République Française Nouvelle - Calédonie

et

Dépendances

OFFICE DE LA RECHERCHE
SCIENTIFIQUE ET TECHNIQUE

OUTRE_MER

SERVICES RURAUX

LABORATOIRES DE PÉDOLOGIE ET D'AGRONOMIE

TERRITORIAUX

P. MAZARD P. SEVERIAN F. DEVINCK A.G. BEAUDOU
H. LE MARTRET
M. LATHAM

B. BONZON
J. P. SAMPOUX
C. MAURY

L'ÉTUDE DES EFFETS DES AMENDEMENTS CALCIQUES SUR LES SOLS CULTIVABLES DE NOUVELLE_CALÉDONIE

EFFETS DES AMENDEMENTS CALCIQUES SUR SOL SODIQUE ACIDE

TEST D'HOMOGÉNÉITÉ INITIAL DU CHAMP EXPÉRIMENTAL

Convention particulière nº 2 du Protocole Général d'Accord passé le 21 Avril 1980 entre le Territoire de la Nouvelle-Calédonie et l'O.R.S.T.O.M. pour l'étude de la Fertilité Naturelle et de l'Evolution sous Cultures des Sols de Nouvelle-Calédoni de l'Evolution sous Cultures de la Nouvelle-Calédoni de l'Evolution sous Cultures de l'Evolution de l'Evolution sous cultures de l'Evolution sous cultures de l'Evolution de l'Evolutio

ERRATA.

- 1 p. 8, paragraphe 3.4.2, lire KC1 au lieu de K1
 "3.4.2. <u>sur les échantillons de sol</u>, la granulométrie, les pH-eau et KC1",
- 2 p. 8, 23ème ligne, lire (tableaux 2 à 5) au lieu de (tableaux 1 à 4)
- 3 numéroter de 1 à 22 les tableaux de l'annexe 4 (pp 25-46)
- 4 p. 24, rajouter sous le titre de l'annexe
 "(pour les sigles, cf tableau 1 p. 9)"
- 5 p. 47, rajouter aussi sous le titre de l'annexe : "(pour les sigles, cf tableau 1 p. 9)"

REPUBLIQUE FRANCAISE.

Nouvelle-Calédonie et Dépendances.

SERVICES RURAUX TERRITORIAUX.

OFFICE DE LA RECHERCHE SCIENTIFIQUE ET TECHNIQUE OUTRE-MER.

P. MAZARD

Laboratoires de Pédologie et d'Agronomie

P. SEVERIAN

A. BEAUDOU B. BONZON

F. DEVINCK

M. LATHAM J.P. SAMPOUX

H. LE MARTRET

C. MAURY

ÉTUDE DES EFFETS DES AMENDEMENTS CALCIQUES SUR LES SOLS CULTIVABLES DE NOUVELLE-CALÉDONIE *

-§-

EFFETS DES AMENDEMENTS CALCIQUES SUR SOL SODIQUE ACIDE.

-§-

Test d'homogénéité initial du champ expérimental.

^{*} Convention particulière n° 2 du Protocole Général d'Accord passé le 21 Avril 1980 entre le Territoire de la Nouvelle-Calédonie et l'ORSTOM pour l'étude de la Fertilité Naturelle et de l'Evolution sous Cultures des Sols de Nouvelle-Calédonie.

PLAN DU RAPPORT.

	Pages.
RESUME	1
INTRODUCTION	3
1. FORME ET ORGANISATION GENERALE DU PARCELLAIRE. IMPLANTATION DU RESEAU D'IRRIGATION D'APPOINT	3
2. INSTALLATION ET CONDUITE DU CHAMP EXPERIMENTAL CONDITIONS CLIMATIQUES GENERALES	4
3. PARCELLE ELEMENTAIRE, ANALYSES STATISTIQUES, CARACTERISTIQUES ETUDIEES	6
3.1. Surfaces de référence : parcelle élémentaire et parcelle utile	6
3.2. Analyses statistiques des résultats	6
3.3. Observations, mesures et analyses agrologiques	6
3.4. Etude complémentaire à mi-cycle	7
4. RESULTATS ET DISCUSSIONS	7
4.1. Variabilité et niveaux des principales caractéristiques recueillies sur les 84 parcelles élémentaires	7
4.2. Relations entre les caractéristiques étudiées	9
4.3. Etude complémentaire à mi-cycle	10
4.4. Etude de la macro-hétérogénéité du champ	11
CONCLUSIONS	13
DOCUMENTS DE REFERENCE	14

ANNEXES.

		Pages
1.	Successions des opérations culturales	14
2.	Temps de travaux	18
3.	Pluviométrie, irrigation, climatologie	20
4.	Résultats des observations, mesures et analyses effectuées sur les 84 parcelles élémentaires	23
5.	Résultats de l'étude des principales relations sol-plantes sur les 84 parcelles élémentaires	46
6.	Résultats de l'étude agrologique complémentaire à mi~cycle	51

RÉSUMÉ.

Le présent document rend compte des résultats du test d'homogénéité du champ retenu pour l'étude des effets des amendements calciques sur sol sodique acide.

La végétation du champ en question était constituée, avant sa mise en culture, par un "pâturage naturel amélioré" à repousses de niaoulis.

La plante-test utilisée pour caractériser les différences de fertilité fut un sorgho-grain variété GOLDFINGER.

Les apports d'éléments majeurs, prédéterminés par deux essais en serre, consistèrent en :

- une fumure de fond de 160 kg/ha de P_2O_5 et 157 kg/ha de K_2O_5 ;
- deux épandages d'urée, le premier 4 jours après le semis, le second 53 jours plus tard, fournissant chacun 39 kg/ha d'azote.

Une irrigation d'appoint fut appliquée pour pallier les effets d'une sécheresse, normale à l'époque du test mais qui fut très marquée en 1981.

Les rendements en grains, à la récolte, s'échelonnèrent entre 0,55 et 1,75 T/ha seulement. Trois facteurs au moins ont eu un effet dépressif sur eux :

- les carences naturelles initiales très fortes en azote et phosphore qui ont du mettre le sorgho et le sol en compétition pour les éléments majeurs apportés par les engrais ;
- des attaques sévères de bengalis dès le stade de la maturation ;
- les caractères sodique et acide du sol.

Une micro-hétérogénéité importante, apparue très tôt en début du cycle, soulève, parcequ'impossible à expliquer par les résultats des analyses agrologiques, la question d'un éventuel effet résiduel inhibiteur de la croissance du sorgho dûe à la végétation originelle (niaouli ?).

Une macro-hétérogénéité, non moins importante et liée probablement à un gradient général de fertilité (orienté perpendiculairement à l'axe de la rivière bordant le champ d'essai), rendra indispensable pour la suite des études une analyse par covariance des résultats expérimentaux.

La sévérité des attaques de bengalis rend nécessaire, par ailleurs, l'utilisation d'autres plantes-tests.

INTRODUCTION.

L'enquête préliminaire conduite en 1980 à travers le Territoire (cf. le document l cité en référence) pour trouver des sites expérimentaux adaptés à l'étude des effets des amendements calciques sur les sols cultivables a, pour mémoire, abouti à la conclusion que l'étude devait être lancée en priorité sur sol sodique acide et sur vertisol magnésien, et permis, par ailleurs, de retenir un site pour l'étude du premier type de sol.

Ce site se trouve sur la rive droite de la rivière POUEMBOUT, sur la propriété BERTONI (cf. document 2 cité en référence).

Le présent document rend compte des résultats du test d'homogénéité initial mis en place sur ce terrain en 1981.

1 - FORME ET ORGANISATION GENERALE DU PARCELLAIRE. IMPLANTATION DU RESEAU D'IRRIGATION D'APPOINT.

Un relevé topographique préalable à l'échelle du l/1000ème avec courbes de niveaux espacées de 10cm (cf. le document 2) a montré que le parcellaire de l'expérimentation devait être organisé d'une certaine façon si l'on voulait apporter une irrigation d'appoint à 42 parcelles de 18 x 9m avec allée principale de 4m au centre de l'essai et allées secondaires de 2,5m entre les rangs de parcelles (la taille retenue pour les parcelles devant permettre de les subdiviser en cas de besoin par la suite).

Partant de la rivière POUEMBOUT et se dirigeant vers la route, perpendiculairement à celle-ci, la conduite principale d'irrigation, en tubes galvanisés de Ø 100mm, a coupé ainsi le terrain en deux parties, l'une à l'Est qui a comporté 3 rangées de 4 parcelles, l'autre à l'Ouest constituée de 5 rangées de 6 parcelles.

La partie Est a été irriguée à l'aide de 2 conduites secondaires en tubes d'acier galvanisé de Ø 80mm et de 72m de long, la partie Ouest à l'aide de 3 conduites de même diamètre et de 118m de long.

La conduite principale a été installée sur l'allée de 4m de large, les conduites secondaires, chacune dans un inter-rang.

Les arroseurs ont été disposés en quinconces d'une conduite sur l'autre et à 18m les uns des autres le long de chaque conduite. Trente arroseurs ont permis ainsi d'arroser le champ expérimental de façon homogène.

2 - INSTALLATION ET CONDUITE DU CHAMP EXPERIMENTAL. CONDITIONS CLIMATIQUES GENERALES.

L'hybride double de sorgho australien "GOLDFINGER" a été retenu pour ce test d'homogénéité. Le semis a été réalisé à la densité de 8 plants/m 2 sur des lignes espacées de 0,75m.

La fumure utilisée a été pour mémoire (cf. études expérimentales en serre, première et deuxième parties), prédéterminée à l'aide de cultures en pot.

Elle a consisté en :

- l/ une fumure de fond enfouie avant le semis et comportant 500kg/ha de Rekaphos 0-32-16 et 160kg/ha de sulfate de potasse à 48% apportant au total 160kg/ha de P_2O_5 et 157kg/ha de K_2O ;
- 2/ deux épandages de 85kg/ha chacun d'Urée, le premier 4 jours après le semis, le second au 57ème jour, apportant au total 77 kg/ha d'azote.

Partant du pâturage naturel à niaoulis la succession générale des travaux est celle de l'organigramme ci-après . Pour les dates et les détails on se reportera aux annexes l et 2.

1 - ORGANIGRAMME DES OPÉRATIONS CULTURALES SUCCESSIVES.

DEFRICHEMENT

- 2 disquages profonds croisés (0-15cm)
- 1 sous-solage (0-55cm)
- ramassage des souches et grosses racines

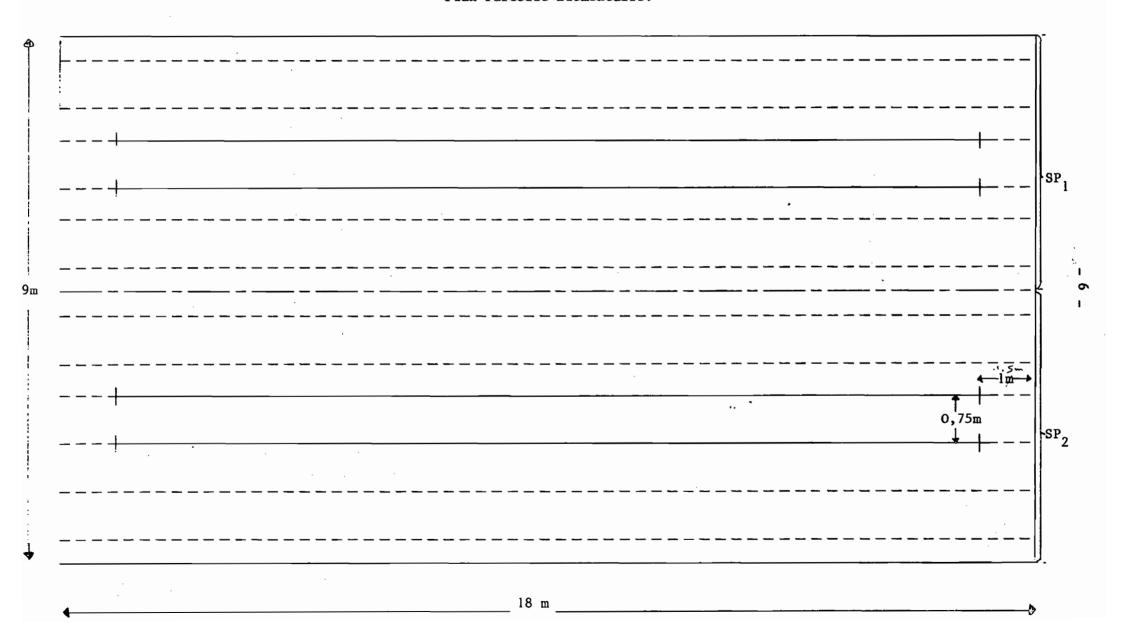
FUMURE DE FOND, LABOUR.

- épandage de la fumure de fond
- labour à la charrue à soc réversible (0-20cm)

FACONS SUPERFICIELLES

- disquage (0-10cm)
- ramassage des souches et grosses racines

SEMIS


- semis de précision (Benac pneumatique à 2 rangs)
- roulage au cultipaker
- traitement insecticide

IRRIGATION, ENTRETIEN ET CONTROLES PHYTOSANITAIRES.

- mise en place du réseau d'irrigation
- 2 épandages d'Azote par irrigation
- 2 traitements phytosanitaires curatifs (métasystémox)
- l binage de contrôle des adventices
- mise en place du réseau de parcelles et des repères des lignes utiles

RÉCOLTE.

2 - ESSAI AMENDEMENTS CALCIQUES SUR SOL SODIQUE (POUEMBOUT) 1981. Plan Parcelle Elementaire.

L'irrigation a été conduite "à la demande".

Les quantités d'eau apportées par les pluies et l'irrigation figurent à l'annexe 3 ainsi que les principaux renseignements météorologiques concernant la vallée de la Pouembout.

3 - PARCELLE ELEMENTAIRE, ANALYSES STATISTIQUES, CARACTERISTIQUES ETUDIEES.

3.1. Surfaces de référence : parcelle élémentaire et parcelle utile.

La plus petite surface d'application d'un facteur controlé élémentaire retenue pour la suite des études est la demi-parcelle de Lxl = 18x4,5 = 81m², comportant 6 rangs espacés de 0,75m et de 18m de long chacun. A l'intérieur de cette demi-parcelle, que l'on appelera dorénavant parcelle élémentaire, les deux rangs centraux, moins un segment de bordure de 1,5m de long à chaque extrémité, constituent la parcelle élémentaire utile (de 22,5m² de surface).

3.2. Analyses statistiques des résultats.

En raison de la disposition et des effecfifs des rangées de parcelles élémentaires, aucun modèle linéaire particulier d'essai en bloc complet n'a été appliqué aux données recueillies. Celles-ci ont fait l'objet seulement d'un calcul de variance et d'un rapprochement deux à deux généralisé.

3.3. Observations, mesures et analyses agrologiques.

Les observations et les déterminations suivantes ont été effectuées sur chaque demi-parcelle :

- . 3.3.1. <u>en cours de végétation</u>, au 63ème jour, une détermination des densités de peuplement et de tallage (une première détermination de la densité de peuplement avait été effectuée 7 jours auparavant);
- . 3.3.2. juste avant la récolte, au 134ème jour, une détermination des densités de peuplement, de tallage et de talles fertiles;
- . 3.3.3. à la récolte, au l4lème jour, le rendement en grains ;
- . 3.3.4. juste après la récolte, sur des échantillons de 500g de grains frais :
 - la teneur en matière sèche des grains,
 - le poids de 1000 grains,
 - leurs teneurs en N, P, K, Na, Ca, Mg;

. 3.3.5. <u>2 mois après la récolte</u>, sur de petits échantillons de sol, une détermination du pH-Eau et du Sodium soluble.

3.4. Etude complémentaire.

En cours de cycle, des tâches d'hétérogénéité particulièrement nettes (mais de très petites dimensions) ayant été observées en divers points du champ expérimental, 20 échantillons végétaux ont été recueillis, 10 sur des zones de faible développement, les 10 autres sur des zones où le sorgho se développait apparemment très bien.

Un échantillon de sol a été prélevé également sur chacun de ces 20 placets.

Les zones échantillonnées se situaient naturellement en dehors des surfaces utiles des parcelles élémentaires.

Les déterminations suivantes ont été effectuées :

3.4.1. sur les échantillons végétaux, les teneurs en N, P, K, Na, Ca, Mg;
3.4.2. sur les échantillons de sol, la granulométrie, les pH-Eau et K l,
les teneurs en Carbone total, Azote total, sels solubles, Potassium, Sodium,
Calcium et Magnésium échangeables, Phosphore total et Phosphore assimilable
Olsen.

4 - RESULTATS ET DISCUSSIONS.

Les résultats des observations, des mesures et des analyses relatives aux 84 parcelles élementaires figurent sur les tableaux ! à 22 de l'annexe 4, ceux concernant les corrélations entre ces données à l'annexe 5 (tableaux ! à 4).

Les résultats de l'étude complémentaire figurent pour leur part à l'annexe 6 (tableaux l à 4)

4.1. <u>Variabilité et niveaux des principales caractéristiques recueillies sur les 84 parcelles élémentaires</u>.

La première remarque que 1'on peut faire au sujet des variables recueillies sur les 84 parcelles élémentaires concerne leur très grande hétérogénéité (cf le tableau l ci-après) : les coefficients de variation des densités de peuplement à mi-cycle (DM) et à la récolte (DR) sont respectivement de 15,5 et 17,3 %; celui du rendement (QG) et de 52.2 %, celui du poids de 1000 grains (GRU) de 9,3 % (ce qui est considérable sur ce paramètre).

1 - PARAMÈTRES PLANTE ET SOL.

SIGLES	SIGNIFICATIONS	UNITÉS	MOYENNES	COEFFICIENTS DE VARIATION
DD	Densité de peuplement au 56ème jour	nbre/m ²	6,22	16,8
DM [*]	Densité de peuplement au 63ème jour	nbre/m ²	6,17	15,5
DTM	Densité des talles au 63ème jour	nbre/m ²	20,67	16,0
DTPM	Densité des talles par plant au 63ème jour	nbre/pl.	'	10,3
DR*	Densité de peuplement à la récolte au l41ème jour	nbre/m ²	6,51	17,3
DTR	Densité de talles à la récolte	nbre/m ²	15,60	20,9
DTFR	Densité de talles fertiles	nbre/m ²	9,79	16,3
DTPR	Densité de talles par plant à la récolte	nbre/pl	2,42	21,3
DTFPR	Densité de talles fertiles par plant à la récolte	nbre/pl	1,54	21,6
MSG	Teneur en matière sèche des grains	7.	85,51	2,3
GRU	Poids de 1000 grains	g	32,95	9,3
QG	Rendement en grains secs	g/m ²	76,84	52,2
NG	Nombre de grains par m ²	10	2,36	54,1
PG	Poids de grains secs par plant	g/plant	12,44	62,1
PGT	Poids de grains secs par talle	g/talle	5,28	60,3
PGTF	Poids de grains secs par talle fertile	g/talle fertile	8,07	54,5
TNG	Teneur des grains en azote	7.	1,44	14,2
TPG	Teneur des grains en phosphore	7.	0,31	16,1
TKG	Teneur des grains en potassium	7,	0,36	8,5
TMGG	Teneur des grains en magnésium	%	0,16	12,2
TSIG	Teneur des grains en silice	67 /6	0,06	98,8
PHE	pH eau du sol	_	5,11	2,9
NAS	Teneur en sodium soluble (extrait au 1/2)	mé/100g	0,20	32,7

Les densités de peuplement ont été estimées à partir de comptages portant sur trois segments de 2m delong par rang utile : ceci peut expliquer les écarts entre DM et DR.

S'agissant d'un champ établi sur défriche de pâturage naturel à niaoulis, ces hétérogénéités n'ont, cependant, rien d'anormal : celle du peuplement a certainement eu pour cause majeure l'hétérogénéité des semis génés par les nombreuses petites souches ou racines de niaoulis encore enfouies dans l'arumite au moment de leur réalisation ; celle du rendement a plus vraisemblablement eu pour origine des causes trophiques (cf plus loin le paragraphe 43) liées à la nature de la végétation originelle, et, pour une autre part, les attaques sévères de bengalis au moment de la maturation.

La deuxième remarque est que les niveaux de la plupart de ces caractèristiques sont faibles. Si celui de la densité de peuplement a volontairement été choisi tel (6,51 pieds/m² à la récolte), celui du rendement (qui oscille entre 5,48 et 175,23g/m², autour de 76,84 g/m² en moyenne, soit 0,77 T/ha est très faible, de même que ceux des rendements par plant, par talle et par talle fertile (respectivement 12,44; 5,28 et 8,07g) et ceux des nombres de talles et de talles fertiles par plant(2,42 et 1,54 respectivement).

4.2. Relations entre les caractéristiques étudiées.

L'étude des relations entre ces caractéristiques met alors en évidence les faits suivants :

- l°/ le rendement (QG) est d'autant plus faible que la densité de talles à la récolte (DTR) et le poids de 1000 grains (GRU) sont élevés ;
- 2°/ plus le rendement (QG) et le nombre de grains par unité de surface (NG = $\frac{QG}{GRU}$) sont élevés, plus les teneurs en Azote, Phosphore, Potassium et Magnésium des grains (TNG, TPG, TKG, TMGG) sont faibles;
- 3°/ plus le poids de 1000 grains (GRU) est élevé, plus les teneurs précédentes sont élevées ;
- 4°/le pH et le sodium du sol (PHE et NAS) varient en sens inverse ;
- 5°/le pH (PHE) varie dans le même sens que le nombre de talles fertiles (DTR) et en sens inverse du poids de 1000 grains (GRU). Ceci pourrai expliquer l'absence de relations entre le pH et le rendement (QG);
- 6°/ plus la teneur en sodium soluble du sol est élevée, plus faible est le rendement

Ces relations et les résultats précédents (cf paragraphe 4.1) forment, finalement, un ensemble cohérent d'informations.

Malgré les apports d'éléments N, P et K par les engrais, les carences naturelles très fortes du sol en ces éléments ont entrainé une compétition sol-sorgho pour les engrais : les zones les moins fortement carencées initialement ont dû favoriser le tallage (très relativement), lequel est devenu par la suite l'un des facteurs limitants - par excès - du rendement de même que le nombre de grains en cours de remplissage.

Le caractère sodique défavorable de ce type de sol a été mis en évidence par ailleurs.

4.3. Etude complèmentaire à mi-cycle.

La netteté des taches d'hétérogénéité observées au début de la montaison (des zones portant des plants se développant apparemment de façon normale et des zones ne comportant que des plants chétifs), a donné à penser qu'une étude comparative des teneurs en éléments minéraux de la végétation et d'un certain nombre de caractéristiques sol de ces deux zones pourraient apporter - in fine - des explications complèmentaires sur l'état général du champ.

La comparaison des résultats obtenus n'apporte malheureusement rien de tel :
les seules différences significatives observées portent sur les teneurs en Azote
et en Magnésium des parties aériennes du sorgho, dont seules celles concernant l'azote peuvent s'interpréter (les plants bien développés ont une teneur en Azote
plus faible en raison de leur stade végétatif plus avancé).

Comme aucun parasitisme particulier ne s'observait également sur ces zones, l'hypothèse de l'intervention de substances toxiques pour le sorgho - ou pour le moins inhibitrices de sa croissance - ne peut être exclue, ces substances pouvant avoir pour origine la végétation originelle de ce type de sol.

4.4.Macro-hétérogénéité du champ.

La répartition en 9 classes * des valeurs observées sur le rendement en grains des 84 parcelles élémentaires du dispositif expérimental met en évidence un regroupement des parcelles ayant donné un rendement élevé(classes de 7 à 9) selon une direction générale parallèle au lit de la POUEMBOUT.

^{*} Cette répartition en 9 classes a été effectuée automatiquement lors du test de non-linéarité de l'étude des liens susceptibles d'exister entre les différents paramètres observés sur la totalité des 84 parcelles élémentaires.

			,							 		. <u>-</u>			 		_
Effets des Amendements Calciques sur un sol Sodique Acide. Paramètre : numéro de classe du test de linéarité de QGg/m.							2	24.2	6	18.2	9	1 1	12.2	6	6.2	. 3	
		Date	30.1	5	24.1	7	18.1	7		12.1	4	6.1	5				
1 = 5,83 < QG < 24,34						29.2	1 6	23.2	9	17.2	7	1 1	11.2	5	5.2	3	
5 = 80),92 · " <	99,78	; ;			29.1	9	23.1	7	17.1	9			4	5.1	4	
42.2	1	38.2	3	6	5.75	28.2	1	22.2	6	16.2	4		10.2	2	4.2	3	
42.1	2	38.1	. 4		7	28.1	8	22.1	4	16.1	3		10.1	. 2	4.1	2	 <u> </u>
41.2	3	37.2	8	,	6	27.2		21.2	5	15.2	3		9.2	2	3.2	2	7-
41.1	1	37.1	4		5	27.1	: 5	21.1	4	15.1	5		9.1	3	3.1	2	
40.2	2	36.2	1		7.75 7	26.2	6	20.2	4	14.2	4		8.2	3	2.2	1	
40.1	3	36.1	. 5		7	26.1	5	20.1	. 3	14.1	3		8.1	1	2.1	1	
39.2	4	35.2	5	1 1	7:15	25.2	1	19.2	3	13.2	2		7.2	2	1.2	1	
39.1	3	35.1	. 6	- 10	5	25.1	5	19.1	4	13.1	6		7:7	3	1.1	1	

L'orientation et la surface de cette bande ne permettent cependant d'envisager pour la suite des études expérimentales, ni une élimination de cette zône cultivable, ni son insertion à l'intérieur d'un seul bloc, ni, enfin, la localisation de toute une expérimentation sur elle seule.

Le principe de la covariance devra donc être appliqué de façon quasi-systématique (les données recueillies sur les futurs essais devront être corrélées
- au niveau de leurs résidus d'ajustement - avec les données recueillies aux
mêmes emplacements lors de ce test d'homogénéité initiale et les variances de leurs
valeurs corrigées, calculées à nouveau).

CONCLUSIONS.

Le test d'homogénéité du champ retenu pour l'étude des effets des amendements calciques sur un sol sodique acide montre :

1°/ que ce type de sol couvert initialement par un pâturage naturel à repousses de niaoulis et situé en bordure de rivière, présente une micro-et une macrohétérogénéité importantes.

La micro-hétérogénéité pourrait être dûe, pour une part, à des effets résiduels de la végétation antérieure inhibiteurs de la croissance, pour un sorgho du moins.

La macro-hétérogénéité correspond en fait à un gradient de fertilité orienté perpendiculairement au lit de la rivière ;

2°/ que les caractères sodique et acide correspondent effectivement à des caractères défavorables au rendement ou à certaines de ses composantes.

Deux enseignements pratique ont été aussi tirés de cette expérience, les nécessités :

- l°/ d'envisager pour la suite de l'étude l'utilisation de la covariance de façon quasi-systèmatique pour dominer la macro-hétérogénéité;
- 2°/ d'utiliser une autre plante-test que le sorgho, non pas en raison de son insensibilité aux amendements calciques, mais à cause des risques d'attaques imparables des bengalis.

DOCUMENTS DE REFERENCE.

Les documents suivants ont trait aux actions de recherches définies dans l'Avenant n° l (Année 1980) de la convention particulière pour l'étude des effets des amendements calciques sur les sols cultivables de la Nouvelle-Calédonie.

- l Recherches de sites expérimentaux pour mener des études sur les effets des amendements calciques en Nouvelle-Calédonie. Enquête préliminaire ORSTOM, 18 p., 5 tableaux, 2 diagrammes.
- 2 Les sols du champ d'expérimentation (M. Bertoni), ORSTOM, 34 p., 9 diagrammes, 4 tableaux.
- 3 L'évolution du pH des humites des sols sodiques acides après apport d'amendements calciques : essais en boite de Pétri, 3 pages, 2 tableaux, 2 diagrammes.

ANNEXE l - Succession des opérations culturales.

PhS.FD/EB

Bourail, le 27 janvier 1982

NOUVELLE-CALEDONIE DEPENDANCES

SERVICE DE L'AGRICULTURE

ANNEXE 1

RECHERCHE AGRONOMIQUE B.P. 37 - BOURAIL

NOUYELLE-CALEDONIE Tél: 44.12.04 44.13.27

M. 22 /65 AG/CREA/RA

ESSAI AMENDEMENTS CALCIQUES POUEMBOUT

Année 1981 Temps de travaux

	Temps de	travaux	1	
Dates	Interventions	Temps (h)	Temps cumulé (h)	Matériels utilisés
	TRAVAUX PREPARATOIRES :	!	1	
04.05	! Disquages profonds croisés		!	! MF 265 + Cover crop
22.05	Sous solage	5	! !	MF 265 + Sous-soleuse
22.05	! Ramassage bois	! 20		
25.05	Ramassage bois	28	! !	!
11.06	Ramassage bois	. 24	Í	
29.06	Ramassage bois	! 20	! !	
!	} !	!	! ! 101	! !
	MISE EN PLACE ESSAI ET FACONS CULTURALES:	! !	! !	! !
11.06	Labour	<u>.</u> 5	!	MF 265 + charrue
29.06	: ! Disquage	! 3	: [MF 265 + disques
30.06	Délimitation parcelle	10	<u> </u> 	
08.07	! Semis sorgho	. 4	!	: ! MF 130 + Bénac pneumatique
09.07	Roulage	2	! !	MF 130 + Rouleau
22.07	! Traitement Insecticide (Dieldrex)	! 3	, 	Atomiseur à dos
11.08	Mise en place parcelle	1 14	<u> </u> 	
13.08	Apport 1 Engrais N	! p.m		Réseau irrigation
27,08	Nouveau piquetage	1 16	! !	
31.08	Traitement Insecticide (Dieldrex)	. 5		Atomiseur à dos
03.09	Apport 2 Engrais N	! ! 12		
07.09	Traitement Insecticide (Métasysté- mox)	! 2 !	 	MF 130 + Tecnoma
14.09	Traitement Insecticide (Décis)	! ! 2	!	MF 130 + Tecnoma
19.10	Traitement Insecticide (Métasysté- mox)	! 4 !		Atomiseur à dos
05.11	Récolte Bordures (début)	! 9 ! 3	 	Moissonneuse-batteuse
26.11	Récolte Bordures (suite)	: ! 4 ! 2	! !	Moissonneuse-batteuse
		! !	! !	

.——			<u> </u>	
! ! 26.11 !	! ! Récolte Parcelles !	! ! 12 ! 3	! ! !	! ! ! Moissonneuse-batteuse
! 27.11	! Récolte Bordures (Fin)	! 6	<u>!</u> !	!
!	İ	; з	! !	Moissonneuse-batteuse
! 07.12	! Gyrobroyage !	! 2	<u> </u>	! MF 130 + gyrobroyeur !
	i	!	126	İ
! !	! !	1	!	!
!	MESURES ET CONTROLES DIVERS :	!	!	İ
! !	1°) Hors Essai :	!	} [} !
. 07.07	Contrôles de germination. Poids de	!	!	!
; !	1000 grains	2	! !	; !
. 07.07	! Etalonnage semoir Bénac	! 4	<u> </u>	!
; ;	!		; ;	! !
!	!	!	6	
ļ '	2°) Essai en place :	1	; !	; !
1 02.09	! Comptage densité	! 12	, (ļ 1
09.09	Comptage thallage	20	; !	ļ
25,11	! Comptage thallage	! 14	<u> </u> 	; !
!	; !	,	; ! . 46	; !
<u>;</u> !	; ;	!) ⁷⁹	} !
į	IRRIGATION :	į	, !	!
! ! 07.07	! Mise en place réseau	! 40 !	<u> </u> 	! !
10.07	Irrigation	3,5	ļ	Impressa
15.07		1,5	;	j "
17.07	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. 3	ļ	,,
22.07	"	! 2 !		! ! "
24.07	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	! 2	,	! "
29.0 <i>7</i>	, ,,	1,5		, , , , , , , , , , , , , , , , , , , ,
04.08	,	! 2		,
12,08	! ! Irrigation + Apport Azote (Urée)	1 0,5 !		: ! "
21.08	, ,	1,5		ļ "
28.08	! ! "	1 2 !		; "
03.09	,,	2,5		!
10.09		! 2 !		; "
15.09	,,	! 2 !		! "
01.10	u .	! 3 !		; ! "
08.10	u	1 1		ļ ,
12.10	11	! 2		, , , , , , , , , , , , , , , , , , , ,
16.10	0	! 2 ! ! 2	<u> </u>]
23.10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	! 2	!	! "
J		!!!	!	!

! ! 29.10	! ! Irrigation	! ! 2	! ! ·	! ! Impressa
06.11	n	, 3	! !	1 ,
! 25.11 !	! Dépose réseau !	! 15 !	! !	! !
<u>!</u>	· •	!	! 96 !	1
! ! ! 20.07	TRAVAUX DIVERS EN COURS D'ESSAI :	! ! ! ! 30	! ! !	} ! !
; ! !	; ! !	; ! ! !	; ! 30 !	; ! !
!	Temps de travail sur champ	!	405	ļ !
!	! Déplacements (33 %)	į	. 134	ĺ
<u> </u>	Majoration absences (25 %)	!	101	ı İ
	: ! Temps morts (20 %)	,	! 81	, !
Į.	Encadrement	! !	! ! 101	! !
; ;	! ! TOTAL NET!!	! ! !	! ! 822 !	! ! !

ANNEXE 2 - Temps de travaux.

NOUVELLE-CALEDONIE ET DEPENDANCES

Bourail, le 27 janvier 1982

SERVICE DE L'AGRICULTURE

ANNEXE II

ESSAI AMENDEMENTS CALCIQUES - POUEMBOUT - Année 1981

Répartition des temps de travaux en Main-d'oeuvre et Matériels

RECHERCHE AGRONOMIQUE

B.P. 37 - BOURAIL NOUVELLE-CALEDONIE Tél: 44.12.04 44.13.27

Nº 22 /66 AG/CREA/RA

! ! Interventions !	Main- d'oeuvre	Mat. Irri.	Sous soleuse	! !MF 265 !	! !MF 130 !	! !Charrue !	! !Disques !	! !Tecnoma !	Semoir pneum.	Atomi- seur	! !Rouleau !	Cover-	! !Camion !	Véhicules liaisons
! Travaux préparatoires	! 101	! -	! 5	! 9	! -	! -	! -	! -	! -	! -	! _	1 4	! _	! -
! Façons culturales !	! 126 !	! - !	! - !	! 8 !	! 12 !	! 5 !	! 3 !	! 4 !	! 4 !	! 12 !	! 2 !	! - !	! - !	! - !
Mesures et contrôles divers : 1°) Hors essai	! ! ! 6	! ! !	! ! !	! !	! !	! ! !	! !	! ! !	! ! !	! ! !	! !	! ! !	! ! !	! ! !
! 2°) Essai en place !	! ! 46 !	! ! -	! ! -	! ! - !	! ! - !	! ! !	! ! - !	! -	! ! - !	! ! - !	! ! – !	! ! - !	! ! - !	! ! - !
Irrigation	96	43	!	!	! -	!	!	! !	! !	! -	! !	! !	!	<u> </u>
! Travaux divers	30	! -	! -	! !	! -	! !	!	!	! !	! -	! !	! -	! -	! !
TOTAUX BRUTS	405	43	5	! ! 17	12	5	! 3	! 4	! ! 4	12	2	! 4	!	! !
! Main d'oeuvre : ! - Majoration absences ! - Déplacements ! - Temps morts	! ! 101 ! 134 ! 81		! ! !	!		! ! ! !	! ! !	! ! !	! ! ! !	! ! !	! ! !	! ! !	! ! ! 34 !	! ! 100 ! !
Encadrement :	101			!	!		!	!	!	!	!		!	!!
TOTAUX NETS	822	43	5	17	12	5	3	4	! 4 !	12	2	4	34	100

ANNEXE 3 - Pluviométrie, irrigation, climatologie.

REPUBLIQUE FRANCAISE

PhS.FD/EB

NOUVELLE-CALEDONIE

Bourail, le 27 janvier 1982

DEPENDANCES

SERVICE DE L'AGRICULTURE

RECHERCHE AGRONOMIQUE

B.P. 37 - BOURAIL NOUVELLE-CALEDONIE Tél: 44.12.04 44.13.27

ANNEXE III

Nº 22 /68 AG/CREA /RA

AMENDEMENTS CALCIQUES - POUEMBOUT

Pluviométrie et Irrigation pendant la période de l'essai (du 08.07.81 au 26.11.81)

Dates			! Ac	ût	Septe	embre	! Octo	obre	! Nove	embre	Tot	al		
!	Pluie	Irri.	Pluie	Irri.	Pluie	Irri.	Pluie	Irri.	Pluie	Irri.	Pluie	Irri.		
1 2 3 4 5 6 7			1,0 0,1 0,1 0,2 4,5	26	0,3 0,2 0,1 0,1 0,1	33	5,0	40	0,8	40				
8 9 10 11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	1,5 0,4 0,2 0,2 0,2	46	3,7 1,4 0,2 0,2 - 0,1	7	0,1 0,2 0,2	26	1,1	13 26	0,2		! ! ! ! !			
15 16 17 18 19 20 21	2,6 - 0,2 - 0,1	20 40	0,1 0,3 0,2	20	0,1 0,2 0,1 0,2 2,5	26	0,1	26	3,7 6,6		! ! ! !			
22 23 24 25 26 27 28	0,2 0,1 0,1	26	0,3 0,3 0,2 - 7,1 0,3	26	0,1 2,6 0,3 0,3 0,3 0,2 0,2		2,7 - 0,8 0,1 - -	26	- - -					
29 30 31	1,0	23	0,1 0,2 0,4		3,7		- - - -	26			! ! ! !			
Total Mois	7,2	181	24,8	79 	!12,2 : !	85	!13,7 :	157	28,0 !	40	85,9: !	542 !		
							TOTAL	GENER/	AL		62	628		

Phs.FD/EB

Bourail, le 8 février 1982

NOUVELLE-CALEDONIE ET DEPENDANCES

SERVICE DE L'AGRICULTURE

RECHERCHE AGRONOMIQUE

B.P. 37 - BOURAIL NOUVELLE-CALEDONIE Tél: 44.12.04 44.13.27

Nº 22 /109 AG/CREA /RA

RENSEIGNEMENTS METEOROLOGIQUES

ESSAI NPK ET AMENDEMENTS CALCIQUES - POUEMBOUT 1981

! Mois !	Pluviométrie (mm)	T° Maxi (°C)	T° Mini (°C)	E.T.P (mm)
! ! Janvier	, , 85,2		- -	- !
! Févrie r	151,8	29,8	22,5	4,13
: ! Mars	250,4	30,5	21,0	4,26
Avril	79,1	29,5	17,2	3,60
! Mai	! 56,6	! 27,7	17,1	2,30
! Juin	40,1	26,1	14,8	2,60
! Juillet	10,9	25,4	11,8	2,73
! ! Août	24,8	25,4	10,8	3,20
! Septembre	12,2	27,4	13,5	4,53
! Octobre	13,7	28,8	16,9	5,16
! Novembre	. 67,4	. 29,1	18,2	5,80
Décembre	! ! 426,1	30,7	21,8	! - ! ! !
! Total	1.218,3	! !	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	! · · !!
! Moyenne	101,53		! ! ! !	! ! ! !
!	!		`	<u> </u>

ANNEXE 4 - Résultats des observations, mesures et analyses effectuées sur les 84 parcelles élémentaires.

TEST D'HOMOGENEITE DE L'ESSAI AMENDEMENTS CALCIQUES SUR SOL SODIQUE ACIDE.

Paramètre : DD

Unité: Nbre/m².

Date: 02/09/81.

			<u> </u>							7			<u></u>				 T
parce 1.	D-1716101	Paramètre	Parce 1	D 1 1 5 1 0 n	Paramètre	Parce 1 ·	D 1 V 1 S 1 On	Paramètre	Parce 1	Division	Paramètre	មិនដ្ឋាភិមិ	D-17-18-10n	Paramètre	Parce 1 .	Division	Paramètre
1	1.	5,9584	8 -	ì	5,6250	- 15	1	6,3750	22	1	5,5417	29	3	5,8750	36.	1	7,5000
	2	6,6250		2	5 , 83 33		2	5,4583		2	6,1250		2	4,7083		2	6,8750
2	1	6,7084	9 -	1	7,4584	- 16 -	1	4,9583	23	1	4,7083	30	1	4,8750	37	ł	7,9166
L	2	5,5834		2	5,0833		2	5,0833		2	4,7083		2	6,2083		2	6,9167
3	1	6,3334	10	1	5,2916	17 .	1	5,2916	24	1	5,7917	31	1	7,2917	38	1	6,0000
	2	5,2916		2	5,5000		2	5,3333		2	3,7500		2	6,2917		2	6,3750
4	1	6,9583	11.	1	6,7084	18	1	5,8333	25	1	7,3750	32	1	8,2084	39 .	1	7,0417
	2	5,8750		2	5,5834		2	4,9166		2	5,8750		2	8,2916		2	6,1250
5	ı	5,0833	12	ī	6,2500	19	l	6,2917	26	1	6,1667	33	1	7,6667	40	1	6,5833
	;	5,2500		2	6,2917		2	6,2500		2	6,2917		2	5,7083	,,,	2	7,1666
6		6,9583	13	i	6,4166	20	1	5,7500	27	1	7,1250	34	1	7,8750	41 .	1	7,8750
"	2	5,1667		2	6,2917	20.	2	5,8333		5	5,8750		ű	7,8334	71.	2	5,0833
7	1	6,9583	14	1	4,6667	21	1	6,3750	28	1	6,9583	35		8,2916	42	1	6,4166
	2	6,2500		2	6,4166		2	4,9166		2	5,2084		2	6,5417		2	6,6250

. 25 -

TEST D'HOMOGENEITE DE L'ESSAI AMENDEMENTS CALCIQUES SUR SOL SODIQUE ACIDE.

Paramètre : DM

Unité : Nbre/m²

Date: 09/09/81

Parce 1.	D 1 7 1 5 1 0 n	Paramètre	Parce 1	D 1 Y 1 S 1 On	Paramètre	ኮ መሥርሀ ጊ .	Division	Paramètre	Parce 1.	D-1>-1-S-10n	Paramètre	Рансе	Division	Paramètre	Parce 1.	D:1718:10n	Paramètre
i e]	6,11	8	1	6,56	15	1	7,89	22 -	1	5,33	. 29.	1	6,11	. 36 .	1	7,44
	2	7,33		2	7,00		2	5,33		2	6,67	_	2	4,89		2	8,22
2	1	7,22	9 -	1	8,89	16 -	ı	4,11	23 -	1	7,44	- 30.	1	5,44	37	1	7,89
	2	4,56		2	5,56		2	5,67		2	5,67	50	2	6,56		2	9,56
3	1	6,56	10 .	1	5,89	17	1	5,22	24	1	5,89	31.	1	7,67	38	1	7,44
	2	6,44		2	6,22		2	6,44		2	4,67		2	6,22		2	7,67
4	1	7,33		1	7,89	18	1	6,67	25	1	8,67	32.	1	8,73	39 .	1	7,22
	2	6,78		2	5,67		2	5,89		2	6,56		2	9,00		2	7,00
5	i	6,11	12	1	6,11	19	1	6,78	26	1	7,20	33	1	8,67	40	1	6,89
	2	6,33		2	7,00		2	7,56		2	6,89		2	6,78		2	8,11
6	į	7,22	13	1	7,89	20 -	1	5,89	27	1	8,22	34 .	1	9,11	41.	1	9,33
	2	4,67		2	7,33		2	6,78		2	6,78		2	8,89		2	5,44
7	1	6,22	14 .	ì	5,33	. 21	1	6,33	28	!	6,00	35	}	8,56	42	1 .	7,56
	2	7,78		2	5,44		2	5,00		2	5,44		2	7,33		2	6,78

26 -

TEST D'HOMOGENEITE DE L'ESSAI AMENDEMENTS CALCIQUES SUR SOI, SODIQUE ACIDE.

Paramètre : DTM

Unité : Nbre/m²

Date : 09/09/81.

parce 1.	DiAneiou	Paramètre	Parce 1.	D 1 V 1 S 1 On	Paramètre	Parce 1	D 1 V 1 S 1 On	Paramètre	Parce 1	Duvinon	Paramètre	Parce 1.	D 1V 1S 10n	Paramètre	Parce 1	Di.pi.ou	Paramètre
i	1	18,56	8	1	22,78	. 15	1	24,78	22 -	ı	18,11	29.	1	18,56	36	1	23,56
	2	20,89		2	19,44		2	19,22		2	19,33		2	14,00		2	23,89
2	1	21,44	- 9 -	1	26,56	16 -	1 16,00	23 -	1	21,56	30.	1	17,00	37	1	24,67	
	2	13,33		2	21,56		2	19,11		2	18,33		2	21,00		2	29,83
3	1	17,33	. 10 -	1	20,22	17 .	1	17,44	24 .	1	18,22	. 31.	1	21,44	38 .	1	22,00
	2	20,78		2	18,89		2	20,22		2	16,11		2	19,22		2	23,22
4	1	21,89	- 11 -	1	23,22	18	1	20,11	25 .	1	22,33	32.	1	27,11	39	1	20,33
	2	22,11		2	18,00		2	2 19,44		2	20,00		2	23,11		2	21,22
5	1	21,22	12 .	1	20,00	19	1	22,56	26	1	17,22	33	1	21,89	40	1	26,56
	2	18,00	1-	?	22,78		2.	22,67		2	17,33		2	17,44		2	26,11
6	ı	24,22	13	1	23,89	20	1	18,78	27	1	20,44	34	1	23,56	41	ì	28,56
	2	15,78		2	23,00		2	18,22		2	20,00		2	22,22		2	18,56
7	1	17,11	14	1	15,56	21	I	20,00	28	'	17,00	35	i	22,78	42	1	27,89
	2	22,67	14	2	15,67		2	17,22		2	16,78		2	22,78		2	23,00

27

TEST D'HOMOGENEITE DE L'ESSAI AMENDEMENTS CALCIQUES SUR SOL SODIQUE ACIDE.

Paramètre : DTPM

Unité : nbre/plant

Division Division Parce Paramètre Paramètre Paramètre Paramètre Paramètre Paramètre 3,47 3,04 3,14 3,40 3,04 3,16 15 22 29 36 2,85 2,78 2,90 2,91 3,60 2,86 2 2 2 2,99 2,97 3,89 2,90 3,12 3,13 37 30 16 9 23 2 2 2 2,93 3,88 3,37 3,24 3,20 3,12 2,64 3,43 3,34 3,09 2,80 2,96 38 24 31 10 17 3 3,09 3,03 2 3,04 3,14 3,45 3,22 2,98 2,94 3,02 2,58 3,09 2,82 39 18 25 32 11 4 2 2 2 3,26 3,18 3,05 2,57 3,30 3,03 3,47 3,27 3,33 2,46 2,53 3,85 12 19 26 33 40 5 2,84 3,25 2,52 2,57 3,22 3,00 3,35 3,03 2,49 2,59 3,19 3,06 . 27 41 34 13 20 ń 3,38 2,69 2,95 3,14 2,50 3,41 2,92 2,75 3,16 2,83 2,66 3,69 28 35 42 21 14 2,91 2,88 3,11 3,44 3,08 3,39 2

- 28 -

Date: 09.09.81

Paramètre : DR

Unité : Nbre/m²

Date : 26/11/81.

	<u>:</u>		<u> </u>								<u> </u>	·		·		<u> </u>	
Parce 1.	חייישייים	Paramètre	P ar ce 1	D 1 Y 1 S 1 O n	Paramètre	Parce 1	Division	Paramètre	Parce 1	D-15-10n	Paramètre	Pance H .	Diribiration	Paramètre	Parce 1	D.iyıs.ion	Paramètre
1	I.	6,11	8 2	1	6,11	- 15 -	1	6,78	22	l	5,44	29	1	5,44	36 .	1	7,44
	. 2	7,11		(1)	6,56		2	7,00		2	5,89		2	5,00		2	7,00
2	1	8,11	- 9	1	8,67	16 -	1 4,78	23 -	1	5,11	20	1	4,44	3 7	1 -	6,89	
	2	5,56		2	6,33	18	2	5,33		2	5,22	30.	2	6,89		2	7,67
3	1	7,00	10 -	1	4,78	17	,]	5,78	24	1	5,33	31	1 .	8,67	38	1	5,89
	- 2 -	6,22	1	2	6,33		2	6,78		2	3,44		2 .	6,44		2	6,00
4	1	8,11	11.	1	8,78	18	1	5,67	25 .	1	8,56	. 32	1	8,22	39	1	7,11
	2	7,11		2	6,67		2	4,22		2	6,56		2	9,11		2	7,22
5	1	6,11	12	}	6,22	19	1	6,44	26	1	6,11	33	1	7,56	40	i	5,78
	2	6,22	1	2	6,33	: `	2	6,33		2	6,89		2	7,56		2	6,78
6	1	7,44	13.	1	7,22	20	i	5,33	27	1	7,44	34	1	7,44	41	1	7,78
Ľ	2	5,33		2	7,33		2	5,22		2	5,56		:	8,00		2	5,44
7	1.	6,78	14	i	5,67	21	i	5,56	28	1	6,11	35	1	8,22	42	1"	7,44
,	2.,,	; [6,11		2	7,11		2 .	5,56		2	5,11		2	7,22		2 5%	7,44

INDI DI DENGREMENTE DE LINSET, ARABERT

TEST D'HOMOGENEITE DE L'ESSAI AMENDEMENTS CALCIQUES SUR SOL SODIQUE ACIDE.

Paramètre : DTR

Unité: Nbre/m²

D 1 V Division D-17-18-10E Division Division Division Parce Parce Parce Paramètre Paramètre Paramètre Paramètre Paramètre Paramètre 1 14,33 14,33 17,89 12,33 18,00 16,78 1 29 36 22 8 15 1 2 2 2 12,00 2 15,56 2 12,00 16,22 18,44 16,89 10,33 14,22 13,44 22,33 13,22 19,45 **37** 23 30 2 9 16 16,00 13,67 14,00 2 15,89 2 19,89 2 15,56 2 2 2 13,11 13,78 13,56 17,56 18,89 13,56 1 31 38 17 . 24 10 3 14,56 14,89 17,79 11,78 15,89 19,44 2 2 2 2 2 2 :15,67 16,67 14,44 13,78 24,78 22,33 32 39 25 18 11 4 17,22 13,33 15,11 2 2 19,33 12,67 2 2 21,22 10,78 14,67 12,44 17,78 20,22 13,67 1 40 33 26 19 5 12 2 2 2 2 15,89 15,56 16,00 13,33 13,44 15,11 20,22 16,78 13,00 14,11 1 12,00 19,11 41 .27 34 20 13 ń 16,89 2 18,89 12,22 2 11,67 2 2 13,78 16,56 16,56 16,89 12,44 12,33 13,44 24,33 42 35 .28 21 14 12,45 21,22 2 3 2 13,44 2 2 2 11,78 7,22 20,22

30

Date: 26/11/81.

TEST D'HOMOGENEITE DE L'ESSAI AMENDEMENTS CALCIQUES SUR SOL SODIQUE ACIDE.

Paramètre : DTFR

Unité : Nbre/m²

Date : 26/11/81.

Parce 1.	0 1 V 1 5 1 0 n	Paramėtre	Parce I	Diyis.ion	Paramètre	ษ.สพบษ.	D i y i s i o n	Paramètre	Parce 1	D-1-Y-1-S-10n	Paramètre	Parce 1	D iv is ion	Paramètre	Parce 1	D:iYis:ion	Paramètre
	1	8,33	8	1	11,33	- 15	1	10,78	22	1	6,78	29	1	9,89	. 36 .	1	8,89
	2	8,78		2	9,67		2	11,78		2	8,56		2	8,56		2	11,33
2	1	11,22	9 -	ì	9,78	- 16 -	1		23	1	9,56	30.	1	7,44	. 3 7 .	1	9,11
	2	9,22		2	12,00		2			2	11,44		2	9,00		2	11,00
3	<u> </u>	9,11	10 -	1	8,00	17	1	12,89	24 .	l	10,00	. 31.	1	8,67	38	1	8,78
	2	10,89		2	10,56		2	11,44		2	9,00		2	8,33		2	10,44
4	1	9,89	11.	1	15,44	18	1	11,00	25 .	1 .	9,56	32.	1	10,22	39	ı	8,67
	2	10,56		2	12,56		2	9,56		2	10,00'		2	9,44.		2	10,67
5		12,89	12	1	9,00	19]	9,11	26	1	7,42	33	}	8,89	40	1	9,89
	?	9,89		2	11,00		2 8,67		2	8,44		2	8,78		2	9,44	
6	:	11,22	13 -	1	10,33	20 -	1	8,33	27	1	7,89	34.	į	8,00	41.	1	9,67
	2	10,11		::	9,89		.2	9,22		2	7,56		2	9,78		2	13,89
7	<u></u>	10,45	14	1	9,44	21.	l	7,89	28	:	8,33	. 35	1	9,44	42	1	13,89
	2	7,11			11,00		.'	9,11		2	6,89		2	9,67	# **	2	10,67

ا ا ا

Paramètre : DTPR

Unité : Nbre/plant

natie!	D+A+2-10 u	Paramètre	Parce 1	D 1 Y 1 S 1 On	Paramètre	्र च करानक्षण	Dubakhod	Paramětre	Cance	たとっとっのこうこ	Paramètro	Parce 1.	D-1V-1-5-10n	Paramètre	Parce 1.	D.i.V.i.ou	Paramètre
1]	2,9455	8	1	2,7455	15 -	1	2,6393	22	1	2,2653	29.	1	2,6327	36 .	1	1,9254
	2	2,3750		2	2,4746		2	2,6349	- 22	2	2,0377		2	2,4000		2	2,2222
5	i	2,3973	9 -	1	2,5769	16 -	1	2,7674	23 -	1	2,6304	30	1	2,3250	37	, 1	2,0645
	2	2,8600		2	3,1404		2	2,9167		2	2,6809		2	1,9839		2	2,0870
3	ì	2,6984	10	1	2,8372	17.	1	3,0385	24	1	2,5833	31	1	1,5641	38	1	2,2264
	2	3,1250		2	2,5088		2	2,6230		2	3,4194		2	2,3103		2	2,4259
4	1	2,7534	11	1	2,8228	18 .	1	2,5490	25	ì	1,6104	32	1	1,9054	39	1	2,3438
	2	2,9844		2	2,9000		2	3,0000		2	2,3051		2	1,4634		2 .	2,3846
5	!	3,3091	12	1	2,1964	19	1	2,7586	26	j	2,0357	33	1	1,4265	40	1	2,5385
	2	2,5536		2	2,4561		2	2,5263		2	1,9355		2	1,7794		2	2,2295
6	i	2,7164	13	;	2,3231	20		2,4375	27	:	1,8955	34	!	1,6119	41	1	2,4571
	·	3,1667			2,5758		ŗ	2,3404		_'	2,1000		2	1,7222		2	3,0408
;	1	2,4426	14	ì	2,9804	21		2,2400	2:		2,0182	35	i	1,6351	42	1	3,2687
	.,	2,0364			2,9844		2	2,4200		2	2,3043	W 102/114	2	2,2923		2	2,7164

- 32 -

Date : 26/11/81.

Paramètre : DTFPR

2

1,1636

2

1,5469

Unité: Nbre/plant.

Date: 26/11/81. D i y Diyision D Y 1 S Division Parce Paramètre Paramètre Paramètre Paramètre Paramètre Paramètre i 0 n 1,3636 1,8545 1,5902 1,2449 1,8163 1,1940 22 29 36 8 15 1,2344 2 2 1,4746 1,6825 2 1,4528 2 2 1,7111 1,6190 1,3226 1,1282 1,8837 1,8696 1,6750 1,3836 37 2 23 30 16 2 2 2 2 2 2 1,6600 1,8947 1,9792 2,1915 1,3065 1,4348 1,3016 1,6744 2,2308 1,8750 1,0000 1 1,4906 38 24 31 17 10 3 2 1,7500 2 1,6667 2 1,6885 2 2,6129 2 1,2931 2 1,7407 1,2192 1,7595 1,9412 1,1169 1,2432 1,2188 **2**5 32 39 11 18 4 2 2 1,4844 2 2 2 1,8833 2,2632 1,5254 1,0366 1,4769 2,1091 1,4464 1,4138 1,2143 1,1765 1,7115 40 26 **3**3 12 19 5 2 1,5893 2 2 1,7368 1,3684 2 1,2258 2 1,1618 2 1,3934 1,5075 1,4308 1,5625 1,0597 1,0746 1,2429 27 41 13 20 34 6 1,8958 2 2 1,3485 2 1,7660 2 . 1,3600 2 1,2222 2,5510 1,5410 1,6667 1,4200 1,3636 1,1486 1,8657 42 .28 35 14 21

2

1,3478

2

1,3385

2

1,6400

1,4328

Paramètre : MSG

Unité : %

Date : 26/11/81.

Parce 1.	ly 19 15:10 n	Paramètre	Parce -	Diyis.ion	Paramètre	Patce 1	Diyişion	Paramètre	parce 1.	Division	Paramètre	ಕ್ಷಾಗಲಿ ಗೆ .	D-1V-1S-10n	Paramètre	Parce 1.	D:19:10n	Paramètre
1	1	82,25	8	1	83,94	- 15 -	1	85,80	22	ı	83,26	29.	1	87,06	36	1	87,16
	2	82,03		2	87,10		2	84- 18		2	86,00		2	87,26		2	87,68
2	Į	81,05	9 -	}	86,70	- 16 -	1	83,20	23	l	85,76	30.	1	86,78	37	1	87,70
_	2	84,00		2	82,98		2	85,74		2	86,38		2	87,76		2	87,26
3	ı	84,38	10	1	81,46	17 .	1	85,80	24	1	86,26	31	1	88,58	38	1	85,96
	2	83,42		2	85,10		2	85,64		2	88,00		2	88,02		2	88,42
4	1	83,52	11.	1	85,00	18 .	1	85,64	25	1	88,34	32	1	87,20	39 .	1	87,42
	2	84,84		2	85,04		2	86,46		2	83,82		2	86,54		2	86,94
5	1	84,40	12	1	83,34	19	i	84,20	26	1	83,36	33	1	87,16	40	1	87,28
	?	85,44		2	87,14		2	82,34		2	85,04		2	85,82		2	88,06
6		84,14	13	!	86,18	20	1	82,10	27	1	85,92	34		86,26	41	1	86,52
	2	86,02		2	81,28		?	83,56		2	85,02		2	87,52		2	87,24
7	1	86,24	1:	i	80,94	21	1	85,40	28	!	84,10	35		88,64	42	ŀ	87,38
	2	84,72		2	84,12		2	83,26		2	87,36		2	86,74		2	87,78

- 34 -

Paramètre : GRU

Unité : g

Division Division Ď Division Division Parce Parce Parce Paramètre Paramètre Paramètre Paramètre Paramètre Paramètre 1 1 1 31,96 35,62 32,66 34;94 29,34 32,64 15 **2**2 29 1 36 34,40 2 33,34 2 2 35,50 36,00 33,30 2 29,62 36,00 28,50 34,96 31,20 33,70 1 22,68 1 2 9 16 23 30 3**7** 2 33,66 2 33,80 2 2 2 35,74 32,42 2 32,20 30,88 29,96 34,12 33,72 ì 30,88 32,02 32,18 24 10 17 31 38 3 35,12 35,24 33,14 2 30,36 33,14 2 28,08 34,78 34,60 31,08 33,32 32,10 28,54 1 . 11 18 25 32 4 39 2 36,42 2 36,84 31,52 36,74 2 31,30 31,30 34,08 34,40 38,60 37,28 27,44 30,20 26 5 12 19 33 40 36,40 33,80 37,22 2 33,28 33,24 2 25,80 2 35,92 34,44 38,70 31,10 1 32,76 26,26 13 .27 34 20 6 41 2 2 33,38 37,28 2 34,72 2 33,82 31,28 27,74 37,34 36,52 32,00 32,08 28,56 28,56 42 14 21 28 35 36,16 2 36,16 2 35,90 31,86 32,38 28,88 2

35 -

Date: 26/11/81.

Paramètre : Q G

Unité : g/m^2

Date : 26/11/81.

Parce 1.	D 1 1 1 S 1 O n	Paramètre	Parce 1	Diyis, ion	Paramètre	Parce 1	D 1 1 1 1 1 0 n	Paramètre	Parce 1	D-19-19-10n	Paramètre	Parce I	D 1 V 1 S 1 O n	Paramètre	Parce 1 .	D.i.A.iou	Paramètre
	1	5,483	8	1	22,944	15 -	1	81,153	22	1	79,895	. 29.	1	159,102	36.	1	92,898
	2	11,108		2	57,123		2	53,665		2	104,992		2	109,584		2	97,808
2	1	11,550	9 -	1	45,879	16 -	1	60,181	23 -	1	127,532	30.	1	87,395	3 7 .	1	67,127
-	2	19,565		2	27,764		2	75,987	23.	2	164,302	30.	2	31,265		2	145,652
3	1	28,830	10 .	1	33,399	17	1	157,800	24 .	1	134,206	31.	1	81,346	38	1	66,619
	2	33,090		2.	37,515		2	130,887		2	107,213		2	78,081	30 .	2	52,647
4	1	30,624	11.	1	64,140	18 .	1	130,137	25	1	96,401	32	1	135,305	39 .	1	48,846
"	2	45,849		2	87,485		2	175,226	23	2	76,067	52.	2	119,606		2	62,561
5	1	69,032	12.	ì	64,311	19	1	64,799	26	1	94,509	33	1	84,509	40	1	50,695
	2	58,669		2	113,790		2	56,197		2	118,485		2	105,523		2	35,811
6	1	89,784	13 -	1	105,678	20 .	1	43,342	27	1	91,362	34 .	1	126,766	41	1	20,837
	2	58,494	13.	2	28,685	20.	2	80,775		2	100,961	,,,	2	89,890		2	47,873
7	1	56,379	14	·i	48,969	21	1	71,167	28	}	154,183	35	1	100,680	42	1	41,396
	2	38,159	1-	2	76,199	,	2	90,580		2	126,563		2	94,547	72	2	7,096

36 -

Paramètre : PG

Unité : g/plant.

Date : 26/11/81.

Parce 1.	Division	Paramètre	Parce 1	D-19-10n	Paramètre	Parce 1.	D.i.y.i.s.ion	Paramètre	Parce 1.	ひょかょのロ	Paramètre	Parce 1.	D.iv.is.ion	Paramètre	Parce 1.	D Y 1 S 1 O n	Paramètre
	ì	0,8973	8	1	3,7544	15 -	1	11,9733	22	1	14,6746	. 29.	1	29,2228	. 36 .	1	12,4788
	2	1,5621	·	2	8,7137		2	7,6664		2	17,8288		2 .	21,9168		2	13,1155
2	1	1,4240	9 -	1	5,2937	16 -	l	12,5961	23 -	1	24,9520	30.	1	19,6638	37.	1	9,7442
Ĺ	2	3,5217		2	4,3837		2	14,2476		2	31,4621		2	4,5384		2	18,9980
3	1	4,1185	10	1	6,9904	17 .	1	27,3116	24	1	25,1637	31.	1	9,3861	38	1	11,3127
	2	5,3180		2	5,9234		2	19,3111		2	31,1265		2	12,1160		2	8,7745
4	1	3,7756	11	1	7,3070	18 .	1	22,9654	25	1	11,2677	32	1	16,4561	39	1	6,8690
	2	6,4475		2	13,1227		2	41,5008		2	11,6034		2	13,1274		2	8,6622
5	1	11,2962	12	1	10,3356	19	. 1	10,0550	26	1	15,4652	33	1 '	11,1850	40	1	8,7742
	2	9,4289		2	17,9669		2	8,8732		2	17,2000		2	13,9663		2	5,2836
6	ì	12,0606	13	1	14,6324	20	1	8,1266	2 7	1	12,2725	34	1	17,0283	41	1	2,6790
Ľ	2	10,9676		2	3,9116		2	15,4675		2	18,1730		2	11,2363		2	8,7930
7	1	8,3183	14	1	8,6415	21	1	12,8100	28	1	25,2300	35	1	12,2449	42	1	5,5607
	2	6,2442		2	10,7154		2	16,3044		2	24,7623		2	13,0911		2	0,9532

Paramètre : PGT

Unité: g/talle.

Division Diyis-ion D Division Parce Paramètre Paramètre Paramètre Paramètre Paramètre Paramètre 0.3046 1,3675 4,5366 6,4780 11,1000 6,4812 36 29. 22 8 15 1 0,6577 3,5213 2,9096 8,7495 9,1320 5,9020 2 2 2 2 0,5940 2,0543 4,5516 9,4860 8,4576 4,7199 3**7** 23 30 9 2 16 2 1,3959 2 4,8848 11,7356 2 2,2876 9,1030 1,2314 1,5263 2,4638 8,9885 9,7409 6,0009 5,0811 38 31 24 10 17 3 2 ¹,7018 2 2 2 2 2 2,3611 7,3622 9,1029 5,2444 3,6170 1,3712 2,5886 9,0096 6,9968 1 1 8,6365 2,9307 . 25 39 32 18 4 11 4,5251 13,8336 5,0338 8,9705 3,6326 2 2 2 2,1604 3 4137 3,6450 4,7057 7,5970 7,8409 3,4564 40 26 33 19 5 . 12 2 7,3152 2 2 3,6924 2 3,5123 8,8866 2 7,8489 2,3699 4,4399 6,2986 3,3340 6,4745 10,5641 1,0903 27 34 41 20 13 6 3 ,4634 2 1,5186 2 2 2 2 2 6,6089 8,6538 6.5244 2,8917 3,4055 2,8995 5,7188 12,5012 7,4888 --1,7012 28 35 42 14 21 3,0663 2 2 2 2 3,5905 2 2 6,7374 10,7461 5,7109 0,3509

38.

Date: 26/11/81.

Paramètre : PGTF

Unité : g/talle fertile

Date : 26/11/81.

Parce 1.	D Y I S I O n	Paramètre	Parce 1	Diyis.ion	Paramètre	Parce 1.	D 1 7 1 5 1 0 n	Paramètre	Parce 1	Division	Paramètre	Parce 1.	D 1V 1S 10n	Paramètre	Parce 1	D iy is ion	Paramètre
1	1	0,6580	8	1	2,0245	- 15 -	1	7,5294	. 22	1	11,7878	29.	1	16,0892	36	1	10,4513
	2	1,2655		2	5,9092		2	4,5565		2	12,2720		2	12,8086		2	8,1010
2	1	1,0292	9 -	1	4,6922	- 16 -	1	6,6869	23 -	1	13,3462	30.	1	11,7396	37.	1	7,3675
	2	2,1215		2	2,3137		2	7,1987		2	14,3564		2	3,4737		2	13,2409
3	ı	3,1642	10 .	1	4,1749	17 -	1	12,2430	24	1	13,4206	31.	1	9,3861	38	1	7,5893
	2	3,0389		2	3,5540		2	11,4368		2	11,9126		2	9,3698		2	5,0408
4	1	3,0968	11	1	4,1529	18 .	1	11,8305	25	1	10,0883	32	1	13,2369	39 .	1	5,6358
	2	4,3435		2	6,9679		2	18,3372		2	7,6068		2	12,6639		2	5,8651
5	1	5,3559	12	1	7,1458	19 .	1	7,1120	26	1	12,7359	33	1	9,5070	40	1	5,1266
	2	5,9327		2	10,3448		2	6,4844		2	14,0317		2	12,0212		2	3,7919
_	1	8,0004	13	1	10,2267	20	1	5,2010	27	1	11,5811	34	1	15,8462	41	1	2,1555
6	2	5,7852		2	2,9007	20	2	8,7585		2	13,3625		2	9,1935		2	3,4469
7	1	5,3980	14	1	5,1848	21	1	9,0211	28	1	18,5025	35	1	10,6607	42	1	2,9805
	2	5,3663		2	6,9270		2	9,9417		2	18,3724		2	9,7804		2	0,6653

39 -

Paramètre : TNG

Unité : %

Date: 26/11/81.

	· ···	······································				. —	-1	 -	1	1							
Parce 1.	D 1 Y 1 S 1 O n	Paramètre	Parce 1	D i y i s i o n	Paramètre	Parce 1	Diyişion	Paramètre	Parce 1.	Division	Paramètre	Parce 1.	Division	Paramètre	Parce 1.	חיישייסם	Paramètre
1	1	1,79	8	1	1,62	15 -	1	1,43	22	1	1,38	29.	1	1,37	36.	1	1,23
	2	1,63		2	1,42		2	1,44		2	1,23		2	1,29		2	1,40
2	1	1,69	9 -	1	1,59	16 -	1	1,44	23 -	1	1,37	3 0.	1	1,44	37 .	1	1,76
	2	1,62		2	1,73		2	1,54	23 .	2	1,38		2	1,62		2	1,24
3	1	1,59	10 .	1	1,68	17 -	1	1,45	24	1	1,43	31.	1	1,13	38	1	1,36
	2	1,50		2	1,81		2	1,46		2	1,61		2	1,21		2	1,52
4	1	1,54	11.	!	1,75	18 .	1	1,35	25 .	1	1,26	32 .	1	1,12	39	1	1,20
	2	1,66		2	1,69		2	1,38		2	1,29		2	1,09		2	1,13
5	1	1,62	12	1	1,57	19 .	1	1,54	26	1	1,29	33	1	1,22	40	1	1,26
	2	1,51		2	1,66		2	1,60		2	1,27		2	1,09		2	1,30
6	.1	1,52	13 .	1	1,46	20 -	1	1,56	2 7	1	1,16	34	1	1,13	41	1	1,72
Ľ.	2	1,67		2	1,66	20	2	1,56		2	1,23		2	1,28		2	1,71
7	1	1,37	14	1	1,62	21 .	1	1,34	28	1	1,08	35	1	1,15	42	1	1,54
	2	1,42		2	1,45		2	1,41		2	1,09		2	1,05		2	1,78

- 40 -

Paramètre : TPG

Unité: %

Date : 26/11/81.

		,															
Parce 1.	D 1 y 1 s 1 0 n	Paramètre	Parce 1	D 1 Y 1 S 1 O n	Paramètre	Parce 1	D 1 V 1 S 1 O n	Paramètre	Parce 1.	D-15-16-100	Paramètre	Parce 1	D iv is ion	Paramètre	Parce 1.	D.i.v.is.ion	Paramètre
1	1	0,34	- 8 -	1	0,43	- 15 -	1	0,25	22	1	0,36	29.	1	0,28	36.	1	0,31
	2	0,36		2	0,31		2	0,37		2	0,33		2	0,29		2	0,26
2	1	0,42	9 -	1	0,25	16 -	1	0,34	23 -	1	0,31	30.	1	0,30	3 7 .	1	0,25
	2	0,33		2	0,37		2	0,30	23.	2	0,27	30.	2	0,34	3,	2	0,29
3	1	0,24	10 .	1	0,39	17	1	0,28	24	1	0,25	31.	1	0,29	38	1	0,30
	2	0,36		2	0,35		2	0,28		2	0,25		2	0,27		2	0,30
4	1	0,38	11.	1	0,34	18	1	0,27	25	1	0,25	32.	1	0,26	39	1	0,26
	2	0,37		2	0,30		2	0,26		2	0,42		2	0,30		2	0,29
5	1	0,34	12 .	1	0,31	19.	1	0,34	26	1	0,35	33	1	0,22	40	1	0,36
	2	0,32		2	0,25		2	0,38		2	0,27		2	0,31		2	0,25
6	ı	0,36	13.	1	0,25	20 -	1	0,40	27	l	0,27	34	1	0,28	41	1	0,24
	2	0,28		2	0,39		2	0,35		2	0,31		2	0,28		2	0,33
7	1	0,26	14 .	1 ·	0,38	21.	1	0,29	28	1	0,28	35	1	0,24	42	1	0,32
	2	0,35		2	0,31		2	0,36		2	0,27		2	0,28		2	0,39

- 41 -

Paramètre : TKG

Unité : %

Date : 26/11/81.

Parce 1.	D 1 1 1 1 1 1 0 1	Paramètre	Parce 1	Diyis, ion	Paramètre	Parce 1	D 1 Y 1 S 1 On	Paramètre	parce 1.	D-19-19-10E	Paramètre	Parce 1.	Division	Paramètre	Parce 1.	Division	Paramètre
1	1	0,28	8	1	0,41	- 15 -	1	0,33	22 -	ì	0,41	29.	1	0,34	. 36 .	1	0,36
	2	0,39		2	0,38		2	0,40		2	0,38		2	0,35		2	0,35
2	1	0,43	9 -	1	0,34	16 -	1	0,38	23 -	1	0,38	30.	1	0,34	37	1	0,36
	2	0,38		2	0,39	10 -	2	0,35	23 -	2	0,35	30.	2	0,35	3,	2	0,35
3	ı	0,33	10 .	1	0,41	17	1	0,34	24	1	0,33	31.	1	0,34	38	1	0,35
	2	0,39		2	0,38		2	0,35		2	0,33		2	0,33		2	0,36
4	1	0,42	11.	1	0,38	18	1	0,36	25	1	0,31	32	1	0,32	39	1	0,34
	2	0,40		2	0,34		2	0,36		2	0,43		2	0,34		2	0,35
5	1	0,38	12 .	l	0,35	19	1	0,38	26	1	0,37	33	1	0,31	40	1	0,42
	2	0,36		2	0,33		2	0,40		2	0,32		2	0,36		2	0,35
6	1	0,40	13	1.	0,31	20 -	1	0,40	27	1	0,34	. 34	1	0,35	41	1	0,34
Ĺ	2	0,34		2	0,39	20	2	0,39		2	0,35		2	0,34		2	0,38
7	1	0,31	14	1	0,39	21 .	ì	0,36	28	1	0,34	35	1	0,32	42	1	0,36
	2	0,36		2	0,34		2	0,40		2	0,33		2	0,35		2	0,40

. 42 -

Paramètre : TMGG

Unité : %

Date: 26/11/81.

Parce 1.	D Y I S I O n	Paramètre	Parce 1	D Y 1 S 1 On	Paramètre	Parce I	D 1 Y 1 S 1 On	Paramètre	Parce 1	Division	Paramètre	Parce 1	D.iv.is.ion	Paramètre	Parce 1.	D.i.v.i.ou	Paramètre
1	1	0,21	8	1	0,22	15 -	1	0,13	2 2	1	0,17	29.	1	0,14	36 .	1	0,15
	2	0,17		2	0,17		2	0,18		2	0,15		2	0,15		2	0,14
2	j	0,20	9 -	ı	0,14	16 -	1	0,15	23 -	1	0,16	30.	1	0,16	37 .	1	0,15
	2	0,17		2	0,17		2	0,15		2	0,14		2	0,17		2	0,15
3	ı	0,14	10 .	1	0,18	17 -	1	0,14	24 .	1	0,14	31.	1	0,14	38	1	0,17
	2	0,16		2	0,18		2	0,15		2	0,14		2	0,13		2	0,16
4	1	0,19	11.	1	0,17	18 .	1	0,16	25	1	0,13	32	1	0,13	39	1	0,14
	2	0,17		2	0,16		2	0,15		2	0,20		2	0,15		2	0,16
5	ı	0,17	12	1	0,16	19	1	0,16	26	1	0,16	33	1	0,12	40	1	0,18
	2	0,16		2	0,15		2	0,17		2	0,14		2	0,14		2	0,14
6	1	0,19	13	1	0,14	20	1	0,17	27	1	0,14	34	1	0,14	41	ı	0,13
	2	0,16		2	0,17		2	0,17		2	0,15		2	0,15		2	0,16
7	1	0,14	14	1	0,17	21	1	0,15	28	:	0,15	35	1	0,13	42	ı	0,16
	2	0,17		2	0,15		2	0,17		2	0,13		2	0,15		2	0,18

. 43 -

Paramètre :

TSIG

Unité: 7

Division Parce Paramètre Paramètre Paramètre Paramètre Paramètre Paramètre 1 0,05 0,04 0,49 0,15 0,05 0 22 36 15 29 2 2 0,01 0,03 2 0,08 2 0.03 0,02 0 2 2 0,08 0,03 0,01 0,14 0.02 0.07 23 37 2 16 30 2 0,06 0,03 0.09 0.01 0,13 0.05 2 0,05 0,05 0,02 0,1 0,06 0 . 24 38 3 10 17 31. 2 2 2 2 0,05 0,01 0,05 0,05 0,08 0 0,04 0,09 0,07 0,05 0,05 0,02 39 25 32 4 . 11 18 2 0,09 0,05 0,01 0,06 2 0,06 2 0,07 2 0,07 0.05 0,05 0,03 0,05 0,06 L 19 26 33 40 5 . 12 0,05 2 0,1 2 0,07 0,05 0,01 0,05 2 0,08 0,04 0.07 0,04 0 0,06 13 20 27 34 41 6 2 0 0,06 0.05 0,07 2 0,05 0,05 2 0.09 0,09 0,04 0,09 0,07 0,03 21 28 35 42 14 0,11 0,07 0,06 0,04 0,03 0,09 2 2 2 2 2

- 44 -

Date: 26/11/81

Paramètre : PHI

Unité : p#

Date : 26/4/81.

		•			<u> </u>									,			
Parce 1.	Duy-w-don	Paramètre	Parce 1	D-17-19-10n	Paramètre	Parce 1.	D 1 Y 1 S 1 O n	Paramètre	Parce 1	D⊣>⊣s⊣on	Paramètre	Parce 1.	Division	Paramètre	Parce 1 .	חיידאייסם	Paramètre
	i	4,9	8	1	5,3	- 15 -	1	4,85	22	1	5,05	. 29.	1	5,15	36.	1	5,1
	2	4,9		2	5,2		2	5,05		2	5,1		2	5,25		2	5,2
2	1	5,0	9 -	1	5,0	- 16 -	1	5,1	23 -	1	5,0	30.	1	5,2	37	1	5,25
	2	5,0		2	5,2		2	5,15		2	5,2		2	5,2	,	2	5,2
3	1	4,8	10 -	1	5,1	17	1	5,15	24	1	5,1	31	1	5,15	38	1	5,25
	2	5,0		2	5,1		2	5,0		2	5,3		2	5,2		2	5,3
4	1	5,2	11.	1	5,2	18 .	1	5,25	25	1	4,9	32	1	5,05	. 39	1	5,2
	2 .	5,0		2	5,2		2	5,35		2	5,05		2	5,2		2	5,0
5	1	5,2	12	1	5,2	19.	1	4,8	26	1	5,0	33	1	5,3	40	1_	5,1
	2	5,0		2	5,1		2	4,7		2	5,3		2	5,25		2	5,1
6	1	5,1	13	1	5,1	- 20 -	1	4,8	2 7	1	4,95	34	1	4,95	41	1	5,2
	2	5,0		2	5,0		2	4,9		2	5,15		2	5,1		2	5,4
.7 ~ "	1	5,4	14	ı	5,2	21	1	4,95	28	1	5,1	35	1	5,2	42	1	5,35
	2	5,4		2	5,2		2	4,95		2	5,1		2	5,1		2	5,3

. 45

Paramètre : NAS Unité: mé/100 g

Parce 1.	D 1 1 1 1 5 1 0 n	Paramètre	Parce 1	Diyision	Paramètre	Parce 1	ひっとっぷっつに	Paramètre	Parce 1.	ひっかっぷっつに	Paramètre	Parce 1.	Division	Paramètre	Parce 1.	חייארייסר	Paramètre
1	1	0,33	8 -	1	0,18	15 -	1	0,22	22 -	1	0,24	29.	1	0,12	. 36	1	0,12
	2	0,22		2	0,29		2	0,25		2	0,34		2	0,12		2	0,17
2	l	0,24	9 -	1	0,23	- 16 -	1	0,22	23 -	1	0,18	30.	1	0,14	37 .	1	0,16
	2	0,27		2	0,22		2	0,21		2	0,16	30.	2	0,09	, ,	2	0,12
3	1	0,25	10 .	1	0,18	17	1	0,19	24	1	0,16	31.	1	0,18	38	1	0,13
	2	0,24		2	0,19		2	0,21		2	0,16		2	0,12		2	0,14
4	1	0,17	11.	1	0,15	18 .	1	0,17	25 .	1	0,14	32.	1	0,21	39	1	0,21
	2	0,21		2	0,17		2	0,17		2	0,16		2	0,10		2	0,44
5	1	0,15	12 .	1	0,13	19	1	0,24	26	1	0,22	33	1	0,14	40	1	0,32
L	2	0,21		2	0,16		2	0,23		2	0,23	33 .	2	0,10		2	0,31
6	1	0,15	13 -	ı	0,20	20 -	1	0,29	27	1	0,20	. 34 .	1	0,08	41.	1	0,29
Ĺ	2	0,20		2	0,21		2	0,30		2	0,19		2	0,09		2	0,20
7	1	0,24	14 .	1	0,22	21 .	1	0,28	28	1	0,16	. 35	1	0,23	42	1	0,16
	2	0,22		2	0,22		2	0,32		2	0,16		2	0,13		2	0,18

26/11/81

Date:

ANNEXE 5 - Résultats de l'étude des principales relations sol-plantes sur les séries de 84 données.

1 - TEST D'HOMOGÉNÉITÉ DU SOL SODIQUE ACIDE DE POUEMBOUT.

Nombre de couples (X.U) observés : 84 (Pour la signification des sigles et les unités cf.le tableau COVARIABLES Sigles TKG DTR DR TNG **TPG** GRU DM DTFR DTM Moyennes 0,31 0.366,51 1,44 32,95 20,67 6.17 9.79 15,60 VARIABLES X CVZ 8,5 14.2 16.1 15.5 16.3 20,9 17,3 9.3 16.0 r} { Fa r } { F₁ r } { Fi r } { F₁ r } { F₁ r } { F₁ r } { F₁ **r**} { **R** r} { **F**₁ et ou et s Sigles et}ou{et et}ou{et etlou[et s etlou[et Moyennes CV % s et}ou{et et}ou{et et ou et s 8 et ou et s **b** } b } { F₂ **b** } $\{F_2$ **b** } b { F₂ { F₂ { E_p ь] -0,5861 -0.39263 -0.5193 $F_1=2,62$ 2 -0,1094 -0,0431 -0.0466 -0,4460 3 -0.1640 $52.2 \, \mathrm{F}_{2=0,42}$ QG 76,84 -115,60 -417,75 -511,6 -5,4849 0,3896 3 -0.3665 12 -0.1498 0,1223 0,5958 -0.0374 -0,3793 0.0838 GRU 32,95 9,3 38,88 36,70 -0,3528 -1,17681 0,2794 2 0,5797 3 -0,0282 -0.0884 0,0217 0,6303 0,2417 DTM 20,67 16.0 1,6966 2,1761 0,5018 0,2829 2 -0.3019 -0,2644 0.8106 3 -0.3185 0.0706 -0.0850 DM 15,5 6,17 -1,4979-5,792 -8,2179 0,0806 0,1363 1=14,63 0,2313 0,4026 16,3 9,79 DTFR 2 = 8.830,3261 3,1497 0,4089 0,5584 0,2589 0,2231 15,60 20,9 DTR 1,1819 8,956 16,940 -0,1687 -0,1038 -0.13346,51 17.3 DR F1=4,4637 3 0.3232 14,2 1,44 TNG F_{2=2,5378} 1 2,1356 1=49, 5230 <u>3</u> 16,1 0,31 **TPG** 2=28 55963 8,5 0,36 **TKG**

r : coefficient de corrélation entre X et U

b : coefficient de regression de X sur U

F1: F de signification du rapport de corrélation de X sur U F2: F de signification du rapport de corrélation de U sur X

s : seuil de signification de r, F1 et F2

Seuils	1 = 80,05	2 = 80,01	3 = s0,001
r	0,2290	0,2456	0,3753
F ₁ et F ₂	2,07	2,76	3,75

(Por	(Pour la signification des sigles et les unités cf.le tableau] Nombre de couples (X,U) observés : 84											
COVA	ARIABLES	Sigles	TMGG	TSIG	PHE	NAS						
		loyennes	0,16	0.06	5,11	0,20						
VARIABI.	ES X	CV%	12,2	98,8:	2,9	32.7						
Sigles	Moyennes	cv z	r } { F ₁ et}ou{et s b } { F ₂	b } { F ₂	r } { F ₁ et } ou{et s b } { F ₂	r } { F ₁ et}ou{et s b } { F ₂	r } { F ₁ et}ou{et s b } { F ₂	r } { F ₁ et}ou{et s b } { F ₂	r } { F ₁ et } ou { et s b } { F ₂	r } { F ₁ et } ou { et s b } { F ₂	r } { F ₁ et } ou { et s B }	
QG	70.04		-0,5341 3		0,1232	-0,3740 2						
<u> </u>	76,84	52,2	-1118,14	F _{2=3,5999, 2}		-231,45						
CDU	32,95	0.7	0,4231 3	0,1799	-0,3267 2	0,1228						
GRU	22,32	9,3	67,828		-6,0806							
MTŒ	20,67	16.0	-0,0447	-0,1340	0,0161	-0,0731						
734	6,17	15,5	-0,2773 2	-0,1498	-0,0410	-0,1045						
DM	Ο,ΤΛ	D,5	13,844	·								
DTFR	9 <i>,7</i> 9	16,3	0,1572	0,0249	0,2421 1	-0,0627						
שווע	3,/3				2,6126							
DTR	1E CO	20.0	0,3002 2	0,2126	-0,0395	0,1689						
	15,60	20,9	51,113									
DR	6,51	17 . 3	-0,1212	-0,0898	-0,0531	-0,1204					,	
TDIO	4.4.	41.0	0,5070 3	0,3840 3	-0,0335	0,1427						
TNG	1,44	14,2	5,3820	1,3648	_							
TPG	0.71		F _{1=35,86} 3	F _{1=3,461 2}	-0,1721	0,1823						
IPG	0,31	16,1	F _{2=31,87} 3	F _{2=2,701} 1								
TKG	0,36	8,5	F _{1=20,97} 3 F _{2=29,23} 3	-0,0251	-0,1400	0,1822						
	r : coefficient de corrélation entre X et U								1 = \$0,05	2 = s0,01	3 = s0,001	

r : coefficient de corrélation entre X et U b : coefficient de regression de X sur U

 F_1 : F de signification du rapport de corrélation de X sur U F_2 : F de signification du rapport de corrélation de U sur X s : seuil de signification de r, F_1 et F_2

 Seuils	1 = \$0,05	2 = s0,01	3 = s0,001
r	0,2290	0,2456	0,3753
F ₁ et F ₂	2,07	2,76	3,75

3 - TEST D'HOMOGÉNÉITÉ DU SOL SODIQUE ACIDE DE POUEMBOUT.

Nombre de couples (X,U) observés : 84 (Pour la signification des sigles et les unités cf.le tableau] COVARIABLES Sigles TMGC PHE NAS **TSIG** 5,11 0,20 Moyennes 0.16 0.06 VARIABLES X CV% 12,2 98,8 2,9 32,7 r } { F₁ r { F_1 r { F_1 r { F_1 r { F_1 r { F_1 r { F_1 r} { R **r** } { F₁ Sigles CV % Moyennes et}ou{et | s et}ou{et s et}ou{et et}ou{et s s et}ou{et s et}ou{et s et}ou{et|s et ou et s et ou et s b } { E₂ b } { F₂ **b** } { F₂ **b** } { F₂ b } { E₂ b } {F₂ ь} 1=5,3266:3 -0,09030,1935 0,16 12,2 TMGC 2=13,468,3 F_{1=5,299} -0,1071 **TSIG** 98.3 0.06 F_{2=0,636} -0,3776 PHE 2,9 5,11 -0,8589 32,7 0,20 NAS -0.39221=7**,** 1504 3 0.1685 2,36 54,1 NG 2=7,6918 3 -7,7212

r : coefficient de corrélation entre X et U

b : coefficient de regression de X sur U

F₁: F de signification du rapport de corrélation de X sur U F₂: F de signification du rapport de corrélation de U sur X

s : seuil de signification de r, F1 et F2

Seuils	1 = s0,05	2 = s0,01	3 = 80,001
r	0,2290	0,2456	0,3753
F ₁ et F ₂	2,07	2,76	3,75

4 - TEST D'HOMOGÉNÉITÉ DU SOL SODIQUE ACIDE DE POUEMBOUT.

Sigles Moyennes CV Z b) {E} s etjou(et b) {E} b) {E		4 C O	U) observ				Leau j	s cf.le tab	et les unitt	- dee ergree			•
VARIABLES X CVX 15.5. 17.3 20.9 16.3 14.2 16.07 8.5 Sigles Moyennes CV X et outlet b { Et outlet b } { Et outl				TKG	TPG	TNG	DTFR	DTR	DR	DM	Sigles		COVA
Sigles Moyennes CV z F F F F F F F				0,36	0.31	1,44	9,80	15,60	6,51	6,18	oyennes		
Sigles Moyennes CV 7 et ou (et b) { E b } { E				8.5	16,07	14.2	16.3	20, 9:-	17.3	15, 5.	CVZ	ES X	VARIABI.
NG 2.36 54.1 0.0129 -0.1417 -0.4531 3 -0.0432 -0.5831 3 F1=9.6149 3 F1=4.5484 3 -0.6154 F2=7.6470 F2=3.3517 2 F3=3.517 2	r } { F ₁ s et }ou{et s b } { F ₂	s	r } { F ₁ et } ou { et b } { F ₂	r } { F ₁ et } ou { et s b } { F ₂	r } { F ₁ et}ou{et s b } { F ₂	r } { F ₁ et}ou{et s b } { F ₂	r } { F ₁ et}ou{et s b } { F ₂	et}ou{et s	et}ou{et s	et}ou{et s	cv z	Moyennes	Sigles
rxu=-0,58 35 rxu=-0,4291				F _{1=4,5484} 3	F _{1=9,6149} 3	1 1 1	! 1	-0,4531 3	-0,1417	0,0129	54,1	2,36	NG
	 	Н						-0,1772					
	+ -+	Н		rxu=-0,4291	rxu=-0,58 35								
	+												
	+ -	Н					·						
	 	Н											_
		П						!					
	1	\sqcup											
	++	$oldsymbol{ert}$											
	+-+	Н									ŀ		
	+	H											
		Н											
		\prod											
		\square											
	ক্রা র্থিতি এ. ই-প্রায়ের ী জন ্ধার চলগত ক	43.55	arter ye iliyar da sirika basala										
1: Coefficient de Correlation entre x et o	3 = 80,00	01	2 = s0,0	1 = 80,05	Seuils			ט			-		
b : coefficient de regression de X sur U r 0,2290 0,2456 F1: F de signification du rapport de corrélation de X sur U	0,3753		0,2456	0,2290	r		sur II	lation de Y					
F1: F de signification du rapport de corrélation de X sur U F2: F de signification du rapport de corrélation de U sur X S : seuil de signification de r, F1 et F2 2,07 2,76	3,75		2,76	2,07	F ₁ et F ₂		sur X	lation de U	ort de corré	tion du rapp	gnificat	'2: F de si]

ANNEXE 6 - Résultats de l'étude complémentaire effectuée en cours de cycle.

1 - VARIABLES ANALYTIQUES DE L'ENQUÈTE AGROLOGIQUE EFFECTUÉE A MI-CYCLE.

SIGLES	SIGNIFICATIONS	UNITÉS.
TNTF	Teneur en azote dans les tiges et feuilles	%
TPTF	Teneur en phosphore dans les tiges et feuilles	%
TKTF	Teneur en potassium dans les tiges et feuilles	%
TNATF	Teneur en sodium dans les tiges et feuilles	%
TCATF	Teneur en calcium dans les tiges et feuilles	%
TMGTF	Teneur en Magnésium dans les tiges et feuilles	%
A	Teneur en argile de l'arumite (0-20cm)	%
LF	Teneur en limon fin de l'arumite	%
LG	Teneur en limon grossier de l'arumite	%
SF	Teneur en sable fin de l'arumite	%
SG	Teneur en sable grossier de l'arumite	%
MOT	Teneur en matière organique totale de l'arumite	%
PHE	pH eau	
PHK	pH KCI	
CT	Teneur en carbone total de l'arumite (0-20cm)	%
NT	Teneur en azote total de l'arumite	%
s sol	Teneur en sels solubles de l'arumite	mé/100g
CAE	Teneur en calcium échangeable de l'arumite	mé/100g
MGE	Teneur en magnésium échangeable de l'arumite	mé/100g
KE	Teneur en potassium échangeable de l'arumite	mé/100g
NAE	Teneur en sodium échangeable de l'arumite	mé/100g
BE	Teneur en bases échangeables de l'arumite	mé/100g
PT	Teneur en phosphore total de l'arumite	°/
POLS	Teneur en phosphore assimilable OLSEN de l'arumite	°/
C/N	Rapport CT/NT de l'arumite	

Les valeurs de t sont, aux seuils 0,05 et 0,01, de 2,101 et 2,878.

2 - TEST D'HOMOGÉNÉITÉ DU SOL SODIQUE ACIDE DE POUEMBOUT - ENQUÊTE AGROLOGIQUE A MI-CYCLE (09/09/81).

VARIA	BLE	TNTF	TPTF	TKTF	TNATF	TCATF	TMGTF
UNITÉ		,°,	9 /2	97 /0	%	97 /0	%
	1	3,33	0,43	4,38	0,01	0,22	0,55
STA	2	2,51	0,37	4,38	0,01	0,20	0,65
\ \frac{1}{2}	3	2,51	0,38	3,75	0,01	0,21	0,61
DES	4	2,13	0,41	4,18	0,01	0,17	0,59
TAN	5	2,43	0,32	4,05	0,01	0,17	0,57
ğ ş	6	2,27	0,26	3,88	0,01	0,19	0,55
ACETS PO	7 :	2,17	0,28	3,88	0,01	0,18	0,49
A S	8	2,31	0,25	4,18	0,01	0,19	0,46
DES	9	2,68	0,26	4,25	0,01	0,17	0,48
LOFES	10	2,58	0,23	3,63	0,01	0,18	0,48
ECHANTILLONS DES PLACETS PORTANT DES PLANTS NORMAUX.	М	2,4920	0,319	4,056	0,01	0,188	0,543
EG	cv%	13,82	22,91	6,45	/	9,31	11,75
	· 11	2,58	0,32	4,00	0,01	0,20	0,54
NTS	12	2,36	0,25	3,68	0,01	0,18	0,54
PLANTS	13	2,31	0,33	4,38	0,01	0,21	0,43
) වස	14	2,75	0,29	4,05	0,01	0,18	0,43
TANT	15	2,99	0,30	4,00	0,01	0,20	0,49
& ?	16	2,93	0,29	4,00	0,01	0,15	0,44
ACETS P	17	3,34	0,31	4,18	0,01	0,16	0,52
PLA D	18	3,37	0,31	4,18	0,01	0,18	0,45
DES	19	2,95	0,26	4,05	0,01	0,16	0,49
TONS	_20	3,00	0,31	4,25	0,01	0,18	0,54
Echantillons des placets portant des chétifs,	M	2,858	0,297	4,077	0,01	0,180	0,487
ECH	cv."	12,69	8,55	4,62	/	10,80	9,58
t	P Straington day now years as	2,314	0,899	0,206	1	0,967	2,241

3 - TEST D'HOMOGÉNÉITÉ DU SOL SODIQUE ACIDE DE POUEMBOUT - ENQUÊTE AGROLOGIQUE A MI-CYCLE (09/09/81).

VARIA	BLE	Α	Ŀ	LG	SF	SG	T011
UNITÉ		97	97	70 B	%	Ø7 /0	97 /2
	1	25,2	35,8	21,3	10,4	6,8	4,3
ATS	2	32,2	28,4	17,0	9,9	11,0	2,9
PLANTS	3	23,8	34,0	19,7	11,6	9,2	5,0
DES	4	26,1	30,0	17,5	11,5	13,7	2,9
TANT	5	24,6	28,2	17,1	13,3	14,8	2,7
§ ≥	6	19,9	29,8	18,7	14,0	15,4	3,5
ACETS PORMAUX,	7	21,2	27,1	16,7	14,7	17,8	4,2
	8	20,5	28,5	19,2	14,6	17,4	3,3
DES	9	24,1	27,5	16,8	13,4	18,7	2,3
Siol	10	22,6	27,7	19,2	14,6	15,5	2,9
ECHANTILLORS DES PLACETS PORTANT DES NORMAUX.	М	24,020	29,700	18,320	12,800	14,030	3,400
표	cv%	14,71	9,83	8,40	14,13	27,80	24,96
	11	17,9	29,1	18,8	16,8	16,2	2,4
I S	12	20,4	27,1	17,7	15,4	18,3	1,9
PLANTS	13	20,1	30,1	20,1	13,7	14,4	3,9
<u>83</u>	14	21,1	29,9	18,8	13,5	15,3	3,8
IANT	15	20,2	31,9	19,1	13,2	13,6	4,7
\ \frac{\delta}{2}	16	37,1	33,7	18,3	6,2	4,9	3,5
ACETS PC CHÉTIES.	17	26,7	35,1	19,5	9,1	8,7	3,2
4 P	18	23,9	37,8	21,3	5,8	9,5	4,3
DES	19	28,3	36,8	21,5	6,1	5,2	4,4
TONS	20	27,0	31,9	18,7	6,6	15,6	3,3
ECHANTILLONS DES PLACETS PORTANT DES CHÉTIFS.	M	24,27	32,340	19,380	10,640	12,170	3,540
ద	cv.//	23,55	10,74	6,42	40,50	32,02	24,96
t		0,118	1,840	1,694	1,462	1,067	0,361

4 - TEST D'HOMOGÉNÉITÉ DU SOL SODIQUE ACIDE DE POUEMBOUT - ENQUÊTE AGROLOGIQUE A MI-CYCLE (09/09/81).

VARIABLE		HE	PHK	CT,	NT	c/N	S SOL
UNITÉ				7%	%		mé/100g
	1	5,2	4,6	2,47	0,167	14,8	0,44
13	2	5,4	4,5	1,69	0,134	12,6	0,31
<u>P</u>	3	5,4	4,6	2,89	0,189	15,3	0,38
DES	4	5,1	4,3	1,71	0,139	12,3	0,53
TANT	5	5,0	4,1	1,55	0,129	12,0	0,28
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6	5,2	4,4	2,04	0,144	14,2	0,28
ACETS PC	7	5,4	4,5	2,42	0,172	14,1	0,27
A S	8	5,4	4,5	1,90	0,141	13,5	0,16
DES	9	5,1	4,1	1,31	0,111	11,8	0,32
SNOT	10	5,1	4,2	1,66	0,133	12,5	0,20
ECHANTILLONS DES PLACETS PORTANT DES PLANTS NORMAUX,	M	5,230	4,380	1,964	0,146	13,310	0,317
Есни	c√%	3,00	4,41	24,96	15,95	9,31	34,53
	11	5,1	4,2	1,38	0,104	13,3	0,16
\TS	12	5,5	4,5	1,13	0,097	11,6	0,12
PLANTS	13	5,3	4,5	2,27	0,139	16,3	0,28
DES	14	5,4	4,4	2,21	0,143	15,5	0,27
TANT	15	5,3	4,5	2,71	0,168	16,1	0,29
S POR	16	5,0	4,0	2,03	0,142	14,3	0,28
ACETS CHÉTI	17	5,1	4,1	1,87	0,128	14,6	0,32
A O	18	5,3	4,5	2,51	0,167	15,0	0,21
DES	19	5,3	4,3	2,55	0,186	13,7	0,22
TONS	20	5,3	4,3	1,90	0,146	. 13,0	0,26
Echantillons des placets portant des chétifs,	M	5,260	4,330	2,056	0,142	14,340	0,241
ECH	cv%	2,86	4,22	24,70	19,54	10,29	26,06
t		0,436	0,595	0,412	0,349	1,690	1,904

5 - TEST D'HOMOGÉNÉITÉ DU SOL SODIQUE ACIDE DE POUEMBOUT - ENQUÊTE AGROLOGIQUE A MI-CYCLE (09/09/81).

VARIA	BLE	CAE	MGE	KE	NAE	BE	PT	POLS
UNITÉ		mé/100g	mé/100g	mé/100g	mé/100g	m€/100g	77 /30	~ <u>~</u>
ATS.	1	3,80	7,80	0,39	0,58	12,57	0,34	0,04
	2	3,30	9,60	0,32	0,67	13,89	0,35	0,08
Portant des plants IX.	3	4,10	7,70	0,43	0,36	12,59	0,44	0,10
DES	4	2,80	6,90	0,56	0,42	10,68	0,55	0,25
TANT	5	1,90	5,80	0,51	0,25	8,46	0,42	0,15
ğ <u>×</u>	6	2,60	5,10	0,54	0,19	8,43	0,35	0,09
PLACETS PO	7	3,30	6,20	0,31	0,36	10,17	0,31	0,04
전	8	2,60	4,80	0,28	0,28	7,96	0,30	0,03
DES	9	1,70	5,10	0,42	0,31	7,53	0,37	0,10
Sijoj	10	2,40	5,50	0,36	0,27	8,53	0,34	0,04
ECHANTILLONS DES	M	2,850	6,450	0,412	0,369	10,081	0,377	0,0920
EA	cv%	27,24	23,83	23,97	40,930	22,46	19,85	72,97
	11	1,70	4,20	0,20	0,33	6,43	0,30	0,06
TTS.	12	1,20	4,50	0,24	0,24	6,18	0,27	0,03
PLANTS	13	2,50	3,60	0,42	0,17	6,69	0,46	0,10
DES	14	2,70	5,20	0,42	0,32	8,64	0,34	0,03
IANT	15	3,80	5,50	0,27	0,28	9,85	0,40	0,04
P. S.	16	2,70	8,50	0,34	0,49	12,03	0,46	0,07
ACETS P CHÉTIES	17	2,00	6,80	0,30	0,37	9,47	0,41	0,03
<u>₹</u>	18	3,10 ,	4,90	0,67	0,18	8,85	0,50	0,05
DES	19	2,60	6,40	0,39	0,34	9,73	0,51	0,04
TONS	20	2,20	6,80	0,81	0,30	10,11	0,64	0,10
Echantillons des placets portant des chétifs,	M	2,450	5,640	0,406	0,302	8,798	0,429	0,055
EA	cv%	29,76	26,26	47,71	31,05	21,27	25,66	49,42
t		1,188	1,200	0,087	1,192	1,381	1,235	1,616