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ABSTRACT

A method for estimatingthe homogeneity level of hydrological spatial units is presented here. The
approach is based on (i) the quantification of homogeneity by using specific indices, (ii) the
influence of the spatial data error on homogeneity. Texture metrics, based on the eo-occurrence
probability matrix and dedicatedto homogeneity quantification, are investigated. The sensitivityof
these texture metrics, considered as homogeneity indices, is assessed in two types of landscapes:
virtual landscapes characterised by elevation, and watersheds characterised by the reliefcurvature. The
calculation ofhomogeneity indices reveals considerable variation in the waythe spatial homogeneity is
perceived.Three groups of indices are then formed by applying the principal components method
and clustering analysis, each group being characterised by one index: contagion, contrast and
Angular Second Moment or Inverse Difference Moment. In the second part of this paper, the
influence of the data quality is analysed. The spatial error propagation is modelled using a
stochastic simulation in the watershed dataset framework: a set of random elevation surfaces is
generated using a Monte-Carlo method from which the corresponding curvature fields are derived.
Next, homogeneity indexsamples are obtainedfor eachwatershed. The result showsa global decrease
in homogeneity depending onthevalueof the elevation errorand the type of index.
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INTRODUCTION

By observing the environment, the hydrologist can determine the relevant processes involved.
This qualitative approach, completed by data acquisition and modelling, will help to understand the
behaviour of the hydrological system in response to external variables. As information is rarely
available on every point of the study area, simplifying assumptions are often made about spatial
variability: the landscape is considered as an assemblage of homogeneous sub-units with respect to
their description and hydrological dynamics (Esteves, 1994; Flugel, 1994). Nevertheless, these approaches
face two maindifficulties: the validation ofhomogeneity assumption and the effect ofthe spatial error.

The first point we consider is the question of homogeneity validation, and consequently,
homogeneity quantification. This problem has been addressed by landscape ecologists who are
concerned with relationships between ecological processes and spatial patterns (Musick and Grover,
1991; Riitters et al., 1995). A landscape can be described in two ways (Sanderson and Ustin, 1998).
First, pattern-oriented indices consider a landscape as an organised structure composed of patches and
describe their spatial and statistical. The second way is concerned with pixel-oriented landscapes for
which no hypothesis is made about specific structures. In this case, a wide variety of rnetrics based on
pixel interrelation have been developed: some of them are directly concerned with texture and are
considered as homogeneity quantifiers, i.e. homogeneity indices.

We used the programs developed by Baker and Cai (1992) for several reasons: (i) they operate on
nominal as well as on numerical raster data, (ii) they focus on several different texture metrics, (iii)
they are implemented in the GRASS GIS (Byars et al., 1999) which handles our raster maps. These
calculations involve processing a eo-occurrence probability matrix, p(ij), where p(ij) is the probability for
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a pixel of attribute i to be adjacent to a pixel of attribute j. The dimensions of the matrix are (MxM)
where M is the total number ofattributes in the concerned zone. Six texture metrics were identified:

Angular Second Moment:
Inverse Difference Moment:
Contrast:
Entropy:
Contagion:
Shannon:

ASM =~ 1; p(iji
IDM = ~i ~j [p(ij) / (1+(i-ji) ]

CON = ~i ~j [(i-ji p(ij)]
ENT = - ~i ~ [p(ij) In(p(ij»]

CONT A = 2 In(M) - ENT
SHA = ENT/2 In(M)

(I)
(2)
(3)
(4)
(5)
(6)

ASM and IDM are normalised homogeneity measures: the higher the values, the more homogeneous
the landscape. On the other hand, contrast dramatically decreases with homogeneity. Concerning
entropy, it increases with heterogeneity and is maximal when all the pixels i are as far apart from one
another as possible. Shannon is the normalised value of entropy and contagion, which is the deviation
between maximum entropy and entropy, increases with the tendency of a landscape to be clustered in
large patches. Furthermore, we enlarged this review by adding three non-spatial indices: STDDEV
(standard deviation), M, and MS (M divided by the surface logarithm). MS is a priori introduced
insofar as M varies with respect to large surface changes.

The second purpose of our study is concerned with spatial error propagation. The raster maps
stored in a spatial database have been acquired, classified, estimated, and in all these steps, errors on
pixel values are introduced. Consequently, each spatial operation between maps, such as derivation,
logical or numerical calculation and neighbourhood analysis, generates and propagates errors to the
output. For example, a digital elevation model (DEM), which stores elevation data in the form of an
altitude grid, can be used to derive a slope map. In this case, an error associated to the altitude will be
propagated by the slope operator. Except for a few cases where the spatial operator is quite simple,
Heuvelink (1999) discussed two alternative methods for modelling error propagation: (i) the Taylor
series method when the spatial operator can be linearised in the form of Taylor series: the statistical
properties of output are then estimated by an analytical expression, (ii) Monte-Carlo method, in which
mean and standard deviation of output are calculated from a set of input random fields. Due to the
complexity of the spatial operators involved in our study, we applied the Monte Carlo method.

MATERIAL AND METHODS

HOMOGENEITY INDEX

The first dataset consists of virtual landscapes characterised by elevation raster maps with
identical statistical properties (mean = 100, standard deviation =20). Three kinds of landscapes are
created: (i) linear landscapes, i.e. made up of homogeneous areas (cf. Fig. la), (ii) disturbed linear
landscapes which are the previous ones disturbed by a Gaussian noise (cf. Fig. 1b), (iii) undulating
landscapes where elevation is a sinusoidal function. The homogeneity indices are calculated for these
configurations. They are compared with each other and their behaviour is studied with respect to the
landscape structures.

The second dataset is made up of 314 West African watersheds. The study area coordinates are
[18W:4N-18E:21N]. A raster map is composed of [2040 x 4320] squared pixels whose size is set to

1km2. The pixel value is the Mean Quadratic Curvature (MQc) which quantifies the slope changes in
the neighbourhood of a point. This relief descriptor is important for hydrologists since it is a
conditioning factor for hydrological processes and it is the result of the process itself, thus reflecting
the strong interrelation between water and relief. Mathematically, MQC is equivalent to the 2nd
derivative of altitude. The computational algorithm is based on a derivation of altitude using 2nd
order Taylor series on a [3 x 3] pixels window (Depraetere, 2000). The nine homogeneity indices of
MQC are then computed for each watershed. They are normalised with an interpolation between their
extreme values and range from 0 to 100 as a function of increasing heterogeneity. Next, the
watersheds are classified and compared according five categories, ranging from very homogeneous to
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very heterogeneous. Afterwards, the whole set of indices is divided into three groups by using a
principal components analysis and the hierarchical clustering method.

(a) linear and (b) disturbed linear landscapes (c) MQC landscape

Fig. 1. la. and lb. Examples ofvirtual elevation landscapes. le. MQC raster map. The pixel values
range from 0 to 1080: high values (dark) are associated, either with a natural high curvature (for
example: mount Cameroon) or with low altitude error (further comments are in Fig. 4.). The black
lines delineate the watersheds.

ERROR PROPAGATION

First, a Monte-Carlo stochastic simulation is applied for generating a set of random DEM and
MQC fields according the following scheme:

Z(x,y) = Zo(x,y) + E(X,y) ~ MQc(x,y),

where Z, E, MQC are random elevation, error and curvature fields, and Zo is the structural component
of Z. Theoretically, the spatial autocorrelative characteristics of E(X,y) are necessary to generate
realisations of the elevation surface. Unfortunately, the only available information is a map of
elevation Root Mean Square Error (RMSE), We then simulated DEM and MQC realisations in a
simplified way: (i) assigning disturbed elevations to a set of randomly located points: the elevation
disturbance distribution is Gaussian with a mean of zero and a standard deviation equivalent to
RMSE, (ii) generating DEM with interpolation using inverse distance squared weighting algorithm,
(iii) computing MQC field from DEM.

Second, one sample of each homogeneity index is obtained for each watershed from which
statistical characteristics are extracted. Due to the size of one map (20 Mb) and the computation time
required for each run, the simulation number was set to 100.

RESULTS AND DISCUSSION

HOMOGENEITY INDEX

Some of the results for virtual landscapes have already been discussed (Delclaux et al., 2000): (i)
ASM is more sensitive than IDM to spatial heterogeneity; if the landscape is disturbed by a Gaussian
noise, they fall to zero; (ii) contrast sharply increases in the presence of large local variations; (iii)
Shannon,entropyand contagionare more sensitiveto a global homogeneityrather to the local gradients.

Concerning the watersheddataset, Fig. 2 shows the difficulty in estimating the level of homogeneity of
a basin. For example, the spatial distributions of watersheds obtained with contrast and ASM reveal
two different geomorphological structures. Moreover, crossing these eight maps reveals that only
eighteen watersheds, Le. 1.1% of the surface, belong to the same class (very homogenous class).
Nevertheless, some visual trends can be observed: IDM, Shannon and entropy indices give similar
results. On the opposite, contrast and contagion distributions are quite different.

STDDEV CON ASM
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Fig. 2. West African watershed classification in term of MQC homogeneity index. Indices are
normalised, and the five classes range from very homogenous [l-20] to very heterogeneous [81-100}.
Classified MS map is not represented as it is identical to M map.

In order to reduce the number of indices, we processed the 314 index values through the principal
components method applied to the correlation matrix: 84% of the variance is explained by the two
first axes and the three first eigenvalues are equal to 5.22,2.33 and 0.73. Consequently, we considered
two components for which the variable correlation values are plotted in Fig. 3a. This result has been
completed with a hierarchical clustering analysis (cf. Fig. 3b) which allows indices to be gathered in
three groups, each one represented by one index: [1] contagion; [2] ASM for (ASM, IDM, Shannon,
entropy); [3] contrast for (contrast, standard deviation, M, MS). In the last group, contrast has been
retained as it is the only spatially dependant index. Lastly, it appeared that MS index did not contain
more relevant information than M index.
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Fig. 3. a: Index correlation values versus two first components. b: Resulting tree from hierarchical
clustering analysis.

ERROR PROPAGATION

The curvature map in Fig. le highlights the influence of altitude error as shown in Fig. 4. DEM
error thus cannot be neglected and has to be taken into account in modelling MQC homogeneity. The
assumption is that homogeneity is made up of two parts: the first one is natural as expressing the real
world homogeneity and is quantified by the indices mentioned above; the second one is related to the
data quality as decreasing function of the spatial error.
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Fig. 4. Spatial variability ofelevation error: square degrees with 18m (black) or 97m (white) RMSE.
A part of MQC high values (grey areas in Fig. I c.) are due to low RMSE: the more accurate the
elevation, the rougher the relief, and the higher the curvature.
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Fig. 5. Mean ofsample values (x axis) versus initial values (y axis) for contagion, IDM and contrast
indices. Points above the line for contagion and IDM, and points below the line for contrast
correspond to an increase in heterogeneity.

Starting from the index samples generated with the Monte-Carlo simulation, the comparisons
between the mean and original values are plotted on Fig. 5. They concern the three previous
representative indices, except for ASM which has been replaced by IDM. The trend is an increase in
heterogeneity for contagion and IDM. Concerning ASM, it appears to be very sensitive as all the
values dramatically decrease to 0, corroborating the results obtained for the virtual landscape dataset.
Moreover the behaviour of contrast is more complex since homogeneity falls for low values, and rises
for high values: the same trend has been found for the indices belonging to group [3].

CONCLUSIONS

Hydrologists can calculate the watershed homogeneity for a given parameter, but they still need to
select the most relevant quantifier of homogeneity. Our study presents a review of nine available
textural and statistical indices and proposes a classification in three groups in order to reduce the
number: the first group is represented by contagion and measures the level of aggregation. The second
group is characterised by ASM or IDM for global homogeneity: IDM cannot be used for nominal
data, but it is more convenient to low homogeneity than ASM. The third group is represented by
contrast which is very sensitive to local gradients.

The second part of our study highlights the influence of data accuracy. A stochastic simulation
shows that taking into account the spatial error in the original data leads toa global increase in
heterogeneity. Nevertheless, the rise has to be modulated for some indices which are dedicated to
local heterogeneity such as contrast. Finally, homogeneity indices seem to integrate both the real
physical homogeneity and a pseudo-heterogeneity due to the inaccuracy of the data. The problem is
now to model and to link these homogeneity components as a function of data error characteristics,
statistical distribution of index values and mathematical properties of each index.
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