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Abstract

A prerequisite for numerical simulation of water ¯ow in heterogeneous soils is to build a discrete model of the soil

matrix that is a fair representation of the heterogeneities under study, while being compatible with the numerical

equations used to compute unsaturated water ¯ow. When introducing signi®cant amounts of very coarse solid elements

(gravels) in a discrete, multi-dimensional soil matrix model, in the form of internal boundaries that occupy a certain

fraction of the grid nodes, the need arises to eliminate from the model the possible occurrence of isolated areas of soil,

surrounded by continuous gravel barriers that keep them separate from other regular grid nodes. This situation is

obviously an artefact resulting from the discrete representation of the physical system, since all nongravel areas ought

to be considered as being submitted to at least some hydrodynamic linkage with each other and with the outer

boundary conditions (rain and other water input at the top, gravity drainage or water table at the bottom).

Computational nodes that do not connect in some way, through the computational grid, to these outer boundary

conditions, are the source of computational problems due to system indetermination when solving the hydrodynamic

equations. A method has thus been devised to automatically detect and eliminate such situations in order to produce

plausible soil models for hydrodynamic simulation, in the presence of highly contrasted grain sizes. The method is

based on a proposed recursive algorithm for cluster analysis, an attractive and very simple alternative to existing

methods generally used to handle cluster problems. This method and its application to the heterogeneous soil modeling

problem is presented as a pseudo-code that can be implemented with any current programming language. Performance

®gures, and simulation results of the hydrodynamic behavior of such soil models, are shown. A parallel

implementation of the algorithm is also proposed.# 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many computing problems in geosciences and other

®elds involve discretization of space as a multi-dimen-

sional lattice that consists of a ®nite number of nodes

and links. Connectivity of the nodes may be total, if

there always exists a path made of a series of nodes
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and links between any given couple of nodes, or else

partial, leading to a clustered organization. While clus-

ter analysis is generally performed using conventional

iterative programming techniques, the use of recursion

o�ers a very attractive means for solving this class of

problems, both in terms of robustness and of ease to

implement. A recursive object may be de®ned as one

that contains a smaller, entirely similar `sub-object'. In

computer programming, recursion is the property of a

program unit to call itself, either directly or through

other units in the calling tree, allowing a task to be

coded as the nesting of self-similar subtasks. This

paper presents the development of such a recursive al-

gorithm to perform cluster identi®cation and labeling,

for any grid topology. This algorithm is applied to the

generation of 2D models of heterogeneous soils,

needed for the numerical simulation of in®ltration in

such soils. The scope of this article is not to develop

every aspect of this very complex modeling problem,

but to focus on the connectivity analysis question, and

to illustrate how it comes into play in the general soil

simulation framework.

Accustomed to imperative, explicit programming

style, many computational application developers are

unfamiliar with declarative, implicit, arti®cial-intelli-

gence-type algorithms, which can provide very simple,

elegant, and powerful solutions to a lot of otherwise

complicated problems. Fortran, a major language for

computational applications, did not include recursion

until the recent Fortran90. Recursion is now part of

almost all modern languages and compilers, including

Fortran77 compilers as a widespread language exten-

sion. With traditional languages, programmers have

been used to thinking of repetitive operation sequences

as explicit iterative programming structures (the

famous do-loop), instead of considering the problem

as a composition of self-similar subproblems. Only

with very few languages such as LISP (see for instance

Siklossy, 1976) has recursion been enforced as a major

construct for problem formulation and programming.

Such languages are largely foreign to the ®eld of scien-

ti®c computing, being rather restricted to arti®cial

intelligence applications. Recursive solutions are very

rarely, if ever, proposed in reference books in ®elds

like geosciences. Evolution of computers in general

and of compiler e�ciency in particular, has largely

eliminated the performance limitations that could have

shadowed recursive programming in the past.

2. Presentation of the soil water modeling problem

In®ltration in unsaturated soils is a complex two-

phase hydrodynamic process that takes place in solid

matrices which themselves generally have particularly

complex 3D, often deformable, geometries. The most

widely accepted mathematical representation of macro-

scale water movement in unsaturated rigid porous

media is the Richards equation (1931):
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where t is time [T]; h is the soil water pressure [L]

expressed in height of water column relative to the at-

mospheric pressure; z is the depth [L] below the soil

surface, positive downwards; K is the hydraulic con-

ductivity [L Tÿ1], a function of the volumetric moist-

ure content y [L3 Lÿ3]; C = dy/dh is the capillary

capacity [Lÿ1], expressing the ability of a soil to absorb

water by capillarity, obtained from the capillary reten-

tion curve h(y ). Analytical solutions seldom exist for

real-world applications: Eq. (1) is therefore solved nu-

merically through many possible methods and schemes

that discretize both time and space. Soil characteristics

are introduced as the h(y ) and K(y ) curves at each

computational point, heterogeneity of the media being

re¯ected in the mapping of various such curves over

the domain under study. However, a common source

of heterogeneity can hardly be taken into account

through these characteristics curves, that is the pre-

sence in the media of very coarse-grained, quasi non-

porous solid elements whose size is of the same order

of magnitude as the spatial resolution of the numerical

model. This is the case for instance when stones or

coarse gravel are present in signi®cant amounts in an

otherwise ®ner grained soil. In such cases, the discre-

tized form of Eq. (1) may no longer be considered to

be valid at computational points that fall on or im-

mediately next to such nonporous chunks; a better

schematization is then to subtract these points (here-

after named gravel nodes) from the domain of Eq. (1),

and view these as forming internal domain boundaries

with a zero ¯ux condition normal to the boundary. At

least 2D representations are therefore needed to handle

such soil-water systems, which at any rate do not easily

lend themselves to mathematical modeling.

Heterogeneities, even when present in relatively

small proportions, often have drastic impacts on the

overall behavior of the system, depending on their

spatial distribution. This brings the need for a careful

treatment of heterogeneities in the soil-water model. A

current research project is investigating numerically the

e�ects on the in®ltration and water redistribution pro-

cesses, of various randomly-distributed proportions of

gravel nodes over the computational grid, which simu-

late equivalent volumetric proportions of very coarse-

grained material in the solid soil matrix. This project is

still at its early stages of development, and therefore

only qualitative indications of the possible behavior

range are currently being sought using a 2D model,
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before more detailed, 3D analyses are performed. A

®nite-di�erence discretization of Eq. (1) is used, which

writes:

Ck
o

hk�1o ÿ hko
Dt

�
q
k�1=2
r=2 ÿ q

k�1=2
l=2

Dx
�

q
k�1=2
d=2 ÿ q

k�1=2
u=2

Dz
�2�

with:

q
k�1=2
r=2 � Kk

r=2

hk�1r ÿ hk�1o

Dx
q
k�1=2
l=2 � Kk

l=2

hk�1o ÿ hk�1l

Dx

q
k�1=2
d=2 � Kk

d=2

�
hk�1d ÿ hk�1o

Dz
ÿ 1

�

q
k�1=2
u=2 � Kk

u=2

�
hk�1o ÿ hk�1u

Dz
ÿ 1

�

when applied to a 2D rectangular grid (Dt, Dx, and

Dz are the time, horizontal and vertical steps, respect-

ively; k is the time index; the space indices o, u, d, l, r

designate the central node and its grid neighbors in the

up, down, left and right directions, respectively; the =2

notation after one of these four directions refers to the

point half-way between the central node and its neigh-

bor in that direction; q is the water ¯ux density [L

Tÿ1]). Initial moisture distribution is uniform over the

whole domain. A water pond of negligible depth is

then applied at the soil surface during an in®ltration

phase, followed by a redistribution phase with a zero-

¯ux upper boundary condition. At the lower boundary

the pressure head is kept at its initial value, while a

no-horizontal-¯ux condition is set at all lateral bound-

ary nodes.

To build the discrete soil model, each node from the

regularly-spaced grid is given the same chance of being

a gravel node (or, conversely a regular, also called

`computational' node), by randomly drawing with a

uniform probability equal to the globally-imposed

gravel proportion %gravel (or, conversely, to its comp-

lement to 1). The problem may then arise, especially

when working with 2D representations of the system,

of a subset of regular grid nodes being isolated from

all others by a barrier of surrounding gravel nodes.

The corresponding subdomain no longer participates

in the soil water dynamics, thereby arti®cially extend-

ing the volumetric proportion of the media that is rep-

resented as being nonporous. Simulated water

movement would be identical, should these inactive

computational nodes be replaced by gravel nodes.

Hence, there may be a very signi®cant di�erence

between the modeled and the targeted systems, both in

terms of gravel proportion and of the spatial distri-

bution of these gravels (the model includes more clus-

tered gravel nodes than would entail a pure uniformly-

random distribution). Another troublesome conse-

quence of having isolated computational nodes is the

numerical problems that such peculiar nodes entail in

the system solution process.

Likely in 3D models, this problem is highly import-

ant in the 2D case, due to the large probability of iso-

lated node occurrence and to the signi®cant share of

each such node in the resulting simulated volumetric

distribution between gravel and nongravel media. To

carry out a proper analysis of the incidence of a given

randomly-distributed proportion of gravel on the

water in®ltration and redistribution processes, it is

necessary to identify and remove such undesirable situ-

ations from the soil model building procedure.

Described hereafter is this process of synthesizing soil

models that are free from any isolated node. A major

component of it is the ®nding of such troublesome

nodes in the computational grid, through a specially-

developed connectivity analysis algorithm.

3. Analysis of the connectivity problem in 2D

heterogeneous soil models

In this problem, connection of nodes is achieved by

the network of links that associate couples of neigh-

boring computational nodes in the discretized Eq. (2)

of the hydrodynamic equation. More precisely, two

grid nodes are de®ned as linked neighbors if and only

if both are computational nodes (i.e. nongravel) and

are immediately next to each other along the same grid

line or column. Diagonals are excluded here, but the

algorithm itself is totally independent of the number of

potential neighbors, whether it be four as in our

example, or eight or any other number depending on

the problem being dealt with. As a matter of fact, it is

independent of the grid dimension, structure and geo-

metry.

The objective here is, given a random distribution of

gravel nodes on the 2D grid, to identify all isolated

zones of the grid. For our speci®c purpose, an isolated

zone, or island, is de®ned as a subset of nongravel grid

nodes that do not connect to either an upper boundary

node or a lower boundary node, i.e. that do not span

vertically across the entire lattice. This de®nition

ensures that all regular nodes of the grid will be in

computational linkage with both these boundary con-

ditions. The algorithm would be very similar and easily

deduced from the one presented hereafter, should the

de®nition of islands be modi®ed, with respect to the

various domain boundaries. A nongravel node will be

called isolated if belonging to an island, or otherwise

connected. To produce this information, a symbolic

array variable, named state, will be used, initially set

to `gravel' or `unknown'; `unknown' nodes are thus to
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be transformed by the algorithm into either `connected'

or `isolated'.

This problem can be analyzed as belonging to the

general class of cluster identi®cation problems. In our

particular application, only certain clusters, the islands,

are actually searched for. A possible problem de-

composition approach consists of a ®rst step of cluster

labeling followed by a second step of selecting islands

among labeled clusters. The latter step is straightfor-

ward, since it amounts to checking within each cluster

whether or not at least one node of each boundary

(upper and lower) is present. Therefore, this presen-

tation will largely focus on the cluster labeling subpro-

blem, a general problem potentially encountered in

many broad ®elds such as percolation theory, simu-

lation of spatial dynamic systems (e.g.: models for for-

est ®res or vegetation dynamics), image processing, etc.

Labeling is the preliminary step common to many var-

ious tasks including production of cluster statistics

(count, size distribution, . . . ).

4. Cluster identi®cation and labeling

4.1. Method

A widely used method for cluster multiple labeling is

the Hoshen and Kopelman (1976) algorithm. This is

an e�cient technique for cluster labeling on regular

grids, variants of which can be found in Stau�er and

Aharony (1994, in Fortran), or Goult and Tobochnik

(1996, in Basic). This method uses a clever two-pass

iterative procedure over grid points, which requires a

particular data structure consisting of a label-correc-

tion tree. It must be programmed with care to ensure

foolproofness, and is not easily implemented for irre-

gular grid con®gurations. A much simpler method can

be devised when viewing the problem as recursive by

essence1. Recursion makes cluster labeling a very

straightforward issue, whatever the grid con®guration.

This is the method proposed and used here. It was not

found in any of the examined books o�ering solutions

to this kind of problem. Although cluster labeling is

not a strictly necessary step for our particular problem

(a recursive procedure, quite similar and just as simple

as the one proposed for labeling, can be written speci®-

cally to directly answer the question of tagging grid

points as `isolated' or `connected'), we present this

more general approach which can be used for numer-

ous other applications.

Figure 1 presents as pseudo-code the recursion-

based algorithm for the LABEL_CLUSTERS module.

This module is totally independent of our particular

problem, and can be reused as such for any cluster-

labeling problem, whatever the grid con®guration or

cluster de®nition. Together with the state variable

de®ning the nature of each grid node, a selected_state

is input to the module, to de®ne a particular class of

nodes for which clusters are searched for. Setting the

selected_state variable to `all' indicates that all nodes

are to be clusterized, whatever their state value (`all'

should not be a possible state value). In this case, an

individual cluster is still made only of nodes of the

same nature, i.e. with the same state value. For our

particular soil modeling problem, label_clusters() is

always called with selected_state set to `unknown'. The

LABEL_CLUSTERS module does not need to know

what the possible values of the state variable are,

which makes it application-independent. The module

returns the number of clusters detected, nclusters, and

the integer array cluster_labels over grid nodes. All

nodes that belong to the same cluster have the same

cluster_labels value, between 1 and nclusters, while all

other nodes, which do not belong to any cluster, get

the value 0.

The recursive function label_neighborhood() per-

forms nearly all the algorithm's work. It simply

expresses the propagation of the property that a node

belongs to a given cluster, to all its neighbors with

identical state. This is a particularly striking example

of the capacity of recursive programming to perform

otherwise complex tasks through a very simple and

general formulation of the problem to be solved.

Another example would be the following, if the more

direct approach for our soil modeling problem were

used instead of going through the cluster labeling step:

the recursive procedure would then consist in the for-

warding to all similar neighbors of the question of a

node being `isolated' or not, until some node can

answer (e.g.: a boundary node, de®ned as `connected',

or any node already tagged as `connected') or until no

node is left to be questioned. Since all questioned

nodes ought to be granted the same state value, this

should be `connected' in the ®rst case, and `isolated' in

the latter. With the direct scheme (i.e. no cluster label-

ing), the recursive process needs to be repeated as

many times as there are boundaries to the soil model,

since the `connected' state requires an AND condition

on connections to individual boundaries.

If some di�culty were to be mentioned with the im-

plementation of recursive programming in general, this

would reside in the need for making sure that the for-

warding process never loops, and for proper handling

1 It is interesting to point out that Goult and Tobochnik's

(1996) implementation of the Hoshen-Kopelman algorithm

itself includes a tiny recursive piece that serves in the second

pass of the algorithm to handle the tree structure already

mentioned; trees are the most obvious candidates for recur-

sion, but grid problems too, as well as many others, may be

analyzed wholly in terms of recursive solutions.
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of all particular conditions that bring this forwarding

process to a stop (the so-called terminal subproblems;

see for instance Meyer and Baudoin, 1984). In our

cluster-labeling example, these issues are very simply

managed, through the node_needs_label_?() logical

function.

Translating the LABEL_CLUSTERS pseudo-code

into source code for any compiler is totally straightfor-

ward, and produces a remarkably simple and con-

densed piece of program which can be reused or

adapted to any user's needs, such as a di�erent grid

topology, with no di�culty or programming trap. This

is due to the fact that the program itself directly

expresses the basic principles of a very slim algorithm,

which is not the case of the other methods quoted

above. As a matter of fact, when using Goult and

Tobochnik's (1996) algorithm, the program failed for

large problems (more than045,000 clusters, a magni-

tude that can theoretically be reached for instance with

a 300 � 300 grid, and that we observed for 600 � 600

grids or larger with random draws), due to over¯ow

on 4-byte integer arithmetics. The bug was not easily

detected, located and ®xed, due to the signi®cantly

more complex algorithm and computer code. Such

problems could not occur with the recursive algorithm,

since it does not rely on any arithmetics.

4.2. Performance considerations

Performances were compared for the Goult±Toboch-

nik algorithm (with correction) and for the proposed

recursive algorithm, in terms of run time for various

grid sizes (up to 1000 � 1000 nodes) and various pro-

portions of randomly distributed cluster-making nodes.

Both algorithms were written in Fortran77 and run on

a Sun-UltraSparc workstation under Solaris2.5, with

the same compile-link options. Fig. 2 is a plot of the

logarithm of the ratio of execution times for the two

algorithms (recursive over Goult±Tobochnik) as con-

tours lines against grid size and node proportion. The

Fig. 1. Algorithm for module LABEL_CLUSTERS.
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zero contour line corresponds to equal run times,

whereas negative contour values indicate better per-

formance of the recursive algorithm, and vice-versa.

Positive and negative values share the plot space, with

an overall lead for the recursive algorithm, especially

for smaller grid sizes where the recursive algorithm

performs considerably better than Goult and Toboch-

nik's. For larger grids, the two algorithms tend to take

a comparable share, with better recursive performance

for lower cluster-node proportions and vice versa.

These tests were made to check that the proposed

recursive algorithm compares favorably even on per-

formance grounds, although this is not a major con-

cern in our application where the critical step in terms

of execution time is by far the hydrodynamic simu-

lation of the generated soil models.

It also is the critical step in terms of memory

requirements, but having an idea of how much space is

needed by such a recursive algorithm may be of inter-

est for its general use. Recursive calling of a function

entails stack growth due to piled storage of each call's

own context. Hence, stack memory requirement is

roughly proportional to the recursive call piling depth,

and was estimated to be around 100 bytes per call of

the label_neighborhood() recursive function, in our

Solaris2.5 Fortran implementation. The recursion

depth depends on cluster size and shape, and increases

with grid size and fraction of cluster-making nodes.

Fig. 3 shows how this measure of algorithmic complex-

ity varies with the cluster node fraction, for a 1000 �

1000 grid. It can be seen that the maximum depth of

recursion starts to increase markedly when the cluster

fraction value is near the so-called site percolation

threshold (theoretical value of 0.593 above which span-

ning clusters are produced in in®nite lattices, see for

instance Schroeder, 1991), as does the maximum clus-

ter size (MCS). However the growth is more gradual

for the recursion depth: unlike the MCS, it does not

show an abrupt step increase near the site percolation

threshold and remains signi®cantly smaller than the

MCS for all fraction values. Fig. 4 is a plot of the

stack memory used by our implementation of the

Fig. 2. Compared performances of the recursive and Goult±Tobochnik algorithms: Contour map of ln(Rt/Gt) against grid size and

cluster-node fraction. (Rt and Gt: execution times for the recursive algorithm and for Goult and Tobochnik's algorithm, respect-

ively; ln=natural logarithm).
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recursive algorithm, as a function of grid size and clus-

ter-node fraction. Because the number of variables in

the recursive function label_neighborhood() is small (5

arguments, no local variable), the stack growth is slow.

In fact, only the ®rst argument node n is really needed

as a true recursive argument; all others can be treated

as global variables that do not need to be piled up

during the recursive calling sequence.

In order to maximize performances (execution times

and, most signi®cantly, memory requirements) for

huge problems such as 3D applications, parallelization

may be achieved by performing concurrent, indepen-

dent cluster labeling within subdomains. A necessarily

sequential task of consolidating subdomain labeling

into global domain labeling is then needed, which can

use much the same recursive principles as already pre-

sented: a global label is recursively propagated through

neighboring subdomains when subdomain clusters con-

nect along the subdomain boundary. On distributed

memory computers, e�ciency of parallel cluster label-

ing may however be hindered, not by this extra com-
Fig. 3. Algorithmic complexity versus cluster-node fraction

for the 1000� 1000 grid size case.

Fig. 4. Occupation of stack memory by the recursive algorithm: Contour map of Log10(Stack) against grid size and cluster-node

fraction. (Stack=Mbytes of memory required in stack; Log10: decimal logarithm).
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puting task at the larger scale (subdomain to domain),

but by the overhead communication time cost of trans-

ferring the arrays of labeled subdomain nodes, which

can lead to an excessive communication-to-compu-

tation ratio for most current hardware parallel archi-

tectures. However, parallel cluster labeling should be

of particular interest when the subsequent, label-using

treatments are themselves made parallel according to

the same domain decomposition scheme, so that

labeled node arrays do not need to be transferred

across processors, but remain local to each subdomain

processor. In this case, only cluster labels along subdo-

main boundaries (or lists of nodes per cluster per

boundary, for each subdomain) need to be transferred

to the consolidating processor, the latter sending back

to each subdomain processor the global cluster label

Fig. 5. Algorithm for module MAKE_SOIL_MODEL.
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for each local cluster of that subdomain. A parallel im-

plementation of the cluster labeling algorithm is pro-

posed as pseudo-code in the appendix.

5. Building workable 2D heterogeneous soil models

Figure 5 shows the algorithm of the MAKE_SOIL_-

MODEL module that builds acceptable soil models for

numerical simulation of in®ltration in heterogeneous

soils, using the generic LABEL_CLUSTERS module

previously described (Fig. 1). Such soil models are pro-

duced in the form of 2D grids composed of nodes

¯agged either as gravel or connected, in proportion pre-

scribed by the %gravel constant. The make_grid() and

assign_gravel() functions create the initial model, while

remove_islands() attempts to eliminate undesirable

situations, detected by any_islands_left_?(), until a

valid model is obtained, i.e. till any_islands_left_?()

returns as FALSE. A ¯ow-chart tracing the changing

values of the state variable through the various func-

tion calls of the MAKE_SOIL_MODEL module is

presented in Fig. 6.

The model resulting from modi®cations of the initial

gravel distribution cannot be considered to stem from

the same statistical population as this initial distri-

bution. Indeed, any reworking of the initial distri-

Fig. 6. Flow-chart of the state variable within the MAKE_SOIL_MODEL module.
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bution will alter some of its statistical properties: the

absence of initial spatial autocorrelation due to the

independent node-by-node gravel assignment in

assign_gravel() can hardly be expected to be preserved,

as proximity of gravel nodes has a bearing on island

existence and therefore on ultimate gravel distribution.

In line with the rather qualitative level of investigation

pursued at the present stage of the study, the choice

was made here to characterize the soil model used for

hydrodynamic simulation by a simple construction

rule, rather than trying to view it as representative of a

population with prede®ned statistical characteristics.

One such characteristic though was felt as needing to

be preserved through the island elimination process,

namely the total gravel proportion. Hence the remo-

ve_islands() algorithm basically consists in moving

around gravels that are responsible for the existence of

islands, and replace with ordinary soil nodes the sites

thus freed, with a displacement strategy that ensures

the production of an island-free grid after a ®nite num-

ber of iterations (main do-while loop of the make_-

soil_model() function) and that minimizes that

number. There are many di�erent strategies that could

be envisaged, either deterministic or stochastic. Sto-

chastic strategies have the advantage of keeping a ran-

dom component throughout the soil model production

process, but may turn out to be considerably less e�-

cient with respect to the number-of-iterations criterion.

A very simple and robust, deterministic strategy was

preferred, which ensures convergence of the island-

elimination algorithm within a small number of iter-

ations. It consists in swapping nodes within couples

made of a gravel node and an isolated node located to

its immediate right. The e�ect is to collapse every

island, by having the left and right strings of gravel

that make up the island boundary come side by side;

previously isolated nodes thus get released by being

cast outside this boundary (see Fig. 7). This tends to

produce a somewhat higher degree of aggregation of

gravel nodes compared to an independent random dis-

tribution, as illustrated by a value of 1.4 for the mean

number of gravel neighbors per gravel node in the

Fig. 7. Generation of a heterogeneous soil model with a 30% gravel proportion (A) initial gravel and island distribution in 100 �

200 domain. (B) zoom of (A) in outlined 40� 40 subdomain. (C) ®nal gravel distribution in island-free 40� 40 subdomain.
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30% gravel case, compared to 1.2 for the initial, ran-

dom situation.

The any_islands_left_?() function uses three local

variables: nclusters and the cluster_labels integer array,

assigned by the call to label_clusters(), as well as the

cluster_status logical array indexed both on cluster

labels (1 to n-clusters ) and on model boundaries

(`upper' and `lower' in our situation). Allocation of

these arrays is not shown; it should take into account

the multiple calls to the any_islands_left_?() function if

performance is to be optimized. After array initializa-

tion to FALSE, one instance of the cluster_status logi-

cal is assigned to TRUE for each cluster that includes

a boundary node. A ®nal loop over all `unknown' grid

nodes allows ¯agging of each node as `connected' if

the cluster it belongs to connects to all boundaries

(cluster_status logical is TRUE for each boundary, for

this cluster), or else as `isolated'. In order to simplify

the de®nition of neighbors by using the same number

of them (4 in our case) for all nodes, the allocated

domain is extended one line/row outside all bound-

aries, and all these ®ctitious nodes are initialized to

state=`gravel'. Not all variables and data structures

(nodes, neighbors, . . . ) are actually represented in Fig.

5: only those that control the program ¯ow, particu-

larly the state array, are described explicitly through-

out the presentation. A discussion of the fate of this

variable through the algorithm, illustrated by Fig. 6,

follows.

In MAKE_SOIL_MODEL, nodes are initialized to

either `gravel' or `unknown', denoted G and U in Fig.

6, by functions make_grid() and assign_gravel() (the

latter performs the initial random drawing of node

nature with a uniform gravel probability equal to

%gravel ). Every iteration of the subsequent do_while

loop that calls remove_islands() restores a new situ-

ation with only `gravel' and `unknown' states. Hence,

the any_islands_left_?() routine is always called with

only `gravel' and `unknown' states, and returns the

same `gravel' nodes untouched, and `unknown' states

transformed to `connected' or `isolated' (none of the

latter when the returned any_islands_left_?() function

value is FALSE, i.e. when exiting make_soil_model() ),

denoted C and I in Fig. 6. Finally MAKE_SOIL_MO-

DEL returns all nodes as either `gravel' or `connected',

by moving `gravel' nodes (done by remove_islands() )

until no more `isolated' nodes are returned by any_i-

slands_left_?().

6. Application

The above recursive algorithm was applied to a 2D

square-meshed grid with 200 nodes vertically and 100

nodes horizontally, with a grid-cell size of 1 cm in

both directions. Successive soil models were built with

volumetric gravel proportions %gravel ranging from 5

to 40% with a step of 5%. With these values, the non-

gravel fraction of the lattice always stays above the

percolation threshold of 0.593. Model building was

replicated several times for each %gravel value, to

account for the random nature of the gravel distri-

bution procedure. Visual veri®cation of the resulting

models showed no failure of the algorithm in all inves-

tigated cases. The number of iterations of the do_while

loop in make_soil_model() (i.e. number of calls to

remove_islands() ) typically ranged from 1 for the

lower gravel proportion values to a maximum of 10

for the largest proportion. The number of islands

detected by the ®rst iteration varied from a couple for

the 5% proportion, to as many as 590 for the 40%

gravel case. The latter case corresponds to 12.9% of

the grid nodes being isolated, with a maximum island

size of 115 nodes i.e. 0.57% of the total grid surface.

For the 30% gravel case, these ®gures fall to about

170 for the number of islands, 1.4% of isolated nodes

and a maximum island size of only 16 nodes (see Fig.

7A; an excerpt of the corresponding ®nal valid model,

obtained after 4 iterations, is shown in Fig. 7C).

The generated soil models were used to simulate soil

characterization experiments (i.e. experimental determi-

nation of h(y ) and K(y ) relationships) that can be per-

formed in the ®eld using a double-ring in®ltrometer

(Touma and Albergel, 1992). Water is supplied to

maintain a small ponding depth above the soil surface,

until the in®ltration front has reached the 80-cm depth

under the surface at least at some point of the central

30-cm wide soil column. After this in®ltration phase,

water redistribution is simulated without further

supply until the 2-m depth is reached. Grenoble sand

(Parlange et al., 1985) is used for the nongravel frac-

tion, with a saturated hydraulic conductivity Ks= 157

mm/h and a saturated volumetric water content of

0.312.

For the 30%-gravel example case of Fig. 7, gravel

incidence on the hydrodynamics of the soil model is

high, as can be inferred from Fig. 8 at the end of a

2.4-h in®ltration phase. The random distribution of a

signi®cant proportion of gravel in the modeled soil

matrix produces contrasted macro-structures in the

drainage pattern. The nonuniformity of the percolation

across a horizontal plane induces an 80% reduction of

overall in®ltration capacity compared to pure Grenoble

sand, much above the 30% that one may have

expected through a simplistic rule of volumetric pro-

portionality. Besides, with the 100-node domain width,

the resulting percolation is also highly dependent on

the random distribution drawn. Fig. 9 shows the distri-

bution of water at the end of the 6-day redistribution

phase, for the simulated soil con®guration of Fig. 7.

The study of the heterogeneous soil water movement
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Fig. 8. Water distribution after a 2.4-h in®ltration phase (with and without gravel display).
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problem now requires working with larger lattices to

improve the representativity of the performed simu-

lations. In particular, the horizontal grid size should be

increased to account for the variability of the gener-

ated drainage macro-structures. Also, such modeling

ought to be extended from two to three dimensions to

better capture the 3D nature of this physical system.

7. Conclusion

In order to build acceptable soil matrix models for

numerical simulation of water in®ltration and redistri-

bution in heterogeneous soils, a generic, recursive al-

gorithm for cluster analysis was devised and is

presented as a pseudo-code. It can be used to perform

the very general tasks of cluster identi®cation and

labeling, needed in many various ®elds and problems.

Because recursion allows a very condensed formulation

of an otherwise complicated problem, the proposed al-

gorithm is easy to implement, and circumvents the risk

of programming pitfalls such as arithmetic over¯ow

that may occur for large cases with the more conven-

tional algorithms. The provided pseudo-code may be

readily implemented with any programming language,

and for any grid con®guration since it is entirely inde-

pendant of grid topology. Performances (execution

times and memory requirements) of the proposed al-

gorithm are excellent in the range of problem sizes

investigated, but may become a concern for huge pro-

blem cases, in particular for 3D applications. However,

in our application, hydrodynamic modeling is by far

the limiting component with respect to increasing pro-

blem size.

Fig. 9. Water distribution after a 6-day redistribution phase (without gravel display).
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A parallel version of the algorithm that may facili-

tate the very large problem runs is suggested in the

appendix of this paper. Parallel cluster labeling is

highly desirable if other application components are

also parallelized over the same subdomains. Recursion

can also be used in the serial task of subdomain-to-

domain label consolidation.

Appendix A. Algorithm for module

PARALLEL_CLUSTER_LABEL

module PARALLEL_CLUSTER_LABEL (simpli®ed

writing)

/� produces the number of clusters global_nclusters

and the label-mapping array global_labels, over the

whole domain; local_labels and global_from_local

are temporary arrays, the scope of which is

assumed here to be the whole module (`local ' and

`global ' refer to subdomain and whole-domain

entities, respectively) �/

parallel_cluster_label(in: selected_state, state; out:

global_nclusters, global_labels) {
/� STEP 1: parallel local labeling: �/

parallel do for each subdomain, sd: {
call label_clusters( ) within sd

obtain: number of local cluster labels in sd
and label array: local_labels(sd, node in

sd)
/� only values for boundary nodes

are needed if STEP 3 is implemented

in the parallel case, see below �/

}

wait for all tasks

/� STEP 2: sequential consolidation: �/

initialize array:
global_from_local(1..max number of local

labels, 1..number of subdomains)=0

global_label=0

for each subdomain, sd: {
for each local cluster label in sd,

local_label: {
if (global_from_local(local_label,

sd)==0) {
global_label+=1

call local_to_global(sd, local_label,

global_label)

}

}

}

global_nclusters=global_label

/� STEP 3: make ®nal global label array

(sequential case) or send back global labels to

subdomain processors for local construction

of ®nal label arrays (parallel case) �/

/� sequential case: �/

for all nodes in domain, n: {
determine subdomain sd containing node

n

global_labels(n)=global_from_local

(local_labels(sd,n), sd)

}

/� or, parallel case: �/

parallel do for each subdomain, sd: {
transfer array global_from_local(1..number

of local labels in sd, sd) to processor sd

for all nodes in sd, n: {
global_labels(n)=global_from_local

(local_labels(sd,n), sd)

}

}

}

recursive local_to_global (in: subdomain sd,

local_label, global_label) {

/� propagates the global_label value across sub-

domain boundaries �/

global_from_local(local_label,sd)

=global_label

for all boundaries b of subdomain, sd: {
determine subdomain next to sd, across

boundary b: sda

for all nodes on boundary b in sd, nb: {
if(local_labels(sd,nb)==local_label) {

determine node next to nb, in sub-

domain sda: nba

set llabel=local_labels(sda,nba)

if((llabel !=0 and (global_from_lo-

cal(llabel,sda)==0)) {
call local_to_global(sda, llabel,

global_label)

}

}

}

}

}
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