

Mohamed Fethi Ben Hamouda¹ Christian Leduc² Jamila Tarhouni³ Kamel Zouari⁴

¹ Unité d'hydrologie et de géochimie isotopique CNSTN Pôle technologique de Sidi-Thabet 2020 Tunisie <f.benhamouda@cnstn.rnrt.tn> ² Institut de recherche pour le développement UMR G-EAU **MSE** BP 64501 34394 Montpellier France <christian.leduc@ird.fr> ³ Institut national agronomique de Tunisie 43, avenue Charles-Nicolle 1082 Tunis Tunisie <tarhouni.jamila@inat.agrinet.tn> ⁴ Laboratoire de radioanalyse et d'environnement **ENIS** BP W 3038 Sfax Tunisie <kamel.zouari@enis.rnu.tn>

Article de recherche

Sécheresse 2009; 20(1): 78-86

Origine de la minéralisation dans l'aquifère plio-quaternaire de la côte orientale du cap Bon (Tunisie)

Résumé

L'aquifère plio-quaternaire de la côte orientale du cap Bon (Tunisie) connaît une dégradation de la qualité de ses eaux. Pour identifier les processus responsables, différentes approches géochimiques (utilisant les ions Na⁺, Cl⁻, Ca²⁺, Mg²⁺, Br⁻) et isotopiques (¹⁸O, ²H) sont mises en perspective avec le fonctionnement hydrodynamique. En zone littorale, l'intrusion marine résultant de la surexploitation de la nappe est identifiée, mais elle n'est responsable que d'une partie de la détérioration qualitative : le développement de l'irrigation, avec le lessivage des sols et l'entraînement des produits agricoles, affecte l'ensemble de la nappe et participe aussi à l'augmentation de la minéralisation.

Mots clés : aquifère côtier, géochimie, hydrodynamique, isotopes, Tunisie.

Abstract

Origin of the mineralization in the Plio-quaternary eastern coastal aquifer of cap Bon (Tunisia)

In the Plio-quaternary aquifer of the eastern coast of cap Bon (Tunisia), the groundwater quality is deteriorating. Different methods using geochemistry (ions Na⁺, Cl⁻, Ca²⁺, Mg²⁺, Br⁻) and isotopes (¹⁸O, ²H) are compared with the hydrodynamic information to identify the main processes involved in the increase in mineralization. Along the coast, seawater intrusion resulting from groundwater overexploitation has been identified but is not the only cause of the qualitative degradation: the irrigation development that induces soil leaching and fertilizer transfer to groundwater over the entire extent of the aquifer is another major reason for the increase in mineralization.

Key words: coastal aquifer, geochemistry, hydrodynamics, isotopes, Tunisia.

n zones côtières semi-arides, les ressources en eau douce sont souvent menacées par l'intrusion marine dans les systèmes aquifères, mais les fortes minéralisations rencontrées peuvent avoir aussi d'autres origines, naturelles ou anthropiques (par exemple dissolution de halite et gypse, concentration par évaporation, lessivage de la zone non saturée, pollutions [1-4]). La distinction des différents mécanismes de la salinisation permet de reconstituer l'origine des eaux souterraines, leurs cheminements et d'imaginer leurs futures

évolutions. Parmi les critères géochimiques qui peuvent aider à identifier l'intrusion de l'eau de mer par opposition à d'autres sources de salinité en zones côtières, on utilise notamment différents rapports ioniques, comme Na⁺/Cl⁻, Br⁻/Cl⁻, Ca²⁺/Mg²⁺, Ca²⁺/(HCO₃⁻ + SO₄²⁻), et aussi les isotopes ¹⁸O et ²H, ³⁴S et ¹¹B [2, 5, 6]. L'aquifère plio-quaternaire de la côte orientale du cap Bon, dans le nord-est de la Tunisie, est typique d'une situation rencontrée tout autour du bassin méditerranéen. L'équilibre naturel de la nappe phréatique, largement dépendant de la forte variabilité climatique, est totalement perturbé depuis plusieurs décennies par une augmentation spectaculaire de l'irrigation qui affecte l'intensité, la distribution et la qualité des flux entrants et sortants [7]. Les travaux antérieurs, par exemple l'étude de 2001 [8] qui couvre la partie sud de la nappe, ont expliqué la minéralisation des eaux par des processus de mélange avec l'eau de mer sans aucune autre source de salinité. Ce phénomène existe mais n'est probablement pas l'unique responsable. Il faut donc mieux déterminer l'origine de cette minéralisation, et pour cela nous allons exploiter l'information géochimique et en confronter les résultats avec les données hydrodynamiques.

Principaux traits de la zone étudiée

La péninsule du cap Bon est une entité géographique bien individualisée du nord-est de la Tunisie, entourée sur trois côtés par la mer (figure 1). La plaine de la côte orientale s'étend de Béni Khiar jusqu'à Kélibia sur une longueur de 45 km et de la mer jusqu'au piedmont de la chaîne montagneuse du Djebel Abderrahmane (637 m) sur une largeur maximale d'environ 17 km. Les plaines, basses et plates, sont bordées par un cordon littoral sableux qui isole un chapelet de sebkhas (lacs salés) de la mer. Le climat est méditerranéen subhumide à semi-aride. La température moyenne annuelle varie de 17 à 19 °C. La précipitation annuelle est en moyenne de 450 à 500 mm mais présente une très forte variabilité : à Korba, les extrêmes observés sur la période 1960-2004 sont de 159 mm en 1968 et de 821 mm en 2004. L'évapotranspiration potentielle, calculée selon la méthode d'Espinar [9], dépasse 1 100 mm/an. La plaine comprend trois nappes : une nappe phréatique contenue dans les formations sableuses du Plio-quaternaire, qui s'étend sur 475 km² et dont l'épaisseur varie de 30 à 150 m ; deux nappes plus profondes dans les sables et grès du Miocène et de l'Oligo-(figure 2). Les aquifères pliocène quaternaire, miocène et oligocène ont les mêmes limites à l'est et au sud, alors qu'au Nord et à l'Ouest, les aquifères miocène et oligocène débordent le Plio-quaternaire sur plus de 300 km². L'Oligocène est capté en piedmont de l'anticlinal du Djebel Abderrahmane, à l'ouest de la région étudiée. Le Miocène est capté au Sud. Ces deux aquifères s'enfoncent rapidement jusqu'à parfois plus de 1 500 m de profondeur dans la plaine par des séries de rejeux de failles actives durant tout le Néogène.

L'aquifère miocène est séparé du Plioquaternaire par une couche argileuse épaisse d'environ 20 m suffisamment imperméable et continue pour permettre la mise en charge des aquifères profonds. La nappe phréatique s'écoule de l'intérieur du cap Bon vers la côte (O-E ou NO-SE) (figure 1). Le gradient hydraulique moyen était de 4,5 ‰ en 1980, lorsque la nappe était en fonctionnement naturel. Dans l'aquifère miocène, l'écoulement se fait également depuis la bordure anticlinale à l'ouest vers la mer. La piézométrie des deux nappes profondes est partout plus élevée que celle de la nappe phréatique, la différence de charge moyenne étant de l'ordre de 10 m.

Sur la côte orientale, l'exploitation des ressources en eau a presque doublé au cours des dernières décennies. Des périodes de sécheresse prolongées et les pompages excessifs ont profondément perturbé l'équilibre de la nappe phréatique et favorisé l'intrusion marine. La nappe plioquaternaire est la plus sollicitée pour les besoins agricoles et domestiques. Le captage se fait à partir des puits, de profondeur variant entre 15 et 50 m, dont le nombre ne cesse d'augmenter. Les chiffres officiels annuels indiquent un prélèvement de 54 Mm³ pour une recharge moyenne interannuelle de l'aquifère phréatique estimée à 50 Mm³. Cela a provoqué l'apparition de dépressions piézométriques, dont la cote peut atteindre –12 m NGT dans les régions de Korba et de Tafelloune (figure 1), et l'abandon d'environ un tiers des 9 240 puits de surface de l'aquifère plio-quaternaire. La baisse piézométrique la plus forte est de 12 m entre 1972 et 2001 à Tafelloune. Au contraire, la nappe miocène ne montre pas de dépression piézométrique récente provoquée par des pompages.

Figure 1. Carte piézométrique et points échantillonnés en 2001.

Figure 2. Bloc diagramme de la structure géologique du cap Bon.

Données analytiques et interprétations préliminaires

Les données chimiques anciennes proviennent de travaux entrepris en 1962, 1974, 1987, 1988 et 1997, dans des conditions de réalisation souvent mal définies. Pour cette étude, des mesures de conductivité, pH et température ont été réalisées dans 48 puits de la nappe plio-quaternaire en 2001, 2002 et 2003 (figures 1,3). Des échantillons y ont également été pré-levés pour identification des éléments majeurs et des isotopes ²H et ¹⁸O; le tableau 1 fournit les principaux résultats de la campagne du printemps 2001 (fin de la période pluvieuse et début des forts pompages agricoles) ainsi que les teneurs en Br⁻ et Cl⁻ de 2003. Douze prélèvements complémentaires ont par ailleurs permis de caractériser les aquifères profonds. Les éléments majeurs et traces ont été dosés par les laboratoires de la Direction générale des ressources en eau (DGRE) à Tunis et du Centre national des sciences et technologies nucléaires (CNSTN). Les méthodes analytiques utilisées pour les analyses chimiques sont la titrimétrie, la chromatographie ionique, la spectrométrie d'absorption atomique et la photométrie à flamme. Les isotopes ²H et ¹⁸O ont été analysés par l'Institut d'hydrologie du Centre national de recherche de Munich (GSF) par spectrométrie de masse IRMS.

La salinité de l'aquifère plio-quaternaire est très hétérogène. Les valeurs extrêmes sont de 0,8 et 36,3 g/L (médiane de 2,3 g/L). Il n'y a pas de lien entre minéralisation et protondeur du captage : les eaux les plus profondes ne sont pas les plus salées. Le faciès chimique dominant est chlorurésodique. Les échantillons du Miocène ont des minéralisations variant entre 0,6 et 1,4 g/L (médiane 0,8), avec un faciès chimique identique à celui du Plioquaternaire.

Én 1963, bien avant l'actuelle surexploitation, la salinité des eaux plioquaternaires se caractérisait par des valeurs variant entre 0,6 et 8,7 g/L (médiane de 1,9 g/L, calculée sur 101 points, la plupart entre 0,9 et 3 g/L). La partie amont était plus minéralisée que la zone littorale qui était presque toujours à moins de 2 g/L. La salinité actuelle n'a pas sensiblement évolué dans la zone amont, mais elle atteint maintenant des valeurs extrêmes de 20 à 30 g/L près de Korba et Tafelloune. À l'extrémité Sud, la salinité de la nappe plio-quaternaire est restée faible (0,65 g/L). Ces évolutions contrastées résultent probablement de la conjonction de phénomènes multiples.

L'augmentation de la salinité semble liée à la dégradation hydrodynamique comme le suggère la similitude entre cartes de piézométrie et de salinité, notamment pour la région de Tafelloune *(figure 3).* La dépression piézométrique s'est étendue vers l'arrière-pays et amplifiée : environ 20 km² en 1970, 30 km² en 1988 et 50 km² en 2001 *(figure 1),* tout comme la hausse de minéralisation. Une intrusion marine est donc une hypothèse très plausible pour la hausse de la minéralisation, mais pas nécessairement la seule.

L'augmentation de minéralisation confirme la faiblesse ou l'absence de drainance depuis le Miocène, plus en charge mais dont la minéralisation est, pour 90 % des mesures, inférieure à 1 g/L, y compris au niveau de la zone de dépression piézométrique. L'explication de l'augmentation de minéralisation de l'augmentation quaternaire est donc à rechercher dans ce seul aquifère et non dans le Miocène.

Le retour vers la nappe des eaux d'irrigation est également une hypothèse plausible. L'irrigation massive s'est fortement développée depuis les années 1980 et affecte toute l'étendue de la nappe. L'épaisseur de la zone non saturée varie de 1 à 31 m sur l'ensemble de la nappe (de 12 à 28 m dans la dépression piézométrique actuelle). En première approche, on peut considérer la teneur en nitrate comme marqueur de la pollution agricole : la médiane des analyses de 2001 (90 mg/L) suffit à montrer l'ampleur du phénomène.

Interprétations spécifiques

Rapport Na⁺/Cl⁻

Le chlorure est très fortement corrélé avec le sodium pour la majorité des échantillons. Même pour les points éloignés de la mer, le rapport molaire Na⁺/Cl⁻ ne diffère pas très sensiblement de celui de la Méditerranée (0,86) [2, 10] et reste donc insuffisant pour une réelle distinction de l'origine des eaux.

Figure 3. Résidu sec (g/L) de la nappe phréatique en 2001.

Rapport Ca²⁺/Mg²⁺

Les eaux souterraines sont caractérisées par une grande variabilité des teneurs en Ca^{2+} et en Mg^{2+} , mais la plupart des cas montrent une prédominance de Ca^{2+} par rapport à Mg^{2+} (*figure 4*). Les points 11 635, 11 634, 11 281 et 11 828 sont les seuls à avoir un rapport de Ca^{2+}/Mg^{2+} inférieur à 1 qui pourrait indiquer un mélange avec l'eau de mer (rapport marin de 0,2) [11]. Ils sont d'ailleurs situés dans la zone où la salinité est la plus élevée.

Rapport Br⁻/Cl⁻

Le rapport Br^{-}/Cl^{-} aide à identifier une éventuelle contribution d'eau marine [10, 12], puisqu'il est relativement constant (1,5 × 10⁻³) dans l'eau de mer actuelle, du fait d'un temps de résidence extrêmement long. Dans la nappe plio-quaternaire, le rapport Br⁻/Cl⁻ n'est pas très discriminant (figure 5) : plus des deux tiers des points se placent dans une gamme de 20 % autour du rapport marin. Cette proximité avec le rapport marin peut s'expliquer par un mélange des eaux continentales avec l'eau de mer, mais aussi par une influence des embruns sur l'eau de pluie infiltrée.

Isotopes stables

Le diagramme deutérium-oxygène 18 fait apparaître trois groupes (figure 6). Dans le premier (¹⁸O entre -5,5 et -4,3 ‰ V-SMOW), les points se situent entre la droite météorique mondiale (DMM) et la droite météorique locale de Tunis-Carthage d'équation $\delta^2 H = 8\delta^{18}O + 12,4$ [13]. L'hypothèse d'une importante contribution des pluies actuelles à la recharge est la plus probable. La localisation de ces points d'eau, souvent près des rivières, est compatible avec une recharge rapide et récente. Le second groupe est formé par des eaux enrichies en $^{18}\mathrm{O}$ et en $^{2}\mathrm{H}$ qui s'alignent sur la droite de mélange avec l'eau de mer, ce qui indique une probable contamination marine. Ces puits sont situés dans la zone de dépression piézométrique (P19, 11 281, 11 635, 8 684, P3, 5 729, 6 077, 5 610), sauf deux exceptions (3 202, 5 994). Pour les points les moins éloignés du premier groupe, la différenciation entre mélange avec de l'eau salée et reprise évaporatoire peut être incertaine. Le troisième groupe est formé surtout par les eaux des nappes profondes, miocène et oligocène, dont les teneurs en ¹⁸O varient entre -6,05 et -4,82 ‰, donc en dessous de -4,41 ‰, la moyenne pondérée des pluies de Tunis-Carthage [13]. Les eaux plio-quaternaires de ce groupe pourraient résulter d'un mélange d'eaux actuelles et plus anciennes [14].

Rapport ¹⁸O/Cl⁻

L'étude séparée des rapports ioniques et des isotopes stables ne permet pas d'identifier précisément l'origine des eaux. La combinaison de ces deux paramètres est plus explicite, notamment le graphique Cl⁻/¹⁸O *(figure 7)*, qui replace les prélèvements entre différents pôles. Le premier pôle, autour de 10 mg/L pour Cl⁻ et $-4.4 \ \%$ V-SMOW pour δ^{18} O, est défini à partir des prélèvements d'eau de pluie à la station de Tunis-Carthage, située à une quarantaine de kilomètres à l'ouest de la région d'étude, et pratiquement à la même altitude. Le deuxième pôle est représenté par les eaux de la Méditerranée, avec une teneur en $\delta^{18}O$ correspondant au V-SMOW (0 ‰) et une teneur en Cld'environ 19 500 mg/L. Le troisième pôle correspond aux eaux des aquifères miocène et oligocène avec des minéralisations plus faibles et des teneurs en ¹⁸O plus appauvries que le Plio-quaternaire.

Une dizaine de points plio-quaternaires se placent entre les pôles pluie et mer. Ils correspondent à des puits de surface de la région de Korba et Tafelloune tout près de la Méditerranée, avec une minéralisation totale qui avoisine 5 g/L et qui atteint par endroits 30 g/L. Le mélange avec l'eau de mer semble une explication plus probable qu'un éventuel marquage par l'évaporation, les deux processus pouvant coexister. Les autres points plioquaternaires ont des teneurs en Cl⁻ variant de 300 à 2 000 mg/L et en δ^{18} O de -5,5 à -4,0 ‰ V-SMOW. Leur minéralisation parfois forte ne peut pas se comprendre à partir du seul dipôle pluie-mer.

Numéro BIRH	NP (m)	Lat, LAMBERT	Long, LAMBÉRT	Cond (mS/cm)	RS (mg/L)	Ca	Mg	Να	К	SO 4	C	HCO ₃	NO ₃	¹⁸ 0 δ‰	2 Η δ‰	Cl 2003	Br 2003
P1	33,0	606 050	398 100	3,4	2 1 4 4	272,5	53,5	379,3	27,4	269,0	709,1	219,6	66,3	-4,84	-28,0	923	2,36
P3	1,2	602 200	391 950	3,2	2 035	168,4	38,9	418,4	1,8	268,9	581,4	610,1	30,4	-1,95	-11,8	511,2	1,62
P19	3,5	589 550	373 500	5,5	3 520	300,6	77,8	705,8	11,7	182,5	1 446,5	122,0	30,4	-3,55	-22,6	2 612,8	9,3
P26	8,3	584 150	369 000	13,1	8 371	537,1	179,9	1 572,5	132,9	96,1	3 828,0	610,1	3,1	-1,56	-9,5	3 507,4	10,76
97	3,7	585 600	366 350	11,4	7 296	460,9	179,9	1 986,3	25,0	1 690,6	2 765,3	280,6	191,1	-4,46	-27,1	1775	6,52
892	-7,7	585 400	372 750	5,4	3 469	380,8	121,6	611,5	13,3	278,6	1 538,7	122,0	226,2	-4,39	-26,9	1 008,2	4,2
996	13,6	583 400	364 850	4,1	2 650	228,5	58,3	558,7	3,9	216,1	1 049,4	207,4	105,3	-4,90	-28,6	1 079,2	4,27
1129	27,3	580 600	368 250	3,2	2 067	148,3	41,3	478,2	11,7	144,1	794,1	244,0	22,6	-5,05	-29,1	852	3,42
3093	40,9	591 600	383 575	2,0	1 265	200,4	29,2	151,7	19,2	172,9	304,9	231,8	145,1	-4,70	-27,5	284	1,18
3113	5,6	594 025	381 175	1,8	1 153	144,3	2,4	165,5	46,9	115,3	297,8	219,6	46,8	-5,31	-30,8	213	0,69
3190	52,9	581 900	380 800	3,8	2 451	240,0	46,0	494,3	1,0	360,2	907,6	231,8	7,8	-4,71	-28,4	962,05	
3202	47,0	585 850	386 950	3,0	1 920	192,4	85,1	409,2	4,7	768,0	389,0	219,0	3,0	-1,66	-11,8	255,6	0,91
4814	101,5	576 400	367 350	5,3	3 417	260,5	70,5	806,9	7,0	499,5	1 127,4	268,4	105,3	-4,48	-25,6	866,2	2,84
5610	-1,6	581 600	352 500	2,0	1 293	148,3	48,6	190,8	43,0	312,2	326,2	213,5	37,1	-3,78	-22,3	347,9	0,65
5729	10,9	591 650	380 350	2,4	1 510	168,3	116,7	232,2	3,1	144,1	546,0	170,8	35,5	-2,03	-11,2		
5743	28,8	596 000	388 400	3,8	2 400	172,3	75,4	549,5	5,5	240,1	801,2	219,6	218,4	-4,42	-24,8	745,5	
5972	40,2	593 900	386 250	2,3	1 485	232,5	17,0	151,7	27,4	115,3	390,0	170,8	167,7	-4,55	-26,0	411,8	1,51
5994	25,8	597 300	391 550	2,9	1 862	208,4	31,6	338,0	5,1	244,9	567,2	134,2	105,3	-2,55	-13,8	610,6	
6077	15,6	594 650	383 375	2,5	1 613	220,4	29,2	239,1	0,0	172,9	439,6	183,0	132,6	-3,00	-17,6	454,4	
6686	38,1	585 650	380 600	2,7	1 702	212,4	29,2	278,2	2,7	168,1	496,3	244,0	140,4	-4,77	-27,1	497	
8088	50,4	579 850	356 000	3,1	1 958	240,5	31,6	338,0	5,9	230,5	638,2	183,0	187,2	-4,68	-27,6	596,4	
8315	4,8	584 800	360 850	7,4	4 762	320,6	158,0	1 128,8	50,8	345,8	1 879,0	256,2	159,9	-4,65	-27,3	1846	5,87
8346	0,4	582 950	356 150	3,6	2 323	216	98,4	414	15,6	288	816,5	207,4	241,8	-5,14	-30,3	1 178,6	
8377	72,4	579 200	360 650	3,1	2 010	212,4	38,9	273,6	23,5	240,1	460,9	256,2	341	-4,95	-28,4	553,8	
8400	4,7	584 150	359 200	3,1	1 971	176,4	43,8	393,1	19,6	134,5	687,8	231,8	128,7	-5,04	-28,5	1 079,2	4,01
8403	10,4	578 400	352 250	5,7	3 648	440,9	109,4	659,8	23,5	1 090,2	1 191,2	207,4	124,8	-4,28	-25,8	440,2	1,69
8420	-0,4	589 700	371 550	3,8	2 413	204,4	46,2	496,6	3,9	201,7	943,0	146,4	93,6	-4,50	-26,0	653,2	2,33
8647	2,0	582 600	370 700	2,7	1 696	228,5	43,8	200,0	13,7	1 690,6	638,2	231,8	89,7	-5,15	-29,9	752,6	11, 92
8684	4,0	587 800	367 700	5,1	3 232	144,3	68,1	811,5	43,0	206,5	1 361,4	256,2	63,6	-2,46	-13,4	2 428,2	11,16
8737	0,8	592 350	377 800	5,6	3 578	360,7	102,1	682,8	9,4	201,7	1 666,3	195,2	111,9	-4,42	-25,7	1 902,8	9,36
8774	1,6	582 250	355 400	4,7	2 995	288,6	141,0	466,7	8,2	139,3	1 205,4	341,6	110,8	-4,76	-28,2	1 164,4	3,59
8820	40,6	580 400	374 600	2,3	1 453	96,2	34,0	383,9	14,5	172,9	304,9	231,8	145,1	-5,05	-28,3	568	1,78
8894	-2,8	586 350	375 650	4,5	2 848	340,7	65,6	418,4	64,9	134,5	1 120,3	329,4	163,8	-4,60	-26,6		
10959	-2,0	591 000	376 850	1,8	1 162	40,1	31,6	273,6	14,1	5,8	581,4	61,0	2,0	-4,44	-26,6	596,4	
10995	-0,2	591 950	376 750	5,0	3 226	280,6	12,2	740,3	18,4	5,3	1 616,7	61,0	2,3	-4,02	-23,4		
10996	1,6	582 850	355 200	1,6	1 023	144,3	15,8	121,8	7,4	48,0	361,6	97,6	12,9	-5,33	-30,8	340,8	1
11186	3,7	590 150	374 300	5,9	3 802	188,4	51,1	823,0	52,4	240,1	1 382,7	170,8	82,3	-4,55	-26,4	13 035,6	43,21
11191	6,4	590 450	375 500	3,7	2 355	156,3	70,5	501,2	12,5	11,5	1 205,4	61,0	4,3	-4,35	-27,0	3 024,6	13,85
11635	0,4	592 500	376 250	38,8	27 160	681,4	923,8	7 402,8	211,1	1 729,0	13 862,1	378,2	13,7	-2,26	-15,6		
11637	0,8	593 000	376 550	14,9	10 430	200,4	289,3	2 699,0	139,2	696,4	4 608,9	1 037,1	2,3	-4,36	-25,4		
11650	4,3	591 100	373 800	3,3	2 331	200,4	24,3	494,3	10,9	149,8	822,5	292,8	43,3	-4,65	-26,3		
11829	6,8	586 450	370 450	3,8	2 432	268,5	80,2	434,5	10,9	105,7	1 063,6	305,0	53,0	-4,33	-24,7	994	3,53
11269	-8,7	588 200	377 350	2,7	1 702	184,4	60,8	262,1	11,7	3,4	595,6	317,2	107,7	-4,47	-27,1	745,5	
11281	1,0	591 650	375 500	36,9	36 315	420,8	437,2	8 196,4	190,4	1 916,4	13 009,2	408,8	14,9	-3,22	-20,1		
11828	4,3	586 900	375 650	6,4	4 090	250,5	263,8	666,7	18,8	278,6	1 765,6	353,8	156,0	-4,48	-27,8	1 803,4	6,83
11869	3,2	582 750	371 150	1,3	858	84,2	26,7	158,6	4,7	25,9	248,2	317,2	17,9	-4,80	-28,9	284	
13143	-1,05	589 000	372 000	30,8	21 050	800	720	5 083	77	1 919,2	1 3824	414,8	57,3				
13207	-0,66	589 800	373 600	14,9	9 960	700	480	2 355	43	905,2	5 614	262,3	188,1				

Tableau I. Teneurs isotopiques (δ^{18} O et δ^{2} H) et physico-chimie du Plio-quaternaire (échantillons de 2001 au complet et teneurs en Cl⁻ et Br⁻ de 2003).

Lat : latitude ; Long : longitude ; Cond : conductivité électrique ; RS : résidu sec, lons majeurs en mg/L.

Discussion et conclusion

Les mesures d'avant 1980 [15], typiques de l'état naturel, montrent que la nappe phréatique de la côte orientale du cap Bon était moins minéralisée à l'aval qu'à l'amont. Ce paradoxe implique que la recharge à l'amont sur les zones d'affleurement est complétée par une forte recharge à l'aval par des eaux peu minéralisées, probablement issues de l'infiltration rapide des eaux des oueds en crue, débouchant dans la plaine. Les observations récentes [14] confortent ce schéma. Dans un contexte d'augmentation de la minéralisation dans les zones envahies par le biseau salé, de fortes fluctuations

Figure 4. Teneurs en Ca^{2+} et en Mg^{2+} des eaux souterraines.

Figure 5. Teneurs en Br⁻ et en Cl⁻ des eaux souterraines.

faisant suite à des années pluvieuses montrent la puissance de la recharge actuelle [16], comme en 2003 (pluie annuelle de 510 mm) et 2004 (820 mm).

À une échelle plus fine, la très forte variabilité spatiale des piézométries et conductivités dans la partie la plus proche de la mer indique que l'on n'a pas une contamination généralisée de la nappe, mais une situation complexe où les interpolations entre les points mesurés restent délicates. La nappe plio-quaternaire subit donc des influences multiples, climatiques et anthropiques, qui perturbent le système selon des dynamiques temporelles asynchrones.

L'absence de corrélation entre les teneurs en Cl⁻ et en NO₃⁻, y compris pour leurs plus fortes valeurs, confirme qu'il n'y a pas une explication unique pour les fortes minéralisations. Les teneurs en nitrates particulièrement élevées sont issues d'une importante contamination par l'agriculture, facilitée par un développement important de l'irrigation (29 valeurs à plus de 60 mg/L parmi les 48 valeurs de 2001). L'absence de corrélation entre teneur en nitrate et épaisseur de la zone non saturée indique que toute la région est concernée par cette pollution. Les transferts verticaux ont été suffisamment intenses pour atteindre massivement la nappe, et les teneurs observées résultent du mélange d'un écoulement en zone saturée contaminé à l'amont et d'un écoulement en zone non saturée renforcé et contaminé en surface par l'irrigation.

Près de la côte, il est possible d'estimer un mélange avec l'eau de mer F *(tableau 2)* en se basant sur le calcul du bilan de masse des chlorures [17, 18] avec

$$F = \frac{Cl_{\acute{e}ch} - Cl_{douce}}{Cl_{mer} - Cl_{douce}}$$

et Cl_{mer} représentent la concentration en chlorure respectivement dans l'échantillon, l'eau douce et l'eau de mer. Les valeurs ainsi calculées varient de 0 à 70 %, traduisant l'hétérogénéité du processus de salinisation. L'étude du rapport Na⁺/Cl⁻ n'a pas permis de mettre en évidence une nette distinction des groupes d'eau sauf pour les points les plus minéralisés. Le rapport Ca²⁺/Mg²⁺ isole quelques points d'eau qui se distinguent déjà au niveau du rapport Na⁺/Cl⁻ en l'occurrence 11 635, 11 281, 11 637 et 11 828 avec un rapport molaire sensiblement inférieur à 1, issus très probablement d'un mélange avec l'eau de mer.

Le rapport Br⁻/Cl⁻ identifie aussi des points qui semblent contaminés par l'eau de mer. Ces points diffèrent parfois de ceux distingués par le rapport Ca²⁺/Mg²⁺. Ces deux approches sont complémentaires mais imparfaitement discriminantes.

Les isotopes stables, ¹⁸O et ²H, permettent également d'identifier quelques contaminations marines. Là encore, la convergence avec les autres méthodes n'est pas totale, mais les résultats sont bien plus précis. De plus, la proximité des teneurs de la pluie et de la nappe plio-quaternaire montre que la majorité des eaux souterraines n'ont pas subi de reprise évaporatoire importante ni de mélange avec l'eau de mer.

La piézométrie est évidemment indicatrice de la surexploitation, mais la géométrie et les caractéristiques hydrodynamiques de l'aquifère font que les zones les plus déprimées ne sont pas systématiquement les plus contaminées par l'eau de mer.

Le tableau 2 résume le résultat des différentes approches, avec en lignes tous les points d'eau et en colonnes toutes les méthodes géochimiques et les informations hydrodynamiques. Ce tableau indique si

Numéro BIRH	NP (m)	R,S (mg/L)	Eau de mer F (%)	Na⁺/Cl⁻ (meq/L)	Ca ²⁺ / Mg ²⁺ (meq/L)	Br ⁻ /Cl ⁻ (meq/L)	Hydro	Fraction eau de mer	lsotopes	Na+/Cl−	Ca ²⁺ / Mg ²⁺	Br ⁻ /Cl ⁻	Origine de la minéralisation
P1	33	2 144	2,13	0,83	3,06	1,14E-03	ADN	PO	ADN	PO	ADN	PN	Pas d'intrusion
P3	1,2	2 035	1,47	1,11	2,60	1,41E-03	PO	PN	PO	PN	PN	PO	Possible mélange avec eau de mer
P19	3,5	3 520	5,97	0,75	2,32	1,58E-03	PO	PO	ADO	ADO	PN	PO	Possible mélange avec eau de mer
P26	8,3	8 371	18,38	0,63	1,79	1,36E-03	PN	PO	PO	ADO	PN	ADO	Évaporation + dissolution
97	3,7	7 296	12,84	1,11	1,54	1,63E-03	PN	PO	PN	PN	PN	PN	Évaporation + dissolution
892	-7,7	3 469	6,45	0,61	1,88	1,85E-03	ADO	PO	PN	ADO	PN	PO	Possible mélange avec eau de mer
996	13,6	2 650	3,90	0,82	2,35	1,76E-03	PN	PO	PN	PO	PN	PN	Pas d'intrusion
1129	27,3	2 067	2,57	0,93	2,15	1,78E-03	ADN	ADN	ADN	ADN	ADN	PN	Pas d'intrusion
3093	40,9	1 265	0,03	0,77	4,12	1,85E-03	ADN	ADN	ADN	PO	ADN	PO	Eau douce-pas d'intrusion
3113	5,6	1 1 5 3	0,00	0,86	36,08	1,44E-03	PN	ADN	ADN	PO	ADN	PN	Eau douce-pas d'intrusion
3190	52,9	2 451	3,16	0,84	3,13		ADN	AI	ADN	ADN	ADN		dissolution par retour eau irrigation
3202	47	1 920	0,46	1,62	1,36	1,58E-03	ADN	ADN	ADO	ADN	ADN	PN	Évaporation
4814	102	3 417	4,31	1,10	2,22	1,46E-03	ADN	ADN	ADN	ADN	ADN	PN	Évaporation
5610	-1,6	1 293	0,14	0,90	1,83	8,30E-04	ADO	PN	ADO	PN	PN	PN	Très faible mélange avec eau de mer
5729	10,9	1 510	1,28	0,66	0,87		ADN	ADN	AD0	AD0	ADO		Très faible mélange avec eau de mer
5743	28,8	2 400	2,61	1,06	1,37		ADN	PN	ADN	ADN	ADN		Dissolution par retour eau irrigation
5972	40,2	1 485	0,47	0,60	8,21	1,63E-03	ADN	ADN	ADN	PO	ADN	ADN	Eau douce-pas d'intrusion
5994	25,8	1 862	1,39	0,92	3,96		ADN	ADN	PO	PN	PN		Évaporation
6077	15,6	1 613	0,73	0,84	4,53		PN	PN	PO	PO	ADN		Possible mélange avec eau de mer
6686	38,1	1 702	1,02	0,87	4,36		ADN	ADN	ADN	PO	ADN		Eau douce
8088	50,4	1 958	1,76	0,82	4,57		ADN	ADN	ADN	PO	ADN		Eau douce-pas d'intrusion
8315	4,8	4 762	8,22	0,93	1,22	1,41E-03	PO	PO	PN	PN	PN	PO	Possible mélange avec eau de mer
8346	0,4	2 323	0,84	0,92	3,28		PO	PN	ADN	PN	ADN		Pas d'intrusion
8377	72,4	2 010	0,84	0,92	3,28		ADN	PN	ADN	PN	PN		Pas d'intrusion
8400	4,7	1 971	2,02	0,88	2,42	1,65E-03	PN	ADN	ADN	ADN	ADN	ADN	Eau douce-pas d'intrusion
8403	10,4	3 648	4,64	0,85	2,42	1,71E-03	ADN	PO	PN	PO	PN	PO	Possible mélange avec eau de mer
8420	-0,4	2 413	3,35	0,81	2,65	1,58E-03	ADO	PO	PN	ADO	PN	PO	Intrusion marine
8647	2	1 696	1,76	0,48	3,13	7,04E-03	ADN	ADN	ADN	PO	ADN	ADN	Eau douce-pas d'intrusion
8684	4	3 232	5,53	0,92	1,27	2,04E-03	PO	PO	ADO	PN	PN	PN	Intrusion marine
8737	0,8	3 578	7,12	0,63	2,12	2,19E-03	PO	ADO	PO	PO	PN	PN	Possible mélange avec eau de mer
8774	1,6	2 995	4,72	0,60	1,23	1,37E-03	PO	PO	PN	PO	PN	ADO	Possible mélange avec eau de mer
8820	40,6	1 453	0,03	1,94	1,70	1,39E-03	ADN	ADN	ADN	ADN	ADN	PN	Eau douce-pas d'intrusion
8894	-2,8	2 848	4,27	0,58	3,12		ADO	PO	PN	PO	PN		Possible mélange avec eau de mer
10959	-2	1 162	1,47	0,73	0,76		ADO	PN	PN	PO	PO		Possible mélange avec eau de mer
10995	-0,2	3 226	6,86	0,71	13,80		PO	PO	PO	PO	ADN		Possible mélange avec eau de mer
10996	1,6	1 023	0,32	0,52	5,48	1,30E-03	PO	ADN	ADN	PO	ADN	PN	Eau douce-pas d'intrusion
11186	3,7	3 802	5,64	0,92	2,21	1,47E-03	PO	PO	PN	PN	ADN	PO	Possible mélange avec eau de mer
11191	6,4	2 355	4,72	0,64	1,33	2,03E-03	PN	PO	PO	PO	PN	PN	Possible mélange avec eau de mer
11635	0,4	27 160	70,64	0,82	0,44		ADO	ADO	AD0	AD0	ADO		Intrusion marine
11637	0,8	10 430	22,44	0,90	0,42		ADO	ADO	PO	PO	ADO		Intrusion marine
11650	4,3	2 331	2,72	0,93	4,95		PN	PN	PN	PO	PN		Dissolution par retour eau irrigation
11829	6,8	2 432	3,98	0,63	2,01	1,58E-03	PN	PN	PN	PO	PN	PO	Possible mélange avec eau de mer
11269	-8,7	1 702	1,54	0,68	1,82		ADO	PO	PN	PO	PN		Mélange intrusion marine
11281	1	36 315	66,19	0,97	0,58		PO	ADO	ADO	PO	ADO		Intrusion marine
11828	4,3	4 090	7,63	0,58	0,57	1,68E-03	PN	ADO	PN	ADO	ADO	PO	Possible mélange avec eau de mer
11869	3,2	858	0,00	0,99	1,89		ADN	ADN	ADN	ADN	ADN		Eau douce, pas de minéralisation
13143	-1,05	21 050	70,4	0,5675	0,6667		ADO	ADO		AD0	ADO		Intrusion marine
13207	-0,66	9 960	27,7	0,6475	0,875		ADO	ADO		AD0	ADO		Intrusion marine
	Aucun doute oui : ADO	Aucun doute non : ADN	Possible oui : PO	Possible non : PN	Aucune idée : Al		Nécessite confronta- tion avec d'autres méthodes	Méthode efficace pour les points près de la mer	Méthode adéquate	Méthode insuffi- sante	Nécessite confronta- tion avec d'autres méthodes	Nécessite confronta- tion avec d'autres méthodes	

Figure 6. Teneurs en ¹⁸O et en ²H dans les aquifères.

Figure 7. Teneurs en Cl^- en fonction des teneurs en ¹⁸O.

la méthode a donné dans ce point une information sur l'origine de la minéralisation et le degré de certitude de l'information (aucun doute oui : ADO, aucun doute non : ADN, possible oui : PO, possible non : PN, aucune idée : AI). Les critères sont les suivants : présence du puits dans une zone de dépression piézométrique pour l'hydrodynamique, fraction eau de mer F supérieure à 1 %, isotopes enrichis, rapports Na⁺/Cl⁻, Ca²⁺/Mg²⁺, Br⁻/Cl⁻ proches du rapport marin. La confrontation entre les différentes approches montre que toutes les méthodes ne sont pas également efficaces et qu'elles peuvent aboutir à des résultats contradictoires.

Même dans un cas apparemment simple comme la nappe phréatique de la côte orientale du cap Bon, l'étude hydrogéologique des nappes côtières méditerranéennes requiert une démarche prudente et critique. La confrontation de multiples approches hydrodynamiques et géochimiques est indispensable pour démêler les processus qui se superposent et aboutissent conjointement à la baisse de la piézométrie et à la hausse de la salinité. Cependant, la variabilité des résultats obtenus selon les méthodes souligne la fragilité des interprétations. L'imbrication de processus différents, les limitations liées aux données et aux interprétations rendent particulièrement délicate la quantification des évolutions des prochaines décennies.

Remerciements

Nous remercions Y. Travi et le laboratoire d'hydrogéologie de l'université d'Avignon (France) pour les analyses de Br⁻, C. Gaye et l'Agence internationale de l'énergie atomique pour les analyses isotopiques et le ministère tunisien de l'Agriculture et des Ressources hydrauliques (en particulier la DGRE pour les analyses chimiques et ses archives et N. Oueslati et le CRDA de Nabeul pour les missions de terrain).

Références

1. Hachicha M. Les sols salés et leur mise en valeur en Tunisie. *Sécheresse* 2007 ; 18 : 45-50.

2. Jones BF, Vengosh A, Rosenthal E, Yechieli Y. Geochemical investigations. In : Bear J, Cheng AHD, Sorek S, Quazar D, Herrera I, eds. *Seawater Intrusion in Coastal Aquifers*. Dordrecht (Holand) : Kluwer Academic Publishers, 1999.

3. Sebei A, Chaabani F, Souissi F, Abdeljaoued S. Hydrologie et qualité des eaux de la nappe de Grombalia (Tunisie nord orientale). *Sécheresse* 2004 ; 15 : 159-66.

4. Bouchaou L, Michelot JL, Vengosh A, *et al.* Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss-Massa aquifer, southwest of Morocco. *J Hydrol* 2008 ; 352 : 267-87.

5. Yurtsever Y. Role of environmental isotopes in studies related to salinization processes and salt water intrusion dynamics. Proceedings of the 13th Saltwater intrusion meeting, Cagliari (Italie), 5-10 June 1994. Cagliari : Il Torchio, 1994.

6. Trabelsi R, Zairi M, Ben Dhia H. Groundwater salinization of the Sfax superficial aquifer, Tunisia. *Hydrogeol J* 2007; 15: 1341-55.

7. Mamou A, Kassah A. Économie et valorisation de l'eau en Tunisie. *Sécheresse* 2000 ; 11 : 249-56.

8. Paniconi C, Khlaifi I, Lecca G, Giacomelli A, Tarhouni J. Modeling and Analysis of Seawater Intrusion in the Coastal Aquifer of Eastern Cap-Bon, Tunisia. *Transport Porous Media* 2001; 43: 3-28.

9. Espinar M. Détermination d'une formule pour l'estimation de l'ETP quotidienne en Tunisie. Note technique de l'Institut national météorologique de Tunisie. Tunis : Institut national météorologique de Tunisie, 1975. **10.** Fedrigoni L, Krimissa M, Zouari K, Maliki A, Zuppi GM. Origin of the salinisation and hydrogeochemical behaviour of a phreatic aquifer suftering severe natural and anthropic constraints: an example from the Djebeniana aquifer (Tunisia). *CR Acad Sci* 2001; 332: 665-71.

11. Vengosh A, Ben-Zvi A. Formation of a salt plume in the Coastal Plain aquifer of Israel: the Be'er Toviyya region. *J Hydrol* 1994; 160: 21-52.

12. Takrouni M. Traçage naturel des relations entre aquifère profond, nappes superficielles et intrusion marine dans le bassin de Sfax (Tunisie). Thèse de doctorat de l'université Paris-Sud, Orsay, 2003. **13**. Celle-Jeanton H, Zouari K, Travi Y, Daoud A. Caractérisation isotopique des pluies en Tunisie. Essai de typologie dans la région de Sfax. *CR Acad Sc Series II* 2001 ; 333 : 625-31.

14. Ben Hamouda MF. Approche hydrogéochimique et isotopique des systèmes aquifères côtiers du cap Bon : cas des nappes de la Côte Orientale et d'El Haouaria, Tunisie. Thèse de doctorat en sciences agronomiques, Institut national agronomique de Tunisie, 2008.

15. Ennabli M. Etude hydrogéologique des aquifères du Nord-Est de la Tunisie pour une gestion intégrée des ressources en eau. Thèse de doctorat ès sciences naturelles, université de Nice, 1980. **16**. Smida H, Zairi M, Trabelsi R, Ben Dhia H. Identification de zones de recharge induite d'aquifères à l'aide d'un Système d'information géographique : cas de la nappe de Chaffar (Sud-Est tunisien). *Sécheresse* 2006 ; 17 : 433-42.

17. Abou Zakhem B, Hafez R. Environmental isotope study of seawater intrusion in the coastal aquifer (Syria). *Environ Geol* 2007; 51: 1329-39.

18. De Montety V, Radakovitch O, Vallet-Coulomb C, Blavoux B, Hermitte D, Valles V. Origin of groundwater salinity and hydrogeochemical processes in a confined coastal aquifer: case of the Rhône delta (Southern France). *Appl Geochem* 2008 ; 23 : 2337-49.