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Christian Depraetere † Jean-Marie Flaus ∗

∗ Laboratoire G-SCOP, CNRS UMR5272/Institut Polytechnique de
Grenoble, 46 avenue Flix Viallet, 38 031 Grenoble Cedex 1, France
† Laboratoire d’Etudes des Transferts en Hydrologie et Environnement

(LTHE), BP 53 8041, Grenoble cedex 9, France

Abstract: This paper deals with the design of a diagnosis tool for a network of rain gauge sensors
in the context of human-machine cooperation. The model of the whole system is difficult to be
completely established before the diagnosis analysis. A part of the expert’s knowledge is tacit and
it’ll be exploited during the diagnostic process e.g. expert analyzes the hyetograph of rainfall of
a cluster of rain gauges to collect symptoms. Diagnosis becomes therefore an interactive process.
At each step, the role of diagnosis tool is to accompany the expert to establish a diagnosis. The
way of handling such a process is presented in this paper.
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1. INTRODUCTION

Performing diagnoses relies on a complex process, which
can be decomposed into a design process followed by
a running process. The following design tasks may be
distinguished: system modeling Reiter (1987); de Kleer and
Williams (1992), detection test design Blanke et al. (2006);
Ploix et al. (2005), isolation algorithm design Nyberg and
Krysander (2003); Ploix et al. (2003) and sensor placement
Yassine et al. (2008); Frisk and Krysander (2007).

The running process is closely related to the design task:
symptom generation, diagnostic analysis and possibly back-
ward analysis. In scientific literature, most of the contribu-
tions aim at automating the running process assuming that
models can be completely established before the diagnosis
analysis. But, Ploix and Chazot (2006) points out that,
in many practical contexts, this prerequisite cannot be
satisfied. Consequently, new problems arise because:

• models may be considered at different levels of detail.
So, it is difficult to model a whole complex system
before the diagnosis analysis. Usually, modeling and
diagnosis are iterative processes where systems are
partially depicted and some parts are refined step by
step.
• in addition to the modeled part of a system, there

are other types of non-formalized knowledge, often
qualified as implicit, which may not be formalized by
expert because either
· the system is too complex to achieve detailed

modeling of the whole system,
· the expert does not have a detailed model of the

system at the beginning of the diagnosis process,
· or some knowledge cannot be easily formalized.

In order to tackle theses difficulties, the interactions be-
tween experts and computer-aided diagnosis systems are

obviously needed during the running process. Then, the
practical diagnosis processes may be classified into three
categories according to three tasks mentioned in the design
process.

Fig. 1. The interactive diagnosis process

This paper focuses on the diagnosis with interactions
during the diagnostic analysis (figure 1). This problem
is proposed in the context of the Hydrodiag project,
which deals with the diagnosis of a grid network of rain
gauge sensors. For this purpose, a Hydrodiag computer-
aided diagnosis system has been designed to guide experts
during the diagnosis process. This problem will be detailed
in the next sections.

2. PROBLEM FORMULATION

The problem is to set up a computer-aided diagnosis
process to determine the faults in a network of rain gauge
sensors set up in the Upper Oueme Valley in Benin, with
an area of 47536 km2. 46 bucket rain gauges are distributed
over the basin.

The first task of a diagnostic process is generally the design
of detection tests. The main idea for testing the rain gauges
is to compare data from nearby sensors. Each couple of
sensors can be tested using the average correlation level
within each month, providing that the distance between
two sensors is less than 10km 1 . Because of the low density
1 Hydrologists estimate that, for the considered problem of rainfall,
if the distance between two sensors is more than 10km, the rainfall



2 superimposed
rain stations

rain station
detection

test

distance
in km

di
st

an
ce

in
 k

m

Fig. 2. Tests created in the basin of Oueme

état défaillant

bon état

Fig. 3. Detection threshold

of the sensor network, only 25 of 46 rain gauges can
be tested. Figure (2) shows all the tests that may be
performed.

Thank to a table given by hydrologists which identifies
the state of each sensor for each period of two weeks,
decision thresholds for the correlation level is established.
Figure (3) shows that the threshold was chosen as a linear
function of the distance which minimizes the number of
non-detection while strictly prohibiting false alarms that
are critical for a diagnostic. The ’x’ indicate failing false
states and the ’+’ indicate normal states. Note that many
faulty states may be confused with normal states.

Reiter’s algorithm of diagnostic analysis has been applied.
For the studied eight months of 2002 2 , 13 to 32 possible
diagnoses are obtained for the two weeks periods: each
diagnosis has at least 4 sensors which are simultaneously
faulty. For example, for the month August 2002, 16 diag-
noses have been obtained:

diagnosis #0 (Formal:100.0%,

Contextual:88.64%, A priori:0.01%)

Component d643 (gangamou) is faulty

and component d626 (dapefougou) is faulty

and component d614 (adiangdia) is faulty

and component d647 (parakou_2) is faulty

______________________________

amounts received by theses two sensors are independent of each
other.
2 from March to October because out of this period, it does not rain
on this basin

...

______________________________

diagnosis #15 (Formal:100.0%,

Contextual:72.73%, A priori:1.00E-4%)

Component d639 (kolokonde) is faulty

and component d611 (donga) is faulty

and component d644 (gountia) is faulty

and component d645 (koko-sika) is faulty

and component d632 (adiangdia_oues) is faulty

and component d636 (parakou) is faulty

It is very complex for an expert to exploit these results:
how to select one of these diagnoses? A computer-aided
iterative process is described in section 4.

Another problem arises because false alarms have to be
avoided in Reiter’s approach. In case of uncertainty, it is
better to consider that the behavior is normal rather than
asserting a faulty behavior. But this problem leads to very
conservative diagnoses. A fuzzy reasoning is proposed in
section 3. Section 5 presents an application of these results
to the problem of diagnosing a grid of rain gauges.

3. FUZZY REASONING

Considering the impact of a false alarm, it can be difficult
to adjust the detection threshold of a test. In fact, to
prevent the false alarm happening, adjustment can become
very pessimistic and leads to non-detection problem. To
tackle this problem, Touaf and Ploix (2004a,b); Touaf
(2005) aim at transforming the crisp logic reasoning of
the formal diagnosis analysis to fuzzy logic of Zadeh
(1975). The proposed approach avoids the introduction of
necessity measurement as suggested in Cayrac et al. (1996)
and preserves the result of crisp logic when the degrees of
membership become certain {0 or 1}. It relies on the fuzzy
logic proposed by Yager (1986).

Constraints modeling behavior are sometimes not suffi-
cient to model systems to be diagnosed. Indeed, in some
applications, a constraint does not model the behavior
whatever the system state is: it is necessary to add validity
constraints that determine when the behavioral constraint
applies.

Let K(V ) = 0 be a behavioral constraint that has to be
satisfied when a component c is in mode m and when
K′(V ) � 0 where � stands for a comparator such as <,
≤, >, ≥ or possibly =. Behavioral and validity constraints
can therefore be modeled by:

∀V ∈ dom(V ), ∀V ∈ dom(V ), m(c)
K(V ) = 0 K′(V ) � 0
false false true
false true false
true false true
true true true

This table is summarized by the following proposition that
has to be satisfied:

∀V ∈ dom(V ),

m(c)↔ ((K(V ) = 0) ∨ ¬(K′(V ) � 0)) (1)

Let D ⊂ dom(V ). Equation (1) becomes:



Fig. 4. Interpretation of residues in a fuzzy uncertain

∀V ∈ D,
m(c)→ ((K(V ) = 0) ∨ ¬(K′(V ) � 0)) (2)

For the sake of simplicity, it is assumed that the constraint
K′(V ) � 0 contains the same variables, or a subset of the
same variables, that those present in K(V ) = 0.

3.1 Fuzzification of symptoms

Let K(V ) be a set of behavioral constraints which depict
partially or totally the behavior of items, and K′(V ) is
a set of constraint of validity which depict whether the
elementary behavioral constraints are suitable. The main
idea is that if the validity constraints are not satisfies, the
system is considered as being in an indeterminate state.
It is represented by the following relationship when an
exoneration assumption is assumed:

∧

i

ok(itemi)← (K(V ) = 0) ∧ (K′(V ) = 0) (3)

It yields a constraint corresponding to uncertainty in the
case of invalidity:

¬ (K′(V ) = 0) ≡ uncertainty of
∧

i

ok(itemi) (4)

and therefore by a constraint corresponding to:∧

i

ok(itemi)→ (K(V ) = 0) ∨ ¬ (K′(V ) = 0) (5)

Therefore, two sets of constraints must be set. In both
cases, with the fuzzy approach, it is considered that there
are more than two possible values for satisfaction degree
(satisfies or non-satisfied. The truths of test and validity
constraints belong to [0 1]. The value ’1’ means surely
satisfied and the value 0 means surely unsatisfied. This
is illustrated by figure (4). During the test phase, it
exists two membership functions µK = µ(K(V ) = 0) and
µK′ = µ(K′(V ) = 0). By using the fuzzification operator
µ(A ∨ B) = min(1, µ(A) + µ(B)), where A and B are
propositions, (5) is transformed 3 into:

min

(1, 1− µ (
∧

i ok(itemi)) +
µ (K(V ) = 0) +

(1− µ (K′(V ) = 0) , 1)

)
= 1

By integrating the previous notions:

min

(
1, 2− µ (

∧
i ok(itemi)) +

µK − µK′

)
= 1

In order to satisfy this relation, it must verify:

µ

(∧

i

ok(itemi)

)
≤ 1 + µK − µK′ (6)

3 Let’s recall that A→ B is equivalent to ¬A ∨B.
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Fig. 5. Fuzzification function for fuzzy tests

The relation (4) leads to:

(µK′ = 0) ≡
(
µ

(∧

i

ok(itemi)

)
= 0.5

)
(7)

The relation (3), which is valid only with the exoneration
assumption, is transformed into:

min

(
1, 2− µK − µK′ + µ

(∧

i

ok(itemi)

))
= 1

In order to satisfy this relation, it must verify:

µ

(∧

i

ok(itemi)

)
≥ µK + µK′ − 1 (8)

The proposed problem amounts to find a fuzzifica-
tion function that allows to infer the truth degree of
test

∧
i ok(itemi) created from the membership degree

of satisfaction of constraints (K(V ) = 0) and validity
(K′(V ) = 0). This function must satisfy the constraints
(6) and (7) as shown in figure (5). It corresponds to the
hatched area. Moreover, if the fuzzification function can
verify (4), it should be used with exoneration assumption.
We have shown that the following function is suitable:

Γ(µK, µK′) =
1 + (2µK − 1)µK′

2
(9)

For each test, the fuzzification function makes it possible
to evaluate the truth of symptoms depending on the
satisfaction degree of behavior constraints and validity
constraints: µ (

∧
i ok(itemi)) = Γ(µK, µK′).

In case of malfunctioning, instead of evaluating µ (
∧

i ok(itemi)),
µ (
∨

i cfm(itemi)) = 1 − µ (
∧

i ok(itemi)) is evaluated.
For the model of normal functioning, it is obtained:
¬ok(item) = cfm(item). It leads to:

µ

(∨

i

cfm(itemi)

)
= (10)

µ (¬ (K(V ) = 0) ∧ (K′(V ) = 0)) =

1− Γ(µK, µK′)

Let’s now imagine that two sets of observations are avail-
able. In this case, since constraints depend on data flow,



temps

1− Γ(µK, µK′)

µ

(∨

i

cfm(itemi)

)

Fig. 6. The degree of alarm in a fuzzy context

two set of constraints are given by:(K1(V ) = 0,K′1(V ) =
0) and (K2(V ) = 0,K′2(V ) = 0). The relation (5) becomes:

∧
i ok(itemi)→

((K1(V ) = 0) ∨ ¬ (K′1(V ) = 0))
∧ ((K2(V ) = 0) ∨ ¬ (K′2(V ) = 0))

In case of fault, it comes:
¬ ((K1(V ) = 0) ∨ ¬ (K′1(V ) = 0)) ∨
¬ ((K2(V ) = 0) ∨ ¬ (K′2(V ) = 0))

→ ∨
i cfm(itemi)

Then, using the fuzzification operatormax for ∨ to prevent
the saturation problem yields:

µ

(∨

i

cfm(itemi)

)
= max

(
1− Γ(µK1 , µK′

1
),

1− Γ(µK2 , µK′
2
)

)

This result generalizes to order n and shows that,
without exoneration assumption, the degree of alarm
µ (
∨

i cfm(itemi)) is either constant or increasing. Figure
(6) illustrates this result on an example where new obser-
vations are recorded in a time series.

3.2 Fuzzy diagnosis reasoning

During detection phase, the truth degree µtest = µ (
∧

i ok(itemi))
is used to evaluate each test. The diagnostic analysis phase
can start. But does the formal diagnostic analysis can be
transformed from crisp logical into fuzzy logic? Several
situations can occur. Let T, the set of tests that can be
divided into

T = Tsatisfied ∪ Tunsatisfied ∪ Tdubious with Tsatisfied =
{test;µ(test) = 1}, Tunsatisfied = {test;µ(test) = 0} and
Tdubious = {test;µ(test) ∈]0, 1[}.
It is considered that an uncertain test can either be
satisfied or unsatisfied. The resolution principle consists in
examining all the possible combinations of the considered
uncertain tests and, for each case, to compute diagnoses.
Among this set of diagnoses, only minimal diagnoses are
considered because they are generators of other diagnoses.
Let’s consider the 3 different situations.

The first one corresponds to the case where T ≡ Tsatisfied

is satisfied. This situation is similar to the crisp logic:
there is no reason to calculate diagnoses because no
abnormalities were detected.

The second situation is the case where Tunsatisfied 6= ∅.
The diagnosis should then be able to explain not only

normal tests but also uncertain tests Tdubious that cor-
respond to possible faulty behaviors. Let Dunsatisfied =
{Dunsatisfied

i } be a set of diagnoses explaining the set of
tests Tunsatisfied 6= ∅. To explain the combination of tests
Tdubious, each diagnosis Dunsatisfied

i must be completed
by a additional mode cfm. In other words, the diagnoses
resulting from this completion are obviously non-minimal
because it contains Dunsatisfied

i . Therefore, in the situa-
tion where Tunsatisfied 6= ∅, the minimal diagnoses are
deducted only from the set of tests Tunsatisfied: {Di} =
{Dunsatisfied

i } or it is rewritten as D = Dunsatisfied.
Hence, diagnoses can be calculated but it remains to
evaluate their truth degree. Diagnosis are induced by the
test Tunsatisfied whose dissatisfaction degree is given by:
1 − µ(test) = 1. Since the dissatisfaction degrees of each
tests, which leads to diagnoses Dunsatisfied, is 1. It is
deduce that:

∀Di ∈ Dunsatisfied, µ(Di) = 1 (11)

Thus, if it exists tests with µ(test) = 0, diagnoses should
be calculated only from tests verifying µ(test) = 0 and
their truth degree is 1.

The last situation is the case where Tunsatisfied = ∅
and Tdubious 6= ∅. By considering all the possible com-
binations for the tests included in Tdubious, it appears
that minimal diagnoses corresponds to the case where
only one uncertain test is unsatisfied 4 . Hence, di-
agnoses correspond to simple modes cfm: Ddubious =⋃

test∈Tdubious

⋃
modei∈Expl(test)modei. To evaluate the truth

degree of this diagnosis, the truth degree of the factors
that lead to this diagnosis has to be evaluated first. Let’s
consider a diagnosis cfm(itemi) that belongs to the set of
diagnoses Ddubious because some tests contain it. By using
max as a fuzzification operator for ∨, its truth degree is:

µ(cfm(itemi)) = . . . (12)

. . .maxtest∈Tdubious

(
1− Γ(µKtest

, µK′
test

)
)

The function Γ is used when the exoneration assumption
is taken into account. It is therefore possible to use it to
evaluate a distance between the effective signature defined
by ∀testi ∈ T, (σ∗T)i = 1 − Γ(µKtesti

, µK′
testi

) 5 , and
theoretical signature of a diagnosis. Let Dj be a diagnosis.
The theoretical signature σT(Dj) is given by:

∀testi ∈ T,





(σT(Dj))i = 0,
if Modes(Dj) ∩ Expl(testi) = ∅

(σT(Dj))i = 1,
if Modes(Dj) ∩ Expl(testi) 6= ∅

(13)

The distance between the two signatures can be written:

distanceT(Dj) =
∑

test∈T | σ∗T − σT(Dj)) |
card(T)

(14)

4 There is no diagnosis if all tests are satisfied.
5 if there are several sets of observations, σ∗T corresponds to the
maximum of 1− Γ(µKtesti

, µK′
testi

) for all sets of observation



An detailed example of fuzzy logic reasoning is presented
in Touaf and Ploix (2004b).

4. COMPUTER AIDED INTERACTIVE DIAGNOSIS
PROCESS

4.1 Directing the diagnosis with implicit knowledge

Since it was not reasonable to present all calculated
diagnoses to expert, a solution to accompany the expert to
establish a diagnosis has been preferred. The main idea is
that only part of the expert knowledge can be formalized
in the form of tests as described before. On the one hand,
there is a tool-aided diagnosis with mathematical models
and reasoning tool that allow tackling the complexity
without difficulty, and on the other hand, expert with
tacit knowledge that usually allows determining whether
a sensor is failed or not by looking at his hyetograph
and those of its neighbored sensors while the tool-aided
diagnosis cannot detect.

An interactive diagnosis matrix has been designed. It is
represented by figure (7). Let T be a set of valid tests.
To simplify some notations, the satisfaction degree of a
test testi = (Ki,K′i) ∈ T, denoted by Γ(µKi , µK′

i
) in the

formula (9) is now denoted by: µ(testi). Then, for each
test, testi ∈ T:

µ
(∧

modei ∈Modes(testi)
)

= µ(testi)

The interactive diagnosis matrix relies on the test results
µ(testi) with testi ∈ T. Let’s start by examining the
zone (A) of the figure (7). (B) shows the list of items
constituting the diagnosis in progress Dj established at
iteration i by the expert. Button (H) allows removing the
last item added to the diagnosis in progress Dj to direct
towards a new explanation.

Zone (C) presents indicators which characterizes the rele-
vance of the diagnosis in progress. Paragraph (3.2) points
out that if it exists at least one test testi that is totally
unsatisfied (µ(testi) = 0), then diagnoses is computed
as it is done in crisp logic, only from the test {testi ∈
T;µ(testi) = 0}, and the obtained accuracy degree of
diagnoses, denoted FORMAL or F in the interactive di-
agnosis matrix of diagnosis, are equal to 1 (see Eq. (11)).
If there is no totally unsatisfied test, diagnoses will be
given by each mode appearing in the explanations of
uncertain tests (Tuncertain = {testi;µ(ti) ∈]0, 1[). In this
case, the indicator FORMAL of each diagnosis cfm(item)
is µ(cfm(item)) = maxtesti∈Tuncertain (1 − µ(testi)) (See
Eq. (12)). For a diagnosis in progress Di, two cases are
considered:

• It exists tests which are totally unsatisfied. Indicator
FORMAL is set at 100% if the diagnosis in progress
contains modes that can explain all the unsatisfied
tests. In the contrary case, the indicator FORMAL
will be set at 0%: the evaluated certain anomalies
have not been explained yet under a formal viewpoint.
explication or E in column (E) means, if it is marked,
that the items of the corresponding line will explain
all the totally unsatisfied test not yet explained.

• It exists only one uncertain test. In this case, each
fault mode implied in uncertain test considered at a
diagnosis. So it exists a or logic among fault mode
of a diagnosis in progress. It is transformed into
a fuzzy logic by using a fuzzification operator that
does not saturate: maxcfm(item)µ(cfm(item)), where
µ(cfm(item)) is calculated as presented before. The
boxes (E) have no meaning in this case: they are
unmarked.

Indicator CONTEXTUAL, denoted C, evaluates the test-
ing results and diagnosis in progress. It has been shown
that the distance in T between the effective signature and
the theoretical signature associated with a diagnosis Dj

(see eq. (14)) is:

distanceT(Dj) =
∑

test∈T | σ∗T − σT(Dj)) |
card(T)

To transform into a scale where 100% is preferable, indi-
cator ( CONTEXTUAL) is defined by: contextualT(Dj) =
1− distanceT(Dj).

Indicator A PRIORI, denoted also by A, evaluate pri-
ori reliability thank to probabilities of occurrence of
fault modes: each probability p(cfm(itemi)) is defined for
item itemi. For a diagnosis Dj , indicator A PRIORI is:
Πcfm(itemi)∈Dj

p(cfm(itemi)). The function log is used in
the zone (F) to make easy the reading.

Two cases must be distinguished for the construction of
the suggestions of items appearing in column (D) of the
matrix:

• It exists tests which are totally unsatisfied. The set
of test Tunsatisfied is not empty. Each test must
be explained. Let Tunsatisfied

explained (Dj) ∈ Tunsatisfied be
a set of tests of Tunsatisfied that verifies: {testi ∈
Tunsatisfied ;Expl(testi) ∩ Dj 6= ∅}, and its com-
plement Tunsatisfied

non explained(Dj) in Tunsatisfied . Dj must
be completed to empty Tunsatisfied

non explained(Dj). Candi-
dates items displayed in column (D) are given by:⋃

testi∈Tunsatisfied
non explained

(Dj)
Expl(testi).

• It exists only uncertain tests. In this case, only modes
of uncertain tests are presented (µ(test) < 50%),
except for the modes that already belong to Dj :
{⋃{testi

∈ T;µ(testi) < 50%}Expl(testi)\Dj}. If
the box all is marked, all modes of all tests are
presented: {⋃{testi

∈ T}Expl(testi)\Dj}.
Zones (F) and (G) correspond to indicators (C) and to
suggestions (D) that would be obtained by adding the item
in the zone of the diagnosis in progress.

The button Exoneration allows to permanently remove
some items of suggestions (column (D)) for the construc-
tion of a diagnosis.

Finally, to help experts, the top button of each column (E)
and (F) can be clicked to change the classification of the
suggested items.



(I) permet de retirer définitivement 
certains items des suggestions

(A) diagnostic en 
construction

(B) items défaillants retenus dans 
le diagnostic en construction

(D) items candidats à l'ajout dans le 
diagnostic en construction

(E) indique si l'item explique des tests 
insatisfaits non-encore expliqués

(F) indicateurs de qualité qui seraient 
obtenus en ajoutant l'item de la ligne  

au diagnostic en construction

(G) liste des composants toujours présents dans les explications 
possibles des tests insatisfaits qui resteraient non expliqués après 

avoir ajouté l'item de la ligne au diagnostic en construction

(H) permet de retirer le dernier item ajouté au 
diagnostic en construction pour se réorienter 

vers une nouvelle direction explicative 

(C) indicateurs de pertinence 
du diagnostic en construction

Fig. 7. Interactive diagnosis matrix

4.2 feedback analysis

The problem is to identify the tests, which leads to wrong
diagnoses. Let assume that the testing results of valid tests
are known and effective diagnosis, denoted by D∗, found
by an operator is also known. The following algorithm has
been proposed to solve the problem.

Let’s note that a false alarm is critical because it is
unacceptable that a test infer an abnormality it does
not exist. Hence, test has to be tuned by redesigning
detection thresholds or intervals modeling uncertainties in
the necessary case.

5. APPLICATION

5.1 Interactive process

Let’s examine the use of this interaction matrix on a
scenario to search the failed rain gauges during the month
of August 2002. The expert discovered the figure (8).
Since the indicator CONTEXTUAL is more important for
d643 (d643 explains many symptoms), the expert selects
naturally this diagnosis. The position of the sensor lights
up in blue on the screen of the software Hydrodiag and
a window with rainfall hyetographs of all sensors located
within a area of 10km radius appears (9)). Obviously, the
sensor d643 is failed. The expert continues this explanatory
direction.

Then, four sensors appear on top with comparable scores.
The expert chooses randomly the first (see figure 10):
the D614. By looking at hyetograph of the sensor and
its neighbored sensor, he concludes that the sensor D632
is faulty and not D614. He goes back by clicking on the
button Back (H) and redirects to D632. Then, he obtains
the matrix shown in figure (11).

Fig. 8. Diagnosis analysis for the month of August 2002 -
Step 1

Fig. 9. Diagnosis analysis for the month of August 2002 -
Step 2

Fig. 10. Diagnosis analysis for the month of August 2002
- Step 3

Fig. 11. Diagnosis analysis for the month of August 2002
- Step 4



Fig. 12. Diagnosis analysis for the month of August 2002
- Step 5

Fig. 13. Diagnosis analysis for the month of August 2002
- Step 6

Expert chooses d636. The results confirm that this direc-
tion is good (see figure 12).

It appears that the sensor D626 can explain the remaining
tests that are totally unsatisfied. The expert chooses and
verifies the explanatory direction on hyetograph (see figure
13). This explanatory direction appears to be good and
all totally unsatisfied tests are explained. Hence, the fault
gauges are: d643 (gangamou), d632 (adiangdia-oues), d636
(parakou), d626 (dapefougou). In comparison with the list
of 16 possible diagnoses with 4 or more simultaneous faults
represented before, the interests of an interactive approach
is obvious. The found diagnosis corresponds to the fourth
one in the list of the possible calculated diagnoses.

Thanks to this approach, non-expert hydrologists can find
out the faulty rain gauges: the faulty sensors have been
found without having been reported by expert hydrolo-
gists.

6. CONCLUSION

This paper presents a method for diagnosis in the con-
text of human-machine cooperation. It corresponds to a
computer-aided diagnosis system that solves the problem
of determining the faults in a network of rain gauge sensor.
For this purpose, a set of detection tests is established by
using the average correlation level of each couple of sen-
sors. Then, the fuzzy reasoning is integrated. It transforms
the crisp logic reasoning of the formal diagnosis analysis to
fuzzy logic. This method allows tackling the impact of false
alarms in diagnosis analysis. Together with the proposed
approach, a software has been designed: it consists in an

interactive diagnosis matrix that accompany the expert to
establish diagnosis. By interacting with computer during
the diagnosis process, expert, with its tacit knowledge,
can determine whether a sensor is faulty or not thank to
hyetograph of each cluster of sensors.
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