SOCIETE LE NICKEL

RECHERCHES SUR LES POSSIBILITÉS D'IMPLANTATION VÉGÉTALE SUR DÉBLAIS MINIERS

RAPPORT FINAL

T. JAFFRÉ
M. LATHAM
avec la collaboration technique de B. SIMONIN

OFFICE DE LA RECHERCHE SCIENTIFIQUE ET TECHNIQUE OUTRE ... MER

CENTRE DE NOUMEA - NOUVELLE CALEDONIE

BPA/5 NOUMEA CEDEX

SEPTEMBRE 1976

Par convention en date du 12 Février 1974, la Société Le Nickel a confié à 1'0.2.S.T.O.M. l'exécution d'un programme de recherche sur les possibilités d'implantation d'une couverture végétale sur les déblais miniers.

A la suite d'une reconnaissance des déblais miniers du domaine de la S.L.N. la décharge de Néaki a été retenue comme champ d'expérimentation en raison de son accès facile et de sa proximité du village de Poro.

La décharge de Néaki

Situation:

Elle est située à basse altitude sur la côte Est de la Nouvelle-Calédonie à proximité du village de Poro.

Elle comprend une plate-forme de quatre étages et un talus important de 30 à 40 m de hauteur, elle surplombe au Sud une vallée et au Nord elle domine de quelques mètres une route de mine. Elle constitue un ilôt isolé du milieu environnant. Aucune végétation ne s'est implantée sur cette décharge qui est abandonnée depuis plus de 10 ans.

Conditions climatiques:

Poro est situé dans une zone qui reçoit en moyenne 1800 mm de pluie par an. Le poste météorologique le plus proche est situé à Houailou. Les données obtenues peuvent être étendues sans grands risques d'erreur à la décharge de Néaki.

La répartition moyenne des précipitations indique que la période sèche se situe généralement du mois d'Août au mois de Novembre, elle peut être plus ou moins sévère et plus ou moins longue suivant les années.

J	F	M	A	M	J	Jt	A	S	0	N	D
294	230	245	167	140	135	105	86	80	53	107	226

Poste de Houailou : Précipitations (en mm) - Moyennes mensuelles (15 années 1952-1966).

	J	F	M	A	М	J	Jt	A	S	0	N	D	Année
Maxima	31,05	31,88	31,30	29,73	28,40	27,09	26,13	26,19	26,99	28,26	29,43	30,17	28,89
Minima	20,73	21,26	20,39	18,27	16,42	14,98	13,61	13,54	14,76	15,79	17,95	19,72	17,28

Poste de Houailou: Moyennes mensuelles des températures maxima et minima quotidiennes (15 années 1952-1966)

La moyenne mensuelle des températures indique que la période chaude s'étend du mois de Décembre au mois de Mars, ce qui correspond à la période la plus pluvieuse. Il convient toutefois de remarquer que les fortes précipitations au cours de ces mois sont dues à des pluies cycloniques de forte intensité qui n'assurent pas une bonne alimentation hydrique du sol et des plantes.

La décharge de Néaki étant entièrement dénudée et exposée à un fort ensoleillement et à une intense ventilation se trouve dans des conditions microclimatiques très arides pendant la saison sèche.

Conditions édaphiques :

Le substrat édaphique formé par cette décharge est très hétérogène. Il a été mis en place par accumulation de matérieux d'origines diverses : latérites rouges, amas rocheux et latérites jaunes. La terre de surface utilisable par les plantes bien que légèrement mélangée reflète cette grande diversité d'origines.

Cette terre a été accumulée et généralement tassée, ce qui lui confère des qualités agronomiques très mauvaises. Elle est très peu perméable (200 ml/h contre 2500 ml/h sur un sol ferrallitique voisin) bien que présentant par endroit des fentes par lesquelles l'eau peu pénétrer en profondeur. Cette faible perméabilité entraîne un très fort ruisselement d'où un caractère de sécheresse du sol qui ne récupère qu'une partie de l'eau de pluie. Il est remarquable de noter que lors du prélèvement en Avril 1976, l'humidité des 20 premiers centimètres sur la décharge était inférieure à l'humidité au point de flétrissement (H. pF 4,2). De plus ce sol est compacté et a perdu de sa porosité, ceci est particulièrement net au delà de 20 cm de profondeur, la surface du sol ayant été travaillée. Cette compaction est un facteur défavorable à l'installation de la végétation car elle

entrave l'alimentation hydrique du sol et elle freine la pénétration des racines en profondeur.

Chimiquement cette décharge constitue aussi un substrat très hostile à l'installation de la végétation. Sa très grande pauvreté en éléments indispensables à la vie végétale, (azote, phosphore, potassium, calcium) est aggravée par une richesse en éléments défavorables (magnésium et nickel). Les teneurs en ces deux éléments varient légèrement en fonction du matériau d'origine (tableau annexe) mais restent toujours très élevées. Les secteurs riches en latérites rouges seraient moins riches en ces éléments que les zones caillouteuses ou à latérite jaune; une cartographie de ces matériaux apparaît toutefois difficile étant donné l'hétérogénéité horizontale et verticale de cette décharge.

En résumé la décharge de Néaki, représentative de décharges de mines basses anciennes, apparaît comme un substrat très défavorable pour les plantes tant au plan physique que chimique. Elle représente probablement l'un des milieux les plus sélectifs que l'on puisse trouver en Nouvelle-Calédonie.

Les Expérimentations

Elles visent à implanter des espèces végétales sur une décharge minière, afin de déterminer celles susceptibles de se développer et d'avoir un rôle efficace dans la stabilisation du sol.

Dispositif expérimental

Chaque espèce est implantée (à partir de graines ou de jeunes plants) dans les quatre conditions suivantes :

- 1) Conditions naturelles
- 2) Conditions naturelles + apports d'engrais
- 3) Conditions naturelles + apports d'eau
- 4) Conditions naturelles + apports d'engrais + apports d'eau.

Chaque traitement est réalisé pour une espèce donnée sur une parcelle de 8 m2 dont le sol a été préalablement travaillé.

Apports d'engrais

Une dose unique d'engrais a été apportée dans les conditions 2 et 4. Elle correspond à :

- 1 20 U. Fert/ha d'azote sous forme d'ammonitrate à 46 % apporté en trois fois.
- 2 00 U. Fert/ha de phosphore sous forme de superphosphate à 45 % en fumure de fond.
- 2 00 U. Fert/ha de potassium sous forme de sulfate de potassium à 50 % en fumure de fond, de plus chaque parcelle fumée a reçu 15 kg de sable corallien humifère.

Apports d'eau

Un apport d'eau journalier de 5 600 l pour l'ensemble de la surface arrosée (400 m2) avait été préconisé. Deux arrosages par jour étaient prévus. N'ayant pu être réalisés régulièrement les apports d'eau n'ont pas été poursuivis.

Espèces testées

Elles comprennent des espèces herbacées à installation rapide, devant constituer une végétation transitoire, propre à enrayer rapidement l'érosion superficielle; des espèces arbustives et arborescentes, devant à plus long terme fixer la masse de la décharge et constituer le paysage végétal définitif.

Comme nous ne disposions pas de plants de pépinière le choix des espèces testées a été fonction des possibilités que nous avions de nous approvisionner par ailleurs en matériel végétal. Une partie des plants a été prélevée directement sur le terrain dans des conditions de milieu aussi proches que possible de celles réalisées sur la décharge de Néaki. Pour quelques espèces nous avons utilisé des plants élevés en pépinière au C.T.F.T. Nous avons également essayé des espèces exotiques (espèces exotiques locales et espèces exotiques provenant d'Australie).

Les Espèces herbacées

- Jeunes plants

Cynodon dactylon
Sténotaphrun secundatum (Buffalo)
Costularia nervosa
Beaumea deplanchei
Fimbristylis brownii
Pteridium aquilinum
Graminées
Graminées
Cypéracées
Cypéracées
Pteridacées

- Graines

. Cajanus indicus Légumineuses . Cynodon dactylon Graminées . Agrostis sp Graminées . Corghum soudanense Graninées . Pennisetum sp. (Kikuyu) Graminées Graninées . Paspalum plicatulum Cypéracées . Baumea deplanchei . Scleria brownii Cypéracées

Les Espèces arbustives

- Jeunes plants

. Argophyllum montanum Saxifragacées . Soulamea pancheri Simarubacées Protéacées . Grevillea gillivrayi . Crevillea exul Protéacées Goodéniacées . Scaevola montana Rhamnacées . Alphitonia neo-caledonica Dilléniacées . Hibbertia lucens . Leucaena glauca Légumineuses . Acacia spirorbis Légumineuses Chenopodiacées . Atriplex canescens

- Graines

. Gymnostoma deplancheana	Casuarinacées
. Casuarina collina	Casuarinacées
. Maxwellia lepidota	Sterculiacées
. Alphitonia neo-caledonica	Rhamnacées
. Acridocarpus austro-caledonicus	Malpighiacées
. Dodonea viscosa	Sapindacées
. Soulamea pancheri	Simarubacées
. Atriplex canescens	Chenopodiacées
. Leucaena glauca	Légumineuses
. Metrosideros demonstrans	Myrtacées
. Mooria canescens	Myrtacées

Les Espèces arborescentes

- Jeunes plants

. Arillastrum gummiferum	Myrtacées
. Casuarina collina	Casuarinacées
. Gymnostoma deplancheana	Casuarinacées
. Gymnostoma chamaecyparis	Casuarinacées
. Pinus caribae	Pinacées
. Araucaria rulei	Araucariacées
. Araucaria montana	Araucariacées
. Araucaria bernieri	Araucariacées
. Araucaria luxurians	Araucariacées
. Araucaria columnaris	Araucariacées
. Leathis ovata	Araucariacées

Résultats: comportement des espèces testées

- Espèces herbacées implantées à partir de jeunes plants

Stenotaphrum secundatum (buffalo)

. Sur la parcelle fumée développement moyen des boutures se traduisant par une croissance relativement lente des stolons qui se ramifient peu et n'arrivent pas à s'implanter en dehors de la zone fumée.

Cynodon dactylon

. Les boutures implantées il y a moins d'un an se sont développées uniquement sur la parcelle funée.

Baumea deplanchei

. Implantation très difficile et croissance très réduite des plants ayant survécu.

<u>Pteridium aquilinum</u>, <u>Finbristylis neo-caledonica</u>, <u>Scleria brownii</u>, <u>Costularia nervosa</u>: pas de reprise.

- Espèces herbacées implantées à partir de graines

Cynodon dactylon et Agrostis sp.

. Levée abondante puis dessèchement des jeunes plants pendant la période sèche ayant débuté 3 semaines après la germination. La croissance au cours de ce laps de temps était nettement supérieure sur les parcelles avec engrais.

Pennisetum clandestinum (Kikuyu)

Levée abondante, très bon développement la lère année sur la parcelle ayant reçu de l'engrais. La 2ème année la croissance semble stoppée (sans doute en raison de l'épuisement de l'engrais du sol) et on n'observe aucune progression en dehors de la parcelle.

Sorghum soudanense et Cajanus indicus

. Essayées uniquement sur une parcelle fumée, ces 2 espèces ont bien levé, elles ont présenté rapidement un brunissement des feuilles suivi du dépérissement des jeunes plants.

Baumea deplanchei, Scleria brownii: absence de germination.

- Espèces arbustives implantées à partir de graines

Seules les germinations de <u>Leucaena glauca</u> ont subsisté, la plupart des espèces ayant germé n'ont pas dépassé le stade cotyledonaire. Les
germinations de <u>Leucaena</u> qui n'ont subsisté que sur la parcelle fumée n'assurent qu'un très faible recouvrement du sol en raison de leur faible développement. Le dessèchement des plants à chaque période sèche entraîne
des pertes importantes.

- Espèces arbustives implantées à partir de jeunes plants

Soulamea pancheri, Grevillea gillivrayi, Alphitonia neo-cale-nica, Argophyllum montanum, Atriplex canescens.

. Très nauvaise reprise des jeunes plants et dépérissement survenant en général au cours des périodes sèches.

Grevillea exul, Scaevola montana, Hibbertia lucens, Leucaena glauca.

. Sur la parcelle funée, implantation difficile et croissance réduite des plants restants.

Lcacia spirorbis (Gaïac)

. Bonne reprise et bon développement des plants sur la parcelle fumée, développement très réduit sur la parcelle non fumée.

- Espèces arborescentes

Arillastrum gummiferum (chêne gomme) Pinus caribea.

. Après une assez bonne reprise la croissance des jeunes plants est restée très limitée.

Cymnostona deplancheana, Casuarina collina

. La reprise à l'implantation a été noins bonne que celle des deux espèces précédentes. La croissance est nulle et des pertes importantes sont intervenues à chaque période sèche.

Cymnostoma chamaecyparis, Araucaria rulei, Araucaria montana, Araucaria bernieri, Araucaria luxurians, Arathis ovata

. Reprise nulle à l'implantation.

CONCLUSION

- Parmi les espèces testées les résultats les plus encourageants ont été obtenus pour <u>Acacia spirorbis</u> (Gaiac) comme espèce arbustive, <u>Pennisetum clandestinum</u> (Kikuyu) <u>Cynodon dactylon</u> et <u>Stenostaphrum secundatum</u> (buffalo) pour les espèces herbacées.

Acacia spirorbis est une espèce de basse et moyenne altitude et son utilisation ne pourra être étendue sans expérimentations préalables aux déblais au-dessus de 500 m.

Un certain nombre de caractères biologiques tels que son pouvoir édificateur d'une natière organique riche en azote (teneur des feuilles de l'ordre de 1,60 % de la matière sèche contre 0,85 % pour la majorité des espèces des terrains miniers), le développement important de son système racinaire et le taux de recouvrement élevé de son feuillage lui confèrent un réel intérêt dans la prenière phase de recolonisation des déblais miniers.

Les espèces herbacées

Aucune espèce herbacée n'a donné pour l'instant de résultats suffisamment convaincants (faible recouvrement du sol, manque de vitalité comparativement à leur comportement habituel) pour être retenue de manière définitive. Des écotypes spécialisés seraient à rechercher chez certaines graminées locales croissant naturellement en zone ultrabasique.

L'utilisation simultanée de Pennisetum clandestinum, Cynodon

dactylon et Stenostaphrum secundatum peut être retenue comme solution provisoire.

Il est à noter que la réussite de l'implantation des graminées réside pour une part importante dans les conditions climatiques succèdant aux semis.

- Les Cypéracées locales (Schoenus neo-caledonicus, Schoenus Juvensis, Eaumea deplanchei) qui sont parmi les premières espèces à recoloniser spontanément certaines aires d'exploitation minière n'ont pas donné les résultats escomptés, leur implantation s'est avérée très délicate et les graines récoltées en quantité importante en 1974 et 1975 n'ont pas germé. Des essais visant à une meilleure connaissance des propriétés germinatives des Cypéracées seraient nécessaires pour tirer profit de ces espèces très résistantes à la sécheresse et à la toxicité du milieu.
- Un sous-solage léger et une préparation superficielle du terrain en banquette ont été effectués. Les fortes pluies cycloniques et les ruissellements importants qui les ont accompagnés ont détruit le microrelief et favorisé la création d'une surface de battance.

Etant donné les conditions physiques très défavorables de ces terrains, la préparation du sol doit être effectuée avec un soin particulier. Ceci en vue de favoriser l'infiltration de l'eau et le développement en profondeur du système racinaire. Deux opérations doivent donc être effectuées :

Un sous-solage profond à environ 50 cm afin de palier au tassement provoçué par les engins et de briser la semelle imperméable ainsi formée.

Une préparation de surface relativement fine pour permettre la bonne germination des graminées. Au cours de cette préparation un micro-relief en billons devra être réalisé afin d'éviter un ruissellement de surface trop important.

Dans le cas où cela est possible l'épandage d'un substrat présentant de meilleurs caractères physiques peut être recommandé, ce substrat
qui jouera le rôle de mulch peut être dans certains cas constitué par l'hogravillonnaire
rizon supérieur des profils décapés, on peut aussi envisager un apport de
conditionneur du sol pour améliorer la structure de surface mais ceci nécessitera des expérimentations préalables.

- L'implantation des plants devra être effectuée pour la majorité des espèces au début de la saison des pluies, ceci afin de permettre
 un développement suffisant des systèmes racinaires avant la saison sèche.
 Le Kikuyu dont le meilleur développement s'obtient en période fraiche devra être sené entre Juin et Août. L'implantation des espèces arbustives
 et arborescentes doit être effectuée à partir de jeunes plants. Ceci nécessite la mise en place de pépinières. Il convient d'insister sur la nécessité de disposer au départ de plants vigoureux.
- La réaction favorable de toutes les espèces à la fumure permet de recommander la généralisation d'un apport d'engrais complet (N, P, K, Ca) lors de toute tentative de recolonisation de déblais miniers.
- L'apport d'eau, s'il semble utile à priori, paraît difficile à réaliser, son efficacité peut être nulle en raison des modifications des conditions physiques du sol qu'il entraîne (tassement, formation de surfaces battantes).

En résumé, la recolonisation végétale de la décharge de Néaki nécessite :

- La correction de la pauvreté et du déséquilibre minéral du sol par un apport d'engrais complet N, P, K, Ca.
- L'amélioration des conditions physiques du substrat (travail du sol, mulching) pour assurer une meilleure économie en eau du sol et une meilleure alimentation hydrique des plantes.
- L'implantation d'un matériel végétal résistant à la toxicité en Ni du milieu et au déséquilibre $\frac{Ca}{Mg}$ dans la mesure où ce rapport ne peut être remené à de bonnes proportions $(\frac{Ca}{Mg} > 1)$ par un apport important d'amendement calcique.

SUITA SOURAITABLE A DONNER AUX PREMIERS ESSAIS

1) Mise en pratique des résultats obtenus

Il conviendrait de planter l'ensemble de la décharge en un mélange de Kihuyu, Cynodon, et Buffalo pour les espèces herbacées et en gaiac comme espèce arbustive. Un travail préalable du sol devra être effectué, les apports d'engrais se feront en N, P, K, dans les mêmes proportions que pour les essais précédents et l'apport de calciun sera effectué de préférence sous forme de chaux éteinte.

2) Poursuite des recherches

Les recherches à entreprendre devront viser :

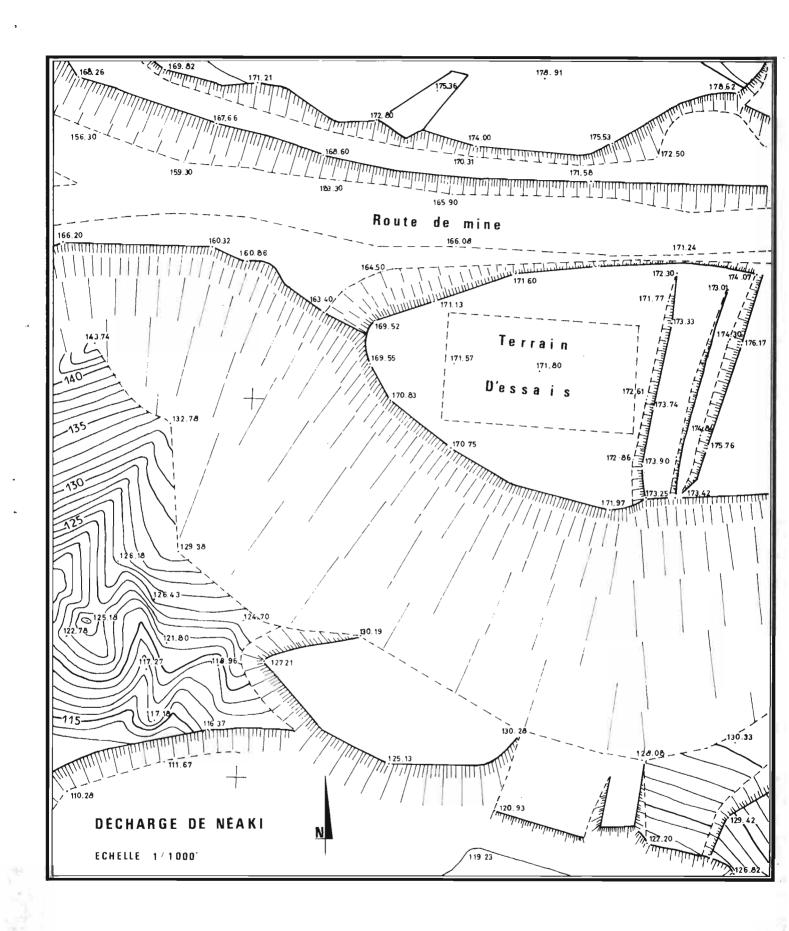
- . à limiter le ruissellement et à favoriser l'infiltration par des techniques culturales et par des apports de mulch superficiel ou de conditionneurs de sols.
- . à suivre l'évolution du profil hydrique en fonction des techniques précédentes.
- . à connaître les modalités de germination de certaines Cypéracées pionnières.
- . à la sélection et à la multiplication de matériel végétal à à partir de graines de populations d'espèces croissant naturellement sur les anciennes mines.
- . à rechercher et sélectionner parmi les graminées locales les variétés susceptibles de croître sur terrains miniers.

COMPARAISON ENTRE LES CARACTERISTIQUES PHYSICO-CHIMIQUES DE LA DECHARGE DE NEAKI ET D'UN SOL FERRALLITIQUE EN PLACE

		Décharge de Neaki									Sol ferrallitique en pla- ce (latérite rouge)				
Nº de l'échantillon	11	21	31	41	51	61	12	13	14	15	71	72	73	74	75
Profondeur en cu	0-5	0-5	0-5	0-5	0-5	0-5	5-10	10-15	15-20	50-55	0-5	5-10	10-15	15-20	50-55
<u>Perméabilité</u> du profil en ml/h					200	ml/h						-	2 500	ml/h	
Densité apparente Densité réelle Porosité	1,4 3,8 62						1,4 3,5 59	1,8 3,9 53	1,9 3,6 59	1,6 3,8 47	1,4 3,8 61			1,2 3,6 67	0,9 3,6 75
Caractéristique hydrique H au moment du prélèvement H à pF 3 H à pF 4,2 H pF 2,5 - H pF 4,2	24,9	43,0 26,7 16,3	26,0	25,0	28,3	50,5 34,9 15,6		27,1	22,0 38,5 32,0 6,5	38,9 49,1 36,4 13,2	17,8 20,4 12,8 7,6		32,4	36,2 26,2 12,5 14,7	48,2 34,4 19,5 14,6
Matière organique Carbone % o Azote % o	1,0 10,05	1,2 0,19	1,0 0,05	1,2 0,13	1,0 0,05	1,0 0,05	1,0 0,05	1,0 0,05			19,9 1,01			3,5 0,24	1,6 0,11
pΕ	6,7	7,8	6,6	7,5	6,4	6,1			6,0	5,7	5,4			5,3	5,2
Eléments échangeables Ca++ en me Mg++ en me K + en me Na+ en me Capacité d'échange en me Taux de saturation %	3,5 0,01 0,08	0,01 0,3 17,9	2,2 0,01 0,05	1,8 0,02 0,02 17,9	1,6; 0,01; 0,04 7,6	0,8 0,01 0,08			0,2 2,0 0,01 0,07 7,7 29,6	1,3				0,01 0,07 0,01 0,04	0,01 0,16 0,01 0,01 0,66

^{*} Sols ayant subi un amendement calcaire

(Annexe 1 suite)


				Déchai	rge de	Neak	i			•		Sol ferrallitique en pla- ce (latérite rouge)					
N° de l'échantillon	11	21	31	41	51	61	12	13	14	15	71	72	73	74	75		
Eléments totaux (Attaque H ClO4) Perte au feu % Résidu % Silice % Alumine % Fer % Manganèse % Calcium % Magnesium % Potassium % Sodium % Nickel % Chrome % Cobalt % Phosphore %	1,2 0,01 1,9 0,01	2,4 6,6 3,2 63,6 1,42 0,11 0,8 0,01 1,8 2,5	1,4 4,5 3,8 69,4 1,5 0,05 0,01 0,01 1,8	0,8 2,7 4,6 70,8 1,3 0,05 0,01 0,01 1,6 3,1	11,9 1,8 4,7 3,8 67,9 1,4 0,01 0,5 0,01 0,01 1,8 0,2				0,9 2,8 4,4 71,5 1,3 0,01 0,3	2,2 4,8 71,5 1,2 0,01 0,2 0,01 0,01 1,6 3,0 0,1	14,2 0,36 1,36 8,04 71,2 0,52 0,01 0,01 0,01 0,03 0,04 0,03			11,2 0,42 1,09 7,57 74,6 0,49 0,01 0,05 0,02 0,65 0,2 4,2 0,43 0,03	11,6 0,74 1,31 8,04 73,0 0,45 0,01 0,1 0,1 4,2 3,5 0,43 0,02		

Les perméabilités densité apparente et réelle et humidité ont été mesurées à Poro ; les caractéristiques physico-chimiques sont représentées par des valeurs moyennes de sols de la région.

Amnexe II

COMPARAISON DES CARACTERES EDAPHIQUES DE LA DECHARGE DE NEAKI A D'AUTRES DECHARGES DU TERRITOIRE

CALLCTERES EDAPHIQUES	Neaki	Thio (120 m)	Boakaine	Nea	Plaine des Lacs
Compactage	Très fort	Fo≃t	Moyen	Très fort	Faible
Perméabilité	Faible	Faible	Moyen	Faible	Moyen
Alimentation hydrique	Mauvaise	Moyenne	Moyenne	Moyenne	Bonne
Carences en éléments ma- jeurs (N, K, P ₂ 0 ₅)	Forte	Forte	Forte	Forte	Forte
Déséguilibre <u>Ca</u> Mg	Très impor- tant	Inportant	Très impor- tant	Faible	Faible
Excès de Ni	Important	Important	Important	Important	Moyen
Risque de toxicité man- ganique	Nu1	Moyen	Nu1	Moyen	Moyen

La décharge de Néaki

Le site

Les essais

Pinus caribea

Les essais

Stenotaphrum secundatum (Buffalo)

Pennisetum clandestinum (Kikuyu)