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Multivariate analysis of relationships
between tuna catches and fishing strategies.
Application to the Venezuelan purse seiners

in the Caribbean sea

Daniel Gaertner?l, Jean-Claude Gaertner2,
Jesus Marcano3 and Mauricio Pagavino4

Incorporation of the components of a fishery system into stock assessment studies, and especially
harvesting practices and fishermen's behaviour at sea, requires the coupling of the traditional
abundance data with several auxilliary data sets. These sets contain different types of informa-
tion collected at different times and locations (e.g., fishing strategies, prices of the tuna species,
environmental factors, etc.). To illustrate the usefulness of some multivariate analyses tech-
niques in handling such diverse information, multiple factorial analysis, between-class and
within-class principal component analyses, and principal component analysis with instrumental
variables are applied to the Venezuelan purse seine tuna fishery operating in the southern
Caribbean Sea. These examples show how multivariate analyses can be used (a) to compare the
fishing strategies developed by two classes of vessels, relative to the detection of schools asso-
ciated with floating objects, (b) to break out spatial and temporal components in the relation-
ships between fish size category CPUEs, and finally (c) to take into account these fishing stra-
tegies when carrying out the statistical analysis of the CPUE data.

Dans les études sur I'évaluation de la ressource, la prise en considération des composantes d'un sys-
téeme péche, et en particulier des modalités de capture de la ressource et du comportement des
pécheurs, implique le couplage de données traditionnelles sur I'abondance avec plusieurs ensembles
de données auxilliaires. Ces tableaux regroupent des données collectées a divers endroits et a diffé-
rents moments (par ex., stratégies de péche, prix des especes de thons, facteurs environnementaux).
Pour illustrer I'utilité de quelques méthodes d’analyse multivariée dans le traitement de données
aussi diverses, une analyse factorielle multiple, des analyses en composantes principales inter et
intra-classes et une analyse en composante principales avec variables instrumentales ont été appli-
quées aux senneurs thoniers vénézueliens qui travaillent dans la partie sud de la mer des Caraibes.
Ces exemples montrent comment les méthodes multivariées peuvent étre utilisées pour (a) compa-
rer les stratégies de péche développées par deux classes de bateaux, par rapport a la détection de
bancs associés a des objets flottants, (b) décomposer les liaisons entre les prises par unité d'effort
(PUE) des différentes catégories de taille en un effet temporel et en un effet spatial, (c) tenir comp-
te de ces stratégies de péche dans I'analyse statistique des données sur les PUE.

En el estudio de las evaluaciones de recursos, el tener en cuenta los componentes de un sistema
de pesca, en particular los que conciernen a las formas du utilizacion del recurso y el comporta-
miento de los pescadores, implica acoplar los datos tradicionales de abundancia con otros
conjuntos de datos adicionales. Estos conjuntos contienen informacion diversa, recogida en
diferentes estratos espacio-temporales (por ejemplo, estrategias de pesca, precio de las especies
de tunidos, factores medioambientales, etc.). Para ilustrar la utilidad de alguna analisis facto-
riales, se ha aplicado un analisis factorial multiple, un analisis en componentes principales inter
y intra clases y un analisis en componentes principales con variables instrumentales, a los cer-
queros venezolanos que faenen en la zona sur del Mar Caribe. Estos ejemplos demuestran que los
analisis factoriales pueden aplicarse para (a) comparar las estrategias de pesca desarrolladas por
dos grupos de barcos, en relacion con la deteccion de cardumenes asociados con objetos flo-
tantes, (b) desglossar los componentes espaciales y temporales en las relaciones entre las CPUES
de diferentes categorias comerciales, y finalmente, (c) tener en cuenta estas estrategias al hacer
el analisis estadistico de los datos de CPUE.
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1 - INTRODUCTION

In past years, the analysis of population dynamics was
limited to the study of fluctuations in abundance,
and attempts to explain changes in stock size on the
basis of environmental fluctuations (limited, in fact,
to the physical environment) or the evolution of
fishing gears. The results of stock assessments were
limited in their application due to the fact that they
were conducted and interpreted within a limited
conceptual context, i. e., traditionally on a single-
species basis, while not accounting for the fleet inter-
actions, shifts between target species as a function of
price, etc. The transfer of knowledge between scien-
tists and administrators must often overcome diffe-
rences in definition of scales and of units of observa-
tion. Indeed, fishery managers are confronted with
local practical problems, concerning the utilisation of
different fishing gears in a given area, while scientists
provide global assessment of the overall production
(which represents the sum of all harvests). In the
same way the decision makers have to transpose
general management decisions (such as may be
recommended by scientists) into meaningful regula-
tions (e.g., by reconverting effective effort into nomi-
nal effort) and, as a result, they need more informa-
tion on the harvesting practices.

Nevertheless, it is recognised today that to be effecti-
ve, fishery management must (a) be based on good
regulations, and also (b) be able to anticipate the
dynamic responses of fishermen to changes in stock
size and in the management itself (Hilborn and
Walters, 1992). Achievement of the objective of sus-
tainable fisheries requires the scientific study of the
totality of the components of fishery systems inclu-
ding the inter-relations between fishermen, and, for
example, oceanographic, biological, technological
and socio-economic factors (Charles, 1995). For
these reasons, studies on the environment and on its
utilisation by fishermen must concentrate more on
anticipating and monitoring future developments
than on finding an hypothetical equilibrium popula-
tion level, which in reality is unachievable due to
continuous fluctuation in the ecosystem components.

Analysis of fishing activities, in attempts to answer
questions such as where, when, how and why, require
the coupling of traditional catch rate data for the dif-
ferent species with auxiliary data, such as those on
environmental factors, fishing tactics, prices by com-
mercial categories, etc. All of these data are often
broken down into spatial-temporal strata for the ana-
lysis. The visual analysis of such large data bases
becomes impossible and it is necessary to resort to the
use of multivariate statistical methods. These
methods allow identification of underlying structures
within the data and synthesis of the information that
they contain. Thus, in studies of fishery biology,
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diversity of catches and variability of CPUEs can be
related to environmental factors or to the behaviour
of fishermen at sea.

Given that one of the main objectives of the ICCAT
Tuna Symposium has been to explore methods used
in stock assessment and to discuss new approaches,
this paper gives an overview on the usefulness of
some factorial analyses, specifically: multiple factorial
analyses (MFA), principal component analysis with
respect to instrumental variables (PCAIV), and bet-
ween-class and within-class principal component
analysis.

2 - ORIGIN OF DATA AND PRELIMINARY
PROCESSING

Data were obtained from logbooks, introduced into
the Venezuelan surface fishery in 1987 (Gaertner et
al., 1988). Purse seiners were classified into two cate-
gories according to their carrying capacity: small and
medium seiners (PSS < 600 t.); large seiners
(PSL > 600 t.).

The aggregative behaviour of tunas with respect to
surface floating objects is well known. In the sou-
thern Caribbean Sea, tunas are often associated with
whales, whale-sharks (Rhiniodon typysor sometime
with flotsam, all of which are easier for fishermen to
spot than the tuna themselves. In the absence of
these, schools are generally found by detecting flocks
of birds that are feeding on the same prey as the
tunas. For this study, purse seine sets have been iden-
tified as beingon schools that were associated with
whales, or with whale-sharks or with neither. The lat-
ter are described as “school” sets, or “non-associated”
sets. Compared with other tropical areas, the percen-
tage of sets made on flotsam-associated schools is very
low (Gaertner et al., 1996); hence, this type of fishing
mode was not included in the present analysis.

Previous studies have shown that it is more appro-
priate to consider the association of tunas with floa-
ting objects on the basis of fish size rather than tuna
species (Gaertner et al., 1996). Therefore, three cate-
gories of fish size were chosen, based on the classifi-
cation used commercially: small (< = 3 kg); medium
(from > 3 kg to < = 15 kg); large (> 15 kg).

Data on catch per unit effort (CPUE) for 1989 to
1994, in metric tons caught per fishing days, were
tabulated for these three size grouping of fish by class
of purse seiner and by spatio-temporal strata of
1° x 1° square x quarter, and in order to homogenise
the variance, CPUE was expressed in Log (X+1)
form. The basic idea in the analysis was to associate
this table of CPUE (strata x CPUE) with an auxilia-
ry array (same strata x types of floating object). The
total number of sets made on each type of floating
object was divided by the effort exerted in the stra-
tum, to provide a frequency index.
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In accordance with the objectives of the study
(reconstitution of a pooled CPUE index for both
fleets, during a standard year, by 1° x 1° square x
quarter, etc.) CPUE was standardized each year in the
following manner:
- calculation of a relative index for each fleet and for
each year;
Acfysq = CPUE fysq / aver (CPUEy.. ), with
aver (CPUEy.. ) = S SA Cyypy.. [ S SU Eyy..
For ¢ = commercial category (1, 2, 3)
f=fleet (1, 2)
y = year (1989, ..., 1994)
s=1°x 1° square (4, 2,..., n)
g = quarter (1, 2, 3, 4) and
S* S Cey.. = sum of catches for all squares and
quarters for c, f, y,
S® S4 Egy.. = sum of efforts for all squares and quar-
ters for ¢, f, y.
- the pooled relative index corresponds to the avera-
ge of relative indices of the two fleets, weighted by
their respective effort:

Mysq = S (Wefysq X %cfysg):

with chysq = chysq / [Sf chysq]

The standard year CPUE was obtained by averaging
the pooled indices within each strata. An abundance
index expressed in a more usual unit was obtained by
multiplying this standardised index by the average
1989-1994 CPUE for large purse seiners.

The central procedure of calculation in linear facto-
rial analyses is based on the diagonalisation of a squa-
re matrix obtained from a statistical triplet. This tri-
plet is composed by a transformed matrix and of one
row weight and one column weight matrices (Fig. 1).
Depending on the multivariate method used, the
nature of the transformation and the two weight
matrices are different.

The multivariate data analyses were made with the
ADE-4 software (Thioulouse et al., 1995). The ADE-4
package is freely available on the Internet by anony-
mous FTP to biom3.univ-lyonl.fr (into the directory
/pub/mac/ADE) or by http://biomserv.univ-
lyonl.fr/ADE-4.html (or ADE-4Fhtml for the French
version). ADE-4 is now available for Windows 95.

1 variables p
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transformation =
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- .
g raw data %
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+ +
p
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scores
row
component
scores

Figure 1 - Core procedure for calculations in linear multivariate data analysis (after Dolédec and

Chessel, 1991, simplified).
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3 - MULTIPLE FACTORIAL ANALYSIS

3.1 Basic concepts of the method

Multiple Factorial Analysis (MFA) (Escofier and
Pages, 1994) belongs in the general framework of
multiple tables analyses, such as the generalised pro-
custes analysis (Gower, 1975), the Tuckals3 method
(Kroonenberg and Brouwer, 1985) or the Statis
method (Lavit et al., 1994). The aim of these proce-
dures is to make evident (a) the underlying common
structure present on several tables, and (b) the varia-
bility of each of them as compared to an "average
solution”. The objective of MFA is to describe data in
which the same observations (rows) are described by
different tables of variables. These tables can be built
up of quantitative as well as categorical groups of
variables (see Escofier and Pages, 1990, 1994; Lebart
et al, 1995). The implementation of MFA can be
broken into two distinct phases (Fig. 2).

- First, a principal component analysis (PCA) is car-
ried out for each of the K tables (K separate PCAS).

The inverse of the first eigenvalue (i.e., the varian-
ce explained by the first component) obtained in
each separate PCA, serves to weight each table's
variables during the second phase. This weighing
operation (a) balances the influence of each table
in the global PCA, and (b) maintains the internal
structure of each table (because the weighing factor
is the same for each variable into a given table).

- During the second step, a global PCA is completed
for all the weighted variables of the K tables. Then
a typology of the variables (or a typology of the
observations) can be made.

The MFA method is relatively similar to canonical
analysis since it tries to identify common features
across K groups of variables (the K tables). An appli-
cation of canonical analysis to the comparison of the
fishing strategies of two fleets of longliners was given
by Ehrhrardt (1994). However, canonical analysis is
not easy to interpret and its main objective is limited
to the search for the best correlations between groups
of principal components.

SEPARATE PCA

Small purse seiners

CPUEs AFOs

Large purse seiners

CPUEs AFOs

1 -3 1 [

L I L L

Transformation of the columns with appropriate
weights (1/ 1st eigenvalue of each separate PCA)

|

CPUEs { AFOs CPUEs AFOs

l

GLOBAL PCA

Figure 2 - Schematic representation of the two distinct phases of the MFA.
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3.2 Application

MFA was used to compare the performance of the
two classes of Venezuelan purse seiners, relative to
their respective CPUEs of each of the three size cate-
gories of tuna and to their strategy with respect to
associated floating objects (AFO). A minimum thre-
shold of five fishing days in a strata by each of the two
fleets was chosen so as to eliminate strata with low
effort, or strata visited solely by one class of purse sei-
ner. Strata were also eliminated when information on
floating objects was incomplete (catches but no
observations as to the presence or not of AFO). The
aim of this study was to compare tactics of the two
fleets across the same spatio-temporal strata, from
1989 to 1994.

This analysis examined four tables: two of CPUE
(variables: CPUE1, CPUE2, CPUES3; for each fleet)
and two of fishing modes (variables: school sets,
whale sets, whale-shark sets; for each fleet). It is
obvious (Table 1) that it is difficult to make a simul-
taneous analysis of these four tables on a visual basis.

Correlation analyses of the projections of the global
space of observations and each of the four subspaces
generated by each table indicate common features
across these tables. Correlations (Table 2) are rough-
ly comparable between (a) the two tables of AFOs

and the table of CPUEs for the large purse seiners, on
the first factor in the MFA, and (b) tables both of
CPUE on the second factor. With the exception of
the table of CPUEs for small purse seiners, the third
factor is correlated poorly and is thus of less interest.

The decomposition of the three first factors for each
group of variables confirms that the first component
is linked to both groups of AFOs and to the CPUEs
for large purse seiners (Table 3). This latter group
contributes to a similar extent to the inertia of the
second axis. The CPUEs for small purse seiners are
linked strongly to the third factor. It is necessary to
keep in mind that the maximum inertia of each group
of variables was limited to 1 by the weighting proce-
dure.

The representation of the groups of variables (Fig. 3)
(presented here separately for each fleet to facilitate
the interpretation) shows a difference between the
CPUE of the larger fish size category (respectively
U3S for small vessels and U3L for large purse seiners)
and the CPUEs of the two other fish size categories.
This suggests that the spatio-temporal strata where
small tunas are abundant are not the same as for large
tunas. The same conclusion can be drawn for the
AFO variables: school sets (respectively SCHS and
SCHL) are different in comparison to the other two

CATCH PER UNIT EFFORT

ASSOCIATED FLOATING OBJECTS

U o o nnn LU T T U T TR IR T T

van wun nn 1 nuan

SMALL PS LARGE PS SMALL PS LARGE PS
UlP U2P U3P  U1G U2G U3G SCH. WHA. W-SHA. SCH. WHA. W-SHA.
195 314 110 1.61 0.00 1.39 4 1 14 0 0 0
0.00 220 220 0.00 2.71 3.30 1 2 11 0 3 11
0.69 1.61 2.08 0.00 2.30 2.56 16 8 8 0 14 7
3.56 3,50 2.83 0.00 1.79 0.69 3 12 1 0 1 1
1.39 1.79 289 0.00 1.10 2.71 13 7 24 0 6 8
208 139 195 0.00 1.10 2.08 5 2 2 0 1 1
195 1.79 220 0.00 2.89 2.56 10 9 6 0 11 7
1.79 2.64 2.77 0.00 2.64 2.71 14 7 4 0 2 1
1.61 230 1.39 0.00 2.71 1.61 6 3 4 1 1 6
2.08 1.79 0.00 0.69 0.69 0.00 2 0 2 0 0 1
1.10 1.10 1.61 0.00 2.30 1.39 0 0 2 3 2 9
110 220 1.10 0.00 3.58 2.56 4 2 5 2 3 0
1.61 2.30 0.69 0.00 1.10 0.00 12 9 4 0 1 0
0.69 2.08 0.69 0.00 3.00 0.00 1 4 1 0 5 0
1.79 1.95 1.39 1.79 2.89 0.69 8 1 19 1 5 11

U U T T T T TN [N TN T U TR TR T T T

U T T T TR T TN [N TN T U TR TR T T T]

nuan nuan nuan nuan nun

nuan nuan nuan nuan nun

Table 1 - Sample data bases used in the tuna fishery studies. The four tables used for the Multiple
Factorial Analysis are: the Catch Per Unit of Effort tables (three fish size categories (U1, U2, U3)) and
the fishing mode tables (school sets (SCH), whale sets (WHA) and whale-shark(W-SHA) sets) for the
2 classes of Venezuelan purse seiners. Data were compiled by spatio-temporal strata (1° x 1° squa-

re x quarter), from 1989 to 1994.
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Tables Factor 1 Factor 2  Factor 3
CPUEs Small PS 0.59 0.72 0.81
CPUEs LargePS 0.74 0.83 0.25
A.F.O.s SmallPS 0.79 0.48 0.33
AF.Os LargePS 0.83 056 0.41

Table 2 - Correlation coefficients between
total space of observations and subspace of
each table, for the main factors of the MFA.

Tables Factor 1 Factor 2 Factor 3
CPUEs Small PS 0.32 0.35 0.64
CPUEs LargePS  0.54 0.56 0.06
A.F.Os SmallPS 0.62 0.10 0.08
AF.Os LargePS  0.66 0.26 0.17
Eigenvalues 214 127 095
% Cumulated Inertia 0.26 0.41 0.53

Table 3 - Contribution of each table to the
total inertia of the main factors of the MFA.

fishing modes. These figures indicate that large fish
are caught in school sets, whereas small and medium
tunas are associated more with whale-sharks and with
whales. The next step with this method would be to
analyse the projection of the observations (the stra-
ta), because in fishery studies this projection can be
useful to identify spatio-temporal effort clusters.
Given, however, that some locations were visited
during only a single quarter of the year, it was difficult
to find a clear typology of these strata and hence such
analyses are not presented in this study.

In conclusion, within the same spatio-temporal stra-
ta, the two classes of purse seiners behave comparably
with respect to AFOs. However the CPUEs for the
two classes of vessels (fishing power) are less similar
(Table 2 and 3). The CPUEs for small purse seiners
are linked less to the various fishing modes than are
the CPUEs for large purse seiners. This may be
explained by the fact that small and medium purse
seiners more frequently seek the help of baitboats to
hold tuna schools stationary (Gaertner et al., 1996).
This additional factor could be introduced into futu-
re analyses (one of the advantages of MFA is the pos-
sibility to couple such different data sets).

4 BETWEEN-CLASS AND WITHIN-CLASS
FACTORIAL ANALYSIS

4.1 Basic concepts of the method

Bearing in mind that the fishery systems are dynamic,
their study involves the description of a three-dimen-
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Figure 3 - Representation of variables in the
first two components of MFA. Partial graphs of
CPUE categories are in the upper part and
partial graphs of associated floating objects
are in the lower part, for small and medium
PS (left) and large PS (right).

sional data table (species abundance x times X areas),
i.e., CPUEs are sampled in different locations on dif-
ferent occasions. The aim of between-class and
within-class PCA is to use location and time as two
qualitative variables In other words, when analysing
a spatio-temporal influence on the data, the choice is
whether to focus on a given effect (e.g., space or
time) or to eliminate this effect. In practice, a global
PCA is calculated initially for the whole data, then
successive PCAs on a between-date matrix, on a
within-date matrix, on a between-location matrix
and on a within-location matrix. As in an ANOVA,
total variability can be broken down into spatial and
temporal effects (Dolédec and Chessel, 1987, 1989).
This is made possible by comparing the first eigenva-
lue (the variance explained by the first principal
component) obtained during each analysis (Fig. 4a).

In order to consider this, let Z be a table with n rows
(areas x dates) and q columns (CPUEs). After the
initial transformation (e.g. log or centering) from Z
to X, b groups of rows are defined (each row is allo-
cated to a group, for instance, by dates). Two new
arrays are then created: (a) the "X+" table (a bet-
ween-date matrix with b rows x g columns) in which
data are cumulated by groups, and (b) the "X-" table
(a within-date matrix with n rows and g columns) in
which data are centred in a manner to eliminate the
temporal effect. Between-class analysis is the PCA of
the "X+" table, namely the comparison of the mean
distributions of areas by dates (Fig.4b). Within-class
analysis corresponds to PCA of the "X-" table (Fig.
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between-dates PCA
within-locations PCA

between-locations PCA

within-dates PCA
J simple PCA

The decomposition of the total variability into spatial
and temporal variability with the first eigenvalue of each
PCA

(B) Between-class PCA

s S
~5

variables
— X+
; |
‘g X ]
supplementary
individuals

(C) Within-class PCA

variables

X

]

factorial plane

sl—p

date 1

VAR
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si
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Figure 4 - (a) The decomposition of the total variability into spatial and temporal variability by
representation of the first eigenvalue of each between-class and within-class PCAs. (b) Core pro-
cedure of the between-class PCA (i.e., for instance, focusing on a temporal effect, in the array
noted X+, data are cumulated by dates). (c) Core procedure of the within-class PCA (i.e., for ins-
tance removing a temporal effect, in the array noted X-lay the residuals by dates); after Dolédec

and Chessel, 1991.

4C), namely the analysis of the residuals. For more
technical details on these methods, see, e.g., Dolédec
and Chessel (1989, 1991). An a priori group effect
can also be taken into account using discriminant
analysis. Nevertheless, discriminant analysis use the
Mahalanobis distance whereas between-class analysis
use the Euclidian distance. It is important to point
out that discriminant analysis performs best with a
limited number of variables and is not well suited for
large arrays (Dolédec and Chessel, 1991).

4.2 Application

In this example the spatio-temporal variability of the
fish-size-specific CPUEs pooled for both fleets during
a standard year (as explained in the section on preli-
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minary processing) is analyzed (Table 4). The data
base corresponds therefore to an array of three cate-
gories of standardized CPUEs (columns) by 1° squa-
re - quarter (rows). As mentioned, given the small
size of these strata (1° lat. x 1° long. square), some
locations were not visited every quarter. Hence, only
the study of the temporal structure is presented in
this document.

The between-class PCA focusses on the temporal
effect by comparing the cumulative profiles of 1°
squares by quarters. This analysis looks for maximum
dispersions across the set of centres of gravity of the
subspaces defined by dates (quarters). The centres of
gravity are scattered along the first factor that
explains 90% of the total inertia (Fig. 5). The second
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Strata Pooled CPUE Floating objects

Quarter Lat. Lon. UL U2 U3 SCH.WHA.W-SHA.

9 56 2.8140.0000.727 0.000 0.143 0.000
10 67 1.7882.7442.320 0.352 0.198 0.788
10 68 1.6372.3960.000 0.200 0.000 0.800
11 64 1.5821.8842.063 0.081 0.086 0.822
11 65 1.1711.8631.711 0.118 0.113 0.747
11 66 1.0961.8391.279 0.151 0.070 0.444
11 67 1.8622.4941.678 0.200 0.119 0.552
11 68 1.2822.1771.410 0.272 0.089 0.362
11 69 1.2072.2971.512 0.212 0.120 0.597
12 64 1.7442.2441.434 0.667 0.500 0.333
12 65 1.5140.3380.088 0.215 0.000 0.357
12 66 1.0571.8460.000 0.238 0.111 0.667
12 67 0.9390.8941.111 0.239 0.092 0.136
12 68 1.7712.2552.120 0.330 0.273 0.084
12 69 2.0752.7232.481 0.354 0.111 0.580
12 70 2.7023.4602.917 0.429 1.143 0.286
13 67 0.0001.4881.187 0.000 0.200 0.000
8 54 2.7840.0002.670 0.167 0.167 0.000
8 55 0.0000.0000.000 0.000 0.400 0.000
8 56 0.8810.0000.000 0.200 0.000 0.000
9 56 1.3940.0000.000 0.286 0.000 0.000
10 59 1.8510.6761.162 0.000 0.333 0.000

n n [N T T U TR TR T T T nuan nun nuan

NNOMNNNRRRPRPRRPRPRRPRPRPRREPREPRPRERRRERER

" n U TR T T TR TR T T [UNTET] nun nuan

Table 4 - Sample data bases used in the between-class and within-class PCAanalyses (only
CPUEs table), and in PCAIV (CPUEs as the dependant variables, and associated floating objects
as the independant variables). Data were pooled for both fleets and by spatio-temporal strata

(1° x 1° x quarter for an average "standard" year).

la

i/ \

> :

Figure 5 - Projection of the gravity centers of the four quarters onto the factorial plane (1-2) of the
between-class PCA. Plots of individual strata are linked to their own gravity center (1a = 1 st quar-
ter, 1b = 2 nd quarter, 1c = 3 rd quarter, 1d = 4 th quarter).
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and the fourth quarter show the greatest separation.
In order to evaluate the variability of each sampling
unit around each centre of gravity, the initial data are
plotted as supplementary individuals. To aid interpre-
tation, each strata was linked with its mean date.
This figure suggests that the spatial variability is
lower during the fourth quarter than during the other
quarters. Consequently, it is likely that the purse sei-
ning strategy does not depend on a spatial compo-
nent during this quarter. In contrast, the heteroge-
neity between the strata during the other quarters of
the year suggests that the decision to visit a strata
(thus the distribution of the fishing effort) could be
linked with its relative productivity.

Projection of variables indicates that CPUE2 is lin-
ked with the first axis, in the opposite direction to
that of CPUE3 (Fig. 6). It appears that CPUEL1 is not
well projected into the plane formed by axes 1 and 2.
The strong heterogeneity between quarters (confir-
med by a permutation test) can be explained by the
variation in the abundance of the target fish groups
contributing to CPUEZ2; large skipjack (Katsuwonus
pelamiy, blackfin (Thunnus atlanticus and interme-
diate yellowfin (T. albacares) and in a minor way, of
CPUES, i. e., mainly large yellowfin.

A within-class analysis can be made to remove the
seasonal (quarterly) effect. The objective is to deter-
mine the axes of common direction across the sub-
spaces of observations. In order to enable simulta-
neous study of the spatial typologies all centres of
groups are plotted at the origin of the factorial maps
and the strata are scattered with the maximal varian-
ce around the origin. The projection of the four sub-
spaces in the within-class analysis (one per quarter)
shows a geographical pattern. During the first two

CPUE3
CPUE2

CPUE1

Figure 6 - Projections of the size categories
CPUEs onto the factorial plane (1-2) of the
between-class PCA.
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quarters of the year strata from East of Venezuela (off-
shore of the Guyanas) are projected to the left and
above. Western Venezuelan strata, close to the islands
of Curacao and Aruba, are projected to the right
(Fig.7; see the two upper figures). This gradient is not
as evident for the third and fourth quarters, probably
because there is no information for the eastern strata.

It is interesting to note that this analysis does not
show a clear inshore-offshore gradient in fish abun-
dance as would generally be expected for juveniles
(small tunas are more coastal than adults). With res-
pect to projections of the variables, it will be noted
that variables CPUE2 and CPUE3 appear to be lin-
ked positively, whereas they are the opposite in the
between-class analysis (Fig. 8). This point indicates
clearly that taking into account, or by contrast elimi-
nating, a temporal (or a spatial) effect can change the
perception of the relationship between the variables.
In the present analysis, it is suggested that CPUE2
and CPUES3 show different seasonal patterns (espe-
cially during the second and fourth quarters) but
have similar geographical structures.
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Figure 7 - Projections of the strata onto the
factorial plane (1-2) of the within-class PCA.
Eastern strata (E)= long. < 60 W, Western
strata (W)= long. > 67 W, Central strata (C)=
intermediate locations.
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Figure 8 - Projections of the size categories
CPUEs onto the factorial plane (1-2) of the
within-class PCA.

5 - THE PRINCIPAL COMPONENT ANALYSIS
WITH RESPECT TO INSTRUMENTAL VARIABLES

5.1 Basic concepts of the method

The aim of factorial analysis with respect to instru-
mental variables is to consider the influence of a set
of auxiliary variables on the structure of a table of
information. Depending upon the objectives of the
study and the nature of data, this method can be
applied to PCA (PCAIV used by Sabatier, 1984,
1987; Lebreton et al., 1991; Prodon and Lebreton,
1994; Pech and Laloé, 1997) or to correspondence
analysis (canonical correspondence analysis, or

Sstloadl

Whales

Whale-sharks

CCA, used by Ter Braak, 1986; 1987, 1988; Chessel
etal., 1987; Lebreton et al., 1988 a, 1988 b). The for-
mer method was applied to tuna-dolphin associations
in the East Pacific by Fiedler and Reilly (1993) and
by Reilly and Fiedler (1993).

The study of relationships between the variables of
interest (e.g., the fish size specific CPUES) and an
auxiliary table (incorporating different kinds of infor-
mation such as associated floating objects, environ-
mental factors, prices of tunas) can be approached in
various manners: (a) by doing a simple PCA of the
first table and then attempting to link factorial coor-
dinates of observations with the variables of the
second table, or (b) by directly coupling both tables
in a manner that constrains the factorial coordinates
to become a linear combination of this second table.
The PCAIV, known equally as "PCA under linear
constraints" (Lebreton et al., 1991; Prodon and
Lebreton, 1994), uses this last procedure.

Furthermore, combining linear regression and ordi-
nation gives PCAIV a certain robustness, especially
with respect to the Guttman "horse-shoe" effect, fre-
quently found in many traditional PCAs. Indeed, this
parabolic relationship between the first two axes can
be an artefact as well as due to a lack of linearity bet-
ween variables (Prodon and Lebreton, op. cit.).

5.2 Application

The working matrix remains that of pooled CPUEs
aggregated on an average year, but here AFOs consti-
tute auxiliary variables (i.e., the fishing modes are
considered as reflecting the strategies adopted by the
tuna fishermen; Table 4). Results of multiple regres-
sion steps showed that instrumental variables explai-

pyUe3 CPUEL

CPUE2

Figure 9 - (A) Projection of the size categories CPUESs onto the factorial plane (1-2) of the PCAIV and
(B) projection of instrumental variables (associated floating objects), as supplementary variables.
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ned 25% of the variability of the CPUEs (significan-
ce was confirmed by a test of permutation).
Consequently, PCAIV was applied to this data set (in
other words the PCA is made on the fitted CPUES).

The major part of the information is given by the first
two factors of the PCAIV (respectively 83 and 15%
of the total inertia). The second size specific CPUE
contributes most of the inertia of the first axis (lower
part of fig. 9). This result reflects the favourable
adjustment obtained for this size specific CPUE
(nearly 40% of its variability was explained by the
fishing modes). The projection of the instrumental
variables in the first graph of the PCAIV shows that
CPUE?2 is associated with sets made on whales (upper
part of fig. 9). As mentioned, the fish in this size cate-
gory comprise several species of tunas: large skipjack,
large blackfin and medium size yellowfin. Although
their projections are close, it appears that whale-
sharks and whales do not attract exactly the same
sizes of tunas. Finally, sets made on non-associated
schools (namely, school sets) remain isolated, and
could be linked to the CPUE3. A similar hypothesis
was drawn from the MFA results.

6 - CONCLUSION

This paper provides an overview of some modern
multivariate methods available to fishery biologist in
order to highlight the links between the resources
and the features of the fishery system. Given the
complexity of the information available to the study
tuna fisheries, the synthesis or comparison between
data tables is difficult without the use of an appro-
priate structuring tool. The presentation of several
examples shows that various types of factorial analy-
sis can be useful in exploratory analysis and in fishe-
ry monitoring. This is especially true for (a) identifi-
cation of spatio-temporal effort clusters (typology of
spatio-temporal strata), (b) taking into account
changes in target species and/or in the resulting dis-
tribution of fishing effort, and (c) determining which
component of a fishery system responds the fastest to
a regulation. These mutivariate analyses are not clai-
med to be substitutes for stock assessment models, but
they can help to better understand the differences in
the harvesting methods and practices.

The other multivariate methods, such as discrimina-

te analysis, canonical analysis, etc., which have been

used in the past, are less robust in their application or
are difficult to interpret. The major interest of the
methods presented in this paper are the following:

- MFA and other multi-table analysis are new and
promising ways to analyse several tables simulta-
neously. The same observations (spatio-temporal
strata as well as fishing units, fleets, etc.) can be des-
cribed by various groups of variables (CPUEs, envi-
ronmental factors, tactics, etc.). These methods
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could be used also to compare the abundance into
fishing areas between dates (e.g., for designing
impact assessment of a given regulation, a change in
fishing gear, etc.). In this case several tables (strata
X CPUEs), corresponding respectively to the situa-
tion before and after the modification, could be
analysed with a multi-table technique. When each
table describes yearly fishing activities, MFA is also
a useful tool for detecting and removing an unusual
year before examining the results over the period
analysed.

Between-class PCA and within-class PCA appear
to be an interesting tool for spatio-temporal studies
addressing the questions "where" (spatial effect) and
"when" (temporal effect). The same methods can be
applied to examine the influence of specific factors,
such as fleet effects, fishing gear effects, etc., by suc-
cessively removing others and focusing on the fac-
tor of interest.

In this study, PCAIV was used to link an abundan-
ce matrix with an auxiliary information table (asso-
ciated floating objects). Coupling regression analy-
sis with the PCA enabled the relationships between
the CPUEs to be examined while taking into
account the different fishing strategies adopted for
the different size classes of purse seiners. Other ins-
trumental variables, such as environmental factors,
prices for the different size categories of tunas etc.,
must be investigated. PCAIV is also a useful way for
analysing separately the effects of the main factors
and the interactions of a saturated linear model
(Pech and Laloé, 1997). After partitioning the ini-
tial table into several fitted matrices, obtained by
regressing the factors of the model (i. e., the
influential variables), a PCA of each of these arrays
allows analysis of each factor independent of other
sources of variation.
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