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SUMMARY 
 

This paper makes an analysis of the numbers of drifting fish aggregating devices (DFADs) in 
the eastern Atlantic Ocean and of the potential interest to manage purse seine fisheries based 
on limitations of FADs numbers. Potential risks of massive DFADs use are discussed. Numbers 
of FADs released by the French fleet (2004-2014 period) are now available; this paper 
estimates levels and trends of deployed and active FADs numbers. It is estimated that FADs 
numbers have been widely increasing during recent years, potentially reaching 18000 or more 
FADs today, and potentially resulting in an estimated 3.7 fold increase since 2004. Good 
knowledge of total numbers of DFADs is urgently needed to better estimate the fishing effort 
and capacity of DFAD fisheries. Future limitations in the number of DFADs could allow an 
efficient way to reduce FAD fishing effort. Following a precautionary approach, we suggest 
that ICCAT could consider setting a cap on the number of DFADs; this monitoring could be 
based on the year 2013. The objective would be to slow down the increasing trends observed in 
the overall fishing capacity of DFADs. Consequences of such measures should be carefully 
analysed to ensure the sustainability of the fisheries concerned. 
 

RÉSUMÉ 
 

Le présent document analyse les nombres de dispositifs de concentration des poissons dérivants 
(DCP dérivants) dans l'océan Atlantique Est et de l'intérêt éventuel de gérer les pêcheries de 
senneurs en se fondant sur les restrictions du nombre de DCP. Les risques potentiels de 
l'utilisation massive de DCP dérivants sont abordés. Les nombres de DCP déployés par la 
flottille française (entre 2004 et 2014) sont désormais disponibles. Le présent document estime 
les niveaux et les tendances des nombres de DCP déployés et actifs. Il est estimé que le nombre 
de DCP s'est largement accru ces dernières années, atteignant probablement 18.000 DCP ou 
plus à l'heure actuelle, ce qui pourrait correspondre à 3,7 fois plus depuis 2004. Une bonne 
connaissance du nombre total de DCP dérivants est impérieuse afin de mieux estimer l'effort de 
pêche et la capacité des pêcheries utilisant les DCP dérivants. Des restrictions à l’avenir du 
nombre de DCP dérivants pourraient permettre de réduire efficacement l'effort de pêche sous 
DCP. Selon une approche de précaution, nous suggérons que l'ICCAT songe à fixer une limite 
au nombre de DCP dérivants. Cette approche pourrait se fonder sur l'année 2013. L'objectif 
consisterait à ralentir les tendances à la hausse observées dans la capacité de pêche globale 
des DCP dérivants. Les conséquences de ces mesures devraient être analysées avec soin afin de 
garantir la durabilité des pêcheries concernées. 

 
RESUMEN 

 
Este documento realiza un análisis del número de dispositivos de concentración de peces a la 
deriva (DCPd) en el Atlántico oriental y del posible interés de gestionar las pesquerías de 
cerco basándose en limitaciones al número de DCP. Se discuten también los posibles riesgos 
del uso masivo de DCPD. Se dispone ahora del número de DCP plantados por la flota francesa 
(2004-2014), este documento estima niveles y tendencias del número de DCP plantados y 
activos. Se estima que el número de DCP ha ido creciendo mucho en años recientes, 
alcanzando posiblemente los 18.000 o más DCP actualmente, lo que posiblemente supone que 
desde 2004 se han multiplicado por 3,7.  Es urgentemente necesario un buen conocimiento del 
número total de DCPD para estimar mejor el esfuerzo pesquero y la capacidad de las 
pesquerías de DCPD. Una forma eficaz de reducir el esfuerzo pesquero de los DCP podrían 
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ser limitaciones futuras en el número de DCPD. Siguiendo un enfoque precautorio, sugerimos 
que ICCAT considere establecer un límite al número de DCPD, que podría basarse en el año 
2013. El objetivo sería ralentizar las tendencias crecientes observadas en la capacidad 
pesquera global de los DCPD. Deberían analizarse cuidadosamente las consecuencias de 
dichas medidas para garantizar la sostenibilidad de las pesquerías afectadas. 
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1. Introduction 
 
Purse seine fishing on artificial drifting fish aggregating devices (DFADs) has been widely developed in all 
oceans since the late 1980s and early 1990s and has resulted in a major increase in skipjack (Katsuwonus 
pelamis; skipjack) catch, but also in significant increasing catches of juveniles of bigeye (Thunnus obesus; 
bigeye) and yellowfin tuna (Thunnus albacares; yellowfin) (Fonteneau et al. 2013). The increasing use of FADs 
concurrently resulted in apparent increasing purse seine catches per unit effort (CPUE) over time (Chassot et al. 
2013; Delgado de Molina et al. 2014a), see Figure 1, since the nominal effort currently used for computing 
purse seine CPUEs is based on fishing-searching time, or number of fishing sets, which do not account for the 
increasing capacity associated with FAD numbers and technology (ISSF, 2012, Fonteneau et al., 2013). Despite 
the major changes in purse seine fishing strategies linked to FAD-fishing development (i) no major decline in 
yield-per-recruit (Y/R) of bigeye and yellowfin fisheries, (ii) no major decline in longline (LL) CPUEs, and (iii) 
no recruitment failure for any of the bigeye and yellowfin stocks have been observed worldwide. Different 
assumptions have been put forward to explain these points, including high natural mortality rate of juvenile tunas 
and/or high steepness that might be due to significant cryptic fractions of spawning biomass or compensatory 
density-dependent effects in recruitment for most tropical tuna stocks (ISSF 2012). As a consequence and in the 
absence of any highly visible and severe impact in the skipjack, yellowfin and bigeye stocks, purse seine FAD 
fisheries have been permanently developed since the 1990s in all tropical areas, but without strong management 
measures taken by tuna Regional Fisheries Management Organisations (RFMOs) to reduce the impact of FAD 
fisheries on tuna juveniles and associated fauna. It should be stressed however that closures of targeted FAD-
fishing areas or time area-strata (e.g. moratoria on FAD-fishing) have been the most frequent management 
schemes implemented by the various tuna RFMOs and by ICCAT (for a review see Davies et al., 2012). Also, 
the IATTC banned, in order to reduce the pressure of FAD fisheries, the use of auxiliary (or support) vessels in 
support to purse seiners as early as 1999 in the eastern Pacific Ocean (IATTC 1998). Because the nominal 
fishing effort changes from year to year, the effects of time-area closures are difficult to evaluate quantitatively 
but it would appear that in most cases, these effects have been quite limited (ICCAT 2010; IOTC 2012). The 
relative lack of efficiency in time-area closures for protecting juveniles of bigeye and yellowfin is likely due to a 
combination of various factors such as (i) a lack of compliance to the regulation by some fleets, (ii) a too small 
area closed or a too short duration of the closure, (iii) a redeployment of the purse seine FAD fishing activities in 
alternate areas outside the closed strata during the closure and (iv) larger than usual catches on FADs following 
the end of the closure (Harley and Suter 2007; Torres-Irineo et al., 2011). As the potential interest of time-area 
closures for protecting juveniles of bigeye and yellowfin tunas appears to be limited or questionable, alternate 
measures allowing limiting the impact of FAD-fishing should be explored. Indeed, the component of fishing 
effort due to support vessels, increasing use of FADs, and improvements in FAD technology (e.g. echo-
sounders) is currently poorly monitored by CPCs and tuna RFMOs although it may significantly increase overall 
purse seine fishing capacity active on DFAD, as well as blur the relationship between purse seine CPUE and 
abundance. Until now, managing the FAD fishing pressure based on a limitation of the number of FADs has 
been seldom envisaged by tuna RFMOs or by ICCAT (with the exception of WCPFC, WCPFC 2004 and Hurry 
2014). It makes sense to assume that the number of FADs is a basic component of the FAD fishing effort and 
that their reduction would ultimately result in reduced fishing mortality. The pros and cons of such management 
scheme should be fully studied by scientists and tuna RFMOs as suggested by Davies et al. (2013) but the main 
goal of this paper is to initiate some preliminary scientific analysis and discussion upon recent trends in FAD 
numbers and on this potentially important management prospect in the case of the Atlantic FAD fisheries. This 
paper will not discuss the changes in the FAD technology nor the potential closures of selected time and area 
strata, as these points have been already tackled (based on the analysis of catch-effort and size data) by various 
works in each of the tuna RFMOs. 
 
 

461



2. Why monitoring and managing FAD fishing? 
 
2.1 Overview 
 
Although there has not been any evidence of major negative impact following the steady development of FAD-
fishing on tuna stock status, it has been a source of increasing concern in all tuna RFMOs for several reasons that 
are similar across oceans. First, FAD-fishing has resulted in substantial increased skipjack catches and associated 
fishing mortality over the last decades. In addition, the lack of reliable estimates of fishing effort associated with 
FAD-fishing has increased the uncertainties associated with the assessment of the status of skipjack stocks 
worldwide (ISSF 2012). Furthermore, it has been noted that there was a steady and major decline of skipjack 
catches in free-swimming schools in most fishing zones of the Atlantic and Indian oceans, concomitantly with 
increasing catches of skipjack in FAD sets (Fonteneau et al., 2000, Fonteneau 2014) (keeping in mind that the 
exact causes explaining such patterns might be due to density-dependent mechanisms linking stock abundance 
and local density as well as to some change in skipjack associative behaviour and remain to be resolved). 
Second, FADs have produced moderate increases of yellowfin catches and major increases of bigeye catches 
characterized by an average weight close to 5 kg that is well under the optimal size in terms of Y/R, and also 
well under sizes at first spawning, i.e. about 80 cm and 100 cm fork length for yellowfin and bigeye, respectively 
(Zudaire et al., 2013; Sun et al., 2013).  
 
2.2 DFADs producing a decline in the yellowfin and bigeye yield per recruit  
 
For both yellowfin and bigeye, catches of small individuals caught associated to DFADs reduce the yield per 
recruit of each cohort recruited in the fisheries. As a consequence these catches also reduce the biological 
productivity of the stocks, and they create an increased potential interaction between purse seine and longline 
fisheries (that are only catching large tunas) (when skipjack sizes caught in free and in FAD sets are nearly 
identical). Such interactions are specifically exacerbated for stocks estimated to be close to MSY levels, as most 
yellowfin and bigeye stocks today (Juan-Jorda et al., 2011). In such context, this decline of biological 
productivity of the yellowfin and bigeye stocks due to FAD fishing should be reduced or at least frozen in most 
cases so as to increase the expected Y/R and MSY. An example of the estimated decline of MSY of the Atlantic 
yellowfin stock is shown in Figure 2. This decline of MSY was mainly due to increased catches of small 
yellowfin in the FAD fisheries developed since the late 1980s. Similar results have been also observed 
worldwide and in the Atlantic at various degrees for all the yellowfin and bigeye stocks.  

2.3 FADs potentially altering some biological characteristics of tunas? 
 
Furthermore, it could also be hypothesized that FAD-fishing might also alter skipjack spawning through 
reducing spawning potential. This assumption is based on the fact that skipjack do not keep in their flesh the 
fatness that will allow them to spawn (Grande 2013). As a consequence, skipjack spawning appears to be 
dependent on short-term feeding. The food available to skipjack under FADs might not be sufficient to feed the 
large biomass of tunas associated with FADs as shown by the large percentage of fish described by empty 
stomachs (Roger 1994; Ménard et al., 2000; Jaquemet et al., 2011) and their poor individual condition as 
compared to free-swimming schools (Hallier and Gaertner 2008; Robert et al., 2014). Such skipjack in poor 
condition might then not have accumulated enough energy to efficiently spawn. Assuming no regulation in the 
future, and consequently that all skipjack could be living in association with a very large number of FADs, this 
situation could reduce the spawning potential of the skipjack populations (while by contrast, the increasing 
number of FADs might benefit skipjack spawning by increasing the rates of encounter between mature fish). 
 
2.4 FAD producing increased accidental mortality of various species: sharks, turtles and other species 
 
Fourth, FAD fishing results in significant by catch of undesired sensitive species such as sharks, turtles, small 
tunas, and other fish species that can be discarded dead at-sea (Amandè et al., 2010; Amandé et al., 2012; Hall 
and Roman, 2013). Observer data have shown that there was most often some bycatch under FAD. Typical 
discard rates are for instance close to the average levels of 5.3% estimated in the Atlantic by Amandè 2008, 
when the discard rate of bycatch was estimated at only 1.2 % for free schools sets. This amount of discarded 
bycatch associated with FADs is low compared to many bottom fisheries (Kelleher 2005), but it includes some 
sensitive and emblematic species such as turtles and sharks. It is noteworthy that the accidental mortality of 
turtles due to FADs has been shown to be low in the Atlantic and Indian oceans, with more than 75% of them 
being released alive (Bourjea et al., 2014). In addition, most FADs were until recently equipped with hanging 
nets to attract more tunas and reduce drift. However, various specific observer studies have shown that turtles 
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and sharks were sometimes caught in net meshes. These accidental fishing mortalities of entangled turtles and 
sharks are often “cryptic”, being most often unnoticed by conventional observer programs and taking place 
during the entire “floating life” of each FAD, even when FADs have been lost by their owners, drifting outside 
fishing grounds. This source of cryptic accidental mortality of sharks due to FADs was estimated to be high in 
the Indian Ocean (Filmater et al., 2013). New FAD designs without hanging nets (Franco et al., 2009) have been 
developed and implemented to reduce ghost mortality, but to an unknown degree, as the percentage of FADs still 
equipped with potentially entangling nets remains unknown. 
 
2.5 DFADs: a source of marine pollution 
 

Finally, DFADs may result in some pollution of oceanic bottoms due to sinking and ending up on beaches and 
coral reefs. The massive release of DFAD observed since the early 1990s in most purse seine fisheries is 
probably against the London Convention (Convention on the Prevention of Marine Pollution by Dumping of 
Wastes and Other Matter 1972, commonly called the "London Convention" or "LC '72"). This convention was 
an agreement to control and reduce pollution of the sea by dumping and to encourage regional agreements 
supplementary to the Convention. Its 1996 protocol also specifies that “the Parties are obligated to prohibit the 
dumping of any waste or other matter that is not listed in Annex 1 (”the reverse list”) of the 1996 Protocol”. 
Furthermore, large numbers of FADs may also increase navigational hazards and risks, especially for small 
vessels (fishing and sailing vessels).  
 
 
 

3. An overview of FAD fisheries in the Atlantic 
 

It should be noted and kept in mind that there is a marked heterogeneity in FAD fishing between flags. In the 
Atlantic Ocean, 3 main groups of fleets could be identified: 
 

− French purse seiners: showing variable (in time) but quite moderate rates of FAD associated catches, at an 
average low rate of 40%, 

− Most (but not all) Spanish and associated flags purse seiners (Seychelles, Cabo Verde, Panama, 
Netherlands Antilles, Belize, etc.), showing much higher and recently increasing rates of FAD associated 
catches (80% of total catches), 

− Ghanaian purse seiners and other flags with Korean skippers (Belize, Ivory Coast, Guinea) showing very 
high rates of FAD associated catches (probably close to 100% although the real rates of FAD catches 
remain undeclared to ICCAT). In 2012, logbooks available and considered to be of good quality for the 
Ghanaian purse seiners indicated that during recent years about 94% of the sets were made on FADs 
(Chassot et al., 2013). 

 

The yearly percentages of FAD associated catches observed for each fleet are shown by Figure 3. The 
proportions of FAD sets were similar between French and Spanish purse seiners during the early 1990s, and 
close to 50% of FAD catches. Such situation has changed during recent years and the Spanish fleet is now 
catching a much higher proportions of FAD associated tunas than French purse seiners: the Spanish and 
associated flags fleet has been catching 65% of its catches under FAD during the last 10 years and over 70% 
since 2011, against only 33 % of FAD catches for French purse seiners. It must be noted that in the Atlantic 
Ocean, Spain and France have similar fleets in terms of vessel size and age (Figure 4). The structural marked 
difference in the levels of FAD catches of the two fleets is also due to the fact that Spanish purse seiners are 
supported by an active fleet of support vessels combined with a much larger number of FADs per vessel. The 
fleet of support vessels has been permanently used by the Spanish and associated flags fleet since the late 
nineties, mainly in order to seed new FADs and to control the levels of tuna biomass under the FADs of its purse 
seiners. This fleet is currently composed of 13 vessels in the Atlantic, when French purse seiners are using only 
1 supply vessel. This major structural difference in the French and Spanish purse seiners in the targeting of 
FADs is also well shown by the average catches on FAD caught by each average French and Spanish (and 
associated flags) purse seiners, a result shown by Figure 5. This figure is showing well the differences in the 
absolute levels and trends of the FAD associated catches of individual vessels belonging to each of these 2 fleets: 
an average Spanish purse seiners catching during the last 10 years an average of recent years 2.5 times more 
tunas on FADs than a French purse seiner (period 2004-2013) (but showing a high between years variability). It 
should also be kept in mind that the size of purse seiners shown by Figure 4 is an important factor in 
determining the fleet fishing strategy: very large purse seiners need to catch more tunas than small vessels in 
order to compensate their larger investment and running costs and FAD-fishing may be for them the only way to 
obtain high catch rates throughout the year and produce the required high levels of catch.  
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In the Atlantic, the average current carrying capacity of French and Spanish (and associated flags) purse seiners 
is very similar, showing for both fleets an average capacity close to 1400 m3. This minor difference would not 
explain the major differences in strategy that are clear between the 2 fleets. It should also be noted that pole and 
liners from Ghana, Spain, and Senegal have recently, started to build and deploy artificial FADs and that 
Ghanaian pole and liners work in collaboration with some purse seiners to attract the tuna schools or indicate 
their presence in a similar way as Spanish support vessels. Quantitative information are not yet available on 
these activities. Overall, the marked difference in the proportion and magnitude of FAD catches of purse seine 
fishing fleets is a critical factor to consider with regards to management: most Spanish and Korean companies 
tend to give high priority to FAD fishing and high level of catches dominated by skipjack, while French 
companies tend to maintain a more balanced equilibrium between free schools catches dominated by large 
yellowfin and FAD fishing. 
 

4. Trend in numbers of active DFADs in the Atlantic 

4.1. Quantifying FAD numbers 
 
The numbers of active FADs is a fundamental and continuous topic discussed in the analysis of tropical tuna 
fisheries, but this information is seldom available, keeping in mind that in the Atlantic detailed information on 
the use of FADs has been requested by ICCAT since 2011 (recommendation 2011-01 and at a very detailed scale 
by the recommendation 2013-01). However, very few results have been submitted today to the ICCAT 
secretariat following these recommendations. The PEW 2012 report by Baske et al. proposed an estimated 
numbers of DFADs active in each ocean, but these estimates were widely uncertain and variable depending upon 
the source of information used (the best data set being obtained in the IATTC area because of the 100% of 
observers on the purse seine fleet). This lack of information on the numbers of FADs is probably due to a 
combination of factors such as: (i) The confidential nature of this sensitive information that was not legally 
requested until very recently by tuna RFMOs (and rather for compliance than for scientific purpose), (ii) The 
complexity of collecting and using an index representing the “numbers of FADs” which can be expressed in 
different forms such as: 
 
(1)  Total numbers of new buoys and FADs (of all types) released yearly/monthly by each fleet and by their 
  associated support vessels; this number is for instance the number of new buoys bought during the year by 
  each fleet. 
 
(2)  Average numbers of active FADs in the fishing zone that have been followed daily by each purse seiner; 
  this number is for instance an average (daily, monthly or quarterly) of the numbers of active FADs that are 
  followed by each purse seiner on its computer screen,  
 
(3)  Average numbers of active lost FADs, i.e. FADs that have been drifting outside the fishing zone (same 
  information, but for FADs that cannot be fished). It is not clear if the complex data requested by the ICCAT 
  recommendation 2013-01 will allow to estimate these 3 basic indicators concerning the numbers of FADs, 
  as these global indices are difficult to estimate because: 
 

(a) some FADs may be shared between various purse seiners from the same tuna owner company or by a 
given group of vessels,  

 

(b) there is a permanent flow of electronic buoys that are successively activated or deactivated and 
transferred from one FAD to another, each FAD being potentially moved to another location, 

 

(c) FADs are frequently stolen through buoy transfer, and buoys of origin are still active but brought back 
to port where they are often later recovered by their owner. 

 
As a consequence, while the number of active purse seiners, their nominal fishing efforts and their catches are 
quite well followed by the ICCAT (as well as for the various tuna RFMOs), the numbers of active and deployed 
FADs remain today very poorly known as they are never declared, remaining poorly estimated by scientists and 
it is not clear if the ICCAT recommendation 2013-01 will allow to estimate them and without bias for all the 
fleets. 
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4.2 Numbers of buoys: data available from the French purse seine fleet 
 
The number of buoys annually used per vessel has been available for the French purse seine fleet since 2004 and 
the number of active and deployed buoys has been known since 2010 through automatic quarterly reports 
generated on a vessel basis by the communication satellite companies in charge of the management of buoy GPS 
signal. This new data set was presented in the Goujon et al., 2014 paper (and also submitted to the CECOFAD 
program data base). The number of purse seiners active in the French fleet (and in the Spanish and associated 
flag fleet) has been taken from Delgado et al., 2014a, while the catch data on FADs caught by each fleet was 
obtained in the ICCAT statistical Task II3. The average yearly catch of the French fleet per each buoy deployed 
was computed from the information on the yearly FAD catches by the French purse seiners and the yearly 
number of buoys deployed. This estimated parameter is given in Table 1 and shown in Figure 6. This indicator 
is showing that after a period of 2 years of high catch per FAD (2004-2005), there was a 2006-2010 period of 
marked variability, followed by a steady decline during the 2010-2013 period.  
 
4.3 Numbers of buoys: hypotheses for other fleets 
 
Various converging sources of observations, at-sea and in the landing ports, would strongly indicate that the 
numbers of FADs active at-sea and deployed by the Spanish and associated fleets, including by their support 
vessels, are much higher than for French purse seiners. However and unfortunately there is currently no data 
available for the Spanish and other fleets concerning the numbers of FADs that are followed daily by each purse 
seiner, when such data have started to be collected for Spanish purse seiners since 2011 within the Spanish FAD 
management plan (Delgado de Molina et al., 2013). In this absence of data, it can be hypothesized that these 
higher FAD catches are in proportion of the larger number of FADs seeded yearly (and fished daily) by the 
Spanish fleet (and its supply vessels). In this hypothesis the numbers of FADs seeded per each Spanish purse 
seiner could be estimated at an average level of being 2.5 times more important than for the average French 
purse seiner, based on the average ratio of FAD yearly catches per vessel during the period 2004-2013. This 
hypothesis that FAD catches per vessel are proportional to their number of FADs is of course widely 
questionable because of various reasons (such as distinct fishing strata or rate of stolen buoys), but at least it 
allows to obtain a preliminary estimate of these numbers of FADs. Furthermore this result would appear to be at 
least a realistic order of magnitude, as this estimated ratio of 2.5 more FADs seeded by Spanish purse seiners 
would appear to be a logical rate: knowing the active FAD targeting by this fleet and its large fleet of supply 
vessels. This rate of 2.5 is lower, but also consistent compared to the ratio of 3.0 between Spanish & French 
numbers of FADs per vessel previously estimated by various authors in the Indian Ocean (Moreno et al., 2007, 
Guillotreau i 2011). Based on this hypothesis, the numbers of Spanish FADs deployed by vessel was tentatively 
estimated, the average number of French FADs released by each French purse seiner being multiplied by a ratio 
of 2.5 (Table 2). Based on this set of data and hypothesis, it could be estimated that during recent years (2010-
2013), each Spanish and associated flags purse seiner was following daily an average of 200 active FADs, and 
seeding at sea a yearly average of 264 buoys (and new FADs) in 2013, when less than 130 buoys were estimated 
to have been seeded each year by each purse seiner before 2008. Our estimate of the average number of FADs 
released by each Spanish purse seiner in 2013, 385 FADs, is lower but very close to the number of 426 FADs 
seeded per Spanish purse seiner given by Delgado et al., 2014b for the same fleet. Figure 6 is showing the 
average catch per each new buoy seeded yearly, as observed for French purse seiners and as estimated for 
Spanish and associated flags purse seiners in our previously described hypothesis. There was no data on the 
numbers of FAD used submitted to the ICCAT by other fleets of purse seiners fishing on FADs (Ghana, Côte 
d’Ivoire, Guinea), but the numbers of FADs seeded by these fleets can be indirectly estimated based on their 
total catches on FADs4: simply assuming that the yearly average catch per seeded FAD was identical to the 
average yearly FAD catches per buoy of the French and Spanish fleets in our hypothesis. These estimated 
catches, catch per FAD seeded and number of seeded FADs estimated for these fleets (called NEI fleet) by this 
simplified method is given in Table 3. Based on these data and assumptions, the estimated total numbers of 
FADs released yearly in the Atlantic Ocean by all purse seine fleets (Figure 7) could have increased from less 
than 7000 FADs before 2008, to 17,300 FADs in 2013, then showing an estimated 2.6 fold increase between the 
2 periods 2004-2007 and 2010-2013. Furthermore, based on the 2013 French data concerning the FAD numbers, 
it could also be estimated that the average numbers of active FADs followed daily by purse seiners in the eastern 
Atlantic in 2013 would be close to 13,000 FADs.   
 

                                                 
3 Task II: ICCAT file with catch and effort data, by 1 degree squares and month. 
4 The FAD catches of these fleets has been estimated at 94% of their total catches by Chassot 2014, probably a realistic order of magnitude.  
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4.4 Overview and discussion concerning FAD numbers in the Atlantic 
 
Our estimates of FAD numbers are characterized by major uncertainties and they would be improved by: 
 

(1) The collection of data on the numbers of buoys seeded and observed by all the major purse seine 
fleets, especially purse seiners from the Spanish (and associated flags) and Ghanaian fleets. 
 

(2) A wider range of alternate hypotheses and methods allowing to estimate the uncertainties associated 
with the number of FADs used by each fleet, for instance based on yearly FAD catches and effort of 
each vessel (based on log book data and well standardized).  
 

These uncertainties in the numbers of FADs have been already noted and discussed by the Baske et al., (2012), 
taking note that our estimated numbers of DFADS presently seeded are well above the estimated average 
numbers of FADs they estimated. The other estimates of the numbers of FADs recently given by Scott and 
Lopez (2014) suggest that that Spanish and French purse seiners were releasing the same average numbers of 
FADs during recent years, an assumption not supported by our analysis) and that this average number was of 
only 180 FADs, which seems very low as compared to every field observations. One of the serious limitation in 
our work is the basic data presently used concerning the average catch per vessel caught on FADs: there is no 
doubt that a well standardized catch on FAD per vessel, based on log book data, should preferably be calculated 
and used. There is no doubt for instance that the numbers of French and of Spanish vessels given by Delgado et 
al., (their Table 5, presently used) are not even fully valid to calculate a valid average yearly catch on FAD, 
simply because some of the vessels had limited catches because of their limited fishing activities in the Atlantic 
during some years. Based on current available data and knowledge, our preliminary conclusion would be that, 
although the present numbers of FADs seeded or active in the Atlantic are still widely uncertain, our estimated 
numbers of FADs are probably somehow at least indicative of the absolute levels and of their major increase 
during the last 10 years: based on today data and knowledge on FADs, our 2.6 folds increase estimated for the 
total numbers of FADs seeded each year during the last 10 years may well be representative of the major 
increase of FAD numbers developed during recent years. It should also be noted that if the increases in the 
numbers of FADs deployed by purse seiners estimated or observed in the Atlantic Ocean during recent years 
appear to be spectacular ones, they are not unique. Similar rates of increase in the FAD numbers have been 
simultaneously observed in the Indian ocean and also in the Eastern Pacific, where the number of deployed 
FADs measured by the IATTC has been also multiplied by a factor of 3.3 during the period 2005-2012, as in the 
Eastern Pacific 4,300 FADs were seeded in 2005 and 14,000 FADs in 2012 (Martin Hall pers. com.). It should 
also be kept in mind that the steady increase in the number of FAD presently estimated in the Atlantic is also 
well explained by 2 combined factors: 
 

1) The increased value of skipjack: the average skipjack prices at the cannery, corrected for inflation, 
(report of the ICCAT skipjack Working Group 2014) have been multiplied by 2 between the 2 periods 
2004-2006 and 2011-2013. This was clearly for purse seine fishermen a strong pressure to catch more 
skipjack, the best/only way being to invest in the seeding of more FADs. 
 

2) The increased efficiency of FAD equipped with echo sounders: when this equipment was very rare 10 
years ago, sounders appear to very common today on most FADs. Although there was no study in the 
Atlantic on this topic, the IATTC work has been showing (Hall com. pers. that during recent years 
(2011-2013) the average catch of FADs sets in the EPO was increased of 25% for FADs equipped with 
echosounders. 

 
These 2 factors, increased skipjack landing values and increased fishing efficiency of today FADs, are probably 
2 reasons that have recently accelerated the seeding of FADs, in the Atlantic as well as in the other oceans. 
 
4.5 Numbers of FADs: an indicator of nominal FAD fishing effort? 
 
It is commonly admitted in the stock assessment work that it is difficult or unrealistic to estimate an accurate 
“FAD fishing effort” solely based on searching/fishing times or on the numbers of FAD sets, particularly when 
the number of FADs is supposed to increase continuously. Another difficulty is due to the fact that all purse 
seiners are always “keeping an eye on free schools” and on natural logs or FADs belonging to other fleets, even 
when their main activities consist in targeting their own FADs. Whatever the difficulty to reallocate the part of 
the fishing day devoted to a specific fishing mode, many scientists consider that a good knowledge of the 
numbers and density of FADs would bring, in addition to the various information already available on FAD 
fishing efforts (such as fishing times, numbers of FAD sets, catch per set, etc.), valuable indicators on the FAD 
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fishing pressure. These numbers should be first examined independently, and also incorporated in normalized 
CPUEs models, preferably in addition to the present knowledge concerning fishing/searching times/set 
information. 
 
We propose that the following 3 basic indicators of FAD numbers should be calculated each year for each purse 
seine fleet: (1) Total numbers of FADs deployed yearly (2) Numbers of active FADs, i.e. average number of 
FADs monitored on a daily or monthly basis by purse seiner for each fleet. (3) When possible, this basic 
indicator should also be stratified in 2 categories: number of active FADs monitored within the fishing zone and 
FADs that are still monitored by the purse seiners but outside its fishing range or stolen by another boat, and 
then lost for the purse seiner owner of the FADs. These sets of indicators would clearly help to measure the trend 
in the fishing pressure of FADs within purse seine fishing grounds and to evaluate the average density of FADs 
in the area exploited by the purse seine fishery, this parameter being important to condition the FAD CPUEs and 
FAD catches. The statistical requirements of each tuna RFMO should be clearly requesting to each CPC to 
provide these indicators on their FAD activities, and these data should cover all the purse seine fleets and their 
support vessels. 
 
 
5. Reasonable or optimal numbers of DFADs?  
 
There is probably no hope to estimate and define an “ideal maximum number of FADs” that could be used by 
scientists and by managers in each fishery and ocean: there will never be in the management of FADs the 
equivalent of an MSY based on the results of statistical of stock assessment models that are well accepted by 
scientists and Commissioners. Then, any potential maximum number of FADs deployed by purse seiners should 
be based on a wide range of scientific and bio-economic information on the stocks and fisheries. This choice can 
only be made following a precautionary approach, keeping in mind that today most if not all FAD fisheries are 
engaged in a one way trip: permanently increasing and very quickly their numbers of FADs, as well as the 
technology of these FADs, most FADs being now equipped with sounders and other improvements (Lopez et al., 
2014). Future limitations in the numbers of FADs used could for instance be established: 
 

- At least limiting the numbers of FADs to their most recent levels observed in 2013 in the Atlantic: 
freezing these numbers of FADs and buoys until detailed information is provided to allow the analysis of 
their effects. One of the serious difficulties faced by this measure being that the numbers of FADs that 
have been deployed in 2013 remain widely or totally unknown for several major fleets. 
 

- However, as there are strong reasons to hypothesize that the numbers and densities of FADs active today 
in the Eastern Atlantic are already excessive and unsafe to allow an optimal exploitation of tunas stocks 
and of the pelagic ecosystems. Then a precautionary management of the FADs fisheries could be to 
reduce the numbers of FADs to their levels estimated 10 or 15 years ago. Such a major reduction in the 
numbers of FADs might not damage the FAD fisheries, as these reduced numbers of FAD have been 
proven to be efficient for the same fleets. 

 
 

6. Conclusion and recommendations 
 
Even if data are lacking today concerning the numbers and trend of the numbers of FADs seeded yearly and 
active daily in the Atlantic ocean, even if our estimated numbers are widely uncertain, there is no doubt that 
there has been a major increase of these numbers. Taking into account the various know and potential problems 
introduced by FADs (chapter 2), the ICCAT should obtain and make available to scientists the detailed data on 
the numbers of drifting FADs used today and in the past by all their purse seine fisheries5, because this basic 
data set is an essential component of the FAD fishing effort exerted by purse seiners. As it was recommended by 
the Baske et al., 2012 PEW report “It is now time for those who rely on drifting FADs to take responsibility and 
to communicate in what numbers they are used”. Furthermore, taking note of the complexity in these FAD data 
(cf paragraph 4.1), all data on FADs provided to RFO by its CPC should follow valid and explicit technical 
recommendations done by the RFMOs. The 2 series of numbers of FADs, total number of buoys seeded yearly 
and average number of active FADs followed daily (as described in paragraph 4.1) probably constitute a good 
basis and a minimal data set concerning these series. There are strong reasons to hypothesize that the very large 
numbers of FADs that are active today may have serious negative impacts on the rational use of tunas and of 
pelagic resources. One of these potential effects of an excessive number of DFADs could be, in addition to the 

                                                 
5 This data set being already requested by the ICCAT Commission and its recommendations 2011-01 and especially 2013-01.  

467



decline of yield per recruit for the yellowfin and bigeye stocks, the major declines recently observed in the 
skipjack free-swimming schools catches, a decline that would directly affect purse seine fisheries that target 
MSC labels mostly based on fishing on unassociated tuna schools. In such context of a potentially dangerous 
major increase in the numbers of FADs, the tuna RFMOs should start to envisage developing input controls in 
FAD fisheries: limiting the numbers of actively monitored FADs that are released yearly by their purse seine 
fleets and also potentially limiting the numbers of support vessels. Following a precautionary approach, we 
suggest that ICCAT could consider setting a cap on the number of FADs drifting at-sea and this monitoring 
could be based on the year 2013. The objective would be to at least slow down the recent increasing trends 
observed in the overall fishing capacity on FADs. There are good reasons to consider that such permanent 
limitations in the numbers of DFADs would probably be one of the most efficient ways to limit the “FAD 
fishing capacity” of the purse seine fleets. Such prospect to establish a maximum number of FADs seeded 
annually was also envisaged by the WCPFC scientific committee in 2014 (Hurry 2014) and this prospect will be 
further studied by a technical WCPFC working group on the use and limitation of FADs. On the opposite, when 
there is already a structural overcapacity of the FAD fishing fleets, most traditional management measures that 
are envisaged or developed by the tuna RFMOs, such as the closure of FAD strata or limitations in the numbers 
of FAD sets allowed, tend to be fairly difficult to apply and often poorly efficient. Furthermore, it should be kept 
in mind in the management of tuna fisheries that one of the major difficulties is to choose and to put into action 
management measures that are realistic and efficient with regards to their practical implementation. Potential 
regulation or limitations in the numbers of FADs deployed by purse seiners would clearly face these potential 
difficulties: it would appear that their potential limitation would primarily target control and limitation of the 
numbers of electronic equipments that are installed today on the FADs and also possibly the satellite 
transmission companies that allow locating them, but these prospects would need further careful studies. Another 
major difficulty faced in the Atlantic (and also in the Indian oceans) will be the major heterogeneity observed in 
the EU FAD fishing. At a management level, this major heterogeneity in the EU purse seine fleets in the FAD 
fisheries is clearly difficult to handle as in general, future management measures aimed at limiting or reducing 
the number of FADs in purse seine fisheries will likely affect more Spanish (and Ghanaian) fishing fleets that are 
currently characterized by strategies oriented towards FAD-fishing. This important heterogeneity of the fleets 
should be kept in mind in the analysis and management of FAD fisheries, and there is no doubt that the great 
heterogeneity between the various fishing countries tends to create a political heterogeneity in the potential 
points of view expressed concerning policies and management of FADs fisheries. For example, a given “Total 
Admissible number of FADs”, a quota of FADs given yearly to each purse seiner could be discriminatory 
against the Spanish and Ghanaian vessels. Alternate or additional potential management measures limiting 
support vessels would also solely target the Spanish fleet, introducing another type of discrimination. This 
heterogeneity in the use of FADs by the various purse seine fleets will clearly add difficulties in the potential 
discussions on FAD limits within tuna RFMOs. However, there is no doubt that, at least at a scientific level, 
such measures should be better studied and potentially developed by tuna RFMOs. Furthermore, because of the 
complexity of its feasibility, such potential limitation of the FAD fisheries should be carefully studied in close 
consultation between tuna scientists (expert in biology, fisheries and in economy), fishermen (skippers and 
companies) and Commissioners. These potential limitations in the numbers of active FADs would be a complex 
management target that should be designed and implemented appropriately: this goal will likely be challenging 
to negotiate within the IOTC and difficult to efficiently enforce, but a high priority should be given by the tuna 
RFMOs to conduct in each ocean the active investigations that are needed today on these urgent and important 
management prospects. Furthermore, most tuna fishermen should be convinced that the use of numbers of FADs 
should be controlled. As it was recommended by Grafton et al. 2006, “much greater emphasis must be placed on 
fisher motivation when managing fisheries”. This increased role of responsible fishermen in the ICCAT work 
should be a prerequisite to efficiently plan and implement any future limitation of FAD numbers and of FAD 
fisheries. 
 
Our two basic conclusions would be, as in Davies et al., 2014, that “explicit management of the use of FADs is 
undoubtedly a necessity to ensure future sustainability of the FAD fisheries” and furthermore that limiting the 
number of actively monitored FADs would be the more efficient way to limit the various negative impacts of 
FADs on tunas and ecosystems, this goal being reached, and without significantly hampering the efficiency and 
profitability of purse seine fisheries. Keeping in mind that if FAD fisheries are maintaining their expansion 
without rigorous control, as today, they may soon be facing severe commercial bans at the level of the 
consumers and of international market of tuna cans developed under the pressure of powerful NGOs such as 
Greenpeace, PEW, etc. 
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Table 1. Numbers of FADs used by French purse seiners: seeded yearly and active ones on a quarterly basis, 
number of purse seiners and total catches on FADs. 
 
Year Nb of 

Active 
buoys/PS 

Nb 
buoys 
seeded 
yearly 
by each 
PS 

Ratio 
Nbs 
FAD 
Seeded 
& active 

Nb 
French 
PS  

Average 
Nb of 
active 
FADs  

Total 
Nb of 
seeded 
buoys 
yearly 

 Yearly 
FAD 
catches 
France 

Average 
FAD 
Catches 
by each 
PS  

Average 
catch 
per 
buoy 
seeded 
yearly 

2004  41,0  10  410 20 246 2025 49,4 
2005  41,0  9  369 13 531 1503 36,7 
2006  47,0  6  282 5 178 863 18,4 
2007  42,0  5  210 4 453 891 21,2 
2008  54,0  6  324 3 044 507 9,4 
2009  60,0  7  420 7 552 1079 18,0 
2010 68 72,0 1,05 10 649 684 16 125 1697 23,6 
2011 71 82,0 1,16 9 635 738 13 195 1466 17,9 
2012 96 118,0 1,23 9 861 1062 16 956 1884 16,0 
2013 90 156,0 1,74 9 808 1404 16 749 1861 11,9 
2014  200,0  9  1800    

Average 
2004-
2013 

  71,3  8 738 590 11703 1378 22 

Average 
2010-
2013 

81 107,0 1,30 9 738 972 15756 1727 17,3 
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Table 2. Numbers of FADs estimated for the Spanish and associated flags purse seiners in the hypothesis 
RF1: each purse seiner seeding yearly 2.5 more FADs than a French purse seiner.  
 
Year No. 

Active 
buoys/
PS 

No. buoys 
seeded 
yearly/PS: 
France*2,47 

Ratio 
No. 
FADs 
Seeded/
active 

No. PS 
Spain 
et al. 

No. PS 
Spain  

Total No. of 
seeded buoys 
yearly Spain 
et al. 

 FAD 
catches 
(Spain et 
al.) 

Average 
Catches 
on FAD 
by each 
PS 

Average 
catch per 
buoy 
seeded 

2004  101  21 15 2 125 54 867 2 613 25,8 
2005  101  19 10 1 923 54 922 2 891 28,6 
2006  116  18 8 2 088 53 947 2 997 25,8 
2007  104  22 13 2 281 65 389 2 972 28,7 
2008  133  24 15 3 199 74 855 3 119 23,4 
2009  148  27 16 3 999 78 179 2 896 19,6 
2010 135 178 1,32 25 15 4 443 85 083 3 403 19,2 
2011 153 202 1,32 24 15 4 858 97 071 4 045 20,0 
2012 221 291 1,32 23 14 6 699 101 679 4 421 15,2 
2013 292 385 1,32 23 14 8 856 119 222 5 184 13,5 
2014  494        
Average 2004-2013 176  22,6 13,5 4 047 78 521 3 454 22,0 

Average 
2010-
2013 

200 264 1 23,8 14,5 6 214 100 764 4 263 16,9 

 

 
 
Table 3. Yearly catches on FAD estimated for the purse seine fleets 
other than the EU (and associated flags) purse seiners (called 
Ghana&NEI) and numbers of seeded FADs estimated for this fleet in 
our hypothesis. 
 

 FAD catches of 
Ghana & NEI PS 

Average 
Catch/FAD 

France & Spain 

Numbers 
Ghanaian & NEI 
FADs estimated 

2004 79 783 37,6 2122 

2005 76 912 32,6 2358 

2006 68 267 22,1 3089 

2007 61 680 24,9 2473 

2008 60 754 16,4 3705 

2009 83 675 18,8 4459 

2010 89 926 21,4 4210 

2011 95 500 18,9 5045 

2012 95 005 15,6 6101 

2013 89 300 12,7 7034 
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Figure 1. Yearly skipjack free schools and FADs 
CPUEs of the EU and associated flag purse seine fishery 
in the Eastern Atlantic (tons per fishing day). 
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Figure 2. Change of MSY of the yellowfin stock during 
the 1970-2010 period as estimated by ICCAT (an 
ICCAT SCRS report 2013).  
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Figure 3. Percentage of FAD associated catches of the 
French and Spanish (and associated) purse seine 
fisheries in the Atlantic. 
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Figure 4. Distribution of purse seiners by class of carrying 
capacity of their wells, French and Spanish (and associated 
flags) purse seiners active in the Atlantic Ocean in 2013. 
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Figure 5. Yearly catches of FAD associated catches by an 
average French and Spanish (and associated) purse seiner in the 
Atlantic (i.e. an average ratio of yearly catches per vessel=2.5). 
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Figure 6. Average yearly catch per deployed buoy 
observed for French purse seiners and estimated for 
Spanish purse seiners (based on our 2 hypotheses) in 
the Atlantic. 
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Figure 7. Estimated yearly numbers of FADs seeded, by 
categories of flag and total 
 
 

475




