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Abstract We investigated surface carbonate sediments at 33 sites on the outer shelf and
slope around New Caledonia (163°–167°E, 20°–23°S), at water depths of 75–720 m. Four
carbonate sedimentary facies are recognized on the basis of sediment size fractions and
predominant constituents: Facies 1, encrusted grains (rhodoliths and macroids), bryozoa,
and benthic foraminifera; Facies 2, bryozoa, benthic foraminifera, and mud; Facies 3,
plankton and mud; and Facies 4, ahermatypic corals. Facies distributions were constrained
primarily by water depth, and secondarily by local seafloor geomorphology that, in some
areas, allows transport of sediments to deeper water. Because the dominant facies (Facies
1 and 3), as well as lagoon and basin facies, are distributed worldwide at similar latitudes,
facies around New Caledonia can be considered as representative of carbonate sedimen-
tary facies distributed in tropical–subtropical regions.
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INTRODUCTION

Outer shelves and slopes occur in transitional zones
from continental/island shelves to deep basins;
water depths in these zones are in the range of tens
to several thousands of meters (e.g. Uchupi 1968).
In tropical to subtropical areas, outer shelves and
slopes are generally composed of carbonate sedi-
mentary facies (e.g. Ginsburg & James 1974). On
rimmed shelves with coral reefs (e.g. in Belize and
on the Great Barrier Reef of Australia), the transi-
tion from shallow water to deep-sea basin, which is
marked by a distinct break in slope, occurs over
relatively short distances of up to a few kilometers,
and slope angles in this zone vary from approxi-
mately one degree to nearly vertical (Read 1985).

Despite the importance of outer-shelf and slope
sedimentary facies, studies of these transitional
zones are scarce compared with the number of
studies conducted on shelf sediments (e.g.
Ginsburg & James 1974; Marshall & Davies 1978;
Scoffin & Tudhope 1985; Chevillon 1996) and basin
sediments (e.g. Swift 1977; Berger 1978; Liu &
Cotillon 1989; Schmucker & Schiebel 2002).

Isolated carbonate platforms provide ideal con-
ditions for examining carbonate sedimentary
facies, as these environments are not influenced by
large inputs of terrestrial sediments, as occurs on
shelves and basins near continents, which are
subject to discharges from large rivers (Ginsburg
& James 1974; Swift 1977; Balsam & Beeson 2003).
This study examines modern carbonate sedimen-
tary facies on the outer shelf and slope around
New Caledonia, which is located in a tropical–
subtropical region. In combination with studies
of shelf-lagoon sediments (e.g. Debenay 1987;
Chevillon 1996), platform-reef sediments (Yamano
et al. 2014), barrier-reef slope sediments (Flamand
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et al. 2008), and shelf-slope and basin sediments
(Cotillon et al. 1989; Lambert & Roux 1991), our
results contribute to a more comprehensive under-
standing of modern carbonate sedimentary facies,
both in New Caledonia and worldwide.

SETTING

New Caledonia consists of several tropical to sub-
tropical islands located in the southwest Pacific

islands, ca. 1500 km east of Australia (Fig. 1). The
main island, Grande Terre, is 400 km long and
50 km wide, and is surrounded by exceptional
reef tracts. Southeast trade winds predominate
during more than 70% of the year around New
Caledonia (Ouillon et al. 2004). The southern part
of New Caledonia is influenced by the eastward-
flowing Subtropical Countercurrent, which
branches from the East Australian Current,
whereas the northern part is influenced by the
westward-flowing South Equatorial Current

Ryukyu
Islands

Canary
Islands

Mascarene
Islands

Great
 Barreir
    Reef

PACIFIC OCEAN

INDIAN OCEAN

ATLANTIC
OCEAN

ATLANTIC
OCEAN Eastern Caribbean

Florida
GULF OF
MEXICO

CARIBBEAN SEA

Belize

Bermuda

San Salvador

ATLANTIC
OCEAN

PACIFIC
OCEAN

a

b

New
Caledonia

Fig. 1b

Grande Terre

Loyalty Islands

2000

1000

2000

1000

3000

1000

3000

Loyalty Basin

10-17
19-25

06-09

05
03-04

01-02

52-54

49-51

46-48

44-45

35-43

34

31-3329-30

26-28

50 km

N

Transect by Cotillon et al. (1989)

Lagoon sediment sampling area
(Chevillon 1996)

Depth contour calculated from ETOPO1
(Amante and Eakins 2009)

Coral reef based on Millennium Coral Reef
Mapping Project (Andréfouët et al. 2006)

Legend

Dredging point (this study)

Dredging point (Flamand et al. 2008)

1000 m

10 km
Loyalty Basin

Grande
Terre

Loyalty
Islands

166˚E 168˚E

20˚S

22˚S

U
pw

elling-affected

area
Trade wind

164˚E

Fig. 1 (a) Locations of New Caledonia and other sites referred to in this study. (b) Map of New Caledonia showing dredging points in this study (numbers
by the stars and contours indicate sample numbers and water depths, respectively), and sampling sites in previous studies (Cotillon et al. 1989; Chevillon
1996; Flamand et al. 2008). The inset shows a topographic profile along the transect of Cotillon et al. (1989), located along the island shelf/slope and basin,
from New Caledonia to Loyalty Islands.
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(Couvelard et al. 2008). Except for in southwest-
ern New Caledonia, mean sea-surface tempera-
tures (SSTs) are 27–28°C in summer and 23–25°C
in winter. Sea-surface salinities (SSSs) are rela-
tively stable throughout the year at 35.1–35.7
(Vega et al. 2006). During the summer, upwelling
caused by strong trade wind events causes
anomalous SSTs and SSSs in southwestern New
Caledonia (Hénin & Cresswell 2005; Alory et al.
2006; Marchesiello et al. 2010). The vertical struc-
ture of the water mass in the region shows three
distinct water layers: a shallow water layer at
0–150 m, with temperatures of 22–28°C and
salinities of 35.1–35.7; a southern subtropical
water layer at 150–500 m, with temperatures of
12–22°C and salinities of 34.8–35.7; and an inter-
mediate deep Antarctic water layer at 600–
2800 m, with temperatures of 2–10°C and
salinities of 34.4–34.7 (Guevel 1983; Roux et al.
1991). Annual mean significant wave height
around New Caledonia was estimated to be 1.5–
2.0 m (Cox & Swail 2001). The intensity of
cyclones threatening directly New Caledonia was
not high, showing 12 cyclones in the past 20 years
(Guillemot et al. 2010).

New Caledonia is surrounded by ca. 31 300 km2

of shelf lagoon extending 5–40 km offshore
(Andrérouët et al. 2009) to water depths of ca.
40 m; where substrates are available, fringing
reefs are preferentially developed along eastern
coasts (Coudray 1976). Barrier reefs are located at
the shelf margin (Coudray 1976; Cabioch et al.
1999; Andréfouët et al. 2009); thus, the shelf is
classified as a rimmed shelf (sensu Read 1985;
Tucker & Wright 1990). The eastern portion of the
slope is ca. 15 km wide and has a slope angle of ca.
7.5° (Liu & Cotillon 1989). Recently, several bathy-
metric surveys along the shelf edge to slope
(Pelletier et al. 2002) have revealed details of sub-
marine geomorphic features, including the exis-
tence of cliffs and mounds on the slope, some of
which may be hard-substrate features, based on
evidence from seafloor observations (Vanney
1991). The basin is an extremely flat abyssal plain
with an average depth of 2350 m (Liu & Cotillon
1989) and subsurface sediments composed of ter-
rigenous clay derived from past intensive erosion
of Grande Terre (Bitoun & Récy 1982; Cotillon
et al. 1989; Liu & Cotillon 1989).

Surficial carbonate sediments have been exam-
ined at sites in the lagoon all around New Caledo-
nia (Debenay 1987; Chevillon & Clavier 1988;
Chevillon & Richer de Forges 1988; Chevillon
1996) and in the eastern portion of the shelf slope

in Loyalty Basin (Fig. 1b) (Cotillon et al. 1989; Liu
& Cotillon 1989; Lambert & Roux 1991). Chevillon
(1996) showed that the major constituents of
lagoon sediments are benthic mollusks (bivalves
and gastropods), benthic foraminifera, and
Halimeda. Terrestrial mud fractions are
restricted to bays, and the mud fraction decreases
progressively offshore to the barrier reef, where
the mud content of the sediments is less than 5%
(Chevillon & Richer de Forges 1988). This indi-
cates poor transport of terrestrial materials to the
shelf slope.

Outside the barrier reefs, dredging has been
conducted at water depths of 40–200 m at several
places on the barrier-reef slope. Analyses of hand
specimens obtained from the dredged samples
reveal that the dominant encrusting organisms are
composed mainly of coralline algae and/or fora-
minifera (Flamand et al. 2008). Based on surface-
sediment data along a transect across the shelf
slope and basin (Fig. 1b), Cotillon et al. (1989) sug-
gested that the facies at water depths of 300–
1000 m are dominated by planktonic foraminifera,
along with pteropods and benthic organisms. In
the Loyalty Basin, where water depths are
>2000 m, surface sediments collected at ten sites
were dominated by planktonic foraminifera, and
the sand fraction constituted >85% of the sedi-
ment. The scarcity of pteropods in the basin sedi-
ments has been attributed to the dissolution of
aragonite at depths of >2000 m (Berger 1978;
Betzer et al. 1984; Byrne et al. 1984).

METHODS

Dredging was conducted at 54 sites around New
Caledonia between 30 May and 7 June 2005,
during a research cruise by the Institut de Recher-
che pour le Développement (IRD) R/V ALIS (see
Fig. 1b and Table 1; Pelletier et al. 2006). The posi-
tions of the sampling sites and the water depth at
each site were determined by GPS (Leica MX 400,
Heerbrugg, Switzerland) and multibeam sounder
(Simrad EM 1002, Horten, Norway), respectively;
all instruments were equipped with ALIS.
Because the sampling sites are not in areas subject
to upwelling (Hénin & Cresswell 2005; Alory et al.
2006; Marchesiello et al. 2010), the SSTs and SSSs
were expected to be similar among sites. Currents
at the sites were calculated using a regional
oceanic model (ROMS; Marchesiello et al. 2010),
originally developed by Shchepetkin and
McWilliams (2005).
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Sediment samples were obtained at 33 of the 54
sampling sites, at water depths of 75–720 m on the
outer shelf and slope around New Caledonia
(Fig. 1 and Table 1). Fragments of hard blocks
(bedrock and/or fossil reefs) were not analyzed, as
the purpose of the study was to examine modern
sedimentary facies. Sediments were analyzed for
texture and composition. Whereas Flamand et al.
(2008) examined hand specimens on the barrier
reef slope, we analyzed both sand-sized fractions
and hand specimens for the 25 samples that con-
tained sand-sized sediments (Table 1). Sieving
and constituent analyses were conducted after
Chevillon (1996). After homogenization, the
samples were dried and weighed, and the mud
fraction was removed by washing through a 3.98ϕ
sieve. The remaining sediment fraction was dried,
reweighed, and dry sieved using the following
mesh sizes: 3.98ϕ, 3.00ϕ, 2.00ϕ, 1.00ϕ, 0.00ϕ, −0.50ϕ,
−1.00ϕ, −1.32ϕ, −2.00ϕ, −2.32ϕ, −3.00ϕ, −3.32ϕ,
−4.00ϕ, and −4.32ϕ. At least 200 grains in each size
class coarser than 2.00ϕ were identified and point
counted under a binocular microscope. If the

number of grains was less than 200, we identified
and counted all grains. Encrusted grains
(rhodoliths and macroids) were slabbed and thin
sectioned, and internal structures were examined
under a petrographic microscope.

RESULTS AND DISCUSSION

CHARACTERISTICS OF SEDIMENTARY FACIES

We recognize four sedimentary facies around New
Caledonia on the basis of sediment size fractions
and constituents (Fig. 2).

Facies 1: encrusted grain, bryozoa, and benthic
foraminifera facies

This facies, which is characterized by encrusted
grains (Fig. 3b), is composed mainly of cobbles and
cobble- and pebble-sized sediments and sands, and
is generally distributed at depths of 75–200 m
(Figs. 2,3a). The average gravel-, sand- and mud-
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sized fractions are 53%, 45% and 2%, respectively.
The gravel-sized sediments are dominated by
encrusted grains (rhodoliths and macroids) with
diameters of 4–10 cm. The encrusted grains, which
comprise more than 80% of the sediment mass, are
composed of crusts of coralline algae and foramin-
ifera (e.g. Gypsina plana), but foraminifera can
constitute more than 80% of the mass and form
macroids. Most rhodoliths and macroids are
irregular-shaped, and whitish envelope overlies
the inner part, which has been bioeroded. Some of
the bioeroded parts are filled with a mixture of
bioclast and micrite. The sand-sized sediments are
composed mainly of bryozoa and benthic foramin-
ifera. Planktonic foraminifera and mollusks are
minor constituents. Larger benthic foraminifera
are dominant, and are characterized by
Cycloclypeus carpenteri. Encrusted grains of cor-
alline algae and foraminifera are restricted to
water depths of 200 m or less, which may be
explained by the extinction of light at depths
greater than approximately 200 m, as observed in
the Loyalty Islands area (Roux et al. 1991). The

calculated maximum and average current speeds
at the sites where Facies 1 is found are 14 cm/s and
ca. 3 cm/s, respectively.

Facies 2: bryozoa, benthic foraminifera, and mud facies

This facies, which is characterized by bryozoa and
benthic foraminifera, is composed of sand and
mud, and is distributed at depths of 200–250 m.
The average gravel-, sand- and mud-sized frac-
tions are 1%, 69% and 30%, respectively. Bryozoa
and benthic foraminifera are the main constitu-
ents of sand-sized sediments, similar to those of
Facies 1; specimens of C. carpenteri are, however,
less abundant in Facies 2 than in Facies 1, and
Amphistegina radiata is the dominant large
benthic foraminifera. The calculated maximum
and average current speeds are 10 cm/s and
3 cm/s, respectively.

Facies 3: plankton and mud facies

This facies, which is characterized by planktonic
mollusks (pteropods) and foraminifera, is distrib-
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Fig. 3 (a) Map showing the locations of sites DR36, DR40, DR41, and DR42, and the bathymetry of the surrounding outer shelf and slope (from Pelletier
et al. 2002). (b) Photograph of sample DR36. (c) Photograph of sample DR42. (d) Photograph of sample DR41. The photographs are from Pelletier et al.
(2006).
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uted at depths of 250–720 m (Figs. 3a,c,d,4a). The
average gravel-, sand- and mud-sized fractions are
7%, 27% and 66%, respectively. A substantial
amount of mud (33–94%) is present in uncon-
solidated samples. Pteropods and planktonic
foraminifera comprise 10–65% and 5–25% of the
sand-sized fraction, respectively. Bryozoa and
benthic foraminifera combined comprise less than
10% of the sand-sized fraction. Facies 3 can be
subdivided into three subfacies (Fig. 2). Facies 3a
(DR34) contains aggregates of mud, and occurs at
depths of 250–300 m. Facies 3b (DR46, DR47, and
DR48) includes 10 cm-diameter encrusted grains
and benthic organisms (bryozoa and foraminifera),
in addition to planktonic organisms, and is
observed at depths of 290–400 m (Fig. 4). Though
cements potentially originated from mud dominate
the grains, some of the grains are similar to those
found in Facies 1 (Fig. 4b). Facies 3c is composed
mainly of pteropods and planktonic foraminifera,
with a small proportion of benthic foraminifera,
including C. carpenteri and A. radiata, also sug-
gesting transport from Facies 1. In all subfacies,
the calculated maximum and average current
speeds are 15 cm/s and 1–4 cm/s, respectively.

Facies 4: ahermatypic coral facies

This facies, which was found in three samples
(DR02, DR26, and DR32), is characterized by domi-
nant ahermatypic corals and sponges (Fig. 5b).
However, the dominant species of coral varies from

site to site. Caryophylliidae [Paracyathus? sp.
(juv.), Dendrophyllia? sp., and unidentified species]
are found on the western coast, (DR02), whereas
Caryophylliidae (Eguchipsammia sp.) (DR26),
Cladocora cf. pacifica and Dactylotrochus
cervicornis (DR32) are found on the eastern coast.
Facies 4 occurs on cone-like mounds distributed
at depths of 240–520 m (Fig. 5a). Maximum and
average current speeds at the sites where Facies 4
is found, calculated at nearby grid nodes (the
parameters could not be calculated for the specific
sampling sites), are ca. 10 cm/s and ca. 1 cm/s,
respectively.

FACTORS CONTROLLING FACIES DISTRIBUTIONS

The modern facies on the outer shelf and shelf
slope around New Caledonia appear to be con-
strained primarily by water depth (Figs. 2,6).
The distribution of Facies 1, which consists of
foraminiferal–algal encrusted grains with bryozoa
and the foraminifera C. carpenteri, is generally
limited to water depths of less than 200 m. At
water depths greater than 200 m, encrusted grains
are less abundant and the mud fraction increases,
although the coarse sediments are still dominated
by benthos (bryozoa and foraminifera). At water
depths greater than 250 m, where the mud fraction
dominates the sediment mass, the fraction of sedi-
ments of planktonic origin increases significantly,
and reaches up to 90% of the coarse sediment
mass.
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Fig. 4 (a) Map showing the locations of sites DR46, DR47, and DR48 and the bathymetry of the surrounding outer shelf and slope (from Pelletier et al.
2002). (b) Photograph of sample DR48. The photograph is from Pelletier et al. (2006).
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Fig. 5 (a) Map showing the location of site DR32 and the bathymetry of the surrounding outer shelf and slope (from Pelletier et al. 2002). (b) Photograph
of sample DR32. The photograph is from Pelletier et al. (2006).
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Fig. 6 Schematic figure of the geomorphology and facies distributions around New Caledonia, based on previous studies (Cotillon et al. 1989; Chevillon
1996; Flamand et al. 2008; Yamano et al. 2014) and this study. This figure was derived mainly for the eastern coast of New Caledonia, and may be most
applicable to oligotrophic water conditions.
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Facies distributions similar to those observed on
the outer shelf and shelf slope around New Cale-
donia, especially those of Facies 1 and 3, may be
found in other tropical–subtropical regions in
oligophotic environments (Fig. 6). Facies with
foraminiferal–algal encrusted grains (rhodoliths
and macroids), which corresponds to Facies 1, are
distributed widely in the Indian and Pacific oceans
(e.g. the Ryukyu and Mascarene islands) and the
Atlantic Ocean and Caribbean Sea (e.g. the Gulf of
Mexico, Florida, San Salvador, eastern Caribbean
Sea, Bermuda, and the Canary Islands; reviewed
by Matsuda & Iryu 2011), at water depths of
30–150 m (Matsuda & Iryu 2011). Specifically, in
the Ryukyu Islands, Japan, distributions of bryo-
zoan sands and the foraminiferan C. carpenteri
(equivalent to Facies 1 of this study) are restricted
to water depths of 60–200 m and 50–135 m, respec-
tively (Tsuji 1993; Iryu et al. 1995). However, in the
tropical–subtropical Great Barrier Reef region
(Scoffin & Tudhope 1985; Marshall & Davies 1988)
and Belize (James & Ginsburg 1979), abundant
Halimeda occur within the depth ranges observed
for Facies 1 and 2. The occurrence of Halimeda
could be due to differences in trophic resources
that affect the distributions of marine organisms in
different areas (Hallock 1987). Nutrient-rich envi-
ronments on the Great Barrier Reef and in the
Caribbean Sea, which occur because of upwelling
(Hallock et al. 1988; Marshall & Davies 1988),
could allow the luxuriant growth of Halimeda in
these areas, whereas potentially nutrient-poor
environments without significant upwelling (Iryu
et al. 1995; Alory et al. 2006) could produce facies
with characteristics that are similar to those found
around New Caledonia and the Ryukyu Islands.
Facies with pteropods and planktonic foraminifera
(Facies 3) are also broadly distributed at water
depths greater than ca. 200 m in the Pacific Ocean
and the Caribbean Sea (e.g. James & Ginsburg
1979; Tsuji 1993).

Secondary constraints on facies distributions
may be related to local geomorphic features.
Although foraminiferal–algal encrusted grains
(rhodoliths and macroids) are generally restricted
to depths of less than ca. 200 m (Matsuda & Iryu
2011), Facies 3b, which includes the grains, occurs
at depths of 290–400 m; however, sampling sites
for Facies 3 (DR46, DR47, and DR48) are situated
on a steep slope (Fig. 4a), suggesting that the
grains have been transported from the reef slope.
Ahermatypic coral facies (Facies 4) are found only
on cone-like mounds (DR02, DR26, and DR32;
Fig. 5a).

Two additional factors should be considered
further. First, the transport of reef and reef-slope
materials to deeper regions (e.g. by typhoons) may
play an important role in facies formation. As we
discussed above, foraminiferal–algal encrusted
grains and benthic foraminifera in Facies 3 could
have been originally distributed in shallower
waters (<200 m) and transported, a process that
could have been enhanced by local geomorphology
(Fig. 4a). Cotillon et al. (1989) showed that rela-
tively shallow water (<250 m) symbiotic benthic
foraminifera (Amphistegina, Cycloclypeus,
Baculogypsina, Heterostegina, Peneroplis, and
Planorbulina) occur in deeper waters northeast of
the Loyalty Islands. In addition, small but ubiqui-
tous occurrences of reef-derived materials (e.g.
hermatypic corals) have been observed in cores
collected from the slope and basin to the northeast
of Grande Terre (Cotillon et al. 1989; Liu & Cotillon
1989).

Second, current speed may affect the distribu-
tions of foraminiferal–algal encrusted grains
(rhodoliths and macroids), as they require a
certain speed of rotation in the formation process.
High-energy environments influenced by strong
tidal and/or boundary currents (65 cm/s; Tsuji
et al. 1993, and 130 cm/s; Harris et al. 1996) prob-
ably contribute to the formation of rhodoliths
and macroids, on account of the large rotational
forces present in these environments. Flume
experiments support this, showing current speed
of 80 cm/s is needed for rotation of 5-cm diameter
rhodoliths (Harris et al. 1996), which would be
similar to those included in Facies 1. In contrast,
rhodoliths and macroids may also develop in low-
energy environments (currents of 5–25 cm/s;
Prager & Ginsburg 1989). Our regional oceanic
model (ROMS) calculations show a maximum
current speed of 14 cm/s for the sites at which
rhodoliths and macroids are present. These
results support the low-energy formation hypoth-
esis of Prager and Ginsburg (1989). Harris et al.
(1996) showed significant wave heights on the
Fraser Island continental shelf of eastern Austra-
lia, where rhodoliths occur, were 1.53–1.66 m, and
suggested that the waves would generate near-
bed oscillatory flows that could initiate movement
of the rhodoliths. Because wave climates are
similar between eastern Australia and New Cale-
donia (Cox & Swail 2001), the same initiation
mechanism could work for New Caledonia. In
addition, though not frequent (Guillemot et al.
2010), typhoons and bioturbation could also con-
tribute to rotation. Further investigations into the
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formation mechanisms of rhodoliths and macroids
are required.

MODERN CARBONATE SEDIMENTARY FACIES AROUND
NEW CALEDONIA

Because geomorphic features around New Caledo-
nia have been identified by optical remote sensing
and acoustic multibeam observations (Andréfouët
et al. 2009), general outer-shelf and shelf-slope
facies patterns in the region, as defined by water
depth and geomorphology, can be integrated with
the distributions of lagoons (Chevillon 1996), plat-
form reefs (Yamano et al. 2014), reef slopes
(Flamand et al. 2008), and basin facies (Cotillon
et al. 1989) (Fig. 6). Major constituents of lagoon
sediments are benthic mollusks (bivalves and gas-
tropods), benthic foraminifera, and Halimeda,
whereas hermatypic corals are minor constituents
except in areas close to patch and barrier reefs
(Chevillon 1996) and to platform reefs in lagoons,
where hermatypic corals and shallow-water fora-
minifera (Baculogypsina sphaerulata; Yamano
et al. 2014) are abundant. Barrier-reef facies are
likely similar to those of the platform reefs. Reef
slopes may be dominated by hermatypic corals (cf.
Iryu et al. 1995). Facies on the outer shelf and slope
are composed of foraminiferal–algal encrusted
grains, bryozoa, and benthic foraminifera (mainly
C. carpenteri), to a water depth of ca. 200 m. The
proportions of coralline algae and foraminifera in
the grains vary according to water depth; at depths
greater than ca. 90 m, encrusting foraminifera pro-
gressively replace coralline algae in the encrusted
grains (Flamand et al. 2008). Though material in
the outer-shelf and slope facies (e.g. encrusted
grains and benthic foraminifera) can be trans-
ported to greater depths, pteropods and planktonic
foraminifera dominate shelf-slope and basin sedi-
ments to a depth of ca. 2000 m (Cotillon et al. 1989);
at depths greater than 2000 m, pteropods are
absent, probably because their aragonitic skeletons
dissolve at these depths (Berger 1978; Betzer et al.
1984; Byrne et al. 1984). In the basin, at depths
greater than 2000 m, planktonic foraminifera are
dominant. Ahermatypic corals may occur on cone-
like mounds on the shelf slope.

As discussed in the previous section,
foraminiferal–algal encrusted grain facies and
planktonic facies are distributed worldwide. In
addition, minor proportions of hermatypic corals
in the lagoon are also found in lagoons with similar
depths in other areas of the world (e.g. Yamano
et al. 2002; Gischler 2006). Therefore, facies distri-

butions around New Caledonia may provide
representative examples of carbonate facies distri-
butions in tropical–subtropical regions throughout
the world.
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