EDAD, CRECIMIENTO Y REPRODUCCIÓN DE
Pseudoplatystoma fasciatum y *Pseudoplatystoma tigrinum*
EN LA AMAZONÍA BOLIVIANA

TESIS DE POSTGRADO PARA OPTAR AL TÍTULO DE
MAGISTER SCIENTiarum en CIENCIAS
Biológicas y Biomédicas
EN LA MENCION DE ECOLOGÍA ACÚATICA

Postulante: ALISON DENISE INTURIAS CANEDO

LA PAZ- BOLIVIA
MAESTRÍA EN CIENCIAS
BIOLÓGICAS Y BIOMÉDICAS

EDAD, CRECIMIENTO Y REPRODUCCIÓN DE
Pseudoplatystoma fasciatum y Pseudoplatystoma tigrinum
EN LA AMAZONÍA BOLIVIANA

ALISON DENISE INTURIAS CANEDO

ASESORES

DR. JESÚS NUÑEZ (IRD)
DR. FABRICE DUPONCHELLE (IRD)

LA PAZ – BOLIVIA

2008
RESUMEN

En la presente investigación se han determinado los principales rasgos de vida como son edad, crecimiento y reproducción de *Pseudoplatystoma fasciatum* (Surubí) y *Pseudoplatystoma tigrinum* (Chuncuina), en función a la diferencia de calidad de aguas de los ríos Mamoré (Aguas blancas) y del Iténez (Aguas negras) en los que se encuentran distribuidos. La distribución por tallas de *P. fasciatum* en ambas cuencas fue superior para las hembras con relación a los machos, la comparación entre cuencas mostró que las hembras del Mamoré alcanzaron mayores longitudes que las del Iténez, para *P. tigrinum* no se concluyó por falta de datos. La relación longitud - peso indicó que tanto *P. fasciatum* como *P. tigrinum* tienen un crecimiento alométrico en ambas cuencas. Se determinó una longevidad de 10 años para *P. fasciatum* en ambas cuencas y de 11.4 años en el Iténez y 13.7 años en el Mamoré para *P. tigrinum*. Las curvas de crecimiento de *P. fasciatum* para hembras y machos son diferentes entre sexos y entre cuencas pero se observó un mejor crecimiento de las hembras con relación a los machos y de los peces del Mamoré con relación a los del Iténez en ambas especies.

La época de reproducción para *P. fasciatum* ocurre entre los meses de diciembre a febrero y la fecundidad de las hembras es similar en ambas cuencas, para *P. tigrinum* no se pudo establecer la época de reproducción ni su fecundidad por falta de datos. Las tallas de madurez sexual como la edad de madurez sexual fueron menores en la cuenca del Iténez para *P. fasciatum* y para *P. tigrinum* no se pudieron determinar por falta de individuos pequeños en época de reproducción.

Las diferencias de rasgos de vida encontradas para las dos especies entre los ríos Mamoré e Iténez son discutidas en relación a las condiciones tróficas existentes en las dos cuencas.
AGRADECIMIENTOS

Mis más sinceros agradecimientos a mis asesores de tesis Dr. Jesús Núñez y Dr. Fabrice Duponchelle por guiarme, enseñarme desinteresadamente y por las valiosas sugerencias que me dieron en la realización del presente trabajo.

A la dirección de Post-grado de la Maestría en Ciencias Biológicas y Biomédicas por toda la colaboración brindada durante la maestría.

Al IRD y a la Cooperación de Bélgica por el apoyo brindado para la realización de la maestría.

A los revisores internacionales Dr. Paul Van Damme, Dr. Marc Pouilly y Dr. Fernando Alcantara, gracias por su tiempo y colaboración.

A la Unidad de Limnología y Recursos Acuáticos ULRA de la Universidad Mayor de San Simón por su apoyo.

A mi familia, amigos y compañeros que me apoyaron siempre y me impulsaron a seguir adelante, muchas gracias a todos de todo corazón.
<table>
<thead>
<tr>
<th>ÍNDICE DE CONTENIDO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agradecimientos</td>
<td>i</td>
</tr>
<tr>
<td>Resumen</td>
<td>ii</td>
</tr>
<tr>
<td>Índice de contenido</td>
<td>iv</td>
</tr>
<tr>
<td>Índice de figuras</td>
<td>vi</td>
</tr>
<tr>
<td>Índice de cuadros</td>
<td>vii</td>
</tr>
<tr>
<td>1. INTRODUCCIÓN</td>
<td>1</td>
</tr>
<tr>
<td>2. OBJETIVOS</td>
<td>3</td>
</tr>
<tr>
<td>3. REVISIÓN BIBLIGRÁFICA</td>
<td>4</td>
</tr>
<tr>
<td>3.1 Características de la cuenca Amazónica</td>
<td>5</td>
</tr>
<tr>
<td>3.1.1 Ictiofauna</td>
<td>5</td>
</tr>
<tr>
<td>3.1.2 Tipos de agua</td>
<td>5</td>
</tr>
<tr>
<td>3.1.3 Precipitaciones</td>
<td>6</td>
</tr>
<tr>
<td>3.1.4 Pulso de inundación</td>
<td>6</td>
</tr>
<tr>
<td>3.2 Aspectos reproductivos</td>
<td>8</td>
</tr>
<tr>
<td>3.2.1 Maduración sexual</td>
<td>9</td>
</tr>
<tr>
<td>3.2.2 Fecundidad</td>
<td>9</td>
</tr>
<tr>
<td>3.2.3 Tipos de desove</td>
<td>10</td>
</tr>
<tr>
<td>3.2.4 Influencia del régimen hidrológico en el desove</td>
<td>11</td>
</tr>
<tr>
<td>3.2.5 Temporada y tiempo de desove</td>
<td>12</td>
</tr>
<tr>
<td>3.2.6 Índice gonadosomático</td>
<td>12</td>
</tr>
<tr>
<td>3.3 Edad y crecimiento</td>
<td>13</td>
</tr>
<tr>
<td>3.4 Características de las especies estudiadas</td>
<td>14</td>
</tr>
<tr>
<td>4. MÉTODOS</td>
<td>17</td>
</tr>
<tr>
<td>4.1 Descripción del área de estudio</td>
<td>17</td>
</tr>
<tr>
<td>4.1.1 Cuenca del Mamoré</td>
<td>19</td>
</tr>
<tr>
<td>4.1.2 Cuenca del Iténez</td>
<td>20</td>
</tr>
<tr>
<td>4.2 Trabajo de campo</td>
<td>21</td>
</tr>
<tr>
<td>4.3 Trabajo de laboratorio</td>
<td>24</td>
</tr>
<tr>
<td>4.3.1 Edad y crecimiento</td>
<td>24</td>
</tr>
<tr>
<td>4.3.2 Reproducción</td>
<td>26</td>
</tr>
<tr>
<td>4.3.2.1 Época de desove</td>
<td>26</td>
</tr>
<tr>
<td>4.3.2.2 Talla y edad de primera madurez sexual</td>
<td>26</td>
</tr>
<tr>
<td>4.3.2.3 Fecundidad</td>
<td>27</td>
</tr>
<tr>
<td>4.3.2.4 Histología de las Gónadas</td>
<td>28</td>
</tr>
<tr>
<td>4.3.3 Relación longitud – peso</td>
<td>28</td>
</tr>
<tr>
<td>4.4 Análisis Estadísticos</td>
<td>28</td>
</tr>
<tr>
<td>5. RESULTADOS</td>
<td>29</td>
</tr>
<tr>
<td>5.1 Distribución por tallas</td>
<td>29</td>
</tr>
<tr>
<td>5.2 Relación longitud – peso</td>
<td>32</td>
</tr>
<tr>
<td>5.3 Edad y crecimiento</td>
<td>36</td>
</tr>
<tr>
<td>5.3.1 Estructura de edades</td>
<td>36</td>
</tr>
<tr>
<td>5.4 Reproducción</td>
<td>46</td>
</tr>
<tr>
<td>5.5 Época de reproducción</td>
<td>51</td>
</tr>
<tr>
<td>5.6 Talla y edad de madurez sexual</td>
<td>52</td>
</tr>
<tr>
<td>Capítulo</td>
<td>Página</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>5.7 Tipo de desove</td>
<td>54</td>
</tr>
<tr>
<td>5.8 Fecundidad</td>
<td>54</td>
</tr>
<tr>
<td>6. DISCUSIÓN</td>
<td>57</td>
</tr>
<tr>
<td>6.1 Tallas por sexo</td>
<td>57</td>
</tr>
<tr>
<td>6.2 Longitud – Peso</td>
<td>58</td>
</tr>
<tr>
<td>6.3 Edad y crecimiento</td>
<td>59</td>
</tr>
<tr>
<td>6.4 Época de reproducción</td>
<td>61</td>
</tr>
<tr>
<td>6.5 Talla y edad de primera madurez sexual</td>
<td>62</td>
</tr>
<tr>
<td>6.6 Desove</td>
<td>65</td>
</tr>
<tr>
<td>6.7 Fecundidad</td>
<td>66</td>
</tr>
<tr>
<td>7. CONCLUSIONES</td>
<td>67</td>
</tr>
<tr>
<td>8. RECOMENDACIONES</td>
<td>69</td>
</tr>
<tr>
<td>9. REVISIÓN BIBLIOGRÁFICA</td>
<td>71</td>
</tr>
<tr>
<td>ÍNDICE DE FIGURAS</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Fig. 1</td>
<td>Pseudoplatystoma fasciatum (Surubi) Pseudoplatystoma tigrinum (Chunchuina)</td>
</tr>
<tr>
<td>Fig. 2</td>
<td>Área de estudio Fuente (a) modificado de Hubert (2004) ; b) modificado de Crespo (2005)</td>
</tr>
<tr>
<td>Fig. 3</td>
<td>Régimen hidrológico en la cuenca del Mamoré. Fuente SENAHMI</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>Régimen hidrológico en la cuenca del Iténez. Fuente SENAIMI</td>
</tr>
<tr>
<td>Fig. 5</td>
<td>Distribución de tallas de P. fasciatum por sexo en los ríos Iténez y Mamoré</td>
</tr>
<tr>
<td>Fig. 6</td>
<td>Distribución por tallas de P. tigrinum por sexo en los ríos Iténez y Mamoré</td>
</tr>
<tr>
<td>Fig. 7</td>
<td>Relación longitud – peso de P. fasciatum por sexo en los ríos Iténez y Mamoré</td>
</tr>
<tr>
<td>Fig. 8</td>
<td>Relación Log-longitud- Log peso para machos y hembras de P. fasciatum en los ríos Iténez y Mamoré</td>
</tr>
<tr>
<td>Fig. 9</td>
<td>Relación Log-longitud- Log peso de P. fasciatum de los ríos Iténez y Mamoré</td>
</tr>
<tr>
<td>Fig. 10</td>
<td>Relación Log-longitud- Log peso de P. fasciatum de los ríos Iténez y Mamoré</td>
</tr>
<tr>
<td>Fig. 11</td>
<td>Relación longitud estándar – peso de P. tigrinum por sexo en los ríos Iténez y Mamoré</td>
</tr>
<tr>
<td>Fig. 12</td>
<td>Relación Log-longitud- Log peso de P. tigrinum de los ríos Iténez y Mamoré</td>
</tr>
<tr>
<td>Fig. 13</td>
<td>Relación Log-longitud- Log – Peso de P. tigrinum de los ríos Iténez y Mamoré</td>
</tr>
<tr>
<td>Fig. 14</td>
<td>Relación Log-longitud- Log – Peso de P. tigrinum de los ríos Iténez y Mamoré</td>
</tr>
<tr>
<td>Fig. 15</td>
<td>Curvas de ajuste de Von Bertalanffy por sexo para P. fasciatum en el río Iténez</td>
</tr>
<tr>
<td>Fig. 16</td>
<td>Curvas de ajuste de Von Bertalanffy por sexo para P. fasciatum en el río Mamoré</td>
</tr>
<tr>
<td>Fig. 17</td>
<td>Curvas de ajuste de Von Bertalanffy por sexo para P. tigrinum en el río Iténez</td>
</tr>
<tr>
<td>Fig. 18</td>
<td>Curvas de ajuste de Von Bertalanffy por sexo para P. tigrinum en el río Mamoré</td>
</tr>
<tr>
<td>Fig. 19</td>
<td>Curvas de crecimiento de Von Bertalanffy de las hembras de P. fasciatum en los ríos Iténez y Mamoré</td>
</tr>
<tr>
<td>Fig. 20</td>
<td>Curvas de crecimiento de Von Bertalanffy de los machos de P. fasciatum en los ríos Iténez y Mamoré</td>
</tr>
<tr>
<td>Fig. 21</td>
<td>Curvas de crecimiento de Von Bertalanffy de las hembras de P. tigrinum en los ríos Iténez y Mamoré</td>
</tr>
<tr>
<td>Fig. 22</td>
<td>Curvas de crecimiento de Von Bertalanffy de los machos de P. tigrinum en los ríos Iténez y Mamoré</td>
</tr>
<tr>
<td>Fig. 23</td>
<td>Corte histológico de ovario de Pseudoplatystoma sp. estadios I y II</td>
</tr>
<tr>
<td>Fig. 24</td>
<td>Corte histológico de ovario de Pseudoplatystoma sp. estadio III</td>
</tr>
<tr>
<td>Fig. 25</td>
<td>Corte histológico de ovario de Pseudoplatystoma sp. Estadios IV</td>
</tr>
<tr>
<td>Fig. 26</td>
<td>Estadios ovocitarias I, II, III, IV en un ovario de Pseudoplatystoma sp. en estadio de maduración IV</td>
</tr>
<tr>
<td>Figura</td>
<td>Descripción</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>Fig. 27</td>
<td>Corte histológico de testículo de Pseudoplatystoma sp. estadios I y II.</td>
</tr>
<tr>
<td>Fig. 28</td>
<td>Corte histológico de testículo de Pseudoplatystoma sp. estadio de maduración III.</td>
</tr>
<tr>
<td>Fig. 29</td>
<td>IGS de P. fasciatum y nivel de agua en los ríos Iténez y Mamoré.</td>
</tr>
<tr>
<td>Fig. 30</td>
<td>Talla de madurez sexual de machos y hembras de P. fasciatum en el río Iténez</td>
</tr>
<tr>
<td>Fig. 31</td>
<td>Talla de madurez sexual de machos y hembras de P. fasciatum en el río Mamoré</td>
</tr>
<tr>
<td>Fig. 32</td>
<td>Tamaño de los ovocitos de Pseudoplatystoma fasciatum en las cuencas de los ríos Iténez y Mamoré</td>
</tr>
<tr>
<td>Fig. 33</td>
<td>Variación de la fecundidad absoluta en función de la longitud y el peso en P. fasciatum en los ríos Iténez y Mamoré</td>
</tr>
<tr>
<td>Fig. 34</td>
<td>Variación de la fecundidad relativa en función de la longitud y el peso en P. fasciatum en los ríos Iténez y Mamoré</td>
</tr>
<tr>
<td>Fig. 35</td>
<td>Relación Log (Fecundidad absoluta) – log (longitud y peso) de P. fasciatum en los ríos Iténez y Mamoré</td>
</tr>
<tr>
<td>ÍNDICE DE CUADROS</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>Cuadro 1. Ubicación de los lugares de muestreo para el presente trabajo en las cuencas de los ríos Iténez y Mamoré</td>
<td>22</td>
</tr>
<tr>
<td>Cuadro 2. Parámetros de la ecuación de VBF para machos y hembras de P. fasciatum en el río Iténez</td>
<td>37</td>
</tr>
<tr>
<td>Cuadro 3. Parámetros de la ecuación de VBF para machos y hembras de P. fasciatum en el río Mamoré</td>
<td>39</td>
</tr>
<tr>
<td>Cuadro 4. Longitudes alcanzadas a diferentes edades de P. fasciatum calculadas con la ecuación de VBF en los ríos Iténez y Mamoré</td>
<td>39</td>
</tr>
<tr>
<td>Cuadro 5. Parámetros de la ecuación de VBF para machos y hembras de P. tigrinum en el río Iténez</td>
<td>40</td>
</tr>
<tr>
<td>Cuadro 6. Parámetros de la ecuación de VBF para machos y hembras de P. tigrinum en el río Mamoré</td>
<td>42</td>
</tr>
<tr>
<td>Cuadro 7. Longitudes alcanzadas a diferentes edades de P. tigrinum calculadas con la ecuación de VBF en los ríos Iténez y Mamoré</td>
<td>42</td>
</tr>
<tr>
<td>Cuadro 8.- Talla y edad de madurez sexual de P. fasciatum en los ríos Iténez y Mamoré</td>
<td>53</td>
</tr>
<tr>
<td>Cuadro 9. Correlación de Pearson entre fecundidad absoluta – longitud estándar y fecundidad absoluta – peso de P. fasciatum</td>
<td>55</td>
</tr>
</tbody>
</table>
1. Introducción.-

La necesidad de proteger la biodiversidad acuática se ha vuelto más evidente en los últimos tiempos. Así mismo, el estado precario actual de dicha biodiversidad se ve agravada por una completa inabilidad para administrar los recursos acuáticos (Philipp et al., 1995).

Los peces representan más de la mitad del total de las especies de vertebrados acuáticos conocidos (Nelson, 1994). América del Sur posee una gran variedad de especies de peces, con aproximadamente 6,000 especies conjuntamente con América central (Reis et al. 2004, Hubert & Renno, 2006). Es conocido que la Amazonía alberga una gran diversidad íctica, a su vez los estudios realizados sobre las especies amazónicas son escasos, limitando el conocimiento real de las interacciones entre especies; y con su ambiente, además de una reducida capacidad para predecir lo que va a incurrir, si la composición de especies de un ecosistema es alterada (Wosnitza-Mendo, 2000).

La pesca comercial en la amazonía boliviana en los ríos Iténez y Mamoré, esta concentrada especialmente en grandes pimelódidos y carácidos, de los cuales Pseudoplatystoma faciatum (surubí), Pseudoplatystoma tigrinum (Chuncuina), Colossoma macropomum (Pacú) y Piaractus brachypomus (Tambaquí), son las especies que más se capturan debido a la gran demanda que tienen, lo cual determina precios altos en los mercados. Otras especies como el dorado (Brachyplatystoma rousseauxii) el sábalos (Prochilodus nigricans) y el general (Phractocephalus hemioliopterus), tienen una importancia secundaria en la pesca boliviana (Lauzanne y Loubens, 1985; Martinez, 1984; Payne y Fallows, 1987; Goulding 1979 y 1980).

Una de las limitaciones más serias para el manejo de los recursos pesqueros en la cuenca amazónica boliviana es la poca disponibilidad de información sobre las especies explotadas, razón que impide tomar las mejores acciones para un manejo adecuado y aprovechamiento de los recursos pesqueros (Walters et al, 1982; Loubens y Aquim, 1986; Lauzanne et al, 1990; Muñoz y Van Damme, 1998).

Los estudios realizados en la amazonía boliviana para las especies del género Pseudoplatystoma (Muñoz y Van Damme, 1998; Loubens y Panfili, 2000, Coronel et al.,
2004) son aún limitados y se concentran solo en la cuenca del Mamoré, lo cual dificulta la elaboración de planes de manejo o de explotación sostenible de dichas especies.

Debido a la importancia económica del género *Pseudoplatystoma*, cuya explotación se vuelve cada vez más intensa, es necesario completar el conocimiento sobre su biología en la Amazonía boliviana. El conocimiento de los principales rasgos de vida (época de reproducción, fecundidad, edad y talla de madurez sexual, edad y crecimiento) nos dará información importante para su conservación, uso racional y manejo de explotación.

Se debe recalcar que actualmente el mantenimiento de la riqueza pesquera en la región amazónica boliviana requiere de la implicación de los pobladores y pescadores en un adecuado manejo de los recursos, basado sobre el conocimiento de la biología de estas especies para poder tomar acciones dirigidas hacia su protección.

En este sentido el presente trabajo de investigación tiene como objetivo contribuir al conocimiento biológico del género *Pseudoplatystoma* para que sirva como insumo en el proceso de elaboración de propuestas dirigidas al ordenamiento y a la planificación de su explotación.

Por otra parte como no se ha observado estructuración genética en las poblaciones de estos peces a nivel de toda la Amazonía boliviana (Barreto, 2005) es importante e interesante ver si las diferencias de origen geológico, tipo de agua, factores físicoquímicos y productividad entre las cuencas del Iténez y del Mamoré ocasionaran variaciones en los rasgos de vida de los dos pimelódidos.
2. OBJETIVOS

Objetivo general

Determinar las características de reproducción, edad y crecimiento de *Pseudoplatystoma fasciatum* y *Pseudoplatystoma tigrinum* en las cuencas de los ríos Iténez y Mamoré.

Objetivos específicos

Para ambas especies:

- Establecer la distribución de tallas.
- Estimar la relación longitud – peso.
- Establecer la época de reproducción.
- Establecer el tipo de desove.
- Estimar la talla y edad de primera madurez sexual.
- Determinar la fecundidad absoluta, relativa y el tamaño de los ovocitos.
- Determinar el periodo del año en el cual se forma un añillo de crecimiento.
- Determinar las curvas de crecimiento.
- Comparar los rasgos de vida: reproducción, (tamaño de los huevos, la fecundidad y la talla y edad de la primera maduración) (Iténez y Mamoré).
3. Revisión Bibliográfica

La historia de vida de un organismo incluye características biológicas fundamentales como ser la edad de primera reproducción, el número de ciclos reproductores, su fecundidad, su crecimiento, su supervivencia, y el esfuerzo de reproducción que implica cada desove. (Duponchelle, 1997).

A lo largo de los últimos cuarenta años, muchos estudios han intentado explicar el origen de la variabilidad de estos caracteres en los seres vivos. De esta manera, diversas modalidades de reproducción y sus grados de éxito en diferentes tipos de medios han formado una base para las investigaciones teóricas y empíricas bajo el tema de “life history”. El término “life history” es comúnmente traducido como “historia de vida”, “ciclo vital” o incluso “ciclo biológico” (Duponchelle, 1997).

La variación de los rasgos de vida entre poblaciones de una misma especie es a menudo interpretada como un conjunto de adaptaciones evolutivas a medio ambientes diferentes. La variación fenotípica de un carácter, ya sea ecológica, fisiológica o de comportamiento, podría resultar de una inducción del medio ambiente, de una modificación durante el desarrollo, o de una verdadera adaptación genética a las condiciones locales. Es esencial que la importancia relativa de estos dos factores sea determinada para interpretar correctamente el significado adaptativo de la variabilidad fenotípica (Berven et al., 1979).

El conocimiento de la biología de los peces en las llanuras de inundación tropicales proviene de investigaciones de algunos de los mayores ríos sudamericanos y africanos. Sin embargo, la información sobre las pesquerías recién se ha empezado a acumular, y el conocimiento del ciclo de vida de las especies comerciales más importantes aún continua siendo muy fragmentado. Esto puede tener serias limitaciones para predecir los impactos de las pesquerías en el ecosistema. El conocimiento de la biología y ecología de los recursos ícticos es un requisito para el manejo pesquero (Valbo-Jorgensen y Poulsen, 2000).
3.1. Características de la cuenca Amazónica

La Amazonía es un importante espacio natural en el contexto mundial. Su extensión abarca dos terceras partes de la superficie total de las selvas tropicales del mundo, y en ella habitan más de la mitad de las especies conocidas del planeta (Boero, 1993). Desde el punto de vista económico, la diversidad biológica representa un valor agregado de gran trascendencia, y a pesar de que no se ha calculado su valor monetario, es utilizada como banco natural y de recursos genéticos a través del manejo milenario de la biodiversidad por parte de las comunidades indígenas (Biodamaz, 2001).

3.1.1 Ictiofauna

La ictiofauna Amazónica está compuesta en su mayoría por peces de los órdenes: characiformes, siluriformes, perciformes y osteoglosiformes. Estos órdenes constituyen importantes grupos de peces que desempeñan un rol particular como componentes de los desembarques en los principales puertos de la Amazonía. (Goulding, 1980).

Entre las especies más explotadas comercialmente en toda la Amazonía, algunas se destacan por su gran importancia económica, tales como Arapaima gigas “paiche” Colossoma macropomum “pacú” Semaprochilodus spp “jaraqui” Prochilodus nigricans “sábalo” Cichla spp. “tucunaré” Brachyplatystoma spp “dorado, saltón” Pseudoplatystoma spp “Surubí” “Chuncuina”. Dentro de estas, las especies migratorias son las que dominan el desembarque de peces en la mayoría de los puertos de la Amazonía (Goulding, 1980).

3.1.2 Tipos de Agua

El agua de la Amazonía está clasificada en tres tipos: blancas, negras y claras. Las aguas negras se originan en la planicie selvática, con altos contenidos de sustancias húmicas, mayor transparencia, muy baja conductividad, escasos nutrientes y pH ácido. Las aguas claras también son transparentes, de baja conductividad escasos nutrientes pero el pH es más neutro y nacen en zonas de la planicie de origen precámbrico del escudo guayanés o
sobre suelos de tipo “oxisol” su color es claro debido a que llevan menos ácidos húmicos (Sioli, 1984 ; Junk, 1984).

En los ríos de aguas blancas estas se originan en los andes, su color se debe a la gran cantidad de material en suspensión que transportan. Son ricas en nutrientes, minerales pero de escasa transparencia (30 – 50 cm) y el pH es menos ácido. Debido a la turbulencia y opacidad la producción primaria fitoplanctónica también es pobre, sin embargo cuando las aguas blancas ricas en nutrientes inorgánicos, invaden los cuerpos de agua lenticos los litorales pobres en nutrientes se fertilizan y con la sedimentación del material suspendido se promueve el desarrollo de una rica diversidad biológica asociada a las planicies de inundación (Sioli, 1984 ; Biodamaz 2001).

3.1.3 Precipitaciones

La distribución temporal de las lluvias mensuales en el curso del año, presenta la misma forma sobre el conjunto de la cuenca amazónica. Las precipitaciones más fuertes caen durante el verano austral, de diciembre a marzo. Según las regiones, puede haber el resto del año una estación seca bien marcada o lluvias muy frecuentes (Bourges et al., 1990).

El período de aguas altas dura aproximadamente tres meses, generalmente, de enero a marzo en los cuales se observan los mayores niveles. Este período es idéntico en la llanura sobre los ríos ando-Amazónicos hasta aproximadamente una distancia de 500 a 800 Km del pie de monte. Más allá de este límite y hasta la formación del Madera, las aguas altas se desfisan progresivamente y pasan más bien de febrero a abril, lo que corresponde a las aguas altas observadas en las cuencas de llanura donde las velocidades de propagación son mucho más lentas (Bourges et al.,1990).

3.1.4 Pulso de Inundación

El pulso de inundación es uno de los principales factores condicionantes de la biología y ecología de los ecosistemas amazónicos, debido al dinámico intercambio de nutrientes y de energía entre la fase acuática y la fase terrestre, cuando el agua desborda estacionalmente el canal principal de los ríos y fluye hacia las zonas adyacentes. La cantidad de nutrientes en
las planicies de inundación está determinada por los ciclos hidrológicos de la cuenca Amazónica (Goulding, 1980; Lowe McConnell, 1987; Biodamaz, 2001).

El área inundable, está principalmente cubierta por sabanas expuestas a inundaciones (que son las más extensas dentro de la cuenca Amazónica) rodeadas por selva tropical y donde se encuentran también bosques de galería distribuidos alrededor de los ríos, además, la evapotranspiración del bosque tiene un rol sustancial en el régimen regional de precipitaciones y en el balance hidrológico. Esta gran llanura central puede ser inundada durante cuatro meses, la superficie afectada puede abarcar de 100.000 a 150.000 Km² según la meteorología anual de las cuencas (Pouilly et al., 1999; Roche & Fernández, 1988).

Durante la época de aguas altas, las regiones terrestres son convertidas en hábitats acuáticos que ofrecen un espacio más amplio para los peces. Estos nuevos hábitats llamados lagunas de varzea constituyen una entrada de los nutrientes alóctonos, originando una fuente suplementaria de recursos durante toda la época de inundación Goulding (1980).

La disponibilidad de alimento es altamente variable debido a la variación de las estaciones hidrológicas entre años. La mayoría de las especies acumulan reservas durante los periodos de aguas altas y en algunos casos realizan migraciones de pequeña o gran escala entre el cauce principal y las planicies de inundación, para encontrar una mayor disponibilidad de alimento y de mejores condiciones de hábitat referido a una menor competencia y a un mayor espacio para las crías (Junk, 1984). Saint-Paul (1994) reveló la importancia de las planicies de inundación para las comunidades de peces en aguas blancas y aguas negras en la cuenca amazónica.

Las variaciones de las condiciones estacionales de las planicies de inundación en la Amazonía producen un incremento en la densidad, diversidad y riqueza de la ictiofauna de este medioambiente. El incremento del número de comunidades de peces es más evidente en la época de inundación que en la época de estiaje (Pouilly et al., 1999).

Durante la estación seca cuando los pequeños canales y los lagos son poco profundos los peces se encuentran en el cauce principal del río, y en la época de lluvias, los ríos se llenan,
crecen los lagos y la selva baja queda inundada, muchos peces se desplazan hacia las zonas inundadas donde se alimentan y se protegen (Kendall, 1994).

A consecuencia de estos fenómenos, los peces de la Amazonía llevan un tipo de vida cíclica pasando del cauce principal durante la época seca (caracterizada por una gran concentración de biomasa y una intensa predación) al bosque o pampa inundada en la época de lluvias que transforma los ríos en lagos diluyendo así la ictiofauna (Yánez, 1999).

3.2 Aspectos reproductivos

La existencia de todo ser viviente y la definición misma de lo que es la vida están necesariamente relacionadas con la reproducción. Es gracias a este proceso que nuevos peces nacen cada año y se integran a la población, y al cumplir con este proceso los peces desarrollan las fases de su propio ciclo vital, considerándose incompleto este ciclo si el pez no llega a reproducirse (Csirke, 1980).

Las especies a lo largo de su historia evolutiva han desarrollado estrategias reproductivas para optimizar la viabilidad de su descendencia. Para comprender la biología de una especie y sus ciclos de vida, en los peces se considera de mucha importancia la talla de madurez sexual y duración del ciclo reproductivo, aspectos que constituyen componentes críticos en las estrategias de vida (Granado, 1996; Villacorta-Correa & Saint-Paul, 1999).

En la Amazonía la reproducción de los peces revela un carácter estacional y generalmente estos dependen de la dinámica fluvial para regular su ciclo biológico, principalmente para el desarrollo de órganos sexuales, maduración y elaboración de gametos y estímulos para el comportamiento reproductivo (Kunkel & Flores, 1994). Así la gametogénesis normalmente se asocia a la estación de lluvias, época en la cual, también la alimentación disponible constituye un factor importante para el desarrollo y crecimiento de larvas y juveniles (Billard & Breton, 1981).
3.2.1 Maduración sexual

Se entiende por madurez sexual, a la capacidad que tienen los peces para reproducirse. Se los considera sexualmente maduros, cuando las gónadas salen de su latencia y empiezan a desarrollarse, lo cual es evidente con la aparición de los ovocitos y espermatocitóes en diferentes fases de desarrollo, así como cambios morfológicos de las gónadas (Ocampo, et al., 1995).

La madurez sexual es la fase durante la cual el pez alcanza el estado adulto con capacidad de reproducirse, aunque no solo comprende a los individuos que han alcanzado la primera madurez sexual sino también a los individuos que entran en maduración gonadal cada año durante la época de reproducción (Bagenal & Tesh, 1978).

El acceso a la madurez sexual representa una fase crítica en la vida de un individuo. Antes, el recurso y el tiempo eran únicamente acordados a la supervivencia y al crecimiento, después son objeto de una competencia entre la reproducción, el crecimiento y la supervivencia (Wootton, 1979).

La edad de primera reproducción es uno de los rasgos de historia de vida más importantes en el sentido que constituye uno de los principales ajustes evolutivos impuestos por la selección natural (Cole, 1954; Roff, 1984).

Una disminución de la edad de primera maduración puede significativamente aumentar el éxito reproductivo maximizando el número de descendientes producidos a edades precoces (Tinkle & Ballinger, 1972; Tilley, 1973; Noakes & Balon, 1982).

3.2.2 Fecundidad

La fecundidad es considerada como un carácter adaptativo, donde los cambios resultan de la acción de la selección del medio sobre la variabilidad fenotípica (Kartas & Quignard, 1984).

La tasa reproductiva de una especie no necesariamente debe ser muy alta o a intervalos muy frecuentes, pero sí debe ser exitosa. Consecuentemente no es sorprendente que muchos de los patrones reproductivos de los animales sean fuertemente influidados por los
factores ambientales para asegurar las condiciones ambientales más favorables y así completar el ciclo reproductivo de la especie para garantizar su supervivencia (Louw, 1997).

Hay especies que poseen una fecundidad muy alta, con la producción de varios millones o de varios cientos de miles de huevos por hembra en cada estación de desove. Este es el caso de muchas especies que desovan en alta mar y que dejan sus huevos a la deriva. Mientras que otras especies, especialmente aquellas que viven o desovan ligadas a algún tipo de substrato y que brindan alguna clase de protección a sus huevos, tienen normalmente a una fecundidad más baja, de apenas unos cientos o unos pocos miles de huevos por hembra y por estación de desove. Sin embargo, esta gran diferencia en cuanto a la fecundidad entre una y otra especie se compensa con el resultado final, ya que los huevos de especies muy fecundas quedan normalmente expuestos a una serie de peligros que producen una mortalidad muy alta en estos primeros estadios, mientras que en las especies menos fecundas, los peligros y la mortalidad a la que suelen estar expuestos sus huevos son relativamente menores ya que estos presentan cuidado parental. (Csirke, 1980).

El conocimiento de la fecundidad de una especie es un factor importante para poder estimar la explotación racional de una población. Se emplea para calcular el potencial reproductor de una población y la supervivencia desde el huevo hasta la eclosión (Baxter, 1963).

3.2.3 Tipo de Desove

La reproducción misma es un proceso más o menos largo y complicado, que conlleva una serie de cambios somáticos y fisiológicos que se manifiestan, entre otras cosas, por el gran desarrollo gonadal del pez adulto y tiene un momento culminante cuando se produce el desove, con el cual las gónadas liberan su contenido de óvulos y espermatozoides, iniciándose a continuación, la primera etapa en la vida de toda una nueva generación de individuos, con la formación del huevo o cigote (Csirke, 1980).

Existen diferentes tipos de modalidades de desove en los peces, ellos están ligados a una dinámica de maduración de las gónadas. Hay especies que desovan una sola vez en su vida (semelparidad), otras que desovan una sola vez al año, otras que desovan varias veces al
año y otras tienen un desove continuo durante todo el año. (Loubens y Aquim, 1986; Tresierra y Culquichicón, 1993).

Welcome (1992) señala que existen dos categorías principales: desovadores totales, son todos aquellos cuyos huevos maduran y se sueltan en un tiempo muy breve, y los desovadores múltiples o parciales, que realizan repetidas puestas en una misma estación, en cada una de las cuales sólo madura una pequeña parte de la freza. Los peces que migran largas distancias, desovando en sustratos abiertos sin practicar un cuidado parental, pertenecen a la primera categoría. Sus huevos suelen ser más pequeños y se producen en grandes cantidades para contrarrestar las pérdidas inherentes a este tipo de desove. El desove parcial suele ir asociado a cierta medida de cuidado parental. Los huevos son de mayor tamaño lo que refleja en su número menor por gramo del peso del ovario. Sin embargo los desovadores parciales pueden criar varias veces durante cada temporada, por lo que es difícil calcular la fecundidad total del pez.

El número de huevos puestos en un solo desove por los desovadores parciales es más bajo que el los desovadores totales. Peces desovadores totales tales como el sábalo Prochilodus platensis producen entre 360.000 y 750.000 huevos por individuo entre 40 cm y 65 cm respectivamente. Especies realmente grandes como Lates niloticus pueden producir cantidades extraordinarias de huevos, habiéndose documentado 11 millones en algunos ejemplares (Welcomme, 1992).

3.2.4 Influencia del Régimen Hidrológico en el Desove

La reproducción de los peces de río en general es estacional. Esta estacionalidad parece depender básicamente de los factores temperatura y flujo, que en las zonas templadas son más o menos sincrónicos por cuanto los aumentos del flujo resultan directamente de la fundición de la nieve, y del aumento de las precipitaciones que conlleva la elevación de la temperatura en primavera. Al acercarse a los trópicos disminuye de manera manifiesta la influencia de la temperatura, y el régimen de crecidas adquiere cada vez más importancia como principal regulador de las épocas de reproducción. El comienzo de la reproducción de la mayoría de las especies tiende a coincidir con la iniciación de las crecidas, especialmente en la Amazonía. El desove puede tener lugar con aguas bajas crecientes o
con crecida máxima, pero sólo muy raramente durante la retirada de las aguas (Welcomme, 1992).

3.2.5 Temporada y tiempo de desove

La determinación de la temporada de desove de los peces de zonas templadas y tropicales requiere un muestreo que abarque todo el año. Observando macroscópicamente las gónadas (en hembras y machos) para las distintas tallas se obtiene la frecuencia de distribución porcentual entre los diferentes estados de maduración gonadal en función de la época del año, estableciéndose de esta manera la temporada y la duración del desove. Se puede observar el proceso de maduración a partir del aumento porcentual desde los estados de inactividad hasta los de maduración, maduración avanzada, total y desove. En base al aumento de ejemplares desovados se pueden deducir las temporadas y duración de los desoves (Iwaszkiw, 1990).

La época de desove, tanto para reproductores totales como reproductores parciales, se puede determinar por métodos directos o indirectos. El método directo para estimar la época de desove, emplea la histología de las gónadas para analizar los cambios que suceden en ellos a través del año durante los diferentes estados de madurez sexual. Entre los métodos indirectos están el análisis del IGS, la observación de la predominancia de los estados de madurez a través del tiempo y la variación del diámetro ovocitario en el tiempo. Todos estos métodos se aplican durante un tiempo, que por lo general es un año (Tresierra y Culquichicon, 1993).

3.2.6 Índice Gonadosomático (IGS)

Un método comúnmente utilizado para interpretar las variaciones del desarrollo gonadal (ciclo sexual) a lo largo del ciclo anual, e indicador de los cambios de la relación porcentual entre el peso del pez y el peso de las gónadas, conocida como índice gonadosomático (IGS) (Iwaszkiw, 1990).

El índice gonadosomático constituye la expresión más utilizada en el estudio del desarrollo de las gónadas y para describir el ciclo reproductivo en peces. La expresión se basa en el
incremento del tamaño de la gónada a medida que se acerca el momento de la freza y varía con el estado de desarrollo de los ovocitos (Granado, 1996).

Gupta (1974) indica que el IGS además de ser útil como medida del grado de madurez del ovario, también sirve como indicador del período de desove en función de las respectivas fluctuaciones estacionales.

Según Tresierra y Culquichicon (1993), el índice gonadosomático es un parámetro muy útil para determinar las fases de madurez sexual. El IGS puede determinarse en relación al peso corporal total o peso eviscerado. En todo caso, conviene definir el peso que se va a utilizar para determinar su estimación.

Sin embargo, si el IGS es muy útil para peces que desovan una sola vez por época de reproducción, se vuelve impreciso para peces que desovan varias veces por época y en este caso es mejor utilizar las proporciones mensuales de los estadios de madurez de las gónadas (Duponchelle et al. 1999).

3.3. Edad y crecimiento

Saber la edad de cualquier organismo y en especial de los peces tiene un gran interés que permite abordar estudios sobre el crecimiento, dinámica de poblaciones naturales, demografía, manejo y gestión sostenible. El continuo crecimiento de los peces y la tasa del metabolismo de los vertebrados poiquilotermos depende de las condiciones ambientales bióticas y abióticas. Las piezas calcificadas se comportan como registros de las variaciones de crecimiento y son teóricamente consideradas como la “caja negra” del animal en un momento cualquiera (Panfili, 1992; Bagenal, 1973).

Existen varios métodos para la estimación de la edad individual y están fundados sobre el hecho de que el crecimiento de los peces es continuo aunque la tasa de crecimiento disminuye a medida que el pez es más viejo (Bagenal, 1973).

La edad de muchas especies ícticas puede determinarse a partir de discontinuidades (anillos) que ocurren en las estructuras esqueléticas, tales como otolitos, escamas, espinas o vértebras. Estas discontinuidades pueden deberse a cambios como la temperatura en el
ambiente o alteraciones fisiológicas debido al desove y al cambio del régimen trófico. (Tresierra y Culquichicón 1993; Jepsen et al., 1999).

Los primeros estudios de marcas de crecimiento cíclicas sobre piezas calcificadas de peces fueron hechos sobre especies que viven en climas templados para los cuales es relativamente fácil poner en relación la alternancia de las estaciones con los depósitos de marcas. A diferencia de los medios tropicales donde las variaciones de las condiciones medio-ambientales (temperatura principalmente) son menos marcadas pero donde también existen ritmos de crecimiento estacionales notables en muchas especies (Longhurst & Pauly, 1987)

3.4. Características de las especies estudiadas

El género Pseudoplatystoma está referido a bagres piscívoros de la familia Pimelodidae. Sus tres especies (P. fasciatum, P. tigrinum y P. corruscans) están distribuidas por la mayor parte de Sudamérica tropical y subtropical donde se distinguen por su gran tamaño y valor comercial en la pesca fluvial. La presencia y la abundancia de estos pimelódidos está relacionada con los períodos hidrobiológicos y sus hábitos migratorios (Rodríguez, 1992; Cordiviola, 1966; Reid, 1983). Muy extendido en el bajo Amazonas, pero raro o ausente en los estuarios, se los encuentra en la cabecera de todos los tipos de ríos y aguas de todas las profundidades y tipos, en los canales, en las planicies de inundación y a lo largo de los arroyos de la selva lluviosa, aunque no son especies características de las corrientes y caudales fuertes, pasan por ellos en transito (Barthem y Goulding, 1997).

Los pimelódidos corresponden a niveles tróficos altos siendo en su mayoría predadores, ictiófagos y omnívoros (Rodríguez, 1992; Ayala, 1997; Goulding, 1980; Zambrana, 1998). Su alimentación se compone predominantemente de cardúmenes de carácidos (Barthem y Goulding, 1997). Las características anatómicas de Pseudoplatystoma fasciatum y Pseudoplatystoma tigrinum son muy semejantes (Figura 1). Además estos difícilmente son confundidos con otros, ya que se caracterizan por poseer dientes en el paladar, puente óseo en el cráneo y la aleta dorsal muy deprimida, barbillas siempre largas (Miles, 1948). Cabe señalar la reciente revisión del género Pseudoplatystoma (Buitrago et al. 2007) sin embargo en el presente trabajo continuaremos usando los nombres comúnmente aceptados.
Las dos especies se distinguen fácilmente tanto por diferencias en la forma de sus cabezas como por sus coloraciones distintas. La cabeza de *P. fasciatum* tiene bordes laterales casi rectos, y la fontanela (una ranura que pasa entre los ojos) es relativamente corta y superficial, no alcanzando la mitad de la distancia entre el ojo y el borde posterior del opérculo. En *P. tigrinum* el borde lateral de la cabeza es cóncavo detrás de la boca, y la fontanela es larga y profunda. Alcanzando casi el borde del opérculo. Aunque existe mucha variación entre individuos, las rayas verticales de *P. fasciatum* son generalmente más largas además de barras blancas inmediatamente delante de las barras negras verticales, mientras que las de *P. tigrinum* apenas sobrepasan la línea lateral y presenta líneas negras más anchas de forma irregular y aletas manchadas, sobre todo la aleta caudal (Lauzanne y Loubens, 1985; Reid, 1983).

Según Loubens y Panfili (2000) durante el tiempo de aguas bajas *P. fasciatum* prefiere los medios lóticos y también le gustan los sitios protegidos por troncos y ramas sumergidas o vegetación acuática mientras que *P. tigrinum* resulta ubicuo y le gusta más los sustratos abiertos y limpios. Para las dos especies los machos están presentes en mayor cantidad en los ríos y las hembras en las lagunas. La mayoría de los adultos de las dos especies se van río arriba para reproducirse en la zona pre-andina en enero y febrero, pero parte de la población que no migra queda en descanso sexual (Muñoz y Van Damme 1998). Las dos especies juntas forman más de la mitad de los aportes de la pesca comercial de agua dulce tropical en Bolivia; esta proporción sobrepasa a las observadas en otras partes amazónicas (Lauzanne *et al.*, 1990; Loubens y Aquim 1986).
Figura 1. *Pseudoplatystoma fasciatum* (Surubi) y

Pseudoplatystoma tigrinum (Chuncuina)
4. MÉTODOS

4.1. Descripción del Área de Estudio

Bolivia pertenece a las dos grandes cuencas de Sudamérica: Paraná y Amazonas, y comprende una parte importante de la cuenca endorreica del Altiplano. La cuenca del Amazonas con una superficie de 724.000 Km² representa el 66% de la superficie total del país (Lauzanne et al., 1990). La del Paraná representa 229.500 Km². Los ríos que drenan el territorio boliviano conforman la cuenca alta del Madeira, uno de los grandes afluentes del Amazonas. La cuenca incluye altitudes de 6.000 m, en el límite nival de la vertiente oriental andina, y menores a 300 m, en la mayor parte de la llanura beniana – pandina (Montes de Oca, 1996)

El clima comprende áreas muy húmedas asociadas a los Andes. En la llanura, las precipitaciones son relativamente menores y la estacionalidad es más evidente. Las temperaturas promedio son relativamente menores en la región de los Yungas, en la vertiente oriental. El régimen hídrico se caracteriza por una estación lluviosa desde octubre-marzo, asociada a procesos estacionales de inundación que abarcan grandes superficies, y un período seco de junio a septiembre (Pouilly et al., 1999).

La amazonía boliviana corresponde a una gran llanura, donde confluyen las aguas de los Andes, formando el sistema hídrico a través de tres principales ríos, Madre de Dios, Beni y Mamoré y con menor influencia las aguas del Escudo Brasilero que confluyen en el río Iténez.(Fig.2) Esta cuenca cuenta con 145 ríos y 37 lagos (Arteaga, 1991 ; Pouilly et al., 1999).

Las grandes variaciones topográficas y altitudinales generan diferentes subsistemas fluviales asociados a pendientes, movimientos de agua, substrato, factores químicos y biológicos. Los sistemas fluviales en la Amazonía boliviana están caracterizados por la ocurrencia de pulsos de inundación con diferentes grados de predictibilidad, los pulsos de inundación son el factor primordial que influye en la riqueza de la fauna acuática (Bourrel et al., 1999).
4.1.1 Cuenca del Mamoré
Es una de las redes de agua más extensas de la cuenca hidrográfica amazónica, se origina en la parte central de la vertiente oriental andina en Bolivia. En su transcurso el Mamoré es un río ancho y profundo. Por la gran cantidad de elementos en suspensión que transporta, es un típico río de aguas blancas. Asociados al río encontramos una gran cantidad de lagunas permanentes. Durante la época de lluvias presenta una importante superficie de inundación. Puede haber una diferencia de más de 10 metros en el nivel del agua según la estación del año (Fig. 3). Presenta una estación de lluvias concentrada entre octubre y marzo donde se encuentran también las temperaturas más altas (Pouilly et al., 1999).

![Figura 3. Régimen hidrológico en la cuenca del Mamoré. Fuente SENAHMI](image)

El Mamoré está asociado a un bosque ribereño siempre verde que se presenta en forma de anchas fajas que pueden alcanzar los 10 Km de ancho cubriendo una superficie de 222,000 Km² que equivale al 26% de la cuenca del alto Madeira. Las comunidades vegetales están representadas mayormente por especies pioneras o sucesionales, tiene como principales afluentes a los ríos Ichilo, Chapare, Grande, Sécure, Iténez, Aperé, Yacuma y otros (Montes de Oca, 1996 ; Ribera, 1992 ; Sioli, 1968).

El cauce principal va recortando a su paso meandros, los más antiguos forman lagunas independientes y aisladas en época de aguas bajas, pero son conectadas cada año durante la inundación que cubre el bosque ribereño. Las características físicoquímicas como la
salinidad media es de 82.5 mg.l\(^{-1}\), un pH medio de 6.9, transparencia media de 10 cm y una temperatura media de 26.1 °C, tanto las características físicquímicas, morfológicas y de vegetación evolucionan con el tiempo (Sarmiento & Pillen, 1998; Arteaga & Tarifa, 1991).

El agua de la cuenca del Mamoré tiene dos orígenes distintos, agua exógena o blanca cargada de sedimentos erosionados de los Andes y agua endógena o de planicie, cargada de ácidos húmicos (Pouilly et al., 1999).

4.1.2 Cuenca del Iténez

El río Iténez nace en Brasil a la altura del paralelo 16° sur en la serranía de Aguapeci con el nombre de río Barbaos. Desde su confluencia con el río Verde forma límite internacional entre Bolivia y Brasil. Sigue su curso noreste y a la altura del paralelo 11° 51’ se une al Mamoré para formar el río Madeira (Boero, 1993).

Se diferencia del anterior por su origen en serranías asociadas al escudo brasilero. Dado este origen, el Iténez corresponde a un sistema de aguas cristalinas o claras, aunque presenta afluentes que provienen de la planicie cuaternaria de la región del Beni. La mayor parte de la cuenca se origina en el escudo brasilero y se encuentra asociado a un bosque húmedo siempre verde estacional. Dentro de este sistema se deben considerar varias otras lagunas de características similares, concentradas en la zona (Cabrera & Willink, 1973; Rivera, 1992).

El río Iténez es navegable todo el año, su ancho promedio alcanza 300 m con profundidades mínimas de 1.20 m, presenta inundaciones periódicas y se caracteriza por presentar un sistema de lagunas inundables, durante la temporada de lluvias, los ríos se desbordan e inundan el área baja de la planicie fluctuando el nivel del agua entre unos centímetros y varios metros (Fig. 4), las precipitaciones aumentan en dirección del escudo brasilero y los Andes (Roche et al., 1992).
Figura 4. Régimen hidrológico en la cuenca del Iténez. Fuente SENAHMII

Sus principales afluentes son: el río Pauserna, Paraguá, San Simón, Blanco (dos afluentes del río Blanco el río San Martín y San Joaquin) (Roche et al., 1988).

4.2. Trabajo de Campo

Mediante misiones de colecta del IRD realizadas en las cuencas del Mamoré y del Iténez, se tomaron las muestras en los lugares de pesca habituales, tanto en el cauce principal como en las lagunas adyacentes (Cuadro 1), con diferentes artes de pesca como anzuelos, lineada y redes agalleras de 25-50 m de longitud y 2 - 3.5 m de profundidad con un calibre de malla de 60 a 130 mm.

Los peces se capturaron en varias épocas durante el período de 2000 - 2004. Por cada pez se midió la longitud estándar (con la ayuda de un ictiómetro), y se tomó el peso total con balanzas electrónicas de varias capacidades dependiendo del tamaño de los peces (50 kg de capacidad y sensibilidad de 50 g o 5 kg de capacidad y sensibilidad de 5 g). Luego las gónadas fueron pesadas con una balanza de 6000 g de capacidad y sensibilidad de 1 g o una de 400 g de capacidad y 0.1 g de sensibilidad, dependiendo del tamaño de la gónada.

Sé tomó muestra de las primeras 5 a 7 vértebras de la columna de los individuos capturados, se las hizo hervir para extraer todo el tejido restante y se las dejo secar al sol, luego se las guardó en sobres de papel para evitar la humedad.
Cuadro 1. Ubicación de los lugares de muestreo en las cuencas de los ríos Iténez y Mamoré para el presente estudio.

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>CUENCA</th>
<th>RÍO</th>
<th>LOCALIDAD</th>
<th>COORDENADAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. foreciatum</td>
<td>Iténez</td>
<td>San Martín</td>
<td>Bahía Saha</td>
<td>61°15'00.069" W 63°26.529"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arroyo S. Mariscal</td>
<td>61°19'20.37" W 66°32'52.2"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>California</td>
<td>61°17'45.2" W 66°33'21.3"</td>
</tr>
<tr>
<td></td>
<td>San Joaquín</td>
<td>San Joaquín</td>
<td>Rio San Joaquin</td>
<td>61°18'00.8" W 66°33'21.6"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>CUENCA</th>
<th>RÍO</th>
<th>LOCALIDAD</th>
<th>COORDENADAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. ligatum</td>
<td>Iténez</td>
<td>San Martín</td>
<td>California</td>
<td>61°17'45.2" W 66°32'21.3"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sitio 3</td>
<td>61°17'50.5" W 66°32'53.7"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Laguna Larga</td>
<td>61°18'00.8" W 66°32'33.6"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>San Martín</td>
<td>61°19'20.37" W 66°32'54.7"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Laguna Casa</td>
<td>61°20'29.8" W 63°26'22.5"</td>
</tr>
<tr>
<td></td>
<td>San Joaquín</td>
<td>San Joaquín</td>
<td>Sitio 1</td>
<td>61°21'45.7" W 66°32'29.5"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sitio 4</td>
<td>30'arriba de la desembocadura</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sitio 5</td>
<td>Entre Banca Pete y Rodondo</td>
</tr>
<tr>
<td></td>
<td>Balsa Vista</td>
<td>Balsa Vista</td>
<td>Nueva Cañada</td>
<td>61°19'15.6" W 65°00'17.6"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dos Lagunas</td>
<td>61°15'21.55" W 65°02'24.8"</td>
</tr>
<tr>
<td></td>
<td>Isiboro</td>
<td>Mamoré</td>
<td>Congolón Lag 2</td>
<td>61°15'22.3" W 65°04'41.4"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Laguna Asadora</td>
<td>61°14'01.8" W 65°12'04.2"</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sto. Domingo</td>
<td>proximo confluenlo, a aprender</td>
</tr>
<tr>
<td></td>
<td>Yate</td>
<td>Yate 3</td>
<td>61°19'04.7" W 65°40'01.3"</td>
<td></td>
</tr>
</tbody>
</table>
Se tomó un pedazo de cada gónada, conservado en líquido de Bouin para posterior análisis de histología. De las gónadas de las hembras que se encontraban en maduración avanzada, se tomó un fragmento que también fue pesado y conservado en formol al 5% para posterior estudio de fecundidad.

Se determinó el sexo mediante la observación de las gónadas y estado de desarrollo sexual utilizando la siguiente escala de madurez:

Escala de Madurez Sexual de las Gónadas

Hembras

Estadio 1: Ovarios sin desarrollar. - Los ovarios son traslucidos, sin coloración o rosáceos. Cada uno tiene la forma de un cilindro estrecho (de 1 a varios mm de ancho según el tamaño del pez) pegado a la pared dorsal de la cavidad abdominal. Los ovocitos son invisibles a simple vista.

Estadio 2: Sin desarrollar y multiplicación ovocitaria. - Se observa la aparición de ovocitos más grandes pero aun son difíciles de distinguir a simple vista, el ovario presenta un tamaño mayor y un aspecto general rosáceo translúcido.

Estadio 3: En desarrollo. - El ovario está parcialmente ocupado por ovocitos opacos visibles a simple vista. Tiene una coloración a menudo amarilla, anaranjada, verde según la especie y los individuos.

Estadio 4: En desarrollo avanzado. - El aspecto del ovario es semejante al de una hembra 3 pero está más desarrollado, más lleno, y los ovocitos son de tamaño más grande y uniforme. En los estadios 3 y 4 los exámenes a la lupa muestran que los ovarios contienen también pequeños ovocitos transparentes cerca de las paredes de los mismos, pero representan una parte ínfima de la gónada.

Estadio 5: Desove inminente o en curso. - Los ovocitos pasan por una última transformación en el ovario antes del desove. Crecen aún más y se ponen translúcidos. Son libres al interior del ovario y salen del cuerpo con una presión débil en los flancos. El periodo de desove, estrictamente dicho, es caracterizado por la presencia de hembras en estado 5. El estadio es muy fugaz y a veces no puede ser observado, entonces se utilizan los estados 4 a 6 que son muy cercanos del desove, para definir el periodo de reproducción.
Estadio 6: Desovado. - El ovario es flácido, casi vacío, sanguinolento. A veces se quedan algunos óvulos maduros que no fueron expulsados y que se encuentran en reabsorción. Se encuentran también ovocitos opacos de pequeño tamaño correspondientes a un estado 3.

Estadio 6-2: Reposo sexual. - El ovario se encuentra aun rojizo y desorganizado, pero tiene más firmeza. Su apariencia es parecida a un estadio 2, pero es más grande con una pared más gruesa y un color más rojizo. A veces puede ser difícil de distinguir los estados 2 y 6-2, pero es necesario tratar de hacerlo por el significado muy distinto e importante de los estadios (inmadurez versus “reposo” sexual).

Machos

Estadio 1: Sin desarrollar. - Los testículos son dos hilos o cintas delgadas, translúcidos o plateados pegados a la pared dorsal de la cavidad abdominal. Son mas delgados y mas largos que ovarios en estadio 1.

Estadio 2: En desarrollo. - Testículos más gruesos, de color rosado, con presencia visible de vesículas.

Estadio 3: Maduro. - Los testículos son mucho más largos y gruesos, ocupando hasta 3/4 de la cavidad abdominal. Las vesículas están repletas de semen (color blanco dominante) y al presionarlos sale el líquido seminal.

4.3. Trabajo de Laboratorio

4.3.1 Edad y Crecimiento

Para determinar la edad de los ejemplares capturados, se utilizaron las vértebras colectadas en el campo y se procedió en el laboratorio a su respectiva lectura binocular.

La lectura de las vértebras se basó en la identificación y conteo de los anillos concéntricos visibles alrededor del núcleo formado con periodicidad anual. Esta compuesto por una zona de crecimiento rápido (ZCR) y por una de crecimiento lento (ZCL). Cuando se observa con luz reflejada sobre fondo oscuro la ZCL aparece como un anillo hialino; éste se deposita en la vértebra durante o cerca de un período de disminución o detención del crecimiento. El anillo hialino aparece opaco con luz transmitida. Por otra parte, la ZCR con luz reflejada, el
anillo aparece opaco, éste está formado por uno o varios anillos densos agrupados, interpretados como el incremento opaco anual que se deposita sobre la vértebra durante el periodo estival; esta zona opaca aparece oscura con la luz transmitida (Chilton y Beamish, 1982; ICSEAF, 1986; Loubens y Panfili 2000).

El periodo de formación del anillo para las dos especies fue determinada por Loubens y Panfili (2000) entre agosto y febrero en la cuenca del Mamoré, este periodo será utilizado en el presente estudio al igual que la fecha de nacimiento promedio que corresponde al primero de febrero.

Considerando que se forma solamente un anillo por año (Loubens y Panfili 2000), el calculo del edad individual de los peces se hizo tomando en cuenta el numero de anillos oscuros presentes, la fecha de nacimiento y la fecha de captura.

De esta forma se estableció el rango de edades en las que se encuentra y se reproduce la población de *Pseudoplatystoma fasciatum* y *Pseudoplatystoma tigrinum*.

La lectura de las vértebras se realizó entre dos personas por separado, para comparar los resultados, y determinar el margen de error llegando a un solo resultado más confiable.

Para el análisis de los datos que se utilizó la ecuación de crecimiento de Von Bertalanffy (VBF)

\[L_t = L_\infty \left(1 - e^{-K(t-t_0)}\right) \]

Donde:

- \(L_t \) = Longitud teórica a la edad \(t \)
- \(L_\infty \) = Longitud asintótica
- \(K \) = Coeficiente de crecimiento
- \(t \) = Edad del individuo en años
- \(t_0 \) = Edad teórica del individuo a la longitud cero
4.3.2 Reproducción

4.3.2.1 Época de reproducción y desove

Los análisis histológicos de las gónadas (hembras y machos) sirvieron para comprobar y precisar la escala macroscópica de madurez sexual (estudios de maduración sexual) utilizada en el campo.

Para establecer la época de reproducción se analizó la evolución estacional de las proporciones de los diferentes estadios de maduración sexual. Como *Pseudoplatystoma fasciatum* y *Pseudoplatystoma tigrinum* son desovadores totales, se utilizó también el índice gonadosomático (IGS) y la variación de este en el tiempo mediante la fórmula:

\[
IGS = \frac{\text{Peso de las gónadas (g) \times 100}}{\text{Peso corporal total}}
\]

4.3.2.2 Talla y edad de primera madurez sexual

La talla de primera madurez sexual se estimó por medio de la función logística (método de newton) (Duponchelle y Panfili, 1998), el porcentaje de hembras y/o machos maduros (a partir del estadio 3 y 2, respectivamente para hembras y machos) por clase de tamaño de 20 mm, ponderada por el número total de individuos por cada clase de talla por medio de la fórmula:

\[
% \text{HM} = \frac{1}{1 + e^{(-a (L-L_{50}))}} \times 100
\]

Donde:

% HM = Porcentaje de hembras y/o machos maduros en la clase de tamaño.
L = Valor central de cada clase de tamaño
a y L_{50} = constantes de modelo
e = Exponencial
La edad de primera madurez sexual fue calculada a partir de la ecuación de VBF:

\[A_{50} = \frac{-LN(1-(L50/L_\infty))/K}{t0} \]

Donde:
- \(LN \) = Logaritmo natural
- \(L50 \) = Longitud de primera madurez sexual
- \(L_\infty \) = Longitud asintótica
- \(K \) = Coeficiente de crecimiento
- \(t0 \) = Edad teórica del individuo a la longitud cero

4.3.2.3 Fecundidad

La fecundidad fue estimada a partir de las muestras de las gónadas de las hembras en estado 4 de maduración, fijadas en formol al 5%, tomadas en el campo. Para este fin se realizó un conteo ovocitario de tres sub-muestras del ovario extraídos al azar, cada uno alrededor de 0.25 gramos (pesados en una balanza de precisión 0.0001g) cada una de estas sub-muestras se las analizó independientemente para el recuento de los ovocitos.

Los ovocitos de cada fragmento fueron separados en una caja petri, y con la ayuda de una cámara fotográfica digital se tomó fotografías de cada sub-muestra, luego estas fotos fueron procesadas con el programa de Image J, con el cual los ovocitos fueron contados y medidos, registrándose de esta forma las medidas del diámetro máximo y mínimo de cada ovocito.

Para estimar la fecundidad de la sub-muestra se tomó el promedio del número de ovocitos de cada sub-muestra. Sobre la base del número de ovocitos de las sub-muestras y el peso total de las gónadas, se calculó el número total de ovocitos contenidos en la gónada. La fecundidad se estimó mediante las fórmulas:

\[
\text{Fecundidad absoluta} = \frac{\text{Número de ovocitos} \times \text{Peso total de la gónada}}{\text{Peso de la submuestra}}
\]

\[
\text{Fecundidad relativa} = \frac{\text{Fecundidad absoluta}}{\text{Peso del pez (g)}}
\]
4.3.2.4 Histología de las Gónadas

Para los análisis histológicos del desarrollo gonadal fueron utilizadas las muestras tomadas en Bouin del 2000 al 2004 que fueron procesadas bajo técnicas histológicas con tinción de eosina y Hematoxilina. Posteriormente fueron preparados los cortes histológicos de 7µm para los distintos estadios de maduración gonadal tanto de hembras como de machos. Con ayuda de un microscopio y una cámara digital se tomaron fotografías de estas placas.

4.3.3 Relación longitud - peso

Para cada especie en cada cuenca, se calculó la relación longitud estándar / peso mediante la fórmula:

\[P = a \cdot L^b \]

Donde:
- \(a \) y \(b \) = Coeficientes
- \(P \) = peso en gramos
- \(L \) = longitud en cm

4.4 Análisis Estadísticos

Las comparaciones de las curvas de crecimiento entre especies, entre poblaciones (Mamoré vs Iténez) de una misma especie, y entre sexos dentro de la misma población, se realizó con un análisis del máximo de verosimilitud:

\[S_{ML} = \sum_{i=1}^{k} n_i \times \left[\ln(s_i^2) - \ln(s_k^2) \right] \]

Donde \(n_i \) es el número de individuos de la \(k \)th población, \(S_i^2 \) es la varianza residual del modelo global (para todas las poblaciones), y \(S_k^2 \) es la varianza residual de los modelos de \(k \) poblaciones.

Las comparaciones longitud / peso y de fecundidad se realizaron mediante un análisis de covarianza (ANCOVA).

Las comparaciones de tamaño (peso o diámetro) de ovocitos se realizaron con un análisis de varianza (ANOVA).
5. RESULTADOS

5.1. Distribución por tallas

- *Pseudoplatystoma fasciatum*

En el río Iténez se registró la talla y peso de 212 individuos, el ejemplar más pequeño capturado fue una hembra de 25.7 cm de longitud estándar (LS) y 170 g de peso, y el de mayor tamaño también fue una hembra de 83 cm (LS) y 8250 g de peso. Mientras que el macho más grande midió 63.5 cm (LS) y 3360 g de peso.

En la cuenca del Mamoré se registró la talla y el peso de 152 individuos, el ejemplar más pequeño capturado fue una hembra de 26.8 cm (LS) y 925 g de peso y el de mayor tamaño también fue hembra de 90 cm (LS) y 9800 g. Mientras que los machos solo alcanzaron una talla de 66 cm (LS) y 4500 g de peso.

![Figura 5. Distribución de tallas de *P. fasciatum* por sexo en los ríos Iténez y Mamoré](image-url)
La figura 5 muestra que en el río Iténez, existe una clara diferencia en la distribución de frecuencia de longitud entre machos y hembras. La mayoría de las hembras capturadas se encontraron entre los 50 a 60 cm (LS) con un promedio de 54.4 cm (LS), mientras que en los machos la longitud predominante alcanzó solo un rango de 40 a 50 cm (LS), con un promedio de 46.5 cm (LS), el tamaño promedio de la especie fue de 51.5 cm (LS), advirtiendo de esta manera que las hembras alcanzan mayores tamaños.

Se puede observar para el Mamoré que aunque el número de machos observados es inferior al número de hembras, existe como en el Iténez una diferencia en la distribución de frecuencia de longitud entre ambos sexos. La mayoría de las hembras capturadas se encontraron entre los 60 a 80 cm (LS) con un promedio de 66.3 cm (LS), entre tanto los machos se encontraron predominantemente entre los 50 a 64 cm con un promedio de 54.8 cm (LS), el promedio de la especie fue de 64 cm (LS), señalando de esta manera que las hembras alcanzan mayores tamaños y que las tallas promedio tanto en machos como en hembras son más grandes en el Mamoré que en el Iténez. (Fig. 5).

- *Pseudoplatyystoma tigrinum*

En el río Iténez se registró la talla y peso de 48 individuos. El ejemplar más pequeño capturado para las hembras fue de 26.6 cm (LS) y 239 g de peso y la hembra de mayor tamaño alcanzó 98 cm (LS) y 10 000 g de peso. El más pequeño de los machos fue de 26.3 cm (LS) y 232 g de peso y el de mayor tamaño fue de 99.4 cm (LS) y 9500 g de peso.

En el Mamoré se registró la talla y peso de 65 individuos. El ejemplar más pequeño capturado fue una hembra de 20 cm (LS) y 250 g de peso y el ejemplar de mayor tamaño también fue una hembra de 110 cm (LS) y 18.500 g. Mientras que los machos alcanzaron una longitud máxima de 103 cm (LS) y 14.900 g de peso.

La figura 6 no muestra diferencias en la distribución de frecuencia de longitud entre machos y hembras de *P. tigrinum*, pero el número de observaciones fue más pequeño que para *P. fasciatum*. La mayoría de los individuos de *P. tigrinum* de ambos sexos en el Iténez se encuentran distribuidos entre los 60 a 75 cm (LS) con un promedio de 68.5cm (LS) para
los machos y 64.6 cm (LS) para las hembras y un promedio de 66 cm (LS) para la muestra total de la especie.

Figura 6. Distribución por tallas de *P. tigrinum* por sexo en los ríos Iténez y Mamoré

En el Mamoré de la misma forma que en el Iténez no se observa diferencia en la distribución de frecuencia de longitud entre machos y hembras de *P. tigrinum*, ya que la mayoría de los individuos de ambos sexos se encuentran distribuidos entre los 60 a 99 cm de longitud estándar (Fig.6). Para las hembras se obtuvo un promedio de 80.4 cm (LS) y para los machos 77.2 cm (LS) y un promedio total de la especie de 78.4 cm (LS).

También se puede observar que las tallas promedio tanto en machos como en hembras son más grandes en el Mamoré que en el Iténez (Fig.6).
5.2. RELACIÓN LONGITUD - PESO

La relación entre la longitud estándar y el peso para ambos sexos en el río Iténez fue altamente significativa. En el Iténez el coeficiente de determinación R^2 y b, en las hembras fue (0.96 y 3.16), y en los machos fue (0.95 y 3.3) en estos últimos el coeficiente b es mayor al de las hembras indicando que los machos fueron más pesados para su longitud (Fig. 7).

En el Mamoré, el coeficiente de determinación fue mayor para las hembras que para los machos debido al mayor rango de tamaño para hembras, R^2 y b en los machos fue de (0.75 y 3.23) y en las hembras (0.88 y 2.98). Al igual que en el río Iténez, los machos presentan el coeficiente b mayor (Fig. 7).

La comparación de las curvas logaritmizadas entre sexos para el Iténez (ANCOVA; $F_{3,212} = 0.24$ $P = 0.62$) como para el Mamoré (ANCOVA $F_{3,152} = 0.01$ $P=0.9327$), muestra que no existen diferencias significativas entre sus pendientes ni en sus interceptos, pero se observa que existe dimorfismo sexual de crecimiento en ambas cuencas, ya que las hembras alcanzan tamaños superiores a la de los machos (Fig. 8).
Figura 8. Relación Log-longitud- Log peso para machos y hembras de *P. fasciatum* en los ríos Iténez y Mamoré

- **Comparación entre cuencas**

En la figura 9 se observa la correlación entre los logaritmos de longitud y peso de las hembras de *P. fasciatum*. La comparación de las curvas logaritmidizadas entre cuencas muestra que no existen diferencias significativas entre sus pendientes ni en sus interceptos (ANCOVA; $F_{3,250} = 0.00; P=0.9869$), lo cual indica que no existen diferencias de proporción corporal entre los individuos de *P. fasciatum* de ambas cuencas.

Figura 9. Relación Log-longitud- Log peso de *P. fasciatum* de los ríos Iténez y Mamoré

En la figura 10 se observa la correlación entre los logaritmos de la longitud y peso de los machos de *P. fasciatum*. La comparación de las curvas logaritmidizadas entre cuencas muestra que no existen diferencias significativas entre sus pendientes ni en sus interceptos (ANCOVA; $F_{3,114} = 0.08; P=0.7842$), lo cual indica que no existen diferencias de proporción corporal entre los individuos de *P. fasciatum* de ambas cuencas.
La relación entre la longitud estándar y el peso de *P. tigrinum* para ambos sexos en el río Iténez fue altamente significativa al igual que el Mamoré. En el río Iténez el coeficiente de determinación R^2 y b, en las hembras fue (0.99 y 2.93), y en los machos fue (0.93 y 2.64). En el Mamoré el coeficiente de determinación R^2 y b en las hembras fue (0.96 y 2.67), y en los machos fue (0.95 y 3.21). En estos últimos el coeficiente b es mayor al de las hembras indicando que los machos fueron más pesados a la longitud equivalente. (Fig.11)

Figura 10. Relación Log-longitud-Log peso de *P. fasciatum* de los ríos Iténez y Mamoré

Pseudoplatsystoma tigrinum

Figura 11. Relación longitud estándar – peso de *P. tigrinum* por sexo en los ríos Iténez y Mamoré
En la figura 12 se observa que la correlación entre el logaritmo de la longitud y el peso fue elevado, para los machos (R²=0.97) y (R²=0.99) para las hembras. La comparación de las curvas logaritimizadas entre sexos mostraron que no existe diferencias significativas entre sus pendientes ni interceptos en el Iténez (ANCOVA; F 3,48 = 0.48; P=0.4935) al igual que en el Mamoré (ANCOVA; F 3,63 = 0.19 ; P = 0.6637), lo que indica que no existe diferencias de proporción corporal entre machos y hembras.

Figura 12. Relación Log-longitud- Log peso para machos y hembras de *P. tigrinum* en los ríos Iténez y Mamoré.

Comparación entre cuencas

En la figura 13 se observa la correlación entre los logaritmos de la longitud y peso de las hembras de *P. tigrinum*. La comparación de las curvas logaritimizadas entre cuencas mostró que no existen diferencias significativas entre sus pendientes ni interceptos (ANCOVA; F 3,47 = 1.35 ; P= 0,2516), lo cual indica que no existen diferencias de proporción corporal entre los individuos de *P. tigrinum* de ambas cuencas.

Figura 13. Relación Log- longitud- Log – Peso de *P. tigrinum* de los ríos Iténez y Mamoré
En la figura 14 se observa la correlación entre los logaritmos de la longitud y peso de los machos de *P. tigrinum*. La comparación de las curvas logaritmizadas entre cuencas mostró que no existen diferencias significativas entre sus pendientes ni interceptos (ANCOVA; $F_{3,64} = 1.12 ; P= 0.2942$), lo cual indica que no existen diferencias de proporción corporal entre los individuos de *P. tigrinum* de ambas cuencas.

Figura 14. Relación Log- longitud- Log – Peso de *P. tigrinum* de los ríos Iténez y Mamoré

5.3. EDAD Y CRECIMIENTO

5.3.1 Estructura de edades

- Cuenca del Iténez *Pseudoplatystoma fasciatum*

Se determinó la edad de 188 individuos de Surubí: 114 hembras y 74 machos. Como edad mínima se registró 1.7 años y una edad máxima de 9.6 años. La mayoría de los individuos capturados se encontraron entre los 2.5 y 7.5 años.

La relación longitud – edad que se observa en la figura 15 es curvilinear según el modelo de Von Bertalanffy. Existe un crecimiento similar en los primeros 5 años, también se observa con claridad la superioridad de crecimiento de las hembras a partir de esta edad, luego el crecimiento va disminuyendo con el incremento de la edad. También se observó que las hembras alcanzaron mayor edad y longitud (9.6 años y 77cm). La hembra de menor
edad tuvo de 1.8 años y 27 cm, mientras que los machos, el de mayor edad tuvo 7.4 años y 63 cm y el de menor edad alcanzó 1.7 años y 34 cm.

Figura 15. Curvas de ajuste de Von Bertalanffy por sexo para *P. fasciatum* en el río Iténez

La comparación entre sexos según el análisis estadístico de Verosimilitud (SML = 4367.44, P < 0.005) indicó que la diferencia de crecimiento entre hembras y machos de *P. fasciatum* en la cuenca del río Iténez es significativa.

Los parámetros obtenidos por la ecuación de VBF para cada curva de crecimiento se muestran en el cuadro 2.

Cuadro 2. Parámetros de la ecuación de VBF para machos y hembras de *P. fasciatum* en el río Iténez.

<table>
<thead>
<tr>
<th>Parámetros de VBF</th>
<th>Hembras Iténez</th>
<th>Machos Iténez</th>
</tr>
</thead>
<tbody>
<tr>
<td>L∞ (mm)</td>
<td>831.046</td>
<td>748.613</td>
</tr>
<tr>
<td>∆L∞</td>
<td>21.876</td>
<td>7.827</td>
</tr>
<tr>
<td>K</td>
<td>0.191</td>
<td>0.198</td>
</tr>
<tr>
<td>∆K</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>t₀</td>
<td>-0.681</td>
<td>-0.550</td>
</tr>
<tr>
<td>∆t₀</td>
<td>0.239</td>
<td>0.086</td>
</tr>
</tbody>
</table>

- **Cuenca Mamoré Pseudoplatystoma fasciatum**
 Se estableció la edad de 125 ejemplares de Surubí de los cuales 100 fueron hembras y 25 fueron machos, en esta población se encontraron individuos con una edad mínima de 1.7
años y una edad máxima de 9.9 años, la mayoría de los individuos de la población se encontraron entre los 4.3 y 7.8 años de edad.

La figura 16 nos muestra la relación edad – longitud de la población *P. fasciatum* en la cuenca del río Mamoré que según el modelo de Von Bertalanffy es curvilinear, se observa que posee un crecimiento similar los primeros 6 años de vida y una clara superioridad en el crecimiento de las hembras a partir de esta edad, luego el crecimiento disminuye con el incremento de la edad. También se puede observar que las hembras alcanzaron mayor talla y edad con relación a los machos. La hembra de menor edad tuvo 1.7 años y una longitud de 39 cm y la de mayor edad tuvo 9.9 años y 84.5 cm, en los machos el de menor edad tuvo 2.6 años y una longitud de 47 cm y el de mayor edad tuvo 7.8 años y una longitud de 61.5 cm.

Figura 16. Curvas de ajuste de Von Bertalanffy por sexo para *P. fasciatum* en el río Mamoré.

La comparación de las curvas de crecimiento entre sexos (Verosimilitud S_{ML} = 5118.91 ; P< 0.005) confirma que la diferencia de crecimiento entre hembras y machos de *P. fasciatum* en el río Mamoré es significativa (Fig. 16).

Los parámetros establecidos para las curvas de crecimiento por la ecuación de VBF se encuentran detallados en el cuadro 3.
Cuadro 3. Parámetros de la ecuación de VBF para machos y hembras de *P. fasciatum* en el río Mamoré.

<table>
<thead>
<tr>
<th>Parámetros de VBF</th>
<th>Hembras Mamoré</th>
<th>Machos Mamoré</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_∞</td>
<td>1091.146</td>
<td>859.706</td>
</tr>
<tr>
<td>ΔL_∞</td>
<td>200.613</td>
<td>18.439</td>
</tr>
<tr>
<td>K</td>
<td>0.140</td>
<td>0.172</td>
</tr>
<tr>
<td>ΔK</td>
<td>0.063</td>
<td>0.006</td>
</tr>
<tr>
<td>t_0</td>
<td>-0.680</td>
<td>-0.747</td>
</tr>
<tr>
<td>Δt_0</td>
<td>0.987</td>
<td>0.212</td>
</tr>
</tbody>
</table>

Se calcularon las longitudes a diferentes edades para machos y hembras de *P. fasciatum* a partir de los parámetros de las curvas de crecimiento de VBF en los ríos Iténez y Mamoré, donde se pudo observar que las hembras en el Iténez presentaron una longitud superior desde el primer año de vida y esta superioridad acrecentó más desde los 4 a 5 años con relación a los machos, en el Mamoré al igual que en el Iténez las hembras alcanzaron una longitud superior a la de los machos desde los primeros años de vida que fue acrecentando más a partir de los 4 a 5 años de edad, comparando entre cuencas tanto las hembras como los machos del Mamoré alcanzaron longitudes mayores a los del Iténez. (cuadro 4)

Cuadro 4. Longitudes alcanzadas a diferentes edades de *P. fasciatum* calculadas con la ecuación de VBF en los ríos Iténez y Mamoré.

<table>
<thead>
<tr>
<th>P. fasciatum Iténez</th>
<th>P. fasciatum Mamoré</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad (años)</td>
<td>Hembras</td>
</tr>
<tr>
<td></td>
<td>Longitud (cm)</td>
</tr>
<tr>
<td>1</td>
<td>22.82</td>
</tr>
<tr>
<td>2</td>
<td>33.30</td>
</tr>
<tr>
<td>3</td>
<td>41.96</td>
</tr>
<tr>
<td>4</td>
<td>49.11</td>
</tr>
<tr>
<td>5</td>
<td>55.02</td>
</tr>
<tr>
<td>6</td>
<td>59.90</td>
</tr>
<tr>
<td>7</td>
<td>63.94</td>
</tr>
<tr>
<td>8</td>
<td>67.27</td>
</tr>
<tr>
<td>9</td>
<td>70.02</td>
</tr>
<tr>
<td>10</td>
<td>72.29</td>
</tr>
</tbody>
</table>

P. fasciatum Mamoré

<table>
<thead>
<tr>
<th>Edad (años)</th>
<th>Hembras</th>
<th>Machos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Longitud (cm)</td>
<td>Longitud (cm)</td>
</tr>
<tr>
<td>1</td>
<td>22.86</td>
<td>22.31</td>
</tr>
<tr>
<td>2</td>
<td>34.13</td>
<td>32.37</td>
</tr>
<tr>
<td>3</td>
<td>43.93</td>
<td>40.84</td>
</tr>
<tr>
<td>4</td>
<td>52.44</td>
<td>47.97</td>
</tr>
<tr>
<td>5</td>
<td>59.85</td>
<td>53.97</td>
</tr>
<tr>
<td>6</td>
<td>66.28</td>
<td>59.03</td>
</tr>
<tr>
<td>7</td>
<td>71.88</td>
<td>63.28</td>
</tr>
<tr>
<td>8</td>
<td>76.74</td>
<td>66.87</td>
</tr>
<tr>
<td>9</td>
<td>80.97</td>
<td>69.89</td>
</tr>
<tr>
<td>10</td>
<td>84.65</td>
<td>72.43</td>
</tr>
</tbody>
</table>

- Cuenca del Iténez *Pseudoplatystoma tigrinum*

Se determinó la edad de 38 ejemplares de Chuncuina de los cuales 19 eran hembras y 19 machos.
En la figura 17 se observa la relación longitud – edad de *P. tigrinum* según el modelo de Von Bertalanffy. La hembra de menor edad tuvo 0.6 años con una longitud de 26.6 cm y la de mayor edad alcanzó los 11.4 años y 98 cm en cambio el macho de menor edad 0.6 años alcanzó una longitud de 26.3 cm y el de mayor edad tuvo de 10.7 años y una longitud de 99.4 cm.

La comparación de las curvas de edad y crecimiento entre sexos mediante el análisis estadístico (Verosimilitud $S_{ML} = 5118.91$ $P < 0.005$) indica que existen diferencias de edad y crecimiento entre hembras y machos de *P. tigrinum* en el cuenca del río Iténez, en el presente estudio.

Los parámetros establecidos por la ecuación de VBF para las curvas de crecimiento de *P. tigrinum* se muestran en el cuadro 5.

Cuadro 5. Parámetros de la ecuación de VBF para machos y hembras de *P. tigrinum* en el río Iténez.

<table>
<thead>
<tr>
<th>Parámetros de VBF</th>
<th>Hembras Iténez</th>
<th>Machos Iténez</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_∞</td>
<td>1098.563</td>
<td>1083.480</td>
</tr>
<tr>
<td>ΔL_∞</td>
<td>112.095</td>
<td>149.401</td>
</tr>
<tr>
<td>K</td>
<td>0.155</td>
<td>0.180</td>
</tr>
<tr>
<td>ΔK</td>
<td>0.027</td>
<td>0.050</td>
</tr>
<tr>
<td>t_0</td>
<td>-0.422</td>
<td>-0.221</td>
</tr>
<tr>
<td>Δt_0</td>
<td>0.137</td>
<td>0.251</td>
</tr>
</tbody>
</table>
- Cuenca del Mamoré *Pseudoplatystoma tigrinum*

Se determinó la edad de 60 ejemplares de *P. tigrinum* en el río Mamoré donde se tuvo 34 machos y 26 hembras.

En la figura 18 se observa la relación longitud – edad de *P. tigrinum* según el modelo de Von Bertalanffy. Se puede observar que la hembra de menor edad tuvo 1.4 años y 20 cm de longitud, y la de edad máxima tuvo 13.7 años y 110 cm de longitud, el macho de menor edad tuvo 1.5 años y 24 cm y el de mayor edad tuvo 12.2 años y 94 cm de longitud.

![Figura 18. Curvas de ajuste de Von Bertalanffy por sexo para *P. tigrinum* en el río Mamoré.](image)

La comparación de las curvas de crecimiento entre ambos sexos mediante el análisis estadístico (Verosimilitud; $S_{ML} = 6505.87 ; P < 0.005$) indica que existen diferencias de edad y crecimiento de *P. tigrinum* entre sexos en el presente estudio. (Fig. 19)

Los parámetros establecidos por la ecuación de VBF para las curvas de crecimiento de *P. tigrinum* en el río Mamoré se muestran en el cuadro 6.
Cuadro 6. Parámetros de la ecuación de VBF para machos y hembras de *P. tigrinum* en el río Mamoré.

<table>
<thead>
<tr>
<th>Parámetros de VBF</th>
<th>Hembras Mamoré</th>
<th>Machos Mamoré</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{∞}</td>
<td>1293.910</td>
<td>1054.626</td>
</tr>
<tr>
<td>ΔL_{∞}</td>
<td>190.330</td>
<td>126.542</td>
</tr>
<tr>
<td>K</td>
<td>0.128</td>
<td>0.179</td>
</tr>
<tr>
<td>ΔK</td>
<td>0.043</td>
<td>0.0179</td>
</tr>
<tr>
<td>t_0</td>
<td>-0.245</td>
<td>-0.0494</td>
</tr>
<tr>
<td>Δt_0</td>
<td>0.660</td>
<td>0.684</td>
</tr>
</tbody>
</table>

Se calcularon las longitudes a diferentes edades para machos y hembras de *P. tigrinum* a partir de los parámetros de las curvas de crecimiento de VBF en los ríos Iténez y Mamoré, se puede observar que en el Iténez como en el Mamoré que no existe una diferencia de longitud muy marcada entre machos y hembras (cuadro 7).

Cuadro 7. Longitudes alcanzadas a diferentes edades de *P. tigrinum* calculadas con la ecuación de VBF en los ríos Iténez y Mamoré.

<table>
<thead>
<tr>
<th>P. tigrinum Iténez</th>
<th>P. tigrinum Mamoré</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad (años)</td>
<td>Hembras</td>
</tr>
<tr>
<td>1</td>
<td>21.73</td>
</tr>
<tr>
<td>2</td>
<td>34.38</td>
</tr>
<tr>
<td>3</td>
<td>45.22</td>
</tr>
<tr>
<td>4</td>
<td>54.50</td>
</tr>
<tr>
<td>5</td>
<td>62.44</td>
</tr>
<tr>
<td>6</td>
<td>69.25</td>
</tr>
<tr>
<td>7</td>
<td>75.08</td>
</tr>
<tr>
<td>8</td>
<td>80.07</td>
</tr>
<tr>
<td>9</td>
<td>84.35</td>
</tr>
<tr>
<td>10</td>
<td>88.01</td>
</tr>
</tbody>
</table>
- Comparación entre cuencas

Pseudoplatystoma fasciatum

Figura 19. Curvas de crecimiento de Von Bertalanffy de las hembras de *P. fasciatum* en los ríos Ítênez y Mamoré.

En la figura 19, se observa la comparación de las curvas de crecimiento de las hembras de *P. fasciatum* en ambas cuencas. El análisis estadístico de verosimilitud, ($S_{ML} = 57.5, P < 0.005$) indica que las hembras del Mamoré tienen un crecimiento significativamente superior a las hembras del Ítênez.

Figura 20. Curvas de crecimiento de Von Bertalanffy de los machos de *P. fasciatum* en los ríos Ítênez y Mamoré.
La figura 20 muestra la comparación de las curvas de crecimiento de los machos de *P. fasciatum* en ambas cuencas. El análisis estadístico de Verosimilitud (*SML = 2297.68* ; *P < 0.005*) indica que los machos del Mamoré tienen un crecimiento significativamente superior a los machos del Iténez.

Pseudoplatystoma tigrinum

![Diagrama de curvas de crecimiento de Von Bertalanffy de las hembras de *P. tigrinum* en los ríos Iténez y Mamoré.](image)

Figura 21. Curvas de crecimiento de Von Bertalanffy de las hembras de *P. tigrinum* en los ríos Iténez y Mamoré.

La figura 21 muestra la comparación de las curvas de crecimiento de las hembras de *P. tigrinum* en ambas cuencas. La prueba estadística de Verosimilitud (*SML = 4582.30* ; *P <0.005*) indicó que las hembras del Mamoré tienen un crecimiento significativamente superior a las hembras del Iténez.
Figura 22. Curvas de crecimiento de Von Bertalanffy de los machos de *P. tigrinum* en los ríos Iténez y Mamoré.

En la figura 22 se puede observar la comparación de las curvas de crecimiento de los machos de *P. tigrinum* entre cuencas. La prueba estadística de Verosimilitud (*S*$_{ML}$ = 5519.46 ; P < 0.005) mostró que existe diferencia en el crecimiento de los machos de *P. tigrinum* entre cuencas, pero al igual que en las hembras se necesita mayor cantidad de datos para ratificar los resultados.
5.4. REPRODUCCIÓN

- Cortes histológicos de ovarios y estadios de madurez sexual *Pseudoplatystoma sp.*

Figura 23. Corte histológico de ovario de *Pseudoplatystoma sp.*

Estadio I y II

En el estadio I, los ovocitos son de menor tamaño oscilando entre 8 y 20 µm mientras que los del estadio II oscilan entre 20 a 40 µm. En estos estadios se puede observar los ovocitos con un cociente núcleo-plásmico muy grande donde el núcleo aparece con una membrana nuclear lisa. El núcleo está rodeado por una capa fina de ooplastma homogéneo.

El estadio VI-2 es muy parecido al estadio II, se pueden encontrar ovocitos en estadio I y II los cuales no alcanzaron la madurez, además el ovario posee un aspecto sanguinolento y su pared es mucho más gruesa que la de un ovario en estadio II.
Figura 24. Corte histológico de ovario de *Pseudoplatystoma sp.*
estadio III

Estadio III
Este estadio de maduración se caracteriza por la presencia de gránulos de lípidos (GL) acumulados en forma de halo en la periferia del Ooplasma (OOPL).

Los ovocitos muestran un aumento en volumen de ooplasma, un menor cociente núcleo-plásmico que el estadio II, por la acumulación de gránulos de vitelo (o lípidos). La membrana del núcleo (N) se torna ondulada con presencia de nucleolos (n) en la parte periférica. Rodeando el ooplasma, aparece la zona radiata (ZR). El diámetro de los ovocitos oscila entre los 80 y 120 µm. Debido a la acumulación de gránulos lipídicos y de vitelo, el ooplasma aparece con una zona periférica heterogénea que va ganando hacia la parte central.
Figura 25. Corte histológico de ovario de *Pseudoplatystoma sp.*

Estadios IV

Estadio IV y V

El estadio IV se caracteriza por la presencia de una gran cantidad de gránulos de vitelo. El estadio V presenta un núcleo ligeramente excéntrico y gránulos de vitelo de gran tamaño en todo el ooplasma.

Estos ovocitos oscilan entre los 700 a 800 µm.

Figura 26 Estadios ovocitarias I, II, III, IV en un ovario de *Pseudoplatystoma sp.* en estadio de maduración IV.
Estudio histológico de testículos y estados de madurez sexual de *Pseudoplatystoma sp.*

Figura 27. Corte histológico de testículo de *Pseudoplatystoma sp.*

Estadios I y II

En el estadio I los lóbulos de los testículos contienen células germinales aisladas y espermatogonias en multiplicación formando pequeños cistos. El estadio II se caracteriza por presentar cistos más desarrollados con diferentes tipos celulares, espermatogonias y espermatocitos I y II, en división indicando el inicio de la espermatogénesis.
Figura 28. Corte histológico de testículo de *Pseudoplatystoma sp.*
estadio de maduración III.

Estadio III

El estadio III en los machos se caracteriza por presentar túbulos seminíferos llenándose de espermatozoides. Los lóbulos ya no contienen cistos con diferentes tipos celulares excepto en las partes proximales (en la periferia) del testículo. A medida que la espermiogenesis avanza los espermatozoides son liberados en la luz de los túbulos seminíferos, y estos ocupan la mayoría del volumen del testículo.
5.5. Época de reproducción

- Cuencas Iténez y Mamoré *Pseudoplatystoma fasciatum*

En el río Mamoré como en el Iténez, las hembras (estados 4, 5 y 6) y los machos (estadio 3) en estado de reproducción, se encontraron principalmente entre los meses de diciembre y enero, aunque algunos machos en maduración avanzada fueron encontrados a partir del mes de septiembre en el río Iténez.

El índice gonadosomático (IGS) presentó valores altos en ambas cuencas, en los meses de noviembre a marzo, con un pico entre diciembre y febrero, coincidiendo con la época de reproducción según los estados de madurez sexual.

En ambas cuencas, la época de reproducción empezó con el incremento del nivel del agua y el pico de reproducción coincido con el fotoperíodo máximo. (Fig. 29)

![Figura 29. IGS de *P. fasciatum* y nivel de agua en los ríos Iténez y Mamoré](image)

- Cuencas Iténez y Mamoré *Pseudoplystostoma tigrinum*

La época reproductiva de *P. tigrinum* en ambas cuencas no pudo ser determinada de manera precisa por falta de individuos maduros, pero se puede sugerir una época reproductiva similar a la de *P. fasciatum*, por el incremento del IGS en los meses de diciembre y enero.
5.6. Talla y edad de madurez sexual

- Cuenca Iténez *Pseudoplatystoma fasciatum*

Figura 30. Talla de madurez sexual de machos y hembras de *P. fasciatum* en el río Iténez

Para *P. fasciatum* en el río Iténez el 50% de los machos maduran a 35.27 cm (± 1.45) de longitud estándar y a una edad aproximada de 2.66 años, mientras que las hembras maduran por primera vez a los 39.94 cm (± 2.41) de longitud estándar y 2.74 años. (Fig. 30)

Cuenca Mamoré *Pseudoplatystoma fasciatum*

Figura 31. Talla de madurez sexual de machos y hembras de *P. fasciatum* en el río Mamoré
Para *P. fasciatum* en el río Mamoré el 50% de los machos maduran a 48.49 cm (± 0.00) de longitud estándar y a una edad 4.07 años, mientras que las hembras maduran por primera vez a los 55.59 cm (± 1.81) de longitud estándar y 4.40 años. (Fig. 31)

- **Cuenca Iténez** *Pseudoplatystoma tigrinum*

Para *P. tigrinum* no se pudo establecer la talla ni edad de madurez sexual por falta de individuos pequeños en época de reproducción, la hembra madura más pequeña alcanzo los 59.9 cm de longitud estándar y en los machos el más pequeño tuvo 57.5 cm de longitud estándar.

- **Cuenca Mamoré** *Pseudoplatystoma tigrinum*

Para *P. tigrinum* en la cuenca del río Mamoré tampoco se pudo determinar la talla y edad mínima de madurez sexual para ninguno de los sexos. El macho maduro más pequeño tuvo 63.3 cm mientras que la hembra madura más pequeña alcanzó los 67 cm de longitud estándar.

- **Comparación entre cuencas**

Pseudoplatystoma fasciatum

Las tallas y edad de primera madurez sexual de hembras y machos en las dos cuencas son resumidas en el cuadro 8.

Las tallas de madurez sexual son significativamente superiores en el Mamoré que en el Iténez, tanto para machos (t-test, t=18.624, g.l. = 48, P< 0.001) como para hembras (t=9.908, g.l. = 52, P< 0.001). Aun que no se pueda comparar las edades de madurez estadisticamente, los peces del Mamoré alcanzan la madurez sexual casi al doble de edad de los peces del Iténez.

Cuadro 8.- Talla y edad de madurez sexual de *P. fasciatum* en los ríos Iténez y Mamoré

<table>
<thead>
<tr>
<th></th>
<th>Hembras</th>
<th>Machos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Iténez</td>
<td>Mamoré</td>
</tr>
<tr>
<td>L50 (mm)</td>
<td>399.40</td>
<td>555.931</td>
</tr>
<tr>
<td>A50 (años)</td>
<td>2.74</td>
<td>4.40</td>
</tr>
</tbody>
</table>
Pseudoplatystoma tigrinum
Para esta especie no se pudo establecer la talla ni la edad de madurez sexual en ambas cuencas por falta de individuos pequeños en época de reproducción.

5.7. Tipo de desove
- **Cuenca Iténez Pseudoplatystoma fasciatum**

En la cuenca del río Iténez como en la del Mamoré la mayoría de los ovocitos de hembras de *P. Fasciatum* en estado IV de madurez, se encontraron con un diámetro entre 0.9 y 1 mm, esta distribución con un solo modo indica que estos peces son desovadores totales.
(Fig.32)

![Figura 32. Tamaño de los ovocitos de *Pseudoplatystoma fasciatum* en las cuencas de los ríos Iténez y Mamoré](image-url)

5.9. Fecundidad

Pseudoplatystoma fasciatum

En la cuenca del río Iténez, se calculó la fecundidad absoluta y relativa de 29 surubís. El menor número de ovocitos producidos por una hembra de *P. fasciatum* fue de 107.855 (39.6 cm y 730 g) y un máximo de 155.1780 (70.8 cm y 5700 g). Para la cuenca del río Mamoré se calculó la fecundidad absoluta y relativa de 7 surubís. El menor número de ovocitos producidos por hembra de *P. fasciatum* fue de 304.848 (85 cm y 6900 g) y el máximo fue de 2.272.407 (98 cm y 13000 g).

Se observó que la fecundidad en ambas cuencas se incrementa en función a la longitud y el peso (Fig.33)

63
Figura 33. Variación de la fecundidad absoluta en función de la longitud y el peso en *P. fasciatum* en los ríos Iténez y Mamoré.

Se encontró una correlación positiva entre la fecundidad absoluta, longitud y peso de *P. fasciatum* en el río Iténez. En el río Mamoré se tuvo un coeficiente de correlación más elevado pero se debe tomar en cuenta el escaso número de muestras. (Cuadro 9)

Cuadro 9. Correlación de Pearson entre fecundidad absoluta – longitud estándar y fecundidad absoluta – peso de *P. fasciatum*.

<table>
<thead>
<tr>
<th>Cuenca Iténez</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecundidad Absoluta -</td>
<td>29</td>
<td>0.44</td>
<td>0.0173</td>
</tr>
<tr>
<td>Longitud estándar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecundidad absoluta</td>
<td>29</td>
<td>0.45</td>
<td>0.0133</td>
</tr>
<tr>
<td>- Peso</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuenca Mamoré</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecundidad Absoluta -</td>
<td>7</td>
<td>0.64</td>
<td>0.123</td>
</tr>
<tr>
<td>Longitud estándar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecundidad absoluta</td>
<td>7</td>
<td>0.86</td>
<td>0.0127</td>
</tr>
<tr>
<td>- Peso</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En la figura 34 no se encontró relación significativa entre la fecundidad relativa y el peso corporal o la longitud de las hembras de *P. fasciatum* en ambas cuencas. Cada hembra produce un promedio de 208.479.451 ovocitos por kg de peso corporal en el Iténez, y 146.725 ovocitos por kg de peso corporal en el Mamoré.

Figura 34. Variación de la fecundidad relativa en función de la longitud y el peso en *P. fasciatum* en los ríos Iténez y Mamoré.
- *Pseudoplatystoma tigrinum*

Para *P. tigrinum* no se pudo obtener la fecundidad en ninguna de las dos cuencas por falta de muestras y datos.

- **Comparación entre cuencas**

La comparación de las curvas logarítmizadas entre la relación log fecundidad absoluta – longitud y log fecundidad absoluta – log peso (ANCOVA F 3,36; 0,05; P = 0.82 y F 3,36; 0,7; P = 0.41) respectivamente, indican que no existen diferencias significativas en la fecundidad de *P. fasciatum* entre cuencas (Fig.35)

![Figura 35. Relación Log (Fecundidad absoluta) – log (longitud y peso) de *P. fasciatum* en los ríos Iténez y Mamoré](image)
6. Discusión

6.1. Tallas por sexo

Contreras (1997) indicó, en la región de Ucayali, que los machos de P. fasciatum predominan a tallas pequeñas desde los 45 hasta los 75 cm de longitud total y las hembras son predominantes a tallas mayores que van desde 80 a 125 cm de longitud total. Estos resultados concuerdan con Bazán, (2002) quien encontró en la misma región que existe una evidente predominancia de hembras a tallas mayores (de 82 cm a 127 cm de longitud total), mientras que los machos predominan a tallas menores (de 37 cm a 77 cm de longitud total)

Reid, (1983) realizó un análisis de la distribución de tamaño por sexos de P. fasciatum en el río Apure, donde mostró que los machos presentan tamaños promedios y máximos menores a los de las hembras. El estudio realizado con P. tigrinum generó el mismo tipo de resultados.

En Bolivia Muñoz (1999), estimó en la cuenca del río Ichilo que la mayoría de las hembras de P. fasciatum se encuentran entre los 78 y 108 cm de longitud total, mientras que los machos se encuentran entre los 63 y 88 cm. Para P. tigrinum las hembras se encuentran entre los 68 y 138 cm y los machos entre 78 y 128 cm de longitud total.

Loubens y Aquim (1986) reportaron en la cuenca del río Mamoré (Bolivia) para Pseudoplatystoma fasciatum, que los machos no se observan arriba de 86 cm (LS), mientras que las hembras sobrepasan los 99 cm (LS).

Años más tarde Loubens & Panfili, (2000) reportaron en la misma cuenca, que los machos de P. fasciatum pasan raramente los 80 cm de longitud estándar y 7.5 kg de peso, sin embargo las hembras miden hasta 95 cm (LS) y llegan a pesar hasta 12.5 kg, en los P. tigrinum los machos pasan raramente los 110 cm (LS) y los 17 kg, mientras que las hembras miden hasta 120 cm (LS) y llegan a pesar 22.5 kg.
En el presente estudio los resultados para *P. fasciatum* concuerdan con los autores, ya que las hembras alcanzan mayores longitudes en ambas cuencas.

Los resultados obtenidos para *P. tigrinum* no muestran una diferencia entre sexos en ambas cuencas, contrario a lo que observaron otros autores en el Mamoré, esto podría deberse al número débil de muestras para esta especie.

La diferencia de tamaño de los peces entre cuencas, podría deberse a una presión de pesca más elevada en el río Iténez, sacando en prioridad los individuos más grandes de la población, pero no existen datos precisos de los desembarques para comprobar esta hipótesis. Un a alternativa más probable es que la diferencia de tamaño podría deberse a las condiciones tróficas más favorables en las aguas blancas (Lowe-McConnell, 1987; Junk *et al.*, 1989; Junk, 1997; Saint-Paul *et al.*, 2000) del río Mamoré permitiéndoles alcanzar mayores longitudes. Diferencias similares de tamaño relacionadas a las condiciones tróficas han sido observadas también en la piraña roja, *Pygocentrus nattereri*, entre el Mamoré y el Iténez (Duponchelle *et al.*, 2007).

6.2. Longitud – peso

Es importante para el estudio del ciclo de vida de una especie, conocer su crecimiento en longitud y peso, puesto que poblaciones de una misma especie pueden presentar tasas diferentes de crecimiento ponderal (Vazzoler, 1981).

Romagosa *et al.*, (2003) reportaron en el Brasil para *P. fasciatum* un coeficiente de alometría, ya que a lo largo de su vida estos peces tienden a tornarse más longilineos. En el presente trabajo, en ambas cuencas se encontró también que *P. fasciatum* tiende al crecimiento alométrico ya que los peces tienden a ser más pesados para su tamaño. Al contrario los *P. tigrinum*, tienden a ser más livianos a longitudes equivalentes.
Reid (1983) indicó que los valores del coeficiente de correlación entre longitud y peso para ambas especies son altos y muestran una estrecha correlación entre las variables, para la población de *P. fasciatum* $r = 0.996$ y para *P. tigrinum* $r = 0.998$. Corroborando los resultados obtenidos en el presente estudio ya que el coeficiente de correlación entre longitud y peso también fue elevado en ambas especies, y en ambas cuencas.

6.3. Edad y Crecimiento

En el presente estudio se tomó como referencia el mes de formación del anillo para *Pseudoplatystoma fasciatum* y *Pseudoplatystoma tigrinum* en ambas cuencas, reportado por Loubens y Panfili (2000).

Payne (1987) estimó para *P. tigrinum* en el río Mamoré $L_\infty = 141.8$ cm de longitud total (mas o menos 125 cm de longitud estándar) y $k= 0.12$, otros autores como Rufino & Isaac (1995) estimaron, para *Pseudoplatystoma tigrinum* $k= 0.29$ en la amazonía brasileria. Reid (1983) publicó que el coeficiente de crecimiento “k” de *P. fasciatum* para los machos fue de 0.1224 y un $L_\infty = 103$ cm y para las hembras 0.0978 y un $L_\infty = 130$ cm mientras que para *P. tigrinum* en los machos fue de 0.1149 y un $L_\infty = 146$ cm y 0.0887 y un $L_\infty = 173$ cm
para las hembras en el río Apure, observando claramente la superioridad del crecimiento de las hembras a partir de los cuatro años en *P. fasciatum* y los seis años en *P. tigrinum*.

Los valores de L_∞ encontrados en nuestro estudio son muy inferiores a los encontrados por Payne (1987) o Reid (1983), y lógicamente debido a la relación inversa entre L_∞ y k, nuestras estimaciones de k son muy superiores. Sin embargo, en el caso de Payne como de Reid, los L_∞ encontrados fueron muy superiores a las tallas máximas observadas por los mismos autores, los que podría explicar las diferencias de resultados con nuestro estudio. Una comparación más confiable viene con los resultados de Loubens y Panfili (2000). Ellos encontraron para *P. fasciatum* en el Mamoré, valores de L_∞ de 103.1 cm (LS) y 77 cm y valores de k de 0.237 y 0.439 para las hembras y los machos, respectivamente. Aun que hemos encontrado valores de L_∞ ligeramente superiores (109.1 y 86 cm para hembras y machos en el Mamoré), probablemente debido a la escasez de individuos de muy grande tamaño en comparación con el estudio de Loubens y Panfili, los valores de k muy inferiores (0.14 y 0.17 para hembras y machos) a los de Loubens y Panfili indican un crecimiento más lento en nuestro estudio. Para *P. tigrinum*, el débil numero de muestras en nuestro estudio impide la comparación directa de los parámetros de VBF y la elaboración de conclusiones definitivas. Sin embargo, una comparación directa del tamaño a una edad determinada con los resultados de Loubens y Panfili (2000) indica también un crecimiento inferior para esta especie en nuestro estudio. Las diferencias de crecimiento encontradas entre nuestro estudio y el de Loubens y Panfili (2000) para las dos especies de *Pseudoplatystoma* en el Mamoré podrían explicarse por las condiciones hidrológicas vigentes durante los estudios. Loubens y Panfili (2000) muestrearon durante épocas de inundaciones grandes (Hamilton *et al.*, 2004; Loubens *et al.*, 1992), mientras nuestro estudio ocurrió durante inundaciones pequeñas. Inundaciones grandes proveen condiciones tróficas más favorables porque los peces aprovechan de los recursos alimentarios de la zona de inundación por más tiempo (Bayley, 1988; Junk *et al.*, 1989; Junk, 1997; Lowe-McConnell, 1987). Y condiciones tróficas más favorables podrían explicar los crecimientos mas elevados encontrados por Loubens y Panfili (2000).
La edad máxima encontrada para *P. fasciatum* en el río Iténez fue de 9.6 años y en el río Mamoré de 9.9 años, coincidiendo con Loubens y Panfili (2000). Sin embargo, nuestras observaciones *P. tigrinum* donde la edad máxima encontrada para el Mamoré fue de 13.7 años y 11.4 años en el Iténez, fueron inferiores a las de Loubens y Panfili (2000), esto tal vez se deba al débil número de muestras en nuestro estudio.

De manera general, se ha observado para ambas especies un mejor crecimiento de las hembras. Los especímenes del Mamoré tienen un mejor crecimiento que los especímenes del Iténez para ambos sexos y ambas especies. Sin embargo, en el caso de *P. tigrinum*, estas tendencias son basadas en pocos individuos. Estos resultados son compatibles con la hipótesis que aguas blancas (como el Mamoré) son más productivas que las aguas negras o claras (como el Iténez) y proveen mejores condiciones tróficas para los peces (Junk *et al.*, 1989; Junk, 1997; Saint-Paul *et al.*, 2000). En un estudio llevado a cabo durante el mismo periodo que el presente, se hizo la hipótesis que las condiciones tróficas más favorables del río Mamoré (en comparación al Iténez), fueron responsables del mejor crecimiento observado en la piraña roja en el Mamoré (Duponchelle *et al.*, 2007).

6.4. Época de reproducción

La reproducción se efectúa cuando el ambiente ofrece recursos ecológicos de mayor cantidad y mejor calidad (temperatura, alimento, etc.) ya sea tanto para los padres, como para los descendientes, ya que cuando existen variaciones ambientales las especies modulan sus estrategias (Granado, 1996).

Welcomme (1979), Novoa & Ramos (1982), Galvis *et al.*, (1989) indican que la reproducción de muchos peces en los ríos tropicales es altamente estacional y que, en los ríos que presentan variaciones en su nivel a través del año, ocasionadas por regímenes hidrológicos variables, existe una sincronización entre los procesos reproductivos de la mayoría de los peces y el incremento en el nivel de las aguas.

y alevines para su protección natural en las zonas inundadas, así como también brinda mejores condiciones para su alimentación y desarrollo.

Bazán (2002), Saavedra y Velarde (1997), en la región de Ucayali reportaron que el desarrollo de las gónadas de *P. fasciatum* ocurre progresivamente a partir de octubre cuando aparecen ejemplares en estadio III hasta febrero y marzo, lo que indica que el periodo reproductivo está comprendido entre estos meses. Otros autores (Barthem *et al.*, 1995 & Montreuil *et al.*, 2001) aseguran que la época de reproducción para *P. fasciatum* se prolonga desde noviembre hasta marzo con un pico máximo en febrero, este lapso coincide con el periodo de aguas altas del río Ucayali. Este comportamiento también fue observado en la Amazonía Peruana por García *et al.*, (2001) y en la cuenca del Apure Reid (1983) para *P. fasciatum* y *P. tigrinum*.

En Bolivia Lauzanne *et al.*, (1990) reportaron para el río Mamoré que las especies del género *Pseudoplatystoma* desovan a partir de enero hasta el mes de marzo siendo un periodo relativamente corto y coincidiendo con la época de aguas altas, Muñoz, (1999) observó un comportamiento similar en la cuenca del río Ichilo para *Pseudoplatystoma fasciatum* y *Pseudoplatystoma tigrinum*.

Para *P. tigrinum* no se pudo determinar la época de reproducción en ambas cuencas por falta de individuos maduros, pero los resultados observados para *P. fasciatum* en ambas cuencas concuerdan con las observaciones reportadas por otros autores en el Mamoré.

6.5. Talla y edad de primera madurez sexual

Reid (1983) estimó en el río Apuré- Venezuela el tamaño mínimo de *P. fasciatum* que presentó gónadas en proceso de maduración a los 39.0 cm de longitud estándar en los machos y 39.5 en las hembras, *P. tigrinum* presentó gónadas en estado preparativo a los 48,0 cm en los machos y de 46.0 cm de longitud estándar en las hembras del mismo lugar.

cm para machos y hembras respectivamente, para *P. fasciatum* en 60 cm para los machos y 83 cm para las hembras.

Contreras (1997) reporta en la región de Ucayali para *P. fasciatum*, la talla de primera madurez sexual, es de 78 cm de longitud total para los machos y 99 cm para las hembras. Bazán (2002) en la misma región, afirma que la longitud de primera madurez sexual de *P. fasciatum* es de 94 cm de longitud total en las hembras y de 78 cm en los machos. Otros estudios en la amazonía peruana sobre *P. fasciatum* indican que la talla de primera madurez sexual es de 89.8 cm de longitud estándar para las hembras y 82.5 cm para los machos, para *P. tigrinum* la talla en que las hembras maduran por primera vez es de 104.2 cm de longitud a la horquilla, mientras que los machos lo hacen a 95.7 cm. (García, *et al.*, 1998)

En la amazonía colombiana se considera 80 cm longitud total como la talla mínima de captura para esta especie. (Barthem *et al.*, 1995), Rodríguez, (1992) en el río Caqueta considera como talla mínima de *P. fasciatum* es de 60 cm para las hembras y 70 cm longitud total para los machos. Según Moreno *et al.*, (1993) y Valderrama (1988) la talla media de madurez para toda la población de *P. fasciatum* en el río Magdalena es de 81 cm y por sexos separados de 65 cm para los machos y 89 cm de longitud estándar para las hembras.

En Bolivia Loubens y Aquim (1984) en la cuenca del Mamoré estimaron la talla de madurez sexual para *P. tigrinum* en 75 cm para las hembras y 70 cm para los machos, años más tarde Loubens & Panfili, (2000) establecieron en la misma cuenca la talla de madurez sexual, para *P. fasciatum* de 55 cm de longitud estándar para los machos y 73 cm para las hembras. Para *P. tigrinum* las tallas de madurez sexual se determinaron en 81 cm para los machos y 99 cm para las hembras.

Los resultados observados en el presente estudio para la talla mínima de madurez sexual, no concuerdan con los reportados por otros autores; las tallas mínimas registradas para *P. fasciatum* son menores a los valores encontrados por los otros autores. Esto puede deberse a diferentes metodologías utilizadas para la diferenciación de hembras inmaduras y hembras en reposo. En el presente estudio se realizó cortes histológicos para la verificación de dichos estadios de madurez sexual y de esta forma evitar confusiones en la determinación
de estadios de madurez, además cabe recalcar que las hembras más pequeñas reportadas se encontraron en estadios 3 y 4 difíciles de confundir con otros estadios.

Otra causa que puede llevar a una sobre-estimación de la talla de madurez es hacer la estimación con datos de todo el año (que abarca una mayoría de individuos inmaduros o en reposo, que es un estadio difícil de identificar). Esta estimación debe hacerse solamente con datos dentro de la época de reproducción, cuando todo los jóvenes que van a reproducir por primera vez, como los ya sexualmente maduros, están madurando.

Para *P. tigrinum* no se pudo determinar la talla mínima de madurez sexual por falta de individuos maduros pequeños.

Podemos observar que los resultados varían de lugar a lugar pero comparando con los resultados de Loubens y Aquim, 1984; Loubens y Panfili, 2000 que hicieron sus estudios en la cuenca del Mamoré podemos ver que la talla de madurez sexual a disminuido considerablemente con los años (aproximadamente de 20 cm). Examinando la variabilidad del ciclo vital de poblaciones locales de salmón atlántico (*Salmo salar*) norte americano, Schaffer y Elson (1975) observaron que los efectos de la pesca comercial eliminaron los salmones más grandes y más viejos. Esta eliminación provocó una disminución de la edad de primer retorno a ciertos ríos, por lo tanto de la edad de primera reproducción. De manera general, la explotación comercial de poblaciones de peces conduce a una disminución de tamaño y edad de primera madurez (Rochet et al., 2000). En Bolivia también, la pesca comercial más importante ahora que en los años 80 cuando muestrearon Loubens et al., elimina los adultos y especímenes mas grandes, lo que podría explicar la disminución de talla y edad de madurez observada entre nuestro estudio y los de Loubens et al.

Alternativamente, Loubens et al. muestrearon durante épocas de inundaciones grandes (Hamilton et al., 2004; Loubens et al., 1992), mientras nuestro estudio ocurrió durante inundaciones pequeñas. Inundaciones grandes proveen condiciones tróficas más favorables porque los peces aprovechan de la varzea por mas tiempo (Junk et al., 1989; Junk, 1997; Lowe-McConnell, 1987). Esto también podría explicar porque Loubens y colaboradores encontraron tallas de madurez más grandes que en nuestro estudio, ya que el tamaño de madurez puede ser influenciado por la disponibilidad de alimento (Reznick, 1983; Stearns, 1992; Wootton, 1998).
Según Loubens y Panfili (2000) la edad de madurez sexual de los machos es de 3 años en los *P. fasciatum* y 5 años en los *P. tigrinum*, la maduración en las hembras es más tardía a partir de 5 años para los *P. fasciatum* y 8 años para los *P. tigrinum*.

En el presente trabajo las edades de madurez sexual para *P. fasciatum* en el río Iténez fueron de 2.74 años de edad para las hembras y de 2.66 años para los machos, en el río Mamoré fue de 4.40 años para las hembras y 4.07 para los machos, presentando una edad más temprana de madurez sexual en comparación con los resultados encontrados en la cuenca del Mamoré por Loubens y Panfili. La disminución de la edad a madurez también es compatible con la hipótesis de una presión de pesca mas elevada ahora que en los años 80 (Rochet *et al.*, 2000).

6.6. Desove

Cuando las características ambientales se mantienen constantes o presentan un comportamiento cíclico, las especies desarrollan estrategias reproductivas en las que la freza se realiza en las fases ambientales más favorables (Granado, 1996).

Wellcomme (1992) indica que en la mayoría de las especies de desove total el proceso de cría está condicionado a las crecidas, ya que si estas se demoran o son insuficientes para provocar la migración, la reproducción puede fallar.

Según Loubens y Aquim, (1986) las especies como *P. fasciatum* y *P. tigrinum*, los desoves ocurren durante la crecida, eso es un hecho muy general en los medios tropicales. Durante la estación seca, el espacio vital es muy reducido, ríos y lagunas están atestados de peces de todas clases y todos los tamaños, dentro de los cuales muchos son carnívoros. Si se produjeran los desoves en época seca tendrían poco éxito. Por lo contrario la crecida ofrece a las larvas y juveniles medios de vida diversos y extensos donde van a encontrar protección y alimentación.

En Bolivia, *P. fasciatum* se reproduce una vez al año (desovador total) durante las crecidas de los ríos, aprovechando de las condiciones ambientales más favorables.
6.7. Fecundidad

En la mayoría de los peces la fecundidad está positivamente correlacionada con el tamaño y peso del cuerpo (Duarte y Alcaraz, 1989; Winemiller y Rose, 1992) siendo mayor el número de huevos producidos por una hembra que presenta un mayor peso y tamaño.

Lamus y Beltrán (1976) reportaron, una fecundidad absoluta de más de 1,000,000 huevos promedio por desove para *P. fasciatum* en el río Magdalena-Colombia. Padilla et al., (2001) en la Amazonía peruana observaron en la misma especie, que una hembra de 3.5 kg produce 444,000 ovocitos. Bazán, (2002) reportó para *P. fasciatum* en el río Ucayali, una fecundidad relativa de 91 óvulos por gramo.

Reid, (1983) calculó durante un estudio en el río Apure, que una hembra de 1 metro de largo puede producir más de un millón y medio de huevos, mientras que una hembra de 40 cm produce 50 mil huevos. La fecundidad también está afectada por la calidad y la cantidad de alimento, por lo que la fecundidad es menor en los peces con escasa alimentación (Wootton 1998; Muñoz, 1999)

En Bolivia Loubens & Panfili (2000) reportaron, que una hembra *P. fasciatum* de 81 cm produce 606,000 huevos y otra de 54 cm produce 104,000 huevos.

En el presente estudio también se observó una alta fecundidad para *P. fasciatum*, en los ríos Iténez y Mamoré concordando con los reportes citados anteriormente. Para *P. tigrinum* no se pudo determinar la fecundidad por falta de datos.
7. Conclusiones

- Con los resultados observados podemos concluir en ambas cuencas, que las hembras de *P. fasciatum* alcanzan mayores longitudes que los machos. Comparando entre cuencas observamos que *P. fasciatum* alcanza mayores longitudes en la cuenca del río Mamoré. Para *P. tigrinum* no se puede concluir por insuficiencia de datos.

-La relación longitud – peso, permite concluir que *P. fasciatum* presenta un crecimiento alométrico en ambas cuencas. La comparación entre sexos indica que existe dimorfismo sexual de crecimiento de esta especie en ambas cuencas ya que las hembras alcanzan mayores longitudes que los machos. *P. tigrinum* también presentó un crecimiento alométrico, no se pudo determinar si existe o no dimorfismo sexual de crecimiento entre sexos en ambas cuencas por insuficiencia de datos.

-La edad máxima encontrada para *P. fasciatum* en las cuencas de los ríos Iténez y Mamoré fue de 10 años. Las hembras presentaron un crecimiento superior a partir de los 5 años de edad en ambas cuencas, lo que indica que estas alcanzan mayor longitud en menor tiempo que los machos. Para *P. tigrinum* la edad máxima encontrada fue de 11.4 años en el Iténez y 13.7 años en el Mamoré.

De manera general, se ha observado para cada especie un mejor crecimiento de las hembras. Los especímenes del Mamoré tuvieron un mejor crecimiento que los especímenes del Iténez para ambos sexos y ambas especies. Sin embargo, en el caso de *P. tigrinum*, estas tendencias son basadas en pocos individuos.

-La época de reproducción de *P. fasciatum* tiene lugar en los meses de diciembre a febrero en ambas cuencas.

- *P. fasciatum* en la cuenca del río Iténez alcanza la madurez sexual a los 35.27 cm y una edad de 2.66 años para los machos y a los 39.94 cm de longitud estándar y 2.74 años de edad para las hembras, en la cuenca del Mamoré los hembras maduran a los 55.59 cm de
longitud estándar 4.40 años de edad y a los 48.48 cm y 4.07 años de edad para los machos. Las tallas de madurez observadas en el Mamoré durante este estudio son inferiores a las tallas observadas en los años 80 por Loubens y sus colaboradores, reflejando posiblemente el incremento de la presión de pesca comercial en la zona. Para *P. tigrinum* no se pudo estimar la talla de madurez sexual.

-Una hembra de *P. fasciatum* en el río Iténez produce alrededor de 208,479,451 huevos por kilogramo de pez, en la cuenca del Mamoré una hembra produce 146,725,1399 huevos por kilogramo.
8. Recomendaciones

En este tipo de especies es frecuente la ocurrencia de la llamada “sobrepesca comercial” donde ocurre la captura de individuos muy pequeños. En esta situación la mortalidad por pesca supera la velocidad de crecimiento de la especie, impidiendo que los ejemplares alcancen un tamaño mayor, para contribuir de forma más substancial con los volúmenes capturados (Arteaga, 1991). Para evitar este tipo de sobrepesca, se debe en primer lugar, evitar la captura de individuos muy jóvenes y que no hayan alcanzado la talla de madurez sexual, estableciendo normas para un ejercicio de pesca que prohíba la captura, transporte y comercialización de estas especies a tallas pequeñas.

Según Reid (1983) ambas especies se están pescando durante su primer año reproductivo, en algunos casos antes de su primera oportunidad de multiplicarse.

Diferentes autores (Loubens et al., 1984; Spelling, 1998) han expresado su desacuerdo con la veda implementada en diferentes partes de la Amazonía Boliviana, la mayoría de ellos defienden su posición declarando que en esta región se tiene una veda natural, durante las crecidas cuando la pesca es casi imposible en la región de Trinidad. Sin embargo Loubens et al., (1984) sí destacan la necesidad de proteger los peces en desove, por lo menos si se considera con precisión los lugares exactos donde desovan.

Los pescadores y otros habitantes de las ribera s insisten en que la cuantía de la pesca ha disminuido en los últimos años, tanto en la cantidad del pescado como en el número de ejemplares grandes. Este hecho debe servirnos como una indicación de que la presión pesquera, aumenta por las necesidades de una población que va creciendo, y está produciendo un efecto negativo en las especies que forman la base de la pesca fluvial a pesar de que sus poblaciones parecen todavía abundantes. Se debe iniciar estudios con el fin de determinar precisamente cuál es la presión pesquera actual y desarrollar un programa fijo de manejo que mantenga el recurso pesquero para las futuras generaciones.

Bajo estos criterios se debe:

- Establecer un programa de control estricto de tallas mínimas de captura y de venta.
• Reglamentar las nuevas artes y métodos de pesca además de estudiar su impacto sobre el recurso pesquero.

• Buscar la coordinación con autoridades municipales o entidades competentes con jurisdicción en las cuencas del Iténez y Mamoré, para reforzar el programa de control y de información.
9. Referencias bibliográficas

Barreto, P. Julia. 2004. Variabilidad genética de Pseudoplatystoma fasciatum y Pseudoplatystoma tigrinum en el alto madera de la amazonia boliviana por análisis comparativo de polimorfismo de longitud de secuencia de intrones (EPIC – PCR) y electroforesis enzimática. Tesis de Post-grado para optar al título de Magíster Scientiarum en ciencias biológicas y biomédicas en la mención de genética de poblaciones. La Paz-Bolivia.

BODAMAZ, 2001: Estrategia Regional de la Diversidad Biológica Amazónica. Documento Técnico N° 01 - Serie BODAMAZ - IIAP, Iquitos, Perú

Moreno, C ; M. Valderrama & I. Beltrán. 1993. Épocas de reproducción, talla media de madurez gonadal y anàlisis de la problemática con referencia a las tallas de

Walters, P. R., Poulter, R. y Coutts, R. 1982. Desarrollo pesquero en la región Amazónia de Bolivia. Informe N° 81 (A) TDRI – ODA.

