

II. GEOMORPHOLOGY AND SEDIMENTATION

II.1. Morphology and bathymetry

DENIS WIRRMANN

At an altitude of 3809 metres above sea level, Lake Titicaca, the northern lake basin on the Altiplano (a high endorheic plateau in Peru and Bolivia) is the largest navigable water body in the world lying at over 3000 metres.

Following brief descriptions by Spanish chroniclers, the first scientific observations were undertaken by A. d'Orbigny during his voyage in South America (1826–1833). Until the turn of the century the map considered to be the most reliable was that made by Pentland, following two voyages on the lake (1827–28/1837–38). Further brief or multidisciplinary expeditions then took place, notably those of Agassiz and Garman (1876) and Créqui de Montfort and Sénéchal de la Grange, reported by Neveu-Lemaire in 1906. Each of these attempted to describe the precise geographical setting, with greater or lesser success. Following the last great multidisciplinary expedition, the Percy Sladen Trust Expedition (1936–39), more specialised studies started to be carried out.

Only the most recent data are taken into account in this synthesis chapter. The main reference work is that of Boulangé and Aquize Jaen (1981), the cartographic material used being the 5 maps at 1/100,000 published in 1978 by the Hydrological Services of Peru and Bolivia (Hidronav, 1978) which were drawn from 7000 soundings to the nearest 0.1 m, based on the average measurements over 41 years of observations.

The catchment area

This is shared unequally between the Republics of Peru and Bolivia, with its long axis running NNW-SSE, the coordinates of its extreme points being as follows (Fig. 1):

14°09'06"–17°08'29" latitude south

68°03'34"–71°01'42" longitude west

To the north, the catchment area is bounded by the Vilcanota Cordillera culminating at 5480 m, at a point where the eastern and western Cordilleras join and which marks the limit of the Altiplano.

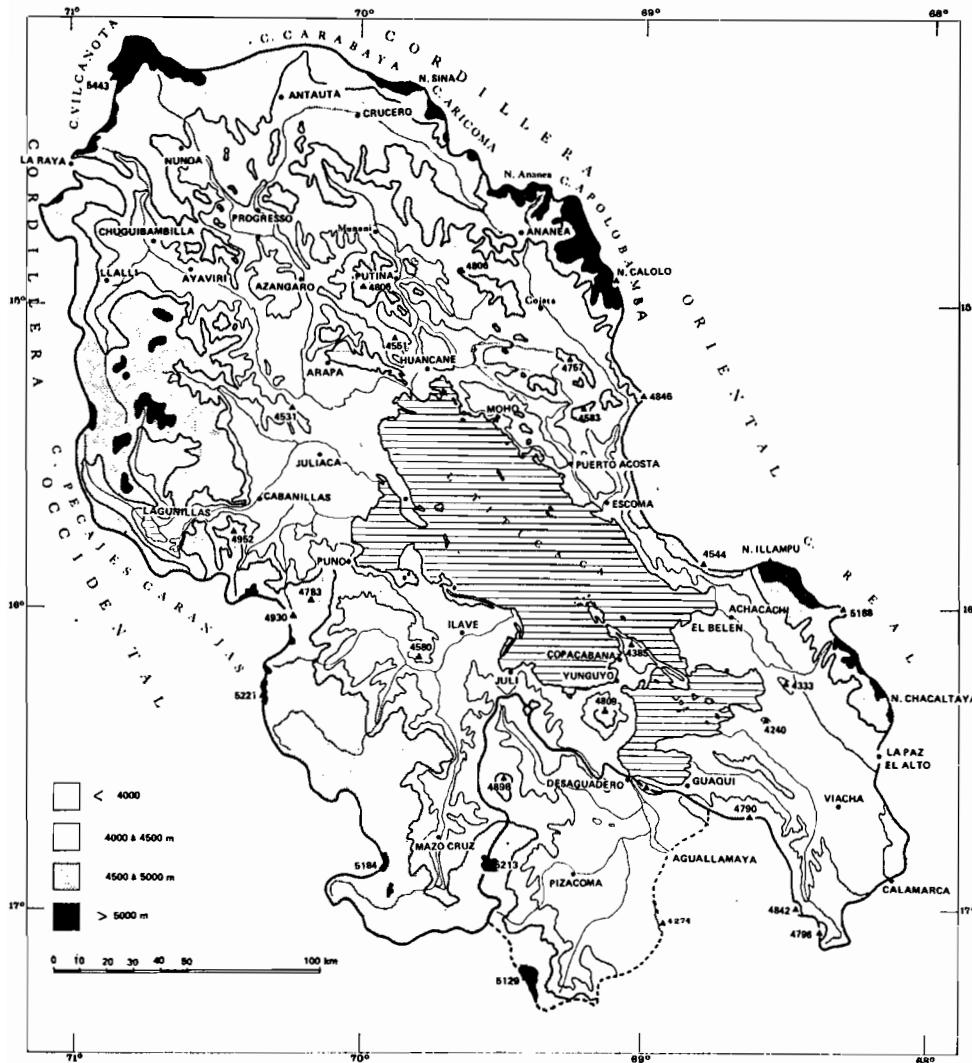


Figure 1. The Lake Titicaca catchment area (adapted from Boulangé and Aquíz Jaen, 1981).

The eastern boundary follows the line of the summits of the Carabaya and Aricoma Cordilleras (altitudes over 4800 m) then curves in towards the south to follow the Cordillera Apolobamba whose general level slopes down to 4800 m.

Further south, the limits of the catchment approach within 10 km of the lake and the altitude is of the order 4500 m. This narrowing of the catchment area is related to the heavy erosion on the Amazonian flanks by the Rio Beni, which penetrates the Cordillera up to the foot of the Illampu peak (highest point of the catchment at 6322 m), between the Apolobamba and

Real Cordilleras. The eastern boundary continues along the Cordillera Real and then follows the edge of the Altiplano in the La Paz region (4000 m altitude).

The southern flank of the catchment area runs along summits ranging in height between 4500 and 4800 m and is open to the south by the sole outflow from the lake, the river Desaguadero, which then flows south to drain into Lake Poopo.

The western boundary runs north-west – south-east along the western Cordillera, whose summits do not exceed 5000 m altitude.

The lake basin

The Lake Titicaca basin, having the same orientation as that of the catchment area, is divided into two sub-basins (Fig.2):

- in the north the Lago Grande or Great Lake,
- in the south, the Lago Menor or Lago Huiñaimarca, joined by the Tiquina strait which is about 850 metres wide with a maximum depth of 21 metres.

The geographical limits of the lake are as follows:
 15°13'19"–16°35'37" latitude south and 68°33'36"–70°02'13" longitude west.

The 915 km long shoreline is poorly defined to the north and west where it merges with the flood plains of the main inflow rivers. The eastern shoreline, in contrast, is better defined since it follows a fault line.

The greatest length over water measured between the furthest points on the shore along NNW-SSE line passing through the Tiquina strait is 178 km, and the greatest width at right angles to this axis is 69 km in Lago Grande and 41 km in Lago Huiñaimarca.

Measurements of the area and volume of Lake Titicaca vary slightly depending on the methods of calculation used -planimetry (Tables 1 and 2) or direct calculation from the Hidronav data (Table 3). These differences lead to estimates which are not incompatible with one another, since a drop in water level of 1 m from the current level (3809 m above sea level) would lead to a decrease in water area of 1000 km² and a decrease in volume of about 8 km³.

From direct calculations from cartographic data, the total area of the lake is 8562 km² and the volume of water 903 km³, the area of the islands being negligible (1.3 % of the total area).

Lago Grande

Block diagrams made from sounding points enable 4 bathymetric zones in Lago Grande to be differentiated (Figs 2 and 3): (Figure 3 can be found as a separate figure at the end of the book)

- a deep water zone over 200 metres deep in the central part of the lake;

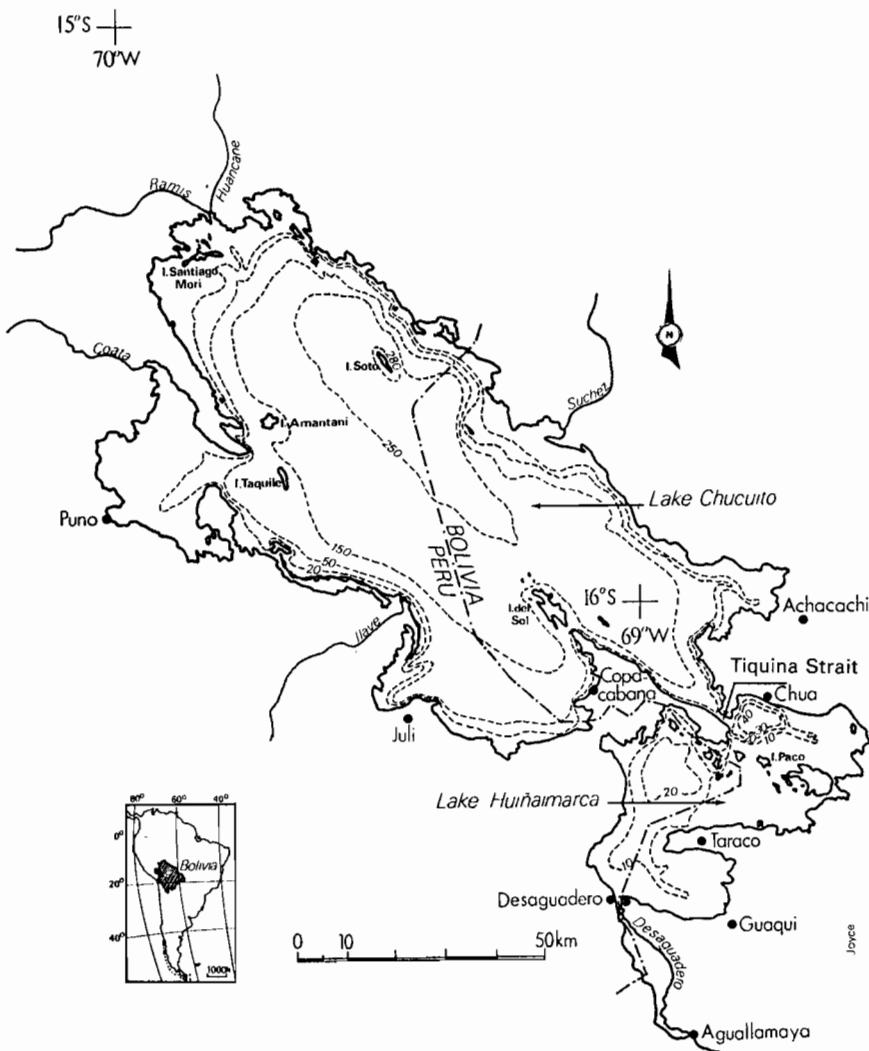


Figure 2. Bathymetry of Lake Titicaca (adapted from Boulangé and Aquíze Jaen, 1981).

the deepest point measured by Boulangé and Aquíze Jaen (1981), situated near Soto island, was 284 m deep;

- a zone of moderate depths of between 100 and 200 metres depth, best developed along the western margins of Lago Grande;
- a zone of intermediate depths of between 100 and 20 metres, occupying parts of Puno and Achacachi Bays;
- and finally the littoral margins, with less than 20 metres water depth, very narrow along the eastern shore but well developed in the Puno, Rio Ramis and Achacachi Bays.

As a general rule, Lago Grande is characterised by a steeply shelving

Table 1. Morphological parameters of the lake (from Boulangé and Aquíze Jaen, 1981)

	Lago Mayor	Puno Bay	Total	Lago Menor	Lake Titicaca
A km ²	6542	589	7131	1428	8559
A _l km ²	49	1	50	61	111
A _l / A %	0.7	0.1	0.7	4.2	1.3
A _E km ²	6493	588	7081	1367	8448
L km	151	41		62	178
l _M	69	30		41	69
l _m	43	14	47	23	48
Z _M	284	51		42	284
Z _m	135	8	125	9	105
Z _m / Z _M	0.47	0.16	0.44	0.21	0.37
C km	455	155	610	305	915
DC = C / $\sqrt{\pi} \cdot A$	1.59	1.80	2.04	2.28	2.79
V x 10 ⁹ m ³	878.7	4.8	883.5	12.36	895.86

Table 2. Relation between surface area/depth and volume/depth (from Boulangé and Aquíze Jaen, 1981)

Lago Mayor and Puno Bay				
Depth in m	Water surface area		Volume	
	km ²	%	m ³ x 10 ⁹	%
0	6493	100	124.5	14.1
20	5407	76.3	153.3	17.4
50	4816	68	217.2	24.6
100	3886	54.8	180.3	20.4
150	3332	47	130.5	14.8
200	1948	27.5	66.6	7.5
250	800	11.3	11.1	1.2
284			883.5	100

Puno Bay				
0	588	100	1.95	40.3
5	221	37.6	0.91	18.8
10	146	24.8	1.09	22.5
20	75	12.8	0.89	18.4
50	2	0.3	0.002	0
52			4.84	100

Lago Menor				
0	1367	100	5.27	42.7
5	768	56.2	2.97	24.0
10	434	31.7	2.90	23.5
20	167	12.2	0.98	7.9
30	44	3.2	0.20	1.6
40	4	0.3	0.04	0.3
42			12.36	100

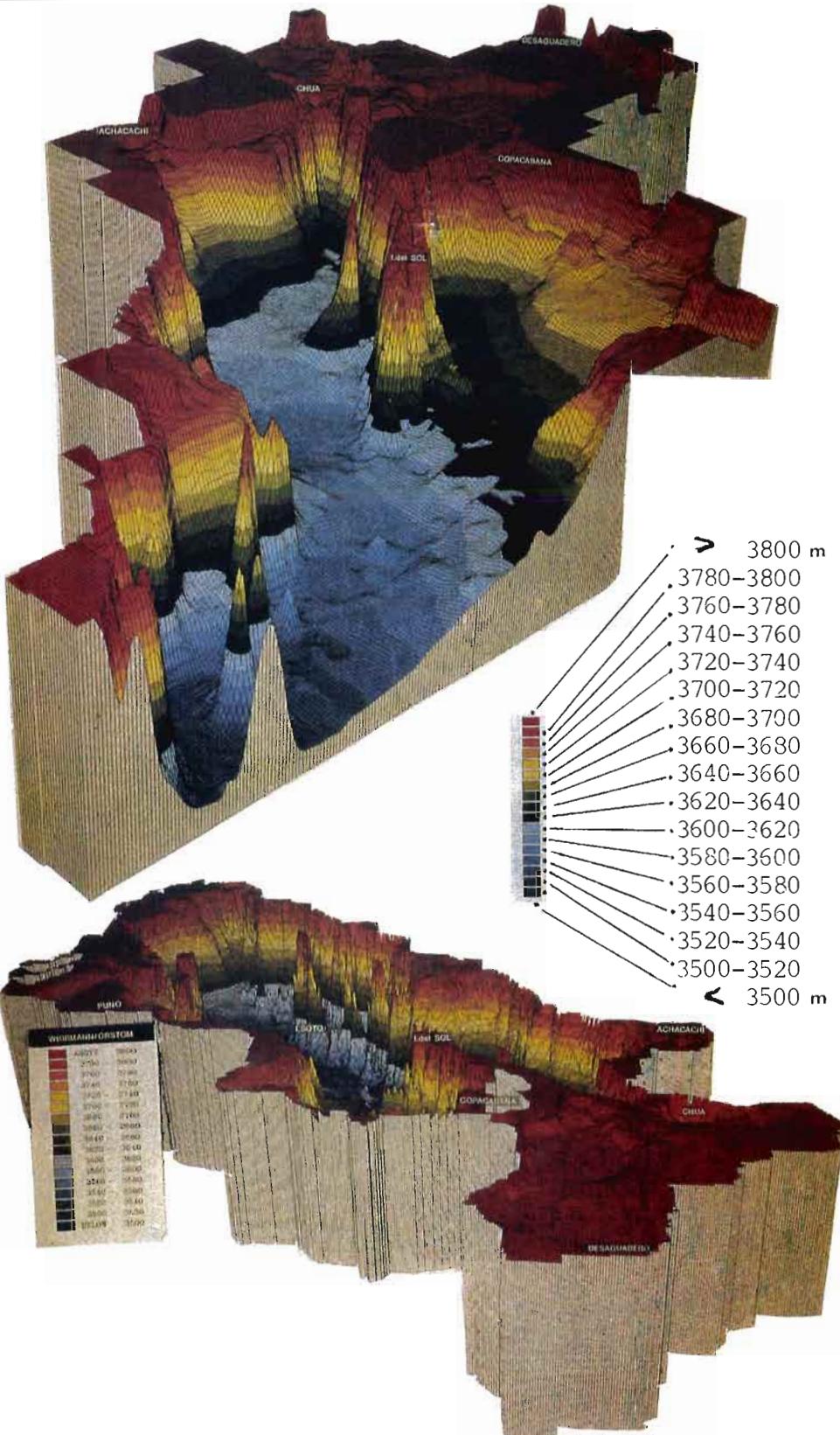
Table 3. Relation between surface area/depth and volume/depth (from Boulangé and Aquíze Jaén, 1981)

Lake Titicaca				
Depth in m	AREAS		Volume	
	km ²	%	m ³ x 10 ⁹	%
0	8562.7	100	903.7	100
1	7541.5	88	896.2	99
2	7304.7	85	888.9	98
3	7052.7	82	881.8	97.5
4	6889.5	80	875	97
5	6754	79	868.2	96
10	6269.5	73	836	92.5
15	5963	70	805.5	89
20	5714	67	776.5	86
25	5606.5	65	748.2	83
30	5500.7	64	720.5	80
35	5411.2	63	693.3	77
40	5320.7	62	666.5	74
45	5249.2	61	640.1	71
50	5167.2	60	614.1	68

bottom from straight off the shore and its mean depth is 135 metres. The islands represent less than 1 % of the total area of 7132 km², which itself represents 84% of the total area of lake Titicaca. The volume of Lago Grande is 889 km³, or 98.5% of the total water volume.

Lago Huiñaimarca

From the figures given above it can be seen that Lago Huiñaimarca only makes up a very small proportion of the total water volume, although its area of about 1470 km² represents 16 % of the area of Lake Titicaca. This reflects its shallow mean depth (9 m) and the large area (of the order of 56%) less than 5 m in depth.


Three bathymetrical zones are differentiated (Figs 2 and 3):

- the deepest zone down to 41 m in the north, known as the Chua trough,
- a central basin in the centre-west beyond the line of islands with a maximum depth of 20 metres,
- a shallow area extending between and around these two zones, with a sill about 7 metres deep between the Chua trough and the central depression.

As a general rule, the slopes are very gentle, with the exception of the eastern margin of the Chua trough. The outflow of the Rio Desaguadero is not deeply cut, but forms a sill (5 metres deep) so it is only when the lake level is at 3804 m or higher that the lake and the upper reaches of the Desaguadero are in communication. The current at the outflow from Lake Huiñaimarca is slight, and sometimes even reversed (Carmouze and Aquíze Jaén, 1981), the true outlet being situated further south at Aguallamaya (Fig. 2).

At the point where the Tiquina Strait enters Lago Huiñaimarca there is

a sill 21 m deep. Lago Huiñaimarca would thus appear to be a basin that could have functioned as an entity independent of the Lago Grande in the past and in which two separate basins could have existed (see Chapter III).

References of chapter II

AGASSIZ (A.), GARMAN (S.W.), 1876. Exploration of Lake Titicaca. *Bull. Mus. Comp. Zool.*, Harvard, 3: 273–349.

ANDERSEN (J.M.), 1976. An ignition method for determination of total phosphorus in lake sediments. *Wat. Res.*, 10: 329–331.

Anon., 1975. Standard methods for the examination of water and wastewater. APHA (American Public Health Association). 14th ed.

Anon., 1978. Lago Titicaca. Mapas al 1/100,000, PERU-BOLIVIA, HIDRONAV N○ 3100–3200–3300–3400–3500. *Instituto Geográfico Militar*, Lima, Perú.

APPLEBY (P.G.), OLDFIELD (F.), 1978. The calculation of Lead-210 dates assuming a constant rate of supply of unsupported ^{210}Pb to the sediment. *Catena*, 5: 1–8.

BINFORD (M.W.), BRENNER (M.), 1986. Dilution of ^{210}Pb by organic sedimentation in lakes of different trophic states, and application to studies of sediment-water interactions. *Limnol. Oceanogr.*, 31: 584–595.

BINFORD (M.W.), BRENNER (M.), 1989. Resultados de estudios de limnología en los ecosistemas de Tiwanaku. In: *Arqueología de Lukurmata*, Alan Kolata ed., Vol. 2. Instituto Nacional de Arqueología y Producciones Pumapunku, La Paz, Bolivia: 213–236.

BINFORD (M.W.), BRENNER (M.), WHITMORE, (T.J.), HIGUERA-GUNDY (A.), DE-EVEY (E.S.), LEYDEN (B.), 1987. Ecosystems, paleoecology and human disturbance in subtropical and tropical America. *Quat. Sci. Rev.*, 6: 115–128.

BINFORD (M.W.), BRENNER (M.), LEYDEN (B.), 1988. Paleolimnology of Tiwanaku ecosystems: results of second-year studies. Unpubl. report, 47 p.

BORMANN (F.H.), LIKENS (G.E.), 1979. Pattern and Process in a Forested Ecosystem. Springer Verlag, New York, 253 p.

BOULANGE (B.), VARGAS (C.), RODRIGO (L.A.), 1981. La sédimentation actuelle dans le lac Titicaca. *Rev. Hydrobiol. trop.*, 14 (4): 299–309.

BOULANGE (B.), AQUIZE JAEN (E.), 1981. Morphologie, hydrographie et climatologie du lac Titicaca et de son bassin versant. *Rev. Hydrobiol. trop.*, 14 (4): 269–287.

BRENNER (M.), BINFORD (M.W.), 1988. A sedimentary record of human disturbance from Lake Miragoane, Haiti. *J. Paleolimnol.*, 1: 85–97.

BRENNER (M.), LEYDEN (B.), BINFORD (M.W.), 1990. Recent sedimentary histories of shallow lakes in the Guatemalan savannas. *J. Paleolimnol.*, 4: 239–252.

CARMOUZE (J.P.), AQUIZE JAEN (E.), 1981. La régulation hydrique du lac Titicaca et l'hydrologie de ses tributaires. *Rev. Hydrobiol. trop.*, 14 (4): 311–328.

CARPENTER (S.R.), LODGE (D.M.), 1986. Effects of submerged macrophytes on ecosystem processes. *Aquatic Botany*, 24: 341–370.

COLLOT (D.), KORIYAMA (F.), GARCIA (E.), 1983. Répartitions, biomasses et productions des macrophytes du lac Titicaca. *Rev. Hydrobiol. trop.*, 16 (3): 211–318.

DEEVEY (E.S.), RICE (D.S.), RICE (P.M.), VAUGHAN (H.H.), BRENNER (M.), FLANNERY (M.S.), 1988. Mayan urbanism: impact on a tropical karst environment. *Science*, 206: 298–306.

D'ORBIGNY (A.), 1835–1847. Voyage dans l'Amérique méridionale. Pitois-Levrault et Cie., Paris, 7 tomes, 11 vol.

EAKINS (J.D.), MORRISON (R.T.), 1978. A new procedure for the determination of Lead-210 in lake and marine sediments. *Int. J. appl. Radiat. Isotopes*, 29: 531–536.

EL-DAOUSHY (F.), 1988. A summary on the Lead-210 cycle in nature and related applications in Scandinavia. *Envir. Int.*, 14: 305–319.

GILSON (H.C.), 1939–1940–1955. The Percy Sladen Trust Expedition to Lake Titicaca in 1937. *Trans. Linn. Soc. London*, 1: 357 p.

GORHAM (E.), VITOUSEK (P.), REINERS (W.), 1979. Ecosystem succession and nutrient retention. *Annu. Rev. Ecol. and System.*, 10: 53–84.

HÅKANSON (L.), JANSSON (M.), 1983. Principles of lake sedimentology. Springer Verlag, New York, 316 p.

HOWARD-WILLIAMS (C.), 1985. Cycling and retention of nitrogen and phosphorus in wetlands: a theoretical and applied perspective. *Freshw. Biol.*, 15: 391-431.

HOWARD-WILLIAMS (C.), LENTON (G.M.), 1975. The role of the littoral zone in the functioning of a shallow tropical lake system. *Freshw. Biol.*, 5: 445-459.

HUFFMAN (E.W.D., Jr.), 1977. Performance of a new automatic carbon dioxide analyzer. *Microchemical Journal*, 22: 567-573.

LAZZARO (X.), 1985. Poblaciones, biomasas y producciones fitoplanctónicas del Lago Titicaca. *Rev. Inst. Ecol.*, La Paz, 7: 23-64.

NELSON (D.W.), SOMMERS (L.E.), 1972. A simple digestion procedure for estimation of total nitrogen in soils and sediments. *J. Environ. Qual.*, 1: 423-425.

NEVEU-LEMAIRE (M.), 1906. Les lacs des hauts-plateaux de l'Amérique du Sud. Imprimerie Nationale, Paris. 197 p.

PENTLAND (J.B.), 1838. The laguna of Titicaca and the valleys of Yukai, Collao and Desaguadero in Peru and Bolivia, from geodesic and astronomic observations made in the years of 1827 and 1828, 1837 and 1838. British Admiralty Chart, no 1268. London.

PONCE SANGINES (C.), 1989. Lukurmata: investigaciones arqueológicas en un asentamiento urbano de la cultura Tiwanaku. Ensayo de historiación del avance científico (1895-1988). In: Arqueología de Lukurmata. Alan Kolata ed., Vol. 1. Instituto Nacional de Arqueología y Producciones Pumapunku, La Paz, Bolivia: 11-85.

VITOUSEK (P.L.), REINERS (W.M.), 1975. Ecosystem succession and nutrient retention: a hypothesis. *Bioscience*, 25: 376-381.

WETZEL (R.G.), 1983. Limnology (2nd ed.). W.B. Saunders Company, Philadelphia. 767 p.

WIRRMANN (D.), MOURGUIART (P.), de OLIVEIRA ALMEIDA (F.), 1988. Holocene sedimentology and ostracodes repartition in Lake Titicaca. Paleohydrological interpretations. In: Quaternary of South America and Antarctic Peninsula, Rabassa ed., A.A. Balkema, 6: 89-127.

C. DEJOUX and A. ILTIS / Editors

Lake Titicaca

A Synthesis of Limnological Knowledge

Kluwer Academic Publishers

Lake Titicaca

A Synthesis of Limnological Knowledge

Edited by

C. DEJOUX and A. ILTIS

KLUWER ACADEMIC PUBLISHERS

DORDRECHT / BOSTON / LONDON

Library of Congress Cataloging-in-Publication Data

Lake Titicaca : a synthesis of limnological knowledge / edited by C. Dejoux and A. Iltis.
p. cm. -- (Monographiae biologicae ; v. 68)
Includes indexes.
ISBN 0-7923-1663-0 (HB : alk. paper)
1. Limnology--Titicaca Lake (Peru and Bolivia) 2. Aquatic resources--Titicaca Lake (Peru and Bolivia) I. Dejoux, Claude. II. Iltis, A. III. Series. OP1.P37 vol. 68 [QH128] 574 s--dc20 [574.5'26322'098412] 92-7958

ISBN 0-7923-1663-0

Published by Kluwer Academic Publishers,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Kluwer Academic Publishers incorporates
the publishing programmes of
D. Reidel, Martinus Nijhoff, Dr W. Junk and MTP Press.

Sold and distributed in the U.S.A. and Canada
by Kluwer Academic Publishers,
101 Philip Drive, Norwell, MA 02061, U.S.A.

In all other countries, sold and distributed
by Kluwer Academic Publishers Group,
P.O. Box 322, 3300 AH Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved
© 1992 Kluwer Academic Publishers

No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner.

Printed in the Netherlands