REPUBLIQUE FRANCAISE

Nouvelle-Calédonie et Dépendances

SERVICES RURAUX TERRITORIAUX Service de l'Agriculture

Section Recherches Agronomiques

P. MAZARD

F. DEVINCK

Ph. SEVERIAN

OFFICE DE LA RECHERCHE SCIENTIFIQUE ET TECHNIQUE OUTRE-MER

Laboratoires de Pédologie et d'Agronomie

A. BEAUDOU

B. BONZON

B. DENIS

C. MAURY

H. LEMARTRET

ETUDE DES EFFETS DES AMENDEMENTS CALCIQUES * SUR LES SOLS DE NOUVELLE-CALÉDONIE

EFFETS DE DIFFÉRENTES DOSES D'AMENDEMENT CALCIQUE SUR UN SOL SODIQUE ACIDE

ΕT

SUR DES CULTURES DE MAÏS, TOURNESOL ET HARICOT

PROTOCOLE EXPÉRIMENTAL

X Convention particulière n° 2 du Protocole Général d'Accord passé le 21 avril 1980 entre le Territoire de la Nouvelle-Calédonie et l'ORSTOM pour l'étude de la Fertilité Naturelle et de l'Evolution sous culture des sols de Nouvelle-Calédonie.

$\verb|SOMM| AIRE|$

INTRODUCTION	2
1 - DISPOSITIF EXPERIMENTAL	2
2 - ORGANISATION GENERALE DES SOUS-PARCELLES	2
3 - MISE EN PLACE ET CONDUITE DE L'EXPERIMENTATION	3
31 - Organigramme général des opérations de terrain	3
32 - Fertilisation	4
33 - Irrigation	4
34 - Traitements phytosanitaires	5
35 - Observations, mesures et analyses	5
35.1 - Etude de la croissance des composantes du rendement et des immobilisations à la récolte	5
35.2 - Etude de l'évolution du sol	5
4 - INTERPRETATION DES RESULTATS.RAPPORT	5
41 - Analyse statistique	5
42 - Présentation des résultats	5
DOCUMENTS DE REFERENCE	7
ANNEXE 1 - PLAN SCHEMATIQUE DE L'ESSAI. CORRESPONDANCES AVEC CELUI DE 1981	8
ANNEXE 2 - CARACTERISTIQUES-PLANTES RECUEILLIES AU COURS DU CYCLE ET CARACTERISTIQUES DERIVEES	11
ANNEXE 3 - CARACTERISTIQUES-SOLS RECUEILLIES AU COURS DU CYCLE	15
ANNEXE 4 - ANALYSE STATISTIQUE	18

Le présent document décrit le protocole expérimental destiné à préciser les doses d'amendement calcique à appliquer à un sol sodique acide mis en valeur avec un maïs, un tournesol et un haricot.

L'homogénéité du sol en question a déjà été testée en 1981 (Cf. document de référence n° 5).

L'amendement calcique sera réalisé avec une croûte calcaire non-magnésienne de la région du Col des Arabes, titrant environ 42 % de CaO et passée au tamis de 2 mm après broyage. Le choix de ce calcaire résulte d'essais en serre conduits en 1981 (Cf. document de référence n° 4).

Les trois cultures retenues pour l'étude sont des cultures "exigentes" et susceptibles d'être effectivement pratiquées sur ce type de sol, en raison à la fois de sa topographie et de sa proximité des cours d'eau (possibilité d'irrigation).

1 - DISPOSITIF EXPERIMENTAL

L'expérimentation comporte 9 parcelles principales divisées en 4 sousparcelles de 9 x 18 m chacune.

Les sous-parcelles sont situées aux emplacements exacts d'un certain nombre des parcelles du test d'homogénéité initial (Cf. le tableau l de l'annexe l pour les correspondances).

Il y a trois répétitions constituant 3 blocs.

Chaque bloc comporte donc 3 parcelles principales, chacune de ces parcelles recevant une plante par tirage aléatoire (un tirage par bloc). Chacune des 4 sous-parcelles d'une parcelle principale reçoit une dose d'amendement calcique, l'affectation des doses aux sous-parcelles faisant l'objet d'un tirage aléatoire pour chaque parcelle. Les doses d'amendement retenues sont

\emptyset , 2 , 4 et 6 T/ha (de CaO).

Chaque sous-parcelle, enfin, pourra être elle-même subdivisée en 2 ultérieurement afin de permettre l'application d'un troisième facteur contrôlé, subsidiaire S, qui n'est pas encore défini. Ces demi-sous-parcelles seront désignées par le terme de parcelles élémentaires.

La répartition des différentes variantes des trois facteurs contrôlés P (Plante), A (Amendement calcique) et S (à définir ultérieurement), sur les 3 blocs B est indiquée sur le plan schématique 2 de l'annexe l.

2 - ORGANISATION GENERALE DES SOUS-PARCELLES

Chacune des 36 parcelles de 9 x 18 m comporte 12 rangs de culture espacés de 0,75 m. Chaque demi-sous-parcelle ou parcelle élémentaire comporte donc 6 rangs, les deux rangs centraux constituant les rangs utiles de la parcelle élémentaire.

Une bordure de 1,5 m est prévue à chaque extrêmité des rangs utiles. Chaque parcelle élémentaire "utile" est donc constituée de deux rangs utiles de 15 mètres de longueur chacun couvrant une surface utile totale de 22,5 m2.

A l'intérieur d'un bloc, les parcelles sont contigues, mais les sous-parcelles sont séparées par des allées (Cf. le plan schématique).

3 - MISE EN PLACE ET CONDUITE DE L'EXPERIMENTATION

31 - Organigramme général des opérations de terrain .

Depuis la récolte du test d'homogénéité initial, les opérations de terrains se succèderont comme indiqué sur l'organigramme ci-dessous.

```
Gyrobroyage
Déchaumage
Labour à 20 cm
Hersage
Piquetage
Prélèvement d'échantillons de sol pour analyse et tests de
fertilité en serre
Application de l'amendement calcique
Application de la fumure de fond
Dépiquetage
Enfouissement des amendements et de la fumure de fond
Piquetage
Semis
Pose du réseau d'irrigation
Comptage à la levée
Démariage
Comptage après démariage
Repérage des 10 pieds de référence par parcelle élémentaire,
5 pieds sur chaque rang utile (soit 720 piquets)
Mesures de hauteur (maïs et tournesol)
Autres observations (à définir) sur haricot
Observations phénologiques
(apparition des fleurs et des inflorescences)
Premier apport d'azote (urée) en couverture
Binage
Deuxième apport en couverture
Binage
```

Récolte et pesée des grains des 10 pieds de référence

Récolte et pesée des résidus de récolte des 10 pieds

Prélèvement d'un kg de résidus de récolte par parcelle élémentaire sur les pieds de référence

Récolte et pesée des grains du reste des pieds de chaque parcelle élémentaire

Prélèvement des échantillons de sol (6 échantillons dans l'arumite par parcelle élémentaire à la sonde de Ø = 80 mm)

Dépiquetage

∀ Gyrobroyage

Semis d'une plante de couverture ou mise en place d'un second cycle (protocole à définir).

32 - Fertilisations

Afin de mettre en évidence plus facilement le rôle général de l'amendement calcique sur le sol et sur la nutrition minérale des plantes, en particulier sur leur nutrition phosphatée, les fertilisations appliquées à l'occasion de ce premier cycle seront relativement faibles :

160 kg/ha d'Azote sous forme d'urée en 2 épandages 80 kg/ha de P_2O_5 sous forme de superphosphate triple) en fumure de 60 kg/ha de K_2O sous forme de sulfate de potasse) fond

Au niveau du détail, les interactions "sol sodique acide x plantes cultivées x éléments majeurs x amendements" seront examinées à l'aide d'études expérimentales conduites en serre.

33 - Irrigation

L'irrigation sera essentiellement une irrigation d'appoint Le dispositif utilisé sera celui mis en oeuvre en 1981 (Cf. protocole expérimental du test d'homogénéité).

34 - Traitements phytosanitaires

Un suivi très attentif du parasitisme sera effectué. Les traitements seront plutôt du type préventif.

Seront appliqués ainsi de façon systématique

- avant le semis :.désinfection du sol (Lindane) l 1 m.a./ha désherbage de pré-émergence (E.P.T.C.) dose 4 1 ma./ha

.traitement insecticides

- en cours de METHAMIDOPHOS 450 gr ma/ha végétation - DECIS 12 gr ma/ha - NALED 1 1 m.a/ha
- 35 Observations, mesures et analyses
- 35-1 Etude de la croissance, des composantes du rendement et des immobilisations à la récolte.

Le suivi de la croissance en hauteur du maïs et du tournesol sera lancé dès que possible en s'appuyant sur 10 pieds de référence par parcelle élémentaire (5 pieds sur chaque rang utile), ces pieds étant repérés par des piquets de bois dépassant du sol de 15 cm.

Pour le haricot, les critères à prendre ne sont pas encore définis.

A la récolte, qui pourra être décalée d'une plante à l'autre, la détermination d'un certain nombre des composantes du rendement sera faite sur les pieds de référence, ainsi qu'une détermination des teneurs en N, P, K, Ca, Mg, Na à la fois dans les grains et les résidus de récolte.

Le rendement du reste des plants des parcelles utiles sera mesuré également.

L'ensemble des informations à recueillir est précisé à l'annexe 2.

35-2 - Etude de l'évolution du sol

L'évolution de l'horizon (0-20 cm) du sol (arumite) sous l'effet à la fois des facteurs Plantes et Amendement Calcique sera précisé à l'aide des caractéristiques mentionnées à l'annexe 3.

4 - INTERPRETATION DES RESULTATS . RAPPORTS

41 - Analyse statistique.

L'analyse statistique des données d'effectuera selon les schémas et les modèles précisés à l'annexe 4.

42 - Présentation des résultats.

Un premier rapport sur les données recueillies au moment de la récolte sera présenté dans les deux mois qui suivent la récolte afin de permettre aux Services Ruraux Territoriaux d'utiliser éventuellement les résultats exploitables de cette étude.

Pour les autres données, les résultats seront fournis dès qu'ils auront pu être interprétés, et dans les délais de la convention.

DOCUMENTS DE REFERENCE

Les documents 1, 2 et 3 ci-dessous, relatifs aux actions de recherches définies dans l'avenant n° 1 (année 1980) de la convention particulière pour l'étude des effets des amendements calciques sur les sols cultivables de la Nouvelle-Calédonie, ont été publiés en juin 1981.

- l Recherches de sites expérimentaux pour mener des études sur les effets des amendements calciques en Nouvelle-Calédonie. Enquête préliminaire ORSTOM, 18 p., 5 tableaux, 2 diagrammes.
- 2 Les sols du champ d'expérimentation (M.Bertoni), ORSTOM, 34 p., 9 diagrammes, 4 tableaux.
- 3 L'évolution du pH des humites des sols sodiques acides après apport d'amendements calciques : essais en boîte de Pétri, 3 pages, 2 tableaux, 2 diagrammes.

Les documents 4 et 5, ci-après, concernent les actions de recherches conduites sur sol sodique acide en 1981, telles qu'elles ont été définies dans l'avenant n° 2 (année 1981).

- 4 Résultats expérimentaux des cultures en serre sur sols sodiques acides (81-82).
- 5 Résultats du test d'homogénéité par une culture de maïs du terrain retenu pour l'étude des effets des amendements calciques sur sol sodique acide.

- 8 -

ANNEXE 1

PLAN SCHEMATIQUE DE L'ESSAI

CORRESPONDANCES AVEC CELUI DE 1981

l - Correspondance entre les numéros des parcelles du test d'homogénéité initial 81 et de l'essai 82.

1 2 3 4 5 6 7 8 9 10 11 12 13 14	1 7 13 19 2 8 14
2 3 4 5 6 7 8 9 10 11 12 13 14	7 13 19 2 8
3 4 5 6 7 8 9 10 11 12 13 14	13 19 2 8
4 5 6 7 8 9 10 11 12 13	19 2 8
5 6 7 8 9 10 11 12 13	2 8
6 7 8 9 10 11 12 13	8
7 8 9 10 11 12 13	
8 9 10 11 12 13 14	14
9 10 11 12 13	
10 11 12 13 14	20 .
11 12 13 14	3
12 13 14	9
13 14	15
14	2.1
	4
15	10
	16
16	22
17	5
18	11
19	17
20	23
21	6
22	12
23	18
24	24
25	25
26	31
27	35
28	.39
29	26
30	32
31	36
32	40
33	27
34	
35	33

ANNEXE 2

CARACTERISTIQUES - PLANTES RECUEILLIES AU COURS DU CYCLE ET CARACTERISTIQUES DERIVEES

CARACTERISTIQUES-PLANTES A DETERMINER POUR L'ETUDE DES EFFETS DES DIFFERENTES DOSES D'AMENDEMENT CALCIQUE SUR UN SOL SODIQUE ACIDE (CAS DU MAIS)

		<u> </u>	
Numéros des variables	Sigles	Définitions (Toutes les mesures concernent les parcelles élémentaires de 2 rangs utiles de 15 mètres de long chacun occupant 22,5 m2)	Unités
1	DL	Densité de peuplement à la levée	Nbre / m2
2	DD	" après le démariage	- d° -
3	DM	a mi-cycle	- d° -
4	DR	" à la récolte	- d° -
5	H _t	Hauteur moyenne des 10 plants de référence à l'âge t jours de la culture	cm
6	V _{t1-t2}	Vitesse de croissance en hauteur journalière entre les temps t ₁ et t ₂ jours	cm/j
7	PTFS	Poids moyen de matière sèche des résidus de récolte d'un plant (de référence) à la récolte	g/plant
8	PGR	Poids moyen de grains secs d'un pied de référence	g/plant
9	PGU	Poids moyen de grains secs d'un pied utile restant	g/plant
10	PG	Poids moyen de grains par plant	g/plant
11	GRU	Poids de 1000 grains	g
12	TNTF	Teneur en Azote des résidus de récolte	%
13	TPTF	" Phosphore " "	%
14	TKTF	" Potassium " "	%
15	TNATF	" Sodium " "	%
16	TCATF	" Calcium " "	%
17	TMGTF	" Magnésium " "	%

Numéros des variables	Sigles	Définitions (Toutes les mesures concernent les parcelles élémentaires de 2 rangs utiles de 15 mètres de long chacun, occupant 22,5 m2)	Unités
18	TNG	Teneur en Azote des grains	%
19	TPG	" Phosphore "	%
20	TKG	" Potassium "	%
21	TNAG	" Sodium "	%
22	TCAG	" Calcium "	%
23	TMGG	" Magnésium "	%
24	QTF	Masse de résidus de récolte par unité de surface	g/m2
25	QNTF	Immobilisation en Azote dans les résidus de récolte	g/m2
26	QPTF	" Phosphore "	-d°-
27	QKTF	" Potassium "	-d°-
28	QNATF	Sodium "	-d°-
29	QCATF	" Calcium "	-d°-
30	QMGTF	" Magnésium "	-d°-
31	QG	Rendement en grain sec "	-d°-
32	QNG	Exportation en Azote par les grains	-d°-
33	QPG	" Phosphore "	-d°-
34	QKG	" Potassium "	-d°-
35	QNAG	" Sodium "	-d°-
36	QCAG	" Calcium "	-d°-
37	QMGE	" Magnésium "	-d°-
38	QPA	Biomane des parties aériennes à la récolte	-d°-
39	QNPA	Immobilisation totale en Azote dans les parties aériennes à la récolte	-d°-
40	QPPA	en Phosphore	-d°-
41	QKPA	en rotassium	-d°-
42	QNAPA	en soutum	-d°-
43	QCAPA	en carcium	-d°-
44	QMGPA	en magnesium	-d°-
45	NEPR	Nombre d'épis par plant de référence	•
46	NEPU	utile restant	
47	NEP	" " "	

REMARQUES SUR LA DETERMINATION DE CERTAINES CARACTERISTIQUES-PLANTES DU MAIS

La masse de résidus de récolte par plant PTFS et la détermination de leurs teneurs en éléments minéraux seront obtenues en :

l/ pesant sur le terrain le poids frais PTFH des 10 pieds de référence coupés à ras du sol et débarrassés de leurs épis;

2/ prélevant alléatoirement 1 kg de résidus frais sur le pied, on déterminera la teneur en matière sèche MS % par séchage 48 heures à 105°C (soit pTFSg le poids sec de l'échantillon frais de 1 kg;

3/ pesant après séchage pendant 48 heures à 105° C la totalité des rachis des épis récoltés sur le terrain, soit PRS;

4/ prélevant, après hachage préliminaire, une partie aliquote dans le rapport 1000 de ces rachis, cette partie aliquote étant rajoutée à l'échantillon PTFH de tiges et feuilles sèches avant leur broyage pour analyse.

PTFS = (PTFH •
$$\frac{\text{pTFS}}{1000}$$
 + PRS) • $\frac{1}{10}$

Le rendement en grains secs des pieds de référence PGR est mesuré directement par séchage $48~\rm H~a~105\,^\circ$ C de la totalité des grains récoltés.

Le rendement en grains secs du reste de la parcelle utile PGU sera mesuré au CREA après la récolte (détermination du poids frais de grains et de leur teneur en humidité).

$$PGR = \frac{MGR}{10}$$

$$PGU = \frac{MGU}{(22,5.DR)-10}$$

$$MGR = masse de grains secs des 10 pieds de références$$

$$MGU = masse de grains secs du reste des pieds utiles$$

QG = (MGR + MGU)/22.5

ANNEXE 3

CARACTERISTIQUES-SOLS
RECUEILLIES EN DEBUT ET FIN DE CYCLE

CARACTERISTIQUES-SOLS A DETERMINER POUR L'ETUDE DES EFFETS DE DIFFERENTES DOSES D'AMENDEMENT CALCIQUE SUR UN SOL SODIQUE ACIDE (les lettres A et B suivront les sigles des caractéristiques pour indiquer l'époque de leur mesure)

Numéros des variables	Sigles	Définitions (Toutes les mesures concernant les parcelles élémentaires au nombre de 72)	Fréquence des déterminations	: Unités
201	A	Taux d'argile	Début ler cycle Fin dernier cycle	. %
203	LF	Taux de limons fins	"	11
205	LG	Taux de limons grossiers	11	11
207	SF	Taux de sablesfins	"	11
209	SG	Taux de sables grossiers	"	11
211	IS	Indice d'instabilité structurale	Début et fin de chaque cycle	"
212	AGRE	Taux d'agregats à l'eau	"	%
213	AGRA	Taux d'agregats à l'alcool	n .	11
214	AGRB	Taux d'agregats au Benzène	"	11
215	pF 4,2	Humidité au pF 4,2	Début du ler cycle et fin du dernier	11
217	pF 3,0	Humidité au pF 3,0	"	11
219	pF 2,5	Humidité au pF 2,5	"	11
221	DAS	Densité apparente	Fin de chaque cycle	g/cm3
223	DRS	" réelle	Début du ler cycle et fin du dernier	g/cm3
228	pHE	pH à l'eau	Début et fin de chaque	Unité pH
230	рНК	pH au KC1	cycle "	11

232	СТ	Carbone total	Début et fin de chaque cycle	°/
234	NT	Azote totale	11	"
236	PAT	Phosphore assimilable Truog	11	ppm
238	PAO	Phosphore assimilable Olsen	. 11	. 11
239	PT	Phosphore total	11	°/••
241	CAE	Calcium échangeable	"	me %
243	MGE	Magnésium échangeable	11	11
245	KE	Potassium échangeable	"	11
247	NAE	Sodium échangeable	17	11
249	CEC	Capacité d'échange cationique	Début du ler cycle et fin du dernier	11
. 251	CAT	Calcium total	"	11
253	MGT	Magnésium total	п	"
255	KT	Potassium total	"	11
257	NAT	Sodium total	. "	**
•				

- 18 -

ANNEXE 4

ANALYSE STATISTIQUE

ANALYSE DES DONNEES

L'expérimentation mise en place est du type à parcelles subdivisées deux fois.

Les facteurs principaux sont le facteur plante P et le facteur répétition B, à 3 niveaux chacun.

Le premier facteur subsidiaire à 4 niveaux est le facteur dose d'amendement calcique A.

Le second facteur subsidiaire à deux niveaux, S , n'est pas encore défini : il doit être pris en considération, néanmoins, en vue des analyses de covariance ultérieures.

Le modèle linéaire d'analyse de la variance, les formules de calcul et les différentes modalités de comparaison des variances des termes du modèle sont indiqués dans les tableaux 1, 2 et 3 ci-après.

Lorsqu'il s'agit des données plantes, de considérables différences peuvent exister cependant entre les valeurs de certaines d'entre-elles liées à la nature des espèces étudiées. Dans ces conditions, il semblerait plus logique de procéder à une analyse de variance par plante. Le modèle linéaire d'analyse de la variance est alors celui d'une expérimentation de type à parcelles subdivisées une fois. Le facteur "amendement calcique "devient facteur principal, comme le facteur répétition, et le facteur non-défini S reste le seul facteur subsidiaire potentiel. Ce modèle, les formules de calcul et les différentes modalités de comparaison des variances des termes du modèle sont indiqués dans les tableaux 4 et 5 ci-après.

Au niveau des calculs, des liens existent naturellement entre les calculs relatifs à l'analyse de variance par plante et ceux concernant l'analyse de variance de l'ensemble des données. Ces liens sont présentés dans le tableau 6.

Les informations à présenter pour l'interprétation scientifique sont finalement celles mentionnées sur les tableaux 7-1 à 7-7, et de 8-1 à 8-4.

ETUDE DES LIENS SUSCEPTIBLES D'EXISTER ENTRE LES DONNEES

L'étude des liens susceptibles d'exister entre certaines des caractéristiques étudiées, abstraction faite de l'influence éventuelle des facteurs contrôlés et de leurs interactions, doit s'effectuer, naturellement, au niveau des termes résiduels des modèles linéaires d'analyse de la variance.

Les différents cas possibles sont répertoriés dans le tableau 9. Il est évident que le même type de subdivision devra être appliqué aux données à correler dans le cas d'une étude de système.

ANALYSES DE COVARIANCE - VARIABLES AJUSTEES

Les modèles linéaires d'analyses de covariance pouvant faire suite aux recherches sur les liens entre les caractéristiques, sont calqués sur les modèles linéaires d'analyse de variance. Les variables ajustées dépendent de la forme de ces modèles et des résultats des comparaisons des coefficients de corrélation et de régression.

Les différentes situations possibles sont présentées dans le tableau 10.

- ANALYSE DE VARIANCE SUR L'ENSEMBLE DES DONNEES

Modèle linéaire, signification et estimation de ses termes

$$x_{ijkl} = \overline{x} + p_i + b_l + e_{il} + a_j + (pa)_{ij} + e_{ijl} + a_k + (ps)_{ik} + (as)_{jk} + (pas)_{ijk} + e_{ijkl}$$

Termes du modèle	Significations	Degrés de liberté	Estimations
x _{ijkl}	Valeur de X soumise aux traitements P_i , A_j , S_k dans le bloc B_1	72	
<u>x</u>	Valeur moyenne de X	1	
p _i	Effet de la i ème plante P	2	$\overline{x}_i - \overline{x}$
b ₁	Effet de la lème répétition B ₁	2	x 1 - x
e *	Terme résiduel de comparaison de p et b 1	4	$\overline{x}_{i1} - \overline{x}_{i} - \overline{x}_{1} + \overline{x}$
aj	Effet de la j ^{ème} dose d'amendement calcique Aj	3	$\frac{1}{x_j} - \frac{1}{x}$
(pa)	Interaction des variantes i et j des facteurs P et A	6	$\overline{x}_{ij} - \overline{x}_{i} - \overline{x}_{j} + \overline{x}$
e _{ijl} *	Terme résiduel de comparaison de a et (pa)	18	$\overline{x}_{ij1} - \overline{x}_{ij} - \overline{x}_{i1} + \overline{x}_{i}$
s _k	Effet du k eniveau du facteur subsidiaire S	1 1	$\bar{x}_k - \bar{x}$
(ps)	Interaction des variantes i et k des facteurs P et S	2	$\overline{x}_{ik} - \overline{x}_{i} - \overline{x}_{k} + \overline{x}$
(as)	Interaction des variantes j et k des facteurs A et S	3	$\overline{x}_{jk} - \overline{x}_{j} - \overline{x}_{k} + \overline{x}$
(pas)	Interaction des variantes i, j et k des facteurs P, A et S	6	$\overline{x}_{ijk} - \overline{x}_{ij} - \overline{x}_{ik} - \overline{x}_{jk} + \overline{x}_{i} + \overline{x}_{j} + \overline{x}_{k} - \overline{x}$
e ijkl	Terme résiduel de comparaison de s_k	24	$x_{ijkl} - \overline{x}_{ijk} - \overline{x}_{ijl} + \overline{x}_{ij}$

^{*} e représente l'interaction (pb); e ijl la somme des interactions (ab); et (pab); e ijkl la somme des interactions (sb), (psb); (psb); (asb); et (pasb); et (pasb);

2 - ANALYSE DE VARIANCE SUR L'ENSEMBLE DES DONNEES

Variances des termes du modèle - Tests F

Lorsque $s_{e1}^2 = s_{e2}^2 = s_{e3}^2$ on peut prendre comme variance résiduelle: $s_e^2 = (4 s_{e1}^2 + 18 s_{e2}^2 + 24 s_{e3}^2) / 46$ Lorsque $s_{e1}^2 = s_{e2}^2 \neq s_{e3}^2$ on peut prendre comme variance résiduelle pour les 2 premiers niveaux : $s_{e12}^2 = (4 s_{e1}^2 + 18 s_{e2}^2 + 24 s_{e3}^2) / 22$ Lorsque $s_{e1}^2 \neq s_{e2}^2 = s_{e3}^2$ on peut prendre comme variance résiduelle pour les $2^{\text{ème}}$ et $3^{\text{ème}}$ niveaux: $s_{e23}^2 = (18 s_{e2}^2 + 24 s_{e3}^2) / 42$

Termes du modèle	Variances des termes	2 2 se1, se2 sont dif	et s e3 férentes	s _{e1} , s _{e2}	et se3	le cas où 2 set e1 sont équiv		se2 et se sont équiva	
p _i	$s_p^2 = 12 \cdot \sum_{i} p_i^2$	F s _P ² / s _{e1}	dd1 2 et 4	$\mathbf{s}_{\mathrm{P}}^{2}/\mathbf{s}_{\mathrm{e}}^{2}$	dd1 2 et 46	s _P / s _{e12}	dd1 2 et 22	F s _P / s _{e1}	ddl 2 et 4
b ₁	$\mathbf{s}_{\mathrm{B}}^{2} = 12 \cdot \sum_{1}^{\infty} \mathbf{b}_{1}^{2}$	s_B^2 / s_{e1}^2	2 et 4	s_B^2 / s_e^2	2 et 46	s_B^2/s_{e12}^2	2 et 22	$s_{\rm B}^2/s_{\rm e1}^2$	2 et 4
e _{il}	$s_{e1}^2 = 2 \cdot \sum_{i1}^{\infty} e_{i1}^2$	-	-	-	-	-	-	-	-
aj	$\mathbf{s}_{\mathbf{A}}^2 = 6 \cdot \sum_{\mathbf{j}} \mathbf{a}_{\mathbf{j}}^2$	s_{A}^{2} / s_{e2}^{2}	3 et 18	s_{A}^{2}/s_{e}^{2}	3 et 46	s_{A}^{2}/s_{e12}^{2}	3 et 22	s_{A}^{2}/s_{e23}^{2}	3 et 42
(pa)	$\mathbf{s}_{\mathbf{PA}}^{2} = \sum_{\mathbf{i},\mathbf{j}} (\mathbf{pa})_{\mathbf{i},\mathbf{j}}^{2}$	s_{PA}^2 / s_{e2}^2	6 et 18	s_{PA}^2 / s_e^2	6 et 46	s_{PA}^2 / s_{e12}^2	6 et 22	s_{PA}^2 / s_{e23}^2	6 et 42
e _{ijl}	$s_{e2}^2 = \frac{1}{9} \cdot \sum_{i,j=1}^{\infty} e_{i,j1}^2$	-	-	-	-	-	•	- -	-
. s k	$s_S^2 = 36 \cdot \sum_{k} s_k^2$	s_S^2 / s_{e3}^2	1 et 24	$s_{\rm S}^2/s_{\rm e}^2$	1 et 46	s_S^2 / s_{e3}^2	1 et 24	s ² / s ² e23	1 et 42
(ps)	$s_{PS}^2 = 6 \cdot \sum_{ik} (ps)_{ik}^2$	s_{PS}^2 / s_{e3}^2	2 et 24	s_{PS}^2 / s_e^2	2 et 46	s_{PS}^2 / s_{e3}^2	2 et 24	$s_{\rm PS}^2 / s_{\rm e23}^2$	2 et 42
(as) _{jk}	$s_{AS}^2 = 3 \cdot \sum_{jk} (as)_{jk}^2$	s_{AS}^2 / s_{e3}^2	3 et 24	s_{AS}^2 / s_e^2	3 et 46	s_{AS}^2 / s_{e3}^2	3 et 24	s _{AS} / s _{e23}	3 et 42
(pas)	$s_{\text{PAS}}^2 = \frac{1}{2} \cdot \frac{\Sigma \text{ (pas)}}{\text{ijk}}$	s_{PAS}^2 / s_{e3}^2	6 et 24	$s_{\rm PAS}^2 / s_{\rm e}^2$	6 et 46	s_{PAS}^2 / s_{e3}^2	6 et 24	$s_{\rm PAS}^2 / s_{\rm e23}^2$	6 et 42
e ijkl	$s_{e3}^2 = \frac{1}{24} \cdot \sum_{ijkl} e_{ijkl}^2$	_	-	-	-	<u>-</u>	-	-	

3 - ANALYSE DE VARIANCE SUR L'ENSEMBLE DES DONNEES

Comparaisons des variances résiduelles des 3 niveaux

La comparaison des variances résiduelles des 3 niveaux de l'analyse générale s'effectue à l'aide du test de BARTLETT en calculant la quantité

$$X^2 = (1/c) \cdot (v \cdot \log_e \overline{s}^2 - \sum_i v_i \cdot \log_e s_i^2)$$

avec

$$C := 1 + \frac{1}{3(k-1)} \cdot \left(\sum_{i} \frac{1}{v_i} - \frac{1}{v} \right)$$

$$V = \sum_{i} v_i \quad \text{et} \quad \frac{1}{s^2} = \frac{\sum_{i} v_i \cdot s_i^2}{v_i}$$

Formules dans lesquelles

k représente le nombre de variances comparées s_i^2 , la ième variance comparée

 v_i , le nombre de degrés de liberté de s_i^2

X² est à k - 1 degrés de liberté

On comparera ainsi successivement:

1/- au départ, s_{e1}^2 , s_{e2}^2 et s_{e3}^2 . Si, alors, x_{123}^2 < 5,99, on concluera à l'homogénéité des 3 variances et l'on prendra pour les tests F la variance moyenne

$$\frac{1}{8}$$
 = $\frac{1}{8}$ = $\frac{1}{8}$ = $\frac{1}{8}$ + $\frac{1}{8}$

2/- ensuite, si X²₁₂₃ > 5,99, s²_{e1} et s²_{e2}. Si, alors, X²₁₂ < 3,84, on concluera à l'homogénéité des variances des deux premiers niveaux et l'on prendra pour les tests F relatifs aux facteurs P, B, A et AC la variance moyenne

$$\overline{s}^2 = s_{e12}^2 = (4 \cdot s_{e1}^2 + 18 \cdot s_{e2}^2) / 22$$

$$\bar{s}^2 = s_{e23}^2 = \frac{18}{18} s_{e2}^2 + 24 s_{e3}^2$$
 / 42

Si $X_{123}^2 > 5,99$ et si X_{12}^2 et $X_{23}^2 > 3,84$, les variances des 3 niveaux sont globalement différentes les unes des autres et alors les comparaisons s'effectueront comme indiqué dans le tableau 2.

4 - ANALYSE DE VARIANCE PAR PLANTE

Modèle linéaire, signification et estimation de ses termes

 $x_{(i)jkl} \cdot = \overline{x}_{(i)} + b_{(i)l} + a_{(i)j} + e_{(i)jl} + s_{(i)k} + (as)_{(i)jk} + e_{(i)jkl}$

(l'indice; mis entre parenthèses indique que les calculs sont relatifs à la i plante)

Termes du modèle	Significations	Degrés de liberté	Estimation s
x(i)jkl	Valeur de X, relative à la plante P, soumise aux facteurs A, et S, dans le bloc B,	24	
- x _(i)	Valeur moyenne générale de X	1	
^b (i)1	Effet de la l ^{ème} répétition B ₁	2	<u>x</u> (i)1 - x(i)
a (i)j	Effet de la j ^{ème} dose d'amendement calcique A_j	3	<u>x</u> (i)j - x(i)
e(i)j1 *	Terme résiduel de comparaison de b(i)1 et a(i)j	6	$\bar{x}_{(i)j1} - \bar{x}_{(i)j} - \bar{x}_{(i)1} + \bar{x}_{(i)}$
^s (i)k	Effet du k ^{ème} niveau du facteur subsidiaire S	1	$\overline{\mathbf{x}}_{(i)k} - \overline{\mathbf{x}}_{(i)}$
(as)(i)jk	Interaction des variantes j et k des facteurs A et S	3	$\overline{x}_{(i)jk} - \overline{x}_{(i)j} - \overline{x}_{(i)k} + \overline{x}_{(i)}$
e(i)jkl *	Terme résiduel de comparaison de $s_{i,k}$ et $(as)_{(i,j,k)}$	8	$x_{(i)jkl} - \overline{x}_{(i)jk} - \overline{x}_{(i)jl} + \overline{x}_{(i)j}$

^{*} e(i)jl représente l'interaction (ab)(i)jl, e(i)jkl la somme des interactions (sb)(i)kl et (asb)(i)jkl.

5 - ANALYSE DE VARIANCE PAR PLANTE

Variances des termes du modèle - Tests F

(l'indice (i) indique que les données calculées sont relatives à la i eme plante P)

Termes		Tests F dans le cas où			
du modèl e	Variances des termes	sel et sel sont diff	érentes	se1 et se2 sont équi	valentes
	·	F	ddl	F	dd1
b(i)1	$s_{B(i)}^{2} = 4 \cdot \sum_{1}^{\Sigma} b_{(i)1}^{2}$	$F_{B(i)} = s_{B(i)}^2 / s_{e1(i)}^2$	2 et 6	$F_{B(i)} = s_{B(i)}^2 / s_{e(i)}^2$	2 et 14
a(i)j	$\mathbf{s}_{\mathbf{A}(\mathbf{i})}^{2} = 2 \cdot \sum_{\mathbf{j}} \mathbf{a}_{(\mathbf{i})\mathbf{j}}^{2}$	$F_{A(i)} = s_{A(i)}^2 / s_{e1(i)}^2$	3 et 6	$F_{\mathbf{A}(\mathbf{i})} = \mathbf{s}_{\mathbf{A}(\mathbf{i})}^{2} / \mathbf{s}_{\mathbf{e}(\mathbf{i})}^{2}$	3 et 14
e(i)jl	$s_{e1(i)}^2 = \frac{1}{3} \cdot \sum_{jl} e_{(i)jl}^2$				
s(i)k	$s_{S(i)}^{2} = 12. \sum_{k} s_{(i)k}^{2}$	$F_{S(i)} = s_{S(i)}^2 / s_{e2(i)}^2$	1 et 8	$F_{S(i)} = S_{S(i)}^2 / S_{e.(i)}^2$	1 et 14
(as)(i)jk	$s_{AS(i)}^2 = \sum_{jk} (as)_{(i)jk}^2$	$F_{AS(i)} = s_{AS(i)}^2 / s_{e2(i)}^2$	3 et 8	$F_{AS(i)} = S_{AS(i)}^2 / S_{e^{-1}(i)}^2$	3 et 14
e(i)jkl	$s_{e2(i)}^2 = \frac{1}{8} \sum_{jkl} e_{(i)jkl}^2$				· <u></u>

La comparaison de $s_{e1(i)}^2$ et de $s_{e2(i)}^2$ s'effectuera à l'aide du test de BARTLETT. Si X_{12}^2 < 3,84, on prendra alors pour variance résiduelle unique

$$s_{e(i)}^2 = (6. s_{e1(i)}^2 + 8 s_{e2(i)}^2) / 14$$

6 - RELATIONS ENTRE LES TERMES DES ANALYSES DE VARIANCE PAR PLANTE ET GENERALE

·	Analyses de variance par plante	Analyse de variance générale			
Termes du modèle	Formules	Termes du modèle	Correspondances avec les formules des A.d.v. par plante		
x(i)jkl	=	x ijkl			
- x(i)	= -	ĺ	$ \begin{vmatrix} 1/3 \cdot \Sigma & \overline{x}_{(i)} \\ 1 & 1 \end{vmatrix} $		
		' p _i	$\frac{1}{x}$ $\frac{1}{x}$ $\frac{1}{x}$		
\b(i)1	= \bar{x}_{(i)1} - \bar{x}_{(i)} /	l	$\frac{1}{1} 1/3 \cdot \sum_{i} b_{(i)1} = \overline{x}_{1} - \overline{x}$		
		e _{il}	$= b_{(i)1} - b_1 = \overline{x}_{i1} - \overline{x}_i - \overline{x}_1 + \overline{x}$		
\a(i)j	= \bar{\mathbf{x}}_{(i)j} - \bar{\mathbf{x}}_{(i)} \bar{\bar{\mathbf{x}}}		$ \stackrel{ }{=} 1/3 \cdot \stackrel{\Sigma}{=} a_{(i)j} = \overline{x}_{j} - \overline{x} $		
		(pa)	$= \overline{x}_{ij} - \overline{x}_{j} + \overline{x}$		
e(i)jl	$= \overline{\mathbf{x}}_{(i)j1} - \overline{\mathbf{x}}_{(i)j} - \overline{\mathbf{x}}_{(i)1} + \overline{\mathbf{x}}_{(i)}$	e ijl	$= \overline{x}_{ij1} - \overline{x}_{ij} - \overline{x}_{i1} + \overline{x}$		
(i)k	= \(\overline{x}_{(i)k} - \overline{x}_{(i)}\)	s k	$= \frac{1}{3} \cdot \sum_{i} s_{(i)k} = \overline{x}_{k} - \overline{x}$		
		(ps)	$ = \mathbf{s}_{(i)k} - \mathbf{s}_{k} = \overline{\mathbf{x}}_{ik} - \overline{\mathbf{x}}_{i} - \overline{\mathbf{x}}_{k} + \overline{\mathbf{x}} $		
$\chi^{(as)}_{(i)jk}$	$= \overline{x}_{(i)jk} - \overline{x}_{(i)j} - \overline{x}_{(i)k} + \overline{x}_{(i)}$	$(as)_{jk}$	$= \frac{1}{3} \cdot \frac{\Sigma}{i} \cdot (as)_{(i)jk} = x_{jk} - \overline{x}_{j} - \overline{x}_{k} + \overline{x}$		
		$(pas)_{ijk}$	$= (as)_{(i)jk} - (as)_{jk} = x_{ijk} - x_{ij} - \overline{x}_{ik} - \overline{x}_{jk} + \overline{x}_{i} + \overline{x}_{j} + \overline{x}_{j} + \overline{x}_{i} + x$		
e(i)jkl	$= x_{(i)jkl} - \overline{x}_{(i)jk} - \overline{x}_{(i)jl} + \overline{x}_{(i)j} \longrightarrow$	e ijkl	$= x_{i,jkl} - \overline{x}_{ijk} - \overline{x}_{ijl} + \overline{x}_{ij}$		

7-1 ANALYSE DE VARIANCE SUR L'ENSEMBLE DES DONNEES

INFORMATIONS UTILES POUR L'INTERPRETATION SCIENTIFIQUE A FAIRE CALCULER ET IMPRIMER PAR L'ORDINATEUR

i = 1, 2, 3Pour mémoire $\begin{cases}
i = \text{indice plante} \\
j = \text{indice amendement calcique} &: j = 0, 1, 2, 3 \\
k = \text{indice } 2^{\text{ème}} \text{ traitement subsidiaire} : k = 1, 2 \\
1 = \text{indice de répétition} &: 1 = 1, 2, 3
\end{cases}$ i = indice plante

Données à calculer et imprimer

CV, %

x₁...
p₁ %

¬₃...

 $\mathbf{F}_{\mathbf{p}}$

 \bar{x} ... 1

b₄ %

Ī... 2

b₂ %

x... 3

b3 %

Informations complémentaires de celles des tableaux 1, 2 et 3

 $cv_1\% = 100 \cdot \frac{s_{e1}}{T_{ext}}$

$$p_i \% = 100 \cdot \frac{p_i}{\overline{\lambda}}$$

$$b_1 \% = 100 \cdot \frac{b_1}{\overline{x}}...$$

7 - 2 - (1 ère suite au tableau 7-1)

Données à calculer et imprimer

$$\mathbf{s}_{\mathtt{A}}^{\mathtt{2}}$$

Informations complémentaires de celles des tableaux 1, 2 et 3

$$cv_2 \% = 100 \cdot \frac{s_{e2}}{x}$$

$$a_j \% = 100 \cdot \frac{a_{.j..}}{x_{....}}$$

$7 - 3 - (2^{\text{ème}} \text{ suite au tableau } 7-1)$

Données à calculer et imprimer

Ī_{20..}

x_{21..}

Ī_{22..}

₹₂₃..

₹₃₀..

-x_{32..}

≖_{33..}

F_{PA}

s_{e3}

cv₃ %

₹..1.

s₁ %

₹..2.

s₂ %

 $^{ extsf{F}}$ s

Ī.1.

Ī1.2.

Informations complémentaires de celles des tableaux 1, 2 et 3

$$cv_3 \% = \frac{s_{e3}}{7}$$

$$s_k = 100. \frac{s_k}{\overline{x}}$$

7 - 4 - (3 suite au tableau 7-1)

Données à calculer et imprimer

<u>x</u>_{2.1}.

₹_{2.2.}

₹3.1.

Ŧ_{3.2}.

8_{PS}

F_{PS}

Ŧ.01.

<u>x</u>.02.

Ŧ.11.

-12.

₹.21.

Ŧ.22.

₹.31.

₹.32.

8 AS

Fas

<u>x</u>101.

-102.

Informations complémentaires de celles des tableaux 1, 2 et 3

7 - 5 - (4 suite au tableau 7-1)

Données à calculer et imprimer

_			
-1	1	1	

Informations complémentaires de celles des tableaux 1, 2 et 3

$7 - 6 - (5^{\text{ème}} \text{ suite au tableau } 7-1)$

Données à calculer et imprimer

x₃₃₁

,

sPAS

F_{PAS}

x² 123

s²

CV %

· F P F

F_A

 $\mathbf{F}_{\mathtt{PA}}$

Fs

FPS

FAS

FPAS

X₁₂

se12 CV₁₂ %

Informations complémentaires de celles des tableaux 1, 2 et 3

Si X_{123}^2 < 5,99 on calculera alors s_e^2 ...etc \longrightarrow F_{PAS}

calculé si $X_{123}^2 > 5,99$ si $X_{12}^2 < 3,84$ on calculera alors $s_{e12}^2 \longrightarrow F_{PA}$

 $cv_{12} \% = 100 \cdot \frac{s_{e12}}{\overline{x} \cdot \dots}$

7 - 7 (6^{ème} suite au tableau 7-1)

Données à calculer et imprimer

 $\mathbf{F}_{\mathbf{P}}$

 $\mathbf{F}_{\mathbf{B}}$

F_A

 $\mathbf{F}_{\mathbf{PA}}$

x223

s_{e23} cv₂₃ %

FAFPS
FPS
FAS
FPAS

Informations complémentaires de celles des tableaux 1, 2 et 3

calculé si
$$X_{123}^2 > 5,99$$
et si $X_{12}^2 > 3,84$
si alors $X_{23}^2 < 3,84$
on calculera $s_{e23}^2 \longrightarrow F_{PAS}$

$$cv_{23} \% = 100 \cdot \frac{s_{e23}}{\frac{1}{x} \cdot \cdot \cdot \cdot}$$

8 - 1 ANALYSE DE VARIANCE PAR PLANTE

INFORMATIONS UTILES POUR L'INTERPRETATION SCIENTIFIQUE

A FAIRE CALCULER ET IMPRIMER PAR L'ORDINATEUR

(j	=	indice dose d'amendement calcique	: j = 0,1,2 et 3
Pour mémoire }	k	=	indice du traitement subsidiaire	: k = 1, 2
(1	=	indice de répétition	: 1 = 1, 2 et 3

Données à imprimer

x(i)011

x(i)021

*(i)111

*(i)121

*(i)211

^x(i)221

^x(i)311

^x(i)321

x(i)012

x(i)022

x(i)112

x(i)122

x(i)212

x(i)222

*(i)312

x(i)322

x(i)013

x(i)023

x(i)113

x(i)123

x(i)213

Remarques

Données à imprimer

$$^{ extsf{F}}_{ extsf{B}(extbf{i})}$$

Remarques

$$CV_{1(i)}$$
 % = 100 . $\frac{s_{e1(i)}}{x_{(i)...}}$

$$b_{(i)1} \% = 100 \cdot \frac{b_{(i)1}}{\bar{x}_{(i)...}}$$

$$a_{(i)j} \% = 100 \cdot \frac{a_{(i)j}}{\bar{x}_{(i)...}}$$

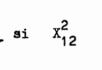
8 - 3 (2^{èms} suite au tableau 8-1)

Données à imprimer

- $s^2_{A(i)}$
- $^{\mathbf{F}}\mathbf{A}(\mathbf{i})$
- s_{e2(i)}
- cv_{2(i)} %
- <u>x</u>(i).1.
- ⁸(i)1 %
- x(i).2.
- ⁸(i)2 %
- s²S(i)
- Fs(i)
- <u>x</u>(i)01.
- x(i)02.
- x(i)11.
- x(i)12.
- x(i)21.
- <u>x</u>(i)22.
- <u>x</u>(i)31.
- x(i)32.
- s²AS(i)
- Fas(i)

Remarques

$$cv_{2(i)}\% = 100.$$
 $\frac{s_{2(i)}}{x_{(i)..}}$


$$s_{(i)k} \% = 100 . \frac{s_{(i)k}}{x_{(i)...}}$$

8 - 4 (3^{ème} suite au tableau 8-1)

Données à imprimer

$$^{\mathrm{F}}$$
A(i)

Remarques

3,84

9 - CORRELATIONS RESIDUELLES

Types d'analyse de variance		Termes résiduels		Formules	Nombres de		Nombres de		
				rormules	termes	ddl	rxu	Fŋ ²	FNL
par plante	à parcelles subdivisées	e ₁	= e (i)jl	$\frac{1}{x_{(i)j1}} - \overline{x_{(i)j}} - \overline{x_{(i)1}} + \overline{x_{(i)}}$	12	6	5	-	-
		^e 2	= e(i)jkl	$= \frac{1}{x_{(i)jkl}} - \frac{1}{x_{(i)jk}} - \frac{1}{x_{(i)jl}} + \frac{1}{x_{(i)j}}$	24	8	7	2 et6	1 et 6
	sans subdivision	e ₁ + e ₂	= e _{12(i)jkl}	$= x_{(i)jk1} - x_{(i)jk} - x_{(i)1} + x_{(i)}$	24	14	13	2 et 12	2 1 et12
sur l'ensemble des 3 plantes	à parcelles subdivisées	e ₁	= e _{il}	$= \overline{x}_{i1} - \overline{x}_{i} - \overline{x}_{1} + \overline{x}$	9	4	3	-	-
		•2	= e	$= \overline{x}_{ij1} - \overline{x}_{ij} - \overline{x}_{i1} + \overline{x}_{i}$	3 6	18	17	4et14	3 et 14
		e ₃	= ^e ijkl	=	72	24	23	7 et17	6 et17
	sans subdivision ou à subdivisions partielles	e ₁ + e ₂	= e _{12ij1}	=	3 6	22	21	4 eti8	3 et 18
		e ₂ + e ₃	= e _{23ijkl}	$\frac{1}{x_{ijkl}} - \overline{x}_{ijk} - \overline{x}_{il} + \overline{x}_{i}$	72	42	41	7 e t3 5	6 et35
		e ₁ + e ₂ + e	3 ^{= e} 123ijkl	$= x_{ijkl} - \overline{x}_{ijk} - \overline{x}_{l} + \overline{x}$	72	46	45	7et 39	6 et 39

^{*} Le nombre de classes à prendre pour le calcul des rapports de corrélations et les tests de linéarité sera de :

3 por	r les	corrélations	sur	des	couples	de	24	résidus
--------------	-------	--------------	-----	-----	---------	----	----	---------

______ d° ______ 36 résidus

10 - ANALYSES DE COVARIANCE - CALCULS DES VARIABLES AJUSTEES

rxu est le symbole du coefficient de corrélation entre X et U, bxu celui du coefficient de régression de X sur U, U étant considérée comme covariable de X

Types d'analyse		Niveau(x) de l'analyse de variance au(x)quel(s) rxu est significatif	Calcul de la variable ajustée : quantités à soustraire de x(i)jkl ou de xijkl			
par plante	à parcelles subdivisées sans subdivision	au 1 ^{er} niveau au 2 ^{ème} niveau aux deux niveaux à la fois au niveau résiduel unique	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
sur l'ensemble des 3 plantes	à parcelles subdivisées	au 1 ^{er} niveau	$\begin{array}{llllllllllllllllllllllllllllllllllll$			
	à subdivisions partielles ou sans subdivision	au niveau moyen 1 (1 + 2)				

ELEM		NOMBRES DE COVARIABLES									
TESTES		$Se_1^2 \neq Se_2^2 \qquad Se_1^2 \simeq Se_2^2$ $rxu_1 \simeq rxu_2$		$Se_1^2 \neq Se_2^2$ $Se_1^2 \simeq Se_1^2$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 2 Se₁ ≠ Se2	2 2 Se ₁ ≃ Se ₂		
FB	5 %	5,14	3,74	5,79	3,81	6,94	3,89	9,55	3,98		
	1 %	10,90	6,51	13,30	6,70	18,00	6,93	30,80	7,21		
	1 %。	27,00	11,80	36,60	12,30	61,20	13,00	148,00	13,80		
FA	5 %	4,76	3,34	5,41	3,41	6,59	3,49	9,28	3,59		
	1 %	9,78	5,56	12,10	5,74	16,70	5,95	29,50	6,22		
	1 %。	23,70	9,73	33,20	10,20	56,20	10,80	141,00	11,60		
FS	5 %	5,32	4,60	5,59	4,67	5,99	4,75	6,61	4,84		
	1 %	11,30	8,86	12,20	9,07	13,70	9,33	16,30	9,65		
	1 %。	25,40	17,10	29,20	17,80	35,50	18,60	47,00	19,70		
FAS	5 %	4,07	3,34	4,35	3,41	4,76	3,49	5,41	3,59		
	1 %	7,59	5,56	8,45	5,74	9,78	5,95	12,10	6,22		
	1 %。	15,80	9,73	18,80	10,20	23,70	10,80	33,20	11,60		