2.14	0	108	216	365	515	647	778	916	1054	1193	1332	1475	1618	1761	1905	2052	2199	2350	2501	2650	2798	2951	3103	
2.15	0	108	216	366	516	648	780	918	1056	1195	1335	1478	1621	1764	1908	2056	2203	2354	2505	2654	2803	2956	3109	
2.16	0	108	216	367	517	649	781	919	1058	1198	1337	1480	1623	1767	1912	2059	2207	2358	2510	2659	2808	2961	3114	
2.17	0	108	217	367	518	650	782	921	1060	1200	1339	1483	1626	1771	1915	2063	2211	2362	2514	2664	2813	2966	3120	
2.18	0	109	217	368	519	651	784	923	1062	1202	1342	1485	1629	1774	1918	2066	2215	2366	2518	2668	2818	2972	3125	
2.19	0	109	218	368	519	652	785	924	1064	1204	1344	1488	1632	1777	1921	2070	2218	2371	2523	2673	2823	2977	3130	
2.20	0	109	218	369	520	653	786	926	1065	1206	1346	1491	1635	1780	1925	2073	2222	2375	2527	2677	2828	2982	3136	
2.21	0	109	218	370	521	654	788	927	1067	1208	1349	1493	1637	1783	1928	2077	2226	2379	2531	2682	2833	2987	3141	
2.22	0	109	219	370	522	656	789	929	1069	1210	1351	1496	1640	1786	1931	2081	2230	2383	2536	2687	2837	2992	3146	
2.23	0	109	219	371	523	657	790	931	1071	1212	1353	1498	1643	1789	1935	2084	2234	2387	2540	2691	2842	2997	3152	
2.24	0	110	219	372	524	658	792	932	1073	1214	1355	1501	1646	1792	1938	2088	2237	2391	2544	2696	2847	3002	3157	
2.25	0	110	220	372	525	659	793	934	1074	1216	1358	1503	1649	1795	1941	2091	2241	2395	2549	2700	2852	3007	3162	
2.26	0	110	220	373	526 526	660	794 706	935													2856			
2.27 2.28	0	110 110	220 221	373 374	526 527	661 662	796 797	937 938	1078 1080		1362 1365	1508		1801 1804			2249 2252				2861 2866			
2.28	0	111	221	374	527 528	663	797 798	940	1080			1511 1513		1804			2252			2718			3183	
2.30	0	111	222	375	529	664	800	941	1083		1369	1516		1810						_	_	3032		
2.31	0	111	222	376	530	665	801	943	1085		1371	1518		1813				2419				_	3194	
2.32	0	111	222	377	531	666	802	945	1087		1373			1816				2423				3042		
2.33	0	111	223	377	532	668	803	946	1089		1376		1670	1819				2426				3047	3204	
2.34	0	111	223	378	532	669	805	948	1090	1234	1378	1525	1673			2122	2274				2894		3209	
2.35 2.36	0	112 112	223	378 379	533 534	670 671	806 807	949 951	1092 1094			1528		1824				2434			2899 2903	3057	3215 3220	
2.36	0	112	224 224	380	534 535	671 672	807 809	951						1827 1830		2129					2903		3225	
2.38	0	112	224	380	536	673	810	954	1097	1242					1983	2136	2289	2446	2603	2758	2913	3071	3230	
2.39 énergie > à	0	112	225 400	381 700	537	674 1000	811	955	1099 2000	1244	1389	1538 00	1686	1836 4000	1986	2139	2293 5000	2450	2607	2762 6000	2917	3076 70		

Débit (m3/s) passant par 7 vannes noyées Dénivelée amont aval comprise entre 0,00 et 0,59 m Palier de réglage compris entre 11,5 et 22,5

palier	11.5	12	12.5	13	13.5	14	14.5	15	15.5	16	16.5	17	17.5	18	18.5	19	19.5	20	20.5	21	21.5	22	22.5	Φ,
ouverture (m)	5.40	5.66	5.92	6.18	6.44	6.70	6.97	7.23	7.49	7.76	8.03	8.30	8.56	8.83	9.10	9.37	9.64	9.92	10.19		10.75	11.03	11.14	énergi > à
dénivelée (m)	0	•		0					0		0		0	0			0			0	•			ē
0.00 0.01	0 433	0	0 475	0 496	0	0	0	0	0	0 622	0	0	0	0 708	720	0	0 773	0 795	0	0	0	0 884	0 893	
0.01	562	454 589	616	643	517 670	537 698	559 725	580 752	601 780	807	643 835	665 863	686 891	918	730 947	751 975	1004	1032	817 1060	839 1089	862 1118	1147	1159	
0.02	655	686	718	749	781	812	844	876	908	940	973	1005	1038	1070	1103	1136	1169	1202	1235	1268	1302	1336	1350	
0.04	730	765	800	835	870	905	941	976	1012	1047	1084	1120	1156	1192	1229	1265	1302	1339	1376	1413	1451	1489	1504	
0.05	794	831	870	908	946	985	1023	1062	1100	1139	1179	1218	1257	1296	1336	1376	1416	1457	1497	1537	1578	1620	1636	
0.06	850	891	931	972	1013	1054	1096	1137	1178	1220	1262	1305	1347	1388	1431	1474	1517	1560	1603	1646	1690	1735	1752	
0.07	901	944	987	1030	1074	1117	1161	1205	1249	1293	1338	1383	1427	1471	1517	1562	1607	1653	1699	1745	1791	1838	1856	0
0.08	947	992	1038	1083	1129	1175	1221	1267	1313	1359	1407	1454	1500	1547	1595	1642	1690	1738	1786	1834	1884	1933	1952	_
0.09	990	1037	1085	1132	1180	1228	1276	1324	1373	1421	1470	1520	1568	1617	1667	1717	1767	1817	1867	1917	1969	2020	2041	
0.10	1030	1079	1129	1178	1228	1278	1328	1378	1428	1478	1530	1581	1632	1682	1734	1786	1838	1890	1943	1995	2048	2102	2123	
0.11	1067	1119	1170	1221	1273	1324	1376	1428	1480	1532	1586	1639	1691	1744	1798	1851	1905	1959	2014	2068	2123	2179	2200	
0.12	1103	1156	1209	1262	1315	1368	1422	1476	1529	1583	1638	1693	1748	1802	1857	1913	1969	2025	2081	2137	2194	2251	2274	
0.13	1137 1169	1191 1225	1246 1281	1300 1337	1355 1394	1410 1450	1466 1507	1521 1564	1576 1621	1632 1678	1688 1736	1745 1794	1801	1857 1909	1914 1968	1971 2027	2029 2086	2086 2145	2144 2205	2202 2264	2261 2325	2320 2385	2343 2409	
0.14 0.15	1199	1257	1315	1372	1430	1488	1547	1605	1663	1722	1782	1842	1852 1901	1960	2020	2080	2141	2202	2263	2324	2386	2448	2473	
0.16	1229	1288	1347	1406	1465	1525	1585	1644	1704	1764	1825	1887	1947	2008	2070	2132	2194	2256	2318	2381	2445	2508	2533	
0.10	1257	1317	1378	1438	1499	1560	1621	1682	1743	1805	1868	1930	1992	2054	2117	2181	2244	2308	2372	2436	2501	2566	2592	
0.17	1285	1346	1408	1470	1532	1594	1656	1719	1781	1844	1908	1972	2036	2099	2163	2228	2293	2358	2423	2489	2555	2622	2648	
0.19	1311	1374	1437	1500	1563	1627	1690	1754	1818	1882	1947	2013	2077	2142	2208	2274	2340	2406	2473	2540	2608	2676	2703	4
0.20	1337	1401	1465	1529	1594	1658	1723	1788	1853	1919	1985	2052	2118	2184	2251	2318	2386	2453	2521	2589	2659	2728	2755	400
0.21	1361	1426	1492	1557	1623	1689	1755	1821	1888		2022	2090	2157	2224	2293	2361	2430	2499	2568	2637	2708	2778	2806	
0.22	1385	1452	1518	1585	1652	1719	1786	1853	1921	1989	2058	2127	2195	2263	2333	2403	2473	2543	2613	2684	2756	2827	2856	
0.23	1409	1476	1544	1612	1680	1748	1816	1885	1953	2022	2092	2163	2232	2301	2372	2443	2514	2586	2657	2729	2802	2875	2904	
0.24	1431	1500	1569	1638	1707	1776	1846	1915	1985	2055	2126	2198	2268	2339	2411	2483	2555	2627	2700	2773	2847	2922	2951	
0.25	1454	1523	1593	1663	1733	1804	1874	1945	2016	2087	2159	2232	2303	2375	2448	2521	2595	2668	2742	2816	2891	2967	2997	
0.26	1475	1546	1617	1688	1759	1830	1902	1974	2046	2118	2191	2265	2337	2410	2484	2559	2633	2708	2783	2858	2934	3011	3041	
0.27	1496	1568	1640	1712	1784	1857	1929	2002	2075	2148	2223	2297	2371	2444	2520	2595	2671	2746	2822	2898	2976	3054	3085	700
0.28	1517	1589	1662	1735	1809	1882	1956	2029	2103	2177	2253	2329	2403	2478	2555	2631	2708	2784	2861	2938	3017	3096	3127	_
0.29	1537	1611	1685	1758	1833	1907	1982	2056	2131	2206	2283	2360	2435	2511	2588	2666	2744	2821	2899	2977	3057	3137	3169	
0.30	1557	1631	1706	1781	1856	1932	2007	2083	2159	2235	2312	2390	2467	2543	2622	2700	2779	2857	2937	3016	3096	3177	3209	
0.31	1576	1651	1727	1803	1879	1956	2032	2109	2185	2262	2341	2420	2497	2575	2654	2734	2813	2893	2973	3053	3135	3217	3249	
0.32	1595	1671	1748	1825	1902	1979	2056	2134	2212	2290	2369	2449	2527	2606	2686	2766	2847	2928	3009	3090	3173	3255	3288	
0.33	1614	1691	1768	1846	1924	2002		2159	2237	2316	2397	2477	2557	2636	2717	2799	2880	2962	3044	3126	3209	3293	3326	
0.34	1632	1710	1788	1867	1946		2104	2183	2263	2342	2424	2505	2586	2666	2748	2830	2913	2995	3078	3161	3246	3330	3364	
0.35	1650	1729	1808	1887	1967	2047	2127	2207	2288	2368	2450	2533	2614	2695	2778	2861	2945	3028	3112	3196	3281	3367	3401	
0.36	1667	1747	1827	1907	1988	2069	2150	2231	2312	2393	2476	2560	2642	2724	2808	2892	2976	3060	3145	3230	3316	3403	3437	
0.37	1684	1765	1846	1927	2009	2090	2172	2254	2336	2418	2502	2586	2669	2752	2837	2922	3007	3092	3178	3263	3351	3438	3473	
0.38	1701	1783	1865	1947	2029	2111	2194	2276	2359	2442	2527	2612	2696	2780	2865	2951	3037	3123	3210	3296	3384	3473	3508	
0.39 0.40	1718 1735	1800 1818	1883 1901	1966 1985	2049 2068	2132 2152	2215 2237	2299	2383	2466 2490	2552 2577	2638 2663	2722 2749	2807 2834	2894 2921	2980 3009	3067 3096	3154 3184	3241 3272	3328 3360	3418	3507 3540	3542 3576	
0.40	1751	1835	1919	2003	2088	2172	2257	2342	2403	2513	2601	2688	2774	2860	2948	3037	3125	3214	3303	3392	3450 3482	3573	3609	100
0.42	1767	1851	1936	2021	2107	2192	2278	2364	2450	2536	2624	2712	2799	2886	2975	3064	3154	3243	3333	3422	3514	3606	3642	ŏ
0.42	1782	1868	1954	2039	2125	2212		2385	2472	2559	2648	2737	2824	2912	3002	3092	3182	3272	3362	3453	3545	3638	3674	
0.44	1798	1884	1971	2057	2144		2318	2405	2493	2581	2671	2760	2849	2937	3028	3118	3209	3300	3392	3483	3576	3670	3706	
0.45	1813				2162										3054		_	3328		3512	3607	3701	3738	
0.46					2180															3542		3731		
0.47	1843				2198								2920						3477	3570	3666		3800	
0.48	1858	1947	2036	2125	2215	2305	2395	2485	2576	2667	2759	2852	2944	3035	3129	3222	3316	3410	3504	3599	3695	3792	3830	
0.49	1872	1962	2052	2142	2232	2323	2414	2505			2781		2967	3059	3153	3247	3342	3437	3532	3627	3724	3821	3860	
0.50	1886			2158				2524			2802			3082		3272	3367	3463	3559	3654	3752		3889	
0.51					2266				2636									3489	3585		3780		3918	
0.52	1914				2283										3224			3514			3808			
0.53					2299				2674 2693		2864				3247			3539		3735		3936		
0.54 0.55	1942 1955		2128 2143			2409 2426		2616	2693		2884 2904	2981 3002		3173 3194			3466 3490	3564 3589	3663 3688	3762 3788	3863 3889	3963 3991	4003	200
0.56	1969	2063	2158	2252	2347	2443	2538	2634	2730	2826	2924	3022	3119	3216	3315	3414	3514	3614	3714		3916		4058	8
0.57				2267		2459			2748				3140							3839		4045		
0.58 0.59				2282 2297	2379 2394	2475 2491					2963 2982		3161 3181	3259	3359 3381	3460 3482	3561 3584	3662	3763 3787	3864		4071 4098		
énergie > à	_000	-104		1	2004	∠-r⊍1	_000	1000	∠, U+	_002	2002	5002	0.01	J200	5501	3-70Z	0004	5000		000	0000	1000	7100	
shorgle > a								1000											20	,,,,,				1

Débit (m3/s) passant par 7 vannes noyées Dénivelée amont aval comprise entre 0,60 et 1,19 m Palier de réglage compris entre 11,5 et 22,5

palier	11.5	12	12.5	13	13.5	14	14.5	15	15.5	16	16.5	17	17.5	18	18.5	19	19.5	20	20.5	21	21.5	22	22.5	Φ·
ouverture (m)	5.40	5.66	5.92	6.18	6.44	6.70	6.97	7.23	7.49	7.76	8.03	8.30	8.56	8.83	9.10	9.37	9.64	9.92	10.19		10.75	11.03	11.14	énergi > à
dénivelée (m)	0000	0447	0044	0040	0.400	0507	0005	0700	0000	0000	0004	0400	0004	0004	0.400	0504	2000	0700	0044	2044	4040	1101	1405	<u>e</u>
0.60 0.61	2020 2033	2117 2130	2214 2228	2312 2326	2409 2424	2507 2522	2605 2621	2703 2720	2802 2819	2900 2918	3001 3020	3102 3121	3201 3221	3301 3321	3402 3424	3504 3526	3606 3629	3709 3732	3811 3835	3914 3938	4019 4044	4124 4149	4165 4191	
0.62	2045	2143	2242	2340	2439	2538	2637	2737	2836	2936	3038		3241	3342	3445	3548	3651	3755	3858	3962	4069	4175	4217	
0.63	2058	2156	2255	2354	2454	2553	2653	2753	2854	2954	3057	3159	3261	3362	3465	3569	3673	3777	3882	3986	4093	4200	4242	
0.64	2070	2169	2269	2368	2468	2568	2669	2769	2870	2971	3075	3178	3280	3382	3486	3590	3695	3800	3905	4010	4117	4225	4267	2000
0.65	2082	2182	2282	2382	2483	2583	2685	2786	2887	2989	3093	3197	3299	3402	3506	3611	3717	3822	3928	4033	4142	4250	4292	
0.66	2094	2194	2295	2396	2497	2598	2700	2802	2904	3006	3111	3215	3318	3421	3527	3632	3738	3844	3950	4057	4165	4274	4317	
0.67	2106	2207	2308	2409	2511	2613	2715	2818	2920	3023	3128	3233	3337	3441	3547	3653	3759	3866	3973	4080	4189	4298	4341	
0.68	2118	2219	2321	2423	2525	2628	2731	2833	2937	3040	3146	3251	3356	3460	3566	3673	3780	3887	3995	4102	4212	4322	4366	
0.69	2129	2231	2334	2436	2539	2642	2746	2849	2953	3057	3163	3269	3374	3479	3586	3693	3801	3909	4017	4125	4236	4346	4390	
0.70	2141	2243	2346	2449	2553	2656	2760	2864	2969	3073	3180	3287	3392	3498	3606	3713	3822	3930	4039	4147	4259	4370	4414	
0.71 0.72	2152 2164	2255	2359 2371	2463 2476	2567	2671 2685	2775	2880	2985	3090	3197 3214	3305 3322	3411	3516	3625	3733	3842	3951 3972	4060 4082	4170	4281	4393 4416	4437	
0.72	2175	2267 2279	2384	2488	2580 2594	2699	2790 2804	2895 2910	3000 3016	3106 3122	3214	3339	3429 3446	3535 3553	3644 3663	3753 3772	3862 3882	3972	4103	4192 4213	4304 4326	4439	4461 4484	
0.73	2186	2291	2396	2501	2607	2713	2819	2925	3032	3138	3247	3356	3464	3572	3682	3792	3902	4013	4124	4235	4349	4462	4507	
0.75	2197	2302	2408	2514	2620	2726	2833	2940	3047	3154	3264	3373	3482	3590	3700	3811	3922	4033	4145	4256	4371	4485	4530	
0.76	2208	2314	2420	2526	2633	2740	2847	2954	3062	3170	3280	3390	3499	3608	3719	3830	3942	4053	4165	4278	4392	4507	4552	ω
0.77	2219	2325	2432	2539	2646	2753	2861	2969	3077	3185	3296	3407	3516	3625	3737	3849	3961	4073	4186	4299	4414	4529	4575	3000
0.78	2230	2337	2444	2551	2659	2767	2875	2983	3092	3201	3312	3424	3533	3643	3755	3868	3980	4093	4206	4320	4435	4551	4597	
0.79	2241	2348	2456	2563	2672	2780	2889	2998	3107	3216	3328	3440	3550	3661	3773	3886	3999	4113	4227	4340	4457	4573	4619	
0.80	2251	2359	2467	2576	2684	2793	2903	3012	3122	3232	3344	3456	3567	3678	3791	3905	4018	4132	4247	4361	4478	4595	4641	
0.81	2262	2370	2479	2588	2697	2806	2916	3026	3136	3247	3360	3472	3584	3695	3809	3923	4037	4152	4267	4381	4499	4616	4663	
0.82	2272	2381	2490	2600	2710	2819	2930	3040	3151	3262	3375	3489	3600	3712	3827	3941	4056	4171	4286	4402	4520	4638	4684	
0.83	2283	2392	2502	2612	2722	2832	2943	3054	3165	3277	3391	3504	3617	3729	3844	3959	4074	4190	4306	4422	4540	4659	4706	
0.84	2293	2403	2513	2623	2734	2845	2956	3068	3180	3291	3406	3520	3633	3746	3861	3977	4093	4209	4325	4442	4561	4680	4727	
0.85	2303	2413	2524	2635	2746	2858	2970	3081	3194	3306	3421	3536	3649	3763	3879	3995	4111	4228	4345	4462	4581	4701	4748	
0.86	2313	2424	2535	2647	2758	2870	2983	3095	3208	3321	3436	3552	3665	3779	3896	4012	4129	4246	4364	4481	4601	4722	4769	
0.87	2323	2435	2546	2658	2771	2883	2996	3108	3222	3335	3451	3567	3681	3796	3913	4030	4147	4265	4383	4501	4621	4742	4790	
0.88	2333	2445	2557	2670	2782	2895	3009	3122	3236	3350	3466	3582	3697	3812	3930	4047	4165	4283	4402	4520	4641	4763	4810	
0.89	2343	2456	2568	2681	2794	2908	3021	3135	3249	3364	3481	3598	3713	3828	3946	4064	4183	4301	4420	4539	4661	4783	4831	
0.90	2353	2466	2579	2692	2806	2920	3034	3148	3263	3378	3495	3613	3729	3844	3963	4081	4200	4319	4439	4558	4681	4803	4851	
0.91	2363	2476	2590	2704	2818	2932	3047	3161	3277 3290	3392	3510	3628	3744	3861	3979	4098	4218	4337	4457	4577	4700	4823	4871	4000
0.92 0.93	2373 2382	2486 2496	2600 2611	2715 2726	2829 2841	2944 2956	3059 3072	3175 3187	3290	3406 3420	3524 3539	3643 3658	3760 3775	3876 3892	3996 4012	4115 4132	4235 4253	4355 4373	4476 4494	4596 4615	4720 4739	4843 4863	4891 4911	8
0.93	2392	2507	2622	2737	2852	2968	3084	3200	3317	3434	3553	3672	3790	3908	4028	1	4270	4391	4512	4634	4758	4882	4931	
0.95	2402	2517	2632	2748	2864	2980	3096	3213	3330	3447	3567	3687	3805	3923	4044	4165	4287	4408	4530	4652	4777	4902	4951	
0.96	2411	2526	2642	2758	2875	2992	3109	3226	3343	3461	3581	3702	3820	3939	4060	4182	4304	4426	4548	4670	4796	4921	4970	
0.97	2420	2536	2653	2769	2886	3003	3121	3238	3356	3474	3595	3716	3835	3954	4076	4198	4320	4443	4566	4689	4814	4940	4990	
0.98	2430	2546	2663	2780	2897	3015	3133	3251	3369	3488	3609	3730	3850	3970	4092	4214	4337	4460	4583	4707	4833	4959	5009	
0.99	2439	2556	2673	2791	2908	3026	3145	3263	3382	3501	3623	3745	3865	3985	4108	4230	4354	4477	4601	4725	4852	4978	5028	
1.00	2448	2566	2683	2801	2919	3038	3157	3276	3395	3515	3637	3759	3879	4000	4123	4246	4370	4494	4618	4743	4870	4997	5047	
1.01	2457	2575	2693	2812	2930	3049	3169	3288	3408	3528	3650	3773	3894	4015	4139	4262	4387	4511	4636	4761	4888	5016	5066	
1.02	2467	2585	2703	2822	2941	3061	3180	3300	3420	3541	3664	3787	3908	4030	4154	4278	4403	4528	4653	4778	4906	5034	5085	
1.03	2476	2594	2713	2832	2952	3072	3192	3312	3433	3554	3677	3801	3923	4045	4169	4294	4419	4544	4670	4796	4924	5053	5104	
1.04	2485	2604	2723	2843	2963	3083	3204	3324	3446	3567	3691	3815	3937	4059	4184	4310	4435	4561	4687	4813	4942	5071	5122	
1.05				2853		3094		3336	3458		3704				4200				4704		4960	5090	5141	(Tr
1.06		2622			2984	3105	3227	3348	3470		3717		3965		4215		4467		4721			5108	5159	5000
1.07							3238		3483	1	3730 3744					4356		4610		4865		5126 5144	5177 5195	
1.08 1.09		2641 2650	_			3127	3249 3261	3372 3384	3495 3507		3744	3869 3883	3993 4007		4244 4259	4371	4499 4514	4626 4642	•	4882 4899		5144		
1.10			2781	2903	3026	3149	3272	3395	3519	=	3769	_	4007			4401	4530	4658	4771	4916	5048	5179	5213	
1.10		2668			3036		3283	3407			3782					4416	_		4803				5249	
1.12			2800		3047	3170		3418			3795			4174	4303		4561		4820					
1.13		2686			3057	3181				3680	3808	3936		4188		4446	4576	4705	4836		5099			
1.14	2572	2695	2819	2943	3067	3191		3441	3567	3692	3820	3949		4202	4331	4461	4591	4721	4852	4982			5302	
1.15 1.16	2580	2704 2713	2828		3077 3087	3202 3212	3327		3578	3704	3833 3845	3962	4089		4346 4360	4476 4490	4606 4621	4737 4752	4868 4884	4999	5133 5149		5320 5337	0
1.16	2597	2722	2847	2902	3097	3212	3349				3858				4374		4636	4767			5166			6000
1.18	2606	2730	2856	2981	3107	3233	3359	3486	3613	3740	3870	4000	4129	4257	4388	4519	4651	4783	4915	5047	5183	5318	5371	
1.19	2614	2739			3117	3243	3370	3497	3625		3883	4013	4142	4270	4402	4534	4666	4798	4931	5063	5199		5388	
énergie > à			30	000						4000							5000					6000		

Débit (m3/s) passant par 7 vannes noyées Dénivelée amont aval comprise entre 1,20 et 1,79 m Palier de réglage compris entre 11,5 et 22,5

palior	11.5	12	12.5	13	13.5	14	14.5	15	15.5	16	16.5	17	17.5	18	18.5	19	19.5	20	20.5	21	21.5	22	22.5	Φ,
palier ouverture (m)	5.40	5.66	5.92	6.18	6.44	6.70	6.97	7.23	7.49	7.76	8.03	8.30	8.56	8.83	9.10	9.37	9.64		10.19			11.03		énergi > à
dénivelée (m) 1.20	2622	2748	2874	3000	3127	3253	3381	3508	3636	3764	3895	4026	4155	4284	4416	4548	4680	4813	4946	5079	5216	5352	5405	₫.
1.20	2630	2756	2883	3000	3136	3264	3391	3519	3647	3776	3907	4028	4168	4297	4430	4562	4695	4828	4946	5095	5232	5368	5422	
1.22	2638	2765	2892	3019		3274	3402	3530	3659	3787	3919	4051	4181	4311	4443	4576	4710	4843	4977	5111	5248	5385	5439	
1.23	2647	2773	2901	3028	3156	3284	3412	3541	3670	3799	3931	4063	4194	4324	4457	4590	4724	4858	4992	5127	5264	5402	5456	6000
1.24	2655	2782	2909	3037	3165	3294	3423	3552	3681	3811	3943	4076	4206	4337	4471	4604	4739	4873	5008	5142	5280	5418	5473	Ŭ
1.25	2663	2790	2918	3046		3304	3433	3562	3692	3822	3955	4088	4219	4350	4484	4618	4753	4887	5023	5158	5296	5435	5489	
1.26 1.27	2671 2679	2799	2927		3185	3314	3443	3573	3703	3834	3967 3979	4100	4232	4363	4498	4632	4767	4902	5038		5312	5451	5506	
1.27	2679	2807 2815	2936 2944	3065 3074		3324 3333	3454 3464	3584 3594	3714 3725	3845 3856	3979	4112 4125	4244 4257	4376 4389	4511 4524	4646 4660	4781 4795	4917 4931	5053 5068	5189 5204	5328 5344	5467 5483	5522 5538	
1.29	2694	2823	2953	3083	3213	3343	3474	3605	3736	3868	4002	4137	4269	4402	4538	4673	4809	4946	5083	5219	5359	5499	5554	
1.30	2702	2832	2962	3092		3353	3484	3615	3747	3879	4014	4149	4282	4415	4551	4687	4823	4960		5235	5375	5515	5571	
1.31	2710	2840	2970	3101	3232	3363	3494	3626	3758	3890	4025	4161	4294	4427	4564	4700	4837	4974	5112	5250	5390	5531	5587	
1.32	2718	2848	2979	3109	3241	3372	3504	3636	3769	3901	4037	4173	4306	4440	4577	4714	4851	4989	5127	5265	5406	5547	5603	
1.33	2725	2856	2987	3118	3250	3382	3514	3647	3779	3912	4048	4184	4319	4453	4590	4727	4865	5003	5141	5280	5421	5563	5619	7000
1.34	2733	2864	2996		3259	3391	3524	3657	3790	3923	4060	4196	4331	4465	4603	4741	4879	5017	5156		5437	5579	5634	ŏ
1.35	2741	2872	3004	3136		3401	3534	3667	3801	3934	4071	4208	4343	4478	4616	4754	4892	5031	5170		5452	5594	5650	
1.36	2748	2880	3012	3145		3410	3544	3677	3811	3945	4083	4220	4355	4490	4629	4767	4906	5045	5185	5324	5467	5610	5666	
1.37	2756 2764	2888	3021	3153		3420	3554	3687	3822	3956	4094	4231	4367 4379	4503	4641	4780	4920	5059 5073	5199	5339	5482	5625	5682	
1.38 1.39	2771	2896 2904	3029 3037	3162 3170	3295 3304	3429 3438	3563 3573	3697 3708	3832 3843	3967 3978	4105 4116	4243 4254	4379	4515 4527	4654 4667	4793 4806	4933 4946	5087	5213 5227	5354 5368	5497 5512	5641 5656	5697 5713	
1.40	2779	2912	3045	3179	_	3448	3583	3718	3853	3989	4127	4266	4403	4539	4679	4819	4960	5100	5241	5383	5527	5671	5728	
1.41	2786	2919	3053	3188		3457	3592	3727	3863	3999	l 1	4277	4415	4552	4692	4832	4973	5114		5397		5686	5743	
1.42	2793	2927	3062	3196		3466	3602	3737	3874	4010		4289	4426	4564	4704	4845	4986	5128	5269	5411	5556	5702	5759	
1.43	2801	2935	3070	3204	3340	3475	3611	3747	3884	4021	4160	4300	4438	4576	4717	4858	5000	5141	5283	5426	5571	5717	5774	
1.44	2808	2943	3078	3213	3349	3484	3621	3757	3894	4031	4171	4311	4450	4588	4729	4871	5013	5155	5297	5440	5586	5732	5789	
1.45	2816	2950	3086	3221	3357	3493	3630	3767	3904	4042	4182	4323	4461	4600	4742	4883	5026	5168	5311	5454	5600	5747	5804	
1.46	2823	2958	3094	3230		3502	3640	3777	3914	4052		4334	4473	4612	4754	4896	5039	5181	5325		5615	5761	5819	8000
1.47	2830	2966	3102	3238	_	3511	3649	3786	3924	4062	4204	4345		4624	4766	4909	5052	5195			5629	5776	5834	0
1.48 1.49	2837 2844	2973 2981	3110 3118	3246 3254	3383 3392	3520 3529	3658 3668	3796 3806	3934 3944	4073 4083	4214 4225	4356 4367	4496 4507	4635 4647	4778 4790	4921 4934	5065 5077	5208 5221	5352 5366		5644 5658	5791 5806	5849 5864	
1.50	2852	2988	3125	3263	3400	3538	3677	3815	3954	4093	4236	4378	4518	4659	4802	4946	5090	5234	5379	5524	5672	5820	5879	
1.51	2859	2996	3133	3271	3409	3547	3686	3825	3964	4104	4246	4389	4530	4670	4814	4958	5103	5247	5393	5538	5686	5835	5893	
1.52	2866	3003	3141	3279	3417	3556	3695	3834	3974	4114	4257	4400	4541	4682	4826	4971	5116	5261	5406	5552	5701	5849	5908	
1.53	2873	3011	3149	3287	3426	3565	3704	3844	3984	4124	4267	4411	4552	4694	4838	4983	5128	5274	5419	5565	5715	5864	5923	
1.54	2880	3018	3156	3295	3434	3573	3713	3853	3994	4134	4278	4422	4563	4705	4850	4995	5141	5286	5433	5579	5729	5878	5937	
1.55	2887	3025	3164	3303	3443	3582	3722	3863	4003	4144	4288	4432	4575	4717	4862	5007	5153	5299	5446	5593	5743	5893	5952	
1.56	2894	3033	3172	3311	3451	3591		3872	4013	4154	4299	4443	4586	4728	4874		5166	5312		5606	5756	5907	5966	
1.57	2901	3040	3179	3319		3600	3740	3881	4023	4164		4454	4597	4739	4885	5032	5178	5325		5620	5770	5921	5980	<i>(</i> 0
1.58 1.59	2908 2915	3047 3054	3187 3195	3327 3335	3468 3476	3608 3617	3749 3758	3891 3900	4032 4042	4174 4184	4319 4330	4465 4475	4608 4619	4751 4762	4897 4909	5044 5056	5191 5203	5338 5350	5485 5498	5633 5646	5784 5798	5935 5949	5995 6009	900
1.60	2922	3062	3202	3343	3484	3625	3767	3909	4052	4194	4340	4486	4629	4773	4920	5068	5215	5363	5511	5660	5812	5963	6023	Ŭ
1.61	2929	3069	3210	3351	3492	3634	3776	3918	4061	4204	4350	4496	4640	4784	4932	5079	5227	5376		5673	5825	5977	6037	
1.62	2935	3076	3217	3358	3500	3642	3785	3927	4071	4214	4360	4507	4651	4796	4943	5091	5240	5388		5686	5839	5991	6051	
1.63	2942	3083	3225	3366	3508	3651	3794	3936	4080	4223	4370	4517	4662	4807	4955	5103	5252	5401	5550	5699	5852	6005	6065	
1.64	2949	3090	3232	3374	3516	3659	3802	3945	4089	4233	4380	4528	4673	4818	4966	5115	5264	5413	5563	5713		6019	6079	
1.65			3239			3667					4390	4538	4683					5425	•			6033		
1.66			3247	l	3533			3963			4400	4548		4840								6046		
1.67			3254		3541 3548			3972			4410			4851					5601			6060		1
1.68 1.69	2976 2982	3118 3125			3548	3692	3837 3845	3981 3990		4272 4281	4420 4430	4569 4579		4862 4873	5012	5161			5626			6074 6087	6135	
1.70	2982				3564				_		4440		4736		5023			5487			5946		6162	10000
1.71					3572				4154	l	4450		4747		5045							6114		8
1.72	3002	3146	3290	3435	3580	3725	3871		4163	l	4460		4757		5056		5359			5816		6128		1
1.73			3298			3733		4026	4172	l .	4469	4619			5067					5829		6141		1
1.74 1.75	3015 3022	3160	3305 3312	3450 3457		3741 3749		4034 4043	4181	4328	4479 4489				5078		5382 5394		5688	5841 5854		6154 6168	6216	1
1.76	3028		3319			3758					4498											6181		
1.77		3180	3326	3472	3619	3766	3913	4060	4208	4356	4508			4958	5111	5264	5417	5571	5725	5879	6036	6194		
1.78 1.79	3041 3048		3333 3340			3774 3781	3921 3929	4069 4077		4366 4375		4669 4679	4819 4829		5122 5132			5582 5594			6049 6062	6207 6220	6270 6283	000
	5040	5000	JJ40	3 4 67	6000	5701	5523	70		7013	7321		00	7313	0102	9000	JTHU	5554		000	0002	110		
énergie > à		5000			6000			70	UU			80	UU			9000			10	UUU		110	JUU	i

Débit (m3/s) passant par 7 vannes noyées Dénivelée amont aval comprise entre 1,80 et 2 ,39 m Palier de réglage compris entre 11,5 et 22,5

palier	11.5	12	12.5	13	13.5	14	14.5	15	15.5	16	16.5	17	17.5	18	18.5	19	19.5	20	20.5	21	21.5	22	22.5	énergi > à
ouverture (m) dénivelée (m)	5.40	5.66	5.92	6.18	6.44	6.70	6.97	7.23	7.49	7.76	8.03	8.30	8.56	8.83	9.10	9.37	9.64	9.92	10.19	10.47	10.75	11.03	11.14	ergie · à
1.80	3054	3200	3347	3494	3642	3789	3938	4086	4235	4384	4536	4689	4839	4989	5143	5297	5451	5606	5761	5916	6075	6233	6296	- U
1.81	3060	3207	3354	3501	3649	3797	3946	4095	4244	4393	4546	4699	4849	5000		5308	5463	5618	5773	5928	6087	6246	6309	
1.82	3067	3214	3361	3509	3657	3805	3954	4103	4253	4402	4555	4708	4859	5010		5319	5474	5629	5785	5941	6100	6259	6322	
1.83	3073	3220	3368	3516	3664	3813	3962	4112	4261	4411	4565	4718	4869	5021	5175	5330	5485	5641	5797	5953	6113	6272	6335	1
1.84	3079	3227	3375	3523	3672	3821	3970	4120	4270	4420	4574	4728	4879	5031	5186	5341	5497	5652	5809	5965	6125	6285	6348	11000
1.85	3086	3233	3382	3530	3680	3829	3979	4128	4279	4429	4583	4737	4889	5041	5197	5352	5508	5664	5821	5977	6138	6298	6361	
1.86	3092	3240	3389	3538	3687	3836	3987	4137	4288	4438	4593	4747	4899	5051	5207	5363	5519	5675	5833	5990	6150	6311	6374	
1.87	3098	3247	3396	3545	3694	3844	3995	4145	4296	4447	4602	4757	4909	5062	5218	5374	5530	5687	5844	6002	6163	6323	6387	
1.88	3104	3253	3402	3552	3702	3852	4003	4153	4305	4456	4611	4766	4919	5072	5228	5384	5541	5698	5856	6014	6175	6336	6400	
1.89	3111	3260	3409	3559	3709	3860	4011	4162	4313	4465	4620	4776	4929	5082	5239	5395	5552	5710	5868	6026	6187	6349	6413	
1.90	3117	3266	3416	3566	3717	3867	4019	4170	4322	4474	4630	4785	4939	5092	5249	5406	5563	5721	5879	6038	6200	6361	6425	
1.91	3123	3272	3423	3573	3724	3875	4027	4178	4331	4483	4639	4795	4948	5102	5259	5417	5574	5732	5891	6050	6212	6374	6438	
1.92	3129	3279	3429	3580	3731	3883	4034	4186	4339	4492	4648	4804	4958	5112	5270	5427	5585	5744	5903	6061	6224	6387	6451	-:
1.93	3135	3285	3436	3587	3739	3890	4042	4195	4348	4501	4657	4813	4968	5122	5280	5438	5596	5755	5914	6073	6236	6399	6463	12000
1.94	3141	3292	3443	3594	3746	3898	4050	4203	4356	4509	4666	4823	4977	5132	5290	5448	5607	5766	5926	6085	6248	6411	6476	0
1.95	3147	3298	3449	3601	3753	3905	4058	4211	4364	4518	4675	4832	4987	5142	5300	5459	5618	5777	5937	6097	6260	6424	6488	
1.96	3153	3304	3456	3608	3760	3913	4066	4219	4373	4527	4684	4841	4997	5152	5311	5469	5629	5788	5949	6109	6272	6436	6501	
1.97	3159	3311	3463	3615	3768	3920	4074	4227	4381	4535	4693	4851	5006	5162	5321	5480	5640	5799	5960	6120	6284	6449	6513	
1.98	3165	3317	3469	3622	3775	3928	4081	4235	4390	4544	4702	4860	5016	5172	5331	5490	5650	5811	5971	6132	6296	6461	6526	
1.99	3171	3323	3476	3629	3782	3935	4089	4243	4398	4553	4711	4869	5025	5181	5341	5501	5661	5822	5983	6144	6308	6473	6538	
2.00	3177	3330	3483	3635	3789	3943	4097	4251	4406	4561	4720	4878	5035	5191	5351	5511	5672	5833	5994	6155	6320	6485	6550	
2.01	3183	3336	3489	3642	3796	3950	4105	4259	4414	4570	4729	4888	5044	5201	5361	5521	5682	5843	6005	6167	6332	6498	6563	
2.02	3189	3342	3496	3649	3803	3957	4112	4267	4423	4578	4738	4897	5054	5211	5371	5532	5693	5854	6016	6178	6344	6510	6575	
2.03	3195	3348	3502	3656	3810	3965	4120	4275	4431	4587	4746	4906	5063	5220	5381	5542	5704	5865	6028	6190	6356	6522	6587	<u> </u>
2.04	3201	3355	3509	3663	3817	3972	4128	4283	4439	4595	4755	4915	5072	5230	5391	5552	5714	5876	6039	6201	6368	6534	6599	3000
2.05	3207	3361	3515	3669	3824	3979	4135	4291	4447	4604	4764	4924	5082	5240	5401	5563	5725	5887	6050	6213	6379	6546	6612	0
2.06	3213	3367	3521	3676	3831	3987	4143	4299	4455	4612	4773	4933	5091	5249	5411	5573	5735	5898	6061	6224	6391	6558	6624	
2.07	3219	3373	3528	3683	3838	3994	4150	4307	4464	4621	4781	4942	5100	5259	5421	5583	5746	5908	6072	6235	6403	6570	6636	
2.08	3225	3379	3534	3689	3845	4001	4158	4314	4472	4629	4790	4951	5110	5268	5431	5593	5756	5919	6083	6247	6414	6582	6648	
2.09	3231	3385	3541	3696	3852	4008	4165	4322	4480	4637	4799	4960	5119	5278	5440	5603	5767	5930	6094	6258	6426	6594	6660	
2.10	3236	3391	3547	3703	3859	4016	4173	4330	4488	4646	4807	4969	5128	5287	5450	5613	5777	5941	6105	6269	6437	6605	6672	
2.11	3242	3397	3553	3709	3866	4023	4180	4338	4496	4654	4816	4978	5137	5297	5460	5623	5787	5951	6116	6280	6449	6617	6684	
2.12	3248	3403	3560	3716	3873	4030	4188	4345	4504	4662	4824	4986	5146	5306	5470	5633	5797	5962	6127	6292	6460	6629	6696	
2.13	3254	3409	3566	3723	3880	4037	4195	4353	4512	4671	4833	4995	5155	5316		5643	5808	5972	6138	6303	6472	6641	6707	
2.14	3259	3415	3572	3729	3887	4044	4202	4361	4520	4679	4841	5004	5165	5325	5489	5653	5818	5983	6148	6314	6483	6653	6719	14
2.15	3265	3421	3579	3736	3893	4051	4210	4368	4528	4687	4850	5013	5174	5334	5499	5663	5828	5993	6159	6325	6495	6664	6731	4000
2.16	3271	3427	3585	3742	3900	4058	4217	4376	4536	4695	4858	5022	5183	5344	5508	5673	5838	6004	6170	6336	6506	6676	6743	
2.17	3276	3433	3591	3749	3907	4065	4225	4384	4544	4703	4867	5030	5192	5353	5518	5683	5849	6014	6181	6347	6517	6687	6755	
2.18	3282	3439	3597	3755	3914	4072	4232	4391	4551	4711	4875	5039	5201	5362	5527	5693	5859	6025	6191	6358	6529	6699	6766	
2.19	3288	3445	3603	3762	3921	4079	4239	4399	4559	4720	4884	5048	5210	5371	5537	5703	5869	6035	6202	6369	6540	6711	6778	
2.20	3293	3451	3610	3768	3927	4086	4246	4406	4567	4728	4892	5056	5219	5381	5546	5712	5879	6045	6213	6380	6551	6722	6789	
2.21	3299	3457	3616	3774	3934	4093	4254	4414	4575	4736	4900	5065	5227	5390	5556	5722	5889	6056	6223	6391	6562	6734	6801	
2.22	3305	3463	3622	3781	3941	4100	4261	4421	4583	4744	4909	5074	5236	5399	5565	5732	5899	6066	6234	6402	6573	6745	6813	
2.23	3310	3469	3628	3787	3947	4107	4268	4429	4590	4752	4917	5082	5245	5408	5575	5741	5909	6076	6244	6413	6584	6756	6824	
2.24	3316	3475	3634	3794	3954	4114	4275	4436	4598	4760	4925	5091	5254	5417	5584	5751	5919	6086	6255	6423	6596	6768	6836	
2.25																					6607			15000
2.26	3327				3967		4290 4297				4942 4950										6618		6859 6870	ĕ
2.27 2.28			3652 3658				4297 4304														6629 6640	6802 6813		
2.28		3504				4142		4473	4629	4800			5298			5790 5799		6137		6477	6651	6824	6893	
2.29			3670		_		4311		4644	4800	4900				5640		5978		6317	6487	6661	6835	6904	
2.30			3676				4318		4652		4975									6498		6847	6915	
2.32			3682				4332												6338					
2.33				3850				4503		4831		=		5498			6007		6348	6519		6869		
2.34		3532	3694	_		4182	4346				5007						6017			6530			6949	_
2.35	3376	3538	3700	3863	4026	4189	4353	4517	4682	4846	5015	5183	5350	5516	5686	5856	6026	6197	6369	6540	6716	6891	6960	16000
2.36				3869			4360														6726			8
2.37 2.38			3712 3718				4367 4374														6737 6748			
2.39		3560			4045			4539	4712		5039						6065			6582	6758	6935		
énergie > à		8000			000		10000		110			12000			000		14000			000		16000		
J						•				-	•	0			-	•				-	•			•