ETUDE PRELIMINAIRE DU POTENTIEL
AGROPEDOLOGIQUE DE LA REGION DE
KONE VOH TEMALA

-:-:-

M. LATHAM

1972

OFFICE DE LA RECHERCHE SCIENTIFIQUE ET TECHNIQUE OUTRE-MER

Laboratoire de Pédologie

Etude préliminaire du potentiel agropédologique de la région de Koné Voh Témala.

-:-:-

Par

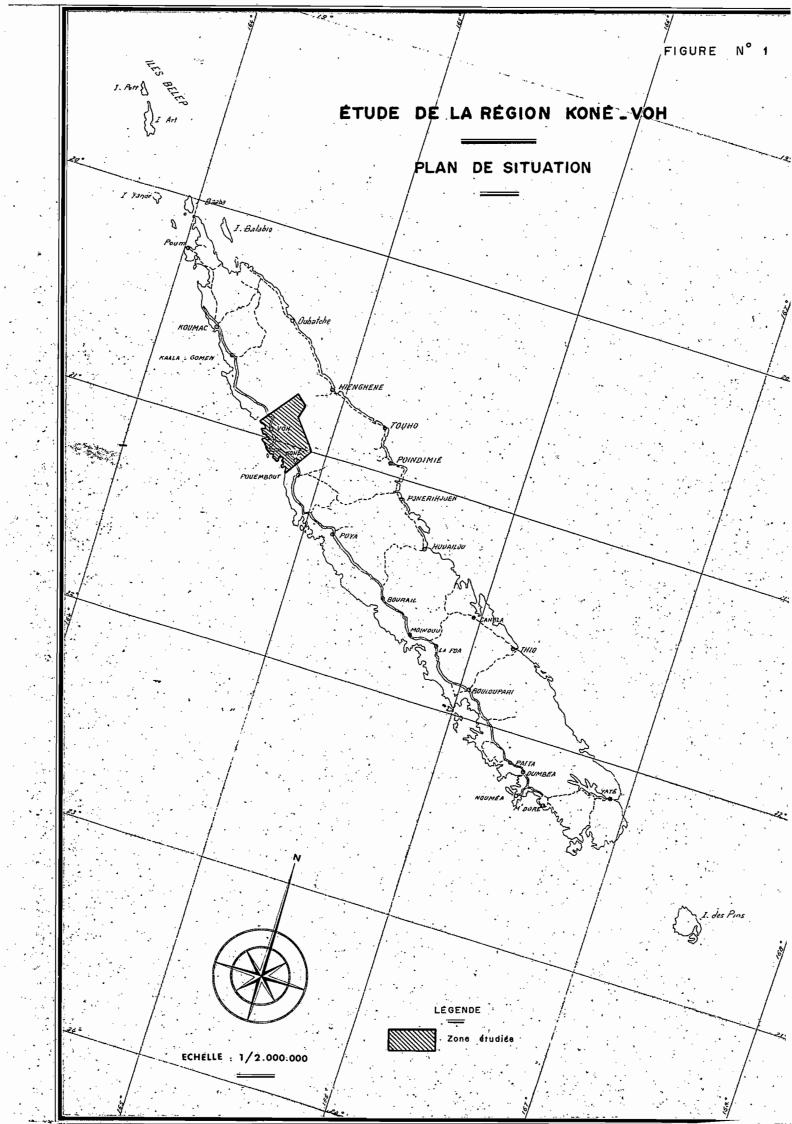
M. LATHAM

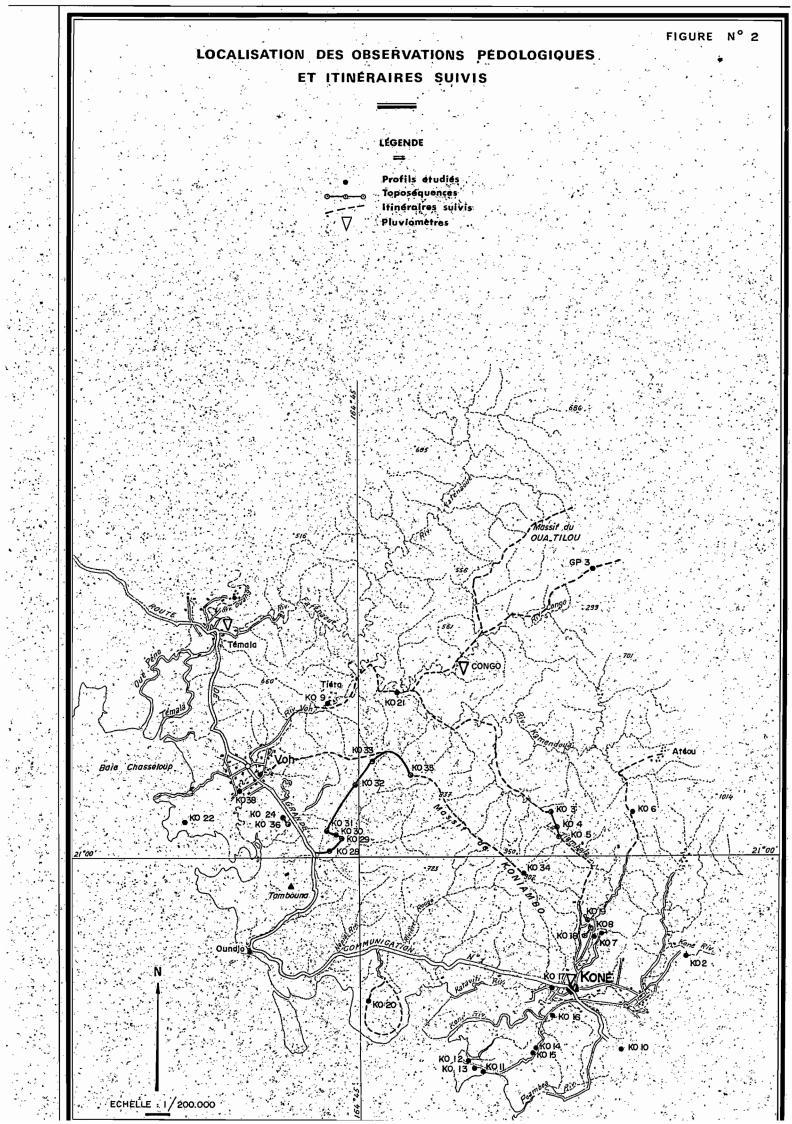
SOMMAIRE

-:-:-

	Page
Introduction	ļ
1. Les conditions du milieu	1
2. Les sols et leurs aptitudes	2
3. Le potentiel agropédologique de la région	6
4. Influence de l'exploitation minière sur les sols de la région.	8
Conclusion	11
Bibliographie	12

Introduction


A la suite des projets de mise en exploitation minière du massif du Koniambo Katepahie, l'ORSTOM, en accord avec le service de l'agriculture a décidé de préparer une étude du potentiel agronomique et forestier de la région entourant ce massif. Une étude agropédologique doit, en effet, permettre de chiffrer ce potentiel; mais elle nécessite un gros travail de terrain qu'il n'est pas possible d'effectuer actuellement. La présente étude préliminaire a pour but de définir les principaux sols de la région; leurs aptitudes culturales, pastorales et forestières et d'évaluer quelle pourrait être l'influence de la mise en exploitation des massifs miniers de la région sur ce potentiel.


1. Les conditions du milieu

La zone étudiée couvre tout ou partie des bassins versants de la Koné, de la Voh et de la Témala. Elle englobe les massifs du Koniambo Katepahie et la partie occidentale du massif du Oua-Tilou fig 1 et 2.

Cette zone est caractérisée par un climat de type tropical cyclonique. D'après les renseignements donnés par la section d'hydrologie de l'ORSTOM il pleut en moyenne 1200 mm dans
les plaines de la Koné de la Témala et dans la vallée de la Congo,
la majeure partie des précipitations ayant lieu de Décembre à
Juin. Les températures moyennes, qui atteignent 26° 5c en Décembre,
tombent à 18 à 19°c en Juillet. Ce climat peu contrasté est marqué
par le passage de dépressions cycloniques, accompagnées de fortes
pluies qui provoquent les crues de toutes les rivières.

D'après A. ARNOULD, J. AVIAS, P. ROUTHIER 1957 - 1958 et les données récentes du BRGM, le substrat géologique de la région est composé de roches sédimentaires (formations à charbon, grauwackes, alluvions), de roches éruptives (roches basiques, basaltes et roches ultrabasiques péridotites et serpentinites) et de roches métamorphiques (schistes divers et phyllades).

Quatre unités géomorphologiques se dégagent :

- les massifs de roches ultrabasiques aux pentes très abruptes qui culminent vers 1000 à 1200 m.
- la "chaine", qui occupe l'arrière pays, vaste ensemble de montagnes et de collines d'altitude variable.
- les "collines basaltiques" aux formes ondulées qui entourent les plaines de la Koné, de la Voh et de la Témala.
- Enfin les plaines alluviales de la Koné, de la Voh et de la Témala.

La végétation sur les terrains sédimentaires ou métamorphiques est assez monotone : la forêt a presque partout disparu faisant place à des savanes arbustives ou arborées à Melaleuca quinquenervia ("Niaouli") qui brûlent chaque année. Sur les Basaltes dominent des groupements secondaires, savanes herbeuses ou arbustives et fourrés. Les terrains ultrabasiques sont occupés par des formations ligno-herbacées ou ligneuses, buissonnantes et ouvertes ("maquis") ou relativement hautes et denses, n'offrant que rarement toutefois la physionomie de véritables forêts. Ces formations de composition floristique très particulière, comme les formations analogues que l'on observe sur les autres massifs miniers du territoire, renferment quelques espèces propres à la région (Boronia) (cf. T. JAFFRE 1972). La Mangrove, relativement étendue dans ce secteur, est constituée de groupements très voisins de ceux dont BALTZER a étudié la composition et la distribution dans le delta de la Dumbéa (1969).

2. Les sols et leurs aptitudes.

La diversité des conditions de la pédogénèse ont entrainé la formation de sols très variés tant par leurs caractères pédologiques proprement dit, que par leurs caractères édaphiques. Sept classes, de la classification française (CPCS 1967), sont représentées dans la région : les sols peu évolués, les vertisols, les sols calcimagnésimorphes, les sols brunifiés, les sols fersiallitiques, les sols ferrallitiques et les sols hydromorphes.

2.1 Les sols peu évolués d'érosion ·

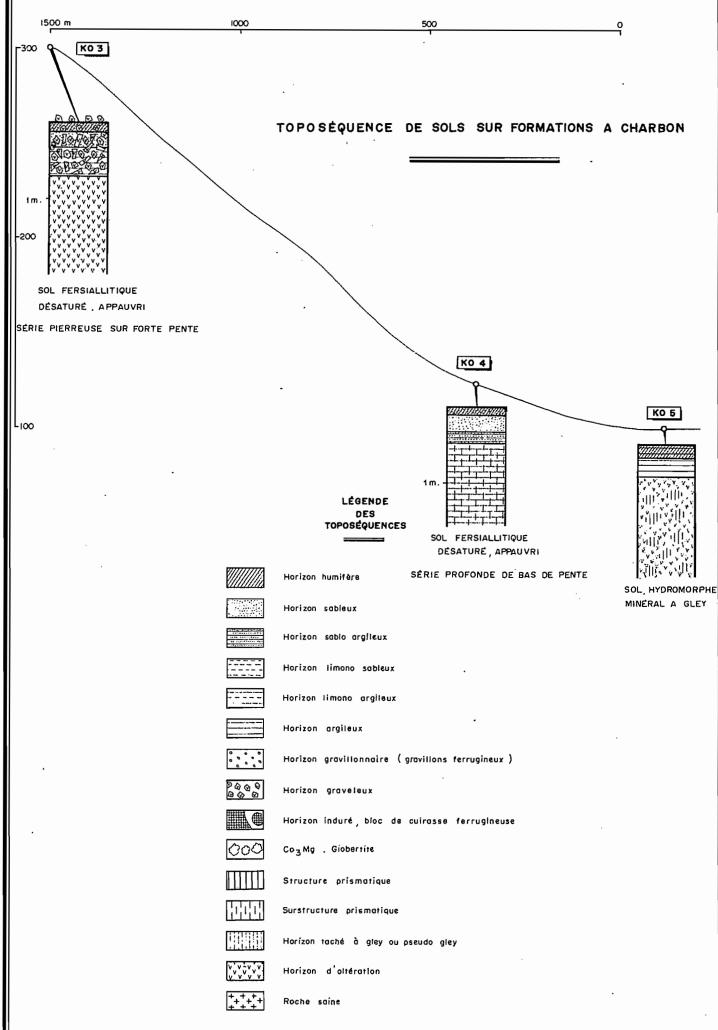
Ces sols peu épais apparaissent sur forte pente ; leurs

caractéristiques chimiques sont très étroitement liées à celles de la roche-mère. On les observe sur n'importe quel substrat géologique. Ils n'ont aucun intérêt agronomique et doivent être mis en défends antiérosif.

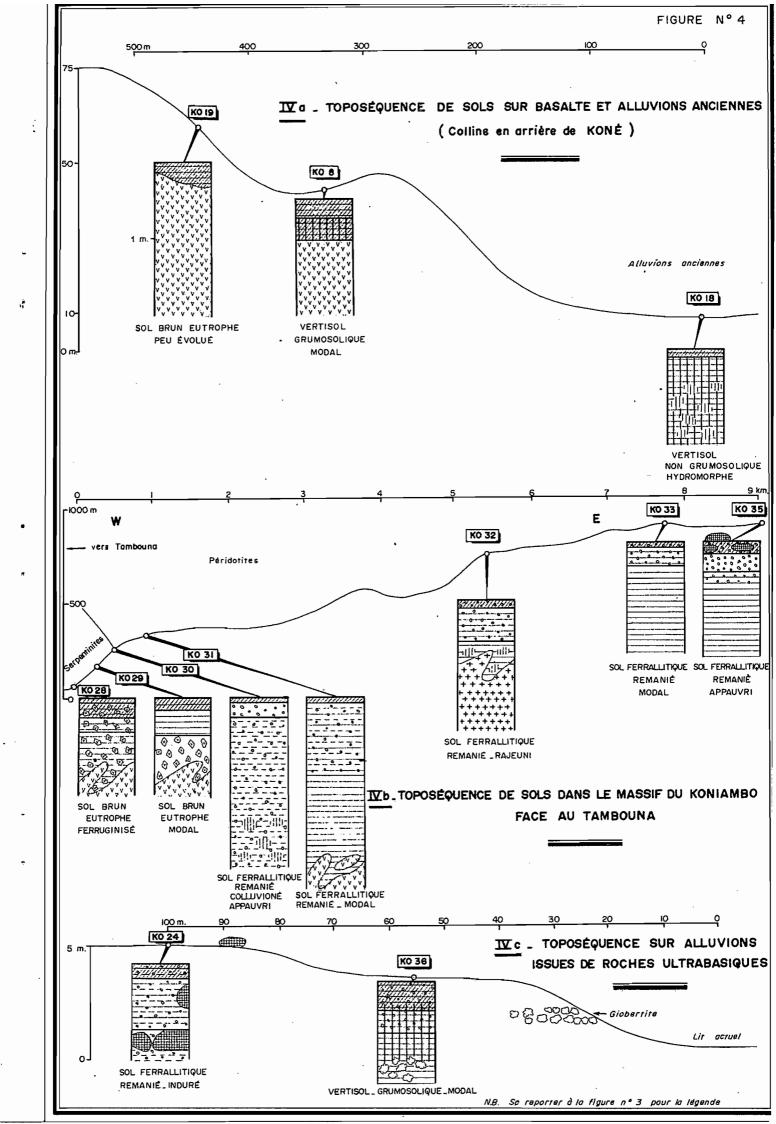
2.2 Les sols peu évolués d'apport sur alluvions récentes :

Ces sols profonds, de texture argilo-sableuse, homogène, ont généralement une bonne fertilité chimique. Ce sont les bonnes terres de culture des vallécs de la Koné, de la Voh et de la Témala. Traditionnellement plantés en caféiers, ils sont de plus en plus utilisés pour des cultures ou des pâturages intensifs.

2.3. Les sols peu évolués sur alluvions marines ; sols de mangroves.


Ces sols sont sans intérêt agronomique immédiat. Chaque crue leur apporte de nouveaux dépôts ce qui en fait une zone d'épandage très précieuse entre la terre et le lagon (cf. travaux de F. BALTZER et J.J. TRESCASES sur le rôle de la mangrove comme piège à sédiments (1971)).

2.4 Les vertisols


Les vertisols se développent sur basalte et sur alluvions anciennes d'origines diverses. Ils sont argileux, compacts
et souvent hydromorphes. Lorsqu'ils dérivent de basalte, leur
fertilité chimique est moyenne et ils conviennent bien à un
aménagement pastoral. Lorsqu'ils dérivent de roches ultrabasiques,
leurs caractéristiques édaphiques sont franchement défavorables
par excès de magnésium principalement. Les vertisols dérivant de
basalte sont associés aux sols brunifiés fig 4 IV a, les vertisols dérivant de roches ultrabasiques sont souvent associés à
des sols ferrallitiques fig 4 IV c.

2.5 Les sols brunifiés, brun eutrophe tropicaux b

Comme les vertisols, les sols brunseutrophes peuvent être issus de roches basiques (basaltes) ou de roches ultrabasiques (serpentinite). Ce sont des sols argileux, peu profonds, bien pourvus en bases. Sur basalte, l'équilibre entre calcium et magnésium est bon, et ces sols peuvent, s'ils ne se trouvent pas en position topographique défavorable être aménagés en pâturages

N.B. Les distances approximatives sont indiquées au dessus du prafil topographique Les altitudes approximatives sont indiquées à gauche du profil topographique

intensifs. Sur serpentinite, par contre, les propriétés chimiques très défavorables de ces sols (excès de Magnésium en particulier) en interdisent pratiquement l'utilisation. Cette dernière catégorie de sols est souvent associée aux sols ferrallitiques fig 4 IV b.

2.6 Les sols fersiallitiques désaturés appauvris.

Ces sols s'observent sur formation à charbon. Souvent peu profonds, ils présentent un horizon sableux en surface très pauvre chimiquement et n'offrent aucun intérêt agronomique. Ils sont associés dans la vallée de la Kamendoua et de la Tiambola à des sols hydromorphes occupant d'étroite vallées alluviales fig 3.

2.7 Les sols fersiallitiques désaturés modaux

Ces sols prennent naissance sur schistes et phyllades dans la chaine. Ils sont argileux, généralement peu profonds, et leur fertilité chimique est médiocre. Etant donné leur caractère accidenté, les secteurs où on les trouve, ne se prètent généra-lement pas à l'implantation de prairies artificielles.

2.8 Les sols ferrallitiques

Les sols ferrallitiques s'observent sur les massifs de roches ultrabasiques (péridotites) et sur certaines alluvions en dérivant fig 4 IV b et IV c. Très variés morphologiquement, plus ou moins profonds, plus ou moins riches en éléments fins, ils ont en commun une composition chimique très particulière à base d'hydroxydes de fer. Ils sont, de plus, très pauvres et déséquilibrés chimiquement par un excès de magnésium et d'éléments considérés comme toxique, nickel, chrome, cobalt. Des essais de plantation forestière très concluants ont toutefois été entrepris sur ces sols par le CTFT et les Eaux et Forêts dans le Sud du territoire et à l'île des pins.

CARTE DE RECONNAISSANCE DES SOLS DE LA RÉGION KONÉ - VOH

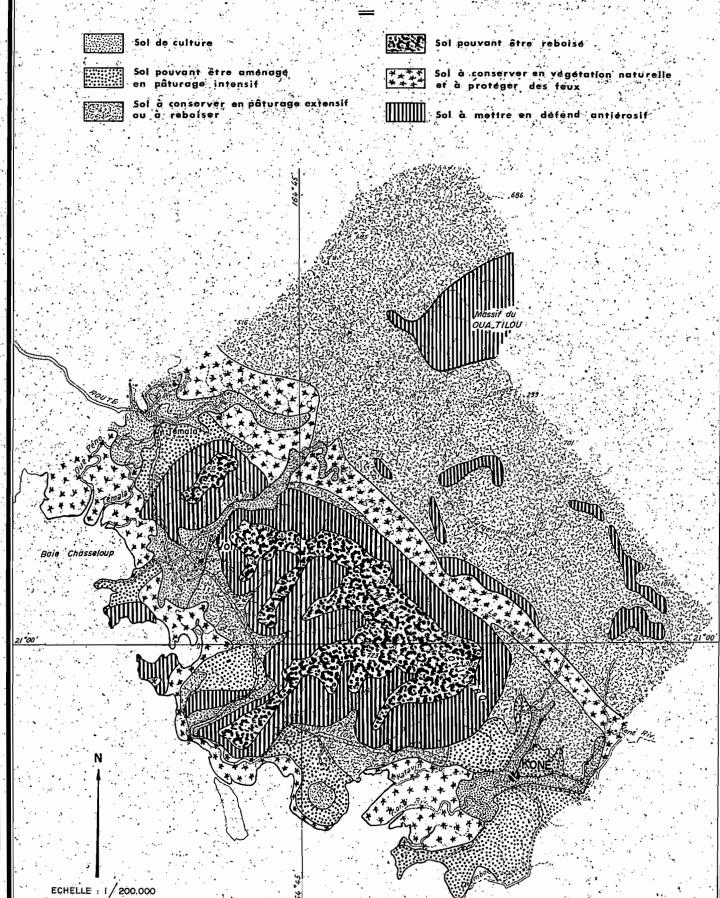
LÉGENDE Sol brunifié des pays tropicaux brun eutrophe plus sol calcimagnésique carbonaté, rendzine plus vertisol à dratnagé externe possible Sol peu évolué d'érosion sur basalte Sol brunifié des pays troplcaux,brun,eutrophe Sol ferrollitique "ferrique" rajeuni, madat our serpentinites of peridotites Sol pau evolué d'apport, sur alluvions récentes sur formations à charbons Sol fersiallitique désoture , appouvri Sol pau évolué d'appart, sur alluvions marines argileuses Vertisol å drainage externe råduit, hydromorphe plus sol hydromorphe minéral, å gley peu profond sur schistos et grouwaches sur alluvions Sol fersiallitique desature lessive, modal unciennes Vertisal à drainage externe réduit, vertique, plus sal forrallitique "ferrique" remanié. Indure sur alluvions Sot ferrallitique "ferrique" remanié et rajeuni sur peridotites terrugineuses Sol brunifié des pays tropicaux brun eutraphe sur basaltes plus vertisol à drainage externe possible Baie Chasseloup

ECHEFFE 1/500 000

2.9 <u>Tableau résumant les aptitudes culturales, pastorales et forestières des diverses unités de sols.</u>

pédologique	Sensibilité à l'érosion Difficultés d'aménagement résultant de la topographie	Obstacles d'ordre physique	Obstacles d'ordre chimique	Possibilité de Mécanisation	Aptitudes
Sol peu évo- lué d'éro- sion	très sensi- ble à l'éro- sion	Peu profonds	Suivant la roche mère	Nulle	à mettre en léfends an- tiérosif.
Sol peu évo- lué d'apport sur alluvions récentes.	Très faible	quelques taches d'hy- dromorphie en profon- deur	Néant	facile	Sol de culture
Sol peu évo- lué d'apport sur alluvions marines.	Néant	Très ar- gileux hydromorphe	Salé	Difficile	Sol à con- server végétation naturelle
Vertisol à drainage ex- terne réduit. Sol hydromor- phe sur allu- vions ancien- nes		Horizon d'engorge- ment à fai- ble profon- deur	Néant	Difficile quand le sol est humide	Paturage semi- intensif ou inten- sif
Vertisols et sols ferral- litiques in- durés sur al- luvions déri- vant de roches ultrabasiques	ž l		fort désé- quilibre Ca/Mg abondance de Ni,Co, Cr.	Difficile quand cuirasse	paturages extensifs
Solsbrunseu- trophes+ vertisols sur basalte	Variable suivant le pente	Certains sols bruns sont très profonds trés argileux.	Néant	Difficile quand le sol est humide Impossible sur trop forte pente	Paturages extensifs (ou refores- tation)
Sols bruns eu trophes + ren dzines sur ba salte	· id.	id.	id.	id.	id.
Sols bruns cutrophes + sols ferral- litiques rajeunis	Sols sur fortes pentes très.sensi- bles à l'éro sion.	peu	Fort désé- quilibre Ca/Mg Abondance de Ni,Co,Cr	Néant	Végétation näturelle

Unité pédologi- que	Sensibilité à l'érosion Difficultés d'aménage- ment résul- tant de la topographie	Obstacles d'ordre physique	Obstacles d'ordre chimique	Possibilité de Mécanisation	Aptitudes
Sols fer- siallitiques appauvris	id.	Sols peu profonds	Sols pauvro	Néant '	Végétation naturelle
Sols fer- siallitiques modaux	Variable mais géné- ralement grande	Sols moyennement profonds	Néant	Dans cer- tains cas.	Paturage extensif reboisement
Sols ferral- litiques et rajeunis sur péridotites	ls ferral- tiques et jeunis sur Variable Variable Veleux		Déséquili- bre Ca/Mg abondance de Ni,Co, Cr.		reboisement possible


3. Le potentiel agropédologique de la région

La carte pédologique fig n° 5 et la carte d'aptitude des sols fig n° 6 montrent que le potentiel agropédologique de la région se trouve concentré dans les vallées de le Koné de la Vohet de la Témala.

- Les sols peu évolués d'apport sur alluvions récentes sont les terres les plus riches de la région. Elles se prètent à toute forme de cultures intensives y compris les cultures maraichères. A fortiori elles conviennent très bien à l'établissement de paturages intensifs.
- Les vertisols et certains sols bruns eutrophes sur faible pente conviennent aussi à l'établissement de paturages intensifs mais ce sont des terres un peu lourdes pour la culture.
- Les sols fersiallitiques et certains sols hrung eutrophes en position topographique défavorable sont plus difficilement aménageables. Ils semblent ne se prêter qu'à l'élevage extensif dont les techniques, il est vrai, pourraient être sensiblement améliorées.
- Les sols fersiallitiques appauvris et certains sols peu évolués d'érosion sur forte pente, que l'on observe dans la chaine seraient très difficiles à mettre en valeur. On doit sur ces sols conserver la végétation naturelle en tachant de la protéger des feux.

APTITUDES CULTURALES, PASTORALES ET FORESTIÈRES DES SOLS DE LA RÉGION DE KONÉ _ VOH

LEGENDE

- Les sols bruns eutrophes sur serpentinite, non seulement ne sont pas favorables à un quelconque aménagement mais encore en raison de leur forte érodibilité, de leur composition chimique très déséquilibrée et de leurs teneurs souvent élevées en
ions toxiques constituent une menace pour les sols sous-jacents.
Ces sols sont généralement situés au pied des massifs miniers,
entre les sols ferrallitiques des plateaux riches en minerai et
les plaines alluviales. La végétation naturelle qui forme écran
entre les déblais miniers et la plaine doit donc être protégée
au maximum.

- Les sols ferrallitiques des massifs miniers sont les sources de minerai. Dans les zones pauvres en minerai ou après exploitation ils peuvent être reboisés.

Catégorie de sol	Surface approximative	% par rapport à la surface totale
Sol de culture	3000 ha	4,1 %
Sol pouvant être aménagé en paturage intensif	7000 ha	9,6 %
Sol à conserver en patu- rage extensif ou à re- boiser	30.000 ha	41,2 %
Sol pouvant être reboisé	6000 ha	8,1 %
Sol à conserver en végé- tation naturelle et à protéger des :feux	11.000 ha	15 , 0 %
Sol à mettre en défend antiérosif	16.000 ha	22,0 %

Tableau 2

Sur le tableau 2 figurent les surfaces approximatives, en valeur absolue et en pourcentage des diverses catégories de sols de la région. Environ 10.000 ha soit environ 15 % de la surface de la région se prètent à l'implantation de prairies artificielles, les 3000 ha d'alluvions périodiquement innondables étant de beaucoup les meilleures terres.

4. Influence de l'exploitation minière sur les sols de la région

La pollution des vallées par des déblais miniers est un phénomène de plus en plus fréquent dans le territoire. Les sédiments apportés par les crues agissent de deux façons sur les cultures :

- de texture très fine, ils se déposent sur les feuilles et provoquent une sorte d'asphyxie des végétaux;
- par leur composition chimique défavorable aux plantes (richesse en magnésium, nickel, chrome et cobalt) ils stérilisent littéralement les sols. A court terme de tels apports risquent donc de détruire les cultures en place, à long terme ils peuvent entrainer une diminution très grave du potentiel agropastoral.

4.1 Etat de la pollution minière dans la région, exemple la vallée de la Voh.

La région de Koné, Voh a été l'objet depuis 50 ans de diverses prospections et exploitations minières tant sur les massifs du Koniambo Katepahie que plus récemment sur le Oua-tilou. Afin de juger de l'influence de ces exploitations sur les sols, nous avons fait divers prélèvements dans les alluvions de la Voh et les avons comparés à des prélèvements de sédiments déposés lors de la dernière crue dans la vallée de Népoui (vallée dont le bassin versant est actuellement en pleine exploitation minière.

	Profondeur		en me	E1	éments		%0	
Type de sédiment	en om	Ca ⁺⁺	Mg++	K ⁺	P ₂ 0 ₅	NiO	^C ² 2 ⁰ 3	к ₂ 0
Alluvions anciennes prélevées au con-	0 - 10	46.8	42•7	13.1	0.03	0.32	0.39	0.05
fluent de la Congo et de la Kamendoua.	70 – 80	52.9	69.9	17.7	0.02	0.35	0.32	0.05
Alluvions récentes	0 - 10	45.8	184.0	19.2	0.05	2.39	1.10	0.16
prélevées au village de Tieta.	70 - 80	41.7	145.0	18.3	0.10	0.66	0.53	0.06
Alluvions récentes prélevées en aval	Dépot crue 1972	44.8	235.0	19.2	0.17	3 .6 8	0.78	0.25
de Voh.	60 ↔ 70	41.2	148.9	16.0	0.09	0.62	0.47	0.05
Dépot de crue 1972 dans la vallée de Népoui au niveau de la RT 1.	0. – 5	1.27	394•7	2.59	0.03	14•5	4•53	0•79

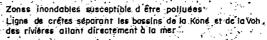
Tableau 3. Analyse totale de divers prélèvements d'alluvions de la Voh et de la Népoui.

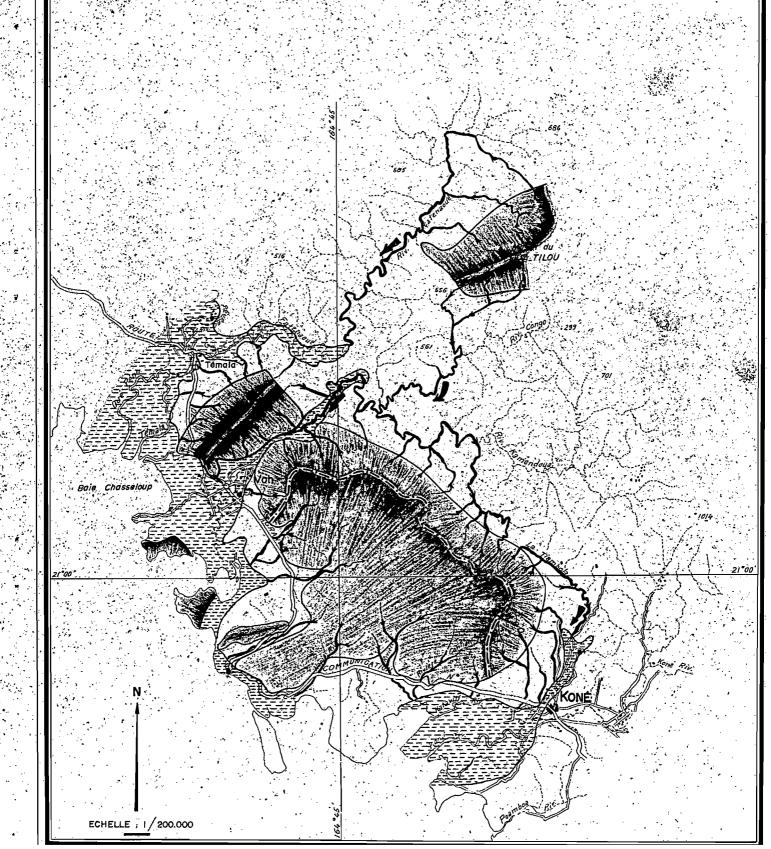
Le tableau 3 permet de faire trois constations :

- Les alluvions anciennes, situées en arrière du Koniambo et les horizons de profondeur sont peu déséquilibrés au point de vue chimique. Le rapport Ca⁺⁺/Mg⁺⁺ne dépasse pas 4, en aval de Voh, en profondeur. Les teneurs en NiO, Cr₂O₃ et CoO sont faibles.
- Les alluvions récentes sont beaucoup plus déséquilibrées. Il faut remarquer que si l'exploitation du Koniambo est ancienne, jusqu'à présent elle avait été le plus souvent faite manuellement. Sur le Oua-tilou seule une prospection a été faite. Ces faibles travaux semblent avoir suffi à entrainer une modification de la composition des alluvions sans pourtant compromettre encore sérieusement les cultures.
- Les alluvions de la Népoui, provenant d'un massif en pleine exploitation, sont très différentes. Il y a alors franchement apport d'un matériel stérile, voire toxique pour certaines plantes.

4.2 Perspectives de pollution dans la région

La figure 7 indique les risques de pollution des sols en cas d'exploitation minière non controlée de la région. Les principales zones touchées seraient les vallées de la Koné, de la Voh


CARTE DES DANGERS DE POLLUTION DES TERRES EN CAS D'EXPLOITATIONS MINIÈRES


LÉGENDE

Massifs miniers

Cours d'acu succeptible d'âtre pollude

et de la Témala : elles comprennent tout ou partie des sols que nous avons classés sols peu évolués d'apport sur alluvions récentes et sols peu évolués d'apport sur alluvions marines.

Les sols peu évolués d'apport sur alluvions récentes représentent les meilleures terres de la région : elles apparaissent à plus ou moins long terme, fortement menacées par l'exploitation minière.

La situation se révèle toutefois moins grave lorsque l'on observe la structure du massif du Koniambo qui serait l'une des plus grosse réserve en nickel de Nouvelle-Calédonie. L'orientation de ce massif fait que les trois quart de sa surface, comprenant vraisemblablement les gisements les plus riches, drainent directement vers la mer sans que leurs eaux risquent de polluer les grandes vallées périphériques. Les sols des petits bassins littoraux n'ont qu'une valour agronomique, faitble, étant eux mêmes constitués d'alluvions anciennes issues du massif. En cas d'exploitation l'alimentation en eaux de la tribu d'Ounjo et de quelques stations d'élevage, Pinjen et Ta en particulier, pourrait cependant soulever certains problèmes.

Pour le massif du Katepahie, la situation est moins favorable, de nombreux ruisseaux prenant leur source dans ce massif rejoignant les vallées de Témala et de Voh.

Enfin le massif du Oua-tilou, situé à 40 km à l'intérieur des terres, est drainé vers la côte Ouest par la Congo qui se jette dans la Voh et par la Fatenahoué qui se jette dans la Témala. Ce massif très escarpé a déjà été fortement dégradé par la prospection minière. De nombreux faux ont détruit une grande partie de la végétation. Son exploitation aurait de graves conséquences pour les secteurs situés en aval.

Conclusion

L'étude du potentiel agropédologique de la région de Koné Voh Témala et de l'influence prévisible de l'exploitation des massifs miniers de la région sur ce potentiel nous a permis de faire plusieurs constations :

- La plus grande partie du potentiel agropédologique de la région se trouve concentré dans les plaines de Koné, de Voh et de Témala.

- Ces zones sont aussi les plus menacées en cas d'exploitation minière mal controlée.
- La majeure partie du massif du Koniambo Katepahie pourrait toutefois être exploitée sans grand dommage pour le potentiel agronomique de la région.
- Il faudrait cependant protéger le plus parfaitement possible les bassins versants débouchant dans les vallées de la Koné, de la Voh et de la Témala. Par là même, le massif du Oua-tilou devrait être protégé tant que des techniques suffisamment économiques de fixation des décharges n'auront pas été mise au point (ce qui semble exclu dans l'immédiat).

Cette étude préliminaire nous a apporté quelques données qui pourraient permettre avec la collaboration du service des mines et des services ruraux d'esquisser un plan général d'aménagement de la région. D'ores et déjà, il apparait possible de délimiter les secteurs pouvant être exploités sans risques graves et les secteurs qu'il importe de protéger.

BIBLIOGRAPHIE

- ARNOULD. A, AVIAS J., ROUTHER P., 1957 1958 Cartos géologiques de la Nouvelle-Calédonie au 1/100.000 feuilles n° 3 et n° 4.
- BALTZER F., 1969 Les formations végétales associées au delta de la Dumbéa (Nouvelle-Calédonie).

 Cah. ORSTOM série Geol. I 1 p. 59 84
- BALTZER F., TRESCASES J.J., 1971 Erosion, transport et sédimentation liés aux cyclônes tropicaux dans les massifs d'ultrabasites de Nouvelle-Calédonie. Cah. ORSTOM ser. Geol. 1971 III, 2, p 221 - 224.
- B.R.G.M. Cartes géologiques de la Nouvelle-Calédonie au 1/50.000 feuille Pouembout, Goyeta-Pana, Voh (à paraître).
- JAFFRE T., Etude de la végétation du massif du Koniambo (en préparation)
- LATHAM M., QUANTIN P., AUBERT G., 1972 Mise au point sur la classification des principaux sols de Nouvelle-Calédonie (en préparation).
- PIEYNS S., BONNET DE LARBOGNE Y., 1972 Etude hydrologique du massif du Koniambo.- Katepahie.

 Ronéo ORSTOM Nouméa 17 p.

TECHNIQUE OUTRE MER LA RECHERCHE SCIENTIFIQUE ET OFFICE DE

ETUDE PRELIMINAIRE DU POTENTIEL AGROPEDOLOGIQUE

DE LA REGION DE KONE VOH TEMALA

Annexes

profils pédologiques

M. LATHAM

1972

DFFICE DE LA RECHERCHE SCIENTIFIQUE ET TECHNIQUE DUTRE-MER

Laboratoire de Pédologie

-:-:--

Etude préliminaire du potentiel agropédologique de la région de Koné Voh Témala

annexes
profils pédologiques

M. LATHAM

SOMMAIRE

- Sol peu évolué d'apport sur alluvions récentes et anciennes	KO 9 KO 21
- Vertisol à drainage externe réduit sur alluvions dérivant de basalte	ко в
- Vertisol à drainage externe réduit sur alluvions ferrugineuses	ко 36
- Vertisol à drainage externe possible sur basalte	KO 18
- Sol calcimagnesimorphe - Rendzine	KO 12
- Sol brunifié brun eutrophe tropical sur basalte	KO 19
- Sol brunifié brun eutrophe tropical sur serpentinite	KD 29
 Sol fersiallitique désaturé appauvri sur formation à charbon 	KO 3 KO 4
- Sol fersiallitique désaturé modal sur schiste	KO 6 GP 3
- Sol ferrallitique "ferrique" sur roche ultrabasique	KO 24 KO 35
- Sol hydromorphe minéral à glev eur alluvions anciennes	KN 7

DOSSIER DE CARACTÉRISATION PÉDOLOGIQUE

			,
CLASSE	SOL PEU EVOLUE	PROFIL	***
SÓUS-CLASSE	NON CLIMATIQUE		KO
GROUPE	D'APPORT		
SOUS-GROUPE	ALLUVIAL	Mission/Dossier :	Kor
Famille	Sur alluvions récentes	Observateur :	М.
Série	Argilo limoneux , profond	Date d'observatio	n: 19

9

niambo

LATHAM

9 - 11 - 71

LOCALISATION

Lieu: Tribu de Tieta près de la VOH Coordonnées : 20° 55 20 de Latitude Sud

164º 44! 30" de Longitude Quest

20 m d'Altitude Document carto.: Carte IGN 1/50.000 VOH

Mission I.G.N.: Photo aérienne : Photographie:

CLIMAT

Tropical humide Type:

Pluviométrie moyenne annuelle : 1232 mm

23° C Température moyenne annuelle :

Saison lors de l'observation :

Saison sèche et chaude

Station: Congo

15 ans Période de référence :

SITE

Géomorphologique :

Plaine alluviale

Topographique:

Plane Rapide

Drainage: Erosion:

En nappe

Pente en % :

MATERIAU ORIGINEL

Alluvions récentes Nature lithologique :

Type et degré d'altération : Etage stratigraphique :

Impuretés ou remaniements :

VEGETATION

Secondaire après plantation Aspect physionomique :

Composition floristique par strate':

UTILISATION

Modes d'utilisation : Culture vivrière

Techniques culturales :

Modelé du champ :

Successions culturales :

Jachère, durée, périodicité :

Densité de plantation : Rendement ou aspect végétatif :

ASPECT DE LA SURFACE DU TERRAIN

Microrelief: Uni

Edifices biologiques : Néant Dépôts ou résidus grossiers : Néant

Affleurements rocheux :

Néant

EXTENSION ET RELATION AVEC LES SOLS VOISINS

DESCRIPTION DU PROFIL

GROUPE SOUS-GROUPE Famille Série

-	Croquis du profil	Prélèvements numéro du sac	Profondeur en cm et nomenclature des horizons	
.A.		KO 91 O - 10	0 - 15	Profil observé sur un sondage Frais - brun foncé 10 YR 3/3 argilo limoneux - structure fragmentaire nette : grumeleuse à polyédrique subangulaire - nombreuses racines moyennes et fines
		KO 92 70 - 80	15 - 80 C	Limite distincte et régulière Frais - beige brun 10 YR 4/2 argilo limoneux - structure fragmentaire peu nette: polyédrique moyenne - quelques racines moyennes et fines
R				
rji				
.÷.				

LIPUE	AWALT	IIGUE

					T		!				1
DBAFIL	7		۱۵۵.	15			P 316				
			P 31	12	1	:	E 210			1	
TRUFIL KO			٠, .			!	3 0				
	Horizon		1.]	<u> </u>	 	<u> </u>	3. 0			+	HRZ
	Groupe	13				·I				1	GR
9	Sous-groupe	17									SG
	(Famille)	21									FM
	(Série)	25			T						SR
	(Région)	29									RG
	Numéro du sac	33	/-		-e		92			_	SAC
	Profondeur minimale	le en cm 37		1			70		!	1	PMI
	Profondeur maximale	41					80				PMA
Granulométrie	Refus	45	5 %,			†					REF
en 10 -2	Carbonate de calcium	m 49				1					CDC
	Argile	53	24.6	ς <u>†</u>		1	19.4				ARG
44		à 20 µ 57	-4=-1 • `			† ·	20.1		†		LMF
		0 à 50 μ 61					16.9	 -	1	,	LMG
	-	0 à 200 µ 65					36.1	-		<u></u>	SBF
	Sable rm 50	69 69					6.31			t	SBG
	Sable grossic.	73	۱ <u>۹۰</u> ۲	<u>, </u>	1	1	1	1	1	1	CARTE
Matières organiques	•	13			-		6.59		<u> </u>		C
Matières organiques en 10-3	Carbone	17			<u> </u>		1.07		T		N
GIT 1.5	Azote			<u>-</u>			T.01				
	Acides humiques	21	i					i		ļ.	AH AHB
	Acides humiques bru	==			+					L	AHB
	Acides humiques gris				i			L			AHG
	Acides fulvíques	33							l +		AF
Acidité	pH eau 1/2,5	37	,	0		İ	7.50				PHE
	pH chlorure de potas				1		Ī		Ţ		РНК
Cations échangeables	Calcium (Ca++ 45					3.75				CAE
en mé		Mg++ 49	•		1	<u>.</u>	11.3				MGE
	-	K+ 53					0.04				KE
		Na+ 57				 	0.13		T		NAE
	Capacité d'échange	61		•			15.5				T
Acide phosphorique	Phosphore total	65				 	0.10		ļ		PT
40.2	,				+	+		,	 		PAT
en 10-3	Phoenhore assim. Tru	uog 69	, i.	1						•	
'e' 6U IO-2	Phosphore assim. Tru	uog 69 73		2	2	2	2	2	2	2	4
ie ⁷ eu 10-2		73	3 2	2	2	2	2	2	2	2	CARTE
د. en 10-3	Phosphore assim. Olse	73 sen 13	3 2	2	2	2	2	2	2	2	CARTE PAO
<i>a</i>	Phosphore assim. Olse Phosphore ass. citriqu	50 73 75 15 15 15 15 15 15 15 15 15 15 15 15 15	3 2		2	2		2	2	2	PAC
Eléments totaux (tríacide)	Phosphore assim. Olse Phosphore ass. citriqu Perte au feu	73 sen 13 jue 17 21	2 3 7 1 11.9		2	2	5.58	2	2	2	PAC PRT
<i>a</i>	Phosphore assim. Olse Phosphore ass. citriqu Perte au feu Résidu	73 sen 13 jue 17 21	2 3 7 1 11.9		2	2		2	2	2	PAC PAC PRT RSD
Eléments totaux (tríacide)	Phosphore assim. Olse Phosphore ass. citriqu Perte au feu Résidu Silice	73 sen 13 jue 17 25 SI 02 29	2 3 7 1 11.9			2	5.58	2	2	2	PAC PAC PRT RSD SI
Eléments totaux (tríacide)	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine	sen 10 100 17 100 17 20 20 20 20 20 20 20 20 20 20 20 20 20	2 3 7 1 11.9 5 9 3 8.36		2	2	5.58	2	2	2	PAO PAC PRT RSD SI AL
Eléments totaux (tríacide)	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine A Fer F	SI 02 29 AI2 03 33 Fe2 03 37	2 3 7 1 11.9 5 7 9.49			2	5.58 8.74 7.30	2	2	2	PAO PAC PRT RSD SI AL FE
Eléments totaux (tríacide)	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine A Fer F Titane	SI 02 29 AI2 03 33 Fe2 03 37 TI 02 41	2 3 1 11.9 5 3 8.36 7 9.49 1 0.48			2	5.58 8.74 7.30 0.53	2	2	2	PAO PAC PRT RSD SI AL FE
Eléments totaux (tríacide)	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine A Fer F Titane T Manganèse A	SI 02 29 AI2 03 33 Fe2 03 37 TI 02 41 Mn 02 45	3 2 3 7 1 11.9 5 9 49 7 9 49 1 0 48 5 0 20			2	5.58 8.74 7.30	2	2	2	PAC PRT RSD SI AL FE TI MN
Eléments totaux (tríacide) en 10-2	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine A Fer F Titane T Manganèse A	SI 02 29 AI2 03 33 Fe2 03 37 TI 02 41 Mn 02 45 Fe2 03 49	3 2 3 7 1 11.9 5 9 49 1 0.48 5 0.20			2	5.58 8.74 7.30 0.53 0.13	2	2	2	PAO PAC PRT RSD SI AL FE
Eléments totaux (tríacide)	Phosphore assim. Olsa Phosphore ass. citrique Perte au feu Résidu Silice Alumine Fer Titane Manganèse Fer Ibbre	SI 02 29 AI2 03 33 Fe2 03 37 TI 02 41 Mn 02 45 Fe2 03 49 Ca++ 53	2 3 7 1 11.9 5 3 8.36 7 9.49 1 0.48 5 0.20			2	5.58 8.74 7.30 0.53 0.13	2	2	2	PAC PRT RSD SI AL FE TI MN FEL CA
Eléments totaux (tríacide) en 10-2	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine A Fer F Titane T Manganèse A Fer libre F Calcium O	SI 02 29 AI2 03 33 Fe2 03 37 H00 45 Fe2 03 49 Ca++ 53 Mg++ 57	3 2 3 7 1 11.9 5 9 3 8.36 7 9.49 1 0.48 5 0.20 9 3 45.8 7 184.			2	5.58 8.74 7.30 0.53 0.13 41.7 145.	2	2	2	PAO PAC PRT RSD SI AL FE TI MN FEL
Eléments totaux (tríacide) en 10-2	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine A Fer F Titane T Manganèse A Fer libre F Calcium C Magnésium M	SI 02 29 AI2 03 33 Fe2 03 37 H00 45 Fe2 03 49 Ca++ 53 Mg++ 57	2 3 7 1 11.9 5 3 8.36 7 9.49 1 0.48 5 0.20			2	5.58 8.74 7.30 0.53 0.13	2	2	2	PAC PRT RSD SI AL FE TI MN FEL CA
Eléments totaux (tríacide) en 10-2	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine A Fer F Titane T Manganèse Fer Ibbre F Calcium Magnésium Potassium R	SI 02 29 AI2 03 33 Fe2 03 37 TI 02 41 Mn 02 45 Fe2 03 49 Ca++ 53 Mg++ 57 K- 61	3 2 3 7 1 11.9 5 9 3 8.36 7 9.49 1 0.48 5 0.20 9 3 45.8 7 184.			2	5.58 8.74 7.30 0.53 0.13 41.7 145. 18.3 7.53	2	2	2	CARTE PAO PAC PRT RSD SI AL FE TI MN FEL CA MG
Eléments totaux (tríacide) en 10-2	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine A Fer F Titane T Manganèse Fer Ibbre F Calcium Magnésium Potassium K Sodium N	SI 02 29 AI2 03 33 Fe2 03 37 TI 02 41 Mn 02 45 Fe2 03 49 Fe2 03 49 K+ 61 Na+ 65	3 2 3 3 7 11.9 5 9.49 6 0.20 7 184. 6 19.2 5 5.96			2	5.58 8.74 7.30 0.53 0.13 41.7 145. 18.3	2	2	2	CARTE PAO PAC PRT RSD SI AL FE TI MN FEL CA MG
Eléments totaux (triacide) en 10-2 en mé	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine A Fer F Titane T Manganèse Fer Ibbre F Calcium Magnésium Potassium K Sodium N	SI 02 29 AI2 03 33 Fe2 03 37 TI 02 41 Mn 02 45 Fe2 03 49 Ca++ 53 Mg++ 57 K- 61 Na+ 65 NI 02 68	3 2 3 3 7 11.9 5 3 8.36 7 9.49 6 0.20 9 45.8 7 184. 1 19.2 5 5.96 9 3.39			3	5.58 8.74 7.30 0.53 0.13 41.7 145. 18.3 7.53	3	3	2	CARTE PAO PAC PRT RSD SI AL FE TI MN FEL CA MG K NA
Eléments totaux (triacide) en 10-2 en mé	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine A Fer F Titane T Manganèse Fer libre F Calcium Magnésium Potassium K Sodium Nickel III	SI 02 29 AI2 03 33 Fe2 03 41 Mn 02 45 Fe2 03 49 Ca++ 57 K+ Na+ 65 NI 02 69	3 2 3 3 7 11.9 5 9.49 6 9.49 6 0.20 9 3 45.8 7 184. 1 19.2 6 5.96 9 3.39 3 3	3			5.58 8.74 7.30 0.53 0.13 41.7 145. 18.3 7.53 0.66 3			2	CARTE PAO PAC PRT RSD SI AL FE TI MN FEL CA MG
en mé	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine A Fer F Titane T Manganèse Fer Ibbre F Calcium Magnésium R Potassium K Sodium Nickel N	SI 02 29 Al2 03 33 Fe2 03 37 TI 02 41 Mn 02 49 Fe2 03 49 Ca++ 53 Mg++ 57 K+ 61 Na+ 65 NI 02 69 Cr2 03	3 2 3 2 3 3 4 7 11.9 5 7 9.49 6 0.20 9 3 45.8 7 184. 1 19.2 5 5.96 9 3.39 3 1.11	3			5.58 8.74 7.30 0.53 0.13 41.7 145. 18.3 7.53 0.66			2	CARTE PAO PAC PRT RSD SI AL FE TI MN FEL CA MG K NA
en mé	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine A Fer F Titane T Manganèse Fer Ilbre F Calcium Magnésium Potassium K Sodium Nickel III Chrome C Cobalt C	Si 02 29 Al2 03 33 Fe2 03 37 TI 02 41 Mn 02 45 Fe2 03 49 Ca++ 53 Mg++ 57 K- 61 Na+ 65 Na+ 65 Cr2 03 73 Co 0	3 2 3 3 7 11.9 5 9.49 6 0.20 7 184. 6 5.96 7 184. 7 184. 7 19.2 8 5.96 9 3.39 3 1.11 7 0.16	3			5.58 8.74 7.30 0.53 0.13 41.7 145. 18.3 7.53 0.66 3 0.53 0.06			2	CARTE PAO PAC PRT RSD SI AL FE TI MN FEL CA MG K NA
Eléments totaux (triacide) en 10-2 en mé en mé co 10 -3 Structure et caractéristiques hydriques	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine Fer Titane T Manganèse Fer Irbre F Calcium Magnésium Potassium K Sodium Nickel III Chrome Cobalt C C Cobalt C C C C C C C C C C C C C C C C C C C	SI 02 29 Al2 03 33 Fe2 03 37 TI 02 41 Mn 02 45 Fe2 03 49 Fe2 03 49 K+ 61 Na+ 65 NI 02 69 Cr2 03 17 Co 0	3 2 3 3 7 11.9 5 9.49 6 0.20 7 184. 6 5.96 9 3.39 3 1.11 7 0.16	3			5.58 8.74 7.30 0.53 0.13 41.7 145. 18.3 7.53 0.66 3 0.53 0.06 11.2			3	CARTE PAO PAC PRT RSD SI AL FE TI MN FEL CA MG K NA
en mé co 10-3 Structure et caractéristiques hydriques	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice	SI 02 25 Al2 03 33 Fe2 03 37 TI 02 41 Mn 02 45 Fe2 03 49 Ca++ 53 Mg++ 57 K- 61 Na+ 65 Na+ 65 Na+ 65 Cr2 03 17 Cr2 03 17 Cr2 03 27 Crais 25	3 2 3 3 7 11.9 5 9.49 6 0.20 7 184. 6 19.2 6 5.96 9 3.39 3 1.11 7 0.16	3			5.58 8.74 7.30 0.53 0.13 41.7 145. 18.3 7.53 0.66 3 0.53 0.06 11.2 21.5			3	CARTE PAO PAC PRT RSD SI AL FE TI MN FEL CA MG K NA
en mé co 10-3 Structure et caractéristiques hydriques	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine Fer Titane T Manganèse Fer Irbre F Calcium Magnésium Potassium K Sodium Nickel III Chrome Cobalt C C Cobalt C C C C C C C C C C C C C C C C C C C	SI 02 25 AI2 03 33 Fe2 03 37 TI 02 41 Mn 02 45 Fe2 03 49 Ca++ 53 Mg++ 57 K- Na+ 65 Na+ 65 Na+ 65 Na+ 65 Cr2 03 73 Co 0 71 Trais	3 2 3 3 7 11.9 5 9.49 6 0.20 9 184. 1 19.2 6 5.96 9 3.39 3 1.11 7 0.16 9 16.5	3			5.58 8.74 7.30 0.53 0.13 41.7 145. 18.3 7.53 0.66 3 0.53 0.06 11.2			3	CARTE PAO PAC PRT RSD SI AL FE TI MN FEL CA MG K NA
en mé en mé co 10-3 Structure et caractéristiques hydriques	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice	SI 02 29 AI2 03 33 Fe2 03 37 TI 02 41 Mn 02 45 Fe2 03 49 Ca++ 53 Mg++ 57 K- 61 Na+ 65 NI 02 73 Co 0 21 Trais 25	3 2 3 3 7 11.9 3 8.36 7 9.49 6 0.20 9 184. 1 19.2 6 5.96 9 3.39 3 1.11 7 0.16 9 16.5 3 31.6	3			5.58 8.74 7.30 0.53 0.13 41.7 145. 18.3 7.53 0.66 3 0.53 0.06 11.2 21.5			3	CARTE PAO PAC PRT RSD SI AL FE TI MN FEL CA MG K NA
en mé en mé co 10-3 Structure et caractéristiques hydriques	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine A Fer F Titane T Manganèse Fer libre F Calcium Magnésium N Potassium N Nickel N Chrome Cobalt C RESE H Sol for PF 3 PF 4,2	SI 02 29 Al2 03 33 Fe2 03 49 Mn 02 49 Fe2 03 49 K- 61 Na+ 65 Na+ 65 Na+ 65 Na+ 65 Cr2 03 73 Co 0 21 Crais 25 33 33	3 2 3 3 7 11.9 5 9.49 7 9.49 7 184. 7 184. 7 184. 8 5.96 9 3.39 3 1.11 7 0.16	3			5.58 8.74 7.30 0.53 0.13 41.7 145. 18.3 7.53 0.66 3 0.53 0.06 11.2 21.5 10.2			2	CARTE PAO PAC PRT RSD SI AL FE TI MN FEL CA MG K NA
en mé en mé co 10-3 Structure et caractéristiques hydriques	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine A Fer F Titane T Manganèse Fer libre F Calcium Magnésium M Potassium S Sodium M Nickel S Chrome C Cobalt C RRSS H Sol for PF 3 PF 4.2 Instabilité structurale Perméabilité	SI 02 25 25 Al2 03 33 Fe2 03 37 Tl 02 Al7 02 Fe2 03 Ca++ Si Na+ R- R- Na+ R- R- Na+ R-	3 2 3 2 3 8.36 7 9.49 6 0.20 6 0.20 7 184. 1 19.2 6 5.96 9 3.39 3 1.11 7 0.16 9 16.5	3			5.58 8.74 7.30 0.53 0.13 41.7 145. 18.3 7.53 0.66 3 0.53 0.06 11.2 21.5			3	CARTE PAO PAC PRT RSD SI AL FE TI MN FEL CA MG K NA
en mé en mé co 10-3 Structure et caractéristiques hydriques	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine Fer Titane T Manganèse Fer libre Fer Calcium Magnésium Potassium K Sodium M Nickel III Chrome Cobalt C TRES H Sol for PF 3 PF 4,2 Instabilité structurale Perméabilité Matière organique 10-	SI 02 25 25 25 25 25 25 25 25 25 25 25 25 25	3 2 3 3 7 11.9 5 3 8.36 7 9.49 6 0.20 9 184. 1 9.2 6 5.96 9 3.39 3 1.11 7 0.16 9 16.5 9 16.5	3			5.58 8.74 7.30 0.53 0.13 41.7 145. 18.3 7.53 0.66 3 0.53 0.06 11.2 21.5 10.2			3	CARTE PAO PAC PRT RSD SI AL FE TI MN FEL CA MG K NA
en mé en mé ca 10-3 Structure et caractéristiques hydriques	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine Fer Titane T Manganèse Fer libre F Calcium Magnésium Potassium Nickel Manganèse Manganèsium Magnésium M	SI 02 29 29 41 20 3 3 3 41 20 3 49 49 49 49 49 49 49 49 49 49 49 49 49	3 2 3 3 7 11.9 3 8.36 7 9.49 6 0.20 8 7 184. 1 9.2 6 5.96 9 3.39 3 1.11 7 0.16 9 16.5 9 31.6 9 16.5	3			5.58 8.74 7.30 0.53 0.13 41.7 145. 18.3 7.53 0.66 3 0.53 0.06 11.2 21.5 10.2			3	CARTE PAO PAC PRT RSD SI AL FE TI MN FEL CA MG K NA
en mé en mé ca 10-3 Structure et caractéristiques hydriques	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine Fer Titane T Manganèse Fer libre F Calcium Magnésium Nickel Manganèse Manganèse Manganèse Manganèse Manganèse Manganèse Manganèse Manganèsium Magnésium M	Sen 13 Sen 15 Sen 17 3 2 3 3 7 11.9 3 8.36 7 9.49 6 0.20 8 7 184. 1 9.2 6 5.96 9 3.39 3 1.11 7 0.16 9 16.5 9 31.6 9 16.5	3			5.58 8.74 7.30 0.53 0.13 41.7 145. 18.3 7.53 0.66 3 0.06 11.2 21.5 10.2			3	CARTE PAO PAC PRT RSD SI AL FE TI MN FEL CA MG K NA	
en mé en mé ca 10-3 Structure et caractéristiques hydriques	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine A Fer F Titane T Manganèse Fer libre F Calcium Magnésium M Potassium K Sodium M Nickel M Chrome C Cobalt C TRESE H Sol for PF 3 PF 4,2 Instabilité structurale Perméabilité Matière organique 10- C/N Ac Fulv/Ac, humique S, bases ech. mé.	Sen 13 Sen 15 Sen 17 3 2 3 3 4 11.9 3 8.36 7 9.49 6 0.20 6 0.20 7 184. 1 19.2 6 5.96 6 3.39 3 1.11 7 0.16 6 16.5 7 184. 1 19.2 1 19	3			5.58 8.74 7.30 0.53 0.13 41.7 145. 18.3 7.53 0.66 3 0.53 0.06 11.2 21.5 10.2			3	CARTE PAO PAC PRT RSD SI AL FE TI MN FEL CA MG K NA	
en mé en mé co 10-3 Structure et caractéristiques hydriques	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine A Fer F Titane T Manganèse Fer libre G Calcium M Magnésium N Nockel N Chrome C Cobalt C Chrome C Cobalt C Chrome C Cobalt C C RESE H Sol f PF 3 PF 4.2 Instabilité structurale Perméabilité Matière organique 10- C/N Ac Fulv/Ac, humique S, bases ech, mé, Toux de saturation o/	Si 02 29 Al2 03 33 Fe2 03 37 TI 02 41 Mn 02 45 Fe2 03 49 Ca++ 53 Mg++ 57 K- 61 Na+ 65 Na+ 65 Na+ 65 Cr2 03 77 Cr2 03	3 2 3 3 6 11.9 6 9.49 6 0.20 7 9.49 6 0.20 8 184. 7 184. 1 19.2 6 5.96 9 3.39 3 1.11 7 0.16 9 16.5 9 16.5 9 16.5 9 16.5 9 16.5 9 16.5 9 16.5	3			5.58 8.74 7.30 0.53 0.13 41.7 145. 18.3 7.53 0.66 3 0.06 11.2 21.5 10.2			3	CARTE PAO PAC PRT RSD SI AL FE TI MN FEL CA MG K NA
en mé en mé co 10-3 Structure et caractéristiques hydriques	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine Fer F Titane T Manganèse Fer libre G Calcium Magnésium Potassium Sodium M Nickel M Chrome C Cobalt C Chrome C Cobalt C C RESE H Sol f PF 3 PF 4.2 Instabilité structurale Perméabilité Matière organique 10- C/N Ac Fulv/Ac, humique S, bases ech, mé, Toux de saturation o/ S, bases Totales mé	Sen 13 Sen 15 Sen 17 3 2 3 3 4 11.9 5 0.20 6 0.20 6 0.20 7 184. 1 19.2 6 5.96 6 3.39 7 184. 1 19.2 6 5.96 7 184. 1 19.2 6 5.96 7 184. 7 184. 8 19.2 8 1.11 8 19.2 8 1.11 9 16.5 9 17.5 9 18.5 9 18	3			5.58 8.74 7.30 0.53 0.13 41.7 145. 18.3 7.53 0.66 3 0.53 0.06 11.2 21.5 10.2			3	CARTE PAO PAC PRT RSD SI AL FE TI MN FEL CA MG K NA	
Eléments totaux (triacide) en 10-2 en mé en mé ca 10-3 Structure et caractéristiques hydriques	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine Fer Titane T Manganèse Fer libre Fer Calcium Magnésium Potassium Nickel III Chrome Cobalt C RECE H Sol for PF 3 PF 4,2 Instabilité structurale Perméabilité Matière organique 10- C/N Ac Fulv/Ac, humique S, bases ech. mé. Toux de saturation o/ S, bases Totales mé Si02/Al 203	Sen 13 Sen 15 Sen 17 3 2 3 3 4 11.9 5 0.20 6 0.20 6 0.20 7 184. 1 19.2 6 5.96 7 184. 1 19.2 6 5.96 7 184. 1 19.2 6 5.96 7 184. 1 19.2 6 5.96 7 184. 7 184. 8 1.11 8 1.	3			5.58 8.74 7.30 0.53 0.13 41.7 145. 18.3 7.53 0.66 3 0.53 0.06 11.2 21.5 10.2			3	CARTE PAO PAC PRT RSD SI AL FE TI MN FEL CA MG K NA	
Eléments totaux (triacide) en 10-2 en mé en mé ca 10-3 Structure et caractéristiques hydriques	Phosphore assim. Olse Phosphore ass. citrique Perte au feu Résidu Silice S Alumine Fer F Titane T Manganèse Fer libre G Calcium Magnésium Potassium Sodium M Nickel M Chrome C Cobalt C Chrome C Cobalt C C RESE H Sol f PF 3 PF 4.2 Instabilité structurale Perméabilité Matière organique 10- C/N Ac Fulv/Ac, humique S, bases ech, mé, Toux de saturation o/ S, bases Totales mé	Sen 13 Sen 15 Sen 17 3 2 3 3 4 11.9 5 9.49 6 0.20 6 19.2 6 5.96 7 184. 1 19.2 6 5.96 7 184. 1 19.2 6 5.96 7 184. 1 19.2 6 5.96 7 184. 7 184. 8 1.11 8 1.	3			5.58 8.74 7.30 0.53 0.13 41.7 145. 18.3 7.53 0.66 3 0.53 0.06 11.2 21.5 10.2			3	CARTE PAO PAC PRT RSD SI AL FE TI MN FEL CA MG K NA	

DOSSIER DE CARACTÉRISATION PÉDOLOGIQUE

•	
CLASSE	THEO EVOLUE
SOUS-CLASSE	NEW CLINATIQUE
GROUPE	D'ALLZORT
SOUS-GROUPE	この現在なりました。
Famille	Sur alluvions anciennes
Série	Sol profend argileux

PROFIL ΚO 21

Mission/Dossier:

Koniambo

Observateur:

M. LATHAM

Date d'observation: 23 - 2 - 72

LOCALISATION

Lieu: Rt VOH-POINDAS confluent congo Kamendo vacument carto.: carte IGN 1/50.000 Coyeta Pana

Coordonnées: 20° 55† 15# de Latitude Sud Mission I.G.N.:

164° 46' 10" de Longitude Est

Photo aérienne :

35 m d'Altitude

Photographie:

CLIMAT

Type: Tropical humide Station: Congo

1232 mm Pluviométrie moyenne annuelle :

Période de référence : 15 ans

Température moyenne annuelle : 23° C

Saison chaude et humide Saison lors de l'observation :

SITE

Terrasse alluviale Géomorphologique :

Topographique:

Plane

Drainage: Erosion:

Rapide

En nappe

Pente en % :

MATERIAU ORIGINEL

Nature lithologique: Alluvions anciennes

Type et degré d'altération : Etage stratigraphique: impuretés ou remaniements :

VECETATION

Aspect physionomique: Savane à Niaoulis

composition floristique par strate: Strate arborée et arbustive : Melaleuca leucodendron

Leucena glauca

Strate herbacée : graminées.

UTILISATION

Modes d'utilisation : Paturage naturel

Jachère, durée, périodicité : Successions culturales :

Techniques culturales :

Modelé du champ :

Densité de plantation :

Rendement où aspect végétatif:

ASPECT DE LA SURFACE DU TERRAIN

Microrelief:

UNI

Edifices biologiques: Néant

Dépôts ou résidus grossiers : Néant

Affleurements rocheux:

Néant

EXTENSION ET RELATION AVEC LES SOLS VOISINS

DESCRIPTION DU PROFIL

GROUPE
SOUS-GROUPE
Famille
Série

PROFIL KO 21

1	Série			
	Croquis du profil	Prélèvements numéro du sac	Profondeur en cm et nomenclature des horizons	~
, (KO 211 0 - 10	0 - 12	Humide - brun foncé 10 YR 4/2 - à matière organique non directement décelable - argilo sableux - structure fragmentaire peu nette : polyédrique subangulaire fine - volume des vides entre les agrégats assez importants quelques sables nus - peu plastique - nombreuses racines moyennes et fines -
		KO 212 20 - 30	12 - 35 B	Transition distincte et régulière Humide - brun rouge 5 YR 4/3 - argilo sableux - structure fragmentaire nette; polyédrique moyenne à surstructure prismatique - volume des vides faibles, résibles entre les agrégats - recouvrement argileux sur la structure - peu plastique - quelques racines fines - Transition graduelle et régulière
		KO 213 70 - 80	35 - 80	Humide - brun jaunâtre 7,5 YR 5/4 - argilo sableux - structure fragmentaire nette:polyédrique moyenne à prismatique volume des vides faible entre les agrégats-poreux - quelques recouvrements argileux - plastique - quelques racines fines.
ı•	•			
انه.				
r				
			•	
٠.				
•				

Manganése Mn 02 45 0.13 0.16 0.15 MN			FICHE	ANAL	YTIQ	UE				LAT 13	
Number of use 1	DDOFIL	1									
Matifers cryaniques 1	JAKHIFII 🛰		P 356	F	P. 35 7		P 358				
Part Color	I IVOI IL KO	Horizon	9 1.1	; 2	2. ;		2.5				HR2
Subsequence 7						-					
Famile Series S	21			 							
Region 1949											FM
Markers organiques en not 10 20 20 20 20 20 20 20											SR
Protection minimate in cm 3 0,01 30 70 PMI		(Région)									RG
Canolismatric en 10-2 Carborate de calcium February		Numéro du sac			2.12						SAC
Refuser of the composition of t		Profondeur minimale en cm	- 0.01						<u></u>	<u>i</u>	
en 10 - 2 Corbonette de celcum		Profondeur maximale								+	
Acide Phosphore asin. Turnog Phosphore asin.			0.00	{	0.01		0.01		<u> </u>	: -	_
Limen in 2 a 20 µ 57 15-1				 			20 0		 		
Limon grossier 20 4 50 p 61 50 50 51 51 51 52 53 53 54 53 54 54 54 54	£.	•							t	 	
Sable for So 2 200 60 31,6 33,6 32,1 SEF SEF Section Sable groster 60 6,10 1 31,4 11,8 SEG SEF S										 	
Sable grosser 69 5											
Matières organiques en 10-3 Acides humiques pris 21 Acides humiques pris 22 Acides humiques pris 23 Acides humiques pris 23 Acides humiques pris 23 Acides humiques pris 23 Acides humiques pris 24 Acides humiques pris 25 Acides humiques pris 25 Acides humiques pris 25 Acides humiques pris 25 Acides humiques pris 26 Acides humiques pris 26 Acides humiques pris 26 Acides humiques pris 26 Acides humiques pris 27 Acides humiques pris 28 Acides humiques pris 27 Acides humiques pris 28 Acides humiques pris 29 Acides humiques p		•						-			SBG
Acides humiques bruns		•				.1		1	1	1	CARTE
Acides humiques bruns		Carbone									· C
Acidis humiques bruns	en 10-3	Azote							I	1 -	N
Acides humqueis gris		Acides humiques							1	1	•
Acidite Acidit	•	Acides humiques bruns							ļ <u>.</u>		
Acidité pH eau 1/25		. •		ļ				 			
Cations échangeables Calcium Ca++ 45 6.65 3.06 2.09 CAE		•			4 00				 		
Cations échangeables en mé Magnésium Mg++ 45 6,65 3,06 2,0 3,06 0,007 KE Magnésium Mg++ 48 6,19 7,17 11,4 MGE	Acidité		- 0.00	<u> </u>	5.30		7.00			ļ	
en mê Magnésium Mg++ 49 6.1		•			3 06		2 00	<u> </u>	 	_	
Procession Nath Signature National Procession Nath Signature National Procession Nath Signature National Procession Nath Signature National Procession Nath Nath Signature National Procession Nath	•										
Soldium Na+ 57 0.05 0.17 0.32 NAE Capacited féchange 61 12.0 10.1 8.91 T Phosphore total 65 0.03 0.05 0.02 PT Phosphore assim. Truog 69 0.03 0.05 0.02 PAT Phosphore assim. Olsen 13 Phosphore assim. Olsen 13 PAC Eléments totaux (triacide) Perre au feu 21 5.15 4.20 PAT Eléments totaux (triacide) Perre au feu 21 5.15 5.15 4.20 PAT Eléments totaux (triacide) Perre au feu 21 5.55 5.15 4.20 PAT Eléments totaux (triacide) Perre au feu 21 5.55 5.15 4.20 PAT Eléments totaux (triacide) Perre au feu 21 5.55 5.15 4.20 PAT Eléments totaux (triacide) Perre au feu 21 5.55 5.15 4.20 PAT Eléments totaux (triacide) Perre au feu 21 5.55 5.15 4.20 PAT Eléments totaux (triacide) Perre au feu 21 5.55 5.15 4.20 PAT Eléments totaux (triacide) Perre au feu 21 5.55 5.15 4.20 PAT Eléments totaux (triacide) Perre au feu 21 5.55 5.15 4.20 PAT Eléments totaux (triacide) PER de de la company de la comp	2	•		+				<u> </u>		 	
Capacité d'échange Phosphorique en 10·3 Phosphore total Phosphore total Phosphore total Phosphore assim. Truog Phosphore assim. Truog Phosphore assim. Olsen 19·3 Phosphore assim. Olsen 19·4 Phosphor									 		
Acide phosphorique et en 10-3				•			****	h	<u> </u>		
Phosphore assim, Truog	Acide phosphorique										PT
Phosphore assim. Olsen 13 PAO Phosphore ass. ctrique 17 PAO PAC	€4 en 10-3	Phosphore assim. Truog	+								PAT
Eléments totaux (triacide) en 10-2 Résidu Résidu Résidu Résidu Silice SI 02 Silice SI 02 SI 16-7 Alumine AI 2 03 Alumine AI 0 05 Cob 0 Fer Fer Fe 2 03 Fer Fer Fe 2 03 Fer Ibre Fe 2 03 Manganése Mn 02 Alumine AI 0.60 Colclum Na+ Colclum			73 2	2	2	2	2	2	2	2	CARTE
Eléments totaux (triacide) en 10-2 Résidu Sitice Si 0 29 Sitice Sitice Si 0 29 Sitice Sitice Sitice Si 0 29 Sitice	4 0	Phosphore assim. Olsen	1								
Résidu Silice Silo2 29 16.7 16.7 16.7 SI Alumine Al 20 3 33 7.98 9.12 Per Feg 20 37 5.55 7,30 6.57 FE Titane Ti 02 Manganése Mn 02 45 0.13 0.16 0.15 MnN Fer libre Feg 20 49 Calcium Ca++ 53 46.8 Magnésium Mg++ 57 42.8 Magnésium K- Sodium Na+ 65 4.00 4.65 Sodium Na+ 65 4.00 Al 65 Sodium Na+ 66 13.2 Sodium Na+ 67 4.00 Al 65 Sodium Na+ 68 13.2 Sodium Na+ 69 0.32 Sodium Na+ 69 0.33 S		Phosphore ass. citrique		1					I I		
Silice Si Si Si Si Si Si Si S									<u> </u>		
Alumine Al2 03 33 7.98 9.12 9.12 AL Fer Fe2 03 37 5.55 7.30 6.57 FE Titane Ti 102 41 0.60 0.51 0.68 Ti Manganése Mn 02 45 0.13 0.16 0.15 MN Fer libre Fe2 03 49 Calcium Ca++ 53 46.8 45.3 52.9 CA Magnésium Mg++ 57 42.8 600.0 69.9 MG Potassium K- 61 13.2 15.7 11.6 K Sodium Na+ 65 4.00 4.65 5.57 NA cm 10-3 Nickel Ni 102 69 0.32 0.50 0.35 Structure et caractéristiques hydriques Chrome Cr2 03 13 0.39 0.53 0.32 Cobalt Co 0 17 0.05 0.06 0.06 PF 4.2 29 10.9 10.1 8.83 PF 4.2 29 10.9 10.1 8.83 PF 4.2 11.46 13.2 13.5 C/N Ac Fulv/Ac. humque 49 S. bases coh. mé. 53 13.1 10.5 13.9 Toux de saturation o/o 57 10.00 > 10.05 13.9 Toux de saturation o/o 57 10.00 > 10.05 13.9 Toux de saturation o/o 57 10.00 > 10.00 > 10.00 10.00 10.00 10.00 10.00 Si 0.0/8.00 69	en ro z		:					·	 	ļ. <u> </u>	
Fer Fe2 03 37 5.55 7,30 6.57 FE Titane Ti 02 41 0.60 0.51 0.68 Ti Manganèse Mn 02 45 0.13 0.16 0.15 MN Fer libre Fe2 03 49 FEL en mé Galcium Ca++ 53 46.8 45.3 52.9 CA Magnésium Mg++ 57 42.8 60.0 69.9 MG Potassium K- 61 13.2 15.7 17.6 K Sodium Na+ 65 4,00 4.65 5.5.57 NA cm 10 -3 Nickel NI 02 69 0.32 0.50 0.35 3 Cobalt Co 0 73 3 3 3 3 3 3 3 3 3 3 3 3 3 CARTE Structure et caractéristiques hydriques Cobalt Co 0 77 0.05 0.06 0.06 Cobalt Co 0 77 0.05 Cobalt Co 0 77 0										ļ <u></u>	L
Titane Ti 02 41 0.60 0.51 0.68 Ti Manganése Mn 02 45 0.13 0.16 0.15 MNN Fer libre Fc2 03 49 FEL Calcium Cs++ 53 46.8 45.3 52.9 Calcium Magnésium Mg++ 57 42.8 60.0 69.9 MMG Potassium K- 61 13.2 15.7 17.6 K Sodrum Na+ 65 4.00 4.65 5.57 NA cm 10-3 Nickel NI 02 69 0.32 0.50 0.35 Chrome Cr2 03 13 0.39 0.53 0.32 Cobalt Co 0 17 0.05 0.06 0.06 Structure et caractéristiques hydriques Acceptable for a combinées PF 3 25 21.1 17.3 16.6 PF 4.2 Instabilité structurale PF 4.2 Instabilité structurale Matière organique 10-3 41 28.5 Toux de saturation o/o S. bases Totales mé 61 Si02/Al 203 65 Si 02/Al 203 669 Ti 0.66 O.51 O.68 O.15 O.16 O.17 O.07 O.08 O.08 O.08 O.08 O.08 O.08 O.08 O.09 O.09 O.09 O.09 O.09 O.00				1 ,	_			- 	ļ		i
Manganése Mn 02 45 0.13 0.16 0.15 MN									† ·· ·	ļ 	1
Fer libre	ч		•			-			ļ ·		İ
en mé				· ·					ļ	 	
Potassium K- 61 13.2 15.7 17.6 K Sodium Na+ 65 4.00 4.65 5.57 NA nn 10·3 Nickel Ni 02 69 0.32 0.50 0.35 Tay 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	en mé			. 4	45.3		52.9			†	
Sodium Na	1	Magnésium Mg++	57 42.8		60.0		69.9		 		MG
Chrome Cr2 03 13 0.39 0.53 0.32 0.50 0.06			i					i			К
Chrome Cr2 03 13 0.39 0.53 0.32 CARTE Cobalt Co 0 17 0.05 0.06 0.06 Cotalt Co 0 Cotalt Cotal Co			i					1			NA
Chrome Cr2 03 13 0.39 0.53 0.32 Cobalt Co 0 17 0.05 0.06 0.06 Example H Sol Frais 21 14.6 13.2 13.5 PF 3 25 21.1 17.3 16.6 PF 4.2 29, 10.9 10.1 8.83 Ponnées combinées Matière organique 10-3 41 28.5 C/N 45 10.5 Ac Fulv/Ac, humique 49 S. bases ech. mé. 53 13.1 10.5 13.9 Toux de saturation o/o S. bases Totales mé 5102/Al 203 Si 02/B 203		Nickel INI 02				_					
Structure et Cobalt Co 0 17 0.05 0.06 0.06	,			·	w	3		3	3	3	CARTE
Structure et caractéristiques hydriques PF 3 PF 4,2 Instabilité structurale Perméabilité Matière organique 10-3 C/N Ac Fulv/Ac, humique S, bases ech, mé, 53 13.1 Toux de saturation o/o S, bases Totales mé Si02/Al 203 Si 02/B 202 Si 12-1 17-3 16-6 17-3 16-6 17-3 16-6 17-3 16-6 17-3 10-5 17-3 10-5 13-5 10-6 10-1 10-5 13-9 10-5 13-9 10-5 13-9 10-5 13-9 10-5 13-9 10-5 13-9 10-5 13-9 10-5 13-9 10-5 13-9 10-5 1									 	<u> </u>	
PF 3 PF 4,2 Instabilité structurale Per méabilité Matière organique 10-3 C/N Ac Fulv/Ac, humique S. bases ech. mé. Toux de saturation o/o S. bases Totales mé Si02/Al 203 Si 02/B202	Structure et	Cobalt Co 0	,					!	<u> </u>		
PF 4,2	caractéristiques hydriques	·						!		 	ļ
Données combinées Données combinées Données combinées Perméabilité 37 28.5	♦		,					:	 	-	
Perméabilité Matière organique 10-3 C/N Ac Fulv/Ac, humique S. bases ech. mé. Toux de saturation o/o S. bases Totales mé Si02/Al 203 Si 03/B203 Perméabilité 37 41 28.5 41 28.5 10.5 10.5 13.9 >100 >100 >100 >100 >100 >100 >100 >100			19 ·	 				i I		 	
Données combinées Matière organique 10-3 C/N Ac Fulv/Ac, humique S. bases ech. mé. Toux de saturation o/o S. bases Totales mé Si02/Al 203 Si 03/B 203 Matière organique 10-3 41 28.5 45 10.5 10.5 13.9 >100 >100 >100 >100 >100 >100			37	 	!						
C/N Ac Fulv/Ac, humique S. bases ech, mé. Toux de saturation o/o S. bases Totales mé Si02/Al 203 Si 03/B 203 45 10.5 10.5 13.9 10.5 13.9 >100 >100 >100 >100 >100	•		41 28.5	-	i		*****				
Ac Fulv/Ac, humique S. bases ech, mé. 53 13.1 10.5 13.9 Toux de saturation o/o S. bases Totales mé 61 Si02/Al 203 65 Si 03/B203			45 10.5								
S. bases ech. mé. 53 13.1 10.5 13.9 Toux de saturation o/o 57 \(\) \(49					-		T- ·	
Toux de saturation o/o 57 \$\frac{100}{5100}\$ \$\frac{57}{5100}\$ \$\frac{51}{5100}\$ \$\frac{51}{5100}\$ \$\frac{51}{5100}\$ \$\frac{55}{5100}\$ \$\f			53 13.1	. 1	LO.5		13.9		I		
S. bases Totales mé 61 Si02/Al 203 65 Si 02/B 203 69			57 \ 100		ا 100				L		
Si 02/B202			61								
Si 02/R203 69		Si02/Al 203						-			
		Si 02/R203	69								

DOSSIER DE CARACTÉRISATION PÉDOLOGIQUE

·	DOSSIER DE CARACTERISATION I ED
CLASSE	VERTISOL
SOUS-CLASSE	A DRAINAGE EXTERNE POSSIBLE
GROUPE	GRUMOSOLIQUE
SOUS-GROUPE	VERTIQUE
Famille	SUR BASALTE
Série	Argileux - moyennement profond

ко 8

Mission/Dossier:

Koniambo

Observateur:

M. LATHAM

Date d'observation: 19 - 11 - 72

LOCALISATION

Lieu: Rt Koné Ateou après la station de

Coordonnées: 21° 02' 10" de Latitude Sud 164° 52' 30" de Longitude Est

40 m d'Altitude

Document carto.: carte IGN 1/50.000 Pouembout.

KONE

Période de référence: 15 ans

Mission I.G.N. : Photo aérienne :

Photographie:

CLIMAT

Tropical humide Type:

Pluviométrie moyenne annuelle : 1194 mm

23° C

Température moyenne annuelle :

Saison lors de l'observation :

saison sèche et chaude , beau temps -

SITE

Paysage ondulé formé de collines . Géomorphologique:

Pente faible dans col . Topographique:

Drainage:

Moyen,

Erosion:

En nappe.

Pente en %:

MATÉRIAU ORIGINEL

Nature lithologique: Tuff basaltique

Type et degré d'altération: Altération du tuff profende mais sol relativement peu épais

Etage stratigraphique :

Impuretés ou remaniements :

VEGETATION

Prairie Aspect physionomique:

Composition floristique par strate: Strate arbustive: Lantano camara, Psidium goyava

Sing & hellowice 9 ...

UTILISATION

Modes d'utilisation :

Prairie naturelle

Jachère, durée, périodicité :

Successions culturales:

Modelé du champ :

Techniques culturales :

Densité de plantation : Rendement ou aspect végétatif :

ASPECT DE LA SURFACE DU TERRAIN

Uni, fente de retrait en surface

Edifices blologiques : Néant

Dépôts ou résidus grossiers :

Néant

Affleurements rocheux : Néant

EXTENSION ET RELATION AVEC LES SOLS VOISINS

Sol en liaison étroite avec des sols peu profonds sur pente plus forte.

DESCRIPTION DU PROFIL

GROUPE SOUS-GROUPE Famille Série

	Série			
-	Croquis du profil	Prélèvements numéro du sac	Profondeur en cm et nomenclature des horizons	
्व पू		ко 81 0 – 15	0 - 27	Frais - brun très foncé 10 YR 3/2 - à matière organique non directement décelable - argileux - structure fragmentaire très nette : polyédrique moyenne à fine - volume des vides faible entre les agrégats - cohérent-très nombreuses racines fines et moyennes
		KO 82 40 – 50	27 – 57 ^A 3	Transition graduelle et régulière Frais - brun olive 10 YR 4/2 - argileux - structure fragmentaire très nette polyédrique grossière à prismatique - volume des vides important entre les agrégats quelques fentes de retrait - quelques faces de glissement oblique, striées, se recoupant - cohérent - quelques racines fines et moyennes.
		KO 83 60-70	57 et + C	Transition distincte et irrégulière Frais - brun jaunatre 10 YR 5/4 - altération de la roche - sablo argileux - structure de la roche conservée
£				
·				
/Ē.				,
,•				

FICHE ANALYTIQUE

		FIC	HE A	NAL	YTIQ	UE			_		
PRNFII KO			312			P 313			P 314		
I IVUI IL	Horizon	9 1.	,1		i	1.3			3. 0		HRZ
	Groupe	13	! i								GR
8	Sous-groupe	17									SG
	(Famille)	21						ļ		*****	FM
	(Série)	25 29						<u> </u>	<u> </u>		SR RG
	(Région) Numéro du sac		31		- j	82			83		SAC
	Profondeur minimale en cm		0.01			40			60		PMI
5 ⁴ 6	Profondeur maximale		L5			50			70		PMA
Granulométrie	Refus	45 -				٠,					REF
en 10 -2	Carbonate de calcium	49							4 75		CDC
•	Argile		9.8		i	57.2			4.75 6.11		ARG
	Limon fin 2 à 20 µ Limon grossier 20 à 50 µ		2.2			19.5 8.56			5.46		LMF
,	Sable fin 50 à 200 u		09 1		-,	9.62			17.8		SBF
	Sable grossier		35			4.62	- 101		63.1		SBG
	-	73	1	1	11	1	1	1	1	· 1	CARTE
Matières organiques	Carbone		5.9			9.71			1.54		С
en 10-3	Azote	17 1 . (93			0.99			0.19		N
	Acides humiques	21	ł	-							AH -
	Acides humiques bruns	25 29									AHB
	Acides humiques gris Acides fulviques	33									AF
Acidité	pH eau 1/2,5		.20			6.60			7.70		PHE
, , , , , , , , , , , , , , , , , , , ,	pH chlorure de potassium	41									РНК
Cations échangeables	Calcium Ca++	45 29	9.2			34.0			24.9		CAE
en mé	Magnésium Mg++		7.6	1		21.0			11.7		MGE
	Po tassium K+		.22			0.08		ļ	0.00		KE
	Sodium Na+		.44			0.71			9.47 38.8		NAE
A and a sharehardana	Capacité d'échange		4.0			65.6			30.0		PT
🚊 Acide phosphorique en 10-3	Phosphore total Phosphore assim. Truog	69 i	.03	<u>!</u> -	+						PAT
	r nosphore assim. Truog	73	2	2	2 .	2	2	2	2	2	CARTE
100	Phosphore assim, Olsen	13;		,							PAO
	Phosphore ass. citrique	17									PAC
Eléments totaux (triacide) en 10-2	Perte au feu	21 10	•5								PRT
en 10-2	Résidu	25						<u></u>			RSD
	Silice SI 02	²⁹ 33 1 0	6								SI
	Alumine Al2 03 Fer Fe2 03	$\frac{3310}{3710}$		<u>-</u>							FE
·	Titane TI 02	41 0 •									TI.
	Manganèse Mn 02	45 0.									MN
	Fer libre Fe2 03	49									FEL
en mé	Calcium Ca++	53 69		1.				1			CA
	Magnésium Mg + +	57 92						1			MG
	Potassium K+ Sodium Na+	61 3. 65 3.	78					ļ			K
en 10 -3	Nickel IVI 02	69 0	-	·	;	.					NA
10	11102	73	3	3 ;	3	3	ġ.	! 3	3 /	3	CARTE
	Chrome Cr2 03	13 0.									
	Cobalt Co 0	17 0.						·		-	
Structure et	PF 2,5 H Sol frais		7.2			14.7			10.7		1
caractéristiques hydriques	PF 3	25 28	8.6	,	·	32.8		1	12.5		<u> </u>
	PF 4,2	201	4.8.			29.0		 	9.09		
(**	Instabilité structurale	33	-							•	
Données combinées	Perméabilité	41 46	.4	1		16.7			2.66		
2 303 00110111063	Matière organique 10-3		.0			3.81			0.11		
	C/N Ac Fulv/Ac, humique	45 1 <u>4</u>		+				-			
	S. bases ech. mé.		.5	i	+	55.8			37.1	•	İ
	Toux de saturation o/o	57 >1				85.1			95.6		
	S bases Totales mé	61		:	i					_	
	Si02/AI 203	65									
	C U2, th 2002	ਜ਼ੌਰ [†] ਂ			·						

DOSSIER DE CARACTERISATION PEDOLOGIQUE

CLASSE	VERTISOL
SOUS-CLASSE	A DRAINAGE EXTERNE REDUIT
GROUPE	NON GRUMOSOLIQUE
SOUS-GROUPE	A structure finement divisée en surface
Famille	Sur alluvions issues de roches ultrabasiques
, Série	argileux, profonde, hypermagnésienne

ΚO 36

Mission/Dossier:

KONIAMBO

Observateur:

M. LATHAM

Date d'observation :

2 - 6 - 72

LOCALISATION

Lieu:Rt Voh Koné 3 km de Voh à 20m de KO 24pocument carto.: Carte IGN 1/50.000 Voh

Coordonnées: 20° 58° 50° de Latitude Sud 164° 42° 30° de Longitude Est

Mission I.G.N.: Photo aérienne :

14 m d'Altitude Photographie:

CLIMAT

Type: tropical humide Station:

Pluviométrie moyenne annuelle : 1171 mm

Période de référence :

Température moyenne annuelle : 23° C

Salson lors de l'observation: Saison fraiche, période très humide - sous forte pluie.

SITE

Géomorphologique: Terrasse alluviale

Topographique: Plane Lent Dráinage : Erosion:

En nappe

Pente en %:

MATERIAU ORIGINEL

Nature lithologique: Alluvions issues de roches ultrabasiques

Type et degré d'altération: bisiallitisation

Etage stratigraphique : Impuretés ou remaniements :

VECETATION

Aspect physionomique: Savane à Niaoulis

Composition floristique par strate: Niaouli : Melaleuca Leucadendron - galag en strate arborée

Strate herbacée : graminées peu abondantes

UTILISATION

Modes d'utilisation: Paturage naturel

Jachère, durée, périodicité:

Techniques culturales:

Modelé du champ : Densité de plantation : Rendement ou aspect végétatif : Successions culturales :

aspect de la surface du terrain

Microrelief :

Uni

Edifices biologiques : Néant Dépôts ou résidus grossiers : Néant

Affleurements rocheux :

Néant

EXTENSION ET RELATION AVEC LES SOLS VOISINS

Sol situé en position plus basse que KO 24 Sol ferrallitique qui appartient probablement à une autre terrasse.

DESCRIPTION DU PROFIL

GROUPE SOUS-GROUPE Famille

PROFIL KO 36

Série			
Croquis du profil	Prélèvements numéro du sac	Profondeur en cm et nomenclature des horizons	•
		0 - 10 A1	Humide - noir - argileux - 40 % d'élémentsferrugineux de forme nodulaire - structure fragmentaire nette : grumeleuse fine - volume das vides assez important entre les agrégats - peu poreux - nombreuses racines fines et moyennes -
			Transition distincte et régulière
		10 - 40	Humide - noir - argileux - 40 % d'éléments ferrugineux de forme nodulaire - structure fragmentaire très nette: prismatique grossière - volume des vides faible entre les agrégats - faces de glissement obliques - ferme - collant - nombreuses racines fines et moyennes -
			Transition distincte et régulière
•		40 - 70 (B)	Humide - Brun - argileux - 30 % d'éléments ferrugineux de forme nodulaire - structure fragmentaire très nette: prismatique grossière - volume des vides faible entre les agrégats - faces de glissement obliques - ferme - collant - quelques racines fines
			Transition distincte et régulière
s.		70 - 100	Humide - brun jaunatre - sablo argileux - serpentinite en voie d'altération.
		100 -1 20 C Mg	Horizon identique au précédent avec en plus, éléments carbonatés en encroutement CO ₂ Mg giobbertite.
•			

CLASSE	VERTISOL			
SOUS-CLASSE	A DRAINAGE EXTERNE REDUIT			
GROUPE	NON GRUMOSOLIQUE			
SOUS-GROUPE	HYDROMORPHE			
Famille	Sur alluvions issues de basaltes			
Série *,	argileux profond			

PROFIL

ко 18

Mission/Dossier: Koniambo

Observateur: M. LATHAM

Date d'observation : 22 - 2 - 72

LOCALISATION

Lieu: Rt. Koné - Koniambo après la station deDocument carto: Carte IGN 1/50.000 Pouembout.

Coordonnées: 21º 02º 10º de Latitude Sud Roniambo Mission i.G.N.:

164° 52° 30° de Longitude Est Photo aérienne :
10 m d'Altitude Photographie :

CLIMAT

Type: Tropical humide Station: Koné

Pluviométrie moyenne annuelle : 1194 mm Période de référence : 15 ans

Température moyenne annuelle : 23° C

Salson lors de l'observation: Saison chaude et humide

SITE

Géomorphologique: Plaine alluviale

Topographique: Pente faible

Drainage: Lent

Erosion: En nappe Pente en %: 3 %

MATERIAU ORIGINEL

Nature lithologique: Alluvions issues de basalte

Type et degré d'altération: bisiallitisation

Etage stratigraphique : Impuretés ou remaniements :

VEGETATION

Aspect physionomique: Paturage artificiel

composition floristique par strate: Strate herbacée : graminées, légumineuses.

UTILISATION

Modes d'utilisation : Paturage artificiel Jachère, durée, périodicité :

Techniques culturales : Successions culturales :

Modelé du champ : Densité de plantation :

Rendement ou aspect végétatif: Implantation récente.

ASPECT DE LA SURFACE DU TERRAIN

Microrelief: Uni

Edifices biologiques : Néant Dépôts ou résidus grossiers : Néant

Affleurements rocheux : Neart

EXTENSION ET RELATION AVEC LES SOLS VOISINS

Sol en liaison avec des sols hydromorphes KO 7 dans le zones plus basses.

GROUPE SOUS-GROUPE Famille Série

Serie			
Croquis du profit	Prélèvements numéro du sac	Profondeur en cm et nomenclature des horizons	
			Profil sur sondage
1		0 - 10	Humide - brun foncé - argilo limoneux - structure
		Alp	fragmentaire assez nette : grumeleux fin à moyen - volume des vides important entre les agrégats - poreux nombreuses racines fines.
			Transition distincte et irrégulière
		10 - 35	Humide - brun - argileux - structure fragmentaire très nette : prismatique grossière - volume des vides faible entre les agrégats - faces de glissement obli- ques - quelques racines fines.
		35 - 100 (B)	Humide - jaunatre - quelques petites taches ocres - argileux.
			· .
		· .	
••			,
			·
			·
			•

CLASSE	SOL CALCIMAGNESIQUE					
SOUS-CLASSE	CARBONATE					
GROUPE	RENDZINE .					
SOUS-GROUPE	MODALE					
Famille	Sur basalte avec croute calcaire					
Série	peu profond , argileux					

KO 12

Mission/Dossier: Koniambo

Observateur: M. LATHAM

Date d'observation : 22 - 2 - 72 ·

LOCALISATION

Lieu: KONE, presqu'île de FOUE

Document carto.: Carte IGN 1/50.000 Pouembout Mission I.G.N.:

Coordonnées: 210 051 401 de Latitude 164° 43° 20° de Longitude 10 m d'Altitude

Photo aérienne :

Photographie:

CLIMAT

Type: Tropical humide - Station: Koné ·

Période de référence :

Pluviométrie moyenne annuelle : 1194 mm -

Température moyenne annuelle : 23° C -

Saison lors de l'observation: Saison chaude et humide ; beau temps

SITE

Géomorphologique: Presqu'île formée par une petite colline de basalte et de serpentinite

Topographique:

Pente Rapide

Drainage: Frosion ·

En nappe ravinante

Pente en %: 28 %

MATERIAU ORIGINEL

Basalte Nature lithologique:

Type et degré d'altération: Altération relativement peu profonde

Etage stratigraphique: Impuretés ou remaniements :

VEGETATION

Aspect physionomique: Prairie

Composition floristique par strate: Strate arbustive: Accacia farnesiana, Stabistarfeta, Wiekstroemia

Strate herbacée : graminées

UTILISATION

Modes d'utilisation : Paturage naturel Jachère, durée, périodicité :

Techniques culturales : Successions culturales :

Modelé du champ :

Densité de plantation :

Rendement ou aspect végétatif :

ASPECT DE LA SURFACE DU TERRAIN

Microrelief: UNI

Edifices blologiques : Néant

Dépôts ou résidus grossiers : Néant

Affleurements rocheux :

Néant

EXTENSION ET RELATION AVEC LES SOLS VOISINS

Sol en liaison avec des sols bruns eutrophes peu évolués sur les pentes.

GROUPE SOUS-GROUPE Famille		PROFIL	KO 12
Série		han hand of the base of the ba	Accordance to Accordance to Accordance of the Ac

Série			
Croquis du profii	Prélèvements numéro du sac	Profondeur en cm et nomenclature des horizons	
	KO 121 O - 10	0 - 15	Humide - brun noir 10 YR 3/1 - à matière organique non directement décelable - faible effervescence 2 % de petits éléments calcaire - argileux - structure fragmentaire très nette - grumeleuse fine - volume des vides très important entre les agrégats - plastique très nombreuses racines fines.
	KO 122 20 - 30	15 – 35 A ₃	Transition distincte et régulière Humide - brun foncé 10YR 5/1 - effervescence - 15 % d'éléments carbonatés en grosses écailles de croute - argileux - structure fragmentaire très nette : polyé- drique fine très bien développée - peu poreux - plas- tique - très nombreuses racines moyennes et fines.
			Transition brève et ondulée
		35 et + C	Roche altérée en place imprégnée de calcaire.
			,
·			
			,

		FIUHE	ANALYII	#UE	LAT 13
DDOCU	7		P. 380	P. 381	
JPKIII KO		!	i	:	
I ITOI IL	Horizon	9	1.1	1.3	HRZ
	Groupe	13			GR
. 12	Sous-groupe	17			SG
	(Famille)	21	ļ		FM
	(Série)	25 29	 		SR
	(Région)	33		122	RG
	Numéro du sac Profondeur minimale en cm	37	0.01	20	PMI
	Profondeur minimale en cin	41	10	30	PMA
franulométrie	Refus	45	0.01	0.01	REF
en 10 ·2	Carbonate de calcium	49	14.1	18.2	CDC
•1	Argile	53	42.4	5.68	ARG
7	Limon fin 2 à 20 µ	57	20.7	43.0	i LMF
	Limon grossier 20 à 50 µ	61	5.90	16.8	LMG
	Sable fin 50 à 200 µ		14.O	13.0	SBF
	Sable grossier	69	11.5	1 10.6	SBG CARTE
			<u> </u>		- OAITE
Matières organiques en 10-3	Carbone	13	24.0		C
	Azote Acides humiques	21	2.03		AH
	Acides humiques bruns	25 !			
	Acides humiques gris	29			AHG
	Acides fulviques	33			AF
Acidité	pH eau 1/2,5	37	8.00	8.00	PHE
•	pH chlorure de potassium	41			РНК
Cations échangeables	Calcium Ca++	45	111.	112.	CAE
en mé	Magnésium Mg++	49	3.56	4.10	MGE
	Potassium K+	53	0.52	0.32	KE
	Sodium Na+	57	0.29	0.40	NAE NAE
	Capacité d'échange	61	51.8	47.8	T PT
Acide phosphorique en 10-3	Phosphore total	65	0.08		PAT
	Phosphore assim. Truog	73 2	2 2	2 2 2	2 2 CARTE
	Phosphore assim. Olsen	13;	!		PAO
é	Phosphore ass. citrique	17	÷		PAC
Eléments totaux (triacide)	Perte au feu	21	19.3		PRT
en 10·2	Résidu	251			RSD
	Silice SI 02	29			SI
	Alumine Al2 03	33	9.79		AL
	Fer Fe2 03	37	10.9		FE
	Titane TI 02	41	0.99	<u></u> j	TI
	Manganèse Mn 02	45	0.20		MN
en mé	Fer libre Fe2 03 Calcium Ca++	49 53	355		FEL
5c	Calcium C6++ Magnésium Mg++	57	175.		MG MG
	Potassium K+	61	31.9	 	K
	Sodium Na+	65	2.94		NA NA
en 10 -3	Nickel INI 02	69	0.25		-
		73 3	3 3	3 3 3	3 CARTE
	Chrome Cr2 03	13	0.15		
	Cobalt Co 0	17	0.08		
Structure et caractéristiques hydriques	EXEXX H Sol Frais	21	33.0	32.3	
caracteristiques hydriques	PF 3	25	35.5	35.7	
	PF 4,2	33	26.3	27.1	
	Instabilité structurale	37			
Données combinées	Perméabilité	41.	41.4		
	Matière organique 10-3	451	11.7		
	C/N	49			
	Ac Fulv/Ac, humique S. bases ech, mé,	45 49 53	114.	117.	
	Toux de saturation o/o	57 61	>100	>100	
	S bases Totales mé	61			
	Si02/AI 203	65 69			
	Si 02/R203	69	i I		
		70 4	شيد ا بد ا		

CLASSE	SOL BRUNIFIE
SOUS-CLASSE	DES PAYS TROPICAUX
GROUPE	BRUN EUTROPHE
SOUS-GROUPE	PEU EVOLUE
Famille	SUR BASALTE
. Série	argileux, peu profond

KO 19

Mission/Dossier: Koniambo

Observateur:

M. LATHAM

Date d'observation: 22 - 2 - 72

.QCALISATION

Lieu: Rt KONE - Atéou après station de Koniamboment carto.:

1/50.000 Pouembout carte IGN

Coordonnées: 21° 02° 10° de Latitude . 164° 52° 30° de Longitude

Mission I.G.N.:

Photo aérienne :

50 m d'Altitude

Photographie:

CLIMAT

Tropical humide Type:

Station ·

Pluviométrie moyenne annuelle :

1194 mm

Période de référence : 15 ans

Température moyenne annuelle :

Saison lors de l'observation :

23° C

Saison chaude et humide ; beau temps

SITE

Géomorphologique :

Paysage ondulé formé de collines

Topographique:

Pente forte

Drainage:

Rapide

Erosion:

EN nappe

Pente en %: 30 %

MATERIAU ORIGINEL

Basalte Nature lithologique:

Altération profonde de la roche Type et degré d'altération :

Etage stratigraphique :

Impuretés ou remaniements :

VECETATION

Prairie Aspect physionomique:

Strate arbustive: Leucena glauca, Psidium goyava Composition floristique par strate :

Strate herbacée : graminées.

UTILISATION

Paturage naturel Modes d'utilisation :

Jachère, durée, périodicité :

Techniques culturales:

Modelé du champ :

Successions culturales :

Densité de plantation :

Rendement où aspect végétatif:

ASPECT DE LA SURFACE DU TERRAIN

Uni Microrelief:

Néant **Edifices biologiques:**

Néant

Dépôts ou résidus grossiers : Affleurements rocheux :

Néant

EXTENSION ET RELATION AVEC LES SOLS VOISINS

Sol en liaison avec des sols bruns vertiques et des vertisols sur faible pente.

GROUPE SOUS-GROUPE Famille Série

Série			
Croquis du profil	Prélèvements numéro du sac	Profondeur en cm et nomenciature des horizons	
		0 - 10	Humide - brun noir - argileux - structure fragmentaire très nette grumeleuse fine - volume des vides impor-
		A ₁	tant entre les agrégats - plastique - collant è très nombreuses racines moyennes et fines.
. 20			Transition distincte et régulière
		10- 15/30	Humide - brun noir-argileux - structure fragmentaire très nette polyédrique fine - volume des vides impor-
		(B)	tant entre les agrégats - plastique - collant - nombreuses racines moyennes et fines -
			Transition nette et régulière
		15/30 et +	Frais - Brun jaune - sablo argileux - structure de la roche conservée - peu poreux - rares racines.
			·
			,

CLASSE	SOL BRUNIFIE
SOUS-CLASSE	TROPICAL
GROUPE	BRUN EUTROPHE
SOUS-GROUPE	MÖDAL
Famille	sur serpentinite
Série	argileux, moyennement profond

KO 29

Mission/Dossier: Koniambo

M. LATHAM Observateur:

MOH

24 - 2 - 72Date d'observation :

1/50.000

LOCALISATION

Lieu: Piste d'accès au Koniambo

de Latitude Sud 164°44'10 de Longitude est

m d'Altitude

Document carto. :

Mission I.G.N.: Photo aérienne : Photographie:

CLIMAT

Type: Tropical humide

Pluviométrie moyenne annuelle : 1171 mm

23° C Température moyenne annuelle :

Saison lors de l'observation :

Saison chaude et humide

Temala

carte IGN

Période de référence: 15 ans

SITE

Géomorphologique: Paysage aocidenté formé d'un grand massif montagneux

Pente forte à proximité d'un talweg Topographique:

Drainage:

Rapide

En nappe Erosion :

Pente en %: 100 %

MATERIAU ORIGINEL

serpentinite Nature lithologique :

Type et degré d'altération :

Bisiallitisation

Etage stratigraphique: Impuretés ou remaniements :

VÉGÉTATION

Aspect physionomique: végétation préforestière

composition floristique par strate: Strate arborée et arbustive : casuarina chamici paris.

Achronichia laevis - Maxwelia lepidota.

Strate herbacée - Lophochenus.

UTILISATION

Modes d'utilisation :

Nulle

Jachère, durée, périodicité :

Successions culturales :

Modelé du champ : Densité de plantation :

Rendement ou aspect végétatif :

ASPECT DE LA SURFACE DU TERRAIN

Uni Microrelief :

Techniques culturales :

Edifices biologiques : Néant Dépôts ou résidus grossiers : Néant

Affleurements rocheux :

Néant

EXTENSION ET RELATION AVEC LES SOLS VOISINS

Sol en liaison avec des sols très peu profonds sous végétation dégradée.

GROUPE SOUS-GROUPE Famille Série

			And the set of the set
Croquis du profil	Prélèvements numéro du sac	Profondeur en cm et nomenclature des horizons	
,	KO 291 0 - 15		Humide - brun foncé 5 YR 3/1 - à matière organique non directement décelable - argileux - structure fragmentaire très nette : grumeleuse fine - volume des vides important entre les agrégats - plastique - très nombreuses racines fines et grosses.
,			Transition distincte et régulière
	KO 292 30-40	15 - 50	Humide - brun foncé 10 YR 3/3 - argileux structure fragmentaire très nette : polyédrique fine à moyenne volume des vides faible entre les agrégats - faces luisantes sur les agrégats - plastique - nombreuses racines fines et grosses.
	30-40		Transition distincte et ondulée.
		50 - 70	Humide - brun foncé 10 YR 3/2 - argileux-nombreux
	KO 293 60-70	BC BC	graviers, cailloux et blocs de serpentinite en voie d'altération - quelques éléments ferrugineux de form nodulaire - structure fragmentaire très nette : polyédrique fine à moyenne - quelques racines moyennes et fines.
•			
			•
			·
		,	
			·

			F	ICHE	ANA	LYTIU	UE				LAT 13	
DDOLII	7			P. 362		 P. 363		P. 364				
PRUFIL KO	ll-d]	1.1		2.	! 	2.5			!	
	Horizon		9 13			 	-	-			-	HRZ
2 9	Groupe		17			 		_		_		GR
	Sous-groupe		21							 -		SG
	(Famille)		$\overline{}$		<u> </u>			 	<u> </u>	-	<u> </u>	FM
	(Série)		25	•		ļ	· .		<u> </u>		· 	SR
	(Région)		29						ļ	+	·	RG
	Numéro du sac		33	291		292		293		<u> </u>		SAC
	Profondeur minima	ale en cm	37	0.01		30		60		1	i	PMI
₹1	Profondeur maxim	ale	41	_15		40	i 	70		ļ	+	PMA
Granulométrie	Refus		45	0.01		0.01		8.9			<u>'</u>	REF
en 10 -2	Carbonate de calci	um	49									CDC
, >	Argile		53	57.0		64.1		59.4	L	ļ	!	ARG
	Limon fin	2 à 20 µ	57	14.8		14.0		13.2				LMF
	Limon grossier	20 à 50 µ	61	4.8		3.6		3.0		Ī	,	LMG
	Sable fin	50 à 200 µ	65	9.2		9.7		8.5	-		!	SBF
	Sable grossier	·	69	6.4		5.4		14.8				SBG
	-		73	1	1 -	1	1	1	1	[†] 1	1	CARTE
Matières organiques	Carbone		13	64.2								С
en 10-3	Azote		17	6.12								N
	Acides humiques	พรบว	21	36.0		58.6		76.6			 	- AH
						3.78		2.40			·	AHB
	Acides humiques be	run e r 2 u 3	20	_2.40		3.10		2.40	ļ		<u> </u>	AHG
	Acides humiques gr	ris	29 33					l	ļ			-
	Acides fulviques		-	<u> </u>		·			<u> </u> .	· 		AF
Acidité	pH eau 1/2,5		37	6.20		6.50	,	6.60	ļ			PHE
	pH chlorure de pot	assium	41							1		PHK
Cations échangeables	Calcium	Ca++	45	2.88		0.20		0.04	<u> </u>			CAE
en mé	Magnésium	Mg++	49	56.1		62.4	i L	61.7				MGE
	Potassium	K +	53	0.95		0.29		0.07	!		T	KE
	Sodium	Na+	57	D.49		0.66		0.29	1	1	1	NAE
	Capacité d'échange		61	57.3		60.9		61.6	7	1		T
Acide phosphorique	Phosphore total		65	0.02		0.01		0.01		†	<u> </u>	PT
en 10-3	Phosphore assim. T	ruon	69			+	—	T				PAT
		. 00g	73		2	2	2	2	2	2	2	CARTE
	Phombas	Neo-	13			-		_		<u> </u>	<u> </u>	PAO
	Phosphore assim. O		17	—i		<u> </u>						PAC
Eléments totaux (taileande)	Phosphore ass. citri	que		20.2		13.0		13.7	<u> </u>			PAC
Eléments totaux (triacide) en 10-2	Perte au feu		21			·		12.6	!	ļ		
3 TO -	Résidu		25	4.92		2.44		1.78	· +		ļ <u>.</u>	RSD
	Silice	SI 02	29	40.7		50.0		51.1	i	ļ 	ļ	SI
	Alumine	AI2 03	33			1.61		1.43		<u> </u>		AL
	Fer	Fe ₂ 0 ₃	37	-		24.9		22.9	į			FE
	Titane	TI 02	41	0.08	•	0.04		0.05	1	7	T	TI
	Manganèse -	Mn 02	45	0.68		0.73	-	0.61	1	·+	† ·	MN
	Fer libre	Fe2 03	49						† 			FEL
en mé	Calcium	Ca++	53	2.44		1.12		0.00				CA
	Magnésium	Mg++	57	209.		247.		353.	-		 	MG
	Potassium	K+		1.15		0.29		0.00	•	<u> </u>		К
	Sodium	Na+	65	0.57		0.70		0.63	† · · · · · · · · · · · · · · · · · · ·	 	 -	NA
cn 10 -3	Nickel	NI 02	69	6.17		7. 64		8.78	1			1
		02	73	3 .	3	3	3	3	3	1 · 3 ·	3	CART
			13							 	 	CART
	Chrome	Cr2 03		16.1		12.6		7.89				
Commence	Cobalt	Co 0	17	0.77		0.88		0.65	;			
Structure et actéristiques hydriques	RREEN H Sol fr		21	58.2		66.2		48.4			ļ	1
* hydriques nydriques	PF 3		25	62.0		73.0		52.4				i
	PF 4,2		29	47.0		50.7		46.0				
	Instabilité structural	16	33						!			
	Perméabilité		37	1		·!			† ·			
Données combinées	Matière organique 1	0.3	41	111.		1					+	
	C/N			10.5				<u></u>				
			49						-			}
•	Ac Fulv/Ac. humiqu			60.3		63.5		62 .				-
			531	0U.J		01.2		62.1				
	S. bases ech. mé	•		 +		·						
		0/0	57	>100		000د		>100				
	S. bases ech. mé	0/0	57 61	>100		1 00		>100				
	S. bases ech. me Toux de saturation d	0/0	57	>100			- · .	>100				

CLASSE	SOL FERSIALLITIQUE
SOUS-CLASSE	DESATURE
GROUPE	LESSIVE
SOUS-GROUPE	APPAUVRI
Famille	SUR FORMATION A CHARBON
- Série	Superficiel, caillouteux et graveleux

Mission/Dossier: Koniambo

Observateur: M. LATHAM

Koné

Période de référence :

15 ans

Date d'observation: 17 - 11 - 71

LOCALISATION

Lieu: Piste Koniambo-Tieta col

Coordonnées: 20° 58° 30° de Latitude Sud 164° 50° 50° de Longitude Est

210 m d'Altitude

Document carto.: Carte IGN 1/50.000 Goyeta-Pana

Station:

Photo aérienne : Photographie:

CLIMAT

Type: Tropical humide

Pluviométrie moyenne annuelle : 1194 mm

Température moyenne annuelle : 23° C

Salson lors de l'observation: Chaude et sèche après pluie dans la nuit

SITE

Géomorphologique :

Paysage accidenté formé de petites collines fortement découpées

Topographique:

Haut de pente

Drainage:

Rapide

Erosion:

En nappe ravinante

Pente en % : 70 %

MATERIAU ORIGINEL

Nature lithologique: Formation à charbon : grès et schistes

Type et degré d'aitération : Fersiallitisation

Etage stratigraphique:

Impuretés ou remaniements :

VEGETATION

Aspect physionomique: *** *Maquis ligno-herbacé

Strate arbustive - : Niaouli, Melaleuca leucodendron ; Composition floristique par strate :

codia discolor

Strate herbacée : Fougère aigle

UTILISATION

Nulles Modes d'utilisation :

Jachére, durée, périodicité :

Successions culturales :

Modelé du champ :

Techniques culturales:

Densîté de plantation :

Rendement où aspect végétatif :

ASPECT DE LA SURFACE DU TERRAIN

Microrelief:

Uni

Edifices biologiques : Nul...

Dépôts ou résidus grossiers : Nombreux cailloux et graviers de roches

Affleurements rocheux :

Néant

EXTENSION ET RELATION AVEC LES SOLS VOISINS

Sol en liaison avec des sols rouges plus profond sur fable pente KO 4

GROUPE SOUS-GROUPE Famille Série

			A CONTRACT OF THE PROPERTY OF
Croquis du profil	Prélèvements numéro du sac	Profondeur en cm et nomenclature des horizons	
	KO 31 0 - 10	0 - 10	Humide - brun très foncé 10 YR 3/s - à matière organique directement décelable - 30 % d'éléments grossiers, cailloux et graviers de grès - sablo-argileux - structure fragmentaire peu nette : grumeleuse fine - volume des vides important entre les agrégats - agrégats très poreux - très nombreuses racines moyennes et fines -
			Transition distincte et régulière
		10 - 25 A ₂	Humide - gris foncé - limoneux - 30 % d'éléments gros- siers, cailloux et graviers de grès - structure fragmen- taire peu nette grumeleuse moyenne - volume des vides très important entre les agrégats - agrégats très poreux - très nombreuses racines moyennes et fines
			Transition distincte et régulière
	KO 32 25-35	25 - 35	Humide - gris beige 10 YR 5/3 - 30 % d'éléments grossiers, cailloux et graviers de grès - limono argileux-structure fragmentaire nette : polyédrique subangulaire volume des vides important entre les agrégats - agrégats très poreux - nombreuses racines moyennes et fines.
•			Transition distincte et régulière
•	KO 33 40 - 50	1	Humide - gris clair 10 YR 5/6, quelques taches brun rougeatre 5 YR 6/6, diffuse, de taille variable 0,5 à 2 om de diamètre, 70 % d'éléments grossiers, cailloux et graviers de grès - argileux - structure fragmentaire très nette : polyédrique fine entre les éléments grossiers - volume des vides peu importants entre les éléments grossiers et les agrégats - revètements argileux sur les éléments structuraux - quelques racines moyennes et fines.
			Transition graduelle et irrégulière
	KO 34 100-110	70 et +	Schiste gréseux altéré ayant conservé sa structure
ě			

FICHE ANALYTIQUE

+ 		FI	CHE	ANA	LYTIQ	UE					
PROFIL KO]		P 295		P 296		P 297		P 298		
I NOI IL "	Horizon	9	1.1		1.2		2.2		3.0		HRZ
3	Groupe	13								Ĺ	GR
	Sous-groupe	17									SG
	(Famille)	21									FM
	(Série)	25									SR
	(Région)	29 33	31		-32		33		34		RG
	Numéro du sac		0.01						100		PMI
·•,	Profondeur minimale en cm	41	10		25 3 5		<u>40</u> 50		110		PMA
Granulométrie	Profondeur maximale Refus		<u>10</u>		1 1 . 5		7,1		6.5	, —	REF
en 10 -2	Carbonate de calcium	49		`	1. 3					Í	CDC
•	Argile	53	29.9		38.4		50.8				ARG
	Limon fin 2 à 20 µ		27.1		37.8		27.9				LMF
	Limon grossier 20 à 50 µ		4.70		6.06		4.66				LMG
	Sable fin 50 à 200 µ		7.31		3.65		3.81	· 		·	SBF
	Sable grossier	69	19.1		8.69		9.06		ļ _.		SBG
		73 13	101.	1	10.8	1	1	1	<u>'-</u>	1	CARTE
Matières organiques en 10-3	Carbone		6.42		1.86						N
	Azote	21	0.42		1.00						AH
	Acides humiques Acides humiques bruns	25				- ·- ·- ·-				ĺ	АНВ
	Acides humiques gris	29									AHG
	Acides fulviques	33					·		ļ.— · ·-		AF
Acidité	pH eau 1/2,5	37	3.60		3.90		4.10		4.10		PHE
	pH chlorure de potassium	41									PHK
Cations échangeables	Calcium Ca++		0.44		0.08		0.04		0.08		CAE
en mé	Magnésium Mg++		2.54		0.36	· - · · · · · · · · · · · · · · · · · ·	0.45		0.31		MGE
	Potassium K+	i .	0.86	· ·	0.11		0.10		0.10		KE
	Sodium Na+		0.39 44.5		18.0		20.2	·	18.9		NAE
* Asido abasabasisso	Capacité d'échange Phosphore total		0.04		10.0				1000		PT
 Acide phosphorique en 10-3 	Phosphore assim. Truog	69	0.04		 						PAT
	Thosphore assim. Truog	73	2	2	2	2	2		2	2	CARTE
•	Phosphore assim. Olsen	13;			(PAO
	Phosphore ass. citrique	17						· · · ·	· · · · · · · · · · · · · · · · · · ·		PAC
Eléments totaux (triacide)	Perte au feu	21	27.6				-				PRT
en 10-2	Résidu	25:									RSD
	Silice SI 02	29			-	·					SI
	Alumine Al2 03		7.60								AL FE
	Fer Fe2 03		2.63			i					TI TI
	Titane TI 02 Manganèse Mn 02	1_	0.12								MN
	Fer libre Fe2 03	49	0.01								FEL
en mé	Calcium Ca++		0.04	'				1	:		CA
	Magnésium Mg + +		13.2						 		MG
	Potassium K+	61	16.2								К
	Sodium Na+		4.65								NA
cn 10 -3	Nickel INI 02		0.07			_	,			a	
		13	$\frac{3}{2}$	3	3	3	3	,] - 3	3	CARTE
	Chrome Cr2 03		0.16		_						
Structure et	Cobalt Co 0	21	15.2		13.8		15.1		6.02		<u> </u>
caractéristiques hydriques	•	25	13.0		30.5	•	23.4	•	12.2		ļ
	PF 3 PF 4.2	29	13.7		10.4		14.9		8.98		
_	Instabilité structurale	33									
· *	Perméabilité	37		·	-					. ,	
Données combinées	Matière organique 10-3	41	174.		18.5						
electric control of the control of t	C/N	45	15.7								
i.,	Ac Fulv/Ac, humique	45 49 53	4								
	S. bases ech. mé.		4.23		0.65		0.70		0.59 3.12		
	Toux de saturation o/o	57 61	9.51		3.61		3.47		_12.ئ		
	S. bases Totales mé	65									-
	Si02/AI 203	69		1	i		· · · · ·				
	Si 02/R203	55	1		1		ı	ı	ı	1	1

		1107 111 011	
CLASSE	SOL FERSIALLITIQUE		
SOUS-CLASSE	DESATURE	, .	
GROUPE	LESSIVE	-	
SOUS-GROUPE	APPAUVRI		
Famille	SUR FORMATION A CHARBON		
Série	Profonde		

PROFIL

KO4

Mission/Dossier :

Koniambo

Observateur :

M. LATHAM

Date d'observation :

17 - 11 - 72

LOCALISATION

Lieu: Piste Koniambo-Tieta avant la col Coordonnées : 20° 58° 30° de Latitude 164° 50° 52" de Longitude

m d'Altitude

Document carto. : Carte IGN 1/50.000 Goyeta - Pana Mission I.G.N.:

Photo aérienne : Photographie:

CLIMAT

Tropical humide Type:

KONE Station:

1194 mm Pluviométrie moyenne annuelle :

23° C Température moyenne annuelle :

15 ans Période de référence :

Saison lors de l'observation :

Chaude et sèche, après pluie dans la nuit

SITE

Paysage accidenté formé de petites collines fortement découpées Géomorphologique :

Bas de pente Topographique:

Drainage:

Rapide

En nappe Erosion:

Pente en %: 40 %

MATERIAU ORIGINEL

Nature lithologique: Formation à charbon : grès et schistes

Type et degré d'altération :

Fersiallitiques

Etage stratigraphique: Impuretés ou remaniements :

VECETATION

Savane à Niaoulis Aspect physionomique:

Composition floristique par strate: Strate arborée : Niaouli : Melaleuca leucodendron

Strate herbacée : nombreuses graminées

UTILISATION

Modes d'utilisation : Paturage naturel Jachère, durée, périodicité :

Techniques culturales :

Modelé du champ : Densité de plantation : Successions culturales :

Rendement ou aspect végétatif :

ASPECT DE LA SURFACE DU TERRAIN

Uni Microrelief :

Edifices biologiques : Néant

Dépôts ou résidus grossiers : Néant

Affleurements rocheux :

Néant

EXTENSION ET RELATION AVEC LES SOLS VOISINS

Sol intermédiaire entre des sols très graveleux et caillouteux sur forte pente KO 3 et des sols d'alluvions profonds

GROUPE SOUS-GROUPE Famille Série

Croquis du profil	Prélèvements numéro du sac	Profondeur en cm et nomenclature des horizons	
	KO 41 0-10	0 - 12	Frais - brun foncé 10 YR 5/2 - à matière organique non directement décelable - limoneux - structure fragmentaire peu nette : polyédrique subangulaire moyenne - volume des vides important entre les agrégats - agrégats très poreux - fragile - très nombreuses racines moyennes et fines -
			Transition distincte et régulière
	KO 42 20-30	12 - 35	Sec brun 10 YR 6/3, quelques taches gris clair 10YR8/1 en trainées diffuses - limono-argileux - structure fragmentaire peu nette : polyédrique moyenne à fine, surstructure prismatique - volume des vides très important entre les agrégats - agrégats très poreux - friable - très nombreuses racines moyennes et fines -
			Transition distincte et régulière
		35 - 50	Frais - brun rouge avec quelques trainées de sable blanc par petites taches - argilo - limoneux - struc- ture fragmentaire nette : polyédrique moyenne à fine,
		B1	surstructure prismatique - volume des vides important entre les agrégats - quelques pores tubulaires dans le agrégats - cohérent - nombreuses racines moyennes et fines -
			Transition distincte et régulière
	KO 43 60-70	50 - 80 B 21	Frais - brun rouge foncé 5 YR 4/6 - argileux - structure fragmentaire très nette : polyédrique moyenne à surstructure prismatique - volume des vides important entre les agrégats - quelques pores tubulaires dans les agrégats - revètements artilo-humique sur les éléments structuraux - quelques racines moyennes et fines -
		0	Transition graduelle et régulière
	KO 44 100-120	80 - 150 B 22	Sec - brun rouge 5YR 4/6 - argileux - structure frag- mentaire nette: polyédrique fine, surstructure pris- matique peu nette - quelques revètements argileux sur la surstructure - poreux - cohérent - pas de racines.

FIGHE AWALT HIGUE

		FIUME	ANALY HIGU	<u> </u>		
PRNFII KO] .	P 299	P 300	P 301	P 302	
I NUI IL	Horizon	9 1.1	1.2	2.21	2.22	HRZ
	Groupe	13				GR
٠. 4	Sous-groupe	17				SG
	(Famille)	21				FM
•	(Série)	25 .				SR
t .	(Région)	29				RG
	Numéro du sac	33 41	42	43	44 s	SAC_
	Profondeur minimale en cm	.37 C. D.		6 L		M
•	Profondeur maximale	41 1.0	30	70	~~{·~	PMA
Granulométrie en 10 -2	Refus	45 C.L1	1.7	5.5		REF_
en 10°2	Carbonate de calcium	49 53 31. 5		69.6		CDC
•	Argile Limon fin 2 à 20 u	57 28.0	45.4	16.3		ARG
		61 7.84	7.01	2.40		MF MG
	Limon grossier 20 à 50 µ Sable fin 50 à 200 µ	65 15.1	11.4	4.16	– – – – – – – – – – – – – – – – – – –	SBF
•	Sable grossier	69 13.6	7.96	4.65		SBG
	Sable grossier	73 1	1 1 1	1 1 1	· · · · · · · · · · · · · · · · · · ·	RTE
: Matières organiques	Carbone	13 22.0	7.16	6.72		С
en 10·3	Azote	17 1.74	0.72			N
	Acides humiques	21				AH
	Acides humiques bruns	25 ;			A	нв
₹	Acides humiques gris	29			A	AHG
	Acides fulviques	33				ĀF
Acidité	pH eau 1/2,5	37 4.60	4.60	4.50	4.40 P	PHE
	pH chlorure de potassium	41				PHK
Cations échangeables	Calcium Ca++	45 1.88	0.14	0.25		CAE
· en mė	Magnésium Mg++	49 3.67	2.39	6.22	ـ ــــــــــــــــــــــــــــــــــــ	MGE
	Potassium K+	53 0.13	0.05	0.10	· I I	KE
	Sodium Na+	57 0.11	0.09	0.13		NAE
	Capacité d'échange	61 16.3	12.9	26.0	19.1	<u>T</u>
Acide phosphorique en 10-3	Phosphore total	65				PT
- en 10-5	Phosphore assim, Truog	73 2		2 2 22		PAT
			2 2	2 2 2		PAO
•	Phosphore assim. Olsen	13:	<u> </u>			AC
Eléments totaux (triacide)	Phosphore ass. citrique	21. 7.79	 			RT
en 10-2	Perte au feu Résidu	25:	 			RSD
	Silice SI 02	29,				SI
	Alumine Al2 03	33 6.27	-			AL
	Fer Fe2 03	37, 3.65				FE
	Titane TI 02	41 0.21	+ +·	 	! ! !	TI
v	Manganèse Mn 02	45 0.01			ļ	MN
	Fer libre Fe2 03	49			F	FEL
en mé	Calcium Ca++	53 1.88	. -	:		CA
	Magnésium Mg++	57 8.22		1		MĢ
	Potassium K-	61 7.75				K
	Sodium Na+	65 2.44			!	NA
en 10 -3	Nickel NI 02	69 0.02				
		73 3	3 3	3 3 3	3 3 CA	ARTE
	Chrome Cr2 03	13 0.10				
0	Cobalt Co 0	17 0.01				
Structure et caractéristiques hydriques	%5x3x5 H Sol frais	21 14.3	9.26	22.2	16.5	
*	PF 3	25 22.5	,	30.5	24.2	
•	PF 4,2	29 10 . 7	11.3	23.4	18.1	
	Instabilité structurale	37	 			
Données combinées	Perméabilité	37·9	12.3	1,2,		
Domiees complinees	Matière organique 10-3			11.6	8.00	
	C/N	45 12.6	10.0			
	Ac Fulv/Ac, humique		2.67	6.70	3.10	
	S. bases ech. me.		20.7	25.8	16.2	
	Toux de saturation o/o	57 35•5 61	20.1	· · · · · · · · · · · · · · · · · · ·		
	S bases Totales mé	65				
	Si02/AI 203 Si 02/R203	69	+ + +			
	0. 02/11203	=======================================	t -;t +-			

CLASSE	SOL FERSIALLITIQUES
SOUS-CLASSE	DESATURE
GROUPE	LESSIVE
SOUS-GROUPE	MODAL
Famille	Sur Sericitoschiste
Série	argileux - profond

KO 6

Mission/Dossler:

Koniambo

Observateur:

M. LATHAM

Date d'observation: 17 - 11 - 71

LOCALISATION

Lieu: Route Koné - Atéou - col Coordonnées: 20° 581 40" Sud 164° 53' 30" Est de Longitude 496 m d'Altitude

Document carto.: carte IGN 1/50.000 GOYETA PANA

Mission I.G.N.: Photo aérienne : Photographie:

CLIMAT

tropical humide Type:

Station: Koné

15 ans Période de référence :

1194 mm Pluviométrie moyenne annuelle :

Température moyenne annuelle : 23° C Saison lors de l'observation :

Saison chaude et sèche, après pluies

SITE

Céomorphologique: Paysage accidenté formé de montagnes

Topographique:

col pente faible Rapide

Drainage:

Erosion:

En nappe

Pente en %: 20

MATERIAU ORIGINEL

Nature lithologique :

Sericitoschiste

Type et degré d'altération :

Fersiallitique

Etage stratigraphique: Impuretés ou remaniements :

VECETATION

Aspect physionomique: Savane à Nioulis

Composition floristique par strate: Strate arborée: Niaouli Melaleuca leucodendron

Strate herbacée : graminées

UTILISATION

Paturage naturel Modes d'utilisation :

Jachére, durée, périodicité :

Successions culturales :

Techniques culturales: Modelé du champ :

Densité de plantation :

Rendement ou aspect végétatif :

ASPECT DE LA SURFACE DU TERRAIN

Uni Microrelief:

Néant Edifices biologiques :

Néant Dépôts ou résidus grossiers :

Affleurements rocheux:

Néant

EXTENSION ET RELATION AVEC LES SOLS VOISINS

Liaison avec des sols peu profond quand la pente s'accentue

GROUPE
SOUS-GROUPE
Famille
Serie

Croquis du profil	Prélèvements numéro du sac	Profondeur en cm et nomenclature des horizons	
	KO 61 0 - 10	0 - 15 Al	Frais - brun foncé 10YR 5/2 - limono - argileux - structure fragmentaire nette : grumeleuse fine - volume des vides important entre les agrégats - agrégats poreux - très nombreuses racines moyennes et fines
			Transition distincte et régulière
	KO 62 20 - 30	15 – 35	Frais - brun rouge foncé 5 YR 3/4, quelques taches brunes dû à des revêtements organiques sur les éléments structuraux - argilo-limoneux - structure fragmentaire nette : polyédrique moyenne à surstructure prismatique grossière - volume des vides important entre les agrégats - agrégats peu poreux - quelques revêtements argileux sur les éléments structuraux - nombreuses racines moyennes et fines
			Transition distincte et régulière
		35 - 50	Humide - brun rouge - argileux - structure fragmentaire très nette : polyédrique moyenne à surstructure prismatique grossière - volume des vides faible entre les agrégats - agrégats peu poreux - quelques revêtements argilo - humique sur les éléments structuraux - quelques racines moyennes et fines.
•			Transition graduelle et régulière
•	KO 63 70-80	50 – 100 B2	Humide - rouge 2,5 YR 4/8 quelques petites taches jaunes diffuses - argileux - structure fragmentaire très nette: polyédrique fine à moyenne, surstructure prismatique - volume des vides faible entre les agrégats agrégats peu poreux - revêtements argileux sur les éléments structuraux quelques racines moyennes et fines.
			Transition graduelle et irrégulière
	KO 64 120-130	100 et +	Eone hétérogène rouge tachée de jaune due à des débris de roche altérée. La majeure partie de l'horizon est occupée par du schiste altéré en place
.•			
			\$ 10 Mark

FILME ANALY HIGUE

			ICHE	AIVA		-					
PROFIL KO			P 306		P 307	ļ ;	P 308		P 309		
I IVOI IL	Horizon	9	1.1		1.3		2.2		2.5		HRZ
	Groupe	13			T						GR
6	Sous-groupe	17									SG
	(Famille)	21									FM
	(Série)	25									SR
	(Région)	29	1								RG
	Numéro du sac	33	61	-	62		63		64		SAC
	Profondeur minimale en c	m 37	0.01		20		70		120		PMI
•1	Profondeur maximale	41	10		30	L	80		130		PMA
Granulométrie	Refus	45			•		٠, ر ،		` .		REF
en 10 -2	Carbonate de calcium	49							<u></u>		CDC
•,	Argile	53	1		53.2		72.2		36.4		ARG
	Limon fin 2 à 20 μ	57			21.4	; 	15.5	ļ 	34.3		LMF_
	Limon grossier 20 à 50				8.15		3.37	i i	6.68		LMG
	Sable fin 50 à 200		4 · 12	·	7.40		3.40		10.7		SBF
	Sable grossier	69	15.7		8.91	-	5•94	•	11.4		SBG
		73		1	1 1	1 1	1	1	1 0 0	1	CARTE
Matières organiques en 10-3	Carbone	13			16.5	[4.57		2.84		C
en 10.2	Azote	. 17	3.64		1.54		0.90	<u></u>	0.78		N
	Acides humiques	21	4								AH
	Acides humiques bruns	25	;		 			 			AHB
	Acides humiques gris	29 33			<u> </u>			ļ <u></u>	ļ. <u></u>		AHG
	Acides fulviques				4 80		7 77	·	4.70		AF
Acidité	pH eau 1/2,5	37 41	5.30		4.80		4.70		1-4-10		PHE
	pH chlorure de potassium		9 40		·3.50		0.27		0.47		PHK
Cations échangeables en mé	Calcium Ca++	-	8.49 6.14		3.75		3.82	! 	3.79		MGE
en me	Magnésium Mg++		0.46		0.31		0.05	<u> </u>	0.10		
	Potassium K+		0.11	·	0.09	+	0.26		0.26		KE NAE
	Sodium Na+		28.5		21.8		27.0	· !	42.6		
	Capacité d'échange		0.17		21.0	t	21.0		44.9		PT
Acide phosphorique en 10-3	Phosphore total	69				 			 		PAT
	Phosphore assim. Truog	73		ž	. 2		2	2	2	2	CARTE
	Diameter 12 Oc	13	 		1 -				-		PAO
	Phosphore assim. Olsen	17							ļ		PAC
Eléments totaux (triacide)	Phosphore ass. citrique Perte au feu		1		,						PRT
en 10-2	Résidu	25	14.6		·			<u>. </u>			RSD
	Silice SI 02	29						 	 		SI
	Alumine Al2 0:		13.3		1				†·		AL
	Fer Fe2 0		8.47		 		<u>-</u>				FE
	Titane TI 02	41	0.61	L	‡	٠ -	 	· · ·			TTI
	Manganèse Mn 02								ļ		MN
	Fer libre Fe2 0:				+	1			 		FEL
en mé	Calcium Ca++		8.49	•				-	,		CA
	Magnésium Mg++		41.1					:	 		MG
	Potassium K-	61									К
	Sodium Na +	6 5	2.39		ļ	···			 		NA
en 10 ·3	Nickel INI 02	69						-	i		+ -
		73		3	3	[†] 3	3	3	3	3	CARTE
	Chrome Cr2 03	, 1 3	0.28		1				T		
	Cobalt Co 0	17	0.06	·				:			!
Structure et	~	s 21	30.7		28.9		33.8		25.4		<u>.</u>
caractéristiques hydriques	mexx H Sol Irai				. 22 0	•		•	30.9		
	REXX H Sol frai	2 5	32.3		33.4		`40•7		1 20 0 7		
•	PF 3	25 29	19.7		33.2		40.7 34.6		22.1		1
•	PF 3 PF 4,2	25 29 33	19.7	-							
•	PF 3 PF 4,2 Instabilité structurale	25 29	19.7								
Données combinées	PF 3 PF 4,2 Instabilité structurale Perméabilité	25 29 33 37	19.7		25.8		34.6		22.1		
•	PF 3 PF 4,2 Instabilité structurale Perméabilité Matière organique 10-3	25 29 33 37 41	19.7 59.0		25.8						
•	PF 3 PF 4,2 Instabilité structurale Perméabilité Matière organique 10-3 C/N	25 29 33 37 41	19.7 59.0 9.42		25.8		34.6		4.89		
•	PF 3 PF 4,2 Instabilité structurale Perméabilité Matière organique 10-3	25 29 33 37 41 45 49 53	19.7 59.0 9.42		25.8 28.4 10.7		34.6		4.89		
•	PF 3 PF 4,2 Instabilité structurale Perméabilité Matière organique 10-3 C/N Ac Fulv/Ac, humique	25 29 33 37 41 45 49 53	19.7 59.0 9.42		25.8 28.4 10.7 7.65		7.88		4.89		
•	PF 3 PF 4,2 Instabilité structurale Perméabilité Matière organique 10-3 C/N Ac Fulv/Ac, humique S, bases ech. mé.	25 29 33 37 41 45 49 53	19.7 59.0 9.42		25.8 28.4 10.7		7.88 4.41		4.89		
•	PF 3 PF 4,2 Instabilité structurale Perméabilité Matière organique 10-3 C/N Ac Fulv/Ac, humique S, bases ech, mé, Toux de saturation o/o S bases Totales mé	25 29 33 37 41 45 49 53 57 61 65	19.7 59.0 9.42 15.2 53.3		25.8 28.4 10.7 7.65		7.88 4.41		4.89		
•	PF 3 PF 4,2 Instabilité structurale Perméabilité Matière organique 10-3 C/N Ac Fulv/Ac, humique S, bases ech. mé. Toux de saturation o/o	25 29 33 37 41 45 49 53 57 61	19.7 59.0 9.42 15.2 53.3		25.8 28.4 10.7 7.65		7.88 4.41		4.89		

CLASSE	SOL FERSIALLITIQUE
SOUS-CLASSE	DESATURE
GROUPE	LESSIVE
SOUS-GROUPE	RAJEUNI
Famille	SUR SERICITOSCHISTE
• Série	Argileux, moyennement profond

PROFIL GP 3

Mission/Dossier: Koniambo

Observateur: M. LATHAM

Date d'observation : 18 - 11 - 72

LOCALISATION

Route TIETA - POINDAS, face au OUATILOU Document carto.: Carte IGN 1/50.000 Goyeta Pana

Coordonnées: 20° 51° 40° de Latitude Sud

164° 52' 00' de Longitude Ouest

350 m d'Altitude

Mission I.G.N. : Photo aérienne :

Photographie:

CLIMAT

Type: tropical humide Station: Congo

Pluviométrie moyenne annuelle : 1232 mm

Température moyenne annuelle : 23° C

Salson lors de l'observation: saison sèche et chaude

Période de référence : 15 ans

SITE

Céomorphologique: Paysage accidenté formé de montagnes à pente forte

Topographique: Mi-pente Drainage: Rapide

Erosion: En nappe ravinante

Pente en %: 80 à 100 %

MATERIAU ORIGINEL

Nature lithologique: Sericitoschiste

Type et degré d'altération : Fersiallitique

Etage stratigraphique : Impuretés ou remaniements :

VEGETATION

Aspect physionomique: Savane à Niaoulis

Composition floristique par strate: Strate arborée : Niaouli : Melaleuca leucqdendron

Strate arbustive : codia discolor - Baekea

Strate herbacée : graminées : Aristida ; fougères : Dikranopteris

UTILISATION

Modes d'utilisation: Paturage naturel

Jachère, durée, périodicité :

Techniques culturales : Successions culturales : Modelé du champ :

Densité de plantation :

Rendement où aspect végétatif :

ASPECT DE LA SURFACE DU TERRAIN

Microrelief: Uni

Unı

Edifices biologiques : Néant

Dépôts ou résidus grossiers : Néant

Affleurements rocheux :

Néant

EXTENSION ET RELATION AVEC LES SOLS VOISINS

Sol assez homogène, plus ou moins épais le long de la pente

GROUPE SOUS-GROUPE Famille Série

PROFIL GP 3

	Jene			
	Croquis du profil	Prélèvements numéro du sac	Profondeur en cm et nomenclature des horizons	
•;			·	En surface légère litière faiblement décomposée
••		GP 31 0 - 5	0 - 5	Sec - gris beige 7,5 YR 7/2 sec et 7,5 YR 5/4 humide - argilo limoneux - structure fragmentaire nette: grume-leuse fine - volume des vides important entre les agrégats poreux - très nombreuses racines moyennes et fines.
				Transition distincte et régulière
	. •	GP 32	5 - 22	Sec - beige rougeatfe 7,5YR 7/3 sec, 5YR 6/6 humide - structure fragmentaire nette: polyédrique moyenne - volume des vides faible entre les agrégats-porosité
		10-20	Аз	tubulaire - quelques revêtements argileux sur les élé- ments structuraux - nombreuses racines moyennes et fi- nes.
				Transition distincte et régulière
		GP 33 30-40	22 - 40 B ₂	Frais - ocre 5YR 5/6 - argilo limoneux - structure fragmentaire très nette : polyédrique moyenne à fine - poreux - nombreux revêtement argileux sur les éléments structuraux - quelques racines moyennes et fines.
Á,				Transition graduelle et onduelle
•	:	GP 34 80 – 100	40 - 100 BC	Frais - ocre 5YR 6/6 - argileux - quelques éléments de roche altérée de petite taille - structure fragmentaire très nette : polyédrique fine - peu poreux pores tubulaires - Revêtements argileux sur les éléments structuraux et dans les pores.
				Quelques racines fines.
			100 et + C	Roche altérée - sericitoschiste fortement ferrugineux avec revêtements argileux entre les éléments schisteux.
•				
¥			,	

FIUME AWALT HIGUE

		r		AIVA	LYIIG	UE					<u> </u>
	7										
DDULII			P 317	,	P 318		P 319		P 320		
PRIII GP			3 3							· !	
	Horizon	9_	1. 1	<u> </u>	1. 3		2. 2		2. 5		HRZ_
1.	Groupe	13									GR
3	Sous-groupe	17									SG
	(Famille)	21		ļ							FM
	(Série)	25 29									SR
	(Région)	33	33		30		. 35		3.4		RG
	Numéro du sac	37	31		32 10		33		34 80		SAC
	Profondeur minimale en cm	41	0.01				30				PM1 PMA
« Granulométrie	Profondeur maximale	45	5	·	_20		40		100		RE!
en 10 -2	Refus	49	·								CDU
/€.	Carbonate de calcium	53	25.4		39.0		37.4	L	23.5	•	ARG
/ 1	Argile Limon fin 2 à 20 µ	57	29.6		32.4		24.7		21.4		LMF
	Limon grossier 20 à 50 µ	61	10.0	!	5.83		8-12		7.47		LMG
	Sable fin 50 à 200 µ	65	7.76	†···	7.84		8.42 9.88	-	14.5		SBF
	Sable grossier	69	18.6		12.6		17.3	-	28.6		SBG
•	3	73	1	1 "	1	1	1	1	1	i i	CARTE
Matières organiques	Carbone	13	41.4		9.47		3.20		1.98		С
en 10-3	Azote	17	2.97		1.56		1.22	-	1.33		N
	Acides humiques	21	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					, ,, _,			АН
	Acides humiques bruns	25									АНВ
	Acides humiques gris	29									AHG
	Acides fulviques	33									AF
Acidıté	pH eau 1/2,5	37	4.30		4.40		4.40		4.40		PHE
	pH chlorure de potassium	41									PHK
Cations échangeables	Calcium Ca++	45		!	0.01		0.03		_0.01		CAE
en mé	Magnésium Mg++	49		÷	0.27	·	0.26	L	0.14		MGE
	Potassium K+		0.34	! 	0.10	! }	0.04		0.03		KE
	Sodium Na+	57		: 	0.10		0.21		0.15		NAE
	Capacité d'échange	61		·	12.8		30.5		23.4		Т
Acide phosphorique en 10-3	Phosphore total	65	0.04								PT
en 10-5	Phosphore assim. Truog	69 i		2 ~	2 -	2	. 2		2	2	PAT
	_	-+		2						2	PAO
,*	Phosphore assim. Olsen	13		·							PAC
Elément total (deine de)	Phosphore ass, citrique		77 6		1 				·		PRT
Eléments totaux (triacide) en 10-2	Perte au feu Résidu	25	11.5								RSD
,	Silice SI 02	29									SI
	Alumine Al2 03		14.1		 -		i				AL AL
	Fer Fe2 03		4.53				! !			_	FE
	Titane TI 02		0.15				 				TI***
	Manganèse Mn 02		0.02	·							MN
	Fer libre Fe2 03	49		, ·		⊢— i					FEL
en mé	Calcium Ca++	53	0.49	•					:		CA
	Magnésium Mg++	57	13.2				-	_			MG
	Potassium K+		26.1							-	К
	Sodium Na+	65	19.5								NA
on 10 -3	Nickel INI 02	69	0.06				1.				
		73	3	3	3	3	3	3	3	3	CARTE
	Chrome Cr2 03	13		!							
	Cobalt Co 0	17	0.03	i		<u> </u>					
Structure et caractéristiques hydriques	PF 2.5 H Sol frais	21	13.9	!	16.6		14.5		11.0		i
• Invariques	PF 3	25	25.6		27.0		24.9	· 	19.5		L
	PF 4,2	29	13.0		15.7		15.0		10.8		
	Instabilité structurale	33 37									
A December of the second of th	Perméabilité	- 1									_
Données combinées	Matière organique 10-3	41	71.4	: 	16.3		552		3.41		
	C/N	45	<u> 13.9</u>								
	Ac Fulv/Ac, humique	45 49 53 57 61									
	S. bases ech. mé.	53	2.25		0.48		0.54		0.33		
	Toux de saturation o/o	571	_11.7		3.75		1.77		1.41 _	<u></u>	•
	S bases Totales mé	65									-
	Si02/AI 203	69 69	·			-					
	Si 02/R203	73		,	- ;		- ,			ļ;	

CLASSE	SOL FERRALLITIQUE
SOUS-CLASSE	"FERRIQUE "
GROUPE	REMANIE
SOUS-GROUPE	INDURE
Famille	Sur alluvions latéritiques anciennes.
e Série	movennement profond limono-argileux

KO 24

Mission/Dossier :

Koniambo

Observateur:

carte IGN 1/50.000

M. LATHAM

Date d'observation :

23 - 2 - 72

LOCALISATION

Lieu:Rt VOH - KONE 3km de VOH

Coordonnées: 20° 58° 50° de Latitude sud 164° 42° 30° de Longitude est

15 m d'Altitude

Document carto. :

Mission I.G.N. : Photo aérienne : Photographie:

CLIMAT

tropical humide Type:

1171 mm Pluviométrie moyenne annuelle : 23° C

Température moyenne annuelle :

Témala Station:

Période de référence : 15 ans

Saison lors de l'observation :

Saison chaude et humide

SITE

mollement ondulée Géomorphologique : plane

Topographique: Drainage:

Erosion:

Rapide En nappe

Pente en %:

2%

MATÉRIAU ORIGINEL

Alluvions latéritiques anciennes Nature lithologique:

Type et degré d'altération : Étage stratigraphique : Impuretés ou remaniements :

VECETATION

Aspect physionomique: Savane à niaoulis

Composition floristique par strate: Strate arboré: Melaleuca leucodendron

Strate herbacée claire : graminées.

UTILISATION

paturage naturel Modes d'utilisation :

Jachère, durée, périodicité:

Techniques culturales:

Modelé du champ:

Successions culturales :

Densité de plantation : Rendement où aspect végétatif:

ASPECT DE LA SURFACE DU TERRAIN

Microrellef:

Uni

Edifices biologiques : Néant

Dépôts ou résidus grossiers: quelques blocs de cuirasse en surface

Affleurements rocheux :

gros blocs de cuirasse

EXTENSION ET RELATION AVEC LES SOLS VOISINS

Sol en liaison avec des vertisols en bord de rivière.

GROUPE SOUS-GROUPE Famille ' Série

Série		·	
Croquis du profil	Prélèvements numéro du sac	Profondeur en cm et nomenclature des horizons	
	KO 241 0 - 10	0 - 20	Humide - brun rouge très foncé 2,5 YR 3/2 à matière organique non directement décelable - quelques éléments ferrugineux de forme nodulaire - limono-argileux - structure fragmentaire peu nette : polyédrique fine à moyenne, subangulaire - volume des vides faible entre les agrégats - peu poreux - peu plastique - quelques racines moyennes et fines.
			Transition graduelle et régulière
	KO 242 50-60	20 - 70	Humide - brun rouge foncé 2,5 YR 3/4 - quelques petits éléments ferrugineux de forme nodulaire - limono argileux - structure fragmentaire peu nette : polyédrique moyenne à fine - peu poreux - quelques racines moyennes et fines.
			Transition graduelle et régulière
	KO 243 80 – 90	70 - 90 et- B	neux de forme nodulaire - quelques éléments manganési- fères en concretion, quelques blocs de cuirasse et quelques cailloux de roche peu altérée, le tout légè- rement induré - argilo limoneux - structure fragmen-
•			taire nette : polyédrique moyenne à fine. peu poreux - pas de racines.
,			·
r			
			• ,

		FIUTE	AIVALT FIGUE		fwi To
	7				
PDULII KO	1	P。359	P. 360	P.361	
TRUFIL KD	l	1.1	1.3	2.	
	Horizon	9 13		1	HRZ GR
24	Groupe Sous-groupe	17			SG
	(Famille)	21			FM
	(Série)	25			SR
	(Région)	29			RG
	Numéro du sac	33 2.41	2.42	2.43	SAC
	Profondeur minimale en cm	37 0.01	50	80	PMI
e'	Profondeur maximale	41 10	60	90	PMA
Granulométrie en 10 -2	Refus	45 6.4	11.6	42.0	REF
	Carbonate de calcium	53 22.2	13.6	+ _{27.8}	CDC
,≋'.	Argile Limon fin 2 à 20 μ	57 23.6	31.8	16.9	LMF
	Limon grossier 20 à 50 µ	61 13.2	16.9	5.49	LMG
	Sable fin 50 à 200 µ		13.9	7.90	SBF
	Sable grossier	69 23.8	23.2	40.7	SBG
		73 1	1 1 1	1 1	1 1 CARTE
Matières organiques	Carbone	13 17.2			С
en 10-3	Azote	17 1.46			N.
	Acides humiques	21			AH ' AHB
	Acides humiques bruns	25 ·			AHB AHG
	Acides humiques gris Acides fulviques	33			AF
Aciditė	pH eau 1/2,5	37 5.70	6.20	6.40	PHE
Acidita	pH chlorure de potassium	41		+	PHK
Cations échangeables	Calcium Ca++	45 0.58	0.08	0.22	CAE
en mé	Magnésium Mg++	49 3.58	3.36	6.16	MGE
	Potassium K+	53 D.11	0.02	0.02	KE
	Sodium Na+	57 D.14	0.15	0.18	NAE
	Capacité d'échange	61 8.33	5.57	8.57	
Acide phosphorique en 10-3	Phosphore total	65 0.11		<u> </u>	PT
en 10-3	Phosphore assim. Truog	73 2	2 - 2	2	PAT 2 CARTE
•	BL	73 2 13	2 2 2	2 2	2 2 CARTE
, 3 °	Phosphore assim. Olsen	17			PAC
Eléments totaux (triacide)	Phosphore ass. citrique Perte au feu	21 12.5	11.7	11.8	PRT
en 10-2	Résidu	25	8.98	8.09	RSD
	Silice SI 02	29,			SI
	Alumine Al2 03	33 12.9	14.3 13.5	13.0	AL
	Fer Fe2 03	37 44.1	47.2	50.9	FE
	Titane TI 02	41 0.49	0.52	0.39	TI
	Manganèse Mn 02	45 1.39	0.94	1.15	MN
on má	Fer libre Fe2 03	49	0.00	0 72	FEL
en mé	Calcium C6++ Magnésium Mg++	53 0.58 57 37.8	0.08	0.22 43.6	CA MG
	Potassium K+	61 0.45	0.27	0.27	K
	Sodium Na+	65 0.24	0.33	0.30	NA NA
co 10 -3	Nickel INI 02	69 2.29	2.42	3.49	
		73 3	3 3 3	3 + 3	3 CARTE
	Chrome Cr2 03	13 39.4	23.4	39.7	
	Cobalt Co 0	17 1.02	0.79	1.04	
Structure et	PEXXX H Sol Frais	21 31.5	. 32.7	17.9	
caractéristiques hydríques	PF 3	25 29.3	30.6	75.4	
*	PF 4,2	²⁹ 16.9	19.9	13.8	
	Instabilité structurale	33			
Données combinées	Perméabilité	41 29.8	- •		
Domices compilees	Matière organique 10-3	41 27.0 451 11 A			
	C/N	45 11.8			
	Ac Fulv/Ac, humique S. bases ech, mé,	53 4.41	3.61	7.58	
	Toux de saturation o/o	57 49.5	65.0	88.0	
	S. bases Totales mé	61			
	Si02/Al 203	65			
	Si 02/R203	69			
		73 4	4 4 4	T 4 ' -4	A CAPTE

•	DOSSIER DE CARACTERISATION I	
CLASSE	SOL FERRALLITIQUE	
SOUS-CLASSE	" FERRIQUE"	
GROUPE	REMANIE	
SOUS-GROUPE	APPAUVRI	
Famille	Sur péridotite	
* Série	graveleux, profond	

PROFIL

KΟ 35

Mission/Dossier:

Koniambo

Observateur:

M. LATHAM

Date d'observation :

carte IGN 1/50.000 Goyeta Pana

24 - 2 - 72

LOCALISATION

Lieu: Plateau du Koniambo

Coordonnées: 20° 57° 30° de Latitude Sud 164° 31° 50° de Longitude Est

900 m d'Altitude

Document carto. :

Mission I.G.N.: Photo aérienne :

Photographie:

titude.

CLIMAT

Tropical humide Type:

Pluviométrie moyenne annuelle: 1194 mm mais probablement plus en al- Période de référence: 15 ans

Température moyenne annuelle :

Saison lors de l'observation :

23° C

Saison chaude et humide

SITE

Géomorphologique:

Massif montagneux, paysage accidenté

Topographique:

Pente Rapide

Drainage: Erosion :

En nappe

Pente en %:

Station:

60 %

MATERIAU ORIGINEL

Roche ultrabasique : péridotite Nature lithologique :

Type et degré d'altération :

Ferrallitique intense.

Etage stratigraphique : Impuretés ou remaniements :

VÉGÉTATION

Aspect physionomique :

Forêt claire

Composition floristique par strate: Strate arborée : Araucaria montana disperses

Strate arbustive: Tristania guilenii, lodia montana

UTILISATION

Modes d'utilisation :

Mine

Jachère, durée, périodicité :

Techniques culturales:

Modelé du champ :

Successions culturales :

Densité de plantation :

Rendement où aspect végétatif:

ASPECT DE LA SURFACE DU TERRAIN

Microrelief :

Uni

Edifices biologiques :

Néant

Dépôts ou résidus grossiers: Nombreux blocs de cuirasse noircis

Affleurements rocheux:

Néant.

EXTENSION ET RELATION AVEC LES SOLS VOISINS

Sol en liaison avec des sols ferrallitiques remaniés rajeunis et rajeunis sur plus forte pente.

GROUPE SOUS-GROUPE Famille Série

PROFIL RO 35

Série			
Croquis du profil	Prélèvements numéro du sac	Profondeur en cm et nomenclature des horizons	
	KO 351 O - 10	0 - 15 A1	Sec - brun rouge foncé 2,5 YR 3/2 - sableux - 90% d'éléments ferrugineux, de forme nodulaire + blocs de cuirasse - structure particulaire - volume des vides très important entre les éléments grossiers - très nombreuses racines moyennes et fines.
			Transition distincte et régulière.
	KO 352 20 - 30	15 - 40	Sec brun rouge 2,5 YR 3/4 - 80 % d'éléments ferrugineux de forme nodulaire - limoneux - structure particulaire volume des vides très important entre les éléments grossiers: - quelques racines moyennes et fines.
		^ 3	Transition distincte et régulière.
		40 - 65	Frais - brun rouge 2,5 YR 3/4 - 10 % d'éléments ferru-
	KO 353 50 - 60	В	gineux de forme nodulaire - argilo limoneux - structure fragmentaire nette : polyédrique moyenne à fine - vo-lume des vides faible entre les agrégats , peu poreux - non collant - quelques racines et radicelles -
			Transition graduelle et régulière.
	KO 354 120-130	65 - 150 BC	Humide - Brun jaunâtre 5 YR 4/4 - limono argileux - structure fragmenatire nette : polyédrique fine à moyenne - volume des vides faibles entre les agrégats - non collant pas de racines.
			:

FICHE ANALYTIQUE

		FIUNE	WIAW.		<u> </u>	1			1	
PROFIL KO]	P. 365		P. 366		P. 367		P. 368		
I IVOI IL "	Horizon	9 1.1	! :	1.3		2		2.5		HRZ
	Groupe	13							,	GR
35	Sous-groupe	17								SG
	(Famille)	21						_	1	FM
	(Série)	25							!	SR
	(Région)	29						:		RG
	Numéro du sac	33 351		352		353		354		SAC
	Profondeur minimale en cm	37 D.D1		20		50	·	120		PMI
€,	Profondeur maximale	41 10		30		60		130	·	PMA
Granulométrie	Refus	45 89.8		44.9		13.2		0.01		REF
en 10 -2	Carbonate de calcium	49	: 	-		-			: !	CDC
♣	Argile	53 8.36		10.5		38.4	 .	14.0	; • •	ARG
	Limon fin 2 à 20 µ	57 10.8		15.7		15.1		27.4		LMF
	Limon grossier 20 à 50 µ	61 5.13		5.93		6.23		29.3	<u> </u>	LMG
	Sable fin 50 à 200 µ	65 10.9 69 60.1		10.6 57.5		7.02		24.6 1.49	 	SBF
	Sable grossier	69 60.1	1	1	- 1	1 1	1	1	1 - 1	SBG
M	0.1	13 31.6	 -	7.77	<u>'</u>	<u> </u>	<u> </u>	·	 	CARTE
Matières organiques en 10-3	Carbone	17 1.44		1011		· · · i				N -
	Azote	21							<u> </u>	AH
	Acides humiques Acides humiques bruns	25 !				- · ·				AHB
	Acides humiques gris	29		 						AHG
	Acides fulviques	33		-				 		AF
Acidité	pH eau 1/2,5	37 4.80		5.40		5.10		5.20		PHE
	pH chlorure de potassium	41	·			1		-		PHK
Cations échangeables	Calcium Ca++	45 1.72		80.0		0.08		0.04		CAE
en mé	Magnésium Mg++	49 1.65		0.15		0.07		0.04		MGE
	Potassium K+	53 0.07		0.01		0.01		0.01		KE
	Sodium Na+	57 0.01		0.01		0.01		0.07		NAE
	Capacité d'échange ·	61 11.1		3.59		1.31		0.50		Т
Acide phosphorique	Phosphore total	65 0. 04		0.04		0.04		0.02		PT
en 10-3	Phosphore assim. Truog	69								PAT
7		73 2	2	2	2	2	2	2	2	CARTE
, s	Phosphore assim. Olsen	13;						l 1		PAO
	Phosphore ass. citrique	17							I	PAC
Eléments totaux (triacide) en 10-2	Perte au feu	21 14.4		9.86		12.3		13.7		PRT
en 10-2	Résidu	25 0.62	· 	0.50		0.50		0.22	ļ	RSD
	Silice SI 02	29, 1.54	. 	0.88		0.88		2.02	ļ <u></u> -	SI
	Alumine Al2 03	33 5.13		5.13		5.04		4.75		AL
	Fer Fe2 03	37 72.4	•	75.8		78.8		75.5	 	FE
	Titane TI 02	41 0.22		0.21		0.18		0.64		TI
	Manganèse Mn 02	45 ⁺ 0.30		, 0.20		U _• 34	! 	0.04		MN FEL
en mé	Fer libre Fe2 03 Calcium Ca++	53 1.63		0.00	<u> </u>	0.00		0.00	<u></u>	CA
on me	Magnésium Mg++	57 34.5	-	30.1	!	27.6		16.5		MG
	Potassium K+	61 0.13		0.00		0.00		0.00	ļ	K
	Sodium Na +	65 D.28	-	0.33		0.13		0.02	ļ 	NA NA
ch 10 -3	Nickel INI 02	69 3.31		4.71		5.47	i	12.2	Į	-
		73 3	. 3	. 3	. 3	3	3	3	3	CARTE
	Chrome Cr2 03	13 42.4		44.7	•	42.4		26.4		
÷	Cobalt Co 0	17 D. 26	•	0.33		0.30		0.56	ļ I	1
Structure et	PRXX6 H Sol frais	21 5.29		9.84		22.4		43.6		
caractéristiques hydriques	PF 3	25 6.26	•	10.1	•	21.0	•	43.1	† · - /-	+
_	PF 4.2	29 5.50		Ī		15.1		33.3		
	Instabilité structurale	33		1		Ţ				T
1	Perméabilité	37			:			1]	
Données combinées	Matière organique 10-3	41 54.6		13.4	•			1		1
	C/N	45 21.B			 	T				
	Ac Fulv/Ac, humique	49		!		T	_	I	J	
•	S. bases ech, mé,	53 3 .45		0.25		0.17		0.16		
	Toux de saturation o/o	57 32.2		6.95		13.0		32.0		
	S. bases Totales mé								ļ	1
	Si02/Al 203	65				ļ				
	Si 02/R203	69		ļ <u>_</u>						<u> </u>

CLASSE	SOL HYDROMORPHE
SOUS-CLASSE	MINERAL
GROUPE	A GLEY
SOUS-GROUPE	PEU PROFOND
Famille	Sur alluvions anciennes
Série	argileux

PROFIL	ко 7	
Mission/Dossier	Koniambo	

Observateur:

M. LATHAM

Date d'observation: 17 - 11 - 72

LOCALISATION

Route Koné Atteou Plaine Ferreaud

carte IGN 1/50.000 Pouembout Document carto. :

Coordonnées: 21º 02º 20º de Latitude sud 164° 52' 15" de Longitude 25 m d'Altitude

Mission I.G.N.: Photo aérienne : Photographie:

CLIMAT

Type: Tropical humide

Station: Koné

Période de référence : 15 ans

Pluviométrie moyenne annuelle : 1194 mm Température moyenne annuelle : 23° C

Saison sèche et chaude après pluie. Saison lors de l'observation :

SITE

Géomorphologique: Plaine alluviale

Topographique:

Plane Lent

Drainage: Erosion:

En nappe

Pente en %:

MATERIAU ORIGINEL

Alluvions anciennes Nature lithologique :

Type et degré d'altération :

Hydromorphe

Etage stratigraphique: impuretés ou remaniements :

VÉGÉTATION

Aspect physionomique: Savane à Niaoulis

Composition floristique par strate: Strate arborée Niaoulis, Melaleuca leucadendron

Strate arbustive et herbacée : goyavier - graminées

UTILISATION

Modes d'utilisation : Paturage naturel

Jachère, durée, périodicité :

Techniques culturales :

Modelé du champ :

Successions culturales :

Densité de plantation : Rendement ou aspect végétatif :

ASPECT DE LA SURFACE DU TERRAIN

Microrelief: Uni

Edifices biologiques : Néant

Dépôts ou résidus grossiers : Néant

Néant Affleurements rocheux:

EXTENSION ET RELATION AVEC LES SOLS VOISINS

GROUPE	
SOUS-GROUPE	
Famille	
Série	

Serie			
Croquis du profil	Prélèvements numéro du sac	Profondeur en cm et nomenclature des horizons	· · · · · · · · · · · · · · · · · · ·
ਰ ੇ			Profil sur sondage
; 5	KO 71 0 - 15	0 - 5	Sec - gris brun 10 YR 3/2 - sablo argileux - structure fragmentaire peu nette grumeleuse - poreux - friable - nombreuses racines grosses et fines -
			Transition distincte et régulière
		5 - 15	Sec - gris brun, quelques taches plus claires - argi- leux lourd -
	ко 72 40 - 50	15 - 50 B ₁	Frais - Brun jaune 10 YR 6/3, quelques taches ocre 10 YR 6/6 - argileux lourd.
		50 - 80 B ₂	Frais - taché brun rouge sur fond gris, taches de pe- tites tailles à contour bien délimités.
,			
,			•
			•
,			
· •			

		LICUI	ANALTIN	M OF					`
PROFIL KO	7	P 31	0		P 311				
	Horizon	9 1.1			2.1				HRZ
	Groupe	13							GR
7	Sous-groupe	17							SG
	(Famille)	21							FM
	(Série)	25 .							SR
	(Région)	29						P	RG
	Numéro du sac	33 71 37 0.0	<u> </u>		72		_		SAC
	Profondeur minimale en cm		5		40 50				PMI
Granulométrie	Profondeur maximale Refus	45 c	2		1			r	PMA
en 10 -2	Carbonate de calcium	49							CDC
€ ,	Argile	53 17.7	!		49.0				ARG
	Limon fin 2 à 20 µ	57 22.5			17.7				LMF
	Limon grossier 20 à 50 µ	61 19.0			13.4				LMG
	Sable fin 50 à 200 µ				14.8				SBF
	Sable grossier	69 10.9			2.96	/			SBG
		73 1	1 1 1 -	1	5.19	1		1	CARTE
Matières organiques en 10-3	Carbone	13 27.0 17 1.91		dula de mon	0.74	-·			C
511 10	Azote	21							AH
	Acides humiques Acides humiques bruns	25						-	AHB
	Acides humiques gris	29					·· · · · · · ·		AHG
	Acides fulviques	33							AF
Acidıté	pH eau 1/2,5	37 5.90			5.70				PHE
	pH chlorure de potassium	41							PHK
Cations échangeables	Calcium Ca++	45 6.39			2.92				CAE
en mé	Magnésium Mg++	49 8.1			18.5				MGE
	Potassium K+	53 0.28			0.08 3.38		· - ··		KE
	Sodium Na+	57 0.38 61 21.8			25.9				NAE
Acide phosphorique	Capacité d'échange Phosphore total	65 0.02			0.01	'			PT
en 10-3,	Phosphore assim, Truog	69		+					PAT
*	. Hospitoro assim, Traog	73 2	2 2	2	2	2	2	2	CARTE
	Phosphore assim, Olsen	13;							PAO
,	Phosphore ass. citrique	17					· · ·		PAC
Eléments totaux (triacide)	Perte au feu	21 10 1		1	6.26				PRT
en 10-2	Résidu	25						-	RSD
	Silice SI 02	29			0 50			·	SI
	Alumine Al2 03	33 3.61	·	<u> </u>	8.08				AL FE
	Fer Fe2 03	37 5 99 41 6.2 5		· 	8.18				TI
	Titane TI 02 Manganèse Mn 02	45 2.12			0.47				MN
	Fer libre Fe2 03	49			0.11				FEL
en mé	Calcium Ca++	53 7.08	· i		43.8				CA
	Magnésium Mg++	57 13.2			37.8				MG
	Potassium K+	61. 2.00			2.93				К
	Sodium Na+	65 1.15		:	5.76				NA
en 10 -3	Nickel in 02	69 0.30			0.60	``_			1
		73 3	3 3	3	3 7	31	3	3	CARTE
	Chrome Cr2 03	13 1.48			0.81				-
Structure et	Cobalt Co 0		! - ! -	· -					<u>i </u>
caractéristiques hydriques	5525x H sol frais		- 4 -	,	18.2				
ħ	PF 3	25 19.7 29 12.0	 		31.0				i
*	PF 4,2 Instabilité structurale	33 12.0	+		20.1				
•	Perméabilité	37		1				•	
Données combinées	Matière organique 10-3	41 46.5		! !	8.94				t
	C/N	45 14.2			7.01			_	
	Ac Fulv/Ac, humique	49							
	S. bases ech. mé.	53 15.2	· ·		24.9				
	Toux de saturation o/o	53 15.2 57 69.7 61	i :		96.1				
	S bases Totales mé	61!							+
	Si02/AI 203	69 [†]							
	Si 02/R203	69 [†]	+ , + , -		. ,		<u>-</u> -		+