CONVENTIONS

SCIENCES DE LA VIE

AGROPEDOLOGIE

Nº 7

1990

Variabilité de la fertilité des vertisols non magnésiens. Résultats du troisième cycle cultural des expérimentations de la Tamoa et de la Nindia

Rapport

Frédérique GOURDON
Laurent COLLET
Catherine BOUCARON
Bernard BONZON
Laurent L'HUILLIER

AVENANT 3 A LA CONVENTION 3 BIS TERRITOIRE/ORSTOM DU 3 JUILLET 1987

INSTITUT FRANÇAIS DE RECHERCHE SCIENTIFIQUE POUR LE DÉVELOPPEMENT EN COOPÉRATION CRSIOM

CONVENTIONS

SCIENCES DE LA VIE

AGROPEDOLOGIE

N° 7

1990

Variabilité de la fertilité des vertisols non magnésiens. Résultats du troisième cycle cultural des expérimentations de la Tamoa et de la Nindia

Rapport

- ** Frédérique GOURDON
 - ** Laurent COLLET
- ** Catherine BOUCARON
 - * Bernard BONZON
 - * Laurent L'HUILLIER
- * ORSTOM / NOUMEA UR 3D/A
- ** DIDER / SRFD CENTRE DE RECHERCHES ET D'EXPERIMENTATION AGRONOMIQUE DE NESSADIOU (CREA)

AVENANT 3 A LA CONVENTION 3 BIS TERRITOIRE/ORSTOM DU 3 JUILLET 1987

INSTITUT FRANÇAIS DE RECHERCHE SCIENTIFIQUE POUR LE DÉVELOPPEMENT EN COOPÉRATION

CENTRE DE NOUMÉA

© ORSTOM, Nouméa, 1990

Gourdon, F.

Collet, L.

Boucaron, C.

Bonzon, B.

L'Huillier, L.

Variabilité de la fertilité des vertisols non magnésiens. Résultats du troisième cycle cultural des expérimentations de la Tamoa et de la Nindia - Rapport -

Nouméa: ORSTOM, Décembre 1990, 152 p.

Conv.: Sci. Vie: Agropédol.; 7

AGRONOMIE; FERTILITE DU SOL; VERTISOL; CYCLE CULTURAL; FUMURE; AZOTE; PHOS-PHORE; POTASSIUM; ZEA MAYS / NOUVELLE CALEDONIE; TAMOA VALLEE; NINDIA VALLEE

Imprimé par le Centre ORSTOM de Nouméa Décembre 1990

AVERTISSEMENT

Ce rapport et son annexe présentent les résultats obtenus en 1989 sur les deux expérimentations conjointes DIDER/CREA-ORSTOM concernant l'étude de la variabilité des vertisols équilibrés.

Ces recherches ont été conduites au titre de l'avenant 3 (1987) à la Convention Particulière Territoire-ORSTOM n°3 bis pour l'étude de la variabilité des vertisols non magnésiens.

Ont contribué à leur réalisation :

du côté de la DIDER.

. L. COLLET, Directeur du CREA, F. GOURDON, C. BOUCARON et les membres de leurs équipes, le CREA étant, pour mémoire, maître d'oeuvre de l'expérimentation au champ,

du côté de l'ORSTOM.

- . B. BONZON, L. L'HUILLIER, E. OUCKEWEN, L. TAPUTUARAI et W. NIGOTE du Laboratoire d'Agronomie,
- . J. PETARD, Chef du Laboratoire d'Analyse et les membres de son équipe.

Par ailleurs, la publication de ce rapport a fait appel aux services de Catherine CLEMEN pour la dactylographie des textes et de J-P. MERMOUD et N. GALAUD pour l'édition de l'ensemble.

SOMMAIRE

DOC	UMENTS ANTERIEURS	5
RESU	JME	7
1	INTRODUCTION	9
2	INFLUENCES, EN PREMIER CYCLE DE CULTURE, DES TROIS FUMURES DE REFERENCE SUR LES CHAMPS n°3 DES DEUX SITES : MODALITES DE CONDUITE DE L'ETUDE ; RESULTATS DES OBSERVATIONS ET DES MESURES	9
2.1	Protocole expérimental et conduite des deux essais	9
2.2	Données sol	10
2.3	Résultats des observations et des mesures effectuées sur le site de la Tamoa	10
2.4	Résultats des observations et des mesures effectuées sur le site de la Nindia	15
2.5	Synthèse	18
3	INFLUENCES, EN DEUXIEME CYCLE DE CULTURE, DES TROIS FUMURES DE REFERENCE SUR LES CHAMPS n°2 DES DEUX SITES : MODALITES DE CONDUITE DE L'ETUDE ; RESULTATS DES OBSERVATIONS ET DES MESURES	20
3.1	Protocole expérimental et conduite des deux essais	20
3.2	Données sol	2 1
3.3	Résultats des observations et des mesures effectuées sur le site de la Tamoa	23
3.4	Résultats des observations et des mesures effectuées sur le site de la Nindia	26
3.5	Synthèse	28

4	INFLUENCES, EN TROISIEME CYCLE DE CULTURE, DES TROIS FUMURES DE REFERENCE SUR LES CHAMPS n°1 DES DEUX SITES : MODALITES DE CONDUITE DE L'ETUDE ; RESULTATS DES OBSERVATIONS ET DES MESURES	30
4.1	Protocole expérimental et conduite des deux essais	30
4.2	Données sol	30
4.3	Résultats des observations et des mesures effectuées sur le site de la Tamoa	32
4.4	Résultats des observations et des mesures effectuées sur le site de la Nindia	3 5
4.5	Synthèse	38
5	REFLEXIONS SUR LES RESULTATS OBTENUS EN 1989 SUR LES DEUX SITES DE L'EXPERIMENTATION	40
5.1	Expérimentation de la Tamoa	40
5.2	Expérimentation de la Nindia	44
6	COMPARAISON AVEC LES RESULTATS OBTENUS LES DEUX PREMIERES ANNEES DE L'EXPERIMENTATION	45
7	CONCLUSION	48
ANNI	EXES	
1	OPERATIONS CULTURALES, PLUVIOMETRIE, IRRIGATION	49
1.1	Données relatives à l'expérimentation de la Tamoa	51
1.2	Données relatives à l'expérimentation de la Nindia	5 7
2	RECAPITULATIFS DES ANALYSES DE VARIANCE	63
2.1	Données relatives à l'expérimentation de la Tamoa	65
2.2	Données relatives à l'expérimentation de la Nindia	91
3	ANALYSES DE SOL EN PREMIERE ANNEE DE CULTURE : RECAPITULATIFS DES ANALYSES DE VARIANCE	117
3.1	Données relatives à l'expérimentation de la Tamoa	119
3.2	Données relatives à l'expérimentation de la Nindia	133

DOCUMENTS ANTERIEURS

- 1 M. FROMAGET, L. COLLET, B. BONZON, F. GOURDON, P. ANDRE, C. BOUCARON, Y. HUELVAN, 1986. Convention particulière Territoire-ORSTOM n°3 pour l'étude de la variabilité des vertisols non magnésiens. Avenant 1 du 22/05/85. Description des deux sites expérimentaux retenus pour l'étude. ORSTOM Ed. Décembre 1986. 20 p.
- 2 F. GOURDON, L. COLLET, C. BOUCARON, B. BONZON, P. PROUZET, Y. HUELVAN, 1987. Convention particulière Territoire-ORSTOM n°3 bis pour l'étude de la variabilité des vertisols non magnésiens. Avenant 1 du 06/08/85. Résultats du premier cycle cultural des expérimentations des vallées de La Tamoa et de la Nindia. ORSTOM Ed. Octobre 1987. 73 p.
- 3 F. GOURDON, L. COLLET, C. BOUCARON, B. BONZON, L. L'HUILLIER, 1990. Convention particulière Territoire-ORSTOM n°3 bis pour l'étude de la variabilité des vertisols non magnésiens. Avenant 2 du 20/09/86. Résultats du second cycle cultural des expérimentations des vallées de La Tamoa et de la Nindia. ORSTOM Ed. Septembre 1990. 119 p.

RESUME

L'étude de la variabilité des vertisols non magnésiens fait suite à l'étude de base effectuée sur ce type de sol de 1980 à 1985. Elle a pour premier objectif de définir un plan de fertilisation et les modalités d'adaptation des fumures aux différents vertisols non magnésiens de Nouvelle-Calédonie. Le présent document rapporte les résultats obtenus la troisième année (1989) sur les deux sites choisis pour cette expérimentation.

Trois fumures, différentes en ce qui concerne les niveaux d'azote et de phosphore, ont été appliquées, tout d'abord sur un premier champ déjà fertilisé et travaillé en 1987 et en 1988, puis sur un deuxième champ déjà cultivé en 1988 et enfin sur un troisième champ mis en culture en 1989 : la première très élevée en ces deux éléments (NP = 360-360 au premier cycle, 300-360 au deuxième cycle et 360-90 au troisième cycle), la deuxième minimale, calculée pour compenser seulement les exportations (NP = 190-90 chaque année), la troisième apportant la même quantité d'azote que la première mais une dose de phosphore intermédiaire (NP = 360-270 au premier cycle, 300-90 au deuxième cycle et 360-90 au troisième cycle).

On a pu observer, cette année, sur le site de La TAMOA, un effet significatif de ces différents traitements sur le rendement. Cependant, le rendement le plus élevé était très médiocre avec seulement 30,8 qx/ha (*), mais l'expérimentation s'était déroulée dans de très mauvaises conditions, la forte pluviométrie ayant empêché tout entretien de la parcelle. Un drainage de ces champs aurait été nécessaire.

Les rendements ont été par contre satisfaisants sur le site de la Nindia avec en meilleur rendement $84.0~\rm qx/ha$. Sur les trois champs, seul le troisième présente des différences significatives, modérées, entre les rendements.

Les valeurs observées jusqu'à présent, tant sur les rendements que sur les teneurs de la plante en ces éléments, mettraient en évidence d'une part l'intérêt d'une fumure azotée élevée et de son fractionnement, surtout sur le site de la Tamoa où la lixiviation a dû être importante, et d'autre part l'inutilité, au-delà de la première année, d'une fumure phosphatée élevée. Le niveau de fumure potassique apparaît quant à lui suffisant. En première approximation, il semblerait donc qu'une fumure nitro-phospho-potassique de 360-270-65 au premier cycle et de 360-90-65 au deuxième et au troisième cycles soit indiquée sur ces deux vertisols.

Les résultats obtenus à l'issue de cette troisième et dernière année d'expérimentation restent à confirmer par l'étude du bilan minéral du sol.

(*) rendements commerciaux à 15,5 % d'humidité.

1 INTRODUCTION

L'étude de la variabilité de la fertilité des vertisols non magnésiens, commencée en 1987 avec la mise en culture du premier des trois champs installés sur chacun des deux sites choisis pour l'expérimentation et poursuivie en 1988 avec la mise en culture du deuxième champ et un deuxième cycle de culture sur le premier champ, s'est achevée en 1989 par :

- un troisième cycle de culture sur les champs cultivés depuis 1987,
- un deuxième cycle de culture sur les champs cultivés l'année précédente,
- la mise en culture du troisième champ sur les deux sites.

Après examen des résultats obtenus cette année sur ces champs, nous établirons une comparaison avec les conclusions des deux premières années de l'expérimentation.

Le présent rapport ne comporte pas les analyses de sols prévues en fin d'expérimentation ni, par suite, le bilan minéral de l'expérimentation. Celui-ci fera, avec la synthèse et les conclusions de l'étude, l'objet d'un autre rapport.

2 INFLUENCES, EN PREMIER CYCLE DE CULTURE, DES TROIS FUMURES DE REFERENCE SUR LES CHAMPS n°3 DES DEUX SITES; MODALITES DE CONDUITE DE L'ETUDE; RESULTATS DES OBSERVATIONS ET DES MESURES

2.1 Protocole expérimental et conduite des deux essais

L'essai a été implanté sur le troisième champ selon le protocole expérimental décrit en annexe 1 du rapport principal 1987 et dans les conditions de culture rapportées en annexe n°1.

Comme prévu par le protocole, les trois fumures suivantes ont été appliquées :

Eléments	Niveaux		
	1	2	3
N	190	360	360
P ₂ O ₅	90	270	360
K _a O	65	65	65

Sur la propriété MOUREN à la TAMOA, l'essai a été semé (variété HYCORN 9) le 22.12.89 à 75 000 pieds/ha et non démarié. Les précipitations ont été importantes (878 mm), ce qui a non seulement rendu inutile toute irrigation mais ce qui a aussi empêché tout travail en cours de végétation (binage, etc). Cet essai qui s'est donc déroulé dans de mauvaises conditions, a été récolté le 18.04.90 après un cycle végétatif de 117 jours.

Sur la propriété CHIMENTI à la NINDIA, le semis a été effectué, toujours en HYCORN 9 et à 75 000 pieds/ha, le 04.09.89. Il n'y a pas eu de démariage. Une irrigation d'appoint a été pratiquée (précipitations : 433 mm, irrigation 154 mm). L'essai a été récolté le 04.01.90 après un cycle végétatif de 123 jours.

2.2 Données sol

Les résultats d'analyse des prélèvements effectués sur le troisième champ sur le site de la NINDIA avant sa mise en culture en 1989 sont récapitulés en annexe 3.2.3.. Le tableau 1 ci-joint donne les moyennes obtenues pour chaque horizon.

Sur ce site, le champ 3 appelle les mêmes observations que le champ 1 qui a été décrit à la page 20 du précédent rapport. Cependant, la comparaison des moyennes montre que le champ 3 est moins argileux et moins acide et présente un rapport magnésium/calcium et des teneurs en azote et en matière organique un peu plus faibles que le champ 1.

On observe par ailleurs sur ce champ quelques gradients de terrain. Les paramètres concernés sont le magnésium et le calcium, le limon et le sable fin, la matière organique et le manganèse.

Enfin, les échantillons de sol du troisième champ n'ont pas été prélevés sur le site de la TAMOA.

2.3 <u>Résultats des observations et des mesures effectuées sur le site de la Tamoa</u>

Les résultats des observations et des mesures, récapitulés pour l'essentiel à l'annexe 2.1.3., montrent que des différences significatives entre les trois traitements apparaissent sur les paramètres suivants :

- rendement : avec, pour le rendement commercial et dans l'ordre décroissant, les valeurs suivantes :

```
30,84 qx/ha pour la fumure 2,
```

^{26,68} qx/ha pour la fumure 3,

^{15,08} qx/ha pour la fumure 1,

TABLEAU 1 : ANALYSES DE SOLS -CHAMP 3 - MOYENNES-

Site	POUEMBO	OUT
Horizon	0 - 20	20 - 40
ARG (%)	67,56	62,90
LF (%)	12,33	12,84
LG (%)	7,17	7,41
SF (%)	4,56	5,27
SG (%)	6,56	10,83
pH-eau	6,36	6,63
pH-KCL	5,17	5,47
ACIDITE POT.	1,19	1,16
CT (%.)	11,18	7,70
NT (%.)	0,89	0,63
C/N	12,56	12,22
PAT (ppm)	17,58	40,30
CAE (meq %)	36,79	33,36
MGE (meq %)	29,03	22,76
NAE (meq %)	0,70	0,36
KE (meq %)	0,44	0,24
T (meq %)	61,60	60,24
S/T	108,7	94,2
NAE/T	0,011	0,006
MGE/CAE	0,79	0,68
pF 3 (%)	45,50	46,54
pF 4,2 (%)	31,54	32,77
CaO (%)	1,15	1,22
MgO (%)	2,04	2,15
Na_aO (%)	0,131	0,174
K₃O (%)	0,060	0,042
Fe ₂ O ₃ (%)	10,63	10,30
MnO ₂ (%)	0,65	0,54
AlaOs (%)	42,36	
PaOs (%.)	0,267	0,211
MGT/CAT	2,58	2,58

NB : Bases échangeables mesurées par la méthode de TUCKER

chacun de ces résultats étant significativement différents des deux autres,

- poids de grains par épi : selon les mêmes tendances, avec les valeurs décroissantes suivantes :

> niveau de fumure 2 : 62,34 g, niveau de fumure 3 : 50,86 g, niveau de fumure 1 : 36,55 g,

- <u>nombre de grains par épi</u> : avec, dans le même

ordre :

- 247,3 grains pour la fumure 2, 201,4 grains pour la fumure 3, 161.5 grains pour la fumure 1.
- <u>poids de grains par plant</u> : selon la même hiérar-chie,
- <u>nombre de grains par plant</u> : suivant les mêmes tendances,
- <u>nombre d'épi par plant</u> : avec, des valeurs décroissant lorsque le niveau de fertilisation diminue, soit :
 - 0,802 pour la fumure 3, 0,720 pour la fumure 2, 0,586 pour la fumure 1,

- <u>teneurs des grains en</u> :

	Niveau 1	Niveau 2	Niveau 3
Cendres (%)	1,442	2,291	2,144
Azote (%)	1,244	1,707	1,763
Phosphore (%)	0,242	0,317	0,319
Magnésium (%)	0,101	0,121	0,117
Bases (meq %)	17,671	19,750	19,356

on observe les teneurs les plus faibles, dans tous les cas, pour le niveau 1 de fertilisation et les teneurs les plus élevées pour le niveau intermédiaire de fertilisation, en ce qui concerne le magnésium, les cendres et les bases, et pour le niveau 3 de fumure, dans le cas de l'azote,

- <u>immobilisations par les grains en azote, phosphore,</u>
 <u>magnésium, potassium et bases</u> : selon la même hiérarchie de
 valeurs que pour le rendement,
- rapport magnésium/calcium dans les grains : avec, dans l'ordre décroissant des valeurs,
 - 58,90 pour la fumure 2, 53,75 pour la fumure 3, 44,93 pour la fumure 1,

- rapport potassium/magnésium dans les grains : avec, par ordre décroissant, pour le :

> niveau de fumure 1 : 1,120 niveau de fumure 3 : 1,008 niveau de fumure 2 : 0.984

- rapport potassium/bases dans les grains : avec, dans l'ordre décroissant des valeurs,

0,528 pour la fumure 1, 0,502 pour la fumure 3, 0,496 pour la fumure 2,

- <u>rapport magnésium/bases dans les grains</u> : avec, les valeurs suivantes, par ordre décroissant :

0,504 pour la fumure 2, 0,498 pour la fumure 3, 0,472 pour la fumure 1,

- teneurs des tiges et feuilles en :

	<u>Niveau 1</u>	<u>Niveau 2</u>	<u>Niveau 3</u>
Phosphore (%)	0,046	0,066	0,092
Sodium (%)	0,049	0,034	0,039
Azote (%)	0,422	0,505	0,596
Magnésium (%)	0,209	0,182	0,192

pour le phosphore et l'azote, les teneurs augmentent avec le niveau de fertilisation, mais pour le sodium et le magnésium, les teneurs sont plus élevées au niveau 1 et plus basses au niveau 2,

- immobilisations par les tiges et feuilles en azote, phosphore et sodium : les valeurs d'immobilisations augmentent avec le niveau de fumure pour l'azote et le phosphore, mais elles sont maximales pour le niveau 1 de fertilisation dans le cas du sodium,
- rapport potassium/bases dans les tiqes et feuilles : avec, par ordre décroissant, pour le :

niveau de fumure 2 : 0,552 niveau de fumure 3 : 0,514 niveau de fumure 1 : 0,496

- rapport sodium/bases dans les tiges et feuilles : avec, dans l'ordre décroissant des valeurs,

> 0,040 pour la fumure 1, 0,032 pour la fumure 3, 0,029 pour la fumure 2,

- immobilisations totales en :

	<u>Niveau 1</u>	Niveau 2	<u>Niveau 3</u>	
Azote (%)	4,312	8,603	8,379	
Phosphore (%)	0,702	1,464	1,438	(g/m²)
Sodium (%)	0,192	0,158	0,181	

avec, pour l'azote et le phosphore, des immobilisations inférieures pour le niveau 1 de fertilisation par rapport aux deux autres niveaux, et avec, pour le sodium, des valeurs maximales au niveau 1 et minimales au niveau 2 de fumure,

- rapport magnésium/calcium dans la plante entière : avec, dans l'ordre décroissant des valeurs,
 - 3,51 pour la fumure 2,
 - 2,97 pour la fumure 1,
 - 2,85 pour la fumure 3,
- rapport sodium/bases dans la plante entière : selon les valeurs suivantes, par ordre décroissant :

niveau de fumure 1 : 0,034 niveau de fumure 3 : 0,026 niveau de fumure 2 : 0,022

- rapport de l'immobilisation de l'azote par les tiges et feuilles sur la dose de fumure azotée : avec les valeurs suivantes, dans l'ordre décroissant :
 - 0,087 pour la fumure 1,
 - 0,076 pour la fumure 3,
 - 0,065 pour la fumure 2,
- rapports de l'immobilisation du phosphore par les grains sur la dose de fumure phosphatée, de l'immobilisation du phosphore par les tiges et feuilles sur la dose de fumure phosphatée et de l'immobilisation du phosphore par la plante entière sur la dose de fumure phosphatée : avec, pour la plante entière, les valeurs suivantes :
 - 0,179 pour la fumure 1,
 - 0,124 pour la fumure 2,
 - 0,092 pour la fumure 3,

les valeurs pour les grains et les tiges et feuilles suivant le même ordre,

- rapport de l'immobilisation du potassium par les grains sur la dose de fumure potassique : avec les valeurs suivantes, dans l'ordre décroissant :

```
0,261 pour la fumure 2,
0,228 pour la fumure 3,
0,145 pour la fumure 1.
```

On observe <u>peu d'effets ligne et colonne</u>. Les valeurs sont maximales sur la ligne 2 et minimales sur la ligne 3 pour les poids des grains par plant et par épi et pour les immobilisations des bases, du phosphore, du potassium et du magnésium par les grains. L'effet colonne concerne le poids des grains par épi, l'immobilisation des bases dans les grains et celle de l'azote par les tiges et feuilles.

2.4 <u>Résultats des observations et des mesures effectuées sur le</u> site de la Nindia

Les résultats des observations et des mesures, récapitulés pour l'essentiel à l'annexe 2.2.3., montrent que des différences significatives entre les trois traitements apparaissent sur les paramètres suivants :

- <u>rendement</u> : les valeurs obtenues augmentent avec le niveau de fertilisation, soit :

```
68,75 qx/ha pour le niveau 1,
74,76 qx/ha pour le niveau 2,
77,89 qx/ha pour le niveau 3,
```

pour le rendement commercial, chacune de ces valeurs étant significative par rapport aux deux autres,

- <u>hauteur au 50ème jour</u>: avec pour la fumure 1 une hauteur moyenne de 91 cm contre 102 cm pour les deux autres fumures.
- <u>vitesse de croissance en hauteur entre le 36ème et le 43ème jour</u> : on observe l'accroissement des valeurs avec le niveau de fumure,
- <u>vitesse de croissance en hauteur entre le 43ème et le 50ème jour</u> : avec des valeurs plus faibles pour le niveau 1 de fertilisation,

- teneurs des grains en :

	Niveau 1	Niveau 2	Niveau 3
Cendres (%)	1,881	2,407	2,328
Azote (%)	1,426	1,681	1,706
Phosphore (%)	0,268	0,307	0,317
Magnésium (%)	0,113	0,123	0,125

sauf pour les cendres, on constate que ces teneurs augmentent avec le niveau de fumure et que, dans tous les cas, elles sont nettement plus basses pour le niveau 1,

- <u>immobilisations par les grains en phosphore, azote,</u> <u>potassium, magnésium et bases</u> : les valeurs obtenues augmentent avec le niveau de fertilisation,
- rapport magnésium/calcium dans les grains : avec, par ordre décroissant, pour le :

niveau de fumure 3 : 55,12 niveau de fumure 2 : 54,18 niveau de fumure 1 : 45.35

- rapport potassium/magnésium dans les grains : avec les résultats suivants, dans l'ordre décroissant :

1,073 pour la fumure 1, 1,033 pour la fumure 2, 0,986 pour la fumure 3,

- teneurs des tiges et feuilles en :

	<u>Niveau 1</u>	<u>Niveau 2</u>	<u>Niveau 3</u>
Azote (%) Phosphore (%)	0,523	0,744	0,742
	0,049	0,087	0,094

dans les deux cas, les teneurs sont plus faibles pour le niveau 1 de fertilisation, la teneur en phosphore étant, quant à elle, maximale au niveau 3,

- immobilisations par les tiqes et feuilles en bases, phosphore, potassium et azote : les valeurs augmentent avec la fumure, avec une nuance pour le potassium pour lequel les immobilisations sont du même ordre pour les niveaux 1 et 2 de fertilisation,
- rapport potassium/bases dans les tiges et feuilles : celui-ci accuse une légère diminution lorsque l'on accroît la fumure,
- rapport maquésium/bases dans les tiqes et feuilles : ce rapport augmente discrètement avec le niveau de fertilisation,

- immobilisations totales en :

	Niveau 1	Niveau 2	Niveau 3	
Phosphore	1,945	2,618	2,887	
Azote	12,516	16,470	17,521	(g/m²)
<u>Potassium</u>	13,102	13,585	16,217	
Bases	670,85	704,79	790,17	(meq/m²)

selon les mêmes tendances que pour le rendement,

- rapports de l'immobilisation d'azote par les grains sur la dose de fumure azotée reçue, de l'immobilisation d'azote par les tiges et feuilles sur la dose de fumure azotée et de l'immobilisation d'azote par la plante entière sur la dose de fumure azotée : avec, pour la plante entière, les valeurs suivantes :

```
0,659 pour la fumure 1,
0,487 pour la fumure 3,
0,457 pour la fumure 2,
```

les résultats pour les grains et les tiges et feuilles suivant le même ordre,

- rapports de l'immobilisation de phosphore par les grains sur la dose de fumure phosphatée reçue, de l'immobilisation de phosphore par les tiges et feuilles sur la dose de fumure phosphatée et de l'immobilisation de phosphore par la plante entière sur la dose de fumure phosphatée : avec, pour la plante entière, les valeurs suivantes :

```
0,496 pour la fumure 1,
0,222 pour la fumure 2,
0,184 pour la fumure 3,
```

- rapport de l'immobilisation de potassium par la plante entière sur la dose de fumure potassique reçue : avec, dans l'ordre décroissant, pour le :

```
niveau de fumure 3 : 3,006,
niveau de fumure 2 : 2,518,
niveau de fumure 1 : 2,428.
```

En ce qui concerne l'homogénéité des conditions de culture, on note <u>plusieurs effets lique et colonne</u>. Les paramètres sur lesquels on peut observer un effet ligne sont le rendement et des immobilisations en potassium, magnésium et bases, avec des valeurs décroissant de la ligne 1 à la ligne 3, et, dans le sens inverse, la teneur et l'immobilisation du phosphore. On remarque également un effet colonne sur le rendement et sur l'immobilisation du potassium, avec des résultats diminuant de la colonne 3 à la colonne 1, et, avec un gradient inverse, sur la teneur en azote et sur les immobilisations en azote et en potassium. Pour le rendement commercial, les gradients mesurés sont assez importants avec :

```
80,4 qx/ha pour la ligne 1,
73,5 qx/ha pour la ligne 2,
67,5 qx/ha pour la ligne 3,
et

78,2 qx/ha pour la colonne 3,
74,7 qx/ha pour la colonne 2,
68,5 qx/ha pour la colonne 1.
```

<u>La teneur moyenne en potassium des grains</u> est de 0.398 % .

2.5 Synthèse

Les résultats obtenus sur les deux sites, en ce qui concerne le premier cycle des champs n°3, sont très différents quant au niveau des rendements.

* A la <u>TAMOA</u>, sur la propriété MOUREN, les rendements commerciaux sont faibles, notamment pour le niveau de fertilisation le plus bas, avec :

```
30,8 qx/ha pour le niveau 2,
```

- 26,7 qx/ha pour le niveau 3,
- 15,1 qx/ha pour le niveau 1.

L'étude des composantes du rendement fait apparaître que ces différences, significatives, sont dues au nombre et au poids des grains par épi ainsi que, pour la fumure 1, au nombre d'épis par plant.

L'effet du niveau de fertilisation sur le rendement se retrouve, identique, sur les teneurs des grains en magnésium et en cendres et sur les immobilisations en azote, en phosphore, en magnésium et en potassium par les grains. Les teneurs des grains en azote et en phosphore sont aussi nettement plus faibles au niveau 1 de fertilisation.

Les rapports magnésium/bases et magnésium/calcium dans les grains suivent aussi, en fonction du niveau de fertilisation, la même évolution que le rendement, alors que les rapports potassium/bases et potassium/magnésium dans les grains varient dans le sens exactement inverse.

L'effet de la fertilisation sur l'appareil végétatif est plus complexe : les teneurs et les immobilisations d'azote et de phosphore augmentent avec le niveau de fertilisation, alors que les teneurs en sodium et en magnésium sont plus élevées pour le niveau 1 et plus faibles pour le niveau 2.

Le rapport potassium/bases dans les tiges et feuilles évolue, contrairement à ce qui se passe dans les grains, dans le même sens que le rendement, alors que le rapport sodium/bases dans les tiges et feuilles, mais aussi pour la plante entière, suit la tendance inverse.

Les immobilisations par l'ensemble de la plante en azote et en phosphore sont plus faibles pour le bas niveau de fertilisation, contrairement à l'immobilisation du sodium qui est maximale pour ce niveau et minimale pour la fumure intermédiaire.

Le rapport magnésium/calcium dans la plante entière est plus élevé pour le niveau 2 et plus bas pour le niveau 3 de fertilisation.

Par ailleurs, on remarque que, pour le phosphore, le rapport des immobilisations sur la fumure phosphatée reçue, c'est-à-dire le coefficient d'utilisation apparent de l'engrais, décroît rapidement avec l'augmentation de la fertilisation nitro-phosphatée.

Le rapport de l'immobilisation du potassium par les grains sur la fumure potassique reçue suit, en fonction du niveau de fumure, la même évolution que le rendement, alors que le rapport de l'immobilisation de l'azote par les tiges et feuilles sur la fumure azotée reçue varie inversement.

On observe enfin peu d'effets ligne et colonne sur les paramètres mesurés.

Les teneurs des grains sont pour :

- l'azote de 1,763 % (au niveau 3 de fumure),
- le phosphore de 0,319 % (au niveau 3 de fumure),
- le potassium de 0,376 % (valeur moyenne).
- * A <u>POUEMBOUT</u>, sur la propriété CHIMENTI, les rendements commerciaux apparaissent très supérieurs à ceux observés à la Tamoa avec :
 - 77,9 qx/ha pour le niveau 3,
 - 74,8 qx/ha pour le niveau 2,
 - 68,8 qx/ha pour le niveau 1.

Le rendement augmente avec le niveau de fertilisation avec des différences significatives mais peu importantes.

On observe également l'accroissement de certains paramètres (hauteur des plants au 50ème jour, vitesses de croissance des plants du 36ème au 43ème jour et du 43ème au 50ème jour, teneurs et immobilisations des grains en cendres, azote, phosphore et magnésium, immobilisations par les grains en potassium, teneurs et immobilisations en azote et en phosphore par les tiges et feuilles et par la plante entière) avec le niveau de fertilisation. Cependant, les différences enregistrées entre les niveaux 2 et 3 sont assez minimes voire inexistantes. Seul le potassium, pour ses immobilisations par les tiges et feuilles et par la plante entière, montre des valeurs plus élevées pour le niveau 3, les immobilisations du potassium aux niveaux de fumure 1 et 2 étant proches ou égales.

Dans les grains, les rapports magnésium/calcium et magnésium/potassium augmentent aussi avec le niveau de fertilisation. On retrouve cette tendance dans les tiges et feuilles avec une augmentation du rapport magnésium/bases et une diminution du rapport potassium/bases lorsqu'on accroît la fumure.

Par ailleurs, on remarque, pour l'azote et pour le phosphore, que le rapport des immobilisations sur la fumure reçue, soit le coefficient d'utilisation apparent de l'engrais, est nettement plus élevé pour la dose 1 de fertilisation. Au contraire, le rapport de l'immobilisation du potassium par la plante entière sur la dose de fumure potassique reçue augmente avec le niveau de fumure.

On observe enfin plusieurs effets ligne et colonne. L'effet ligne mesuré sur les immobilisations en magnésium pourrait être mis en relation avec l'effet ligne du rapport magnésium échangeable/calcium échangeable du sol, ces deux paramètres diminuant de la ligne 1 à la ligne 3.

Par contre, les autres gradients observés, sur les teneurs en potassium, en phosphore et en azote notamment, ne peuvent être reliés à une hétérogénéité du terrain en ces éléments.

Pour le rendement, qui décroît assez fortement de la ligne 1 à la ligne 3 et de la colonne 3 à la colonne 1, on peut remarquer des variations parallèles du sol sur les lignes pour le rapport magnésium échangeable/calcium échangeable, la granulométrie, la matière organique et le manganèse et sur les colonnes pour le calcium échangeable. Ces variations sont surtout importantes pour la granulométrie, avec un sol plus sableux sur la ligne 3 et sur la colonne 1 et pour la matière organique et le rapport magnésium/calcium échangeables qui diminuent de la ligne 1 à la ligne 3. Mais l'hétérogénéité du rendement peut aussi s'expliquer par la présence d'un vent dominant et/ou par la profondeur du sol qui est très variable.

Les teneurs des grains sont pour :

- l'azote de 1,706 % (au niveau 3 de fumure),
- le phosphore de 0,317 % (au niveau 3 de fumure),
- le potassium de 0,398 % (valeur moyenne).

3 INFLUENCES, EN DEUXIEME CYCLE DE CULTURE, DES TROIS FUMURES DE REFERENCE SUR LES CHAMPS n°2 DES DEUX SITES : MODALITES DE CONDUITE DE L'ETUDE ; RESULTATS DES OBSERVATIONS ET DES MESURES

3.1 Protocole expérimental et conduite des deux essais

L'essai a été implanté sur le deuxième champ selon le protocole expérimental décrit en annexe 1 du rapport principal 1987 et dans les conditions de culture rapportées en annexe 1. Les dates de semis et de récolte, la variété choisie et la conduite générale de l'expérimentation sont les mêmes que celles décrites plus haut pour les champs n°3.

Cependant, en ce qui concerne le protocole, les niveaux de fumure ont été modifiés pour ce deuxième cycle comme suit :

Eléments	Niveaux		
LIEMENCA	1	2	3
N	190	300	300
P _a O ₅	90	9.0	360
K _a O	65	65	65

3.2 Données sol

Les résultats d'analyse des prélèvements effectués sur le deuxième champ sur ces deux sites avant leur mise en culture en 1988 sont récapitulés en annexes 3.1.2 et 3.2.2. Le tableau 2 ci-joint donne les moyennes obtenues pour chaque horizon.

Sur le site de la NINDIA, le champ 2 appelle les mêmes observations que le champ 1 qui a été décrit à la page 20 du précédent rapport.

Cependant, la comparaison des moyennes montre que le champ 2 est un peu moins argileux, moins acide et plus riche en phosphore total et assimilable que le champ 1. Le rapport magnésium/calcium, les teneurs en azote et en matière organique et la réserve utile sont plus faibles et les teneurs en fer et en aluminium un peu plus élevées que sur le champ 1.

On observe par ailleurs, comme c'était le cas pour le champ 1, peu de gradients de terrain sur le champ 2. Les paramètres concernés sont le sodium échangeable, la réserve utile et le calcium et le magnésium totaux.

Sur le site de la TAMOA, les résultats obtenus sur les champs 1 et 2 sont beaucoup plus proches. On observe seulement sur le champ 2 des valeurs de phosphore assimilable, de magnésium échangeable, de capacité d'échange, de fer et d'aluminium légèrement plus élevés.

Les caractéristiques générales de ce champ sont celles du premier champ qui a été décrit à la page 20 du précédent rapport.

TABLEAU 2 : ANALYSES DE SOLS -CHAMP 2 - MOYENNES-

Site	POUEN	BOUT	TAN	1OA
Horizon	0 - 20	20 - 40	0 - 20	20 - 40
ARG (%)	67,50	64,56	50,63	51,27
LF (%)	9,58	11,00	19,28	20,67
LG (%)	6,93	7,23	14,32	14,72
SF (%)	5,80	6,53	9,59	9,11
SG (%)	8,61	9,29	4,43	3,08
pH-eau	6,44	6,59	5,73	5,86
pH- KCL	5,16	5,31	4,88	4,91
ACIDITE POT.	1,28	1,28	0,85	0,95
CT (%.)	10,68	10,07	24,07	22,47
NT (%.)	0,82	0,78	1,35	1,26
C/N	13,02	12,91	17,83	17,83
PAT (ppm)	76,85	76,44	35,37	39,48
CAE (meq %)	37,17	38,99	12,17	12,86
MGE (meq %)	25,78	27,20	13,54	14,06
NAE (meq %)	0,44	0,53	1,54	1,72
KE (meq %)	0,32	0,26	0,27	0,31
T (meq %)	63,62	62,71	32,02	28,28
S/T	100,1	106,8	85,9	102,4
NAE/T	0,007	0,008	0,048	0,061
MGE/CAE	0,69	0,70	1,11	1,09
pF 3 (%)	42,82	42,66	30,79	32,68
pF 4,2 (%)	32,80	32,30	20,23	21,60
CaO (%)	1,11	1,23	0,28	0,27
MgO (%)	1,99	2,08	0,53	0,53
Na ₂ O (%)	0,162	0,178	0,071	0,081
KaO (%)	0,046	0,052	0,152	0,150
Fe ₃ O ₃ (%)	10,09	10,14	4,42	4,37
MnO ₂ (%)	0,62	0,60	0,24	0,22
AlaOs (%)	16,74	16,62	8,16	8,35
PaOs (%.)	0,243	0,206	0,188	0,194
MGT/CAT	2,59	2,42	2,67	2,76

NB : Bases échangeables mesurées par la méthode de TUCKER

Comme sur le premier champ, des gradients de terrain sont observés sur plusieurs paramètres : potassium échangeable et total, magnésium échangeable et total, azote, aluminium total, granulométrie et pF.

3.3 <u>Résultats des observations et des mesures effectuées sur le</u> site de la Tamoa

Les résultats des observations et des mesures, récapitulés pour l'essentiel à l'annexe 2.1.2., montrent que des différences significatives entre les trois traitements apparaissent sur les paramètres suivants :

- <u>rendement</u> : avec, pour le rendement commercial et dans l'ordre décroissant, les valeurs suivantes :

```
23,55 qx/ha pour la fumure 2, 22,62 qx/ha pour la fumure 3,
```

15.05 qx/ha pour la fumure 1,

chacun de ces résultats étant significativement différent des deux autres ; la hiérarchie de rendement entre les trois niveaux de fertilisation est cependant un peu différente sur les pieds de référence avec le meilleur rendement pour le niveau 3, et, en ce qui concerne ces pieds de référence, on constate que la moyenne des rendements est plus élevée pour eux (32,9 qx/ha) que sur l'ensemble du champ (20,4 qx/ha),

- poids de 1 000 grains : avec, pour la fumure 1, un poids de 221,9 g significativement inférieur aux poids obtenus pour les fumures 2 et 3 (respectivement 253,3 g et 255,2 g),
- <u>poids de grains par épi</u> : suivant la même hiérarchie que pour le rendement, avec :

```
42,77 g pour la fumure 2,
```

40,88 g pour la fumure 3,

30,74 g pour la fumure 1,

- <u>poids de grains par plant</u> : selon les mêmes tendances que pour le rendement,

- teneurs des grains en :

	<u>Niveau 1</u>	Niveau 2	<u>Niveau 3</u>
<u>Azote</u> (%)	1,177	1,680	1,704
Cendres (%) Phosphore (%)	1,877 0,297	2,3 4 3 0,319	2,52 4 0, 35 7

dans tous ces cas, les teneurs augmentent avec le niveau de fertilisation,

- <u>immobilisations par les grains en azote, phosphore, potassium , magnésium et bases</u> : dont les valeurs augmentent avec la fertilisation, les immobilisations pour les niveaux de fumure 2 et 3 étant égales ou proches,
- <u>rapport potassium/magnésium dans les grains</u> : avec, dans l'ordre décroissant des valeurs,
 - 1,131 pour la fumure 1,
 - 1,003 pour la fumure 3,
 - 0,978 pour la fumure 2,
- <u>rapport potassium/bases dans les grains</u> : avec, selon la même hiérarchie :
 - 0,531 pour la fumure 1,
 - 0,501 pour la fumure 3,
 - 0,494 pour la fumure 2,
- <u>rapport magnésium/bases dans les grains</u> : avec les valeurs suivantes, par ordre décroissant :
 - 0,506 pour la fumure 2,
 - 0,499 pour la fumure 3,
 - 0,469 pour la fumure 1,
 - teneurs des tiges et feuilles en :

	Niveau 1	Niveau 2	Niveau 3
Phosphore (%)	0,089	0,091	0,146
Azote (%)	0,375	0,511	0,460

avec une teneur en phosphore beaucoup plus élevée pour le niveau 3 de fertilisation et une teneur en azote maximale pour le niveau 2 et minimale pour le niveau 3,

- <u>immobilisations</u> par <u>les tiges et feuilles en phos-</u>
<u>phore, azote et potassium</u> : dont les valeurs augmentent avec le niveau de fertilisation,

- <u>immobilisations</u> totales en :

	Niveau 1	Niveau 2	Niveau	3
Azote	3,792	7,245	8,231	
<u>Phosphore</u>	0,947	1,340	1,999	(g/m²)
Potassium	5,038	6,266	7,391	

celles-ci augmentent donc avec le niveau de fertilisation et dans le même sens que le rendement puisque ces immobilisations ont été mesurées sur les pieds de référence,

- rapports de l'immobilisation du potassium par les grains sur la dose de fumure potassique, de l'immobilisation du potassium par les tiges et les feuilles sur la dose de fumure potassique et de l'immobilisation du potassium par la plante entière sur la dose de fumure potassique : avec, pour la plante entière, les valeurs suivantes :
 - 1,670 pour la fumure 3, 1,161 pour la fumure 2, 0,934 pour la fumure 1,

les valeurs pour les grains et les tiges et feuilles suivant le même ordre.

- rapports de l'immobilisation du phosphore par les grains sur la dose de fumure phosphatée, de l'immobilisation du phosphore par les tiges et les feuilles sur la dose de fumure phosphatée et de l'immobilisation du phosphore par la plante entière sur la dose de fumure phosphatée : avec, pour la plante entière, les valeurs suivantes :
 - 0,341 pour la fumure 2, 0,241 pour la fumure 1,
 - 0,127 pour la fumure 3,

les résultats pour les grains et les tiges et feuilles suivant le même ordre,

- rapport de l'immobilisation d'azote par la plante entière sur la dose de fumure azotée : avec, dans l'ordre décroissant des valeurs,
 - 0,274 pour la fumure 3, 0,242 pour la fumure 2,
 - 0,200 pour la fumure 1,
- rapports de la somme des immobilisations du potassium par les grains pour les années 88-89 sur la dose de fumure potassique apportée en 88-89 et de l'exportation totale en potassium en 88-89 sur la dose de fumure potassique apportée en 88-89 : avec, pour l'exportation totale, et dans l'ordre décroissant :
 - 0,844 pour la fumure 3, 0,717 pour la fumure 2,
 - 0,562 pour la fumure 1,

· -

les valeurs pour les grains suivant le même ordre,

- rapports de la somme des immobilisations du phosphore par les grains pour les années 88-89 sur la dose de fumure phosphatée apportée en 88-89 et de l'exportation totale en
phosphore en 88-89 sur la dose de fumure phosphatée apportée en
88-89 : avec, pour l'exportation totale, les valeurs
suivantes :

```
0,194 pour la fumure 1,
0,147 pour la fumure 2,
0,102 pour la fumure 3,
```

les résultats pour les grains suivant le même ordre,

- rapports de la somme des immobilisations d'azote par les grains pour les années 88-89 sur la dose de fumure azotée apportée en 88-89 et de l'exportation totale en azote en 88-89 sur la dose de fumure azotée apportée en 88-89 : avec, pour l'exportation totale, les résultats suivants :

```
0,237 pour la fumure 3,
0,207 pour la fumure 2,
0,181 pour la fumure 1,
```

les valeurs suivant le même ordre pour les grains.

On observe par ailleurs un certain nombre d'<u>effets lique et colonne</u>, avec un rendement décroissant de la lique 3 à la lique 1 et des immobilisations en azote, phosphore, potassium, magnésium et bases plus faibles sur la lique 1, tous ces paramètres étant en outre plus élevés sur la colonne 1 et plus faibles sur la colonne 2. Les variations enregistrées pour le rendement sur les colonnes sont minimes mais le rendement commercial sur la lique 1 apparaît nettement plus faible que sur les deux autres liques avec :

```
15,3 qx/ha pour la ligne 1,
22,4 qx/ha pour la ligne 2,
23,6 qx/ha pour la ligne 3.
```

La $\underline{\text{teneur moyenne en potassium des qrains}}$ est de 0,401 % .

3.4 <u>Résultats des observations et des mesures effectuées sur le</u> site de la Nindia

Les résultats des observations et des mesures, récapitulés pour l'essentiel en annexe 2.2.2. montrent que des différences significatives entre les trois traitements apparaissent sur les paramètres suivants :

- hauteur au 43ème jour : avec une hauteur de 52,5 cm pour les niveaux 1 et 2 de fumure contre 61,3 cm pour le niveau 3,

- teneur des grains en :

	Niveau 1	Niveau 2	<u>Niveau 3</u>
Azote (%) Phosphore (%)	1,61 4	1,785	1,720
	0,315	0,330	0,334

dans les deux cas, la valeur la plus basse est enregistrée pour le niveau 1 de fertilisation. La teneur maximale d'azote est atteinte au niveau 2,

- rapports de l'immobilisation du phosphore par les grains sur la dose de fumure phosphatée reçue et de l'immobilisation du phosphore par la plante entière sur la dose de fumure phosphatée reçue : avec, pour la plante entière, les valeurs suivantes :

niveau de fumure 2 : 0,679 niveau de fumure 1 : 0,573 niveau de fumure 3 : 0,172

les résultats pour les grains suivant le même ordre,

- rapports de la somme des immobilisations de phosphore par les grains pour les années 88-89 sur la dose de fumure phosphatée apportée en 88-89 et de l'exportation totale en phosphore en 88-89 sur la dose de fumure phosphatée apportée en 88-89 : avec, pour l'exportation totale, et dans l'ordre décroissant :

> 0,405 pour la fumure 1, 0,303 pour la fumure 2,

> 0,152 pour la fumure 3,

les valeurs pour les grains suivant le même ordre,

- rapport de la somme des immobilisations du potassium par les grains pour les années 88-89 sur la dose de fumure potassique apportée en 88-89 : avec, dans l'ordre décroissant des valeurs :

0,472 pour la fumure 3,

0,468 pour la fumure 2,

0,325 pour la fumure 1.

Il n'existe aucun effet significatif du niveau de fertilisation sur le rendement ou sur ses composantes. La valeur moyenne du <u>rendement commercial</u> pour ce champ a été cette année de 68,69 gx/ha.

En ce qui concerne <u>l'homogénéité des conditions de culture</u>, on observe seulement quelques effets lignes sur le nombre de grains par pied, qui diminue de la ligne 1 à la ligne 3, et, en sens inverse, sur les teneurs en phosphore et en bases des grains, ainsi qu'un effet colonne sur la teneur des grains en phosphore, qui décroît de la colonne 3 à la colonne 1, et sur l'immobilisation du potassium par les grains, qui est maximale sur la colonne 2 et minimale sur la colonne 3.

La <u>teneur moyenne en potassium des grains</u> est de 0,403~% .

3.5 Synthèse

Les rendements obtenus en deuxième cycle sur le champ n°2 sont très différents sur les deux sites :

* A la <u>TAMOA</u>, sur la propriété MOUREN, on observe en effet des rendements commerciaux très médiocres significativement différents selon les niveaux de fertilisation :

niveau 2 : 23,5 qx/ha, niveau 3 : 22,6 qx/ha, niveau 1 : 15,1 qx/ha.

L'étude de leurs composantes met en évidence l'influence de la grosseur des grains.

Dans les grains, les teneurs en azote, en phosphore et en cendres augmentent avec le niveau de fumure, de même que les immobilisations en azote, phosphore, potassium et magnésium.

Le rapport magnésium/bases dans les grains suit la même évolution que le rendement en fonction de la fumure, exactement à l'inverse du rapport potassium/bases.

Dans l'appareil végétatif, la teneur maximale pour le phosphore est observée pour le niveau 3 de fertilisation, alors que la teneur en azote évolue avec la fumure dans le même sens que le rendement.

Les immobilisations en azote, phosphore, et potassium par les tiges et feuilles et par la plante entière augmentent, quant à elles, avec le niveau de fertilisation.

Par ailleurs, les rapports des immobilisations du phosphore par le maïs sur la fumure phosphatée reçue sont maximaux pour le niveau 2 de fertilisation et minimaux pour le niveau 3, alors que, si on considère les mêmes rapports sur la somme des deux cycles de culture (88 et 89), on constate qu'ils diminuent quand on accroît la fertilisation.

Les rapports des immobilisations, par le maïs, du potassium sur la fumure potassique reçue et de l'azote sur la fumure azotée appliquée évoluent autrement : ils augmentent avec le niveau de fertilisation, que l'on considère l'année en cours ou les deux cycles de culture.

Enfin, on observe des <u>effets lique et colonne</u> sur le rendement et sur les immobilisations en azote, phosphore, potassium, magnésium et bases. Tous ces paramètres sont plus faibles sur la ligne 1 et sur la colonne 2, et plus élevés sur la colonne 1. Les effets observés sur les immobilisations semblent plutôt faire suite aux variations de rendement. On

remarque néanmoins des valeurs de potassium échangeable et de magnésium échangeable et total plus basses sur la ligne 1. L'effet colonne est pour le rendement assez faible mais le rendement apparaît bien inférieur sur la ligne 1. Il paraît cependant difficile d'établir une relation de cause à effet avec les gradients du sol, assez minimes, observés sur cette ligne qui présente moins de potassium, de magnésium et d'aluminium et un sol plus sableux.

Par ailleurs, les teneurs des grains sont pour :

- l'azote de 1,704 % (au niveau 3 de fumure),
- le phosphore de 0,357 % (au niveau 3 de fumure).
- le potassium de 0,401 % (valeur moyenne).
- * A <u>POUEMBOUT</u>, sur la propriété CHIMENTI, les rendements sont meilleurs avec une valeur moyenne du rendement commercial de 68,7 qx/ha.

Le niveau de fertilisation n'a pas entraîné de modification du rendement.

On a seulement observé que la hauteur du plant au 43ème jour était supérieure pour la dose 3 de fumure et que les teneurs des grains en azote et en phosphore étaient plus faibles pour le niveau 1 de fertilisation, avec une teneur en azote plus élevée pour la fumure intermédiaire.

Par ailleurs, les rapports des immobilisations de phosphore par le maïs sur la fumure phosphatée reçue sont maximaux pour le niveau 2 de fertilisation et minimaux pour le niveau 3. Si on considère les mêmes rapports sur la somme des deux cycles de culture (88-89), on constate aussi qu'ils sont beaucoup plus faibles pour la fumure 3 et qu'ils diminuent quand on accroît la fertilisation.

Par contre, le rapport, pour ces deux années, de l'immobilisation du potassium par les grains sur la fumure potassique augmente avec le niveau de fertilisation.

L'homogénéité des conditions de culture apparaît bonne avec peu d'effets ligne et colonne. Le sol présente également peu de gradients.

Enfin, les teneurs des grains sont pour :

- l'azote de 1,785 % (au niveau 2 de fumure),
- le phosphore de 0,334 % (au niveau 3 de fumure).
- le potassium de 0,403 % (valeur moyenne).

4 INFLUENCES, EN TROISIEME CYCLE DE CULTURE, DES TROIS FUMURES DE REFERENCE SUR LES CHAMPS n°1 DES DEUX SITES : MODALITES DE CONDUITE DE L'ETUDE ; RESULTATS DES OBSERVATIONS ET DES MESURES

4.1 Protocole expérimental et conduite des deux essais

L'essai a été implanté sur le premier champ selon le protocole expérimental décrit en annexe 1 du rapport principal 1987 et dans les conditions de culture rapportées en annexe n°1.

Les dates de semis et de récolte, la variété choisie et la conduite générale de l'expérimentation sont les mêmes que celles décrites plus haut pour les champs n°3.

Cependant, en ce qui concerne le protocole, les niveaux de fumure ont été modifiés pour ce troisième cycle comme suit :

Eléments	Niveaux		
Liemenca	1	2	3
N	190	360	360
P ₂ O ₅	90	90	90
K _a O	65	65	65

4.2 Données sol

Les résultats d'analyse des prélèvements effectués sur le premier champ des deux sites avant leur mise en culture début 1987 ont déjà été commentés dans le précédent rapport (p. 20). Les valeurs des éléments totaux n'étaient pas alors disponibles : elles sont à présent portées en annexes 3.1.1. et 3.2.1. et sur le tableau 3 ci-joint qui donne, pour chaque paramètre, les moyennes obtenues poul chaque horizon.

Au vu de ces résultats complémentaires, il apparaît que, sur ces deux champs, le rapport magnésium sur calcium est nettement plus élevé quand on considère les éléments totaux que lorsque l'on prend en compte ces éléments sous leur forme échangeable.

On observe également que le champ de la Nindia comporte une quantité beaucoup plus importante de fer, de manganèse et d'aluminium que celui de la Tamoa.

Enfin, sur le site de la Tamoa, la ligne 1 apparaît plus riche en calcium total et on remarque, sur le site de la Nindia, l'existence d'un gradient sur les colonnes pour le magnésium total.

TABLEAU 3 : ANALYSES DE SOLS -CHAMP 1 - MOYENNES-

Site	POUEM	BOUT	TAM	fOA
Horizon	0 - 20	20 - 40	0 - 20	20 - 40
ARG (%)	77,9	75,5	48,0	53,1
LF (%)	10,7	11,8	21,1	20,4
LG (%)	5,3	5,5	14,3	13,9
SF (%)	2,6	2,7	9,4	7,4
SG (%)	1,8	2,0	3,4	2,9
pH-eau	6,05	6,21	5,77	5,70
pH-KCL	4,82	4,93	4,92	4,78
ACIDITE POT.	1,23	1,28	0,85	0,92
CT (%.)	14,15	12,60	28,42	18,65
NT (%.)	1,01	0,88	1,57	1,15
C/N	14,01	14,32	18,10	16,22
PAT (ppm)	19,7	21,1	24,9	17,0
CAE (meq %)	33,8	35,2	12,0	12,1
MGE (meq %)	34,0	34,9	10,4	11,1
NAE (meq %)	1,2	1,4	1,7	2,6
KE (meq %)	0,40	0,36	0,41	0,30
T (meq %)	60,1	61,1	25,8	27,4
S/T	115,6	117,5	94,6	95,4
NAE/T	0,021	0,022	0,064	0,093
MGE/CAE	1,01	0,99	0,87	0,92
pF 3 (%)	50,5	50,5	31,8	33,4
pF 4,2 (%)	36,5	36,3	20,8	21,7
CaO (%)	0,73	0,79	0,31	0,29
MgO (%)	1,79	1,59	0,46	0,48
Na ₂ O (%)	0,062	0,060	0,066	0,099
K₃O (%)	0,061	0,042	0,121	0,103
Fe _a O ₃ (%)	9,05	7,19	3,57	3,68
MnO _a (%)	0,68	0,67	0,15	0,13
AlaOs (%)	14,51	10,82	5,34	5,27
PaOs (%.)	0,174	0,158	0,234	0,128
MGT/CAT	3,40	2,81	2,11	2,39

NB : Bases échangeables mesurées par la méthode de TUCKER

4.3 <u>Résultats des observations et des mesures effectuées sur le site de la TAMOA</u>

Les résultats des observations et des mesures, récapitulés pour l'essentiel à l'annexe 2.1.1., montrent que des différences significatives entre les trois traitements apparaissent sur les paramètres suivants :

- rendement : avec, pour le rendement commercial et dans l'ordre décroissant, les valeurs suivantes :

```
27,91 qx/ha pour la fumure 3,
23,04 qx/ha pour la fumure 2,
16,69 qx/ha pour la fumure 1,
```

chacun de ces résultats étant significativement différent des deux autres,

- poids de 1 000 qrains : avec, pour la fumure 1, un poids de 218,9 g significativement inférieur aux poids obtenus pour les fumures 2 et 3 (respectivement 272,5 g et 274,3 g),
- <u>poids de grains par épi</u> : suivant la même hiérarchie que pour le rendement, avec :

```
46,97 g pour la fumure 3,
38,98 g pour la fumure 2,
33,82 g pour la fumure 1,
```

- poids des grains par plant : selon les mêmes tendances que pour le rendement,
- <u>poids des tiges et feuilles par plant</u> : suivant le même ordre que pour le rendement,
- <u>poids des rachis par plant</u> : toujours selon la même hiérarchie que pour le rendement,

- teneurs des grains en :

	<u>Niveau 1</u>	Niveau 2	<u>Niveau 3</u>
Azote (%)	1,164	1,785	1,832
<u>Cendres</u> (%)	1,797	2,534	2,573
<u>Magnésium</u> (%)	0,110	0,128	0,139

ces teneurs augmentent avec le niveau de fertilisation, exception faite de la teneur en cendres qui reste stable entre les niveaux 2 et 3,

immobilisations par les grains en azote, phosphore,
 potassium, magnésium et bases : avec la même hiérarchie que pour le rendement,

- rapport potassium/bases dans les grains : avec. dans l'ordre décroissant des valeurs,
 - 0,530 pour la fumure 1,
 - 0,492 pour la fumure 3,
 - 0,487 pour la fumure 2,
- rapport magnésium/bases dans les grains : avec les valeurs suivantes, par ordre décroissant :
 - 0,513 pour la fumure 2,
 - 0,508 pour la fumure 3,
 - 0,470 pour la fumure 1.
- rapport potassium/magnésium dans les grains : avec, dans l'ordre décroissant des valeurs,
 - 1,130 pour la fumure 1, 0,970 pour la fumure 3,

 - 0,948 pour la fumure 2,
- rapport magnésium/calcium dans les grains : avec les résultats suivants, par ordre décroissant :
 - 61.71 pour la fumure 3.
 - 51,79 pour la fumure 2,
 - 41,87 pour la fumure 1,
 - teneurs des tiges et feuilles en :

	<u>Niveau 1</u>	<u>Niveau 2</u>	Niveau 3
Phosphore (%)	0,078	0,107	0,157
Azote (%)	0,332	0,538	0,548

ces teneurs augmentent avec le niveau de fertilisa tion mais on n'observe pas de différence pour la teneur en azote entre les niveaux 2 et 3,

- immobilisations par les tiges et feuilles en azote, phosphore, potassium, maquésium et bases : selon la même hiérarchie que pour le rendement,

- immobilisations totales en :

	<u>Niveau 1</u>	Niveau 2	Niveau	3
<u>Azote</u>	3,525	7,320	9,190	
<u>Phosphore</u>	0,861	1,422	2,202	(g/m²)
Magnésium	1,039	1,248	1,633	
<u>Bases</u>	49,59	57,19	69,59	(meq/plt)

avec des valeurs qui augmentent avec le niveau de fertilisation,

- rapports de l'immobilisation de l'azote par les grains sur la dose de fumure azotée et de l'immobilisation de l'azote par la plante entière sur la dose de fumure azotée : avec, pour la plante entière, les valeurs suivantes :

```
0,306 pour la fumure 3,
0,244 pour la fumure 2,
```

0,186 pour la fumure 1,

les résultats pour les grains suivant le même ordre,

- rapports de l'immobilisation du phosphore par les grains sur la dose de fumure phosphatée et de l'immobilisation du phosphore par la plante entière sur la dose de fumure phosphatée : avec, pour la plante entière, les valeurs suivantes :

```
0,362 pour la fumure 2,
0,219 pour la fumure 1,
0,140 pour la fumure 3.
```

les rapports d'immobilisation pour les grains suivant le même ordre,

- rapport de la somme des immobilisations du potassium par les grains pour les années 87-88-89 sur la dose de fumure potassique apportée en 87-88-89 : avec, dans l'ordre décroissant des valeurs.

```
0,336 pour la fumure 3,
0,314 pour la fumure 2,
0,215 pour la fumure 1.
```

- rapports de la somme des immobilisations du phosphore par les grains pour les années 87-88-89 sur la dose de fumure phosphatée apportée en 87-88-89 et de l'exportation totale en phosphore en 87-88-89 sur la dose de fumure phosphatée apportée en 87-88-89 : avec, pour l'exportation totale, et dans l'ordre décroissant :

```
0,232 pour la fumure 2,
0,230 pour la fumure 1,
0,114 pour la fumure 3,
```

les valeurs pour les grains suivant le même ordre.

On observe sur ce champ très peu d'effets lique, avec des immobilisations en phosphore et en potassium par les tiges et feuilles plus élevées sur la ligne 1. Par contre, les effets colonne affectent de nombreux paramètres : rendement, nombre de grains par épi et par plant, poids des grains par épi et par plant, poids des tiges et feuilles par plant, immobilisations de l'azote, du potassium, du phosphore, du magnésium et des bases. Le rendement est plus faible sur la colonne 2. L'effet colonne est important pour le rendement commercial des pieds de référence avec :

```
21,3 qx/ha pour la colonne 2,
36,8 qx/ha pour la colonne 1,
40,5 qx/ha pour la colonne 3.
```

La teneur moyenne des grains est de :

```
- 0,407 % pour le <u>potassium</u>, - 0,337 % pour le <u>phosphore</u>.
```

4.4 <u>Résultats des observations et des mesures effectuées sur le</u> site de la NINDIA

Les résultats des observations et des mesures, récapitulés pour l'essentiel à l'annexe 2.2.1., montrent que des différences significatives entre les trois traitements apparaissent sur les paramètres suivants :

- <u>vitesse de croissance en hauteur entre le 36ème et le 43ème jour</u> : les valeurs observées augmentent avec le niveau de fumure,
- poids sec des tiges et feuilles par plant : celuici est maximal pour le niveau de fertilisation intermédiaire, avec :

```
122,95 g/plt pour le niveau 2,
108,84 g/plt pour le niveau 3,
95,92 g/plt pour le niveau 1,
```

- teneurs des grains en :

	Niveau 1	Niveau 2	Niveau 3
Azote (%)	1,497	1,727	1,754
Phosphore (%)	0,279	0,294	0,314
Magnésium (%)	0,112	0,117	0,123
Bases (meq %)	18,787	19,149	19,857

l'ensemble de ces teneurs augmente avec le niveau de fertilisation,

- immobilisations par les grains en magnésium et en azote : avec des résultats plus faibles pour le niveau 1 de fumure et, dans le cas de l'azote, une valeur plus élevée pour le niveau 2,
- <u>rapport maqnésium/calcium dans les grains</u> : avec, dans l'ordre décroissant des valeurs.

```
63,95 pour la fumure 3,
60,81 pour la fumure 2,
58,28 pour la fumure 1,
```

- rapport potassium/magnésium dans les grains : avec, par ordre décroissant, pour le :

niveau de fumure 1 : 1,032 niveau de fumure 2 : 0,986 niveau de fumure 3 : 0,964

- <u>rapport potassium/bases dans les grains</u> : avec, dans l'ordre décroissant des valeurs,

0,508 pour la fumure 1, 0,496 pour la fumure 2,

0,491 pour la fumure 3,

- rapport magnésium/bases dans les grains : avec, par ordre décroissant, pour le :

> niveau de fumure 3 : 0,509 niveau de fumure 2 : 0,504 niveau de fumure 1 : 0,492

- <u>teneurs des tiqes et feuilles en magnésium</u> : avec les valeurs suivantes, par ordre décroissant :

0,282 % pour la fumure 2, 0,278 % pour la fumure 3, 0,260 % pour la fumure 1,

- immobilisations par les tiqes et feuilles en azote, calcium, maqnésium, sodium, phosphore et bases : les valeurs les plus basses sont observées pour le niveau 1 et les plus élevées pour le niveau 2 de fertilisation,

- immobilisations totales en :

	Niveau 1	Niveau 2	<u>Niveau 3</u>	
Calcium	1,006	1,464	1,329	
<u>Sodium</u>	0,141	0,218	0,178	
<u>Maqnésium</u>	1,865	2,539	2,239	(g/m²)
<u>Azote</u>	12,298	16,756	15,626	
<u>Bases</u>	462,67	605,57	540,11	(meq/m²)

comme pour les immobilisations par les tiges et feuilles, on observe les résultats les plus faibles pour le niveau 1 de fumure et les valeurs les plus élevées pour le niveau intermédiaire de fertilisation,

- rapport calcium/bases dans la plante entière : avec les valeurs suivantes, dans l'ordre décroissant :

0,120 pour la fumure 3,

0,117 pour la fumure 2,

0,106 pour la fumure 1,

- rapports de l'immobilisation du phosphore par les grains sur la dose de fumure phosphatée reçue, de l'immobilisation du phosphore par les tiqes et feuilles sur la dose de fumure phosphatée reçue et de l'immobilisation du phosphore par la plante entière sur la dose de fumure phosphatée reçue : avec, pour la plante entière, les valeurs suivantes :

niveau de fumure 2 : 0,642 niveau de fumure 1 : 0,525 niveau de fumure 3 : 0,161

les résultats pour les grains et pour les tiges et feuilles suivant le même ordre,

- rapports de la somme des immobilisations du phosphore par les grains pour les années 87-88-89 sur la dose de fumure phosphatée apportée en 87-88-89 et de l'exportation totale en phosphore en 87-88-89 sur la dose de fumure phosphatée apportée en 87-88-89 : avec, pour l'exportation totale, et dans l'ordre décroissant :

```
0,400 pour la fumure 1,
0,311 pour la fumure 2,
0.126 pour la fumure 3,
```

les valeurs pour les grains suivant le même ordre,

- rapports de la somme des immobilisations de l'azote par les grains pour les années 87-88-89 sur la dose de fumure azotée apportée en 87-88-89 et de l'exportation totale en azote en 87-88-89 sur la dose de fumure azotée apportée en 87-88-89 : avec, pour l'exportation totale, et dans l'ordre décroissant :

```
0,486 pour la fumure 1,
0,387 pour la fumure 2,
0,364 pour la fumure 3,
```

les valeurs pour les grains suivant le même ordre.

Il n'existe aucun effet significatif du niveau de fertilisation sur le rendement ou sur ses composantes. La valeur moyenne du <u>rendement commercial</u> pour ce champ a été cette année de 79,96 qx/ha.

Par ailleurs, l'analyse statistique montre l'existence sur certains paramètres d'effets lique et colonne. Ainsi, on a pu observer un effet ligne sur la densité de peuplement à la récolte, sur les teneurs des grains en magnésium et en bases et sur des immobilisations en bases, potassium, calcium et magnésium, avec des valeurs maximales sur la ligne 3 et, en ce qui concerne seulement les teneurs, des valeurs minimales sur la ligne 1. Un effet colonne a été noté sur la vitesse de croissance en hauteur entre le 36ème et le 43ème

jour et sur la teneur des grains en magnésium, avec des résultats diminuant de la colonne 3 à la colonne 1, et sur les immobilisations du magnésium.

La <u>teneur moyenne en potassium des grains</u> est de 0.375 % .

4.5 Synthèse

Les rendements obtenus en troisième cycle sur les champs n°1 sont très différents.

- * A la <u>TAMOA</u>, sur la propriété MOUREN, on observe, en effet, des rendements commerciaux très médiocres qui augmentent avec le niveau de fertilisation, soit :
 - 16,7 qx/ha pour le niveau 1,
 - 23,0 qx/ha pour le niveau 2,
 - 27,9 qx/ha pour le niveau 3.

L'étude des composantes du rendement fait apparaître que ces différences significatives sont dues en partie à la grosseur des grains.

Les poids des tiges et feuilles et des rachis suivent la même tendance que le rendement.

De même, l'augmentation du niveau de fumure se traduit par un accroissement de la teneur des grains en cendres, en azote et en magnésium, de la teneur des tiges et feuilles en azote et en phosphore, des immobilisations par les grains et par les tiges et feuilles en azote, phosphore, potassium et magnésium et des immobilisations par la plante entière en azote, phosphore et magnésium.

Dans les grains, le rapport potassium/bases est plus élevé pour le niveau 1 de fertilisation et le rapport magnésium/bases est plus faible pour le même niveau. Par suite, le rapport potassium/magnésium dans les grains est maximal pour la fumure 1.

Le rapport magnésium/calcium augmente dans les grains lorsqu'on accroît la fertilisation.

Par ailleurs, les rapports des immobilisations de phosphore sur la fumure phosphatée reçue, que l'on considère l'année 89 ou la somme des années 87-88-89, sont maximaux pour la dose 2 de fumure et bien inférieurs pour la dose 3.

Par contre, les rapports des immobilisations d'azote sur la fumure azotée et le rapport, pour les années 87-88-89, de la somme des immobilisations du potassium par les grains sur la fumure potassique reçue augmentent avec le niveau de fertilisation.

Par ailleurs, on observe sur ce champ peu d'effets ligne mais de nombreux effets colonne qui affectent notamment le rendement, celui-ci étant diminué de moitié sur la colonne 2. On constate également sur cette colonne une diminution du nombre et du poids des grains, du poids de l'appareil végétatif et des immobilisations en azote, potassium et magnésium. Les analyses de sol ne font cependant apparaître aucun gradient de terrain notable sur la colonne 2.

Enfin, les teneurs des grains sont pour :

- l'azote de 1,832 % (au niveau 3 de fumure),
- le phosphore de 0,337 % (valeur moyenne),
- le potassium de 0,407 % (valeur moyenne).
- * A <u>POUEMBOUT</u>, sur la propriété <u>CHIMENTI</u>, les rendements sont beaucoup plus élevés avec un rendement commercial moyen de 80,0 gx/ha.

Le niveau de fertilisation n'intervient pas de façon significative sur le rendement.

Par contre, des différences significatives apparaissent sur la vitesse de croissance entre le 36ème et le 43ème jour, qui s'élève avec le niveau de fumure, et sur le poids des tiges et feuilles qui est maximal pour la dose 2.

Les teneurs des grains en azote, en phosphore et en magnésium augmentent avec le niveau de fumure.

L'immobilisation par les grains de l'azote, les teneurs des tiges et feuilles en magnésium, les immobilisations
par les tiges et feuilles en azote, calcium, magnésium, sodium
et phosphore, ainsi que les immobilisations de la plante
entière en azote, calcium, magnésium et sodium, sont plus
basses au niveau 1 et plus élevées au niveau 2 de
fertilisation.

Par ailleurs, on remarque pour les grains une diminution du rapport potassium/bases et une augmentation du rapport magnésium/bases lorsqu'on augmente le niveau de fumure. Il en résulte une diminution du rapport potassium/magnésium et un accroissement du rapport magnésium/calcium dans les grains. En considérant la plante entière, on observe également l'élévation du rapport calcium/bases avec le niveau de fertilisation.

En ce qui concerne l'utilisation des engrais, on constate, pour le phosphore, que les rapports des immobilisations en cet élément sur la dose de fumure phosphatée reçue sont maximaux pour la dose 2 et minimaux pour la dose 3. Si on considère, toujours pour le phosphore, ces mêmes rapports pour la somme des trois années 87-88-89, on s'aperçoit

qu'ils restent très faibles pour le niveau 3 mais qu'ils deviennent maximaux pour la fumure 1. Pour l'azote, ces rapports, pour la somme des trois années, diminuent aussi avec le niveau de fertilisation, mais dans une moindre mesure.

Il apparaît enfin quelques effets ligne et colonne sur certains, paramètres (densité de peuplement, vitesse de croissance, teneurs et immobilisations en magnésium notamment). Cependant, ces effets, assez mineurs, ne semblent pas dus à des gradients du sol, ce champ étant assez homogène.

Par ailleurs, les teneurs des grains sont pour :

- l'azote de 1,727 % (au niveau 2 de fumure),
- le phosphore de 0,314 % (au niveau 3 de fumure),
- le potassium de 0,375 % (valeur moyenne).

5 <u>REFLEXIONS SUR LES RESULTATS OBTENUS EN 1989 SUR LES DEUX</u> SITES DE L'EXPERIMENTATION

5.1 Expérimentation de la Tamoa

Les <u>rendements</u>, <u>faibles</u> sur les trois champs, varient <u>de 1,5 à 3 tonnes/ha</u> (rendements commerciaux), avec une densité de peuplement à la récolte de 5,3 à 5,7 pieds au m², soit une survie de 75 %. Les <u>mauvaises performances</u> de cet essai cette année, sur ce site, s'expliquent par des <u>conditions météorologiques très pluvieuses</u> qui d'une part apparaissent très défavorables dans un sol aussi hydromorphe et d'autre part ont empêché tout entretien des parcelles en cours de végétation.

Les rendements sont du même ordre de grandeur dans les trois champs. Si on considère <u>l'effet des traitements</u>, et comme le montre le tableau 4 ci-joint, la fertilisation la plus faible entraîne dans les trois cas des rendements inférieurs à ceux des autres fertilisations. Les rendements obtenus pour les deux autres niveaux de fumure sont assez proches, le rendement apparaissant cependant meilleur pour le niveau de fertilisation le plus élevé lorsque le champ est cultivé depuis plus longtemps.

Sur le champ 3, la légère supériorité de rendement pour le niveau de fumure intermédiaire, qui n'est pas corroborée par les résultats des champs mis en culture les années précédentes, ne trouve pas d'explication évidente. Sur le champ 2,
les résultats obtenus pour la fumure 2, qui ne diffère de la
fumure 3 que par une fertilisation phosphatée quatre fois
inférieure mais permet un rendement légèrement supérieur, montreraient par contre l'inutilité d'une fumure phosphatée renforcée en deuxième cycle. Cependant, l'étude du premier champ
montre un meilleur rendement pour le niveau 3. Les niveaux de
fertilisation 2 et 3 étant identiques en troisième année, il y
aurait donc un discret arrière-effet de la fumure phosphatée

SITE		TAMDA						NINDIA										
CHAMP		CHAMP 1			CHAMP 2	2	CHAMP 3		CHAMP 1			CHAMP 2			CHAMP 3			
1987	N = 190 P = 90	360 270	360 360							N = 190 P = 90	360 270	360 360						
	60,7 *	72,2 \$	69,0 \$							62,7 \$	58,6 #	56,0 \$		_			-	
1988	N = 190 P = 90	300 90	300 360	190 90	360 270	3 6 0 360				N = 190 P = 90	300 90	300 360	190 9 0	360 270	360 360			
	22,7	41,9	38,1	29,2	43,5	50,9				44,2	<i>6</i> 7 , 5	65,9	33,9	71,9	69,0			
1989	N = 190 P = 90	360 90	360 90	190 90	300 90	300 360	190 90	360 270	360 360	N = 190 P = 90	360 90	360 9 0	190 90	300 90	300 360	190 90	360 270	360 360
	16,7	23,0	27,9	15,1	23,5	22,6	15,1	30,8	26, 7	76,6 \$	B4,0 #	79,3 *	64,6 \$	70,5 #	71,0 #	68,7	74,8	77,9

[#] différences non significatives entre les rendements des 3 niveaux de fertilisation

renforcée appliquée en deuxième année sur ce champ, mais celleci ne se justifierait toutefois pas étant donnée la faible augmentation de rendement qu'elle entraîne.

On remarque par ailleurs que c'est la <u>taille des</u> <u>grains</u> et parfois <u>leur nombre par épi</u> qui ont influé sur le rendement.

En ce qui concerne l'effet de la fertilisation sur les teneurs de la plante en divers éléments, il apparaît que le niveau de fertilisation a agi sur les teneurs des grains :

- en cendres et en azote sur les trois champs,
- en phosphore sur les champs 2 et 3,
- en magnésium sur les champs 1 et 3.

Sur le champ 3, ces teneurs sont nettement inférieures pour le niveau 1 de fumure mais très proches pour les deux autres niveaux ; en particulier pour le phosphore (cf. tableau 5), on ne trouve pas de différences entre les deux traitements (270 et 360 unités de P_2O_6). Par contre, sur les deux autres champs, on observe une augmentation des teneurs avec le niveau de fumure, à l'exception, sur le premier champ, de la teneur en phosphore qui ne varie pas en fonction des traitements.

Pour le phosphore donc, la fumure phosphatée renforcée apportée en deuxième année se traduit la même année, sur le champ 2, par une meilleure teneur en phosphore des grains, tout en se révélant sans effet sur le rendement, et entraîne en arrière-effet, sur le champ 1, une légère amélioration du rendement, tout en n'intervenant pas sur la teneur en phosphore des grains.

Sur les tiges et feuilles, on retrouve logiquement, sur les trois champs, des teneurs en azote plus basses pour le niveau 1 de fumure, mais on observe aussi, sur les trois champs, une augmentation assez importante du phosphore avec le niveau de fertilisation. L'effet des traitements sur les teneurs se manifeste donc plus clairement sur l'appareil végétatif que sur les grains.

Pour les grains, comme le montre pour 1989 le tableau 5 ci-joint, les <u>teneurs en azote et en phosphore</u> sont <u>très satisfaisantes pour les niveaux 2 et 3 de fertilisation</u>. Elles sont très diminuées, pour l'azote, au niveau 1 de fumure. Ceci, ajouté au fait que les rendements sont aussi plus faibles pour ce niveau, montre l'<u>importance d'une fumure azotée conséquente</u>.

En ce qui concerne le potassium, les valeurs moyennes des teneurs des grains sont élevées (de 0,376 % à 0,407 %), ce qui dénote une bonne nutrition potassique.

TABLEAU 5 : TENEURS DES GRAINS (%)

SIT	E				Т /	ANDA	M O A				NINDIA								
CHA	MP		i			2			3		1			2			3		
NIVE:		1	2	3	1.	2	3	1	2	3	1	2	3	1	2	3	1	2	3
	87		1,83			_			-			1,760			-			-	
N	88	1,164	1,545	1,547	1,221	1,626	1,715		_		1,297	1,704	1,658	1,109	1,718	1,647		-	
	89	1,164	1,785	1,832	1,177	1,680	1,704	1,244	1,707	1,763	1,497	1,727	1,754	1,614	1,785	1,720	1,426	1,681	1,706
	87	0,229	0,317	0,294		-			-		0,246	0,296	0,297		-			-	
P	88		0,264		0,231	0,246	0,279		-			0,309			0,295			_	
	89		0,337		0,297	0,319	0,357	0,242	0,317	0,319	0,279	0,294	0,314	0,315	0,330	0,334	0,268	0,307	0,317
	87	0,318	0,372	0,346		-			-		0,338	0,360	0,364		-			-	
К	88		0,422			0,393			-			0,387			0,391			_	
	89		0,407			0,401			0,376			0,375			0,403			0,398	

- 43 -

L'utilisation de l'engrais, étudiée par les rapports des immobilisations sur la fumure, est différente selon l'élément considéré. Le coefficient d'utilisation par les grains augmente avec le niveau de fumure sur les trois champs pour l'engrais potassique et sur les champs 1 et 2 pour l'engrais azoté. Par contre, l'utilisation de l'engrais phosphaté varie selon le champ: sur le champ 3, son coefficient diminue lorsqu'on accroît le niveau de fertilisation, alors que sur les champs 1 et 2, il est maximal pour le niveau 2 et minimal pour le niveau 3 de fumure. Si on considère la plante entière, on constate que le coefficient d'utilisation de l'azote est seulement de 0,276 sur le premier champ sur trois ans.

Par ailleurs, on remarque que la proportion de <u>magné-</u> <u>sium dans les grains</u> par rapport à la somme des bases augmente, dans les trois champs, avec le rendement, alors que le rapport du potassium sur la somme des bases varie à l'inverse.

Enfin, l'analyse statistique fait apparaître des <u>effets lique et colonne</u> sur les champs 1 et 2. Ceux-ci affectent fortement le rendement sur la colonne 2 du premier champ et sur la ligne 1 du deuxième champ alors que les analyses de sols ne montrent pas de gradients majeurs.

5.2 Expérimentation de la Nindia

Les <u>rendements</u> commerciaux, compris entre <u>6,5 et 8,4</u> <u>T/ha</u>, sont nettement <u>meilleurs</u> que ceux obtenus à la Tamoa, ce qui peut s'expliquer par des conditions climatiques beaucoup moins humides. Pourtant, la densité de peuplement à la récolte est médiocre avec 4,7 à 5,1 pieds au m³ soit une survie de 65 %.

Le tableau 4 montre en outre que l'effet des traitements sur le rendement est beaucoup moins marqué qu'à la Tamoa. Sur les trois champs, seul le champ 3 présente des différences significatives entre les rendements, ceux-ci augmentant modérément avec le niveau de fertilisation.

L'<u>intérêt</u> d'une fumure azotée plus élevée apparaît donc ici assez limitée. Ces résultats vont également dans le sens de l'<u>inutilité</u> d'une fumure phosphatée renforcée en deuxième cycle puisqu'en deuxième et en troisième années on n'observe aucune modification du rendement. Seul l'apport, en premier cycle, d'une fertilisation nitro-phosphatée de 360-360 permet, cette année, une amélioration du rendement.

On remarque, par ailleurs, un effet significatif des traitements sur la teneur des grains :

- en azote et en phosphore sur les trois champs,
- en magnésium sur les champs 1 et 3,
- en cendres sur le champ 3.

Pour l'azote et le phosphore et sur les trois champs, les <u>teneurs des grains</u> sont nettement <u>plus faibles pour le niveau de fertilisation le plus bas</u> alors qu'elles sont très proches et satisfaisantes pour les deux autres niveaux.

Les teneurs des tiges et feuilles évoluent de la même manière.

Une fertilisation azotée de 300 Unités et une fertilisation phosphatée de 270 Unités au premier cycle apparaissent donc nécessaires à la qualité du grain.

En ce qui concerne le potassium, les valeurs moyennes des teneurs des grains, de 0,375 à 0,403 %, montrent une <u>bonne</u> nutrition potassique.

Quant à l'utilisation des engrais, appréciée par le rapport des immobilisations sur la fumure reçue, elle apparaît assez variable. Pour le potassium, sur le champ 2, ce coefficient augmente avec la fumure. Pour le phosphore, il est maximal pour le niveau 1 de fertilisation sur le champ 2, mais maximal pour le niveau 2 et minimal pour le niveau 3 sur les champs 1 et 3. Ces observations rejoignent celles effectuées sur le site de la Tamoa. Le coefficient d'utilisation de l'engrais azoté sur trois ans est cependant meilleur (0,412).

Comme à la Tamoa, on observe aussi dans les grains, sur les champs 1 et 3, un accroissement de la proportion du magnésium et une diminution de celle du potassium, d'où une augmentation des rapports magnésium/calcium et magnésium/potassium lorsqu'on augmente le niveau de fertilisation.

Enfin, les champs 1 et 2 montrent des <u>conditions de culture</u> homogènes, avec peu d'effets ligne et colonne. Par contre, sur le champ 3, le rendement décroît notablement de la ligne 1 à la ligne 3 et de la colonne 3 à la colonne 1. L'analyse montre un sol plus sableux mais ces différences peuvent aussi s'expliquer par une profondeur de sol très variable. Une cause climatique (vent) semble peu plausible, les deux autres champs n'étant pas affectés.

6. <u>COMPARAISON AVEC LES RESULTATS OBTENUS LES DEUX PREMIERES</u> ANNEES DE L'EXPERIMENTATION

Le tableau 4 permet de comparer les rendements commerciaux obtenus sur les trois années d'expérimentation.

Si on compare les rendements obtenus cette année sur les deux sites, on constate que ceux-ci sont beaucoup plus élevés à Pouembout. Ce phénomène, déjà observé en 1988, est encore plus marqué en 1989, avec une production satisfaisante sur les champs de la Nindia et une récolte déficiente sur le site de la Tamoa. En effet, ces deux années ont connu une très forte plu-

viosité et l'essai de Pouembout, situé dans une région moins humide et cultivé en saison sèche, a pu être mené cette année dans de bonnes conditions, alors que les précipitations très élevées enregistrées à la Tamoa n'ont pas permis l'entretien normal de l'essai et ont été très défavorables dans ce sol profond et hydromorphe. Comme en 1988, on a observé aussi, sur les trois champs de la Tamoa, un rendement diminué pour le niveau de fertilisation le plus faible. Nous renouvellons donc l'hypothèse alors formulée : l'importante lixiviation de l'azote due à une forte pluviométrie doit être contrebalancée par une fumure azotée conséquente, un apport insuffisant, de 190 Unités ici, entraînant une baisse du rendement.

Sur le site de la Nindia, nous avions observé en 1988 la même diminution notable de rendement pour le bas niveau de fertilisation et nous avions alors émis la même hypothèse. En 1989, nous ne retrouvons pas ce phénomène et, comme en 1987, nous n'observons pas de différences de rendement significatives entre les traitements, à l'exception du champ n°3 où elles apparaissent toutefois peu importantes.

Or, si nous comparons les conditions de culture des années 1988 et 1989 sur ce site, nous constatons qu'elles sont proches, avec notamment un total précipitations-irrigation de 694 mm en 1988 et de 587 mm en 1987. En 1989, l'essai avait cependant été semé un mois plus tard, le 4 Septembre, alors qu'il avait été semé le 2 Août 1988 et par conséquent les températures ont pu être plus favorables à une mobilisation de l'azote du sol ou à une plus grande activité des azotobacters.

Quoiqu'il en soit, l'intérêt d'une fumure azotée élevée apparaît plus limité sur ce site et ce malgré un sol naturellement moins pourvu en azote que celui de la Tamoa.

Quant aux deux autres niveaux de fertilisation testés, on n'observe pas, comme c'était déjà le cas en 1987 et en 1988 sur ce site de la Nindia, de différences notables de rendement entre eux.

Sur le site de la Tamoa, les différences de rendement entre ces deux niveaux sont également minimes et malgré un discret arrière-effet en troisième année de la fumure phosphatée renforcée appliquée en deuxième cycle, on peut conclure, en ce qui concerne le paramètre rendement et sur les deux sites, à l'inutilité de l'application d'une fumure phosphatée renforcée en deuxième cycle, un apport initial de 270 unités de P_2O_6 en premier cycle apparaissant en outre suffisant.

Si on considère la qualité des grains au moyen de leurs teneurs, récapitulées pour les trois années sur le tableau 5, on constate qu'en 1989, comme en 1988, les teneurs en azote sont, sur les deux sites, beaucoup plus élevées pour les niveaux de fertilisation 2 et 3. La différence est cependant moins accentuée cette année sur les champs de la Nindia.

Ceci corrobore les conclusions tirées de l'observation des rendements quant à l'intérêt d'une fumure azotée renforcée. Celui-ci est cependant moins net en 1989 sur le site de la NINDIA, où l'effet d'une fumure azotée de 300 à 360 unités n'est ressenti qu'au niveau des teneurs, et il n'apparaît pas du tout en conditions sèches comme en 1987.

En ce qui concerne les teneurs des grains en phosphore, on constate, comme en 1987, que les valeurs obtenues pour les niveaux de fumure 2 et 3 sont proches et qu'elles sont supérieures à celles du niveau 1 de fumure.

Quant aux teneurs des grains en potassium, elles apparaissent également satisfaisantes et du même ordre que celles mesurées en 1988.

Enfin, l'étude des rapports de la somme des immobilisations de ces trois éléments sur les fumures respectives apportées, pour les années 87-88-89 et pour les années 87-88 sur le champ 1 et pour les années 88-89 sur le champ 2, montre que ce rapport, qui représente le coefficient d'utilisation de l'engrais, augmente avec le niveau de fertilisation dans le cas du potassium et diminue, surtout pour le niveau 3, dans le cas du phosphore. Pour l'azote, la fumure n'a un effet significatif que sur le champ 1 pour la somme des trois années : ce rapport diminue modérément lorsqu'on augmente le niveau de fumure. Pour le potassium, le résultat obtenu découle logiquement de l'augmentation du rendement, la fertilisation potassique restant identique pour tous les traitements. Pour le phosphore, la chute de ce coefficient au niveau de fumure le plus élevé confirme l'intérêt du niveau intermédiaire de fertilisation.

Par ailleurs, on retrouve en 1989, comme en 1987 et en 1988 et sur les deux sites, une augmentation de la proportion de magnésium dans les grains et une diminution de celle du potassium lorsqu'on accroît le niveau de fumure.

Sur le site de la Nindia, l'homogénéité des conditions de culture, bonne en 1987 et en 1988, reste satisfaisante, sauf sur le champ 3 sur lequel on observe des gradients de rendement. Sur le site de la Tamoa, on avait constaté en 1988 un effet ligne important sur la ligne 2 du champ 1 et on observe en 1989 une baisse importante du rendement sur la colonne 2 du champ 1 et sur la ligne 1 du champ 2.

En première hypothèse, ces gradients seraient liés, à la TAMOA, aux conditions météorologiques alors qu'à la NINDIA ceux-ci seraient dus à des variations de profondeur du sol.

Quant aux composantes du rendement, on avait noté les années précédentes des différences significatives entre les fumures pour le nombre d'épis par plant, la grosseur des grains et le nombre de grains par épi. Cette année, sur le site de la TAMOA, on retrouve un effet des traitements sur la taille des grains et sur leur nombre par épi.

7 CONCLUSION

L'essai variabilité des vertisols non magnésiens a connu, durant les trois années de l'expérimentation, des conditions météorologiques très marquées : à la grande sécheresse de 1987 ont succédé deux années très pluvieuses. Les fortes précipitations ont notamment entraîné une baisse notable des rendements sur les champs de la Tamoa, plus profonds et plus hydromorphes que ceux de la Nindia.

Les analyses de sols prévues en fin d'essai n'étant pas encore disponibles, il n'est pas possible de conclure dès maintenant sur cette étude. Un document de synthèse prendra en compte le bilan minéral des sols et établira une comparaison des résultats avec ceux de l'étude de base d'un vertisol équilibré menée de 1980 à 1985.

Cependant, les observations effectuées sur les végétaux suggèrent d'ores et déjà qu'il doit exister des pertes par lixiviation de l'azote, pertes qu'il faudra compenser par l'application d'une fumure d'au moins 300 Unités et par un fractionnement important de l'apport.

En ce qui concerne le phosphore, une fertilisation renforcée de 270 Unités ne semblerait nécessaire qu'en première année.

Au vu des résultats déjà obtenus, le niveau intermédiaire de fertilisation apparaît le plus intéressant, avec une fumure nitro-phospho-potassique de 360-270-65 Unités en premier cycle puis de 360-90-65 Unités en deuxième et troisième cycles. Cette fertilisation permet d'obtenir, en conditions météorologiques favorables, des rendements satisfaisants d'environ 7 ou 8 tonnes/ha et des teneurs élevées des grains en azote, en phosphore et en potassium.

Le bilan minéral des sols apportera d'autres éléments qui permettront de confirmer ou d'infirmer le choix de ce plan de fertilisation pour ces vertisols non magnésiens.

ANNEXE 1.

OPERATIONS CULTURALES, PLUVIOMETRIE, IRRIGATION.

Annexe 1.1. Données relatives à l'expérimentation de la Tamoa. Annexe 1.2. Données relatives à l'expérimentation de la Nindia.

ANNEXE 1.1.

OPERATIONS CULTURALES, PLUVIOMETRIE, IRRIGATION sur l'expérimentation de la Tamoa.

VARIABILITE DES VERTISOLS MODAUX

Années 1989 - 1990 - Travaux culturaux

(3ème cycle champ N° 1 - 2ème cycle champ N° 2 - 1er cycle champ N° 3)

Site de la Tamoa - Propriété MOUREN

Dates	Interventions !	Temps (h)	Temps cumulé (h)	Matériel utilisé
! ! ! !	MISE EN PLACE EXPERIMENTATION ET FACONS CULTURALES :		!	
!/09/89 !	Broyage des résidus de récolte ! et sous-solage !	18	!	Fendt + tondobroyeuse + sous-soleuse
4,5,6,9 10,11/ 10/89	Labour !	20	! !	Fendt + charrue réversible
12/10 & 1 28,29,30 1/11/89 1	Reprise du labour avec passage : croisé du covercrop :	20	! !	Fendt + covercrop
4/12	Piquetage des parcelles .!	4	!!!	Manuel
5,6/12 <u>:</u>	Epandage engrais de fond (NPK) !	4	! !	! !Renault 481S + épandeur à !plateaux
!7/12 !	Traitement insecticide (2,7 l Lindafor/ha) et herbicide (10 l Capsolane/ha)	4	! !	! ! Renault + tecnoma !
17,8/12	Enfouissement !	8	! !	! !Fendt + rotavator
12,13/12	Préparation lit de semence	6	! !	Fendt + rotavator
	Semis du maîs Hycorn 9 (75 000 ! pieds/ha) et roulage	4		! !Renault + semoir pneumatique !+ rouleau
18/01/90	Tracé des allées	4	!	Manuel
	Traitement insecticide (Tamaron ! 1 1/ha)	3	: ! !	Renault + tecnoma
	Apport d'engrais	15	!	Manuel
¹ 9,10,11 ¹ ! /04 ! !	Piquetage des placets	30	! !	Manuel
12/04	Entretien des allées	4	!	!Fendt + tondobroyeuse
18,19/04 !	Récolte des placets	140	! !	Manuelle
	Broyage des résidus de récolte !	4	!	!Fendt + tondobroyeuse
15,16/05	Prélèvements agrologiques sur les 2 horizons des 3 champs	40	! !	! !Manuel
16,17,18 21,22,23 28/05	Egrenage et pesée de la récolte ! des pieds utiles !	60	! !	Manuel
! ! ! !	!		388	!
!!!			!	
!!!	!		! !	
!!!			!	
!!!			! !	
!	!		!	
·	·		!	

! ! Dates !	Interventions !	Temps (h)	! Temps !cumulé (h)	! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!	DIVERS :	!	!	!
! 17,18, ! ! 19/04	Dépose du réseau d'irrigation, conduite mère	70	: ! !	Manuel
16,17, 18,21, 22/05	Transport du réseau d'irrigation au C.R.E.A.	60	! ! !	Camion Renault JP 13
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	! !	! !	! 130 !	! ! !
!!!	TOTAL TEMPS PARTIEL AU CHAMP	! !	! ! 51 8	! !
1	DEPLACEMENTS (30 %)	!	! ! 155	!
!!!	·	!	:	!
!	MAJORATION ABSENCE (25 %) TEMPS MORTS (20 %)	!	! 130 ! 103	!
!	•	!	:	!
!	ENCADREMENT (25 %)	!	! 130 !	: !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	TOTAL NET	!	! 1 036	<u>.</u> 1
!	TOTAL NET	!	!	!
!		!	!	!!!
!	i i	!	!	!
!!!		!	!	!
!	•	!	!	!
!!!			!	!
!	!	!	!	!
1			! !	! !
!	1	!	!	!
! !		! !	!	! !
!	!	!	!	!
! !			! !	!
!	!	!	!	!
! !			!!	! !
!		!	!	!
!		! !	!	! !
!		!	!	!
!	! !	! !	! !	! !
!	!	!	!	!
!		! !	!!	! !
!		!	!	!
!		!	!	!

VARIABILITE DES VERTISOLS MODAUX Année 1989 - 1990 - Site Tamoa

DATES	Déc	89	Jany	7 90	Fév	90	! Mar	s 90	Avr	il 90	!	
DATES!	Pluie	Irri-	Pluie	Irri-	Pluie	Irri-	Pluie	Irri-	Pluie	Irri-	Pluie	Irri-
1er	!		6,8		45,0		! !	! !	! !	! !	! !	! !
2	! !		! !		1,2		! !	! !	0,2	! !	! !	! !
3	!		9,8		0,4	!	1,6	!	!	! !	! !	! !
4	!		! !		0,8	!	8,2	! !	! !	! !	! !	! !
5	!		! !		!	!	0,2	! !	! !	! !	! !	! !
6	!		! !		!	!	0,4	! .	! !	! !	! !	! !
7	! !		! !		!		29,2	} 1	! !	! !	! !	! !
8	!		! !	•	!		51,5	;	! !	! !	! !	! !
9	!		! !		!	!	15,6	·	0,2	! !	! !	! !
10	!		0,2		! !	!	4,0	! !	!	! !	!	! !
11	!		2,4		!	!	25,6		! !	!	! !	! !
. 12	! !		1,8		!	!	!	!	! !	! !	! !	! !
13	! !		! !		4,0	! !	! !	! !	! !	! !	! !	! !
14	! !		4,4		!	! !	! !	!	0,6	! !	! !	! !
15			! !		1,6	!	1,1	! !	! !	!	! !	! !
16	!		0,8		0,8	!	! !	!	!	!	! !	! !
17	! !		2,0		0,6	!	!	!	! !	! !	! !	! !
18	!		! !		0,2		0,4	!	!	!	!	!
19	!		0,8		1,4	! !	! !	! 1	! !	! !	!	! !
20	! !		20,2		! !	!	!	! !	!	!	!	1
21	!	1	28,0		4,2	[5,4	! !	!	! !	! !	! !
22	!	1	44,0		3,4	!	11,9	! !	!	! !_	! !	! !
23	0,8		37 , 6		18,2		1,2	•	! !	! !	! !	! !
24	0,2		3,2		14,2	!	0,2	! !	!	!	!	! !
25	!	!	0,3	1	!25 , 8	!	I !	!	! !	!	! !	! !
26		!	!!!	!	9,8	! !	0,2	! !	! !	!	!	! !
27	6,4	!	!!!	!	0,2	! !	ī !	!	! !	!	! !	! !
28	0,4		! !		0,4	! !	!	!	!	! !	!	i !
29	12,7		! !		!	!	0,4	!	1	!	!	! !
30	!		! ! 9 , 6!	!	!	! !	0,2	!	! !	! !	!	! !
31	98,0		3,8	!	! !	!	!	!	!	!	! !	! !
TOTAL mois	118,	5	378,	7	232,	β	147,	3 !	1,0	-	! ! !	! ! !
	j	OTAL (GENERAL	4 : P	•	3,3 i	mm					

A N N E X E 1.2.

OPERATIONS CULTURALES, PLUVIOMETRIE, IRRIGATION sur l'expérimentation de la Nindia.

VARIABILITE DES VERTISOLS MODAUX Année 1989 - Travaux culturaux

(3ème cycle champ N° 1 - 2ème cycle champ N° 2 - 1er cycle champ N° 3)

Site de la Nindia - Propriété CHIMENTI

! Dates!	Interventions !	Temps (h)	Temps cumulé (h)	! Matériel utilisé ! !
!	TRAVAUX PREPARATOIRES :		!!!!	!
9/3/89	Piquetage du champ	8		Manuel !
14/3	Prélèvements agrologiques du	30	! !	Manuel !
!	champ N° 3 (0-20 et 20-40)		38	!
. I	MISE EN PLACE EXPERIMENTATION ET FACONS CULTURALES:		! ! !	! ! !
6/3 !	Broyage de la matière verte	6	! !	Fendt + tondobroyeuse
22,23/3	Labour	8	! !	Fendt + charrue bisocs
16/5 !	Broyage des repousses de mais .!	6	!!!	Fendt + tondobroyeuse !
18,25/5	Reprise du labour	6	! !	Fendt + covercrop
	Passage croisé du cultivateur à ! dents rigides !	! ! 6	! ! ! !	! ! Fendt + razol !
7,8/8	Epandage d'engrais de fond (NPK)	4	! ! !	Renault 461S + épandeur à plateaux
!9/8 !	Enfouissement de l'engrais	3	: !	Fendt + covercrop
16/8	Passage de rotavator	3	! !	Fendt + rotavator
!!! !!!	Epandage d'engrais de pré-semis (NP), d'herbicide (Primatope 5 1/ha) et d'insecticide (2,7 1 Lindafor/ha)	6 ! !	!	Renault + épandeur à plateaux Renault + tecnoma
17,18, 28/8	Hersage	! ! 12	I I	! ! Fendt + vibroculteur
! !4/9 ! ! !	Semis du maïs Hycorn 9 (75 000 pieds/ha)	! 4 !	: ! !	: ! Renault + semoir pneumatique !
4/9	Roulage	1	!	Renault + rouleau
!5,11,12, !5,11,12, !13,14,15 !18/9	Mise en place du réseau d'irrigation	! ! 50 !	: ! !	! ! Sprincklers + motopompe !
25,26/9	Pose de la clôture électrique	18	!	Manuel
! !27/9 ! !	Traçage des allées. Piquetage des parcelles	! ! 30	! !	Manuel
2,3/10	Piquetage des pieds de référence	45	!	Manuel
4/10	l ler apport d'Urée en végétation	! 10	!	: ! Manuel
4,5/10	Binage	10	!	MF 130 + bineuse
• •	! !Traitement insecticide et !fongicide (Tamaron, Peltar)	: ! 3 !	! !	MF 130 + tecnoma
23/10	2ème apport d'Urée en végétation	10	!	! Manuel
17/11	Traitement insecticide (Tamaron)	: ! 3	!	! !Renault + tecnoma
!	!	!	!	!

Dates!	Interventions ! !	Temps (h)	Temps cumulé (h)	Matériel utilisé
27/11	Nettoyage des allées	4	!!!	Fendt + covercrop
4,5/01 ! !	Récolte des pieds de références ! et des pieds utiles !	140	!	Manuel
15,16/1	Dépose réseau - ramassage des piquets	70	! ! !	Manuel
5/3!	Piquetage parcelle	10	!	Manuel
19/3	Prélèvements agrologiques sur les 3 champs (0-20 et 20-40)	40	! ! !	Manuel
! ! ! !	! !		508	
! ! ! !	DIVERS :		! · !	!
25/5 !	Entretien clôture !	2	!	Manuel
8/6	Réfection du quai de déchargement	4	! !	Bulldozer
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	! !		6	!
!!!	CONTROLES :		!!!	!
10/10	Mesure de hauteur	10	! !	Manuel
17/10	Mesure de hauteur et comptage de densité	30	! !	Manuel
24/10	Mesure de hauteur	10	!	Manuel
!!!	!		!	· !
!	!		! 50 !	
! ! !	MEMOC DE MDAVATI AU CUAND		! ! . 602	! !
! ! ! !	TEMPS DE TRAVAIL AU CHAMP DEPLACEMENTS (30 %)	! !	! 180	!
!!!	MAJORATION ABSENCE (25 %)		! 150	
: : ! !	TEMPS MORTS (20 %)		! 120	! !
! ! ! !	ENCADREMENT (25 %)		! ! 150	! !
!!!		!	!	!
	TOTAL NET		1 202 !	: !
!			!	!
!!!			! !	!
!			!	!
!!!!			! !	!
!			!	!
! !!		! !	! !	! !

VARIABILITE DES VERTISOLS MODAUX Année 1989 - Site Nindia

DATES							Déc		Jan			
	Pluie	Irri-	Pluie	Irri-	Pluie	Irri-	Pluie		Pluie	Irri-	Pluie	Irri
1er	! ! ! !				! !	! !	! !	28	17	! !	! !	! !
2	! ! !!		!	!	!	! !	!	! !	9,6	! !	! !	! !
3	! !		0,4	!	! !	!	! !	! !	0,9	! !	! !	! !
4	!		!	!	!	!	! !	! !	!	!	! !	!
5	28,2		!		0,3	! !	!	! !	! !	! !	! !	! !
6	!			! !	! !	!- 	! !	! !	! !	! !	! !	!
7	3,2				18,0		17,6		! !	!	!	<u> </u> !
8	0,3		!	-	0,5	7	23,2		! !	! !	!	<u>:</u> !
9	! !		!		! !	! !	! !23,2	,	! !	! !	! !	!
10	!		!				0,8		! !	- ! !	!	:
11	!			21	103,	2	7,8	! !	! !	! !	<u></u>	: !
12	ii				1,1		0,9		<u>.</u> !	<u>-</u>	<u>.</u>	: !
13	i		!	- -	2,1		18,2	;	. !	<u>:</u>	<u></u>	<u>-</u>
14			!		<u>.</u> !	<u>.</u> !	2,0	: -	i !	; •	!	:
15	2,5		:		:	i	15,7		: !	: -	:	!
16	0,3		: !			: !	3,0		: :	: !	: !	:
17	1,2	!			: !	<u></u>	8,2	!	<u>:</u>	-	!	!
18	1,2		!	2,8	<u>:</u>	<u></u>	25,2		: !	<u>.</u>	i	<u> </u>
19	!	14	!		<u>:</u>	: !	15,0		!	!	<u>:</u>	<u></u>
20	!		!		3,2	! !	3,4	 -	!	<u></u>	!	-
21	!		!		1,1		0,9		: !		<u></u>	-
22	!		! !		!	<u></u> -	<u></u>	!	<u></u>	<u>!</u>	<u>!</u>	! !
23	!		: 		<u>!</u> !		<u>:</u>	<u></u>	<u>:</u>	<u>!</u>	<u> </u>	<u> </u>
24	!		2,3	- -	<u>:</u>	! ! !	!	! !	<u>!</u>	! !	<u>!</u>	<u>!</u>
25	!	! !	!	28	!	!	<u>!</u>	!	<u>!</u>	1	<u> </u>	<u>!</u>
26	1.		!	!	! !	!	!	!	!	!	!	!
27	10,2	!	2,6 3,4		!	!	8,2	!	!	!	!	!
28			 -	,	!	!	1	!	!	!	! !	!
29	2,3	!	7,5	! !	! !	! !	!	!	!	!	! !	!
30	!	! !	<u>! 4, 2</u>	! !	!	! !	19,9		!	<u>!</u>	!	<u>!</u>
31	!	! !	! !	!	!	! !	12,8	!	1	! !	!	!
	!	!	!	28	!	! !,	111,6	! /	1	<u>!</u>	!	!
TOTAL mois	!48,2	14	!20 , 4	105	129,	!5/ 7 !	207,	16/28	27,5	! !	!	!
	,	TOTAT:	GENERA	r : h	: 43	3,2	Т	= 5	0.7			

ANNEXE 2.

RECAPITULATIFS DES ANALYSES DE VARIANCE.

Annexe 2.1. Données relatives à l'expérimentation de la Tamoa. Annexe 2.2. Données relatives à l'expérimentation de la Nindia.

ANNEXE 2.1.

RECAPITULATIFS DES ANALYSES DE VARIANCE sur l'expérimentation de la Tamoa.

Annexe 2.1.1. Données relatives au champ 1. Annexe 2.1.2. Données relatives au champ 2. Annexe 2.1.3. Données relatives au champ 3.

A N N E X E 2.1.1. Récapitulatifs des analyses de variance des données de la Tamoa CHAMP 1 - 67 -

1-Observations effectuées sur le site de la Tamoa au cours du troisième cycle sur le premier champ

Paramètre Etat moyen		yen	Effets des trois fumures différentes : niveaux et classement						Gradients sur les lignes		Gradients sur les colonnes		
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classment
7	GRU(R)	g/1000gr	255,222	3,31	0,979	218,922	272,478	274,267	3>=2>1	0,403		0,548	
17	NEP(R)	nb/plt	1,023	9,63	0,649	0,940	1,037	1,093		0,171		0,288	***************************************
18	PGE(R)	g/épi	51,755	10,10	0,924	40,580	53,273	61,412		0,732		0,976	1>3>2
19	PG(R)	g/plt	53,771	10,15	0,9 51	39,194	55,766	66,354	3>2>1	0,553		0,977	1>3>2
20	DPr	nb/m ²	5,256	10,01	0,185	5,170	5,174	5,422		0,228		0,815	
21	QG(R)	g/m ²	277,685	12,18	0,948	193,320	281,772	357,964		0,634		0,953	3>1>2
22	QGcom(R)	g/m ²	328,622	12,18	0,948	228,781	333,458	423,626		0,634		0,953	3>1>2
23	NGP(R)	nb/plt	207,279	9,11	0,904	175,631	203,579	242,627		0,75 5		0,982	1>3>2
	NGE(R)	nb∕épi	200,544	7,76	0,85 5	182,166	194,684	224,782		0,877		0,986	1>3>2
32	PTF(R)	g/plt	82,774	2,97	0,976	74,130	82,544	91,649	3>2>1	0,907		0,962	3>1>2
34	PG	g/plt	36,895	8,34	0,952	28,548	38,170	43,968	3>2>1	0,666		0,973	1>3>2
35	QG	g/m ²	190,535	10,40	0,946	141,059	194,724	235,824		0,726		0,894	
36	QG∞m	g/m ²	225,486	10,40	0,946	166,933	230,443	279,081		0,726		0,894	
37	TCdG(R)	%	2,301	5,30	0,977	1,797	2,534	2,573	3=2>1	0,626		0,754	
	TSiG(R)	%	0,011	67,74	0,650	0,011	0,006	0,018		0,830		0,126	ļ
39	TNG(R)	%	1,593	3,59	0,994	1,164	1,785	1,832	3>2>1	0,692		0,268	
40	TPG(R)	%	0,337	6,05	0,944	0,287	0,341	0,384		0,725		0,646	
41	TKG(R)	%	0,407	6,94	0,6 35	0,398	0,392	0432		0,437		0,382	
42	TCaG(R)	%	0,004	7,09	0,840	0,005	0,004	0,004		0,912		0,731	
	TMgG(R)	¹ %	0,126	6,28	0,913	0,110	0,128	0,139		0,433		0,610	
4 7	BasG(R)	méq%	20,755	6,59	0,810	19,206	20,593	22,466		0,435	: (0,504	
48	K/BasG(R)	-	0 ,5 03	0,72	0,994	0,530	0,487	0,492	1>3>2	0,525		0,723	1
49	Mg/BasG(R)	-	0,497	0,73	0,994	0,470	0,513	0,508	2>3>1	0,525		0,723	
	PBasG(R)	méq/plt	11,378	16,30	0,928	7,492	11,454	15,187		0,535		0,942	***************************************
51	QBasG(R)	méq∕m ²	59,039	23,02	0,892	37,048	57,759	82,311		0,502	*,	0,871	
52	PNG(R)	g/plt	0,885	13,36	0,972	0,455	0,993	1,206	3>2>1	0,019		0,951	1>3>2
53	PPG(R)	g/plt	0,187	17,73	0,937	0,113	0,189	0,260		0,573		0,930	

- 69 -

	Paramètre		Etat mo	yen			es trois fumures d				ents sur les ignes		ents sur les connes
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classment
	PKG(R)	g/plt	0,222	15,01	0,927	0,155	0,218	0,292	_	0,613		0,951	1=3>2
• • • • • • • • • • • • • • • • • • • •	PMgG(R)	g/plt	0,069	17,63	0,929	0,043	0,071	0,094		0,454		0,933	
56	QNG(R)	g/m ²	4,590	17,40	0 ,957	2,262	5,013	6,496	3>2>1	0,255		0,887	<u></u>
57	QPG(R)	g/m ²	0,975	25,11	0,900	0,559	0,955	1,411		0,529		0,851	
58	QKG(R)	g/m^2	1,149	21,74	0,889	0,765	1,099	1,582		0,547		0,882	
59	QMgG(R)	g/m ²	0,360	24,30	0,895	0,212	0,360	0,509		0,459		0,860	
60	Mg/CaG(R)		51,791	6,09	0,969	41,874	51,792	61,707	3>2>1	0,833		0,628	
,	K/MgG(R)	-	1,013	1,66	0,992	1,130	0,948	0,970	1>3>2	0,528		0,701	
62	PGE	g/épi	39,921	6,46	0,953	33,817	38,978	46,968	3>2>1	0,662		0,981	1>3>2
63	NEP	nbr/plt	0,910	7,08	0,866	0,804	0,989	0,936		0,615		0,710	
64	NGP	nbr/plt	142,886	10,08	0,796	128,104	139,933	160,620		0,712		0,959	1>3>2
65	NGE	nbr∕épi	155,559	7,08	0,841	152,411	142,702	171,564		0,715		0,975	1>3>2
66	PBasG	meg/plt	7,777	9,78	0,984	5,469	7, 872	9,989	3>2>1	0,825		0,983	1>3>2
67	QBasG	meq/m ²	40,300	14,32	0,942	27,079	40,091	5 3 ,731 *		0,673		0,857	
68	PNG	g/plt	0,605	8,29	0,988	0,331	0,682	0,802	3>2>1	0,257		0,965	1>3>2
69	PPG	g/plt	0,128	8,25	0,983	0,083	0,130	0,171	3>2>1	0,815		0,972	1>3>2
70	PK G	g/plt	0,152	6,01	0,985	0,113	0,150	0,192	3>2>1 .	0,877		0,987	1>3>2
71	PMgG	g/plt	0,047	7,75	0,983	0,031	0,049	0,062	3>2> 1	0,749		0,977	1>3>2
72	QNG	g/m ²	3,141	11,97	0,977	1,646	3,477	4,298	3>2>1	0,525		0,809	
73	QPG	g/m ²	0, 6 64	15,50	0,949	0 ,40 9	0,665	0,919		0,696		0,832	
74	Q K G	g/m ²	0,785	13,59	0,937	0,559	0,764	1,032	***************************************	0,709		0,869	
75	QMgG	g/m ²	0,246	15,06	0,946	0,155	0,250	0,332		0,634		0,845	
76	TCdTF(R)	%	6,591	5,81	0,586	6,652	6 ,3 03	6,819		0,715		0,913	
7 7	TSiTF(R)	%	3,309	7,73	0,561	3,461	3,103	3,334		0,696		0,947	
78	TNTF(R)	%	0,473	14,68	0,902	0,332	0,538	0,548		0,078		0,598	
79	TPTF(R)	%	0,114	7,04	0,989	0,078	0,107	0,157	3>2>1	0,817		0,955	2>3>1
80	TKTF(R)	%	1,172	4,99	0,553	1,149	1,151	1,215		0,889		0,757	
81	TCaTF(R)	9%	0,142	11,54	0,069	0,141	0,141	0,145		0,802		0,881	
82	TMgTF(R)	0/0	0,220	9,34	0,471	0,216	0,211	0,232		0,843		0,866	
83	TNaTF(R)	%	0,043	24,61	0,322	0,047	0,038	0,042		0,313		0,634	

- 70 -

	Paramètre		Etat mo	yen			es trois fumures d				nts sur les		ents sur les
No	Sigle	Unité	Moyenne	CV%	Pté F	<u></u>	iveaux et classem	ent	Classment	Pté F	Classment	Pté F	Onnes Classment
88		meq%	57,005	6,03	0.505	56,221	55,510	59,284	Classificht	0,626	Classificit	0.790	Classificat
	K/BasTF(R)	- 1.04/0	0,528	5,51	0,179	0,522	0,537	0,524	***************************************	0,820		0,865	
90		-	0,124	8,31	0,061	0,124	0,125	0,122		0,818		0,851	
91		-	0,316	5,15	0,344	0,317	0,309	0,323		0,947		0,887	
92	Na/BasTF(R)	-	0,032	21,37	0,476	0,036	0,029	0,031		0,333		0,559	
93	PBasTF(R)	meq/plt	47,412	4,04	0,972	42,094	45,733	54,407	3>2>1	0,945		0,953	1>3>2
94	QBasTF(R)	meq/m ²	2 48,60 8	13,44	0,826	214,215	236,006	295,603		0,713		0,626	
95	PNTF(R)	g/plt	0,395	13,06	0,953	0,246	0,442	0,497	3>2>1	0,287		0,157	
· · · · · · · · · · · · · · · · · · ·	PPTF(R)	g/plt	0,097	4,10	0,998	0,058	0,088	0,145	3>2>1	0,975	1>2=3	0,986	3>2>1
	PKTF(R)	g/plt	0,980	5,53	0,950	0,861	0,952	1,127	3>2>1	0,951	1>3>2	0,951	3>1>2
98	PCaTF(R)	g/plt	0,119	9,82	0,804	0,107	0,116	0,133		0,914		0,914	
99	PMgTF(R)	g/plt	0,181	7,48	0,912	0,161	0,173	0,210		0,877		0,895	
100	PNaTF(R)	g/plt	0,035	21,05	0,419	0,034	0,031	0,039		0,452		0,675	
101	QNTF(R)	g/m ²	2,088	13,53	0,955	1,263	2,307	2,694 •	3>2>1	0,598		0,667	
102	QPTF(R)	g/m ²	0,520	9,77	0,988	0,302	0,467	0,791	3>2>1	0,917		0,963	3>2>1
103	QKTF(R)	g/m ²	5,163	12,98	0,849	4,384	4,927	6,179		0,814		0,866	
104	QCaTF(R)	g/m ²	0,617	20,40	0,640	0,530	0,599	0,721		0,750		0,216	
105	QMgTF(R)	g/m ²	0,946	13,95	0,809	0,826	0,888	1,124		0,761		0,002	
106	QNaTF(R)	g/m ²	0,181	28,84	0,385	0,175	0,161	0,208	-	0,387		0,080	
107	Mg/CaTF(R)		2,613	6,42	0,333	2,638	2,536	2,666		0,967	2=3>1	0,832	
108		-	1,729	11,79	0, 176	1,671	1,778	1,738		0,893		0,871	
109		g/plt	1,280	5,21	0,9 96	0,701	1,435	1,703	3>2>1	0,355		0,985	1>3>2
110		g/plt	0,284	11,83	0,975	0,171	0,277	0,405	3>2>1	0,773		0,921	
111	PKt(R)	g/plt	1, 2 02	7,27	0,943	1,016	1,170	1,419		0,909		0,947	
112	PCat(R)	g/plt	0,119	9,82	0,804	0,107	0,116	0,133		0,914		0,914	ĺ
113	PMgt(R)	g/plt	0,251	5,41	0,9 ⁷ 8	0,204	0,245	0,303	3>2>1	0,847		0,970	1>3>2
114	PNat(R)	g/plt	0,035	21,05	0,4 19	0,034	0,031	0,039		0,452		0,675	
115	QNt(R)	g/m^2	6, 67 9	9,56	0,9 86	3,525	7,320	9,190	3>2>1	0,618		0,908	
116	QPt(R)	g/m ²	1,495	18,85	0,946	0,861	1,422	2,202		0,697		0,834	
117	QKt(R)	g/m ²	6.312	14,23	0,85~	5,148	6,026	7,761		0,777		0,855	

- /1

	Paramètre		Etat mo	yen			ifférentes :			nts sur les gnes	Gradients sur les ∞lonnes		
Ν°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classment
118	QCat(R)	g/m ²	0,617	20,40	0,640	0,530	0,599	0,721		0,750		0,216	
119	QMgt(R)	g/m ²	1,306	12,79	0,906	1,039	1,248	1,633		0,670		0,617	
120	QNat(R)	g/m ²	0,181	28,84	0,385	0,175	0,161	0,208		0,387		0,080	
125	PBast(R)	méq/plt	58,789	5,64	0,967	49,586	57,187	69,594	3>2>1	0,891		0,960	1>3>2
126	QBast(R)	méq/m ²	307,647	14,07	0,868	251,263	293,765	377,914		0,689		0,734	
127	K/Bas t(R)	-	0,522	4,04	0,159	0,523	0,527	0,516		0,844		0,867	
128		-	0,101	10,43	0,402	0,106	0,101	0,096		0,748		0,769	
129	Mg/Bas t(R)	-	0,351	2,20	0,877	0,340	0,349	0,363		0,982	3>2>1	0,935	
130	Na/Bas t(R)	-	0,026	22,92	0,603	0,031	0,023	0,024		0,310		0,594	
131	Mg/Ca t(R)	-	3 ,57 7	11,31	0,587	3,274	3,636	3,822		0,858		0,603	
132	K/Mg t(R)	-	1,514	5,97	0,450	1,551	1,531	1,461		0,946		0,900	
135	QNG(R)/QNFu	-	0,168	8,92	0,972	0,119	0,167	0,217	3>2>1	0,766		0,974	3>1>2
136	QPG(R)/QPFu	-	0,159	10,42	0,987	0,142	0,243	0,090	2>1>3	0,754		0,969	3>1>2
137	QKG(R)/QKFu	-	0,213	21,74	0,889	0,142	0,204	0,293		0,547		0,882	
138	QNTF(R)/QNF11	-	0,078	15,59	0,736	0,066	0,077	0,090		0,520		0,569	
139	QPTF(R)/QPFu	-	0,082	33,31	0,826	0,077	0,119	0,050		0,354		0,709	
140	QKTF(R)/QKFu	-	0,9 57	12,98	0,849	0,813	0,913	1,145	_	0,814		0,866	
141	QNt(R)/QNFu	-	0,245	5,59	0,985	0,186	0,244	0,306	3>2>1	0,892		0,974	3>1>2
142	QPt(R)/QPFu	-	0,241	6,42	0,995	0,219	0,362	0,140	2>1>3	0,837		0,965	3>1>2
143	QKt(R)/QKFu	-	1,170	14,23	0,867	0,954	1,117	1,439		0,777		0,855	<u> </u>
149	∑QNG(R Y∑QNFu	-	0,251	13,82	0,148	0,249	0,244	0,260		0,436		0,633	
150	∑QN(R)∕∑QNFu	-	0,276	13,71	0,201	0,271	0,268	0,288		0,454		0,590	
151	∑QPG(R)/QPFu	-	0,170	16,05	0,943	0,205	0,208	0,097		0,410		0,566	
152	ΣQP(R)/ΣQPFu	-	0,192	16,74	0,931	0,230	0,232	0,114		0,394		0,592	<u> </u>
153	∑QKG(R)∕∑QKFu	-	0,288	7,05	0,970	0,215	0,314	0,336	3>2>1	0,819		0,827	
154	∑QK(R)∕∑QKFu	-	0,607	7,98	0,946	0,486	0,619	0,718		0,875		0,905	<u>_</u>
155	PRch(R)	g/plt	11,551	11,92	0,924	8,394	12,681	13,579		0,248		0,884	

l'-Observations effectuées sur le site de la Tamoa au cours du troisième cycle sur le premier champ : cas des variables ne présentant aucun gradient horizontal mais influencées de façon significative par les fumures lorsqu'on considère le dispositif comme un essai bloc

				Effets des trois fu	mures différentes	`
N°	Paramètre	Unité	Blocs pris s	ur les lignes	Blocs pris su	r les colonnes
			Probabilité	Classement	Probabilité	Classement
21	QG(R)	g//m ²	-	•	0,981	3>2>1
22	QGcom(R)	g/m ²	-	-	0,981	3>2>1
35	QG	g/m ²	-	+	0,968	3>2>1
36	QG∞m	g/m ²	-		0,968	3>2>1
43	TMgG(R)	%	0,960	3>2>1	0,978	3>2>1
50	PBasG(R)	még/plt	- •	_	0,978	3>2>1
51	QBasG(R)	még/m ²	-	-	0,961	3>2>1
53	PPG(R)	g/plt	-	-	0,979	3>2>1
54	PKG(R)	g/plt	-	_	0,970	3>2>1
55	PMgG(R)	g/plt	_	_	0,983	3>2>1
57	QPG(R)	g/m ²	-	-	0,963	3>2>1
58	QKG(R)	g/m ²	-	-	0,953	3>2>1
59	QMgG(R)	g/m ²	-	-	0,967	3>2>1
67	QBasG	még/m ²	-	-	0,973	3>2>1
73	QPG	g/m ²	-	-	0,975	3>2>1
74	QKG	g/m ²	-	-	0,963	3>2>1
7 5	QMgG	g/m ²	-	-	0,979	3>2>1
78	TNTF(R)	%	0,954	3=2>1	0,987	3=2>1
105	QMgTF(R)	g/m ²	0,962	3>2>1	-	-
116	QPt(R)	g/m ²	~	-	0,972	3 > 2 > 1
119	QMgt(R)	g/m ²	0,954	3>2>1	-	-
151	∑QPG(R)∕∑QPFu	-	0,983	2=1>3	0,989	2=1>3
152	∑QP(R)∕QPFu	-	0,974	2=1>3	0,986	2=1>3
155	PRch(R)	g/plt	-	-	0,988	3>2>1

A N N E X E 2.1.2. Récapitulatifs des analyses de variance des données de la Tamoa CHAMP 2

	Paramètre		Etat mo	yen			es trois fumures d niveaux et classen				ents sur les gnes	Gradients sur les colonnes	
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classment
7	GRU(R)	g/1000gr	243.456	3,03	0,952	221,889	253,267	255,211	3=2>1	0,025		0,540	
	NEP(R)	nb/plt	0,978	5,46	0,614	0,958	0,954	1,023		0,702		0,489	
18	PGE(R)	g/épi	50,181	9,77	0,927	38,957	53,050	58,536		0,867		0,933	
19	PG(R)	g/plt	49,214	8,65	0,955	37,489	50,329	59,823	3>2>1	0,918		0,952	1>3>2
20	DPt	nb/m ²	5,642	10,53	0,409	5,326	5,881	5,719		0,238		0,531	
21	QG(R)	g/m ²	277,663	9,75	0,959	196,120	295, 99 4	340,875	3>2>1	0,917		0,910	
22	QGcom(R)	g/m ²	328,595	9,75	0,959	232,094	350,289	403,402	3>2>1	0,917		0,910	
23	NGP(R)	nb/plt	200,140	10,76	0,873	168,394	198,358	233,666		0,87 0		0,912	
24	NGE(R)	nb/épi	204,228	12,42	0,772	175,295	208,592	228,798		0,786		0,875	
30	NEP	nb/plt	0,810	8,13	0,433	0,780	0,803	0,845		0,144		0,749	
32	PTF(R)	g/plt	80,445	11,66	0,786	73,686	75,236	92,412		0,701		0,646	
34	PG	g/plt	30,447	9,77	0,912	24,066	33,838	33,436		0,930		0,766	
35	QG	g/m ²	172,415	0,77	1,000	127,154	198,981	19 1,110	2>3>1	0,999	3>2>1	0,995	1>3>2
36	QG∞m	g/m ²	204,042	0,77	1,000	150,478	235,481	226,166	2>3>1	0,999	3>2>1	0,995	1>3>2
37	TCdG(R)	¦ %	2,248	9,56	0,887	1,877	2,343	2,524		0,703		0,878	
38	TSiG(R)	%	0,005	115,38	0,342	0,006	0,007	0,002		0,663		0,342	
3 9	TNG(R)	%	1,,20	2,69	0,995	1,177	1,680	1,704	3>2>1 •	0,671		0,630	
	TPG(R)	0/0	0,324	5,63	0,889	0,297	0,319	0,357		0,558		0,383	
41	TKG(R)	%	0,401	5,12	0,701	0,408	0,380	0,4014		0,309		0,226	
4 2	TCaG(R)	: %	0, 004	7,63	0,781	0,004	0,004	0,004		0,363		0,731	
4 3	TMgG(R)	%	0,121	5,82	0,800	0,112	0,121	0,128		0,474		0,227	
47	BasG(R)	méq%	20,172	5,44	0,646	19,684	19,672	21,158		0,402		0,211	
48	K/BasG(R)	-	0,508	0,63	0 ,9 93	0,531	0,494	0,501	1>3>2	0,705		0,664	
49	Mg/BasG(R)	-	0,492	0,65	0,993	0,469	0,506	0,499	2>3>1	0,705		0,664	
, 	PBasG(R)	méq/plt	9,980	8,71	0,9 68	7,409	9,797	12,7134	3>2>1	0,924		0,959	1>3>2
51	QBasG(R)	méq/m ²	56,308	1,54	0,99 9	38,730	57,627	72,566	3>2>1	0,998	2>3>1	0,998	1>3>2
52	PNG(R)	g/plt	0,770	10,40	0,9 79	0,440	0,850	1,021	3>2>1	0,915		0,933	
53	PPG(R)	g/plt	0,162	9,94	0,970	0,112	0,160	0,214	3>2>1	0,926		0,939	
54	PKG(R)	g/plt	0,197	9,45	0,954	0,154	0,189	0,249	3>2>1	0,907		0,951	1>3>2

- 77 -

Paramètre Etat moyen			Etat mo	yen			es trois fumures d				ents sur les ignes		ents sur les lonnes
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pte F	Classmen
	PMgG(R)	g/plt	0,060	7,96	0,978	0,042	0,060	0,077	3>2>1	0,939		0,967	1>3>2
56	QNG(R)	g/m ²	4,367	11,43	0,978	2,298	4,996	5,806	3>2>1	0,910		0,892	ļ
57	QPG(R)	g/m ²	0,916	2,77	0,998	0,586	0,940	1,222	3>2>1	0,996	2>3>1	0,994	1>3>2
58	QKG(R)	g/m ²	1,113	1,74	0,999	0,806	1,112	1,421	3>2>1	0,998	2>3>1	0,998	1>3>2
59	QMgG(R)	g/m²	0,338	1,52	0,999	0,220	0,355	0,440	3>2>1	0,998	2>3>1	0,998	1>3>2
60	Mg/Ca G(R)	-	52,956	11,72	0,791	45,124	55,229	58,514		0,300		0,559	
• • • • • • • • • • • • • • • • • • •	K/Mg G(R)	i -	1,037	1,32	0,993	1,131	0,978	1,003	1>3>2	0,676		0,635	
• • • • • • • • • • • • • • • • • • • •	PGE	g∕épi	38,129	13,36	0,828	30,737	42,771	40,880		0,868		0,200	
63	NEP	nb/plt	0,810	8,13	0,433	0,780	0,803	0,842	· 1	0,144		0,749	Ì
64	NGP	nb/plt	123,942	8,41	0,839	108,067	132,821	130,938		0,949	1	0,736	Ì
65	NGE	nb∕épi	155,472	13,50	0,614	138,244	167,387	160,785		0,869		0,126	
	PBasG	méq/plt	6,137	14,70	0,845	4,753	6,595	7,063		0,849		0,665	
67	QBasG	méq/m ²	34,749	6,28	0,980	25,087	38,804	40,357	3>2>1	0,974	2=3>1	0,820	
68	PNG	g/plt	0,474	11,38	0,968	0,283	0,570	0,570	3=2>1	0,913	,	0,746	}
69	PPG	g/plt	0,100	15,48	0,882	0,072	0,107	0,119	İ	0,862		0,598	
70	PKG	g/plt	0,122	15,11	0,787	0,099	0,127	0,138		0,844		0,641]
71	PMgG	g/plt	0,037	14,29	0,887	0,027	0,041	0,043		0,854	:	0,688	
72	QNG	g/m²	2,699	6,00	0,993	1,493	3,349	3,254	2>3>1	0,979	3=2>1	0,824	
73	QPG	g/m ²	0,565	6,50	0,985	0,382	0,632	0,681	3>2>1	0,977	2=3>1	0,753	!
74	QKG	g/m ²	0,687	6,47	0,972	0,522	0,749	0,791	3>2>1	0,974	3=2>1	0,795	-
75	QMgG	g/m^2	0,209	6,08	0,985	0,143	0,239	0,245	3=2>1	0,976	2=3>1	0,842	
76	TCdTF(R)	9.0	6,617	4,54	0,796	6,717	6,899	6,234	1	0,672	;	0,887	}
77	TSiTF(R)	%	3,501	8,78	0,753	3,623	3,732	3,149	!	0,605		0,818	
78	TNTF(R)	%	0,449	6,80	0,939	0,375	0,511	0,460		0,454		0,771	
79	TPTF(R)	%	0,109	8,42	0,976	0,089	0,091	0,146	3>2=1	0,913		0,957	2>3>1
80	TKTF(R)	%	1,122	5,03	0,637	1,076	1,161	1,130		0,235		0,681	
81	TCaTF(R)	%	0,139	8,83	0,794	0,138	0,153	0,125		0,789		0,870	
82	TMgTF(R)	%	0,221	12,31	0,326	0,226	0,228	0,208		0,114		0,125	
	TNaTF(R)	%	0,036	12,32	0,827	0,039	0,041	0,030		0,743		0,817	
88	BasTF(R)	méq%	55,403	2,58	0,878	54,702	57,891	53,617		0,703		0,913	1

	Paramètre		Etat moy	ven			es trois fumures di		-		ents sur les		nts sur les
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classment
	K/Bas TF(R)	- Office	0,520	7,25	0,455	0,504	0,514	0,542	Classificit	0,290	Classificit	0,059	Classificati
	Ca/Bas TF(R)	-	0,124	7,63	0,702	0,125	0,131	0,115	• • • • • • • • • • • • • • • • • • • •	0,780		0,795	
91	Mg/Bas TF(R)	-	0,328	9,96	0,253	0,340	0,325	0,319		0,105		0,268	
92	Na/Bas TF(R)	-	0,028	10,93	0,821	0,031	0,031	0,024		0,767		0,750	
93	PBasTF(R)	méq/plt	44,659	14,48	0,646	40,328	43,453	50, 195		0,681		0,730	
94	QBasTF(R)	méq/m ²	251,851	8,85	0,880	215,174	255,501	284,879		0,891		0,814	
95	PNTF(R)	g/plt	0,363	1 2,7 2	0,891	0,278	0,382	0,427		0,725		0,159	
1/	PPTF(R)	g/plt	0,090	16,82	0,954	0,067	0,068	0,136	3>2=1	0,843		0,565	
97	PKTF(R)	g/plt	0,906	6,98	0,929	0,793	0,876	1,050		0,896		0,904	
98	PCaTF(R)	g/plt	0,112	19,07	0,390	0,101	0,114	0,120		0,753		0,799	
99	PMgTF(R)	g/plt	0,178	24,48	0,270	0,168	0,170	0,195		0,362		0,441	
100	PNaTF(R)	g/plt	0,029	25,59	0,050	0,028	0,030	0,029		0,594		0,731	
101	QNTF(R)	g/m ²	2,056	8,26	0,964	1,493	2,249	2,425	3>2>1	0,886		0,356	
102	QPTF(R)	g/m ²	0,513	10,99	0,983	0,361	0,400	0,777 .	3>2>1	0,930		0,859	
103	QKTF(R)	g/m ²	5,119	4,48	0,980	4,233	5,154	5,970	3>2>1	0 ,97 0	2>3>1	0,936	
104	QCaTF(R)	g/m ²	0,633	17,01	0,600	0,545	0,673	0,680		0,825		0,801	
105	QMgTF(R)	g/m ²	0,999	17,64	0,534	0,889	1,000	1,107		0,625		0,394	
103	QNaTF(R)	g/m ²	0,164	18,5 5	0,396	0,150	0,179	0,164		0,777		0,781	
107	Mg/Ca TF(R)	-	2,727	11,21	0,600	2,798	2,485	2,899		0,717		0,769	
108	K/Mg TF(R)	-	1,608	17,09	0,279	1,514	1,600	1,711		0,176		0,107	
109	PNt(R)	g/plt	1,133	6,24	0,990	0,718	1,232	1,448	3>2>1	0,960	2>3>1	0,954	1>3>2
110	PPt(R)	g/plt	0,252	12,40	0,962	0,178	0,228	0,351	3>2>1	0,892		0,684	
111	PKt(R)	g/plt	1,104	7,19	0,940	0,947	1,065	1,300		0,904		0,921	
112	PCat(R)	g/plt	0,112	19,07	0,390	0,101	0,114	0,120		0,753		0,799	
113	PMgt(R)	g /plt	0,238	19,83	0,581	0,210	0,231	0,273		0,537		0,646	
114	PNat(R)	g/plt	0,029	25,59	0,050	0,028	0,030	0,029		0,594		0,731	
115	QNt(R)	g/m ²	6,42 3	5,56	0,994	3,792	7,245	8 ,2 31	3>2>1	0,973	2>3>1	0,940	
116	QPt(R)	g/m ²	1,429	5,58	0,994	0,947	1,340	1,999	3>2>1	0,981	2>3>1	0,798	
117	QKt(R)	g/m ²	6,232	3,51	0,991	5,038	6,266	7,391	3>2>1	0,985	2>3>1	0,968	1>2>3
118	QCat(R)	g/m ²	0,633	17,01	0,600	0,545	0,673	0,680		0,825		0,801	1

- 79 -

2	Paramètre		Etat mo	yen			es trois fumures d				ents sur les ignes		ents sur les lonnes
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classment
119	QMgt(R)	g/m^2	1,337	12,80	0,830	1,110	1,355	1,547		0,796		0,688	:
120	QNat(R)	g/m ²	0,164	18,55	0,396	0,150	0,179	0,164		0,777		0,781	
125	PBast(R)	méq/plt	54,639	13,02	0,778	47,736	54,250	62,929		0,751		0,806	;
126	QBast(R)	méq/m²	308,159	6,95	0,947	253,904	313,127	357,445		0,937	1	0,894	!
127	K/Bas t(R)	-	0,517	5,81	0,400	0,508	0,509	0,533		0,296		0,045	
	Ca/Bas t(R)	-	0,102	9,39	0,729	0,106	0,108	0,091		0,720		0,764	·
	Mg/Bas t(R)	-	0,358	6,86	0,016	0,360	0,358	0,357	2 3 4 4 2	0.063	į	0,421	
•••••	Na/Bas t(R)	-	0,023	10,81	0,868	0,026	0,025	0,019		0,795		0,731	
	Mg/Ca t(R)	-	3,664	11,08	0,753	3,518	3,347	4,127	İ	0,736	:	0,772	
	K/Mg t(R)	-	1,454	12,50	0,133	1,430	1,430	1,501		0,125		0,202	ļ
135	QNG(R)/QNFu	-	0,160	9,69	0,944	0,121	0,167	0,194		0,920	1	0,908	
	QPG(R)/QPFu	-	0,156	21,48	0,947	0,149	0,240	0,078	_	0,785		0,749	
137	QKG(R)/QKFu	-	0,206	1,74	0,999	0,149	0,206	0,263	3>2>1	0,998	2>3>1	0,998	1>3>2
138	QNTF(R)/QNFu	-	0,078	12,05	0,229	0,079	0,075	0,081		0,815	i	0,273	
139	QPTF(R)/QPFu	-	0,081	9,46	0,977	0,092	0,102	0,050	2>1>3	0,954	2>3>1	0,917	
140	QKTF(R)/QKFu	-	0,949	4,48	0,980	0,785	0,955	1,107	3>2>1	0,970	2>3>1	0,936	
141	QNt(R)/QNFu	-	0,238	3,88	0,982	0,200	0,242	0,274	3>2>1	0,986	2>3>1	0,959	1>3>2
142	QPt(R)/QPFu	-	0,237	13,40	0,974	0,241	0,341	0,127	2>1>3	0,905	:	0,686	
143	QKt(R)/QKFu	-	1,155	3,51	0,991	0,934	1,161	1,670	3>2>1	0,985	2>3>1	0,968	1>2>3
149	∑QNG(R)∕∑QNFu	-	0,172	2,23	0,996	0,142	0,173	0,200	3>2>1	0,978	2>3>1	0,962	1>3>2
150	∑QN(R)∕∑QNFu	-	0,208	2,57	0,990	0,181	0,207	0,237	3>2>1	0,977	2>3>1	0,899	
151	∑QPG(R <i>V</i> ∑QPFu	-	0,115	1,39	0,999	0,148	0,121	0,077	1>2>3	0,996	2>3>1	0,986	1=3>2
152	∑QP(R)∕∑QPFu	-	0,148	4,89	0,993	0,194	0,147	0,102	1>2>3	0,966	2=3>1	0,668	<u> </u>
153	∑QKG(R)∕∑QKFu	-	0,233	4,82	0,991	0,170	0,239	0,291	3>2>1	0,928		0,843	:
154	∑QK(R)∕∑QKFu	-	0,708	2,21	0,997	0,562	0,717	0,844	3>2>1	0,992	2>3>1	0,980	1>2>3
155	PRch(R)	g/plt	10,040	12,31	0,877	8,014	10,292	11,815		0,701		0,737	

l'-Observations effectuées sur le site de la Tamoa au cours du second cycle sur le deuxième champ : cas des variables ne présentant aucun gradient horizontal mais influencées de façon significative par les fumures lorsqu'on considère le dispositif comme un essai bloc

				Effets des trois fu	umures différentes			
N°	Paramètre	Unité	Blocs pris s	ur les lignes	Blocs pris sur les colonnes			
			Probabilité	Classement	Probabilité	Classement		
37	TCdG(R)	%	0,980	3>2>1	•	-		
40	TPG(R)	%	0,971	3>2>1	0,951	3>2>1		
62	PGE	g/épi	0,957	2>3>1	-	-		
78	TNTF(R)	%	-	-	0,987	2>3>1		
95	PNTF(R)	g/plt	0,982	3>2>1	-	-		
136	QPG(R)/QPFu	<u>-</u>	0,964	2>1>3	0,955	2>1>3		

ANNEXE 2.1.3.

Récapitulatifs des analyses de variance des données de la Tamoa

CHAMP 3

	Paramètre		Etat mo	yen			es trois fumures d				nts sur les gnes		nts sur les onnes
N°	Sigle	Unité	Movenne	CV%	Pte F	1	2	3	Classment	Pté F	Classment	Pté F	Classment
	GRU(R)	g/1000gr	243,248	5,74	0,810	224,044	251,400	254,300		0,254		0,326	
17	NEP(R)	nb/plt	1,015	6,38	0,504	0,972	1,042	1,032		0,279		0,554	
18	PGE(R)	g/épi	51,771	18,13	0,819	38,665	60,566	56,082	<u> </u>	0,320		0,791	<u> </u>
19	PG(R)	g/plt	52,703	11,29	0,939	37,530	63,005	57,573		0,437		0,908	<u></u>
20	DP _T	nb/m ²	5,733	6,02	0,325	5,700	5,885	5,615		0,216		0,411	
21	QG(R)	g/m ²	302,737	15,15	0,896	216,305	368,293	323,614		0,294		0,862	
22	QGcom(R)	g/m ²	358 ,26 9	15,15	0,896	255,983	435,850	382,975		0,294		0,862	
23	NGP(R)	nb/plt	214,157	13,53	0,968	166,268	249,510	226,693		0,304		0,863	
	NGE(R)	nb∕épi	211,003	19,56	0,693	171,125	240,273	221,610		0,264		0,764	
***************************************	NEP	nb/plt	0,703	9,57	0,886	0,586	0,720	0,802		0,463		0,046	
32	PTF(R)	g/plt	67,796	8,01	0,778	69,247	79,260	81,881		0,450		0,784	
	PG	g/plt	3 5,65 6	4,77	0,995	22,155	44,443	40,369	2>3>1	0,964	2>1>3	0,794	Ì
35	QG	g/m ²	204,483	10,09	0,973	127,394	260,589	225,466	2>3>1	0,835		0,680	
36	QG∞m	g/m ²	241,992	10,09	0,9 73	150,763	308,389	266,824	2>3>1	0,835		0,680	
37	TCdG(R)	%	1,959	4,45	0,990	1,442	2,291	2,144	2>3>1	0,905		0,865	
39	TNG(R)	%	1,571	5,07	0,977	1,244	1,707	1,763	3>2>1	0,391		0,525	
40	TPG(R)	%	0,292	2,08	0,9 95	0,242	0,317	0,319	3=2>1	0,870		0,878	
41	TKG(R)	%	0,376	2,68	0,732	0,365	0,383	0,380		0,293		0,642	
42	TCaG(R)	; %	0,004	8,10	0,500	0,004	0,003	0,004		0,815		0,363	
43	TMgG(R)	%	0,113	2,90	0,97 0	0,101	0,121	0,117	2>3>1	0,814		0,592	
47	BasG(R)	méq%	18,926	2,34	0,950	17,671	19,750	19,356	2>3>1	0,720		0,689	
48	K/BasG(R)		0,509	1,63	0,929	0,528	0,496	0,502		0,672		0,085	
4 9	Mg/BasG(R)	1-	0,491	1,68	0,929	0,472	0,504	0,498		0,672		0,085	
50	PBasG(R)	méq/pit	10,030	13,64	0,938	6,594	12,394	11,101		0,220		0,868	
51	QBasG(R)	méq/m ²	5 7,629	16,30	0,914	38,000	72,521	62,364		0,200		0,844	
52	PNG(R)	g/plt	0,847	9,93	0,982	0,461	1,074	1,006	2>3>1	0,416		0,910	4
53	PPG(R)	g/plt	0,157	13,06	0,962	0,090	0,198	0,182	2>3>1	0,338	,	0,859	
54	PKG(R)	g/plt	0,198	14,50	0,917	0,136	0,240	0,218		0,236		0,860	

	Paramètre		Etat mo	yen			es trois fumures d				ents sur les ignes		nts sur les onnes
Ν°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classment
55	PMgG(R)	g/plt	0,060	12,84	0,953	0,038	0,076	0,067	2>3>1	0,221		0,875	
56	QNG(R)	g/m ²	4,862	12,96	0,968	2,656	6,278	5,652	2>3>1	0,2912		0,875	
57	QPG(R)	g/m ²	0,901	16,23	0,942	0,521	1,161	1,022		0,283		0,828	
58	QKG(R)	g/m^2	1,139	17,23	0,888	0,783	1,406	1,229		0,194		0,835	
59	QMgG(R)	g/m ²	0,346	15,38	0,935	0,218	0,444	0,376		0,221		0,853	<u> </u>
60	Mg/Ca G(R)		52,525	9,59	0,854	44,932	58,896	53,747		0,817		0,246	
	K∕Mg G(R)	-	1,037	3,38	0,929	1,120	0,984	1,008		0,669		0,035	
	PGE	g/épi	49,917	1,63	0,999	36,552	62,337	50,863	2>3>1	0,996	2>1>3	0,990	2>3>1
63	NEP	nb/plt	0,703	9,57	0,886	0,586	0,720	0,802		0,463		0,046	
64	NGP	nb/plt	144,510	11,91	0,947	97,531	176,264	159,736		0,777		0,340	
65	NGE	nb∕épi	203,394	6,89	0,968	161,503	247,252	201,426	2>3>1	0,900		0,812	
66	PBasG	méq⁄plt	6,824	1,48	0,999	3,875	8,785	7,814	2>3>1	0,997	2>1>3	0,977	3>2>1
67	QBasG	méq/m ²	39,142	7,68	0,989	22,281	51,537	43,607	2>3>1	0,898		0,800	
68	PNG	g/plt	0,581	7,04	0,994	0,271	0,759	0,714 •	2>3>1	0,917		0,250	
69	PPG	g/plt	0,108	3,31	0,998	0,053	0,141	0,129	2>3>1	0,987	2>1>3	0,818	
70	PKG	g/plt	0,137	2,52	0,999	0,080	0,170	0,153	2>3>1	0,991	2>1>3	0,949	<u> </u>
71	PMgG	g/plt	0,041	2,50	0,999	0,022	0,054	0,047	2>3>1	0,991	2>1>3	0,903	<u> </u>
72	QNG	g/m^2	3,330	6,05	0,996	1,555	4,454	3,982	2>3>1	0,929		0,763	
73	QPG	g/m ²	0,618	6,71	0,994	0,305	0,827	0,721	2>3>1	0,932		0,805	
74	QKG	g/m ²	0,771	9,35	0,980	0,460	0,998	0,855	2>3>1	0,851		0,761	
75	QMgG	g/m ²	0,236	6,04	0,994	0,128	0,316	0,264	2>3>1	0,938		0,843	
76	TCdTF(R)	··· / %	6,067	4,84	0,596	6,147	5,833	6,221		0,759	***************************************	0,084	
	TSiTF(R)	%	2,999	4,62	0,859	3,112	2,770	3,114		0,735		0,736	
	TNTF(R)	%	0,508	10,36	0,890	0,422	0 ,50 5	0,596		0,298		0,862	
79	TPTF(R)	%	0,068	13,65	0,951	0,046	0,066	0,092	3>2>1	0,730		0,873	
80	TKTF(R)	%	1,068	4,02	0,683	1,033	1,106	1,064		0,901		0,845	
81	TCaTF(R)	%	0,147	9,92	0,760	0,147	0,132	0,163		0,762		0,562	
82	TMgTF(R)	, %	0,194	3,60	0,919	0,209	0,182	0,192		0,908		0,386	<u> </u>
83	TNaTF(R)	%	0,041	5,99	0,969	0,049	0,034	0,039	1>3>2	0,558	.,	0,487	
88	BasTF(R)	méq%	52,410	3,27	0,476	53,081	51,329	52,819		0,658		0,479	

- 86 -

	Paramètre		Etat mo	yen			es trois fumures d iveaux et classem				nts sur les gnes		nts sur les onnes
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classmen
89	K/Bas TF(R)	-	0,52	2,09	0,955	0,496	0,552	0,514	2>3>1	0,930		0,908	
**********	Ca/Bas TF(R)		0,140	6,94	0,836	0,139	0,128	0,153		0,825		0,792	Ļ
	Mg/Bas TF(R)		0,306	4,79	0,810	0,325	0,292	0,300		0,914		0,433	
9 2	Na/Bas TF(R)	-	0,034	7,22	0,947	0,040	0,029	0,032		0,626		0,538	
93	PBasTF(R)	méq/plt	40,241	6,14	0,836	36,807	40,697	43,218		0,752		0,851	ļ
94	QBasTF(R)	méq/m ²	230,538	11,65	0,547	210,984	238,260	242,369		0,537		0,631	
95	PNTF(R)	g/plt	0,391	3,22	0,996	0,291	0,396	0,486	3>2>1	0,894		0,975	1>2>3
96	PPTF(R)	g/plt	0,053	6 ,6 5	0,9 93	0,032	0,052	0,074	3>2>1	0,939		0,943	
97	PKTF(R)	g/plt	0,823	6,65	0,885	0,721	0,876	0,872		0,879		0,886	
98	PCaTF(R)	g/plt	0,113	10,98	0,840	0,102	0,105	0,132		0,742		0,592	
99	PMgTF(R)	g/plt	0,148	6,31	0,673	0,144	0,144	0,157		0,738		0,800	
100	PNaTF(R)	g/plt	0,031	5,46	0,928	0,034	0,027	0,032		0,122		0,841	
101	QNTF(R)	g/m ²	2,236	2,95	0,996	1,656	2,325	2,726	3>2>1	0,929		0,961	1>2>3
102	QPTF(R)	g/m ²	0,300	6,03	0,994	0,181	0,304	0,416 .	3>2>1	0,950		0,931	
103	QKTF(R)	g/m ²	4,718	13,11	0,669	4,150	5,127	4,876		0,692		0,660	
104	QCaTF(R)	g/m ²	0,647	16,82	0,659	0,579	0,616	0,745		0,538		0,523	
105	QMgTF(R)	g/m ²	0,849	8,56	0,346	0,822	0,845	0,882	•	0,692		0,705	
103	QNaTF(R)	g/m ²	0,17 7	5,86	0,893	0,192	0,158	0,181		0,236		0,860	
107	Mg/Ca TF(R)	_	2,228	7,12	0,805	2,359	2,310	2,014	-	0,930		0,433	
************	K∕Mg TF(R)	_	1,735	5,52	0,897	1,574	1,901	1,729		0,935		0,741	
	PNt(R)	g/plt	1,238	6,69	0,9 89	0,752	1,470	1,492	3=2>1	0,353		0,868	
***********	PPt(R)	g/plt	0,209	8,25	0,985	0,122	0,250	0,256	3=2>1	0,693		0,819	
	PKt(R)	g/plt	1,021	7,51	0,912	0,857	1,116	1,090		0,810		0,859	
••••••	PCat(R)	g/plt	0,113	10,98	0,840	0,102	0,105	0,132		0,742		0,592	1
113	PMgt(R)	g/plt	0,209	8,19	0,849	0,182	0,220	0,224		0,407		0,810	
	PNat(R)	g/plt	0,031	5,46	0,928	0,034	0,027	0,032		0,122		0,841	
115	QNt(R)	g/m ²	7,098	9,19	0,978	4,312	8,603	8,379	2=3>1	0,264		0,820	
116	QPt(R)	g/m ²	1,202	11,46	0,9 69	0,702	1,464	1,438	2=3>1	0,576		0,776	
117	QKt(R)	g/m ²	5,857	13,12	0,777	4,933	6,533	6,105		0,629		0,692	
118	QCat(R)	g/m ²	0,647	16,82	0,659	0,579	0,616	0,745		0,538		0,523	1

- 87 -

	Paramètre		Etat moy	yen			es trois fumures d niveaux et classem				nts sur les gnes		nts sur les onnes
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classment
119	QMgt(R)	g/m ²	1,196	10,29	0,784	1,040	1,289	1,258		0,438		0,775	
120	QNat(R)	g/m ²	0,177	5,86	0,893	0,192	0,158	0,181		0,236		0,860	
125	PBast(R)	még/plt	50,270	7,14	0,892	43,400	53,091	54,319		0,647		0,844	
:: :	QBast(R)	még/m ²	288,166	11,85	0,749	248,983	310,782	304,734		0,480		0,707	
127	K/Bas t(R)	-	0,517	2,09	0,903	0,501	0,539	0,512		0,896		0,874	
128	Ca/Bas t(R)	-	0,113	7,19	0,881	0,118	0,098	0,122		0,792		0,646	
	Mg/Bas t(R)	-	0,342	3,58	0,206	0,346	0,341	0,339		0,912		0,687	
130	Na/Bas t(R)	-	0,027	7,94	0,962	0,034	0,022	0,026	1>3>2	0,532		0,368	<u>[</u>
131	Mg/Ca t(R)	-	3,111	8,23	0,848	2,968	3,512	2,855		0,883		0,167	<u> </u>
132	K/Mg t(R)	-	1,527	4,98	0,580	1,481	1,583	1,515		0,916		0,807	
135	QNG(R)/QNFu	-	0,157	12,04	0,715	0,140	0,174	0,157		0,313		0,892	
136	QPG(R)/QPFu		0,099	16,02	0,932	0,133	0,099	0,065		0,628		0,833	
137	QKG(R)/QKFu		0,211	17,23	0,888	0,145	0,261	0,228		0,194		0,835	
138	QNTF(R)/QNFu		0,076	5,58	0,957	0,087	0,065	0,076 .	1>3>2	0,779		0,862	
139	QPTF(R)/QPFu	-	0,033	17,10	0,928	0,046	0,026	0,027		0,756		0,665	
140	QKTF(R)/QKFu	-	0,874	13,11	0,669	0,769	0,950	0,904		0,692		0,660	
141	QNt(R)/QNFu	-	0,233	9,85	0,172	0,227	0,239	0,233		0,411		0,809	
142	QPt(R)/QPFu	-	0,132	16,08	0,929	0,179	0,124	0,092		0,662		0,680	
143	QKt(R)/QKFu	-	1,086	13,12	0,777	0,914	1,211	1,132	į	0,629		0,692	
144	PRch(R)	g/plt	10,920	6,88	0,932	9,125	11,421	12,213	•	0,551		0,822	

l'-Observations effectuées sur le site de la Tamoa au cours du premier cycle sur le troisième champ : cas des variables ne présentant aucun gradient horizontal mais influencées de façon significative par les fumures lorsqu'on considère le dispositif comme un essai bloc

				Effets des trois fu	ımures différentes	323.0
N°	Paramètre	Unité	Blocs pris s	ur les lignes	Blocs pris su	r les colonnes
			Probabilité	Classement	Probabilité	Classement
19	PG(R)	g/plt	-	-	0,987	2>3>1
21	QG(R)	g/m ²	-	-	0,979	2>3>1
22	QGcom(R)	g/m ²	-	-	0 ,9 79	2>3>1
23	NGP(R)	nb/plt	-	-	0,967	2>3>1
30	NE	nb/plt	0,984	3>2>1	0,962	3>2>1
48	K/Bas G(R)	-	0,992	1>3>2	0,963	1>3>2
49	Mg/Bas G(R)		0,992	2>3>1	0,963	2>3>1
50	PBasG(R)	még/plt	-	-	0,992	2>3>1
51	QBasG(R)	még/m ²	-	-	0,987	2>3>1
54	PKG(R)	g/plt	-	-	0,987	2>3>1
57	QPG(R)	g/m ²	-	-	0,992	2>3>1
58	QKG(R)	g/m ²	-	~	0,980	2>3>1
59	QMgG(R)	g/m ²	-	-	0,991	2>3>1
60	Mg/Ca G(R)	T -	0,965	2>3>1	-	-
61	K/Mg G(R)		0,993	1>3>2	0,963	1>3>2
63	NEP	nb/plt	0,984	3>2>1	0,962	3>2>1
64	NGP	nb/plt	0,992	2>3>1	0,957	2>3>1
78	TNTF(R)	%	-		0,976	3>2>1
82	TMgTF(R)	%	0,982	1>3>2	-	-
92	Na/Bas TF(R)		0,986	1>3>2	0,981	1>3>2
100	PNaTF(R)	g/plt			0,991	1>3>2
106	QNaTF(R)	g/m ²			0,980	1 · 3 · 2
114	PNat(R)	g/plt	-		0,991	1>3>2
120	QNat(R)	g/m ²	*	-	0,980	1>3>2
131	Mg/Ca t(R)	-	0,968	2>1>3	-	
136	QPG(R)/QPFu	-	-	-	0,971	1> 2 >3
137	QKG(R)/QKFu	<u> </u>		_	0,980	2>3>1
139	QPTF(R)/QPFu		0,963	1>3=2	-	-
142	QPt(R)/QPFu		0,961	1>2>3	0,964	1>2>3

ANNEXE 2.2.

RECAPITULATIFS DES ANALYSES DE VARIANCE sur l'expérimentation de la Nindia.

Annexe 2.2.1. Données relatives au champ 1. Annexe 2.2.2. Données relatives au champ 2. Annexe 2.2.3. Données relatives au champ 3.

A N N E X E 2.2.1.

Récapitulatifs des analyses de variance des données de la Nindia

CHAMP 1

	Paramèt	re	Etat mo	yen			les trois fumures d niveaux et classen				ents sur les ignes		ents sur les
Ν°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classmen
1	H36	cm	27,074	3,14	0,768	26,763	26,400	28,089		0,311		0,755	
2	H43	cm	45,241	2,07	0,906	44,360	44,178	47,184		0,737		0,945	
3	H50	cm	82,981	2,61	0,806	81,781	81,248	85,916		0,896		0,865	
4	V(36,43)	cm/j	2,595	1,53	0,964	2,518	2,540	2,728	3>2>1	0,939		0,993	3>2>1
5	V(43,50)	cm/j	5,392	3,25	0,605	5,346	5,296	5,533		0,946		0,866	
6	V(36,50)	cm/j	3,993	2,47	0,813	3,932	3,918	4,130		0,948		0,896	
20	PG(R)	g/plt	143,685	5,54	0,211	142,594	146,402	142,059		0,744		0,278	
21	GRU(R)	g/1000gr	271,430	1,83	0,822	256,156	277,478	271,656		0,822		0,671	
22	DPr	nb/m ²	4,714	3,18	0,795	4,537	4,878	4,726		0,967	3>1>2	0,460	
23	QG(R)	g/m ²	675,695	2,97	0,879	647,506	709,518	670,062		0,935		0,763	
25	NGP(R)	nb/plt	529,009	4,37	0,231	537,072	527,096	522,859		0,665		0,084	
26	NEP(R)	nb/plt	1,046	1,47	0,881	1,066	1,019	1,054		0,904		0,893	
27	NGE(R)	nbڎpi	505,980	5,53	0,283	504,196	516,914	496,929		0,141		0,263	
28	PGE(R)	g/épi	137,362	6,65	0,511	133,695	143,550	134,839		0,465		0,013	
36	PTF(R)	g/plt	109,236	4,02	0,968	95,918	122,952	108,840	2>3>1	0,488		0,919	
37	TCdG(R)	%	2,379	27,15	0,449	2,197	2,173	2,768		0,185		0,314	
38	TSiG(R)	%	0,119	110,53	0,395	0,178	0,122	0,056		0,763		0,743	
39	TNG(R)	%	1,659	3,51	0,947	1,497	1,727	1,754		0,351		0,656	
40	TPG(R)	%	0,296	3,03	0,920	0,279	0,294	0,314		0,235		0,655	
41	TCaG(R)	%	0,003	3,41	0,500	0,003	0,003	0,003		0,500		0,799	
42	TMgG(R)	%	0,118	0,53	0,996	0,112	0,117	0,123	3>2>1	0,961	3>2>1	0,961	3>2>1
4 3	TKG(R)	%	0,375	0,98	0,853	0,373	0,371	0,381		0,882		0,583	
45	TCdTF(R)	%	8,321	5,12	0,334	8,266	8,182	8,517		0,709		0,288	
46	TSiTF(R)	%	3,840	5,71	0,671	3,707	3,768	4,046		0,890		0,719	
47	TNTF(R)	%	0,692	17,16	0,689	0,574	0,743	0,758		0,404		0,656	
48	TPTF(R)	%	0, 07 0	14,18	0,7 97	0,057	0,071	0,080		0,125		0,853	
49	TCaTF(R)	%	0,241	5,71	0,761	0,229	0,237	0,256		0,945		0,663	
50	TMgTF(R)	%	0 ,27 3	3,92	0,782	0,260	0,282	0,278		0,915		0,014	1
51		%	1,686	10,41	0,163	1,731	1,641	1,687		0,226		0,697	
52	TNaTF(R)	%	0,035	7,71	0,591	0,033	0,036	0,035		0,018	-	0,686	
55	BasG(R)	méq%	19,264	0,54	0,990	18,787	19,149	19,857	3>2>1	0,955	3>2>1	0,915	

95 -

	Paramètre		Etat mo	yen			les trois fumures d				ents sur les ignes		ents sur les
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classmen
56	K/BasG(R)	-	0,468	0,60	0,963	0,508	0,496	0,491	1>2>3	0,704		0,695	
57	Mg/BasG(R)	-	0,502	0,60	0,963	0,492	0,504	0,509	3>2>1	0,704	<u> </u>	0,695	
•••••••	PBasG(R)	meg/plt	27,647	5,37	0,485	26,690	28,052	28,199		0,657		0,469	
59	QBasG(R)	meq/m ²	130,117	2,55	0,944	121,274	135,995	133.081		0,951	3>1>2	0,863	
60	PNG(R)	g/plt	2,386	8,56	0,775	2,134	2,532	2,492		0,619		0,463	
	PPG(R)	g/plt	0,425	8,07	0,629	0,396	0,432	0,446		0,634	1	0,450	
62	PKG(R)	g/plt	0,538	5,04	0,189	0,530	0,544	0,541		0,699		0,415	
	PMgG(R)	g/plt	0,169	5,74	0,667	0,160	0,172	0,174		0,617		0,510	
64	QNG(R)	g/m ²	11,245	5,60	0,932	9,726	12,256	11,752		0,840		0,737	
65	QPG(R)	g/m ²	1,998	5,28	0,885	1,802	2,088	2,103		0,763		0,741	
66	QKG(R)	g/m ²	2,531	2,31	0,924	2,405	2,637	2,553		0,953	3>1>2	0,858	
67	QMgG(R)	g/m ²	0,794	2,86	0,954	0,726	0,833	0,824	2=3>1	0,946	!	0,862	
68	Mg/CaG(R)	-	61,014	0,63	0,995	58,285	60,806	63,953	1<2<3	0,930	;	0,996	2>3>1
69	K/MgG(R)	-	0,994	1,24	0,961	1,032	0,986	0,964	1>2>3	0,695		0,681	
74	BasTF(R)	meq%	79,117	7,09	0,094	78,462	78,576	80,313	:	0,221		0,668	
75	K/BasTF(R)	-	0,543	3,11	0,765	0,563	0,531	0,535	1	0,903		0,763	
76	Ca/BasTF(R)	-	0,152	3,38	0,871	0,145	0,152	0,160	!	0,974	3>1>2	0,625	
77	Mg/BasTF(R)	-	0,286	4,70	0,689	0,274	0,297	0,286		0,812		0,788	
78	Na/BasTF(R)	-	0,019	13,74	0,266	0,018	0,020	0,019		0,013		0,191	<u> </u>
79	PBasTF(R)	meg/plt	85,788	9,75	0,830	74,793	96,224	86,348		0,043		0,607	
80	QBasTF(R)	meg/m ²	406,000	4,74	0,973	341,401	469,571	407,029	2>3>1	0,920	;	0,903	
81	PNTF(R)	g/plt	0,765	17,42	0,857	0,554	0,920	0,822		0,216		0,580	
82	PPTF(R)	g/plt	0,078	14,74	0,893	0,055	0,088	0,089		0,025		0,821	
83	PKTF(R)	g/plt	1,812	14,51	0,574	1,640	1,992	1,802		0,334	· · · · · · · · · · · · · · · · · · ·	0,503	
84	PCaTF(R)	g/plt	0,265	5,23	0,964	0,219	0,295	0,281	2>3>1	0,933	-	0,900	
85	PMgTF(R)	g/plt	0,289	6,05	0,958	0,250	0,347	0,299	2>3>1	0,792		0,823	
86	PNaTF(R)	g/plt	0,038	7,02	0,951	0,031	0,045	0,037	2>3>1	0,086		0,553	
87	QNTF(R)	g/m ²	3,649	12,90	0,929	2,572	4,499	3,874		0,798		0,739	
88	QPTF(R)	g/m ²	0,369	13,67	0,917	0,257	0,430	0,419		0,583		0,852	

	Paramètre	-	Etat moy	yen			es trois fumures d				ents sur les ignes		ents sur les lonnes
Ν°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classmen
89	QKTF(R)	g/m ²	8,530	10,28	0,819	7,483	9,642	8,464		0,257		0,734	
90	QCaTF(R)	g/m ²	1,266	6,91	0,9 57	1,006	1,464	1,329	2>3>1	0,968	3>1>2	0,874	
91	QMgTF(R)	g/m ²	1,420	1,23	0,999	1,138	1,706	1,415	2>3>1	0,998	3>1>2	0,995	1>3>2
92	QNaTF(R)	g/m ²	0,179	9,14	0,94 3	0,141	0,218	0,178		0, 7 37		0,552	
9 3	Mg/CaTF(R)	-	1,908	5,08	0,739	1,924	1,994	1,808		0,917		0,701	
94	K/MgTF(R)	-	1,935	7,21	0,723	2,080	1,827	1,898		0,868	!	0,797	
95		g/plt	3,151	10,69	0,813	2,688	3,451	3,314		0,309		0,472	
96	PPt(R)	g/plt	0,502	8, 55	0,7 63	0,452	0,520	0,535		0,538		0,597	
97	PKt(R)	g/plt	2,350	12,34	0,545	2,170	2,536	2,343		0,365		0,466	
98	PCat(R)	g/plt	0,265	5,23	0,964	0,219	0,295	0,281	2>3>1	0,933		0,900	
99	PMgt(R)	g/plt	0,467	5,75	0,927	0,409	0,519	0,474		0,679		0,589	
100	PNat(R)	g/plt	0,038	16,02	0,951	0,031	0,045	0,037	2>3>1	0,086		0,553	
101	QNt(R)	g/m ²	1 4,89 3	16,37	0,9 31	12,298	16,756	15,626		0,803		0,715	[
102	QPt(R)	g/m ²	2,366	5,82	0,918	2,059	2,518	2,522		0,756		0,814	
103	QKt(R)	g/m ²	11,061	8,46	0,830	9,887	12,879	11,017		0,387		0,735	
104	QCat(R)	g/m ²	1, 266	6,91	0,957	1,006	1,464	1,329	2>3>1	0,968	3>1>2	0,874	
105	QMgt(R)	g/m ²	2,214	0,78	0,999	1,865	2,539	2,239	2>3>1	0,999	3>1>2	0,994	1>3>2
106	QNat(R)	g/m ²	0,179	9,14	0,943	0,141	0,218	0,178		0,737		0,552	
111	PBast(R)	meq/plt	113,435	8,68	0,801	101,483	124,276	114,546		0,122	1	0,525	
112	QBast(R)	meq/m ²	536,117	4,21	0,97 0	462,67 5	605,566	540,110	2>3>1	0,925	!	0,881	
113	K/Bast(R)	-	0,531	2,69	0,7 53	0,548	0,523	0,523	····	0,888		0,690	1
114	Ca/Bast(R)	~	0,115	2,19	0,964	0,106	0,117	0,120	3>2>1	0,992	3>1>2	0,927	
115	Mg/Bast(R)	-	0,340	3,53	0,46 0	0,333	0,344	0,343		0,771		0,691	
116	Na/Bast(R)	-	0,014	11,98	0,539	0,013	0,015	0,014		0,010	!	0,067	
117	Mg/Cat(R)	-	3,070	7,11	0,49 3	3,211	3,021	2,977		0,889	1	0,630	
118		-	1,575	6,28	0,589	1,654	1,535	1,536		0,823		0,685	
119	QGcom(R)	g/m ²	799,639	2,97	0,879	766,280	839,666	792, 9 73		0,935		0,763	1
123	QNG(R)/QNFu	-	0,437	8,49	0,901	0,512	0,409	0,392		0,747		0,660	

- 97 -

	Paramètre		Etat moy	/en			les trois fumures di niveaux et classem				nts sur les gnes		nts sur les lonnes
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classment
124	QPG(R)/QPFu	-	0,375	10,81	0,990	0,459	0,532	0,134	2>1>3	0,456		0,392	
125	QNTF(R)/QNFu		0,138	20,18	0,306	0,135	0,150	0,129		0,718	j	0,661	
126	QPTF(R)/QPFu	-	0,067	15,25	0,982	0,065	0,110	0,027	2>1>3	0,785		0,830	
127	QNt(R)/QNFu	-	0,576	11,27	0,750	0,647	0,559	0,521		0,719		0,652	
128	QPt(R)/QPFu	-	0,442	11,28	0,989	0,525	0,642	0,161	2>1>3	0,534		0,540	
135	∑QNG(R)∕∑QNFu	-	0,368	8,62	0,923	0,441	0,340	0,324		0,644		0,454	
136	∑QN(R)∕∑QNFu	-	0,412	9,92	0,882	0,486	0,387	0,364		0,662		0,512	
137	∑QPG(R)∕∑QPFu	-	0,261	10,41	0,988	0,378	0,289	0,117	1>2>3	0,593		0,442	
138	∑QP(R)∕∑QPFu	-	0,279	11,20	0,986	0,400	0,311	0,126	1>2>3	0,606		0,501	
139	∑QKG(R)∕∑QKFu	-	0,405	6,25	0,824	0,370	0,433	0,412		0,725		0,374	
140	∑QK(R)∕∑QKFu	_	0,932	8,52	0,819	0,833	1,028	0,935		0,456		0,654	
i i	PRch(R)	g/plt	24,538	10,21	0,033	24,248	24,800	24,566		0,459		0,135	

l'-Observations effectuées sur le site de la Nindia au cours du troisième cycle sur le premier champ : cas des variables ne présentant aucun gradient horizontal mais influencées de façon significative par les fumures lorsqu'on considère le dispositif comme un essai bloc

			Effets des trois fumures différentes								
N°	Paramètre	Unité	Blocs pris s	ur les lignes	Blocs pris sur les colonnes						
			Probabilité	Classement	Probabilité	Classement					
39	TNG(R)	%	0,978	3>2>1	0,992	3>2>1					
40	TPG(R)	%	0,959	3>2>1	0,988	3>2>1					
50	TMgTF(R)	96	0,950	2>3>1		-					
64	QNG(R)	g/m ²	0,951	2>3>1	-	-					
79	PBasTF(R)	méq/plt	-	-	0,968	2>3>1					
81	PNTF(R)	g/plt	-	-	0,968	2>3>1					
82	PPTF(R)	g/plt	-	-	0,986	3>2>1					
88	QPTF(R)	g/m ²	-	-	0,967	2>3>1					
92	QNaTF(R)	g/m ²	0,984	2>3>1	0,963	2>3>1					
99	PMgt(R)	g/plt	0,972	2>3>1	0,959	2>3>1					
101	QNt(R)	g/m ²	0,955	2>3>1	-	-					
106	QNat(R)	g/m ²	0,984	2>3>1	0,963	2>3>1					
111	PBast(R)	méq/plt	-	-	0,951	2>3>1					
135	∑QNG(R)/∑QNFu		0,988	1>2>3	0,976	1>2>3					
136	∑QN(R)∕∑QNFu		0,953	1>2>3		_					

		A	N N	ЕΧ	E	2.2	2.2				
Récapitulatifs	des	analy	ses	de	varia	nce	des	données	de	la	Nindia
				CHA	MP 2						
				~	101 -	_					

Paramètre		re	Etat mo	yen			les trois fumures oniveaux et classen		Gradients sur les lignes		Gradients sur les colonnes		
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classment
1	H36	cm	31,056	5,20	0,857	29,822	29,644	33,700		0,798		0,642	
2	H43	cm	55,461	5,47	0,894	52,509	52,531	61,344	<u> </u>	0,616		0,462	
3	H50	cm	98, 193	6,77	0,759	95,080	93,498	106,002		0,328		0,527	
4	V(36,43)	cm/j	3,487	10,94	0,768	3,241	3,270	3,949		0,524		0,069	
5	V(43,50)	cm/j	6,105	8,48	0,439	6,082	5,852	6,380		0,050	<u> </u>	0,584	
6	V(36,50)	cm/j	4,796	9,13	0,621	4,661	4,561	5,164	j	0,209	j	0,385	į
20	PG(R)	g/plt	117,696	7,09	0,466	112,570	120,998	119,522		0,934		0,908	
21	GRU(R)	g/1000gr	255,722	4,62	0,344	257,522	259,511	250,133		0,723		0,804	
22	DPr	nb/m ²	4,996	7,56	0,089	5,011	4,922	5,056		0,726		0,688	
23	QG(R)	g/m ²	580,452	4,85	0,775	545,685	595,984	599,687		0,921		0,940	
25	NGP(R)	nb/plt	457,377	3,75	0,857	430,4 35	463,921	477,776		0,965	1>2>3	0,857	
26	NEP(R)	nb/plt	1,037	2,86	0,758	1,012	1,071	1,030		0,925		0,422	
27	NGE(R)	nb∕épi	440,424	6,51	0,625	424,428	432,184	464,659		0,790		0,855	
28	PGE(R)	g/épi	113,234	10,39	0,146	110,826	112,570	116,307		0,759		0,840	
35	PTF(R)	g/plt	143,614	24,86	0,346	150,473	153,978	126,392		0,051		0,528	
36	TCdG(R)	%	2,501	8,33	0,67 0	2,699	2,401	2,403		0,369		0,179	
37	TSiG(R)	%	0,010	107,15	0,466	0,013	0,013	0,003		0,029		0,295	
38	TNG(R)	%	1,706	3,72	0,846	1,614	1,785	1,720		0,217		0,217	
39	TPG(R)	%	0,326	0,12	0,999	0,315	0,330	0,334	3>2>1	1,000	3>2>1	0,999	3>2>1
40	TCaG(R)	%	0,004	7,28	0,650	0,004	0,004	0,004		0,650		0,500	
41	TMgG(R)	%	0,126	1,19	0,48 3	0,126	0,125	0,127		0,933		0,825	
••••••	TKG(R)	%	0,403	1,42	0,866	0,398	0,399	0,413		0,940		0,947	
	TCdTF(R)	%	7,593	14,28	0,146	7,838	7,618	7,324		0,034		0,009	·
45	TSiTF(R)	%	3,219	7,11	0,692	3,434	3,176	3,046		0,709		0,389	
46		%	0,690	20,67	0,585	0,595	0,790	0,684		0,092		0,046	
47	· · · · · · · · · · · · · · · · · · ·	%	0,093	17,39	0,749	0,076	0,094	0,108		0,788		0,272	!
48	TCaTF(R)	%	0,240	14,89	0,134	0,231	0,243	0,246		0,487		0,145	
	TMgTF(R)	%	0,242	15,57	0,248	0,255	0,238	0,231		0,001		0,127	i i
• • • • • • • • • • • • • • • • • • • •	TKTF(R)	%	1,646	27,45	0,077	1,609	1,732	1,596		0,191	·· ···································	0,138	
	TNaTF(R)	%	0,027	33,29	0,142	0,026	0,026	0,030		0,293		0,194	

- 103 -

	Paramètre		Etat mo	yen			les trois fumures d niveaux et classen			Gradients sur les lignes		Gradients sur les colonnes	
Ν°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classmen
54	BasG(R)	méq%	20,682	1,15	0,806	20,541	20,500	21,004		0,951	3>2>1	0,933	
55	K/Bas G(R)	-	0,499	0,62	0,818	0,496	0,498	0,503		0,647		0,875	
56	Mg/Bas G(R)	_	0,501	0,61	0,818	0,504	0,502	0,497		0,647		0,875	
57	PBasG(R)	méq/plt	24,197	6,74	0,622	22,818	24,715	25,058		0,915		0,881	
58	QBasG(R)	méq/m ²	119,595	4,29	0,869	111,090	121,682	126,011		0,900	j	0,939	
59	PNG(R)	g/plt	2,008	9,65	0,702	1,818	2,152	2,054		0,866		0,856	
60	PPG(R)	g/plt	0,382	7,86	0,725	0,349	0,397	0,399		0,872		0,851	
61	PKG(R)	g/plt	0,472	6,57	0,684	0,442	0,480	0,493		0,913		0,865	-
62	PMgG(R)	g/plt	0,147	6,92	0,556	0,140	0,151	0,151		0,917		0,893	
63	QNG(R)	g/m ²	9,893	6,61	0,866	8,788	10,586	10,305		0,829	İ	0,905	
64	QPG(R)	g/m ²	1,885	5,52	0,880	1,699	1,954	2,004		0,821		0,900	
65	QKG(R)	g/m ²	2,333	3,61	0,918	2,157	2,363	2,480		0,918		0,951	2>1>3
66	QMgG(R)	g/m ²	0,728	4,97	0,807	0,679	0,744	0,760	···	0,882		0,928	
67	Mg/Ca G(R)	-	52,167	4,83	0,891	51,239	55,351	49,912		0,704	i	0,585	
68	K/Mg G(R)	-	0,996	1,25	0,805	0,985	0,991	1,013		0,629		0,874	
7 3	BasTF(R)	még%	75,144	22,19	0,036	74,831	77,182	73,418		0,140	1	0,114	
74	K/Bas TF(R)	-	0,554	5,22	0,421	0,542	0,570	0,551		0,540		0,456	
75	Ca/Bas TF(r)	-	0,162	10,22	0,453	0,156	0,158	0,172		0,469		0,602	
76	Mg/BasTF(R)	-	0,268	6,78	0,702	0,286	0,257	0,260		0,744		0,233	ļ
77	Na/Bas TF(R)	_	0,016	7,72	0,798	0,015	0,015	0,017		0,890		0,564	.
7 8	PBasTF(R)	méq/plt	109,439	49,16	0,150	113,372	120,025	94 ,920		0,024		0,154	<u>.</u>
79	QBasTF(R)	méq/m ²	540,799	47,19	0,158	567,345	586,791	468,261		0,099		0,201	
80	PNTF(R)	g/plt	0,995	46,83	0,340	0,897	1,218	0,870		0,021		0,216	
81	PPTF(R)	g/plt	0,131	43,29	0,254	0,109	0,146	0,138		0,321		0,246	<u> </u>
82	PKTF(R)	g/plt	2,411	54,90	0,146	2,456	2,701	2,076		0,046		0,095	
83	PCaTF(R)	g/plt	0,347	41,50	0,127	0,350	0,378	0,315		0,061		0,321	
84	PMgTF(R)	g/plt	0,34 9	41,03	0,236	0,382	0,368	0,296		0,024		0,252	
85	PNaTF(R)	g/plt	0,040	59,34	0,017	0,038	0,042	0,040		0,099		0,028	ļ
86	QNTF(R)	g/m^2	4,894	43,94	0,354	4,428	5,954	4,300		0,089		0,245	
87	QPTF(R)	g/m ²	0,649	38,04	0,275	0,548	0,709	0,689		0,519		0,371	

	Paramètre		Etat mo	yen			les trois fumures oniveaux et classer		Gradients sur les lignes		Gradients sur les colonnes		
Ν°	Sigle	Unité	Moyenne	CV%	Pté F	1	_2	3	Classment	Pté F	Classment	Pté F	Classment
88	QKTF(R)	g/m ²	11,922	53,01	0,150	12,367	13,175	10,223		0,120		0,131	
89	QCaTF(R)	g/m ²	1,719	38,51	0,126	1,739	1,853	1,566		0,217		0,404	
90	QMgTF(R)	g/m ²	1,721	39,67	0,252	1,896	1,804	1,462		0,036	!	0,307	
91	QNaTF(R)	g/m ²	0,195	56,03	0,014	0,189	0,204	0,192		0,107		0,029	
92	Mg/CaTF(R)	-	1,681	6,73	0,818	1,837	1,637	1,570		0,817		0,601	
93	K/MgTF(R)	-	2,111	11,56	0,533	1,952	2,252	2,130		0,606		0,278	
94	PNt(R)	g/plt	3,003	21,60	0,443	2,715	3,369	2,924	Ţ	0,325		0,542	
95	PPt(R)	g/plt	0,513	16,91	0,468	0,459	0,543	0,537		0,290		0,559	
96	PKt(R)	g/plt	2,883	46,86	0,135	2,898	3,181	2,569		0,023	}	0,119	
97	PCat(R)	g/plt	0,347	41,50	0,127	0,350	0,378	0,315		0,0 61		0,321	
98	PMgt(R)	g/plt	0,496	30,74	0,186	0,522	0,519	0,448		0,088		0,335	
99	PNat(R)	g/plt	0,040	59,34	0,017	0,038	0,042	0,040		0,099		0,028	
100	QNt(R)	g/m ²	14,787	18,96	0,515	13,216	16,539	14,605		0,072		0,570	
101	QPt(R)	g/m ²	2,534	13,20	0,625	2,247	2,663	2,693		0,360		0,687	
102	QKt(R)	g/m ²	14,255	44,89	0,132	14,525	15,538	12,703		0,094		0,161	1
103	QCat(R)	g/m ²	1,719	38,51	0,126	1,739	1,853	1,566		0,217	,	0,404	
104	QMgt(R)	g/m ²	2,448	29,24	0,185	2,575	2,548	2,222		0,002		0,394	
105	QNat(R)	g/m ²	0,195	56,03	0,014	0,189	0,204	0,192		0,107		0,029	•
110	PBast(R)	meq/plt	133,636	41,37	0,136	136,190	144,740	119,968		0,008		0,189	
111	QBast(R)	meq/m ²	660,394	39,35	0,136	678,436	708,473	5 94,2 72		0,066		0,242	:
112	K/Bast(R)	-	0,545	4,73	0,39 0	0,535	0,558	0,542		0,531		0,398	
113	Ca/Bast(R)	-	0,130	6,22	0,190	0,128	0,129	0,132		0,77 3		0,779	!
	Mg/Bast(R)	-	0,312	8,66	0,374	0,324	0,300	0,313		0,621	1	0,142	
115	Na/Bast(R)	-	0,013	15,19	0,309	0,013	0,012	0,013		0,630		0,234	
116	Mg/Cat(R)	-	2,447	10,41	0,361	2,565	2,346	2,429		0,773		0,522	
117	K/Mgt(R)	-	1,775	13,59	0,347	1,691	1,888	1,747		0,515		0,157	
118	QGcom(R)	g/m ²	686,926	4,85	0,775	645,781	705,306	709,689		0,921		0,940	1
122	QNG(R)/QNFu	_	0,386	9,12	0,913	0,463	0,353	0,344		0,756	;	0,857	<u> </u>
123	QPG(R)/QPFu	-	0,353	8,74	0,99 3	0,433	0,498	0,128	2>1>3	0,751	1	0,864	

4-Observations effectuées sur le site de la Nindia au cours du second cycle sur le second champ

	Paramètre		Etat moyen		Effets des trois fumures différentes : niveaux et classement						nts sur les ignes		nts sur les onnes
Nº	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classment
124	QNTF(R)/QNFu	-	0,192	49,28	0,408	0,233	0,198	0,143		0,145		0,299	
125	QPTF(R)/QPFu	~	0,121	54,68	0,770	0,140	0,181	0,044		0,335		0,178	
126	QNt(R)/QNFu	-	0,578	21,99	0,680	0,696	0,551	0,487		0,129		0,563	
127	QPt(R)/QPFu	-	0,474	19,70	0,963	0,573	0,679	0,172	2>1>3	0,106		0,575	
134	ΣQNG(R)/ΣQNFu	-	0,334	5,00	0,510	0,332	0,345	0,325		0,958	1>2>3	0,939	
135	ΣQN(R)/ΣQNFu	-	0,425	14,70	0,414	0,449	0,435	0,391	***************************************	0,591		0,681	
136	∑QPG(R)∕∑QPFu	-	0,241	6,07	0,995	0,335	0,258	0,130	1>2>3	0,904		0,925	
137	∑QP(R)∕∑QPFu	-	0,287	13,30	0,973	0,405	0,303	0,152	1>2>3	0,393		0,731	
138	∑QKG(R)∕∑QKFu	-	0,422	5,76	0,975	0,325	0,468	0,472	3=2>1	0,879		0,864	
139	∑QK(R)∕∑QKFu	_	1,527	39,44	0,146	1,472	1,689	1,420		0,070		0,173	
140	PRch(R)	g/plt	20,559	7,70	0,415	19,973	21,431	20,274		0,906		0,864	

1'-Observations effectuées sur le site de la Nindia au cours du second cycle sur le second champ : cas des variables ne présentant aucun gradient horizontal mais influencées de façon significative par les fumures lorsqu'on considère le dispositif comme un essai bloc

		THE RESIDENCE OF THE PROPERTY		Effets des trois fumures différentes					
İ	N°	Paramètre Unité		Blocs pris s	ur les lignes	Blocs pris sur les colonnes			
				Probabilité	Classement	Probabilité	Classement		
ĺ	2	H43	em	0,966	3=2>1				
	38	TNG(R)	0.6	0,963	2>3>1	0,963	2 - 3 > 1		

A N N E X E 2.2.3.

Récapitulatifs des analyses de variance des données de la Nindia CHAMP 3

-	Paramètr	re	Etat mo	yen			es trois fumures d niveaux et classem				nts sur les gnes	1	ents sur les onnes
.\%	Sigle	Unité	Moyenne	CV%	Pte F	1	2	3	Classemen t	Pté F	Classemen t	Pté F	Classeme nt
1	H36	cm	33,341	3,60	0,937	30,311	34,456	35,256		0,925		0,807	
2	H43	cm	58,074	3,69	0,947	52,248	59,748	62,226		0,900		0,814	
3	H50	cm	98,217	3,99	0,887	90,900	101,326	102,324	Ì	0,468		0,570	
4	V(36,43)	cm/j	3,533	4,64	0,938	3,134	3,613	3,853		0,793		0,760	
5	V(43,50)	cm/j	5,735	4,50	0,663	5,522	5,940	5,743		0,735		0,285	
6	V(36,50)	cm/j	4,634	4,55	0,82 5	4,328	4,776	4,798		0,153		0,367	
20	PG(R)	g/plt	124,293	7,82	0,383	122,789	120,817	129,274		0,885		0,841	:
21	GRU(R)	g/1000gr	258,615	3,68	0,360	255,011	257,711	263,122		0,752		0,667	
22	DPr	nb/m ²	5,067	6,25	0,7 05	4,756	5,307	5,137		0,654		0,630	3
23	QG(R)	g/m ²	623 ,6 03	1,36	0,9 87	580,899	631,719	658,192	3>2>1	0,993	1>2>3	0,988	3>2>1
25	NGP(R)	nb/plt	478,449	7,38	0,255	481,277	465,362	488,706		0,851		0,778	
26	NEP(R)	nb/plt	1,043	9,54	0,015	1,051	1,038	1,038		0,50 3		0,281	
27	NGE(R)	nbڎpi	460,535	5,65	0,361	457,856	450,803	472,945		0,644		0,712	
28	PGE(R)	g/épi	119,675	8,49	0,368	116,995	117,180	124,850		0,662		0,702	
	PTF(R)	g/plt	163,568	11,14	0,554	173,582	150,646	166,476		0,533		0,746	
70	TCdG(R)	%	2,205	7,02	0,9 09	1,881	2,407	2,328		0,777	:	0,446	
71	TSiG(R)	%	0,003	208,17	0,35 0	0,002	0,007	0,001		0,071		0,188	
72	TNG(R)	%	1,604	5,35	0,907	1,426	1,681	1,706		0,190		0,421	
7 3	TPG(R)	%	0,297	6,99	0,821	0,268	0,307	0,317		0,362	1	0,001	
74	TCaG(R)	%	0,004	7,49	0,5 00	0,004	0,004	0,004		0,650	1	0,500	:
75	TMgG(R)	%	0,120	4,52	0,812	0,113	0,123	0,125		0,006		0,066	i
76	TKG(R)	%	0,398	2,92	0,712	0,388	0,409	0,396		0,254		0,479	
78	TCdTF(R)	%	7,992	9,34	0,2 01	8,241	7,862	7,873		0,274		0,176	
79	TSiTF(R)	%	3,984	14,05	0,611	4,401	3,957	3,593		0,500		0,137	·, ••••••
80	TNTF(R)	%	0,670	4,87	0,981	0,523	0,744	0,742	2=3>1	0,858		0,952	1>2>3
81	TPTF(R)	%	0,077	5,69	0,991	0,049	0,087	0,094	3>2>1	0,979	3>2=1	0,892	
82	TCaTF(R)	%	0,259	11,17	180,0	0,253	0,263	0,259		0,583		0,265	.,
83	TMgTF(R)	%	0,264	9,39	0,265	0,255	0,272	0,266		0,693		0,160	
84	TKTF(R)	%	1,437	4,63	0,92 9	1,342	1,374	1,597		0,763	<u> </u>	0,935	<u> </u>

1111

	Paramètre		Etat moy	yen			les trois fumures d niveaux et classem				ents sur les ignes		ents sur les
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classmen
85	TNaTF(R)	%	0,029	11,89	0,585	0,027	0,030	0,031		0,271		0,330	
88	BasG(R)	méq%	20,087	3,56	0,768	19,227	20,627	20,405		0,044		0,241	
89	K/Bas G(R)	-	0,507	1,29	0,885	0,517	0,508	0,496		0,406		0,284	
90	Mg/Bas G(R)	-	0,493	1,32	0,885	0,483	0,492	0,504		0,406		0,284	
91	PBasG(R)	méq/plt	24,972	9,38	0,520	23,654	24,806	26,456		0,849		0,797	
92	QBasG(R)	méq/m ²	125,090	2,93	0,973	111,295	129,562	134,413	3>2>1	0 ,96 8	1>2>3	0,944	<u> </u>
93	PNG(R)	g/plt	1,990	10,00	0,794	1,755	2,010	2,205		0,808		0,722	
94	PPG(R)	g/plt	0,369	10,62	0,762	0,330	0,367	0,411		0,758		0,772	
95	PKG(R)	g/plt	0,494	9,63	0,293	0,477	0,492	0,513		0,841		0,787	
96	PMgG(R)	g/plt	0,150	9,40	0,671	0,139	0,149	0,160		0,851		0,798	
97	QNG(R)	g/m ²	10,003	4,50	0,974	8,273	10,529	11,208	3>2>1	0,907	İ	0,774	
98	QPG(R)	g/m ²	1,853	6,21	0,945-	1,552	1,920	2,086		0,773		0,786	
99	QKG(R)	g/m ²	2,474	2,62	0,966	2,249	2,568	2,606	3>2>1	0,973	1>2>3	0,957	3>2>1
100	QMgG(R)	g/m ²	0,751	3,92	0,966	0,653	0,776	0,823	3>2>1	0,944		0,899	
101	Mg/Ca G(R)	-	51,549	5,16	0,925	45,347	54,178	55,122		0,843		0,624	
102	K/Mg G(R)	-	1,030	2,65	0,883	1,073	1,033	0,986		0,418		0,290	
107	BasTF(R)	méq%	72,782	6,29	0,702	69,082	71,893	77,070		0,388		0,675	
108	K/BasTF(R)	-	0,502	3,67	0,791	0,495	0,486	0,526		0,731		0,797	
109	Ca/BasTF(R)	-	0,179	8,30	0,512	0,184	0,183	0,169		0,500		0,479	
110	Mg/BasTF(R)	-	0,301	4,09	0,755	0,304	0,312	0,288		0,921		0,844	ļ
111	Na/BasTF(R)	-	0,017	11,66	0,200	0,017	0,018	0,018	<u> </u>	0,130		0,590	<u> </u>
112	PBasTF(R)	méq/plt	119,113	6,96	0,821	119,618	108,581	129,141		0,393		0,873	<u>.</u>
113	QBasTF(R)	méq/m ²	596,845	6,56	0,838	559,552	575,225	655,759		0,214		0,887	
114	PNTF(R)	g/plt	1,087	3,51	0,985	0,907	1,116	1,240	3>2>1	0,713		0,979	2=1>3
115	PPTF(R)	g/plt	0,123	12,51	0,946	0,084	0,130	0,157		0,847		0,623	
116	PKTF(R)	g/plt	2,360	5,66	0,941	2,328	2,072	2,680		0,679		0,936	ļ
117	PCaTF(R)	g/plt	0,425	14,80	0,320	0,443	0,396	0,436		0,084		0,746	
118	PMgTF(R)	g/plt	0,431	5,71	0,601	0,437	0,411	0,444		0,917		0,847	
119	PNaTF(R)	g/plt	0,048	17,92	0,385	0,047	0,045	0,053		0,120		0,674	<u> </u>
120	QNTF(R)	g/m ²	5,499	3,97	0,989	4,243	5,941	6,313	3>2>1	0,878		0,982	1>2>3

- 112 -

	Paramètre		Etat mo	yen	Effets des trois fumures différentes : niveaux et classement						ents sur les ignes	Gradients sur les colonnes	
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classmen
121	QPTF(R)	g/m ²	0,630	7,38	0,9 86	0,393	0,698	0,801	3>2>1	0,966	3>2=1	0,896	
122	QKTF(R)	g/m^2	11,827	3,44	0,9 80	10,852	11,018	13,611	3>2=1	0,853		0,982	1>2>3
123	QCaTF(R)	g/m ²	2,127	14,02	0,180	2,070	2,092	2,219		0,362		0,704	
124	QMgTF(R)	g/m^2	2,160	8,85	0,44 0	2,057	2,171	2,251		0,760		0,610	
125	QNaTF(R)	g/m ²	0,241	15,20	0,587	0,217	0,239	0,267		0,222		0,660	
126	Mg/CaTF(R)	-	1,710	8,98	0,122	1,676	1,714	1,741		0,862		0,617	[
	K/MgTF(R)	_	1,700	5,58	0,878	1,648	1,585	1,866		0,929		0,907	
128	PNt(R)	g/plt	3,077	7,12	0,9 06	2,661	3,126	3,445		0,755		0,596	
129	PPt(R)	g/plt	0,493	10,09	0,877	0,414	0,497	0,568		0,315		0,615	
130	PKt(R)	g/PLT	2,854	6,22	0,9 05	2,805	2,563	3, 193		0,668		0,867	4
131	PCat(R)	g/plt	0,425	14,80	0,320	0,443	0,396	0,436		0,084		0,746	
132	PMgt(R)	g/plt	0,581	4,39	0,721	0,576	0,560	0,606		0,952	1>2>3	0,881	
133	PNat(R)	g/plt	0,048	17,92	0,385	0,047	0,045	0,053		0,120		0,674	· :
134	QNt(R)	g/m^2	15,502	1,83	0,997	12,516	16,470	17,521	3>2>1	0,896		0,911	! !
135	QPt(R)	g/m ²	2,483	4,81	0,982	1,945	2,618	2,887	3>2>1	0,404	:	0,456	
136	QKt(R)	g/m ²	14,301	2,50	0,987	13,102	13,585	16,217	3>2>1	0,780		0,983	1>2>3
137	QCat(R)	g/m^2	2,127	14,02	0,180	2,070	2,092	2,219		0,362		0,704	i i
138	QMgt(R)	g/m ²	2,910	5,66	0,791	2,710	2,947	3,075		0,875	!	0,609	
139	QNat(R)	g/m ²	0,241	15,20	0,587	0,217	0,239	0,267	1	0,222		0,660	
143	PBast(R)	méq/plt	144,085	6,68	0,800	143,271	133,387	155,597		0,615		0.823	;
145	QBast(R)	méq/m ²	721,935	4,94	0,898	670,846	704,786	790,172		0,156		0,882	
146	K/Bast(R)	-	0,504	2,66	0,8 03	0,499	0,491	0,521		0,802		0,836	
147	Ca/Bast(R)	-	0,147	8,66	0,467	0,153	0,148	0,140		0,617		0,565	
	Mg/Bast(R)	-	0,335	2,78	0,798	0,334	0,346	0,324		0,948		0,922	
••••••	Na/Bast(R)	-	0,014	11,99	0,112	0,014	0,015	0,015		0,106		0,535	1
150	MG:Ca t(R)	_	2,325	10,50	0,320	2,221	2,343	2,412		0,828		0,740	
151	K/Mgt(R)	-	1,527	3,63	0,906	1,505	1,440	1,635		0,957	2>3>1	0,949	1
152	QGcom(R)	g/m ²	737 ,992	1,36	0,987	687,454	747,596	778,925	3>2>1	0,993	1>2>3	0,988	3>2>1
155	QNG(R)/QNFu	-	0,346	5,04	0,985	0,435	0,292	0,311	1>3>2	0,861	1	0,579	1

- 113 -

	Paramètre		Etat moy	yen		Effets des trois fumures différentes : niveaux et classement					nts sur les gnes	Gradients sur les colonnes	
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classment
156	QPG(R)/QPFu	-	0,231	6,83	0,997	0,396	0,163	0,133	1>2>3	0,546		0,670	
157	QNTF(R)/QNFu	-	0,188	2,79	0,992	0,223	0,165	0,175	1>3>2	0,780		0,990	1>2>3
158	QPTF(R)/QPFu	-	0,070	1,95	0,999	0,100	0,059	0,051	1>2>3	0,997	3>1>2	0,979	1>2>3
159	QNt(R)/QNFu	-	0,534	2,84	0,995	0,659	0,457	0,487	1>3>2	0,832		0,858	
160	QPt(R)/QPFu	-	0,301	4,79	0,998	0,496	0,222	0,184	1>2>3	0,122		0,489	
161	QKt(R)/QKFu	-	2,651	2,50	0,987	2,428	2,518	3,006	3>2>1	0,780		0,983	1>2>3
184	PRch(R)	g/plt	20,910	4,99	0,559	21,382	20,133	21,214		0,948		0,914	

l'-Observations effectuées sur le site de la Nindia au cours du premier cycle sur le troisième champ : cas des variables ne présentant aucun gradient horizontal mais influencées de façon significative par les fumures lorsqu'on considère le dispositif comme un essai bloc

				Effets des trois fu	mures différentes	
N°	Paramètre	Unité	Blocs pris s	sur les lignes	Blocs pris su	r les colonnes
			Probabilité	Classement	Probabilité	Classement
3	H50	cm	-	-	0,962	3=2>1
4	V(36,43)	cm/j	0,951	3>2>1	-	
6	V(36,50)	cm/j		_	0,959	3=2>1
70	TCdG(R)	%	0,975	2>3>1	-	<u>-</u>
72	TNG(R)	%	0,976	3=2>1	0,986	3>2>1
73	TPG(R)	%	0,967	3>2>1	-	<u>-</u>
75	TMgG(R)	<u> </u> %	0,959	3>2>1	0,963	3>2>1
89	K/BasTF(R)		0,975	1>2>3	0,967	1>2>3
90	Mg/BasTF(R)		0,975	3>2>1	0,967	3>2>1
98	QPG(R)	g/m ²	0,952	3>2>1	0,956	3>2>1
101	Mg/Ca G(R)	_	0,967	3=2>1	-	_
102	K/Mg G(R)] -	0,974	1>2>3	0,964	1>2>3
113	QBasTF(R)	méq/m ²	-	-	0,960	3>2>1
115	PPTF(R)	g/plt	0,980	3>2>1	-	_
116	PKTF(R)	g/plt	-	-	0,971	3>1>2
128	PNt(R)	g/plt	0,957	3>2>1	_	-
129	PPt(R)	g/plt	-	-	0,970	3>2>1
145	QBast(R)	méq/m ²	-	-	0,984	3>2>1

ANNEXE 3.

ANALYSES DE SOL EN PREMIERE ANNEE:

RECAPITULATIFS DES ANALYSES DE VARIANCE.

Annexe 3.1. Données relatives à l'expérimentation de la Tamoa. Annexe 3.2. Données relatives à l'expérimentation de la Nindia.

ANNEXE 3.1.

Analyses de sol à la mise en culture : Récapitulatifs des analyses de variance sur l'expérimentation de la Tamoa.

Annexe 3.1.1. Données complémentaires relatives au champ 1. Annexe 3.1.2. Données complémentaires relatives au champ 2.

A N N E X E 3.1.1. Récapitulatifs des analyses de variance des données de la Tamoa CHAMP 1

- 121 -

	Parame	ètre	Etat mo	yen	Effets des trois fumures différentes : niveaux et classement					Gradients sur les lignes		Gradients sur les colonnes	
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classmt	Pté F	Classmt	Pté F	Classmt
61	CaE1A	méq%	11,947	2,01	0,918	12,1	12,316	11,426		0,987	1>2>3	0,963	3>2>1
62	MgE1A	méq%	10,422	1,09	0,849	10,594	10,382	10,290		0,983	2>3>1	0,975	3>2>1
63		méq%	1,660	16,26	0,359	1,570	1,619	1,792		0,618		0,205	
	KE1A	méq%	0,414	9,06	0,6 26	0,440	0,384	0,419		0,782		0,102	ļ
65	pHE1A		5,772	1,96	0,333	5,747	5,826	5,744		0,660		0,502	ļ
66	pHKCl1A		4,923	1,59	0,3 65	4,932	4,951	4,884		0,867		0,733	
67	PAT1A	ppm	24,848	8,07	0,54 0	23,400	25,533	25,611		0,363		0,825	<u> </u>
68	ARG1A	%	40,000	3,19	0,258	48,600	47,733	47,667		0,942		0,715	
69	LF1A	/ %	21,100	2,78	0,678	21,400	21,367	20,533		0,931		0,648	
70	LG1A	%	14,311	5,85	0,527	14,900	14,000	14,033		0,688	<u> </u>	0,791	<u> </u>
71	SF1A	%	9,400	10,50	0,470	8,833	9,467	9,900		0,962	3>1=2	0,792	
72	SG1A	%	3,433	27,68	0,621	2,700	3,500	4,100		0,942		0,700	
73	T1A	méq%	25,839	0,53	0,968	26,210	25,933	25,373	1>2>3	0,995	1>2>3	0,994	3>2>1
74	pF3,0 1A	%	31,756	1,41	0,629	31,967	31,933	31,367		0,983	2>1>3	0,935	
75	p F4,2 1A	%	20,811	2,15	0,737	21,233	20,833	20,367		0,959	1=2>3	0,840	
76	CT1A	\%	28,419	6,39	0,645	29,347	26,793	29,117		0,197		0,426	
77	NT1A	%	1,568	4,39	0,657	1,613	1,507	1,583		0,802	<u> </u>	0,261	
7 8	CaE2A	méq%	12,130	3,26	0,637	12,238	11,789	12,363]	0,977	1>3>2	0,930	
79	MgE2A	méq%	11,118	1,44	0,748	11,289	10,973	11,092	Ī	0,961	2>3>1	0,909	
80	NaF2A	méq%	2,549	12,06	0,132	2,471	2,573	2,602		0,769		0,532	
81	KE2A	méq%	0,299	7,43	0,758	0,324	0,281	0,291		0,858		0,429	
82	pHE2A		5,702	3,84	0,398	5,708	5,802	5,597		0,367		0,521	
83	pHKCl2A		4,780	4,62	0,344	4,786	4,869	4,684		0,427		0,565	
84	PAT2A	ppm	16,993	7,50	0,380	16,711	17,656	16,611		0,197		0,224	1
85	ARG2A	%	53.144	11,53	0,2 05	54,667	53,600	51,167		0,079		0,282	
86	LF2A	%	20,356	4,54	0,2 91	20,067	20,267	20,733	1	0,379		0,760	
87	LG2A	%	13,911	11,62	0,384	14,233	13,067	14,433		0,509		0,064	
88	SF2A	%	7,378	20,66	0,854	7,867	5,033	9,233		0,794		0,627	1
89	SG2A	%	2,878	107,69	0,186	1,900	3 ,46 7	3,267		0,249		0,268	

- 123 -

	Paramètre		<u> </u>			Effets des trois fumures différentes : niveaux et classement					Gradients sur les lignes		Gradients sur les colonnes	
Nº	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classmt	Pté F	Classmt	Pté F	Classmt	
90	T2A	méq%	27,356	5,07	0,077	27,363	27,583	27,120		0,379		0,290		
	pF3,0 2A	%	33,422	6,34	0,117	33,800	33,533	32,933		0,424	ļ	0,238		
	pF4,2 2A	%	21,700	4,93	0,177	21,967	21,733	21,400		0,538		0,334	ļ	
93	CT2A	%	18,647	12,18	0,426	18,610	17,537	19,793		0,821		0,174	ļ	
94	NT2A	%	1,153	8,68	0,528	1,223	1,110	1,127		0,757		0,297	<u> </u>	
99	REU1A	%	10,944	2,13	0,665	10,733	11,100	11,000		0,962	2>1>3	0,898		
100	Arg+SLFG1A	%	96,244	3,21	0,009	96,433	96,067	96,233		0,216		0,444		
101	CT/NT 1A	-	18,138	2,56	0,550	18,214	17,811	18,389		0,847		0,709		
102	MgE/CaE1A	-	0,882	1,62	0,939	0,881	0,850	0,914		0,995	2>3>1	0,872		
	KE/NaE1A	-	0,259	18,42	0,386	0,284	0,244	0,249		0,655		0,247		
104	CT/Arg1A	%	59,474	7,91	0,475	60,435	56,548	61,439		0,787		0,010		
105	T/CT1A	meq%	91,191	6,71	0,670	89,344	96,887	87,342		0,621		0,041		
106	T/Arg1A	meq%	53,935	3,67	0,178	53,977	54,443	53,385		0,754		0,125		
107	T/(Arg+CT)1A	meq%	33,828	2,92	0,702	33,640	34,784	33,061		0,071		0,234		
• • • • • • • • • • • • • • • • • • • •	SBE1A	meq%	24,444	1,36	0,844	24,704	24,701	23,927		0,972	1>2>3	0,973	3>2>1	
109	SBE/T1A	%	94,569	0,95	0,490	94,260	95,156	94,291		0,517		0,815		
110	REU2A	%	11,722	8,98	0,068	11,833	11,800	11,533		0,300		0,150		
111	Arg+SLFG2A	%	97,667	3,23	0,531	98,733	95,433	98,833		0,554		0,587	Ì	
	CT/NT2A	-	16,158	11,38	0,534	15,208	15,847	17,419		0,505		0,010		
113	MgE/CaE2A	-	0,932	3,12	0,450	0,931	0,948	0,918		0,989	2>3>1	0,860		
114	KE/NaE2A	-	0,124	20,86	0,211	0,132	0,117	0,123		0,791		0,536	ì ì	
115	CT/Arg2A	%	35,166	7,71	0,785	34,094	32,853	38,552		0,895		0,704	1	
116	T/CT2A	meq%	149,048	5,84	0,744	147,939	158,124	141,079		0,919		0,482	1	
117	T/Arg2A	meq%	51,631	6,63	0,351	50,119	51,752	53,021		0,037		0,358		
118	T/(Arg+CT)2A	meq%	38,220	6,33	0,244	37,374	38,947	38,340		0,419		0,117		
	SBE2A	meq%	26,096	2,61	0,526	26,322	25,617	26,349		0,748		0,678		
120	SBE/T2A	%	95,543	7,62	0,222	96,224	93,039	97,367		0,058		0,613		
121	CaT1A	%	0,308	4,33	0,885	0,317	0,323	0,283		0,959	1>3≃2	0,932		
122	MgT1A	%	0,459	10,85	0,437	0,450	0,493	0,433		0,827		0,384		

	Paramètre		Etat mo	yen	Effets des trois fumures différentes : niveaux et classement					Gradients sur les lignes		Gradients sur les colonnes	
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classment
123	NaT1A	%	0,066	5,08	0,500	0,067	0,067	0,063		0,942		0,500	ĺ
124	KT1A	%	0,121	24,46	0,397	0,117	0,137	0,110		0,716		0,436	
125	FeT1A	%	3,573	6,71	0,705	3,460	3,820	3,440	<u> </u>	0,890		0,483	İ
126	MnT1A	%	0,150	33,5 5	0,469	0,120	0,157	0,173		0,878		0,811	
127	AlT1A	%	5,337	14,54	0,625	4,987	6,003	5,020		0,917		0,401	
128	PT1A	‰	0,234	23,28	0,122	0,223	0,233	0,247		0,696		0,066	
133	SBT1A	méq%	38,430	7,95	0,676	38,250	41,060	35,990		0,872		0,443	
	MgT/CaT 1A	-	2,107	12,43	0,309	1,991	2,151	2,178		0,824		0,769	
	SBE/SBT 1A	-	0,644	9,92	0,520	0,653	0,601	0,676		0,705		0,434	
136	CaT2A	%	0,292	11,23	0,508	0,303	0,303	0,270		0,889		0,067	
137		%	0,482	10,18	0,513	0,490	0,507	0,450		0,905		0,800	
138	NaT2A	%	0,099	6,74	0,637	0,103	0,093	0,100		0,885		0,637	
139	KT2A	%	0,103	29,57	0,429	0,117	0,107	0,087	···	0,885	•	0,764	·•·······
	FeT2A	%	3,679	9,00	0,407	3,610	3,860	3,567		0,759		0,768	1
141	***************************************	%	0,131	80,28	0,119	0,107	0,150	0,137		0,358		0,332	
142	***************************************	%	5,270	12,76	0,335	5,433	5,580	4, 7 97	··	0.873		0,794	·
	PT2A	% 00	0,128	24,89	0,594	0,153	0,117	0,113		0,605		0,254	
148	,	méa%	39,730	9,21	0,553	40,940	41,240	37,020	••••••••••••	0,813		0,735	
	MgT/CaT 2A		2,393	16,51	0,062	2,325	2,429	2,426		0,913		0,676	·†
150		~	0,669	11,81	0,529	0,657	0,628	0,723		0,770		0,564	

ANNEXE 3.1.2.	
Récapitulatifs des analyses de variance des données de la Tamo	a
CHAMP 2	
- 127 -	

1-Observations effectuées sur le site de la Tamoa au cours du premier cycle sur le second champ

	Paramètre Etat moyen			yen	Effets des trois fumures différentes : niveaux et classement					Gradients sur les lignes		Gradients sur les colonnes	
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classmt	Pté F	Classmt	Pté F	Classmt
136	CaE1A	méq%	12,172	10,99	0,052	12,163	12,359	11,994		0,659		0,410	
137	MgE1A	méq%	13,540	5,54	0,6 08	12,940	13,982	13,697		0,818		0,638	
138	NaE1A	méq%	1,545	5,82	0,934	1,411	1,769	1,454		0,932		0,844	
139	KE1A	méq%	0,273	1,08	0,799	0,276	0,273	0,269		0,998	3>2>1	0,986	1>2>3
140	pHE1A		5,732	1,61	0,085	5,743	5,739	5,713		0,641		0,582	ļ
	•4•••••		4,884	2,09	0,241	4,922	4,871	4,860		0,390		0,224	<u> </u>
************	PAT1A	ppm	35,370	19,54	0,579	30,000	37,556	38,556		0,548		0,279	<u></u>
	Arg1A	<u> </u> %	50,633	3,26	0,321	49,933	51,233	50,733		0,929		0,543	ļ
	***************************************	<u>%</u>	19,278	1,25	0,7 05	19,367	19,033	19,433		0,990	3>2>1	0,485	ļ
145	LG1A	96	14,322	8,50	0,3 88	14,933	13,833	14,200		0,214		0,101	
146	SF1A	1%	9,589	4,52	0,730	9,700	9,133	9,933		0,994	1>2>3	0,863	
147	SG1A	%	4,43 3	62,03	0,209	3,867	5,367	4,067		0,529		0,395	
148	T1A	méq	32,017	2,78	0,254	31,767	32,350	31,933		0,949		0,393	
149	p F3,0 1A	%	30,789	2,44	0,708	30,367	31,567	30,433		0,933		0,566	
150	pF4,2 1A	%	20,233	1,24	0,835	19,867	20,500	20,333		0,966	2>3>1	0,387	
151	CT1A	%	24,066	7,51	0,379	24,870	23,237	24,090		0,742		0,192	
152	NT1A	%	1,352	6,06	0,3 62	1,393	1,333	1,330		0,648		0,101	
153	CaE2A	méq%	12,860	14,09	0,078	12,726	12,647	13,208		0,549		0,243	
154	MgE2A	méq%	14,059	1,65	0,922	13,608	14,527	14,043		0,982	3>2>1	0,169	
155	NaE2A	méq%	1,716	6,72	0,917	1,512	1,951	1,684		0,020	·	0,849	
156	KE2A	még%	0,307	11,96	0,524	0,290	0,332	0,299		0,723		0.449	
***********	pHE2A	······································	5,858	1,56	0.408	5,907	5,822	5,844		0,435		0,590	
	pHKCl2A	•••••••••••••••••••••••••••••••••••••••	4,907	1,77	0,462	4,960	4,884	4,876		0,379	***************************************	0,406	†
	PAT2A	ppm	39,481	9,81	0,895	32,778	39,778	45,889		0,304		0,551	
	Arg2A	%	51,267	1,48	0,920	50,767	52,993	50,100		0,984	2>3>1	0,879	<u>†</u>
,	LF2A	%	20,667	7,26	0,523	21,633	20,533	19,833		0,664	· · · · · · · · · · · · · · · · · · ·	0,225	1
•••••••••••••••••••••••••••••••••••••••	LG2A	%	14,722	6,09	0,466	15,200	14,233	14,733		0,272		0,349	1
	SF2A	%	9,111	4,84	0,788	8,733	8,933	9,667		0,992	1>2>3	0,845	1
	***************************************	%	3,078	35,31	0,635	2,600	2,600	4,033		0,794		0,344	ļ

2-Observations effectuées sur le site de la Tamoa au cours du premier cycle sur le second champ

	Paramètre		Etat mo	yen	Effets des trois fumures différentes : niveaux et classement					Gradients sur les lignes		Gradients sur les colonnes	
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classmt	Pté F	Classmt	Pté F	Classmt
165	T2A	méq%	28,281	2,32	0,554	28,213	28,733	27,897		0,580		0,643	
	pF3,0 2A	%	32,678	0,91	0,945	32,000	33,400	32,633		0,991	2>3>1	0,949	
	pF4,2 2A	%	21,600	0,71	0,940	21,400	22,000	21,400		0,995	2>3>1	0,956	2>1>3
168	***************************	<u>%</u>	22,467	3,86	0,861	22,470	23,720	21,210	15 25 2	0,770		0,935	3>1>2
169		%	1,264	1,15	0,977	1,320	1,217	1,257	1>3>2	0,940		• • • • • • • • • • • • • • • • • • • •	32122
170	••••••••	%	10,556	5,08	0,711	10,500	11,067	10,100		0,885		0,623	<u>.</u>
	Arg+SLFG1A	%	98,256	1,30	0,237	97,800	98,600	98,367		0,685		0,225	
• • • • • • • • • • • • • • • • • • • •	CT/NT1A	-	17,787	3,63	0,477	17,842	17,407	18,113	***************************************	0,805		0,566	
173	MgE/CaE1A	-	1,122	6,83	0,385	1,082	1,136	1,148		0,148		0,851	
174	KE/NaE1A		0,185	6,55	0,889	0,198	0,162	0,195		0,973	3>2>1	0,860	
175	CT/Arg1A	%	47,602	10,88	0,344	49,698	45,371	47,738		0,211		0,166	ļ
176	T/CT1A	meq%	133,520	8,16	0,458	128,232	139,703	132,626		0,469		0,314	Ĺ
177	T/Arg1A	meq%	63,266	3,89	0,044	63,614	63,164	63,019		0,174		0,446	Ì
178	T/(Arg+CT)1A	meq%	42,876	2,29	0,442	42,504	43,452	42,673		0,712		0,730	
179	SBE1A	meq%	27,529	7,46	0,314	26,790	28,383	27,414		0,710		0,114	
180	SBE/T1A	%	86,014	8,49	0,149	84,165	87,660	86,215		0,039		0,163	
181	REU2A	%	11,078	2,46	0,877	10,600	11,400	11,233		0,910		0,863	
182	Arg+SLFG2A	%	98,844	0,83	0,465	98,933	99,233	98,367		0,717	***************************************	0,420	
	CT/NT2A	-	17,823	5,16	0,883	17,051	19,510	16,909		0,284		0,885	
· - • · · • • • • • • • • • • • • • • •	MgE/CaE2A	-	1,110	17,68	0,231	1,083	1,181	1,067		0,233		0,196	
••••••	KE/NaE2A	-	0,187	18,72	0,277	0,199	0,174	0,188		0,629		0,588	
· · · · · · · · · · · · · · · · · · ·	CT/Arg2A	%	43,973	5,83	0,386	44,183	45,028	42,708		0,832		0,893	
187	***************************************	meq%	126,830	5,32	0,594	126,532	122,274	131,683		0,721		0,871	•
· · · · · · · · · · · · · · · ·	T/Arg2A	meq%	55,376	2,96	0,440	55,660	54,431	56,037		0,957	1>3>2	0,585	
	T/(Arg+CT)2A	meq%	38,452	2,64	0,677	38,635	37,528	39,192		0,943		0,306	
********	SBE2A	meq%	28,942	5,61	0,363	28,136	29,457	29,234		0,815	···	0,248	
191	SBE/T2A	%	102,420	3,29	0,640	99,723	102,651	104,885		0,946		0,640	-4
	CaT1A	%	0,281	15,55	0,262	0,297	0,280	0,267		0,565		0,314	
193	MgT1A	%	0,534	1,65	0,500	0,533	0,540	0,530		0,959	3=2>1	0,912	

3-Observations effectuées sur le site de la Tamoa au cours du premier cycle sur le second champ

	Paramètre		Etat moyen			Effets des trois fumures différentes : niveaux et classement					Gradients sur les lignes		Gradients sur les colonnes	
Ν°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classmen	
194	NaT1A	%	0,071	4,69	0,500	0,070	0,073	0,070		0,500		0,500		
195	KT1A	%	0,152	5,79	0,3 63	0,150	0,150	0,157		0,942		0,126		
196	FeT 1A	%	4,419	3,29	0,444	4,437	4,483	4,337	j	0,914	Ì	0,736		
197	MnT1A	%	0,239	21,93	0,306	0,237	0,260	0,220	İ	0,103		0,625		
198	AlT1A	%	8,161	2,26	0,928	7,743	8,493	8,247		0,979	3>2>1	0,325		
199	PT1A	1 %00	0,188	23,08	0,143	0,177	0,197	0,190		0,537		0,350		
204	SBT1A	méq%	42,070	4,88	0,200	42,490	42,330	41,390		0,710		0,609		
205	· ••••••••••••••	-	2,674	12,01	0,261	2,553	2,702	2,767		0,397		0,218	1	
206	SBE/SBT 1A	-	0,654	3,11	0.768	0,630	0,670	0,663		0,650		0,608		
	CaT2A	%	0,270	10,69	0,390	0,283	0,270	0,257		0,752		0,265		
,,	MgT2A	1%	0,531	2,74	0.694	0,517	0,540	0,537		0.891		0.500	· ·	
	NaT2A	%	0,081	10,87	0,500	0,077	0,087	0,080		0,500		0,126		
	KT2A	0/0	0,150	3,85	0.750	0,143	0,153	0,143		0,967	1>2>3	0,500		
j	FeT2A	%	4,369	4,41	0.359	4,287	4,453	4,367		0,812	1.2.3	0.218		
	MnT2A	0/0	0.222	31,00	0.311	0,197	0,250	0,220		0.061		0,109		
	AJT2A	0/-	8, 34 9	0,56	0.990	8,117	8,603	8,327	2>3>1	0,999	2>3>1	0.958	2>1>3	
j	·····	0/	·····				·····		12-3-1		2/3/1		2-1-3	
	PT2A	⁰ / ₀₀	0,194	9,54	0,778	0,173	0,213	0,197		0,880		0,380		
1	SBT2A	méq%	41,790	1,96	0,636	41,260	42,480	41,620		0,939		0,772	<u> </u>	
	MgT/CaT 2A		2,765	11,15	0,4 93	2,571	2,809	2,914		0,487		0,053	<u> </u>	
221	SBE/SBT 2A	<u> </u>	0,692	4,53	0,236	0,682	0,693	<u> </u>		0,569		0,615	<u> </u>	

l'-Observations effectuées sur le site de la Tamoa au cours du premier cycle sur le second champ : cas des variables ne présentant aucun gradient horizontal mais influencées de façon significative par les fumures lorsqu'on considère le dispositif comme un essai bloc

				Effets des trois fumures différentes							
Nº	Paramètre	Unité	Blocs pris sur les lignes		Blocs pris su	r les colonnes					
			Probabilité	Classement	Probabilité	Classement					
155	NaE2A	meq%	0,858	-	0,991	2>3>1					
159	PAT2A	ppm	0,956	3>2>1	0,978	3>2>1					
183	CT/NT2A	-	0,713	-	0,974	2>1=3					

A N N E X E 3.2.

Analyses de sol à la mise en culture : Récapitulatifs des analyses de variance sur l'expérimentation de la Nindia.

Annexe 3.2.1. Données complémentaires relatives au champ 1.

Annexe 3.2.2. Données complémentaires relatives au champ 2.

Annexe 3.2.3. Données complémentaires relatives au champ 3.

ANNEXE 3.2.1. Récapitulatifs des analyses de variance des données de la Nindia CHAMP 1 - 135 -

Paramètre Etat moyen			Effets des trois fumures différentes : niveaux et classement						Gradients sur les lignes		Gradients sur les colonnes		
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classmen
73		méq%	33,821	1,75	0,446	34,096	33,877	33,490		0,974	3>2>1	0,900	
74	MgE1A	rnéq%	34,024	1,51	0,704	33,932	33,619	34,521		0,950	1>2>3	0,199	
	NaE1A	még%	1,239	18,52	0,624	1,223	1,077	1,417		0,342		0,522	
	KE1A	méq%	0,400	15,92	0,132	0,390	0,394	0,417		0,377		0,437	
	pHE1A		6,046	1,23	0,268	6,057	6,017	6,066		0,649		0,373	
78	pHKCl1A		4,824	2,02	0,127	4,828	4,801	4,843		0,360		0,213	
• • • • • • • • • • • • • • • • • • • •	PAT1A	ррт	19,715	8,57	0,077	19,967	19,767	19,411		0,066		0,302	
80	Arg1A	%	77,919	2,90	0,173	78,233	78,289	77,233	Ĭ	0,072		0,337	
	LF1A	%	10,744	25,89	0,100	10,767	10,200	11,267		0,334		0,198	
	LG1A	%	5,333	12,20	0,389	5,333	5,633	5,033		0,182		0,253	
	SF1A	%	2,644	6,30	0,528	2,667	2,733	2,533		0,554		0,857	
	SG1A	%	1,789	11,33	0,024	1,800	1,800	1,767		0,431		0,024	
	TIA	méq⁰%	60,101	1,85	0.099	60,320	59,897	60,087		0,796		0,781	
	pF3,0 1A	%	50,478	0.86	0,708	50,400	50,133	50,900	1	0,911		0,759	
***********	pF4,2 1A	· · · · · · · · · · · · · · · · · · ·	36,478	1,02	0.439	36,633	36,267	36,533		0,630		0,389	
**********	CT1A	%	14,147	5,92	0,687	13,323	14,497	14,620		0,668		0,784	•
	NT1A	%	0 ,9 99	8,85	0,258	1,030	0,997	0,970		0,599	1	0,542	
	CaE2A	méq%	35,145	1,76	0,692	35,753	34,938	34,743		0,942		0,947	
	MgE2A	még%	34,912	4,76	0,097	34,558	35,148	35,031		0,279	1	0,100	
	NaE2A	méq%	1,362	11,79	0,455	1,398	1,423	1,266		0,735		0,914	
	KE2A	méq%	0,361	31,29	0,002	0,361	0,359	0,364		0,099		0,004	
	pHE2A		6,213	2,39	0,10	6,227	6,180	6,232		0,132		0,665	
	pHKCl2A		4,926	2,19	0,214	4,942	4,889	4,948		0,147	Ī	0,533	
	PAT2A	ppm	21,089	0,71	0,848	21,300	20,889	21,078		0,998	2>3>1	0,998	3>2>1
***********	Arg2A	1 %	75,467	1,82	0,3 03	75,367	76,033	75,000		0,795		0,430	
	LF2A	%	11,800	1,47	0,924	11,567	11,633	12,200		0,968	1>3>2	0,974	2>1>3
	LG2A	%	5 ,544	3,66	0,782	5,400	5,800	5,433		0,623		0,869	
	SF2A	%	2,715	7,14	0,242	2,767	2,644	2,733		0,521		0,832	
	SG2A	%	2,000	40,00	0,471	1,700	1,800	2,500		0,360		0,675	

Paramètre			Etat mo	yen	Effets des trois fumures différentes : niveaux et classement						Gradients sur les lignes		Gradients sur les colonnes	
Ν°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classmen	
102	T2A	még%	61,071	3,02	0,091	60,790	60,980	61,443		0,293		0,228		
103	pF3,0 2A	%	50,522	2,84	0,213	51,000	50,400	50,167		0,155	j	0,231	<u> </u>	
104	pF4,2 2A	%	36,289	2,59	0,374	36,733	36,233	35,900		0,018		0,337		
	CT2A	%	12,598	19,77	0,015	12,413	12,587	12,793		0,385		0,255		
106	NT2A	%	0,884	13,14	0,109	0,887	0,907	0,860	<u> </u>	0,149	<u> </u>	0,383	<u> </u>	
11 1	REUIA	%	14,000	3,27	0,596	13,767	13,867	14,367		0,789	<u>j</u>	0,638		
112	Arg+SLFG1A	%	98,430	1,30	0,334	98,800	98,656	97,833		0,614		0,325		
	CTATIA	-	14,209	10,90	0,620	12,919	14,624	15,083	Ì	0,023		0,036		
114	MgE/CaE1A	-	1,016	0,68	0,956	1,007	1,003	1,037	3>1>2	0,999	1>2>3	0,982	2>1>3	
	KE/NaE1A	-	0,362	27,38	0,310	0,35 2	0,404	0,329		0,232		0,676		
116	CT/Arg1A	%	18,170	8,44	0,547	17,073	18,507	18,928		0,479		0,640		
	T/CT1A	meq%	428,932	9,48	0,577	460,519	414,719	411,557		0,653		0,716		
************	T/Arg1A	meq%	77,161	0,96	0,668	77,097	76,589	77,798		0,946		0,969	1>3>2	
	T/(Arg+CT)1A	meq%	65,316	0,49	0,919	65,884	64,641	65,422		0,992	2-3>1	0,994	1=3>2	
	SBE1A	meq%	69,484	1,76	0,298	69,641	68,967	69,844		0,490		0,637		
121	SBE/T1A	%	115,647	1,81	0,187	115,472	115,176	116,294		0,580		0,411		
122	REU2A	%	14,233	10,24	0,004	14,267	14,167	14,267		0,205		0,490		
123	Arg+SLFG2A	%	97,526	1,03	0,540	96,800	97,911	97,867		0,648		0,550		
	CINT2A	-	14,205	6,73	0,485	13,956	13,840	14,820		0,723		0,058		
	MgE/CaE2A	-	1,002	2,99	0,549	0,980	1,014	1,013		0,903		0,833	<u> </u>	
• • • • • • • • • • • • • • • • • • • •	KE/NaE2A	-	0,314	44,16	0,043	0,330	0,295	0,316		0,432		0,500		
	CT/Arg2A	%	16,685	19,69	0,021	16,447	16,600	17,009		0,319		0,276		
	T/CT2A	meq%	493,241	18,84	0,002	495,725	490,788	493,209		0,391		0,368		
************	T/Arg2A	meq%	80,953	4,15	0,175	80,649	80,253	81,957		0,144		0,181		
***********	T/(Arg+CT)2A	meg%	69,396	3,72	0,159	69,268	68,824	70,096		0,425		0,439		
	SBE2A	meq%	71,781	2,98	0,071	72,070	71,868	71,404		0,401		0,555		
•••••••	SBE/T2A	%	117,583	5,97	0,085	118,658	117,858	116,233		0,027		0,147		
	CaT1A	%	0,732	3,19	0,618	0,747	0,737	0,713	1	0,864		0,799		
•••••	MgT1A	%	1,786	1,22	0,834	1,813	1,787	1,757		0,788	1	0,972	3>1>2	

Paramètre			Etat moyen		Effets des trois fumures différentes : niveaux et classement					Gradients sur les lignes		Gradients sur les colonnes	
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classment
135	NaT1A	%	0,062	23,35	0,269	0,067	0,057	0,063		0,568		0,500	
136	KT1A	%	0,061	14,43	0,126	0,060	0,060	0,063		0,126		0,650	
137	FeT1A	%	9,047	2,36	0,705	9,243	9,033	8,863		0,720		0,861	
138	MnT1A	%	0,680	6,9 5	0,6 65	0,677	0,720	0,643		0,687		0,620	
139	AlT1A	%	14,514	4,91	0,086	14,660	14,447	14,437		0,129		0,350	
140	PT1A	% 00	0,174	31,80	0,101	0,187	0,170	0,167		0,119		0,054	
145	SBT1A	méq%	118,030	1,82	0,727	120,040	118,040	116,000		0,869		0,916	
146	MgT/CaT 1A	-	3,398	2,64	0,235	3,386	3,378	3,431		0,767		0,207	
147	SBE/SBT 1A	-	0,589	1,41	0,847	0,580	0,585	0,602		0,812		0,901]
148	CaT2A	%	0,792	4,63	0,098	0,790	0,787	0,800		0,819		0,736	
149	MgT2A	%	1,587	7,70	0,738	1,660	1,650	1,450		0,732		0,267	
150	NaT2A	%	0,060	19,25	0,637	0,067	0,063	0,050		0,429		0,500	
151	KT2A	%	0,042	20,89	0,126	0,040	0,043	0,043		0,650		0,874	
152	FeT2A	%	7,190	12,65	0,751	7,847	7,577	6,147		0,802		0,544	
153	MnT2A	%	0,669	10,37	0,155	0,673	0,683	0,650		0,571		0,206	
154	AlT2A	%	10,821	17,78	0,6 65	11,860	11,580	9,023		0,697		0,499	
155	PT2A	%o	0,158	43,35	0,5 33	0,110	0,173	0,190		0,264		0,364	
	SBT2A	méq%	109,820	5,56	0, 7 3~	113,550	112,900	103,020		0,635		0,165	
	MgT/CaT 2A	-	2,811	10,33	0,687	2,953	2,956	2,524		0,834		0,557	
	SBE/SBT 2A	-	0,656	3,28	0,872	0,636	0,638	0,693		0,885		0,730	

A N N E X E 3.2.2. Récapitulatifs des analyses de variance des données de la Nindia CHAMP 2 - 141 -

1-Observations effectuées sur le site de la Nindia au cours du premier cycle sur le deuxième champ

	Paramèt	те	Etat mo	yen	Effets des trois fumures différentes : niveaux et classement					Gradients sur les lignes		Gradients sur les colonnes	
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classment
167	CaE1A	méq%	37,168	6,54	0,512	36,201	36,481	38,321		0,156		0,642	
168	MgEIA	méq%	25,784	10,30	0,428	25,501	27,230	24,622		0,8 0 0		0,511	<u> </u>
169	NaE1A	méq%	0,444	3,28	0,744	0,440	0,432	0,460		0,986	1 > 2 > 3	0,996	1>2>3
170	KE1A	méq%	0,316	3,00	0,918	0,296	0,321	0,331		0,846		0,887	
171	pHE1A		6,445	1,53	0,312	6,452	6,403	6,479		0,944	<u> </u>	0,788	1
	pHKCl1A		5,159	1,76	0,29 2	5,153	5,128	5,194		0,907		0,731	<u> </u>
173	PAT1A	ppm	76,852	16,90	0,54 9	85,889	69,667	75,00 0		0,949		0,879	
174	ArglA	%	67,500	17,47	0,051	65,900	69,100	67,500		0,548		0,438	
175	LF1A	%	9,578	8,74	0,49 5	9,767	9,933	9,033		0,314		0,134	·•
176	LGIA	%	6,933	9,83	0,411	7,200	7,033	6,567	The state of the s	0,922	i	0,786	!
177	SF1A	%	5,800	41,95	0,134	6,433	5,433	5,533		0,749	i	0,604	
178	SG1A	%	8,611	82,61	0,090	9,500	7,133	9,200		0,487		0,365	1
179	T1A	%	63,618	10,01	0,411	60,430	66,560	63,863		0,355		0,295	
180	pF3,0 1A	%	42,822	12,16	0,303	40,567	44,300	43,600		0,714	1	0,622	
181	pF4,2 1A	%	32,800	14,21	0,198	31,367	34,000	33,033		0,63 5		0,515	
,	CT 1A	%	10,676	10,42	0,0 67	10,817	10,727	10,483		0,793	!	0,820	
183	NTIA	%	0,820	6,14	0,674	0,777	0,860	0,823		0,948		0,845	
184	CaE2A	méq%	38,986	4,57	0,278	39,311	38,250	39,397		0,824		0,167	
185	MgE2A	méq%	27,197	9,80	0,239	27,874	27,488	26,288	t company	0,818		0,552	
186	NaE2A	méq%	0,529	4,55	0,462	0,520	0,522	0,543		0,932		0,989	1>2=3
187	KE2A	méq%	0,259	3,00	0,934	0,271	0,240	0,267		0,895		0,879	
188	pHE2A		6,594	1,64	0,518	6,616	6,521	6,646		0,949		0,843	Ì
189	pHKCl2A		5,314	1,83	0,635	5,336	5,231	5,374		0,901		0,698	1
	PAT2A	ppm	76,444	31,23	0,054	79,444	77,000	72,889		0,842		0,665	
	Arg2A	%	64,556	15,98	0,122	62,067	66,267	65,333		0,714		0,590	:
	LF2A	%	11, 0 00	11,37	0,145	11,100	10,667	11,233		0,581		0,578	
193	LG2A	%	7,233	22,63	0,000	7,233	7,233	7,233		0,742		0,576	
	SF2A	%	6,533	36,75	0,153	7,200	6,300	6,100		0,786		0,741	1
	SG2A	%	9,289	77,41	0,110	10,900	8,067	8,900		0,576	1	0,489	

2-Observations effectuées sur le site de la Nindia au cours du premier cycle sur le deuxième champ

	Paramètre		Etat mo	yen			des trois fumures d niveaux et classen			Gradients sur les lignes		Gradients sur les colonnes	
Ν°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classment
196	T2A	méq%	62,710	7,71	0,100	31,830	63,677	62,623		0,466		0,381	
197	pF3,0 2A	%	42,656	12,87	0,084	41,567	43,033	43,367		0,706		0,642	
198	pF4,2 2A	%	32,300	15,11	0,021	31,800	32,500	32,600		0,558	;	0,518	
199	CT2A	%	10,067	16,40	0,070	10,180	9,767	10,253		0,827	ı	0,446	
200	NT2A	%	0,782	15,13	0,096	0,797	0,793	0,757		0,805		0,582	1
201	REU1A	%	10,022	5,48	0,838	9,200	10,300	10,567		0,967	2 > 1 > 3	0,931	}
202	Arg+SLFG1A	%	98,422	2,88	0,091	98,800	98,633	97,833		0,02	;	0,321	
203	CTATIA	-	13,073	13,69	0,308	13,86	12,574	12,784		0,141	:	0,317	· • · · · · · · · · · · · · · · · · · ·
204	MgE/CaE1A	-	0,697	14,25	0,497	0,709	0,747	0,635		0,691	<u></u>	0,433	i
205	KE/NaE1A	-	0,779	12,48	0,074	0,794	0,782	0,762		0,882	!	0,943	!
206	CT/Arg1A	%	15,944	11,54	0,287	16,722	15,565	15,545		0,372	1	0,737	
207	T/CT1A	meq%	605,400	8,44	0,557	569,559	634,715	611,926		0,707		0,833	· · · · · · · · · · · · · · · · · · ·
208	T/Arg1A	meq%	95,548	10,77	0,054	94,330	97,128	95,186		0,670		0,510	1
209	T/(Arg+CT)1A	meq%	82,380	9,79	0,114	80,721	84,049	82,372		0,692	,	0,528	
210	SBE1A	meg%	63,712	5,09	0,260	62,438	64,464	64,234		0,738	1	0,690	1
211	SBE/T1A	%	100,431	6,09	0,480	103,752	96,971	100,570		0,576	1	0,029	
212	REU2A	%	10,356	19,24	0,173	9,767	10,533	10,767		0,699	}	0,568	
213	Arg+SLFG2A	%	98,611	2,46	0,012	98,500	98,533	98,800		0,194		0,353	!
214	CT/NT2A	-	12,868	4,14	0,809	12,804	12,269	13,531		0,784		0,828	
215	MgE/CaE2A	-	0,703	6,00	0,591	0,719	0,720	0,669		0,962	1>2>3	0,814	
216	KE/NaE2A	-	0,525	10,97	0,733	0,580	0,470	0,524		0,883		0,940	
217	CT/Arg2A	%	15,651	6,80	0,677	16,573	14,797	15,583	ĺ	0,700		0,888	<u>.</u>
	T/CT2A	meq%	642,611	9,69	0,368	626,419	674,352	627,064		0,900		0,564	•,•••••••••••••••••••••••••••••••••••••
	T/Arg2A	тед%	99,432	11,19	0,264	103,845	97,609	96,843		0,755		0,702	:
220	T/(Arg+CT)2A	meq%	85,956	11,05	0,196	88,998	85,029	83,842		0,777		0,653	:
	SBE 2 A	тед%	66,970	6,39	0,112	67,977	66,500	66,434		0,382	i	0,274	
	SBE/T2A	%	106,994	5,46	0,472	110,532	104,351	106,099		0,511	.,	0,300	
	QKt(R)/QKFu	-	1,851	13,66	0,884	1,388	2,023	2,142		0,151	i	0,355	
224	CaT1A	%	1,110	6,24	0,722	1,167	1,040	1,123		0,983	3>2>1	0,910	¦
225	MgT1A	%	1,993	1,53	0,569	2,003	2,007	1,970		0.990	≟ 3>2>1	0.974	1 3 > 1 > 2

- 144 -

3-Observations effectuées sur le site de la Nindia au cours du premier cycle sur le deuxième champ

	Paramètre		Etat moyen		Effets des trois fumures différentes : niveaux et classement					Gradients sur les lignes		Gradients sur les colonnes	
N° ,	. Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment		Classment
226		%	0,162	50,00	0,328	0,200	0,143	0,143		0,767		0,645	
227	KT1A	%	0,046	38,72	0,2 01	0,047	0,040	0,050		0,201		0,317	
228	FeT1A	%	10,089	6,9 3	0,178	9,897	10,270	10,100	i.	0,629		0,097	1
229	MnT1A	%	0,617	18,72	0,083	0,597	0,617	0,637	:	0,812		0,439	
2 3 0	AlT1A	%	16,742	7,57	0,477	15,937	17,1 17	17,173		0,771		0,782	•••••••••••
231	PT1A	1 /00	0,243	49,37	0,175	0,280	0,227	0,223		0,791		0,539	
236	SBT1A	méq%	144,700	4,02	0,495	148,460	142,140	143,500		0,9 7 7	3>2>1	0,911	:
	MgT/CaT 1A	-	2,594	2,65	0,845	2,538	2,701	2,542		0,993	1>2>3	0,973	1>3>2
	SBE/SBT 1A	-	0,451	5,57	0,272	0,442	0,459	0,451		0,974	1>2>3	0,913	:
239	CaT2A	%	1,230	20,33	0,2 73	1,250	1,133	1,307		0,791	1	0,479	
:	MgT2A	%	2,077	9,22	0,330	2,090	1,993	2,147		0,780		0,583	
241	NaT2A	%	0,178	59,91	0,039	0,183	0,163	0,187	1	0,566		0,365	
242	KT2A	%	0,052	60,89	0,254	0,040	0,060	0,057	!	0,350		0.071	•
243	FeT2A	%	10,136	4,15	0,808	10,290	9,577	10,540		0,578	:	0,491	
244	MnT2A	%	0,597	25,03	0,009	0,600	0,587	0,603		0.608		0,182	1
	AlT2A	%	16.616	8.02	0.2 90	16,330	16,333	17,183	!	0.641		0.734	
**********	PT2A	‱	0,206	35,79	0,333	0,237	0,177	0,203	··· ·	0.880	· ····································	0,643	
	SBT2A	méa%	153,760	14,53	0,244	155,050	145,880	160,350		0,753		0,453	;
	MgT/CaT 2A	_	2,424	8,70	0,218	2,428	2,487	2,358		0,873	:	0.742	·•····································
	SBE/SBT 2A	-	0,448	18.14	0.198	0.454	0,468	0,423		0,733		0.409	

·		

A N N E X E 3.2.3. Récapitulatifs des analyses de variance des données de la Nindia CHAMP 3 - 147 -

1-Observations effectuées sur le site de la Nindia au cours du premier cycle sur le troisième champ

	Paramèt	re	Paramètre Etat moyen			Effets des trois fumures différentes: niveaux et classement					Gradients sur les lignes		Gradients sur les colonnes	
N°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classmer	
36	CaE1A	méq%	36,789	7,77	0,034	36,856	36,444	37,067		0,824		0 ,50 5		
37	MgE1A	méq%	29,026	4,56	0,104	29,322	28,844	28,911		0,968	1>2>3	0,245		
38	NaE1A	méq%	0,697	16,73	0,399	0,634	0,738	0,718		0,674		0,729		
	KEIA	méq%	0,439	15,79	0,392	0,402	0,462	0,452		0,665		0,724		
	pHE1A		6,356	0,80	0,896	6,256	6,400	6 ,4 11		0,872		0,650		
41	pHKCl1A		5,174	1,50	0,672	5,100	5,211	5,211	Ì	0,363		0,690		
42	PAT1A	ppm	17,585	37,52	0,546	22,111	13,867	16,778		0,733		0,467		
43	ArglA	%	67,556	12,36	0,425	71,233	63,067	68,367		0,748		0,615		
44	LFIA	%	12,333	10,33	0,287	11,800	12,667	12,533		0,686		0,716		
45	LGIA	%	7,167	23,40	0,568	5,900	7,967	7,633		0,703		0,283		
	SFIA	%	4,556	32,52	0,578	3,567	5,567	4,533		0,899		0,501		
	SG1A	%	6,556	92,35	0,442	3,867	9,967	5,833		0,651		0,695		
•••••	TIA	méq%	61,600	3,91	0,711	63,467	59,200	62,133		0,648		0,816		
49	pF3,0 1A	%	45,500	8,29	0,604	48,067	42,700	45,733	·····	0,780		0632	1	
	pF4,2 1A	%	31,544	8,30	0,529	33,100	29,900	31,633	***************************************	0,755		0,537		
••••••	CT1A	%	11,178	6,12	0,659	10,967	10,767	11,800	·· ·	0.948		0,232		
***********	NTIA	%	0,893	6,75	0,323	0,867	0,913	0,900		0,875	1	0,719		
	CaE2A	méq%	33,356	1,46	0,970	35,122	32,167	32,778	1>3>2	0,996	3>2>1	0,987	3>2>1	
	MgE2A	méq%	22,763	5,53	0.512	23,589	22,556	22,144		0.947		0,809		
	NaE2A	méq%	0,359	24,93	0,564	0,424	0,339	0,312		0,465		0,713		
56	KE2A	méq%	0,240	22,29	0,576	0,280	0,228	0,211		0,466		0,711		
	pHE2A		6,626	2,18	0,762	6,456	6,733	6,689		0,818		0,371	*************************************	
58	pHKCl2A		5,474	1,62	0,729	5,378	5,533	5,511		0,500		0,698		
	PAT2A	ppm	40,296	83,31	0,534	23,333	63,444	34,111		0,895		0,755		
60	Arg2A	%	62,900	12,72	0,797	73,500	57,267	57,933		0,895		0,755		
	LF2A	%	12,844	3,63	0,454	12,567	13,033	12,933		0,951	1>2>3	0,935		
62	LG2A	%	7,411	14,71	0, 750	6,167	7,867	8,200		0,833	1	0,529		
	SF2A	%	5,267	15,46	0,908	3,567	5,967	6,267		0,979	3>2>1	0,892		
64	SG2A	%	10.833	49,32	0.780	4.133	14,500	13,867	***************************************	0,930		0.851		

2-Observations effectuées sur le site de la Nindia au cours du premier cycle sur le troisième champ

	Paramètre	_	Etat mo	yen			des trois fumures d niveaux et classen				nts sur les ignes	Gradients sur les colonnes	
Ν°	Sigle	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classmen
65	T2A	méq%	60,244	3,46	0,761	62,767	59,8 33	58,133		0,865		0,620	}
66	pF3,0 2A	%	46,544	11,47	0,577	50,467	43,400	45,767		0,880		0,224	Ì
67	pF 4,2 2A	%	32,767	11,87	0,584	35,733	30,600	31,967		0,857		0,491	
68	CT2A	%	7,700	11,05	0,566	8,333	7,2 67	7,500		0,955	1>2>3	0,746	
	NT2A	%	0,632	7,44	0,426	0,630	0,610	0,657		0,892		0,426	
161	***************************************					***************************************							
	REU1A	%	13,956	8,36	0,724	14,967	12,800	14,100		0,821		0,771	
163	Arg+SLFG1A	%	98,167	1,22	0,837	96,367	99,233	98,900		0,268		0,651	<u>.</u>
	CT/NT1A	-	12,528	12,91	0,334	12,669	11,806	13,107		0,432		0,201	
**********	MgE/CaE1A	-	0,804	2,99	0,196	0,812	0,800	0,801		0,996	1>2>3	0,631	
	KE/NaE1A	-	0,633	0.82	0,746	0,637	0,627	0,634		0.843		0.845	.;
••••••	CT/Arg1A	3/6	16,740	14,16	0.428	13,389	17,597	17,233		0.217		0.569	
***********	T/CT IA	meq%	558,808	7,24	0,484	582,095	557,478	536,850		0,893	<u> </u>	0.457	
	T/Arg1A	meq%	93,019	13,91	0,319	89,305	98,852	90,900	·- 	0,689	···	0,420	
	T/(Arg+CT)1A		79,593	11,82	0,307	77,405	83,773	77,601		0,747		0,380	·
	SBE1A	meq%	66,950	5.94	0.028	67,214	66,489	67,148		0,111		0.445	<u> </u>
**********	SBE/T1A	%	108,867	2,11	0,862	105,954	112,489	108,158		0,801	·	0,723	·
	REU2A	%	13,778	10,52	0,572	14,733	12,800	13,800	·· ······	0,933		0,358	· ········
• • • • • • • • • • • • • • • • • • • •	Arg+SLFG2A	%	99,256	0.77	0,687	99,933	98,633	99,200		0,935		0.700	
	CT/NT2A	-	12,006	10,84	0,622	13,083	11,708	11,228	·· ·	0,879		0,628	· {
*******************************	MgE/CaE2A	i -	0,699	5,13	0.178	0,695	0,710	0,693		0,988	1>2>3	0.689	
	KE/NaE2A	i -	0,677	4,08	0.442	0,662	0,678	0,691		0,272		0,661	
• • • • • • • • • • • • • • • • • • • •	CT/Arg2A	%	12,881	8,83	0,717	11,367	13,347	12,729		0,889	<u> </u>	0,856	
,	T/CT2A	rneq%	836,389	21,44	0,209	788,515	893,462	827,191	···	0,801		0,480	
	T/Arg2A	meg%	103,958	31,37	0,507	85,399	123,532	102,944		0,685		0,524	
	T/(Arg+CT)2A	meq%	92,147	29,62	0.501	76,731	108,266	91,445	···	0.700		0.515	·
	SBE2A	meg%	56,717	2,96	0.853	59,416	55,289	55,446		0.789	· \	0,923	
	SBE/T2A	%	94,285	6,23	0,213	94,840	92,314	95,699	·· 	0,708		0,478	·
	CaT1A	%	1,146	11,94	0,565	1,053	1,233	1,150	-	0,949	· [0,602	
•••••••••••••••••••••••••••••••••••••••	MgT1A	%	2,039	0.59	0,993	1,963	2,043	2,110	3>2>1	0.999	3>2>1	0,951	2>1>3
100			2,037	0,57	3,773	1,703		2,110	3-2-1	3,777	3-2-1	0,751	2-1-3

150 -

3-Observations effectuées sur le site de la Nindia au cours du premier cycle sur le troisième champ

	Paramètre		Etat mo	yen	Effets des trois fumures différentes : niveaux et classement					Gradients sur les lignes		Gradients sur les colonnes	
Nº	Sigle_	Unité	Moyenne	CV%	Pté F	1	2	3	Classment	Pté F	Classment	Pté F	Classment
187	NaT1A	%	0,131	56,11	0,590	0,087	0,187	0,120		0,842		0,618	
188	KT1A	0,0	0,060	28,87	0,101	0,060	0,057	0,063		0,438	·	0,735	*******
189	FeT1A	96	10,629	5,40	0,361	10,897	10,403	10,587		0,561		0,734	!
190	MnT1A	0/0	0,651	8,00	0,576	0,687	0,617	0,650		0,940		0,811	! !
191	PT1A	%no	0,267	35,64	0,51 1	0,223	0,330	0,247	i	0,886	;	0,357	,
196	SBT1A	méq%	147,530	4,80	0,765	139,060	152,600	150,930	,	0,978	3>2>1	0,665	
197	MgT/CaT 1A	_	2,580	6,91	0,390	2,645	2,487	2,607		0,951	1>2>3	0,649	·
198	SBE/SBT 1.A	Ì -	0,465	8,50	0,468	0,489	0,454	0,451	1	0,923	:	0,504	
199	CaT2A	· %	1,224	17,66	0,535	1,670	1,310	1,293	1	0,928		0,426	1
200	MgT2A	• o _{/0}	2,147	6,77	0,710	2,007	2,167	2,267		0,934		0,445	·
201	NaT2A	0,0	0,174	56,39	0,589	0,100	0,233	0,190	į	0,859		0,457	:
202	KT2A	%	0,042	34,41	0,406	0,050	0,040	0,037		0,779		0,805	
203	FeT2A	9/0	10,300	3,36	0,6 05	10,550	10,057	10,293		0.924		0,905	1
204	MnT2A	%	0,540	10,53	0,7 16	0,600	0,507	0,513		0,955	1>2>3	0,892	
205	PT2A	0 _{/00}	0,211	62,20	0,570	0,130	0,303	0,200		0,871		0,596	:
210	SBT2A	} méq⁰⁄o	156,710	11,35	0,609	142,020	162,610	165,510	j	0.924		0,410	:
211	MgT/CaT 2A	-	2,580	7,11	0,345	2,667	2,524	2,547	:	0,961	1>2>3	0,491	
11 1	SBE/SBT 2A	-	0,377	9,64	0,771	0,421	0, 36 3	0,348		0,923		0,662	
214	AlT1A	0,0	12,855	4,42	0,700	13,335	12,337	12,894		0.817	A SAME AND A SAME AND	0,528	

1'-Observations effectuées sur le site de la Nindia au cours du premier cycle sur le troisième champ : cas des variables ne présentant aucun gradient horizontal mais influencées de façon significative par les fumures lorsqu'on considère le dispositif comme un essai bloc

	Effets des trois fumures différentes										
	N°	Paramètre	Unité	Blocs pris s	ur les colonnes						
				Probabilité	Classement	Probabilité	Classement				
ji	163	Arg+SLFG1A	%	0,873	-	0,955	2>3>1				