Island Arc

Modern carbonate sedimentary facies on the outer shelf and slope around New Caledonia

HIROYA YAMANO,^{1,2,*} GUY CABIOCH,² BERNARD PELLETIER,² CHRISTOPHE CHEVILLON,^{2,3} HIROYUKI TACHIKAWA,⁴ JÉRÔME LEFÊVRE,^{2,5} AND PATRICK MARCHESIELLO^{2,5}

¹National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan (email: hyamano@nies.go.jp), ²Institut de Recherche pour le Développement, BP A5, 98848 Nouméa cedex, New Caledonia, ³Direction de l'Environnement, 19 av. Foch, 98846 Nouméa cedex, New Caledonia, ⁴Chiba Prefectural Museum, Katsuura, Chiba 299-5242, Japan, and ⁵LEGOS, Université de Toulouse, 14 Av. Edouard Belin, Toulouse, France

Abstract We investigated surface carbonate sediments at 33 sites on the outer shelf and slope around New Caledonia (163°–167°E, 20°–23°S), at water depths of 75–720 m. Four carbonate sedimentary facies are recognized on the basis of sediment size fractions and predominant constituents: Facies 1, encrusted grains (rhodoliths and macroids), bryozoa, and benthic foraminifera; Facies 2, bryozoa, benthic foraminifera, and mud; Facies 3, plankton and mud; and Facies 4, ahermatypic corals. Facies distributions were constrained primarily by water depth, and secondarily by local seafloor geomorphology that, in some areas, allows transport of sediments to deeper water. Because the dominant facies (Facies 1 and 3), as well as lagoon and basin facies, are distributed worldwide at similar latitudes, facies around New Caledonia can be considered as representative of carbonate sedimentary facies distributed in tropical–subtropical regions.

Key words: carbonate sediment, coral reef, rimmed shelf, New Caledonia.

INTRODUCTION

Outer shelves and slopes occur in transitional zones from continental/island shelves to deep basins; water depths in these zones are in the range of tens to several thousands of meters (e.g. Uchupi 1968). In tropical to subtropical areas, outer shelves and slopes are generally composed of carbonate sedimentary facies (e.g. Ginsburg & James 1974). On rimmed shelves with coral reefs (e.g. in Belize and on the Great Barrier Reef of Australia), the transition from shallow water to deep-sea basin, which is marked by a distinct break in slope, occurs over relatively short distances of up to a few kilometers, and slope angles in this zone vary from approximately one degree to nearly vertical (Read 1985).

Special Issue: Carbonate sedimentation in Pacific coral reefs

Received 12 November 2013; accepted for publication 20 August 2014.

© 2014 Wiley Publishing Asia Pty Ltd

Despite the importance of outer-shelf and slope sedimentary facies, studies of these transitional zones are scarce compared with the number of studies conducted on shelf sediments (e.g. Ginsburg & James 1974; Marshall & Davies 1978; Scoffin & Tudhope 1985; Chevillon 1996) and basin sediments (e.g. Swift 1977; Berger 1978; Liu & Cotillon 1989; Schmucker & Schiebel 2002).

Isolated carbonate platforms provide ideal conditions for examining carbonate sedimentary facies, as these environments are not influenced by large inputs of terrestrial sediments, as occurs on shelves and basins near continents, which are subject to discharges from large rivers (Ginsburg & James 1974; Swift 1977; Balsam & Beeson 2003). This study examines modern carbonate sedimentary facies on the outer shelf and slope around New Caledonia, which is located in a tropicalsubtropical region. In combination with studies of shelf-lagoon sediments (e.g. Debenay 1987; Chevillon 1996), platform-reef sediments (Yamano *et al.* 2014), barrier-reef slope sediments (Flamand

^{*}Correspondence: National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan (e-mail: hyamano@ nies.go.jp).

et al. 2008), and shelf-slope and basin sediments (Cotillon *et al.* 1989; Lambert & Roux 1991), our results contribute to a more comprehensive understanding of modern carbonate sedimentary facies, both in New Caledonia and worldwide.

SETTING

New Caledonia consists of several tropical to subtropical islands located in the southwest Pacific

Carbonates around New Caledonia 5

islands, ca. 1500 km east of Australia (Fig. 1). The main island, Grande Terre, is 400 km long and 50 km wide, and is surrounded by exceptional reef tracts. Southeast trade winds predominate during more than 70% of the year around New Caledonia (Ouillon *et al.* 2004). The southern part of New Caledonia is influenced by the eastward-flowing Subtropical Countercurrent, which branches from the East Australian Current, whereas the northern part is influenced by the westward-flowing South Equatorial Current

Fig. 1 (a) Locations of New Caledonia and other sites referred to in this study. (b) Map of New Caledonia showing dredging points in this study (numbers by the stars and contours indicate sample numbers and water depths, respectively), and sampling sites in previous studies (Cotillon *et al.* 1989; Chevillon 1996; Flamand *et al.* 2008). The inset shows a topographic profile along the transect of Cotillon *et al.* (1989), located along the island shelf/slope and basin, from New Caledonia to Loyalty Islands.

(Couvelard et al. 2008). Except for in southwestern New Caledonia, mean sea-surface temperatures (SSTs) are 27-28°C in summer and 23-25°C in winter. Sea-surface salinities (SSSs) are relatively stable throughout the year at 35.1-35.7 (Vega et al. 2006). During the summer, upwelling caused by strong trade wind events causes anomalous SSTs and SSSs in southwestern New Caledonia (Hénin & Cresswell 2005; Alory et al. 2006; Marchesiello et al. 2010). The vertical structure of the water mass in the region shows three distinct water layers: a shallow water layer at 0-150 m, with temperatures of 22-28°C and salinities of 35.1-35.7; a southern subtropical water layer at 150-500 m, with temperatures of 12-22°C and salinities of 34.8-35.7; and an intermediate deep Antarctic water layer at 600-2800 m, with temperatures of 2–10°C and salinities of 34.4-34.7 (Guevel 1983; Roux et al. 1991). Annual mean significant wave height around New Caledonia was estimated to be 1.5-2.0 m (Cox & Swail 2001). The intensity of cyclones threatening directly New Caledonia was not high, showing 12 cyclones in the past 20 years (Guillemot *et al.* 2010).

New Caledonia is surrounded by ca. 31 300 km² of shelf lagoon extending 5-40 km offshore (Andrérouët et al. 2009) to water depths of ca. 40 m; where substrates are available, fringing reefs are preferentially developed along eastern coasts (Coudray 1976). Barrier reefs are located at the shelf margin (Coudray 1976; Cabioch et al. 1999; Andréfouët et al. 2009); thus, the shelf is classified as a rimmed shelf (sensu Read 1985; Tucker & Wright 1990). The eastern portion of the slope is ca. 15 km wide and has a slope angle of ca. 7.5° (Liu & Cotillon 1989). Recently, several bathymetric surveys along the shelf edge to slope (Pelletier et al. 2002) have revealed details of submarine geomorphic features, including the existence of cliffs and mounds on the slope, some of which may be hard-substrate features, based on evidence from seafloor observations (Vanney 1991). The basin is an extremely flat abyssal plain with an average depth of 2350 m (Liu & Cotillon 1989) and subsurface sediments composed of terrigenous clay derived from past intensive erosion of Grande Terre (Bitoun & Récy 1982; Cotillon et al. 1989; Liu & Cotillon 1989).

Surficial carbonate sediments have been examined at sites in the lagoon all around New Caledonia (Debenay 1987; Chevillon & Clavier 1988; Chevillon & Richer de Forges 1988; Chevillon 1996) and in the eastern portion of the shelf slope in Loyalty Basin (Fig. 1b) (Cotillon et al. 1989; Liu & Cotillon 1989; Lambert & Roux 1991). Chevillon (1996) showed that the major constituents of lagoon sediments are benthic mollusks (bivalves and gastropods), benthic foraminifera, and Terrestrial Halimeda. mud fractions are restricted to bays, and the mud fraction decreases progressively offshore to the barrier reef, where the mud content of the sediments is less than 5% (Chevillon & Richer de Forges 1988). This indicates poor transport of terrestrial materials to the shelf slope.

Outside the barrier reefs, dredging has been conducted at water depths of 40-200 m at several places on the barrier-reef slope. Analyses of hand specimens obtained from the dredged samples reveal that the dominant encrusting organisms are composed mainly of coralline algae and/or foraminifera (Flamand et al. 2008). Based on surfacesediment data along a transect across the shelf slope and basin (Fig. 1b), Cotillon et al. (1989) suggested that the facies at water depths of 300-1000 m are dominated by planktonic foraminifera, along with pteropods and benthic organisms. In the Loyalty Basin, where water depths are >2000 m, surface sediments collected at ten sites were dominated by planktonic foraminifera, and the sand fraction constituted >85% of the sediment. The scarcity of pteropods in the basin sediments has been attributed to the dissolution of aragonite at depths of >2000 m (Berger 1978; Betzer et al. 1984; Byrne et al. 1984).

METHODS

Dredging was conducted at 54 sites around New Caledonia between 30 May and 7 June 2005, during a research cruise by the Institut de Recherche pour le Développement (IRD) R/V ALIS (see Fig. 1b and Table 1; Pelletier et al. 2006). The positions of the sampling sites and the water depth at each site were determined by GPS (Leica MX 400, Heerbrugg, Switzerland) and multibeam sounder (Simrad EM 1002, Horten, Norway), respectively; all instruments were equipped with ALIS. Because the sampling sites are not in areas subject to upwelling (Hénin & Cresswell 2005; Alory et al. 2006; Marchesiello et al. 2010), the SSTs and SSSs were expected to be similar among sites. Currents at the sites were calculated using a regional oceanic model (ROMS; Marchesiello et al. 2010), originally developed by Shchepetkin and McWilliams (2005).

Table 1 Characteristics of samples and locations of sampling sites investigated in this study. After Pelletier *et al.* (2006). Initial and end locations indicate those where the dredger was put and recovered, respectively

Sediment	and from the	4-				Þ		÷	• •		- 44		**			**				÷				00 d		÷	• ••		-	÷	**	**	**			44	⊳ 44	- 44	-	**		44	•• •	⊷ →	• •	• ••	• ••			
Remarks		Cemented carbonate fragment	Enermany pic corai Enerusted grain	No recovery	Sand + mud	Sand + mud	Rock fragment	No recovery	Encrusted grain + sand	Encrusted grain	Encrused gram + sand	Dredmer lost no recorder	Energet Just, no recovery Energisted orgin + cand	Cemented carbonate fragment	Dredger lost, no recovery	Sand + miid	Encrusted grain	Cemented carbonate fragment	Cemented carbonate fragment	Encrusted grain	Cemented carbonate fragment	Cemented carbonate fragment	Rock fragment	Ahermatypic coral, sand + mud	Sand + mud	No recovery	Sand + mud	Sana + mua Comented serbonete freement snorre	Cemented car builder 11 agment, sponge A hermatynie eoral	Ahermatvnic coral, snonge	Sand + mud	Encrusted grain + sand	Encrusted grain + sand	Cemented carbonate fragment	Cemented carbonate fragment	Cemented carbonate tragment	Sand + mud	Sand + mud	Mollinge herrogoa	Rock fragment. sand+mud	Rock fragment	Encrusted grain + sand	Encrusted grain + sand	Encrusted grain $+$ sand	Sand + mud	Sand + mud	Buomsted amoin ± cond	Cemented carbonate fragment	No recovery	
	Depth (m)	165 940	100	100	590	650	560	460	250	8 F	006	000	100	280	250	205	205	100	100	140	360	440	545	450	465	480	345 955	000 275	300	305	250	75	80	290	260	420	2010	350	950	550	300	295	295	290	400	410 650	110	280	360	
End location	Longitude (°E)	164.874 164.860	164.604	164.602	164.417	164.195	164.205	164.213	164.223	103.778 169.771	110.001	109.100 162 755	163.763 163.763	163 753	163.753	163.761	163.750	163.764	163.758	163.747	163.741	163.739	163.733	164.773	164.790	164.797	164.990	104.390	165 157	165.162	165.308	165.758	165.762	165.767	165.767	165.779	105.792	165 770	165 771	166.018	166.022	166.170	166.183	166.219	166.596	10.001	167.068	167.093	167.143	
	Latitude (°S)	21.391	21.041	21.038	21.033	20.778	20.773	20.767	20.761	20.104	041.02	00.122	20.131	20120	20.115	20.118	20.105	20.099	20.093	20.093	20.094	20.088	20.089	20.419	20.424	20.427	20.546 90 F41	140.02	20.571	20.571	20.788	21.137	21.131	21.119	21.121	211.12	711.12	198	91 131	21.276	21.295	21.404	21.405	21.426	21.701	217.15	401.104 99.170	22.168	22.167	
	Depth (m)	240 9 60	250 250	100	660	650	560	460	250 260	900	002	000 640	0±0 500	450	430	245	260	250	200	250	480	520	600	520	510	520	450	450	400	400	300	170	150	370	295	450	2010	350	950	089	410	380	380	400	500	030 790	110	280	360	
Initial location	Longitude (°E)	164.875 164.875	164.605	164.604	164.418	164.195	164.205	164.213	164.223	163.778 169.7760	109.000	109.190	163 769	163.751	163.751	163.763	163.753	163.764	163.756	163.748	163.740	163.736	163.731	164.773	164.789	164.795	164.989	104.330	100.141	165.161	165.307	165.756	165.764	165.766	165.766	165.779	167.001	100.004 165 778	165 770	166.020	166.023	166.170	166.183	166.220	166.598	100.001 عنوم مح	100.041 167 067	167.092	167.143	
	Latitude (°S)	21.393 01 006	21.043	21.041	21.028	20.778	20.773	20.767	20.761	20.157 20.140	041.02	90.123	20.131	20.120	20.115	20.114	20.103	20.102	20.094	20.092	20.096	20.088	20.090	20.418	20.423	20.427	20.547	20.540 20.566	20.579	20.569	20.787	21.137	21.125	21.117	21.120	211112	00110	91 195	01 190	21.275	21.293	21.403	21.404	21.426	21.698	217.12	001.12 09.169	22.163	22.163	
E E		DR01	DR03	DR04	DR05	DR06	DR07	DR08	DR09	DR10	DD19	DR12	DR14	DR15	DR16	DR17	DR19	DR20	DR21	DR22	DR23	DR24	DR25	DR26	DR27	DR28	DR29	DR30 DR21	DR32	DR33	DR34	DR35	DR36	DR37	DR38	DR39	DR40	DR49	DR43	DR44	DR45	DR46	DR47	DR48	DK49	DR50 DEc1	DB59	DR53	DR54	

© 2014 Wiley Publishing Asia Pty Ltd

 $^{\circ}$ Only hand specimens were examined, as no mud- or sand-sized fractions were present in the sample. * Both hand specimens and mud- and or sand-sized fractions were examined.

Fig. 2 Sediment constituents in the -0.5ϕ (diameter, 1.4 mm) (left) and b + 1.0 ϕ (diameter, 0.5 mm) (right) size fractions. The sampling sites, shown in Fig. 1 and Table 1, are arranged according to increasing water depth. Sedimentary facies recognized on the basis of constituents are indicated on the right. See the text for facies descriptions.

Sediment samples were obtained at 33 of the 54 sampling sites, at water depths of 75–720 m on the outer shelf and slope around New Caledonia (Fig. 1 and Table 1). Fragments of hard blocks (bedrock and/or fossil reefs) were not analyzed, as the purpose of the study was to examine modern sedimentary facies. Sediments were analyzed for texture and composition. Whereas Flamand et al. (2008) examined hand specimens on the barrier reef slope, we analyzed both sand-sized fractions and hand specimens for the 25 samples that contained sand-sized sediments (Table 1). Sieving and constituent analyses were conducted after Chevillon (1996). After homogenization, the samples were dried and weighed, and the mud fraction was removed by washing through a 3.98¢ sieve. The remaining sediment fraction was dried, reweighed, and dry sieved using the following mesh sizes: 3.98¢, 3.00¢, 2.00¢, 1.00¢, 0.00¢, -0.50¢, -1.00ϕ , -1.32ϕ , -2.00ϕ , -2.32ϕ , -3.00ϕ , -3.32ϕ , -4.00¢, and -4.32¢. At least 200 grains in each size class coarser than 2.00¢ were identified and point counted under a binocular microscope. If the

© 2014 Wiley Publishing Asia Pty Ltd

number of grains was less than 200, we identified and counted all grains. Encrusted grains (rhodoliths and macroids) were slabbed and thin sectioned, and internal structures were examined under a petrographic microscope.

RESULTS AND DISCUSSION

CHARACTERISTICS OF SEDIMENTARY FACIES

We recognize four sedimentary facies around New Caledonia on the basis of sediment size fractions and constituents (Fig. 2).

Facies 1: encrusted grain, bryozoa, and benthic foraminifera facies

This facies, which is characterized by encrusted grains (Fig. 3b), is composed mainly of cobbles and cobble- and pebble-sized sediments and sands, and is generally distributed at depths of 75–200 m (Figs. 2,3a). The average gravel-, sand- and mud-

Fig. 3 (a) Map showing the locations of sites DR36, DR40, DR41, and DR42, and the bathymetry of the surrounding outer shelf and slope (from Pelletier *et al.* 2002). (b) Photograph of sample DR36. (c) Photograph of sample DR42. (d) Photograph of sample DR41. The photographs are from Pelletier *et al.* (2006).

sized fractions are 53%, 45% and 2%, respectively. The gravel-sized sediments are dominated by encrusted grains (rhodoliths and macroids) with diameters of 4-10 cm. The encrusted grains, which comprise more than 80% of the sediment mass, are composed of crusts of coralline algae and foraminifera (e.g. Gypsina plana), but foraminifera can constitute more than 80% of the mass and form macroids. Most rhodoliths and macroids are irregular-shaped, and whitish envelope overlies the inner part, which has been bioeroded. Some of the bioeroded parts are filled with a mixture of bioclast and micrite. The sand-sized sediments are composed mainly of bryozoa and benthic foraminifera. Planktonic foraminifera and mollusks are minor constituents. Larger benthic foraminifera dominant. and are characterized are bv Cycloclypeus carpenteri. Encrusted grains of coralline algae and foraminifera are restricted to water depths of 200 m or less, which may be explained by the extinction of light at depths greater than approximately 200 m, as observed in the Loyalty Islands area (Roux et al. 1991). The

calculated maximum and average current speeds at the sites where Facies 1 is found are 14 cm/s and ca. 3 cm/s, respectively.

Facies 2: bryozoa, benthic foraminifera, and mud facies

This facies, which is characterized by bryozoa and benthic foraminifera, is composed of sand and mud, and is distributed at depths of 200–250 m. The average gravel-, sand- and mud-sized fractions are 1%, 69% and 30%, respectively. Bryozoa and benthic foraminifera are the main constituents of sand-sized sediments, similar to those of Facies 1; specimens of *C. carpenteri* are, however, less abundant in Facies 2 than in Facies 1, and *Amphistegina radiata* is the dominant large benthic foraminifera. The calculated maximum and average current speeds are 10 cm/s and 3 cm/s, respectively.

Facies 3: plankton and mud facies

This facies, which is characterized by planktonic mollusks (pteropods) and foraminifera, is distrib-

Fig. 4 (a) Map showing the locations of sites DR46, DR47, and DR48 and the bathymetry of the surrounding outer shelf and slope (from Pelletier *et al.* 2002). (b) Photograph of sample DR48. The photograph is from Pelletier *et al.* (2006).

uted at depths of 250-720 m (Figs. 3a,c,d,4a). The average gravel-, sand- and mud-sized fractions are 7%, 27% and 66%, respectively. A substantial amount of mud (33-94%) is present in unconsolidated samples. Pteropods and planktonic foraminifera comprise 10-65% and 5-25% of the sand-sized fraction, respectively. Bryozoa and benthic foraminifera combined comprise less than 10% of the sand-sized fraction. Facies 3 can be subdivided into three subfacies (Fig. 2). Facies 3a (DR34) contains aggregates of mud, and occurs at depths of 250-300 m. Facies 3b (DR46, DR47, and DR48) includes 10 cm-diameter encrusted grains and benthic organisms (bryozoa and foraminifera), in addition to planktonic organisms, and is observed at depths of 290-400 m (Fig. 4). Though cements potentially originated from mud dominate the grains, some of the grains are similar to those found in Facies 1 (Fig. 4b). Facies 3c is composed mainly of pteropods and planktonic foraminifera, with a small proportion of benthic foraminifera, including C. carpenteri and A. radiata, also suggesting transport from Facies 1. In all subfacies, the calculated maximum and average current speeds are 15 cm/s and 1-4 cm/s, respectively.

Facies 4: ahermatypic coral facies

This facies, which was found in three samples (DR02, DR26, and DR32), is characterized by dominant ahermatypic corals and sponges (Fig. 5b). However, the dominant species of coral varies from site to site. Caryophylliidae [*Paracyathus*? sp. (juv.), *Dendrophyllia*? sp., and unidentified species] are found on the western coast, (DR02), whereas Caryophylliidae (*Eguchipsammia* sp.) (DR26), *Cladocora* cf. *pacifica* and *Dactylotrochus cervicornis* (DR32) are found on the eastern coast. Facies 4 occurs on cone-like mounds distributed at depths of 240–520 m (Fig. 5a). Maximum and average current speeds at the sites where Facies 4 is found, calculated at nearby grid nodes (the parameters could not be calculated for the specific sampling sites), are ca. 10 cm/s and ca. 1 cm/s, respectively.

FACTORS CONTROLLING FACIES DISTRIBUTIONS

The modern facies on the outer shelf and shelf slope around New Caledonia appear to be constrained primarily by water depth (Figs. 2,6). The distribution of Facies 1, which consists of for a miniferal-algal encrusted grains with bryozoa and the foraminifera C. carpenteri, is generally limited to water depths of less than 200 m. At water depths greater than 200 m, encrusted grains are less abundant and the mud fraction increases, although the coarse sediments are still dominated by benthos (bryozoa and foraminifera). At water depths greater than 250 m, where the mud fraction dominates the sediment mass, the fraction of sediments of planktonic origin increases significantly, and reaches up to 90% of the coarse sediment mass.

Fig. 5 (a) Map showing the location of site DR32 and the bathymetry of the surrounding outer shelf and slope (from Pelletier *et al.* 2002). (b) Photograph of sample DR32. The photograph is from Pelletier *et al.* (2006).

Fig. 6 Schematic figure of the geomorphology and facies distributions around New Caledonia, based on previous studies (Cotillon *et al.* 1989; Chevillon 1996; Flamand *et al.* 2008; Yamano *et al.* 2014) and this study. This figure was derived mainly for the eastern coast of New Caledonia, and may be most applicable to oligotrophic water conditions.

Facies distributions similar to those observed on the outer shelf and shelf slope around New Caledonia, especially those of Facies 1 and 3, may be found in other tropical-subtropical regions in oligophotic environments (Fig. 6). Facies with foraminiferal-algal encrusted grains (rhodoliths and macroids), which corresponds to Facies 1, are distributed widely in the Indian and Pacific oceans (e.g. the Ryukyu and Mascarene islands) and the Atlantic Ocean and Caribbean Sea (e.g. the Gulf of Mexico, Florida, San Salvador, eastern Caribbean Sea, Bermuda, and the Canary Islands; reviewed by Matsuda & Iryu 2011), at water depths of 30–150 m (Matsuda & Irvu 2011). Specifically, in the Ryukyu Islands, Japan, distributions of bryozoan sands and the foraminiferan C. carpenteri (equivalent to Facies 1 of this study) are restricted to water depths of 60–200 m and 50–135 m. respectively (Tsuji 1993; Iryu et al. 1995). However, in the tropical-subtropical Great Barrier Reef region (Scoffin & Tudhope 1985; Marshall & Davies 1988) and Belize (James & Ginsburg 1979), abundant Halimeda occur within the depth ranges observed for Facies 1 and 2. The occurrence of Halimeda could be due to differences in trophic resources that affect the distributions of marine organisms in different areas (Hallock 1987). Nutrient-rich environments on the Great Barrier Reef and in the Caribbean Sea, which occur because of upwelling (Hallock et al. 1988; Marshall & Davies 1988), could allow the luxuriant growth of Halimeda in these areas, whereas potentially nutrient-poor environments without significant upwelling (Irvu et al. 1995; Alory et al. 2006) could produce facies with characteristics that are similar to those found around New Caledonia and the Ryukyu Islands. Facies with pteropods and planktonic foraminifera (Facies 3) are also broadly distributed at water depths greater than ca. 200 m in the Pacific Ocean and the Caribbean Sea (e.g. James & Ginsburg 1979; Tsuji 1993).

Secondary constraints on facies distributions may be related to local geomorphic features. Although foraminiferal-algal encrusted grains (rhodoliths and macroids) are generally restricted to depths of less than ca. 200 m (Matsuda & Iryu 2011), Facies 3b, which includes the grains, occurs at depths of 290–400 m; however, sampling sites for Facies 3 (DR46, DR47, and DR48) are situated on a steep slope (Fig. 4a), suggesting that the grains have been transported from the reef slope. Ahermatypic coral facies (Facies 4) are found only on cone-like mounds (DR02, DR26, and DR32; Fig. 5a).

Two additional factors should be considered further. First, the transport of reef and reef-slope materials to deeper regions (e.g. by typhoons) may play an important role in facies formation. As we discussed above, foraminiferal-algal encrusted grains and benthic foraminifera in Facies 3 could have been originally distributed in shallower waters (<200 m) and transported, a process that could have been enhanced by local geomorphology (Fig. 4a). Cotillon et al. (1989) showed that relatively shallow water (<250 m) symbiotic benthic foraminifera (Amphistegina, Cycloclypeus, Baculogypsina, Heterostegina, Peneroplis, and *Planorbulina*) occur in deeper waters northeast of the Loyalty Islands. In addition, small but ubiquitous occurrences of reef-derived materials (e.g. hermatypic corals) have been observed in cores collected from the slope and basin to the northeast of Grande Terre (Cotillon et al. 1989; Liu & Cotillon 1989).

Second, current speed may affect the distributions of foraminiferal-algal encrusted grains (rhodoliths and macroids), as they require a certain speed of rotation in the formation process. High-energy environments influenced by strong tidal and/or boundary currents (65 cm/s; Tsuji et al. 1993, and 130 cm/s; Harris et al. 1996) probably contribute to the formation of rhodoliths and macroids, on account of the large rotational forces present in these environments. Flume experiments support this, showing current speed of 80 cm/s is needed for rotation of 5-cm diameter rhodoliths (Harris et al. 1996), which would be similar to those included in Facies 1. In contrast, rhodoliths and macroids may also develop in lowenergy environments (currents of 5-25 cm/s; Prager & Ginsburg 1989). Our regional oceanic model (ROMS) calculations show a maximum current speed of 14 cm/s for the sites at which rhodoliths and macroids are present. These results support the low-energy formation hypothesis of Prager and Ginsburg (1989). Harris et al. (1996) showed significant wave heights on the Fraser Island continental shelf of eastern Australia, where rhodoliths occur, were 1.53–1.66 m, and suggested that the waves would generate nearbed oscillatory flows that could initiate movement of the rhodoliths. Because wave climates are similar between eastern Australia and New Caledonia (Cox & Swail 2001), the same initiation mechanism could work for New Caledonia. In addition, though not frequent (Guillemot et al. 2010), typhoons and bioturbation could also contribute to rotation. Further investigations into the formation mechanisms of rhodoliths and macroids are required.

MODERN CARBONATE SEDIMENTARY FACIES AROUND NEW CALEDONIA

Because geomorphic features around New Caledonia have been identified by optical remote sensing and acoustic multibeam observations (Andréfouët et al. 2009), general outer-shelf and shelf-slope facies patterns in the region, as defined by water depth and geomorphology, can be integrated with the distributions of lagoons (Chevillon 1996), platform reefs (Yamano et al. 2014), reef slopes (Flamand et al. 2008), and basin facies (Cotillon et al. 1989) (Fig. 6). Major constituents of lagoon sediments are benthic mollusks (bivalves and gastropods), benthic foraminifera, and Halimeda, whereas hermatypic corals are minor constituents except in areas close to patch and barrier reefs (Chevillon 1996) and to platform reefs in lagoons, where hermatypic corals and shallow-water foraminifera (Baculogypsina sphaerulata; Yamano et al. 2014) are abundant. Barrier-reef facies are likely similar to those of the platform reefs. Reef slopes may be dominated by hermatypic corals (cf. Iryu et al. 1995). Facies on the outer shelf and slope are composed of foraminiferal-algal encrusted grains, bryozoa, and benthic foraminifera (mainly C. carpenteri), to a water depth of ca. 200 m. The proportions of coralline algae and foraminifera in the grains vary according to water depth; at depths greater than ca. 90 m, encrusting foraminifera progressively replace coralline algae in the encrusted grains (Flamand et al. 2008). Though material in the outer-shelf and slope facies (e.g. encrusted grains and benthic foraminifera) can be transported to greater depths, pteropods and planktonic foraminifera dominate shelf-slope and basin sediments to a depth of ca. 2000 m (Cotillon et al. 1989); at depths greater than 2000 m, pteropods are absent, probably because their aragonitic skeletons dissolve at these depths (Berger 1978; Betzer et al. 1984; Byrne et al. 1984). In the basin, at depths greater than 2000 m, planktonic foraminifera are dominant. Ahermatypic corals may occur on conelike mounds on the shelf slope.

As discussed in the previous section, foraminiferal-algal encrusted grain facies and planktonic facies are distributed worldwide. In addition, minor proportions of hermatypic corals in the lagoon are also found in lagoons with similar depths in other areas of the world (e.g. Yamano *et al.* 2002; Gischler 2006). Therefore, facies distri-

butions around New Caledonia may provide representative examples of carbonate facies distributions in tropical–subtropical regions throughout the world.

ACKNOWLEDGEMENTS

This paper is dedicated to Guy Cabioch, who was an excellent carbonate sedimentologist. We thank the crew of the IRD R/V ALIS and Dominique Chardon for assisting with sampling during the research cruise. Angelo Di Matteo sieved the samples. Jean-Pierre Debenav and Kazuhiko Fujita contributed to the identification of larger benthic foraminifera. Comments from Editor Yasufumi Iryu and an anonymous reviewer helped improve the paper. HY thanks the IRD staff, especially Serge Andréfouët, Dominique Ponton, Jocelyne Ferraris, and Fabrice Colin, for providing excellent working conditions during his stay in New Caledonia. This research was supported mainly by IRD and in part by a Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowship for Research Abroad (to HY).

REFERENCES

- ALORY G., VEGA A., GANACHAUD A. & DESPINOY M. 2006. Influence of upwelling, subsurface stratification, and heat fluxes on coastal sea surface temperature off southern New Caledonia. *Journal of Geophysical Research* 111, C07023. doi:10.1029/ 2005JC003401.
- AMANTE C. & EAKINS B. W. 2009. ETOPO1 1 Arcminute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. NOAA, Washington DC.
- ANDRÉFOUËT S., CABIOCH G., FLAMAND B. & PELLETIER B. 2009. A reappraisal of the diversity of geomorphological and genetic processes of New Caledonian coral reefs: A synthesis from optical remote sensing, coring and acoustic multibeam observations. *Coral Reefs* 28, 691–707.
- ANDRÉFOUËT S., MULLER-KARGER F. E., ROBINSON J. A. et al. 2006. Global assessment of modern coral reef extent and diversity for regional science and management applications: A view from space. Proceedings of the 10th International Coral Reef Symposium, 1732–45, Okinawa, Japan.
- BALSAM W. L. & BEESON J. P. 2003. Sea-floor sediment distribution in the Gulf of Mexico. Deep Sea Research Part I: Oceanographic Research Papers 50, 1421–44.
- BERGER W. H. 1978. Deep-sea carbonate: pteropod distribution and the aragonite compensation depth. *Deep Sea Research* 25, 447–52.

14 H. Yamano et al.

- BETZER P. R., BYRNE R. H., ACKER J. G., LEWIS C. S. & JOLLEY R. R. 1984. The oceanic carbonate system: a reassessment of biogenic controls. *Science* 226, 1074–7.
- BITOUN G. & RÉCY J. 1982. Origine et évolution du bassin des Loyauté et de ses bordures après la mise en place de la série ophiolitique de Nouvelle-Calédonie. Contribution à l'étude géodynamique du Sud-Ouest Pacifique. *Travaux et Documents de l'ORSTOM* 147, 505–39.
- BYRNE R. H., ACKER J. G., BETZER P. R., FEELY R. A. & CATES M. H. 1984. Water column dissolution of aragonite in the Pacific Ocean. *Nature* **312**, 321–6.
- CABIOCH G., CORRÉGE T., TURPIN L., CASTELLARO C. & RÉCY J. 1999. Development patterns of fringing and barrier reefs in New Caledonia (southwest Pacific). *Oceanologica Acta* 22, 567–78.
- CHEVILLON C. 1996. Skeletal composition of modern lagoon sediments in New Caledonia: coral a minor constituent. *Coral Reefs* 15, 199–207.
- CHEVILLON C. & CLAVIER J. 1988. Sedimentological structure of the northern lagoon of New Caledonia. *Proceedings of the 6th International Coral Reef* Symposium 3, 425–30, Townsville, Australia.
- CHEVILLON C. & RICHER DE FORGES B. 1988. Sediment and bionomic mapping on soft bottoms in the south-western lagoon of New Caledonia. *Proceedings of the 6th International Coral Reef Symposium* 2, 589–94, Townsville, Australia.
- COTILLON P., RIGOLOT P., COUSTILLAS F. et al. 1989. Pentes et bassins au large de la Nouvelle-Calédonie (Sud-Ouest Pacifique); morphologie, environnements biosédimentaires, sédimentation. Oceanologica Acta 12, 131–40.
- COUDRAY J. 1976. Recherches Sur Le Néogène Et Le Quaternaire Marins De La Nouvelle-Calédonie. CNRS, Montpellier.
- COUVELARD X., MARCHESIELLO P., GOURDEAU L. & LEFÈVRE J. 2008. Barotropic zonal jets induced by islands in the southwest Pacific. *Journal of Physical Oceanography* **38**, 2185–204.
- COX A. T. & ŚWAIL V. R. 2001. A global wave hindcast over the period 1958-1997: Validation and climate assessment. *Journal of Geophysical Research* 106, 2313-29.
- DEBENAY J.-P. 1987. Sedimentology in the Southwestern Lagoon of New Caledonia, SW Pacific. *Journal of Coastal Research* 3, 77–91.
- FLAMAND B., CABIOCH G., PAYRI C. & PELLETIER B. 2008. Nature and biological composition of the New Caledonian outer barrier reef slopes. *Marine Geology* 250, 157–79.
- GINSBURG R. N. & JAMES N. P. 1974. Holocene carbonate sediments of continental shelves. In BURKE C. A. and DRAKE C. L. (eds.) The Geology of Continental Margins, pp. 137–57, Springer-Verlag, Berlin.
- GISCHLER E. 2006. Sedimentation on Rasdhoo and Ari Atolls, Maldives, Indian Ocean. *Facies* **52**, 341–60.

- GUEVEL D. 1983. Etude hydrologique du canal des Iles Loyauté. Annales Hydrographiques 11, 33–9.
- GUILLEMOT N., CHABANET P. & LE PAPE O. 2010. Cyclone effects on coral reef habitats in New Caledonia (South Pacific). Coral Reefs 29, 445–53.
- HALLOCK P. 1987. Fluctuations in the trophic resource continuum: A factor in global diversity cycles? *Paleoceanography* 2, 457–71.
- HALLOCK P, HINE A. C., VARGO G. A., ELROD J. A. & JAAP W. C. 1988. Platforms of the Nicaragan Rise: Examples of the sensitivity of carbonate sedimentation to excess trophic resources. *Geology* 16, 1104–7.
- HARRIS P. T., TSUJI Y., MARSHALL J. F., DAVIES P. J., HONDA N. & MATSUDA H. 1996. Sand and rhodolithgravel entrainment on the mid- to outer-shelf under a western boundary current: Fraser Island continental shelf, eastern Australia. *Marine Geology* 129, 313– 30.
- HÉNIN C. & CRESSWELL G. R. 2005. Upwelling along the western barrier reef of New Caledonia. *Marine* and Freshwater Research 56, 1005–10.
- IRYU Y., NAKAMORI T., MATSUDA S. & ABE O. 1995. Distribution of marine benthic organisms and its geological significance in the modern reef complex of the Ryukyu Islands. *Sedimentary Geology* 99, 243– 58.
- JAMES N. P. & GINSBURG R. N. 1979. The Seaward Margin of Belize Barrier and Atoll Reefs. Blackwell Scientific Publications, Oxford.
- LAMBERT B. & ROUX M. 1991. L'Environmenta Carbonate Bathyal En Nouvelle-Caledonie (Programme ENVIMARGES). Institut Géologique Albert-de-Lapparent, Paris.
- LIU J.-D. & COTILLON P. 1989. Present and recent sedimentation in the Loyalty Basin and the Thio-Lifou profile (New Caledonia, southwest Pacific). *Marine Geology* 87, 207–26.
- MARCHESIELLO P, LEFÈVRE J., VEGA A., COUVELARD X. & MENKES C. 2010. Coastal upwelling, circulation and heat balance around New Caledonia's barrier reef. *Marine Pollution Bulletin* **61**, 432–48.
- MARSHALL J. F. & DAVIES P. J. 1978. Skeletal carbonate variation on the continental shelf of eastern Australia. BMR Journal of Australian Geology and Geophysics 3, 85–92.
- MARSHALL J. F. & DAVIES P. J. 1988. Halimeda bioherms of the northern Great Barrier Reef. Coral Reefs 6, 139–48.
- MATSUDA S. & IRYU Y. 2011. Rhodoliths from deep forereef to shelf areas around Okinawa-jima, Ryukyu Islands, Japan. *Marine Geology* 282, 215–30.
- OUILLON S., DOUILLET P. & ANDRÉFOUËT S. 2004. Coupling satellite data with in situ measurements and numerical modeling to study fine suspendedsediment transport: a study for the lagoon of New Caledonia. *Coral Reefs* 23, 109–22.
- Pelletier B., Cabioch G., Chardon D. & Yamano H. 2006. Lithologie des pentes externes du récif

- PELLETIER B., PERRIER J. & FLAMAND B. 2002. Cartographie au sondeur multifaisceaux des pentes externes du récif barrière de la Province Nord de Nouvelle-Calédonie. Campagne Province Nord 1, côte Est, de la passe de Thio à la passe de Balade 24 juillet au 1 août 2002. *Rapport Final (IRD Nouméa)* 16, 1–9.
- PRAGER E. J. & GINSBURG R. N. 1989. Carbonate nodule growth on Florida's outer shelf and its implications for fossil interpretations. *Palaios* 4, 310–7.
- READ J. F. 1985. Carbonate platform facies models. AAPG Bulletin 69, 1–21.
- ROUX M., BOUCHET P., BOURSEAU J.-P. et al. 1991. L'environnement bathyal au large de la Nouvelle-Calédonie: résultats préliminaires de la campagne CALSUB et conséquences paléoécologiques. Bulletin de la Société Géologique de France 162, 675– 85.
- SCHMUCKER B. & SCHIEBEL R. 2002. Planktonic foraminifera and hydrography of the eastern and northern Caribbean Sea. *Marine Micropaleontology* 46, 387–403.
- SCOFFIN T. P. & TUDHOPE A. W. 1985. Sedimentary environments of the Central Region of the Great Barrier Reef of Australia. *Coral Reefs* 4, 81–93.
- SHCHEPETKIN A. F. & MCWILLIAMS J. C. 2005. The regional ocean modeling system (ROMS): A split-explicit, free-surface, topography-following-

coordinate oceanic model. Ocean Modelling 9, 347–404.

- SWIFT S. A. 1977. Holocene rates of sediment accumulation in the Panama Basin, eastern Equatorial Pacific: pelagic sedimentation and lateral transport. *Journal of Geology* 85, 301–19.
- TSUJI Y. 1993. Tide influenced high energy environments and rhodolith-associated carbonate deposition on the outer shelf and slope off the Miyako Islands, southern Ryukyu Island Arc, Japan. *Marine Geology* 113, 255–71.
- TUCKER M. E. & WRIGHT V. P. 1990. Carbonate Sedimentology. Blackwell Science, Cambridge.
- UCHUPI E. 1968. Shelf and slope of the United States Physiography. U.S. Geological Survey Professional Paper 529-C, C1–C30.
- VANNEY J. R. 1991. Le modelé dans pentes sousmarines observées par submersiblelors de la campagne. In Lambert B. and Roux M. (eds.) L'Environmenta Carbonate Bathyal En Nouvelle-Caledonie (Programme ENVIMARGES), pp. 38–56, Institut Géologique Albert-de-Lapparent, Paris.
- VEGA A., MARCHESIELLO P. & LEFÈVRE J. 2006. Atlas Hydrodynamique De La Zone Economique Exclusive De La Nouvelle-Caledonie. IRD, Nouméa.
- YAMANO H., CABIOCH G., CHEVILLON C. & JOIN J.-L. 2014. Late Holocene sea-level change and reef-island evolution in New Caledonia. *Geomorphology* 222, 39–45.
- YAMANO H., KAYANNE H., MATSUDA F. & TSUJI Y. 2002. Lagoonal facies, ages, and sedimentation in three atolls in the Pacific. *Marine Geology* 185, 233–47.