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Citation: Ruffault, J., and F. Mouillot. 2015. How a new fire-suppression policy can abruptly reshape the fire-weather

relationship. Ecosphere 6(10):199. http://dx.doi.org/10.1890/ES15-00182.1

Abstract. Understanding how the interactions between anthropogenic and biophysical factors control

fire regimes is increasingly becoming a major concern in a context of climate, economic and social changes.

On a short time scale, fire activity is mainly driven by the variations in weather conditions. But while the

assessment of this fire-weather relationship is an essential step towards fire hazard estimations,

reconstructions or projections, still little is known about the impact of human practices on this relationship.

In this study, we examined the recent fire history in southern France where a new fire policy, introduced

during the 1980s, suddenly brought new fire suppression and prevention practices. We aimed at assessing

the impact of these changes on fire activity and on the relationships between fire and weather, usually

assumed to be constant over time. To do so, we used a statistical framework based on spatially explicit

daily fire occurrence data, the corresponding weather variables and the associated fuel moisture derived

from a process-based model. Our results showed that the introduction of the new fire policy resulted in a

sharp decrease in fire activity but also impacted the daily fire-weather relationship in two main ways. On

the one hand, fewer wildfires ignited for similar weather conditions. On the other hand, the probability of a

fire to spread over significant surfaces shifted from a fuel-dryness driven system to a system driven by the

concomitance of fuel dryness and strong winds. These observations suggest that mid-term (decadal) social

factors can affect the short-term (seasonal to daily) relationship between weather conditions and fire

activity. Thus, the interactions between human and climate factors should be taken into account when

reconstructing or projecting fire activity and including the impact of fire policies on the fire-weather

relationships in fire models would be an important step towards more realistic fire regimes simulations.
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INTRODUCTION

Wildfire is a widespread and critical process in

the earth system, shaping ecosystems structure

and functioning (Bond and Keeley 2005, Pausas

and Keeley 2009), influencing biogeochemical

cycles (Körner 2003, Van der Werf et al. 2010) and

threatening human lives and structures (Chuvie-

co et al. 2014). Understanding how the interac-

tions between anthropogenic and biophysical

factors influence fire regimes appears as a major

concern in a context of ongoing human and

climate changes (Bowman et al. 2011, Pausas and

Keeley 2014).
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The occurrence of fires at the landscape scale is
controlled by three requirements: (1) an ignition,
(2) biomass resources available for burning and
(3) atmospheric conditions conducive to combus-
tion (Pyne et al. 1996, Moritz et al. 2005). But
beyond this relatively simple physical process,
the probability of fire occurrence and the final
size of a fire patch are the result of numerous
biotic and abiotic factors operating at different
scales (Moritz et al. 2005). Thus, once an ignition
has occurred, fire start (i.e., when an ignition turn
into a wildfire) is mainly driven by the biophys-
ical factors affecting fuel flammability. Then fire
spread (i.e., fire that becomes greater in size) is
mostly determined by wind conditions, available
fuel and its water status. Climate therefore
dictates the distribution and quantity of flamma-
ble vegetation to burn but also fire activity
through its control on the variations in weather
conditions and fuel moisture (Swetnam and
Betancourt 1990, Krawchuk and Moritz 2011).
Within this framework, humans affect both the
probability of fire start and spread by three main
ways: by starting and preventing ignitions, by
actively fighting fire spread and on a long-term
basis by modifying fuel structure/load spatial
patterns.

In several biomes worldwide, daily to annual
variations in fire activity are mainly dependent
on weather conditions and their time lag effect on
fuel moisture conditions. Several semi-physical
or empirical models (Pausas 2004, Flannigan et
al. 2005, Pereira et al. 2005, Balshi et al. 2009,
Thonicke et al. 2010) have therefore been
developed to identify the ‘‘fire weather’’, defined
as the weather conditions that influence fire
ignition, behavior and suppression (sensu Mor-
eira et al. 2011). But using such relations for fire
hazard prevention, historical reconstructions and
future projections implies that the relationship
between the meteorological variables and fire
risk is constant over time and space. Yet, several
studies showed that vegetation (Littell et al. 2009,
Pausas and Paula 2012, Lehman et al. 2014, Wang
et al. 2014), or human practices (Archibald et al.
2010, Parks et al. 2012) have an impact on the
spatial characteristics of the fire-weather rela-
tionship. But few studies investigated how the
fire-weather relationships might change over
time (Bowman et al. 2011, Moreira et al. 2011).

Among human practices acknowledged to

alter fire regimes, fire-suppression has been
suggested as one of the most influential factor
explaining the reduction of total burned area
along the 20th century (Mouillot and Field 2005,
Marlon et al. 2008, Pechony and Shindell 2010).
Although their efficiency has been debated
(Keeley et al. 1999, Piñol et al. 2005), there are
some evidences that the introduction of en-
hanced fire-suppression policies (early interven-
tion, fire lighting prevention and fuel
management) reduced the number, severity and
size of fires in regions where large and infrequent
fires dominate (Cumming 2005, Mouillot and
Field 2005, DeWilde and Chapin 2007). Several
studies suggested that fire-suppression practices
acted by reducing the probability that a fire
spread over significant surfaces (Cumming 2005,
Podur and Martell 2007, Podur and Wotton
2011). Following this assertion, Wang et al.
(2014) showed that some bottom-up factors
(vegetation composition and cover, ignition
patterns, human suppression) could modify the
ratio between realized spread days (i.e., day with
observed large fires) and potential fire spreads
day (i.e., days which corresponds to hot, dry, and
windy conditions and which are more likely to
result in non-negligible fire spread). These
findings, as well as the regional to national
spatial heterogeneity in the drivers of fire
regimes in different areas worldwide suggest
that changes in fire-suppression practices may
also have an impact on which and how biophys-
ical factors control fire activity. But so far, few
studies, if any, investigated the impact of changes
in fire management and suppression policies on
the relative importance of biophysical factors
controlling fire occurrence and spread. We might
point here the lack of case studies where fire
suppression has been thoroughly and efficiently
applied and the lack of long-term daily fire
statistics, or to the fact that fire-suppression
changes generally occur concomitantly with land
cover and/or climate changes that prevent from
disentangling each effect independently.

Southern France, where a rigorous fire preven-
tion and suppression program was launched in
1987 (Alexandrian 2008, Fox et al. 2015), provides
a relevant study case to test the impact of
changes in fire-suppression practices on the fire-
weather relationships. Unlike its neighboring
southern European countries where fire activity
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has increased in the last half of the 20th century
due to land abandonment and/or climate change
(Pausas 2004, Koutsias et al. 2012, Pausas and
Fernández-Muñoz 2012), fire activity largely
decreased in southern France in the recent
decades (Alexandrian 2008). We developed a
statistical framework to analyze the response of
fire occurrence probabilities to different keystone
climatic variables (air temperature, air humidity,
wind speed) and fuel moisture of litter and
vegetation derived from a process-based water
budget model. Then, we used national fire
statistics covering the 1973–2006 period (almost
15 years before and after 1987) to test for any
abrupt shift in the fire activity and the daily fire-
weather relationship and to investigate the
concomitance of these changes with the intro-
duction of the new fire-suppression policy.

MATERIALS AND METHODS

Study area
The study area covers 4 French administrative

districts (called ‘‘départements;’’ 21,637 km2)
located in Southern France and delimited by
the Pyrenees Mountains in the South, the Massif
Central foothills in the North and the Mediterra-
nean coastline (Fig. 1A, B). In this area, climate is
Mediterranean; winters are cool and wet while a
high evaporative demand along with low rainfall
amounts are responsible for a prolonged water
deficit in summer (58 days 6 29 days; Ruffault et
al. 2013). Over the region, a rainfall gradient is
closely related to topography and ranges from
600 mm on the coast (elevation¼ 0 m) up to 1630
mm in the Massif Central foothills (elevation ¼
1450 m). Forest type known as ‘‘garrigues’’ cover
65% of the region and is dominated by Mediter-
ranean evergreen tree species (Quercus ilex, Pinus
halepensis) and shrublands (Cistus monspeliensis,
Quercus coccifera). Agricultural areas (mainly
vineyards) cover 28% of the landscape and are
mostly distributed in the major floodplains.
Urban areas cover the remaining 7% and mostly
distributed on the coast (French national geo-
graphic database; BDTOPO 2006).

Frequent but relatively small fires characterize
the current fire regime (more than 80% of fires
are smaller than 5 ha). Only a handful (1%) of
large fires (larger than 100 ha) are responsible for
more than 60% of burnt area (Alexandrian 2008).

Fire duration is very short in the mediterranean
eurozone; over the period 2007–2009, more than
80% of fires lasted less than 3 hours and 100% of
forest fires did not last more than a day
(DaCamara et al. 2014). As in the other southern
European countries (see Moreira et al. 2011),
humans are responsible for most of fire ignitions
(97% during the 1973–2006 period; www.
promethee.com).

Over the last 40 years, fire-practices in South-
ern France can be split into two distinct periods
as a result of the introduction of a new fire policy
in 1987. This new fire policy was set up in
response to a couple of years of extensive fire
events at the national level (Viret and Queyla
2004). This new fire prevention and suppression
strategy was based on the anticipation and
massive attack of incipient fires in order to
‘‘intervene in less than 10 minutes’’ with faster
call-to-site reactivity and better communication
tools during surveillance and fire fighting. The
Conservatory of Mediterranean Forests (CFM)
was created as the operative structure gathering
fire prevention and suppression management
actions in southern France. Fox et al. (2015)
thoroughly discussed the adopted official strate-
gy and the associated technical and strategic
measures that occurred in southeastern France.
At the regional level, an annual budget of 15M€

was used for several fire suppression and
prevention efforts, including prescribed fires,
fuel management, increased human resources
with better equipments and the design of a
network of forest paths for better accessibility.
This date also initiated the start of anticipated
procedures based on daily meteorological thresh-
olds in order to early deploy and warn fire-
fighting forces (Alexandrian and Esnault 1999).
These main decisions were followed by interdic-
tions of public access to forests during periods of
high fire risk.

Forest fire dataset
Fire data were extracted from the PROME-

THEE fire database (available on line at www.
promethee.com). This database covers southern
France and has been managed by the French
forest services since 1973. The PROMETHEE fire
database is based on the information observed by
firefighters in the field. It distinguishes forest
fires from urban and crop fires and provides for
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each registered fire, its date, surface and location

of ignition on a 2 3 2 km administrative grid

system (DFCI reference grid). To avoid any

biases arising from the potential growing con-

sideration of smaller fires in fire number esti-

mates during recent time, we carefully checked

for the minimum fire size reported by fire

authorities over the study period (see Appendix:

Fig A1). A breakpoint was detected in 1992, the

date before which fires under 0.1 ha were not

reported. All statistical analyses were therefore

performed on a filtered datasets in which all fires

under 0.1 ha were removed. The final dataset

consisted of 10,830 fires for the period 1973–2006.

Each fire was classified into one or more of seven

classes of resulting burned area: .0 ha, .1 ha, .

6 ha, .10 ha, .15 ha, . 30 ha and . 50 ha. We

will note here that a fire spreading over an area

larger than 50 ha therefore belongs to the last

class (.50 ha) but also to the 7 previous ones.

The presence or absence of fire in each voxel (i.e.,

for each day in each DFCI grid cell) was then

described as a binary response variable.

Recent studies brought up suspicion and

doubts on national fire statistics by pointing out

some inaccuracies in reported burnt areas and/or

fire counts as well as inconstancies along time

and space (Goforth and Minnich 2007, Turco et

Fig. 1. Location (A) and digital elevation model (B) of the Mediterranean studied region. The small panel on the

bottom right (C) indicates the areas whose natural vegetation cover is higher than 50% and selected for this study.
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al. 2013) that could affect the results of our
analyses. It should be noted here that it has been
the main purpose of the PROMETHEE structure
to provide temporal and spatial homogeneous
fire data since its creation in 1973. Besides,
Husson (1985) evaluated the French national
PROMETHEE fire dataset by comparing LAND-
SAT images with reported burned area over the
1973–1980 period. Despite an overall good
agreement, he identified three main type of
errors in the PROMETHEE database: (1) small
fires were often rounded in 5 ha steps, (2) an
overestimation of the area of the largest fires up
to two times, (3) some small fires were not
reported. We used fire size classes rather than
raw burnt area reports to reduce the uncertainty
related to these errors.

Modelling framework for assessing
the daily fire-weather relationship

To examine the daily fire-weather relationship,
we used a spatio-temporal framework based on
the statistical association between historical fire
events, the daily variations in weather conditions
(weather variables) and the time-lag effect of
weather on fuel moisture content (through the
use of functional drought indices). The region
was divided into three-dimensional space–time
samples, called voxels. Spatial partitioning fol-
lowed the administrative grid system of 4 km2

(DFCI grid; see previous section) devised by the
French fire and forest management agency over
the French territory. Each DFCI grid cell in the
study region was considered as the spatial
sampling unit. In order to avoid any effect
resulting from the lack of fuel load and connec-
tivity on fire spread possibilities in heteroge-
neous landscapes, grid cells with less than 50% of
natural vegetation cover were discarded from
our study. The resulting spatial extent of our
study consisted of 3540 grid cells (Fig. 1C). Our
study was carried out on the 1973–2006 period.
Daily meteorological data, fuel moisture indices
and fire data were collected for each grid cell for
this period and summarized for each day thereby
providing the daily temporal dimension of the
voxel.

Fire weather was estimated through the use of
a few selected factors acknowledged to control
fire start and spread probabilities in forested
ecosystems (Chandler et al. 1983): temperature

(Temp), wind speed (WS), air relative humidity
(HR) and fuel moisture content (FMC). To
represent the differential effect of different fuel
compartments on fire behavior, we used two
different indices to estimate the moisture of dead
vegetation and litter fuel on the one hand
(Superficial drought; DS) and to the moisture of
living fuel on the other (Vegetation drought; DV).
These two indices take into account the non-
linear response of vegetation to weather in water-
limited ecosystems by accounting for an inte-
grated view of precipitation, potential evapo-
transpiration and the capacity of plants to extract
water in soils (Stephenson, 1990, Ruffault et al.
2013). They were estimated by using a process-
based water balance model. Then, to predict the
probability of fire occurrence within each voxel,
we used a machine-learning algorithm, boosted
regression trees (BRT) using weather and fuel
variables as explanatory variables and fire
occurrence as the response variable. More details
about the data, the water balance model and the
BRT statistical models are presented in the next
sections.

Weather data.—Daily weather variables were
derived from the 83 8 km grid SAFRAN climatic
database (CNRM France; Habets et al. 2008). The
SAFRAN database is derived from the interpo-
lation of daily measured weather ground data
and has been validated over France (Quintana-
Seguı́ et al. 2008). Daily precipitation (Ppt),
temperature (Temp), global radiation (RG), wind
speed (WS) and specific air humidity (HS) were
extracted for the 1973–2006 period. Weather
conditions exhibit a strong spatial heterogeneity
in the study area (Ruffault et al. 2013). Daily
weather variables were therefore re-interpolated
to match the lower spatial resolution adopted for
our analyses (4 km2; DFCI grid) using the
following procedure validated over the region
by Ruffault et al. (2014). Given the dependency of
Ppt and Temp to elevation in the study area, these
two variables were downscaled using a thin plate
spline interpolation procedure implemented in
the packages ‘‘fields’’ and ‘raster’ in R (R Core
Team, 2012). Daily RG, WS and HS were
resampled at 4 km2 by the inverse distance
weighting method. Relative humidity (HR) was
then computed from interpolated values of Temp

and HS. See details in the supplementary
materials of Ruffault et al. (2014).
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Estimations of fuel moisture content.—Two prox-
ies of fuel moisture content (FMC) were derived
from a daily process-based water budget model
developed to run at a 1 km2 spatial resolution
and validated in forest stands over southern
France by Ruffault et al. (2013). In this model,
variations in soil water content (SWC) are
simulated on a daily time step using the water
balance between precipitations (P) and water
outputs

DSWC ¼ P� In� D� E� T ð1Þ

where the amount of precipitation intercepted by
the canopy (In), the soil evaporation (E), the
transpiration of vegetation (T) and the drainage
(D) are all expressed in mm. Soil is represented
by a 3-layer bucket model. For each grid-point,
the model inputs consist of species functional
parameters, soil features and daily weather
variables: precipitation, temperature and global
solar radiation. Potential evapotranspiration
(PET) is computed using the Priestley–Taylor
equation. Then T is expressed as a function of
PET modulated by LAI and canopy conductance
through daily simulations of soil water potential
(Wsoil). Wsoil is related to soil water content (SWC)
by the power function model for the retention
curve (Campbell 1974). Water balance estima-
tions were computed for a single plant functional
type (PFT) representative of the woody ever-
green deep-rooted species (trees and large
shrubs) encountered in our study area (see
details in Ruffault et al. 2013). In order to
estimate LAI of the vegetation, the water balance
model was coupled with a carbon assimilation
and allocation model (Mouillot et al. 2001). We
then used a spin-up procedure over the 1973–
2006 period to compute a theoretical LAI in
equilibrium with site-specific water stress ac-
cording to the ecohydrological equilibrium the-
ory (see details in Ruffault et al. 2013). For all
simulations, we used the LAI estimated over the
1973–2006 period; therefore, we did not consider
changes in vegetation type and distribution over
time. Soil parameters (texture, rock fragment
content and soil depth) were extracted from the
regional DONESOL database (1/250000; INRA;
Gaultier et al. 1993).

Superficial drought (SD) used as a proxy of the
litter and herbaceous layer moisture content was
computed from daily simulations of soil water

content, and expressed as the ratio between the
actual soil water content of the first soil layer (h,
0–20 cm) and the soil water content of this same
layer at field capacity (hfc)

DS ¼ 1�maxð1; h=hfcÞ: ð2Þ

Vegetation drought (DV), used as a proxy for
plant moisture content was related to the soil
water content across the whole root profile and
plant water extraction capacity. This index was
estimated as the ratio between actual evapo-
transpiration (AET) and maximum transpiration
(ETmax; transpiration without water stress) as
follows:

DV ¼ 1� ðAET=ETmaxÞ: ð3Þ

These two indices vary between 0 for no
drought stress to 1 for absolute dry conditions.

Logistic regression models.—We used a machine-
learning algorithm, boosted regression trees
(BRT; De’ath 2007, Elith et al. 2008) to predict
the probability of fire occurrence within each
voxel. BRT uses the iterative partitioning ap-
proach of regression trees, but reduces predictive
error by ‘‘boosting’’ initial models with addition-
al, sequential trees that model the residuals in
randomized subsets of the data (De’ath 2007,
Elith et al. 2008). This makes them particularly
suitable when the nature of the process is
presumed to be complex and when an emphasis
is on accurate predictions and a transparent
interpretability of output in describing relation-
ships between dependent and independent var-
iables (De’ath 2007, Elith et al. 2008).

BRT models need information about presences
and absences of fire to determine the weather
and fuel conditions that are more likely to result
in a fire. As the natural prevalence of ‘‘presence
voxels’’ was very low in the study area, a
reduced number of random ‘‘absence voxels’’
were selected for model fitting. For a better
comparability between models performed for
different fire size and periods, prevalence (the
proportion of presence voxels) were equaled
among models and set to 0.1. The learning rate
or shrinkage parameter (lr), the tree complexity
(tc) and the number of trees (nt) are the main
parameters of BRT models and were set accord-
ing the procedure recommended by Elith et al.
(2008). For all models, a bag fraction of 0.5 was
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used meaning that, at each step, 50% of the data
were randomly drawn from the training dataset.
According to preliminary analyses, we set the ts
to 4. As the number of sample could subsequent-
ly vary between models, we then determined the
lr to a value that resulted in an average test error
being minimized between approximately 1000
and 2000 trees (Elith et al. 2008). BRTmodels, like
many other statistical approaches, are vulnerable
to model overfitting when input variables are
highly correlated (Olden et al. 2008). For each
model, any correlation among input variables
was evaluated in a cross-correlation matrix
(Spearman q). As the explanatory variables were
not strongly correlated (q , 0.55), all variables
were kept for all models.

We used the area under the receiver operating
characteristics (ROC) curve (AUC) to evaluate
models suitability. For each model, 70% of the
observations were randomly selected from the
complete dataset to build the statistical model
(training dataset). The remaining observations
(30%) were used to evaluate the accuracy of
model classification (validation dataset). We also
reported the commission error (false positive
rate) and omission error (false negative rate) at
the probability threshold that maximizes the sum
of sensitivity and specificity values. BRT models
were computed in R (R Core Team 2012) with the
gbm package (Ridgeway 2006) and custom
functions created by Elith et al. (2008). All BRT
models were computed using a Bernoulli (logis-
tic) error structure. To limit the stochasticity in
model outcomes caused by the subsampling and
the bagging, we created an ensemble of 25 BRT
models and then averaged the results.

We interpreted the BRTmodels by first looking
at the relative contribution of the variables to the
predictive models. This contribution of the
different predictors was estimated from the sum
of squared improvements associated with this
variable and averaged across all trees in the
boosted models (De’ath 2007, Elith et al. 2008).
We also examined the relative influence of each
variable by plotting the partial dependencies of
responses to individual predictor (De’ath 2007,
Elith et al. 2008). The partial dependence repre-
sents the estimated marginal effect of an explor-
atory variable on the fire occurrence prediction
when the responses of all other variables are held
constant at their mean.

Analyses of historical changes in fire activity
and in the fire-weather relationship

Historical changes in fire activity.—We studied
the historical fire activity over the 1973–2006
period by focusing on three components of the
fire regime: annual burnt area (BA), number of
ignitions (NI) and number of large fires (fires
.15 ha; NL). Based on preliminary results, this
15 ha threshold was selected as the fire size that
can be used to discriminate the weather and fuel
conditions favoring fire start from those favoring
fire spread (see results and discussion sections).
For each of these variables (BA, NI and NL), we
tested for any significant shifts and their timing
over the 1973–2006 period. As errors in shift
detection are more likely to arise when data are
relatively short (less than 40 time steps) or when
shifts are situated at the extreme of the time
series (see Andersen et al. 2009), two statistical
tests were used. (1) We computed an F statistic
for every potential breaking point (sequential F-
test) and then used the supF statistic used to test
their significance. (2) We also used the empirical
fluctuation processes tested by the cumulative
sums of scaled residuals (OLS-based CUSUM
test). These methods have been successfully used
for time series analysis of fire and ecological data
(Andersen et al. 2009, Pausas and Fernández-
Muñoz 2011, Loepfe et al. 2012). In this study, we
considered shifts to be significant when p-values
were lower than 0.05 for both tests and compared
the results of these tests to determine the timing
of the shift. These two tests were computed with
R (R Core Team 2012) with the strucchange
package (Zeileis et al. 2003).

Temporal variations in the fire-weather relation-
ship.—A two-step approach was developed to
investigate how weather conditions control the
spatial and temporal variations in fire start and
spread probabilities and to assess how the
introduction of the new fire policy might have
affected these relationships.

(1) In a first step, we investigated how weather
variables and drought indices influence fire
occurrence by looking at the relative contribution
of the variables to the predictive models as well
as the partial dependencies of responses to each
individual predictor. As weather conditions
controlling fire start might differ from those that
control fire spread, this process was performed
for the seven classes of final fire size (see Forest
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fire dataset). Similarly, as we hypothesized that
fire-suppression practices could have an impact
on the fire-weather relationship, we explore the
fire-weather relationship for two distinctive
periods: before and after the introduction of the
new fire-suppression policy in 1987.

(2) In a second step, we performed a trend
analysis to ensure that the changes in the fire-
weather relationship we observed (see results
and discussion) followed an abrupt breakpoint
rather than a smooth trend line and were
concomitant with the introduction of the new
fire policy. For this purpose, we analyzed the
interannual variability of the fire-weather rela-
tionship over the 1973–2006 period by processing
BRT models on 5-year moving windows pro-
gressing along the whole time period on a 1-year
time step. We then tested for any significant
shifts in the contribution of each explanatory
variable during the period covering the intro-
duction of the new fire policy using the two
statistical time series analysis tools described
above (see previous section). This 5-year tempo-
ral window was determined as being the best
compromise for considering that climate and
land cover did not overly change during this
period and sufficient fire data for model perfor-
mance. Based on the results of the first step, we
investigated the fire-weather relationship for all
fire occurrences (i.e., fire start conditions) and for
fires larger than 15 ha (i.e., fire spread condi-
tions).

RESULTS

Historical changes in fire activity
The statistics on fire activity in the study area

showed an important interannual variability as
well as significant break points for burnt area
(sequential F-test and CUSUM; p, 0.05; Fig. 2A),
number of fires ( p , 0.001; Fig. 2B), and number
of large fires ( p , 0.001; Fig. 2C), all of them
concomitantly occurring in 1986 (see Appendix:
Fig. B1). A total of 473 (6 152) fires per year were
recorded for the earlier period (before 1987) but
twice as less (203 6 79) over the most recent one
(post 1986). Similarly, the number of large fires
decreased from 71 (6 34) to 18 (6 14) fires.year�1

and burnt area decreased from 65.2 (6 59.9) to
18.1 (6 22.4) km2.year�1.

Fire weather conditions
The overall performance of boosted regression

trees (BRT) models predicting fire probability
reached AUC values higher than 0.78 (Appendix:
Fig. C1) with commission and omission errors
respectively lower than 30% and 25% (at the
probability threshold that maximizes specificity
and sensitivity). We will note that the predictive
performance of the BRT models was higher for
larger fires and for the most recent period.

The relative contribution of the weather
variables and drought indices to the probability
of fire occurrence showed a fire-size dependent
pattern, but whose features substantially differed
between the two studied periods (before and
after the introduction of the new fire policy; Fig.
3). The drivers influencing the fire start (fires . 0
ha) were similar for both periods. Fire probability
was mainly explained by the three following
variables: vegetation drought (DV; about 20%;
Fig. 3A), superficial drought (DS; about 23%; Fig.
3B) and relative air humidity (HR; about 35%; Fig.
3C). But as fire size increased, we observed some
differential changes in the relative contribution of
weather variables and drought indices to fire
probabilities whether we considered one period
or the other. When considering the earliest period
(before 1987), we observed a decrease in HR

contribution (from 35% for fires. 0 ha to 25% for
fires .15 ha; Fig. 3C) when increasing fire size,
while the contribution of DV increased from 20%
to 28% (Fig. 3A). By contrast, for the most recent
period (post 1987), the relative contribution of
WS increased when increasing fire size, from 10%
for fires . 0 ha to 30% for fires .15 ha (Fig. 3D)
whereas the relative contribution of HS decreased
by 20% (Fig. 3C). We can note here that beyond
this 15 ha threshold, the relative contribution of
weather variables and drought indices explain-
ing fire probability remained similar. This 15 ha
fire size was then considered as a threshold value
beyond which weather conditions are suitable for
larger fires to occur.

Fig. 4 represents the partial effect of each
explanatory variable in BRT models on fire
occurrence and spread probabilities and illus-
trates the large diversity of response pattern
depending on the considered variable. For
instance, the responses of fire probabilities to
fuel moisture proxies (DS and DV) were largely a
function of threshold values (0.1 for Dv and 0.2
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for Ds) beyond which fire probabilities were

reduced. Above these thresholds, fire probabili-

ties were constant whatever the drought intensi-

ty. Decreasing HR linearly contributed to higher

fire risk (Fig. 4C), while the effect of Temp was

noteworthy only during the hottest days of the

year above a threshold of 258C (Fig. 4E). All these

variables had a quite similar partial effect on fire

probability regardless of the fire model under

study (fire start or fire spread) and the consid-

ered time period. By contrast, the partial effect of

WS on fire probabilities varied over time as we

observed a little effect of WS before 1987 (Fig. 4D,

dashed lines) compared to the stronger and quite

linear effect on the most recent period (Fig. 4D,

full line) until a threshold of 12 m s�1, particu-

larly when considering fire spread probability

(Fig. 4D, red lines). The right tails of the

relationships may be less reliable, because they

are based on a relatively small number of data

points.

Temporal shifts in the fire-weather relationship

Based on these previous results that illustrate

the contrasting contributions of weather vari-

ables to fire probabilities, we computed BRT

models on a 5-year average moving window to

test whether these changes in the fire-weather

Fig. 2. Temporal variations in annual (A) burnt area, (B) number of fires and (C) number of large fires (.15 ha)

in the study area over the 1973–2006 period. The historical changes in fire activity were investigated using two

statistical methods: a sequential F-test (maximum F statistic over the period: FS) and a OLS-based CUSUM test

(statistic: S0; ns: P . 00.5, * P , 0.05, ** P , 0.01, *** P , 0.001). For the three studied variables, both statistical

tests indicate that a significant shift in fire activity occurred in 1986 (dotted line, see Appendix: Fig. B1). Two

period can therefore be delimited: 1973–1986 and 1987–2006.
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relationship were the results of smooth processes
or sharp shifts around 1987. Overall, the perfor-
mance of the BRT models predicting fire start
and spread probabilities over a 5-year average
window was good (AUC . 0.79; Appendix: Fig.
D1) so no bias was observed on this short time
frame compared to the AUC obtained for the
whole period. Similarly to previous results (see
Appendix: Fig. C1), model performance was
higher when predicting fire spread probabilities
than fire occurrence (Appendix: Fig. D1, sequen-
tial F-test and CUSUM; p , 0.01 for all fires; p ,

0.001 for large fires).
The relative contribution of weather variables

to the probability of fire start and spread showed
a high interannual variability with significant
and abrupt changes over the study period, all of
them co-occurring during the time frame cover-
ing the year 1987 (Fig. 5). Affected variables were
different whether fire start or fire spread proba-
bilities were considered. When considering the

probability of fire start (fires .0 ha), we observed
some break points in the variable contribution of
superficial drought (SD; sequential F-test and
CUSUM; p , 0.05) and temperature (Temp; p ,

0.05) but only with minor changes in the
quantitative contribution of these variables (Fig.
5B, F). When focusing on the factors controlling
fire spread (fire .15 ha), we also observed break
points in the variable contributions, with an
increase for WS (sequential F-test and CUSUM, p
, 0.001; Fig. 5D), a decrease for RH ( p , 0.01;
Fig. 5C) and a slight but significant decrease for
Temp ( p , 0.05; Fig. 5E).

DISCUSSION

Changes in fire-suppression practices
triggered an abrupt decrease in fire activity

Like most Euro-Mediterranean regions, South-
ern France has experienced important climatic
and socio-economic changes over the last de-

Fig. 3. Relative contribution of explanatory variables in BRT models predicting the probability of fire

occurrence for different classes of final fire sizes and for two distinct temporal periods: before and after the

introduction of the new fire policy in 1987. Mean and confidence intervals of an ensemble of 25 models are

reported. See Appendix: Fig. C1 for results on models performance.
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Fig. 4. Comparative estimated partial dependence of explanatory variables in BRT models predicting fire start

probabilities (fires . 0 ha) and fire spread probabilities (fires . 15 ha) between two distinct temporal periods:

before and after the introduction of the new fire policy in 1987. Partial dependency plots represent the estimated

marginal effect of a variable on fire probability when all other variables are held constant. Mean (curve) and

confidence intervals (colored areas) of an ensemble of 25 models are reported. Ticks at the inside top of the plots

show deciles of distribution across the variable. See Appendix: Fig. C1 for results on models performance
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Fig. 5. Temporal variations in the relative contribution of explanatory variables in BRT models predicting fire

start probability (fire . 0 ha) and fire spread probabilities (fires . 15 ha). All models were applied on a 5-year

moving average window. Mean (curve) and standard deviation (colored area) of an ensemble of 25 models are

reported. The grey shaded areas indicate the beginning and the end of the 5-year time period during which the

new fire policy was introduced. The historical changes in variable contribution during this period were

investigated using two statistical methods: a sequential F-test (maximum F statistic over the period: FS) and an

OLS-based CUSUM test (statistic: S0; ns: P. 00.5, * P, 0.05, ** P, 0.01, *** P, 0.001). See Appendix: Fig. D1 for

results on model performance.
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cades, with climatic trends towards drier condi-
tions (Ruffault et al. 2013), a smooth and
continuous population increase from 1,450 M to
2,650 M inhabitants from 1950 to 2000 (Abrantes
et al. 2010) and land cover changes with forest
cover replacing vineyards. These human and
land cover changes were mostly initiated in the
middle of the 20th century (Debussche et al. 1999,
Schaab et al. 2000), much earlier than in other
most of other Mediterranean countries (Spain,
Portugal, Israel and Greece) where most changes
occurred in the 1980s (see a review in Moreira et
al. 2011). All of these climatic and human
changes have been identified as key drivers for
increasing fire activity in the Euro-Mediterranean
context. Yet, fire activity showed a different
pattern in our study area, with a sudden drop
around the year 1987 characterized by a reduc-
tion in burnt area (BA), the number of fires (NF)
and the number of large fires (NL; .15 ha) by a
factor of 3.5, 2 and 4 respectively (Fig. 2;
Appendix: Fig. B1). The concomitant introduc-
tion of the new fire policy (the only identified
mechanism potentially leading to decrease fire
hazard) is the most plausible factor explaining
this shift in fire activity. This hypothesis suggests
that the new fire practices (fuel management,
prescribed burnings, ignition prevention and
firefighting) had a quick and strong efficiency
in this region, as already observed in Southeast-
ern France by Fox et al. (2015).

This abrupt shift in fire activity, caused by ‘‘a
non-climatic factor’’ (sensu Pausas and Keeley
2014), highlights the importance of fire policies in
determining fire regime characteristics on a long-
term basis (Marlon et al. 2008, Bowman et al.
2011). In contemporary history, similar scenarios
have been observed for regions where fire-
suppression practices suddenly changed. In
southeastern France, early testimonies indicate a
reduction of burnt area by a factor of 2 between
1870 and 1890, consecutive to a new French law
for fire prevention (Fisher 1894). In the US, burnt
area decreased by a factor of 10 within 2 decades
between 1930 and 1950 (Mouillot and Field 2005,
Nowacki and Abrams 2008). We will note that in
these two examples, the shifts in fire activity
were not as sudden as the one we observed in
southern France but were obtained with fire
fighting tools less efficient than the recent ones.
More recently, Salis et al. (2014) reported a

similar abrupt decrease in burnt area and
number of fires during the 1990s in Italy, which
was partly due to the enhancement of suppres-
sion capabilities.

Weather conditions controlling fire activity
To predict fire occurrence probability, we used

a set of variables describing the instantaneous
weather conditions and the mid-term (a few days
to weeks) time-lag effect of weather conditions
on fuel moisture. These variables performed well
for predicting the spatio-temporal variability in
fire activity in the Mediterranean forested eco-
systems encountered in our study area (Fig. 3;
Appendix: Figs. C1, D1). This is coherent with
well-documented patterns in fire-conducive
weather in Mediterranean ecosystems (Chandler
et al. 1983). In addition, the important relative
contribution of the vegetation drought and
superficial drought indices (DV and DS) confirms
the premises that litter and dead moisture
content (DFMC) facilitate ignition and favor fire
spread whereas low moisture content of the
living biomass (LFMC) can induce crowning and
prevent from an effective and quick suppression
(e.g., Viegas et al. 2013).

As recognized by different authors, functional
indices are a promising way for a deeper insight
in the factors controlling fires as they allow
accounting for the complex interactions between
weather, soil and vegetation (Thonicke et al.
2001, Mouillot et al. 2002, Pausas and Paula
2012), though further studies should be done to
assess the accuracy of such process-based ap-
proaches for spatially explicit estimations of fuel
moisture content (Pellizzaro et al. 2007). Here,
our study area being located at the northern
bound of the Mediterranean area and character-
ized by a uniform ‘‘garrigue’’ type cover, vege-
tation was considered as a unique non fuel-
limited Mediterranean type ecosystem. However,
this assumption might blur some species effects
on fire occurrence probabilities due to a different
functional response to weather and soil condi-
tions but also to a lower priority given to fire
fighting in some vegetation type (Bessie and
Johnson 1995, Krawchuk et al. 2006, Moreira et
al. 2010). In addition and in regions where the
effect of fuel limitation is more important, the
moist conditions preceding the fire season
determine fuel build-up and can have a signifi-
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cant importance in the upcoming fire activity
(e.g., Littell et al. 2009, Pausas and Paula 2012).
We supposed in this study that fire probability
was more drought-limited than fuel-limited in
Southern France, which was confirmed by the
high modeling performance. Nevertheless, add-
ing this information might improve our model-
ing performance and would undoubtedly extent
our modeling framework to other environments
and biomes.

Based on the fire-size dependent pattern of fire
occurrence to weather variables (Fig. 3), one of
our main hypotheses was to consider a threshold
of 15 ha to define large fires. When comparing to
other regions and ecosystems (Hantson et al.
2015), this burnt area of 15 ha is rather small to be
considered as a ‘large fire’. But in the Euro-
Mediterranean area where landscapes are highly
fragmented, most of the fires are small and only
few fires reach extended surfaces (Ricotta et al.
2001). Besides, our analytical results leading to
this threshold are consistent with fire services
reports which indicate that a size of about 17 ha
is the maximum final burnt area if (1) fire fighters
are able to intervene in less than 10 minutes after
ignition and (2) the fire size before intervention
does not exceed 1 ha (Lacomblez et al. 2004).
When these initial conditions are not met, fire
spread over an average size of 193 ha. We did not
observe differences in the relative contribution of
the explanatory beyond this 15 ha threshold but
as the size of fire increases, the weather control
on fire occurrence probability became stronger
(Appendix: Fig B1), that could suggest that
weather control is more important for the largest
fire. Nevertheless, there are also many reasons
why a fire might not grow despite favorable
weather conditions that we did not explore here
such as fuel structure and accumulation or a
geographic impediment to spread (Koutsias et al.
2012, Wang et al. 2014).

Historical changes in the fire-weather relationship
The sudden decrease in fire activity observed

in our study area implies a concurrent shift in the
fire-weather relationship. A close examination
reveals two different mechanisms.

Firstly, while the number of fires suddenly
decreased around 1987 (Fig. 2A), the relative
contribution of the weather factors explaining
fire starts remained constant over the 1973–2006

period. Fire suppression can then be considered
as a process that quantitatively affects the
number of fire starts. Such a reduction in fire
start probabilities resulting from the introduction
of fire-suppression policies has already been
observed (Keeley et al. 1999, Podur and Martell
2007). It could be due to a better prevention
policy that contributed to a diminution of human
ignitions by informing and warning populations
on fire risk and by preventing recreational
population fluxes through a strict control in
national forest sites during high fire risk periods.

Secondly and concomitantly with the decrease
in the number of fires and burnt area (Fig. 2), we
observed a sudden and significant shift in the
relative contribution of the weather factors that
control the spread of fires over a large area (Figs.
3 and 5). Nowadays, under the new fire
suppression and prevention policy, large fire
occurrence is controlled by a combination of
dry fuel moisture conditions and strong wind
speed. This pattern is in accordance with the
conditions generally identified as major drivers
of fire spread in temperate and Mediterranean
forested ecosystems because of the inefficiency of
suppression during these dry and windy days
(e.g., Keeley et al. 1999, Piñol et al. 2005, Moritz et
al. 2010, Podur and Wotton 2011). But interest-
ingly, before the introduction of this new fire
policy, dry moisture conditions alone control the
probability of fires to spread. Fewer studies
reported that dry conditions could be sufficient
for larger fires to occur when suppression
practices are less intense (but see Bradstock et
al. 2014). This could be due to the fact that most
studies providing some daily assessments of the
fire-weather relationship focus on regions and
periods for which accurate fire and climatic
datasets are available, which generally corre-
spond to regions where efficient fire-suppression
policies are applied.

We observed that the daily fire-weather rela-
tionship was stronger for the most recent period
when human suppression is more important
(Appendix: Figs. C1 and D1) whereas it is
generally assumed that the control of climate/
weather on burnt area is weaker when human
intervention is greater (e.g., Balshi et al. 2009,
Wang et al. 2014). In our study area, the
introduction of enhanced fire fighting and
prevention practices lower fire spread probabil-
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ities under mild conditions (i.e., weather condi-
tions where vegetation is dry enough to propa-
gate fire but without extreme wind and/or heat).
Under these conditions, the probability that a fire
ignition spreads over a significant area is very
stochastic under a low-controlled fire strategy as
it depends on several other miscellaneous vari-
ables (fuel continuity, topography, facility of
access for fire fighters), which are far from being
homogeneous in the Euro Mediterranean area.
Under these similar weather conditions but when
fire suppression is stronger, fire fighters are able
to intervene rapidly and large fire events rarely
occur, which therefore increases the performance
of statistical model to predict daily fire probabil-
ities.

Implications for fire regime
management and predictions

Contrasted national and regional fire policies
have been developed and introduced worldwide
(Carreiras et al. 2014). These policies are highly
dependent on political, economic and societal
fast changing factors and major changes in fire-
suppression practices and/or in the expenditures
dedicated to firefighting could happen in the
near future (Chuvieco et al. 2014). We provided
evidence that fire-suppression practices can
change the relative importance of wind and
drought conditions associated with the occur-
rence of large fires and therefore shape the
climatic definition of a ‘‘potential fire spread
day’’ (sensu Podur and Wotton 2011). This
information is essential for a better understand-
ing of the multi-scale biophysical and anthropo-
genic factors driving fire regimes (Moritz et al.
2005) since it implies that mid-term (decadal)
social factors could affect the short-term (season-
al to daily) relationship between weather condi-
tions and fire activity. Thus, the reduction (or
increase) in the number of largest fires following
the introduction of a fire policy could be
explained by a decrease (or increase) in the
number of potential fire spread days.

Numerous changes in fire practices occurred
concurrently in southern France and the impact
each of those changes is therefore hardly evalu-
able. Our results suggest than improving fire
suppression in southern France would involve a
better prediction of when and where dry and
windy conditions occur in order to set-up

adapted fire prevention and fire fighting strate-
gies. But fire management in this region should
also be assessed in the context of its own impacts
on the fire-weather relationship and its subse-
quent consequences for fire regimes. For in-
stance, changes in fire-suppression practices
could lead to an offset of the fire seasonality to
moments of extreme winds or extreme droughts
(Moritz et al. 2010) or to some spatial shifts of fire
zones towards the windiest or driest areas
(DeWilde and Chapin 2007). We might also
question here the benefits of this strong fire
suppression without significant fuel load control
that might increase biomass and lead to mega
fires, although this issue remains controversial in
the Euro Mediterranean context (Piñol et al.
2005).

We provided evidence that the empirical fire-
weather relationships, generally calibrated for a
specific period and ecosystems, could fail to
provide robust fire risk and fire activity estima-
tions in a case of changes in fire policies. Several
studies have shown that fire suppression strate-
gies should explicitly be taken into account if
realistic outputs on fire regime characteristics are
sought (Loepfe et al. 2012, Brotons et al. 2013).
However, these mechanisms are hardly embed-
ded in models simulating fire activity on large
scales. For instance, the general hypothesis
concerning humans’ impacts on fire regime in
Dynamic Global Vegetation Models (DGVMs) is
that increasing population increases ignition but
also decrease the frequency of large fires through
increasing controls on fire spread. But when
using this hypothesis temporally with varying
population density along the century, models are
not able to simulate accurately the abrupt
decrease/increase in burnt area observed along
the 20th century (Kloster et al. 2010, Thonicke et
al. 2010, Pfeiffer et al. 2013, Yue et al. 2014),
which suggests that some key constraints are not
adequately represented. If human decision-mak-
ing modeling in DGVMs has just started to be
implemented for land use change scenarios
(Arneth et al. 2014), the mechanisms driving
changes in fire policy are far from being
identified. Historical (based on national informa-
tion) or future scenarios of fire suppression
practices could be assembled and used as a
time-varying variable to drive the fire weather-
relationship and improve model simulations of
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fire regimes.
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