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Abstract. During the fifth phase of the Coupled Model Inter-

comparison Project (CMIP5) substantial efforts were made

to systematically assess the skill of Earth system models.

One goal was to check how realistically representative ma-

rine biogeochemical tracer distributions could be reproduced

by models. In routine assessments model historical hind-

casts were compared with available modern biogeochemi-

cal observations. However, these assessments considered nei-

ther how close modeled biogeochemical reservoirs were to

equilibrium nor the sensitivity of model performance to ini-

tial conditions or to the spin-up protocols. Here, we explore

how the large diversity in spin-up protocols used for marine

biogeochemistry in CMIP5 Earth system models (ESMs)

contributes to model-to-model differences in the simulated

fields. We take advantage of a 500-year spin-up simulation of

IPSL-CM5A-LR to quantify the influence of the spin-up pro-

tocol on model ability to reproduce relevant data fields. Am-

plification of biases in selected biogeochemical fields (O2,

NO3, Alk-DIC) is assessed as a function of spin-up dura-

tion. We demonstrate that a relationship between spin-up du-

ration and assessment metrics emerges from our model re-

sults and holds when confronted with a larger ensemble of

CMIP5 models. This shows that drift has implications for

performance assessment in addition to possibly aliasing es-

timates of climate change impact. Our study suggests that

differences in spin-up protocols could explain a substantial

part of model disparities, constituting a source of model-

to-model uncertainty. This requires more attention in future
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model intercomparison exercises in order to provide quan-

titatively more correct ESM results on marine biogeochem-

istry and carbon cycle feedbacks.

1 Introduction

1.1 Context

Earth system models (ESMs) are recognized as the current

state-of-the-art global coupled models used for climate re-

search (e.g., Hajima et al., 2014; IPCC, 2013). They expand

the numerical representation of the climate system used dur-

ing the 4th IPCC assessment report (AR4) that was limited to

coupled physical general circulation models, to the inclusion

of biogeochemical and biophysical interactions between the

physical climate system and the biosphere. The ESMs that

contributed to CMIP5 substantially differed from each other

in terms of their simulations of physical and biogeochemical

components of the Earth system. These differences in design

translate into a significant variability between the skill with

which the different models reproduce the observed biogeo-

chemistry and carbon cycle, which in turn may impact pro-

jected climate change responses (IPCC, 2013).

In the typical objective evaluation and intercomparison of

these models, a suite of standardized statistical metrics (e.g.,

correlation, root-mean-squared errors) are applied to quan-

tify differences between modeled and observed variables

(e.g., Doney et al., 2009; Rose et al., 2009; Stow et al., 2009;

Romanou et al., 2013, 2014). With the goal of constrain-

ing future projections, statistical metrics are often used for

model ranking (e.g., Anav et al., 2013), weighting of model

projections (e.g., Steinacher et al., 2010) or selection of the

most skillful models across a wider ensemble (e.g., Cox et

al., 2013; Massonnet et al., 2012; Wenzel et al., 2014). Most

of these approaches can be considered as “blind” given that

they are routinely applied without considering models’ spe-

cific characteristics and treat models a priori as equivalently

independent of observations. However, since these models

are typically initialized from observations, the spin-up pro-

cedure (e.g. the length of time for which the model has been

run since initialization, and therefore the degree to which it

has approached its own equilibrium) has the potential to ex-

ert a significant control over the statistical metrics calculated

for each model, using those observations.

1.2 Initialization of biogeochemical fields and spin-up

protocols in CMIP5

Ocean initialization protocols aim at obtaining stable and

equilibrated distributions of model state variables, such as

temperature or concentrations of dissolved tracers. Most

commonly used initialization protocols consist of initializ-

ing both physical and biogeochemical variables from either

climatologies (derived from the observed fields or previous

model simulations) or spatially constant values before run-

ning the model to equilibrium. In theory, equilibrium cor-

responds to steady-state and, hence, temporal derivatives of

tracer fields close to zero. The time needed to equilibrate

tracer distributions or, in other words, the integration time

needed by the model to converge towards its own attractor

(which is different from the true state of the climate sys-

tem) varies greatly between components of the climate sys-

tem. It spans from several weeks for the atmosphere (e.g.,

Phillips et al., 2004) to several centuries for ocean and sea

ice components (e.g., Stouffer et al., 2004). The equilibra-

tion of ocean biogeochemical tracers across the entire water

column amounts to several thousands of years (e.g., Heinze

et al., 1999; Wunsch and Heimbach, 2008) and depends on

the state of background ocean circulation as well as the tur-

bulent mixing and eddy stirring parameterizations (e.g., Au-

mont et al., 1998; Bryan, 1984; Gnanadesikan, 2004; Mari-

nov et al., 2008). The equilibration time can be different in

a coupled model configuration (i.e., ocean–atmosphere gen-

eral circulation models or ESMs) compared to stand-alone

climate components due to leaks in the energy budget (Hobbs

et al., 2016). In practice, these simulations, called “spin-ups”,

often span only several hundreds of years, at the end of which

a quasi-equilibrium state is assumed for the interior ocean

tracers.

The present degree of complexity and spatial as well as

temporal resolution of marine biogeochemical ESM compo-

nents (as well as other physical and chemical components),

however, often precludes a spin-up to reach adequate equi-

libration of biogeochemical tracers. This is a consequence

of the large number of state variables present in most of the

current generation of biogeochemical models (e.g., for each

tracer a separate advection equation has to be solved via a

numerical CPU time demanding algorithm), more complex

process descriptions (e.g., including more plankton func-

tional types than before), and spatial as well as tempo-

ral resolution. This number of state variables has continu-

ously increased from simple biogeochemical models (e.g.,

HAMOCC3, Maier-Reimer and Hasselmann, 1987) to ma-

rine biodiversity models (e.g., Follows et al., 2007). Cur-

rent generation biogeochemical models embedded in CMIP5

ESMs contain roughly 2 to 4 times more state variables than

physical models (e.g., atmosphere, ocean, sea-ice), which

makes their equilibration computationally costly and diffi-

cult. The initialization of biogeochemical state variables is

further complicated by the scarcity of biogeochemical ob-

servations as compared to observations of physical vari-

ables (e.g., temperature, salinity). So far, three-dimensional

observation-based climatologies exist for macro-nutrients,

oxygen, dissolved carbon and alkalinity. For other tracers

such as dissolved iron, dissolved organic carbon and biomass

of the various plankton functional types data are still sparse

in space and time in-spite of considerable efforts such as

the GEOTRACES program for trace elements, or MARE-

DAT for biomasses of plankton functional types. The lat-
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ter set of variables is initialized either with constant values

(e.g., global average estimates) or with output from a previ-

ous model run. An additional difficulty stems from the use of

modern climatologies to initialize the ocean state, implicitly

assuming a long-term steady state, which does not necessar-

ily represent the preindustrial state of the ocean. These clima-

tologies incorporate the ongoing anthropogenic perturbation

of marine biogeochemical fields, be it the uptake of anthro-

pogenic CO2 or the excess of nutrients inputs and pollutants

(e.g., Doney, 2010). Although methods exist to remove the

anthropogenic perturbation from some observed ocean car-

bon tracer fields, their use is still debated since they lead

to non-unique results (e.g., Tanhua et al., 2007; Yool et al.,

2010).

The equilibration of marine biogeochemical tracer dis-

tributions is driven not only by the ocean circulation, but

also by numerous internal biogeochemical processes acting

at various timescales. For example, while the transport and

degradation of sinking organic matter spans days to per-

haps several months, the associated impact on deep water

chemistry accumulates over several decades to centuries as

zones of differential remineralization are mixed across wa-

ter masses and follows the ocean circulation (Wunsch and

Heimbach, 2008). For models including interactive sedi-

ment modules, the sediment equilibration takes even longer

(O(104) years; e.g., Archer et al., 2009, and Heinze et al.,

1999). As a consequence of the interplay between ocean

circulation and biogeochemical processes, biogeochemical

models require long spin-up times to equilibrate (e.g., Khati-

wala et al., 2005; Wunsch and Heimbach, 2008). Modeling

studies of paleo-oceanographic passive tracers such as δ18O

or114C (Duplessy et al., 1991), or global ocean passive trac-

ers (Wunsch and Heimbach, 2008), as well as more recently

available modern global-scale data compilations (e.g., Key et

al., 2004; Sarmiento and Gruber, 2006) and GEOTRACES

Intermediate Data product 2014 (Mawji et al., 2015) pro-

vide an estimate of the time required for the ocean bio-

geochemical reservoir to equilibrate with the climate sys-

tems (excluding continental weathering and reaction with

marine sediments). For the deep water masses, this time is

about 1500 years in the Atlantic Ocean and reaches up to

10 000 years in the North Pacific Ocean (Wunsch and Heim-

bach, 2008).

In a context of model-to-model intercomparison, this time

range contributes to the model uncertainty. Lessons from

the previous Ocean Carbon Model Intercomparison Project

phase 2 (OCMIP-2) exercise have demonstrated that some

models required ∼ 10 000 years to reach a state where the

global sea–air carbon flux is about 0.01 PgC y−1.

While it is recognized that long timescale processes influ-

ence the length of spin-up to equilibrium, the spin-up dura-

tion is usually defined ad hoc based on external constraints

or internal biogeochemical criteria. The computational cost

is commonly invoked as external constraint to shorten and

limit the spin-up duration. It is directly related to model com-

plexity (e.g., Tjiputra et al., 2013; Vichi et al., 2011; Yool et

al., 2013) and spatial resolution (Ito et al., 2010). The internal

biogeochemical criteria applied to derive the duration of the

spin-up simulations are generally defined by (i) reaching a

steady-state, quasi equilibrium of the long-term global CO2

fluxes between the ocean and the atmosphere (e.g., Dunne

et al., 2013; Ilyina et al., 2013; Lindsay et al., 2014; Ro-

manou et al., 2013; Séférian et al., 2013), (ii) determining the

amount of carbon stored in the ocean at preindustrial state

(e.g., Dunne et al., 2013; Vichi et al., 2011) or (iii) repre-

senting relevant biogeochemical tracer patterns (e.g., oxygen

minimum zone in Ito and Deutsch, 2013).

Despite its importance, only limited information on spin-

up procedures is available through the CMIP5 metadata por-

tal (http://metaforclimate.eu/trac). Information on spin-up

protocols and model initialization is usually not taken into

account in model intercomparison studies (e.g., Andrews et

al., 2013; Bopp et al., 2013; Cocco et al., 2013; Frölicher

et al., 2014; Gehlen et al., 2014; Keller et al., 2014; Resp-

landy et al., 2013, 2015; Rodgers et al., 2015; Séférian et

al., 2014). This information, if available, can only be found

separately in the reference papers of individual models (e.g.,

Adachi et al., 2013; Arora et al., 2011; Collins et al., 2011;

Dunne et al., 2013; Ilyina et al., 2013; Lindsay et al., 2014;

Romanou et al., 2013; Séférian et al., 2013, 2016; Tjipu-

tra et al., 2013; Vichi et al., 2011; Volodin et al., 2010;

Watanabe et al., 2011; Wu et al., 2013). The duration of

spin-up simulations of CMIP5 ocean biogeochemical com-

ponents spans from one hundred years (e.g., CMCC-CESM)

to several thousand years (e.g., MPI-ESM-LR, MPI-ESM-

MR) (Fig. 1 and Table 1). Model initialization and spin-up

procedures are equally variable across the model ensemble

(Fig. 1 and Table 1). Four different sources of initialization

and four different procedures of model equilibration emerge

from the 24 ESMs reviewed for this study.

Biogeochemical state variables were mostly initialized

from observations, although from various releases of the

same World Ocean Atlas global climatology (WOA1994,

WOA2001, WOA2006, WOA2010). A small subset of ESMs

relied either on a mix between previous model output and

observations or solely on model output from a previous sim-

ulation for initialization. Similarly, spin-up procedures fall

into two categories. The first one may be called “sequen-

tial”: it consists in decomposing the spin-up integration into

one long offline simulation (∼ 200–10 000 years) and one

shorter online simulation (∼ 100–1000 years). During the

offline simulation, the biogeochemical model is forced by

dynamical fields from the climate model or from reanaly-

sis (CanESM2, MRI-ESM, Fig. 1 and Table 1). Some mod-

eling groups have adopted a “direct” strategy, which con-

sists in running solely one online or coupled spin-up simula-

tion (e.g., CNRM-ESM1, GFDL-ESM2M, GFDL-ESM2G,

GISS-E2-H-CC, GISS-E2-R-CC, NorESM1-ME). Finally, a

spin-up “acceleration” procedure is used by CMCC-CESM.

This technique consists of enhancing the ocean carbon out-
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Figure 1. Spin-up protocols of CMIP5 Earth system models. Color shading represents strategies of the various modeling groups. Online and

Offline steps refer to runs performed with coupled climate model and with stand-alone ocean biogeochemistry model, respectively. Sources

of initial conditions for biogeochemical components of CMIP5 Earth system models are indicated as hatching below the barplot.

gassing to remove anthropogenic carbon from the ocean, a

legacy from initialization with modern data (Global Data

Analysis Project or GLODAP following Key et al., 2004).

None of these spin-up procedures, durations and sources of

initialization can be considered as “standard”; each of them

is unique and subjectively employed by one modeling group.

Objective arguments and hypotheses justifying the choice

of one method of spin-up rather than the others have been the

focus of previous studies (e.g., Dunne et al., 2013; Heinze

and Ilyina, 2015; Tjiputra et al., 2013). Similarly, individual

modeling groups have discussed the impacts of their partic-

ular spin-up procedure on model performance individually

(e.g., Dunne et al., 2013; Lindsay et al., 2014; Séférian et al.,

2013; Vichi et al., 2011). However, no study has addressed

the potential for the large diversity of spin-up procedures

found across the CMIP5 ensemble to translate into model-

to-model differences in terms of comparative model perfor-

mance assessments or model evaluations in terms of future

projections.

1.3 Objectives of this study

This study assesses the role of the spin-up protocol in con-

trolling the “final” representation of biogeochemical fields,

and subsequent model skill assessment, providing a comple-

mentary analysis from the studies of Sen Gupta et al. (2012,

2013). It relies on a 500-year long spin-up simulation from a

state-of-the-art Earth system model, IPSL-CM5A-LR to in-

vestigate the impacts of spin-up strategy on selected biogeo-

chemical tracers and residual model drift across the various

ESMs of the CMIP5 ensemble. We demonstrate that the du-

ration of the spin-up has implications for the determination

of robust and meaningful skill-score metrics that should im-

prove future intercomparison studies such as CMIP6 (Meehl

et al., 2014).

Section 2 describes the model, the observations, the model

experiments, as well as the methods used for assessing the

impacts of spin-up protocols on the representation of bio-

geochemical fields in IPSL-CM5A-LR, as well as across the

ensemble of CMIP5 ESMs. Section 3 presents the analysis

Geosci. Model Dev., 9, 1827–1851, 2016 www.geosci-model-dev.net/9/1827/2016/
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Table 1. Summary of spin-up strategy, sources of initial conditions, offline/online durations and references used to equilibrate ocean biogeo-

chemistry in CMIP5 ESMs. The so-called direct and sequential strategies inform whether the spin-up of the ocean biogeochemical model

is run directly in online/coupled mode or first in offline (ocean biogeochemistry only) and then in online/coupled mode. DIC∗ refers to the

observation-derived estimates of preindustrial dissolved inorganic carbon concentration using the 1C∗ method. w/acc. and forced w/obs.

indicate the strategy using “acceleration” and observed atmospheric forcings during the spin-up, respectively.

Models Spin-up Initial Offline Online Total spin-up References

procedure conditions time time duration

BCC-CSM1-1 Sequential WOA2001, GLODAP 200 100 300 Wu et al. (2013)

BCC-CSM1-1-m Sequential WOA2001, GLODAP 200 100 300 Wu et al. (2013)

CanESM2 Sequential OCMIP profiles, CanESM1 6000 600 6600 Arora et al. (2011)

(forced w/obs.)

CESM1-BGC Direct CCSM4 0 1000 1000 Lindsay et al. (2014)

CMCC-CESM Sequential WOA2001, GLODAP 100 100 200 Vichi et al. (2011)

(w/acc.)

CNRM-CM5 Sequential WOA1994, GLODAP, IPSL 3000 100 3100 Séférian et al. (2013)

CNRM-CM5-2 Sequential WOA1994, GLODAP, CNRM 3000 100 3100 Schwinger et al. (2014)

CNRM-ESM1 Sequential CNRM-CM5 0 1300 1300 Séférian et al. (2016)

GFDL-ESM2G Direct WOA2005, GLODAP 0 1000 1000 Dunne et al. (2013)

GFDL-ESM2M Direct WOA2005, GLODAP 0 1000 1000 Dunne et al. (2013)

GISS-E2-H-CC Direct WOA2005, GLODAP DIC∗ 0 3300 3300 Romanou et al. (2013)

GISS-E2-R-CC Direct WOA2005, GLODAP DIC∗ 0 3300 3300 Romanou et al. (2013)

HadGEM2-CC Sequential HadCM3LC, WOA2011 400 100 500 Collins et al. (2011),

Wassmann et al. (2010)

HadGEM2-ES Sequential HadCM3LC, WOA2010 400 100 500 Collins et al. (2011)

INMCM4 Sequential Uniform DIC 3000 200 3200 Volodin et al. (2010)

IPSL-CM5A-LR Sequential WOA1994, GLODAP, IPSL 3000 600 3600 Séférian et al. (2013)

IPSL-CM5A-MR Sequential WOA1994, GLODAP, IPSL 3000 300 3300 Dufresne et al. (2013)

IPSL-CM5B-LR Sequential IPSL-CM5A-LR 0 300 300 Dufresne et al. (2013)

MIROC-ESM Sequential GLODAP/constant values 1245 480 1725 Watanabe et al. (2011)

MIROC-ESM-CHEM Sequential GLODAP/constant values 1245 484 1729 Watanabe et al. (2011)

MPI-ESM-LR Sequential HAMOCC/constant values 10 000 1900 11 900 Ilyina et al. (2013)

MPI-ESM-MR Sequential HAMOCC/constant values 10 000 1500 11 500 Ilyina et al. (2013)

MRI-ESM1 Sequential GLODAP 550 395 945 Adachi et al. (2013)

(forced w/obs.)

NorESM Direct WOA2010, GLODAP 0 900 900 Tjiputra et al. (2013)

developed for the assessment of the impact of spin-up dura-

tion on the representation of biogeochemical structures. Im-

plications and recommendations are discussed in Sects. 4 and

5, respectively.

2 Methods

2.1 Model simulations

This study exploits in particular results from one simula-

tion performed with IPSL-CM5A-LR (Dufresne et al., 2013),

considered here to be representative of the likely behavior of

other CMIP5 Earth system models. Like other current gen-

eration of ESMs, IPSL-CM5A-LR combines the major com-

ponents of the climate system (Chap. 9, Table 9.1 of IPCC,

2013). The atmosphere is represented by the atmospheric

general circulation model LMDZ (Hourdin et al., 2006) with

a horizontal resolution of 3.75◦ × 1.87◦ and 39 levels. The

land surface is simulated with ORCHIDEE (Krinner et al.,

2005). The oceanic component is NEMOv3.2 in its ORCA2

global configuration (Madec, 2008). It has a horizontal res-

olution of about 2◦ with enhanced resolution at the equa-

tor (0.5◦) and 31 levels. NEMOv3.2 includes the sea-ice

model LIM2 (Fichefet and Maqueda, 1997), and the marine

biogeochemistry model PISCES (Aumont and Bopp, 2006).

PISCES simulates the biogeochemical cycles of oxygen, car-

bon and the main nutrients with 24 state variables. The

model simulates dissolved inorganic carbon and total alkalin-

ity (carbonate alkalinity+ borate+water) and the distribu-

tions of macronutrients (nitrate and ammonium, phosphate,

and silicate) and the micronutrient iron. PISCES represents

two sizes of phytoplankton (i.e., nanophytoplankton and di-

atoms) and two zooplankton size classes: microzooplank-

ton and mesozooplankton. PISCES simulates semi-labile dis-

solved organic matter, and small and large sinking particles

with different sinking speeds (3 and 50 to 200mday−1, re-

spectively). While fixed elemental stoichiometric C :N : P-

1O2 ratios after Takahashi et al. (1985) are imposed for

www.geosci-model-dev.net/9/1827/2016/ Geosci. Model Dev., 9, 1827–1851, 2016



1832 R. Séférian et al.: Inconsistent strategies to spin up models in CMIP5

these three compartments the internal concentrations of iron,

silica and calcite are simulated prognostically. The carbon

system is represented by dissolved inorganic carbon, alka-

linity and calcite. Calcite is prognostically simulated follow-

ing Maier-Reimer (1993) and Moore et al. (2002). Alkalinity

in the model system includes the contribution of carbonate,

bicarbonate, borate, protons, and hydroxide ions. Oxygen is

prognostically simulated. The model distinguishes between

oxic and suboxic remineralization pathways, the former re-

lying on oxygen as electron acceptor, the latter on nitrate.

For carbon and oxygen pools, air-sea exchange follows the

Wanninkhof (1992) formulation.

The model’s boundary conditions account for nutrient sup-

plies from three different sources: atmospheric dust depo-

sition for iron, phosphorus and silica (Jickells and Spokes,

2001; Moore et al., 2004; Tegen and Fung, 1995), rivers for

nutrients, alkalinity and carbon (Ludwig et al., 1996) and

sediment mobilization for sedimentary iron (de Baar and de

Jong, 2001; Johnson et al., 1999). To ensure conservation of

nitrogen in the ocean, annual total nitrogen fixation is ad-

justed to balance losses from denitrification. For the other

macronutrients, alkalinity and organic carbon, the conserva-

tion is ensured by tuning the sedimental burial to the total

external input from rivers and dust. In PISCES, an adequate

treatment of external boundary conditions has been demon-

strated to be essential for the accurate simulation of nutrient

distributions (Aumont and Bopp, 2006; Aumont et al., 2003).

Riverine carbon inputs induce a natural outgassing of carbon

of 0.6 PgC y−1 that has been shown to be essential to model

the inter-hemispheric gradient of atmospheric CO2 under a

preindustrial state (Aumont et al., 2001).

The core simulation used within this study is a 500-year

long coupled preindustrial run. It uses the same atmospheric,

land surface and ocean configurations as IPSL-CM5A-LR

(Dufresne et al., 2013) for which the marine biogeochem-

istry has been extensively evaluated (see, e.g., Séférian et al.,

2013, for modern-state evaluation). The only difference be-

tween the “standard” preindustrial simulation contributed to

CMIP5 and the present one is the initial conditions. While

the CMIP5 preindustrial simulation starts from an ocean cir-

culation after several thousand years of online physical ad-

justment, the present simulation starts from an ocean at rest

using the January temperature and salinity fields from the

World Ocean Atlas (Levitus and Boyer, 1994). Biogeochem-

ical state variables were initialized from data compilations or

climatologies as explained in the following section. Atmo-

spheric CO2 and other greenhouse gases, as well as natural

aerosols, were set to their 1850 preindustrial values. The sim-

ulation is extensively described in terms of ocean physics by

Mignot et al. (2013). Mignot and coworkers show that the

strength of the Atlantic meridional overturning circulation

and the Antarctic circumpolar current as well as the upper

300m ocean heat content stabilize after 250 years of simula-

tion.

Although the spin-up protocol used to conduct this 500-

year long simulation is not readily comparable to the one

used to produce the initial conditions for the CMIP5 prein-

dustrial simulation, its duration is greater than the median

length of online adjustment computed from the multiple

spin-up protocols applied during CMIP5 (∼ 395 years, Fig. 1

and Table 1). Besides, the methodology of initializing bio-

geochemical state variables from data fields is not broadly

employed by the various modeling groups that have con-

tributed to CMIP5. Despite the above-mentioned method-

ological shortcuts, we take this 500-year long preindustrial

simulation as a representative example of a spin-up protocol

given the diversity of approaches used by CMIP5 models.

2.2 Observations for initialization and evaluation

Two streams of data sets were used in this study. The first

stream combines data from the World Ocean Atlas 1994

(WOA94, Levitus and Boyer, 1994, and Levitus et al., 1993)

for the initialization of three-dimensional fields of temper-

ature and salinity, dissolved nitrate, silicate, phosphate and

oxygen, and data from GLODAP (Key et al., 2004) for prein-

dustrial dissolved inorganic carbon and total alkalinity. This

stream of data was chosen purposely in our experimental set-

up to be slightly different than the second stream of data,

World Ocean Atlas 2013 (WOA2013, Levitus et al., 2013),

the evaluation data set.

A second stream of data was used to compare modeled

biogeochemical fields. It includes up-to-date observed cli-

matologies of nitrate and oxygen from the WOA2013. This

database is based on samples collected since 1965, and in-

cluding data more recently collected than that made use

of in WOA94. For the concentrations of preindustrial dis-

solved inorganic carbon and total alkalinity, we still use

GLODAP. The second stream of data was selected to be as

close as possible to the “standard” evaluation procedure of

skill-assessment protocols found in CMIP5 model reference

papers (Adachi et al., 2013; Arora et al., 2011; Collins et

al., 2011; Dunne et al., 2013; Ilyina et al., 2013; Lindsay et

al., 2014; Romanou et al., 2013; Séférian et al., 2013, 2016;

Tjiputra et al., 2013; Vichi et al., 2011; Volodin et al., 2010;

Watanabe et al., 2011; Wu et al., 2013). Differences between

these two streams of data are minor and are further detailed

below.

2.3 Approach and statistical analysis

To quantify the impacts of a large diversity of spin-up pro-

cedures on the representation of biogeochemical fields in

CMIP5, we employ a three-fold approach.

1. The 500-year long spin-up simulation described in

Sect. 2.1 is used to determine the influence of the spin-

up procedure on the representation of biogeochemical

fields in IPSL-CM5A-LR.
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2. In the next step, relationships between biases in mod-

eled fields, model–data mismatches and the duration of

the spin-up simulation are identified across the CMIP5

ensemble. For this step, drifts in biogeochemical fields

are determined from the first century of the preindustrial

simulation (referred to as piControl) of each CMIP5

ESM.

3. Finally, the ensembles of industrial-revolution to

present-day simulation (referred to as historical) from

each available CMIP5 ESM are used to estimate the

impact of these drifts in biogeochemical fields on the

ability of models to replicate modern observations. For

a given model, we use the ensemble average of the

available “historical” members if several realizations

are available.

For this purpose, several statistical skill score metrics are

computed following Rose et al. (2009) and Stow et al. (2009)

from model fields interpolated on a regular 1◦ grid and to

fixed depth levels. The skill score metrics are (1) the glob-

ally averaged concentrations for overall drift; (2) the error or

bias between modeled and observed fields at each grid cell;

(3) spatial correlation between model and observations to as-

sess mismatches between modeled and observed large-scale

structures; (4) the root-mean squared error (RMSE) to assess

the total cumulative errors between modeled and observed

fields. These statistical metrics are computed at different

depth levels, but for clarity we focus on surface, 150m (ther-

mocline) and 2000m (deep) levels. These statistical metrics

were chosen among those described in the literature, because

they proved to yield the most indicative scores for tracking

model errors or improvement along the various intercompar-

ison exercises (IPCC, 2013).

The drift is determined for either concentrations in simu-

lated biogeochemical fields or for skill score metrics (e.g.,

RMSE) using a linear regression fit over a time window

of 100 years. This time window of 100 years was chosen

as a trade-off between a longer time window (> 200 years)

that smoothes the drift signal and a shorter time window

(< 100 years) that introduces fluctuations due to internal vari-

ability and hence impacting the quality of the fit (see the as-

sessment performed with the millennial-long CMIP5 piCon-

trol simulation of IPSL-CM5A-LR in Fig. S1 in the Supple-

ment).

The drift is assumed to decrease exponentially during the

spin-up simulation and is described by a simple drift model:

drift(t) = drift(t = 0) × exp(−
1

τ
t) (1)

where τ is the relaxation time of the respective field at a given

depth level. It corresponds to the time required to nullify the

drift.

Our analyses focus on the global distribution of nitrate

(NO3), dissolved oxygen (O2) and the difference between to-

tal alkalinity and dissolved inorganic carbon (Alk-DIC).

The latter serves as an approximation of carbonate ion

concentration following Zeebe and Wolf-Gladrow (2001).

We use this approximation of the carbonate ion concentra-

tion rather than its concentration, [CO2−
3 ], since the latter

was poorly assessed in CMIP5 reference papers and was

not provided by a majority of ESMs. These three biogeo-

chemical tracers were chosen because (1) most current bio-

geochemical models simulate Alk, DIC, NO3 and O2 prog-

nostically and (2) they are frequently used in state-of-the-

art model performance assessment (e.g., Anav et al., 2013;

Bopp et al., 2013; Doney et al., 2009; Friedrichs et al., 2009,

2007; Stow et al., 2009), and (3) DIC and Alk are both used

as “master tracers” for the carbonate system in the ocean

biogeochemistry models (while [CO2−
3 ], e.g., is not explic-

itly transported as a tracer with the velocity fields but diag-

nosed from temperature, salinity, DIC, Alk, [H+], and pCO2

when needed). Modeled distributions of NO3, O2 and Alk-

DIC reflect the representation of biogeochemical processes

related to the biological pump (CO2, NO3, O2), the air-sea

gas exchange and ocean ventilation (CO2 and O2), as well as

carbonate chemistry (Alk-DIC). These biogeochemical pro-

cesses are of particular relevance for investigating the impact

of climate change on marine productivity (e.g., Henson et al.,

2010), ocean deoxygenation (e.g., Gruber, 2011; Keeling et

al., 2009) and the ocean carbon sink, processes for which fu-

ture projections with the current generation of ESMs yield

large inter-model spreads (e.g., Friedlingstein et al., 2013;

Resplandy et al., 2015; Séférian et al., 2014; Tjiputra et al.,

2014).

3 Results

3.1 Comparison of observational data sets

Our review of spin-up protocols for CMIP5 ESM shows that

several modeling groups have employed different streams

of data sets to initialize their biogeochemical models (e.g.,

WOA1994, WOA2001), while model evaluation relies on

the most up-to-date stream of data. To investigate the dif-

ferences between the two data streams used for initializing

and assessing, respectively, NO3 and O2 concentrations are

analyzed. Table 2 summarizes the RMSE and correlation be-

tween WOA1994 and WOA2013 for these two biogeochem-

ical fields.

Table 2 indicates that differences between the two streams

of data are fairly small. The total difference (RMSE) repre-

sents a departure between 5 to 10% from the global average

concentrations of WOA2013 across depth levels. It is gen-

erally lower in regions where the sampling density has not

increased markedly between the two releases. These values

can be used as a baseline for model-to-model comparison

assuming that errors attributed to the various sources of ini-

tialization cannot be larger than 10%. Considering that some

models have used outputs from previous model simulations
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Table 2. Differences between the oxygen (O2, µmol L
−1) and nitrate (NO3, µmol L

−1) data sets used for initializing IPSL-CM5A-LR

(WOA1994) and the data sets used for assessing its performance (WOA2013).

O2 NO3

Depth Surface 150m 2000m Surface 150m 2000m

RMSE 7.19 8.75 5.50 2.07 2.90 2.08

R2 0.98 0.98 0.99 0.96 0.92 0.94

or globally averaged concentrations as initial conditions, we

acknowledge that this baseline is not a perfect criterion for

benchmarking model performance. There is, however, no

ideal solution to address this issue since there is no stan-

dardized set of initial conditions in CMIP5 except some rec-

ommendations for the decadal prediction exercise in which

specific attention was paid to initialization (e.g., Keenlyside

et al., 2008; Kim et al., 2012; Matei et al., 2012; Meehl et

al., 2013, 2009; Servonnat et al., 2014; Smith et al., 2007;

Swingedouw et al., 2013).

3.2 Equilibration state metrics in IPSL-CM5A-LR

The global mean sea surface temperature (SST) is a com-

mon metric to quantify the energetic equilibrium of the

model. This metric has been widely used in various papers

referenced in this study to determine the equilibration of

ESM physical components. Figure 2a shows the evolution

of this metric during the 500-year long spin-up simulation.

The global average SST sharply decreases during the first

250 years of the simulation. In the last 250 years of the simu-

lation, the global averaged SST displays a small residual drift

of ∼ −10−4 ◦Cy−1, which falls into the range of the drifts

reported for CMIP5 ESMs (Sen Gupta et al., 2013). The evo-

lution over the last 250 years is comparable to those of other

physical equilibration metrics, such as the ocean heat con-

tent or the meridional overturning circulation (Mignot et al.,

2013).

To assess if ocean carbon cycle reservoirs are equili-

brated, we track the temporal evolution of sea-to-air CO2

fluxes during the spin-up simulation. This metric was used in

phase 2 of the Ocean Carbon Model Intercomparison Project

(OCMIP-2; Orr, 2002) and has still widely been used dur-

ing CMIP5 as an equilibration metric for the marine biogeo-

chemistry. Figure 2b presents its evolution in the 500-year

long spin-up simulation. The global ocean sea-to-air CO2

flux is ∼ −0.7 PgC y−1 over the last decades of the spin-up

simulation (negative values indicate ocean CO2 uptake).

We use the range of values estimated from preindustrial

natural ocean carbon flux inversions (e.g. Gerber and Joos,

2010, or Mikaloff Fletcher et al., 2007) to evaluate the global

sea-to-air carbon flux simulated by IPSL-CM5A-LR. Since,

these estimates do not account for the preindustrial car-

bon outgassing induced by the river input, while our model

does, we have added a constant outgassing of 0.45 PgC y−1

to the range of 0.03± 0.08 PgC y−1 (Mikaloff Fletcher et

al., 2007). This value of 0.45 PgC y−1 corresponds to the

global open-ocean river-induced carbon outgassing accord-

ing to IPCC (2013) or Le Quéré et al. (2015). Consequently,

in our modeling framework, the target value of the global

sea-to-air carbon flux ranges between 0.4 and 0.56 PgC y−1.

Figure 2b shows that the global sea-to-air carbon flux

is still lower than the range of values estimated from

preindustrial natural ocean carbon flux inversions (∼ 0.4–

0.56 PgC y−1). Besides, Fig. 2b shows that the drift in the

global sea-to-air carbon flux becomes smaller more slowly

after a strong decline during the first 50 years of the

spin-up simulation. From year 250–500 this drift is about

0.001 PgC y−2 and still weaker over the last century of the

simulation (7× 10−4 PgC y−2). A one-sided t-test indicates

that the two drifts differ from each other with a p value < 2×

10−16. When fitted with drifts computed from overlapping

time segments of 100 years, our simple drift model (Eq. 1)

gives a relaxation time of around 160 years. We use this re-

laxation time and the drift of 7× 10−4 PgC y−2 to estimate

the additional spin-up time required for the model to reach

an outgassing of 0.4–0.56 PgC y−1, as 1100 to 1300 years.

However, even after this integration time, the drift in global

sea-to-air carbon flux estimated with our simple drift model

still ranges from 2× 10−7 to 7× 10−7 PgC y−2.

These estimates do not account for the non-linearity of the

ocean carbon cycle and the associated process uncertainties

(Schwinger et al., 2014), and hence potentially underestimate

the time required to equilibrate the ocean carbon cycle and

sea-to-air carbon fluxes in the range of inversion estimates.

The drift of 0.001 PgC y−2 is, however, much smaller than

the oceanic sink for anthropogenic carbon. Even if not fully

equilibrated in terms of carbon balance, it is likely that this

run would have given consistent estimates of anthropogenic

carbon uptake in transient historical hindcasts.

3.3 Temporal evolution of model errors in

IPSL-CM5A-LR

Figure 3 shows the temporal evolution of globally aver-

aged concentrations for O2, NO3 and Alk-DIC at the sur-

face (Fig. 3a, b and c), 150m (Fig. 3d, e and f) and 2000m

(Fig. 3g, h, and i). Globally averaged concentrations of O2,

NO3 and Alk-DIC (solid lines) reach steady state after 100 to

250 years of spin-up at the surface. While modeled nominal

Geosci. Model Dev., 9, 1827–1851, 2016 www.geosci-model-dev.net/9/1827/2016/



R. Séférian et al.: Inconsistent strategies to spin up models in CMIP5 1835
S

e
a

 s
u

rf
a

c
e

 t
e

m
p

e
ra

tu
re

 [
°C

]

(a)

1
7

.0
1

7
.5

1
8

.0

Time [yr]

O
c
e

a
n

 c
a

rb
o

n
 f

lu
x
 [

P
g

 C
 y

-1
]

(b)

1 50 100 150 200 250 300 350 400 450 500

−
3

−
2

−
1

0
1

Figure 2. Time series of two climate indices over the 500-year spin-up simulation of IPSL-CM5A-LR. They represent the globally averaged

sea surface temperature (a) and the global mean sea-air carbon flux (b). For sea-air carbon flux, negative value indicates uptake of carbon.

Steady state equilibrium of physical components as described in Mignot et al. (2013) is reached at∼ 250 years and is indicated with a vertical

dashed line. Drifts in sea surface temperature and global carbon flux are indicated with dashed blue lines. They are computed using a linear

regression fit over years 250 to 500. Hatching on panel (b) represents the range of inverse modeling estimates for preindustrial global carbon

flux as described in Mikaloff Fletcher et al. (2007), i.e., 0.03± 0.08 plus 0.45 PgC y−1 corresponding to the riverine-induced natural CO2
outgassing outside of near-shore regions consistently with Le Quéré et al. (2015).

values for O2 concentration converge toward the observed

concentration (i.e., 172.3 µmol L−1), that of NO3 presents

persistent deviations from WOA2013. At the surface, the

convergence of the simulated oxygen to observed values is

expected since the dominant governing process of thermody-

namic saturation (through the air-sea gas exchange) is well

understood and modeled. The deviation in surface NO3 high-

lights uncertainty related to near surface biological processes

and upper ocean physics. Below the surface, concentrations

of biogeochemical tracers drift away from the globally av-

eraged concentrations computed from WOA2013 or GLO-

DAP (Fig. 3d–i). At 150 and 2000m, the drift in global aver-

aged concentrations for these fields, computed over the last

250 years, is still significant with p < 10−4 (Table 3). Ex-

cept for the surface fields, Fig. 3 shows that RMSE, indicated

with dashed lines in Fig. 3, globally increases with time for

all biogeochemical fields. The linear drift in RMSE over the

last 250 years of the spin-up simulation falls within the 2–

3%ky−1 range at the surface. It is much larger at 2000m

(144–280%ky−1 ; Table 3). This is also the case regionally,

because the latitudinal maximum in RMSE (RMSEmax) is

similar to the global RMSE. Table 3 also shows that the mag-

nitude of drift in RMSE for O2, NO3 and Alk-DIC differs at

a given depth as different processes affect the interior distri-

bution of these biogeochemical fields.

3.4 Evolution of geographical mismatches in

IPSL-CM5A-LR

To further explore the evolution of mismatch in biogeochem-

ical distributions, we analyze differences (ε) between sim-

ulated and observed fields of O2 and NO3 from WOA2013

and Alk-DIC from GLODAP after the initialization and at

the end of the spin-up, i.e., the first year and the last year of

the core spin-up simulation performed with the IPSL-CM5A-

LR model (Figs. 4, 5 and 6).

Figure 4a, c, e shows that surface concentrations of bio-

geochemical fields are associated with small biases at initial-

ization. This error represents less than 5% of the observed

surface concentrations for O2, NO3 and Alk-DIC and reflects

the weak difference between the data stream employed for

initialization and validation. After 500 years of spin-up, de-

viations between the modeled and observed fields at the sur-

face have increased locally by up to ∼ 40% (Fig. 4b, d, and

f). The largest deviations are found in high-latitude oceans

for O2 and NO3 and also to some extent in the tropics for

NO3 and Alk-DIC.
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Figure 3. Time series of globally averaged concentration (in solid lines) and globally averaged root-mean squared error (RMSE in dashed

lines) for dissolved oxygen (O2), nitrate (NO3) and difference between alkalinity and dissolved inorganic carbon (Alk-DIC) as simulated

by IPSL-CM5A-LR. Globally averaged concentration and RMSE are given at surface (a, b, c), 150m (d, e, f), and 2000m (g, h, i) for

these three biogeochemical fields. Their values are indicated on the left-side and right-side y axis, respectively. Hatching represents the ±σ

observational uncertainty due to optimal interpolation of in situ concentrations around the observed globally averaged concentration.
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Table 3. Drift in %ky−1 for oxygen (O2), nitrate (NO3) and total alkalinity minus DIC (Alk-DIC) at surface, 150 and 2000m as simulated

by the IPSL-CM5A-LR model. The drift has been computed over the last 250 years of the spin-up simulation using a linear regression fit of

the globally averaged concentrations, root-mean squared error (RMSE) and latitudinal maximum root-mean squared error (RMSEmax) with

respect to the values at year 250.

O2 NO3 Alk-DIC

Metrics Mean RMSE RMSEmax Mean RMSE RMSEmax Mean RMSE RMSEmax

Surf −0.2 2.6 55.8 −0.1 −0.1 34.2 1.6 −0.1 −0.1

150m 3.4 39.0 31.5 −15.9 33.4 55.2 6.1 27.9 24.7

2000m −30.4 144.3 −40.1 2 51.8 −34.8 −69.6 281.8 47.5

Figure 4. Snapshots of spatial biases, ε, in surface concentrations (µmol L−1) in biogeochemical fields during the 500-year spin-up simulation

of IPSL-CM5A-LR. ε in dissolved oxygen (O2), nitrate (NO3) and difference between alkalinity and dissolved inorganic carbon (Alk-DIC)

is given for the first year (a, c, e, respectively) and for the last year of spin-up simulation (b, d, f, respectively).

Below the surface, distributions of modeled biogeochem-

ical fields compare well to the observations at 150m at ini-

tialization with averaged errors close to zero (Fig. 5a, c, and

e). This result was expected since WOA2013 and WOA1994

differ little at these depth levels. Subsurface distributions at

initialization strongly contrast with the concentrations that

resulted from 500 years of spin-up (Fig. 5b, d, and f). Af-

ter 500 years of spin-up, substantial mismatches character-

ize the distribution of O2, NO3 and Alk-DIC fields in the

high-latitude oceans and in the tropics. Figure 5 illustrates

that patterns of errors for O2, NO3 and Alk-DIC fields are

well correlated with each other (R > 0.6). This reflects that

in PISCES carbon, nitrogen and oxygen concentrations are

linked by the elemental C :N : -1O2 stoichiometry fixed in

space and time. Figure 6 shows that model–data deviations at

2000m have substantially increased at a regional level after

500 years of simulation, showing large errors in the Southern

Hemisphere oceans. This appears clearly in Fig. 6d and f for

NO3 and Alk-DIC fields, respectively.

The temporal evolution of the RMSE between modeled

and observed fields of O2, NO3 and Alk-DIC over the whole

water column is presented in Fig. 7 in terms of RMSE

(Fig. 7a–c). As expected, Fig. 7 illustrates that there is a good

match during the first years of simulation for all biogeochem-

ical fields at all depth levels with low RMSE. After a few

centuries, patterns of error evolve differently across depth for

O2, NO3 and Alk-DIC.

The temporal evolution of RMSE shows that patterns of er-

ror have reached a steady state a few decades after 250 years

of spin-up within the upper hundred meters of the ocean but

continue to evolve at greater depths, even after 500 years.

Patterns of errors within the thermocline and upper 1000m

water masses evolve relatively fast (within a few centuries)

due to the relatively short mixing time in the upper ocean.

Mid-depth (∼ 1500–2500m) RMSE evolves much slower

because of the slow ocean circulation at these depth levels.

Characteristic timescales here are thousands of years as ev-

idenced by the observed radiocarbon age of seawater (e.g.,
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Figure 5. As Fig. 4 but for concentrations at 150m. Note that color shading does not represent the same amplitude in spatial biases as in

Figs. 4 and 6.

Figure 6. As Fig. 4 but for concentrations at 2000m. Note that color shading does not represent the same amplitude in spatial biases as in

Figs. 4 and 5.

Wunsch and Heimbach, 2007, 2008). This explains why, at

the end of the spin-up simulation, two maxima of compara-

ble amplitude are found for RMSE at 150 and 3750m for O2

and at 50 and 3800m for Alk-DIC (Fig. 7).

3.5 Drifts in IPSL-CM5A-LR spin-up simulation

With the evolution of the RMSE established, we can use

the simple drift model (Eq. 1) to determine the relaxation

time, τ , which characterizes the e-folding timescale of the

RMSE. To use this simple drift model, we compute the drift

in RMSE determined from time segments of 100 years dis-

tributed evenly every 5 years from year 250 to 500 for O2,

NO3 and Alk-DIC tracers. The drift model (magenta lines in

Fig. 8) is fitted to the 80 drift values for each field and each

depth level (colored crosses in Fig. 8).

The simple drift model fits well the evolution of the drift

in RMSE for the biogeochemical variables along the spin-up

simulation of IPSL-CM5A-LR (Fig. 8). Correlation coeffi-

cients are mostly significant at 90% confidence level (r∗ =
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Figure 7. Temporal–vertical evolution in root-mean squared error (RMSE) for biogeochemical tracers during the 500-year long spin-up

simulation of IPSL-CM5A-LR. The RMSE is given for (a) dissolved oxygen O2, (b) nitrate NO3 and the (c) difference between alkalinity

and dissolved inorganic carbon Alk-DIC.

0.3 determined with a student distribution with significance

level of 90% and ∼ 15 effective degrees of freedom esti-

mated with the formulation of Bretherton et al., 1999), except

for NO3 at surface and Alk-DIC at 150 and 2000m. Another

exception is found for NO3 at 150m where the drift does not

correspond to an exponential decay of the drift as function

of time. The large confidence interval of the fit indicates that

the fit would have been considered as non-significant given a

longer spin-up simulation or a higher confidence threshold.

When significant, estimates of τ for O2 RMSE are ≈ 90,

564 and 1149 y at the surface, 150 and 2000m, respectively.

These values match reasonably well τ estimated for NO3

RMSE at 2000m (1130 y) and those for Alk-DIC RMSE at

surface and 2000m (137 and 1163 y). However, these esti-

mates are sensitive to the time windows used to compute

the drift. For a subset of time windows between 100 and

250 years by step of 50 years, τ estimates for O2 RMSE are

≈ 114± 67, 375± 140 and 1116± 527 y at the surface, 150

and 2000m depth. These large uncertainties associated with

τ estimates are essentially due to the length of the spin-up

simulation. A longer spin-up simulation would improve the

quality of the fit (see Fig. S1).

3.6 Drifts in CMIP5 ESM preindustrial simulations

In this subsection, the analysis is extended to the CMIP5

archive. We focus on oxygen fields in the long preindustrial

simulation, piControl, for the 15 available CMIP5 ESMs.

From these simulations that span from 250 to 1000 years,

we compute the drift in O2 RMSE across depth from several

time segments of 100 years distributed evenly every 5 years

from the beginning until the end of the piControl simula-

tion. These drifts are used as a surrogate for drift computed

from the spin-up of each model since such simulations are

not available through the data portal.

Figure 9 represents the drift in O2 RMSE vs. the spin-up

duration for each CMIP5 ESM. The analysis shows that the

drift in O2 RMSE differs substantially between models. For a

given model, drifts in other biogeochemical tracers (NO3 and

Alk-DIC) display similar features (not shown). The between-

model differences in drift are not surprising since there are

no reasons for different models to exhibit similar drift for

a given field. Yet, Fig. 9 shows that a global relationship

emerges from this ensemble when using the simple drift

model to fit the drift in O2 RMSE as a function of the spin-up

duration (solid green lines in Fig. 9). With a 90% confidence

level, this relationship suggests a general decrease in the drift

as a function of spin-up duration for all depth levels. At the

surface and at 2000m depth, the quality of fits is low, with

correlation coefficients of about 0.4. These are however sig-

nificant at the 90% confidence level (r∗ = 0.34 determined

with a student distribution with a significance level of 90%

and 15 models as a degree of freedom). The weakest correla-

tion coefficient is found for the fit at 150m depth and hence

indicates that there is no link between the drift in O2 RMSE

and the duration of the spin-up simulation. This low signif-

icance level must be put into perspective given the large di-

versity of spin-up protocols and initial conditions (Fig. 1 and

Table 1) that can deteriorate the drift–spin-up duration rela-

tionship in this ensemble of models.

The drift vs. spin-up duration relationship established

from the 15 CMIP5 ESMs is nonetheless consistent with the

results obtained with IPSL-CM5A-LR (the results in Fig. 8

have been reported in Fig. 9 with magenta crosses). Indeed,

the drifts in RMSE decrease in the course of time at the var-

ious depth levels for the IPSL-CM5A-LR model, although

their magnitudes differ. This difference in magnitude is not

surprising if one considers that drift is highly model and pro-

tocol dependent and that the length of the IPSL-CM5A-LR

spin-up simulation is potentially too short to determine ac-

curate estimates of the long-term drift in O2 RMSE. Despite

these differences, our analyses show that a relationship be-

tween the drift in O2 RMSE vs. the spin-up duration emerges

www.geosci-model-dev.net/9/1827/2016/ Geosci. Model Dev., 9, 1827–1851, 2016
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Figure 8. Temporal evolution of drift in root-mean squared error (RMSE) for dissolved oxygen (O2, blue crosses), nitrate (NO3, green

crosses) and difference between alkalinity and dissolved inorganic carbon (Alk-DIC, orange crosses) during the 500-year long spin-up

simulation of IPSL-CM5A-LR. Drift in RMSE is given at surface (a, b, c), 150m (d, e, f), and 2000m (g, h, i) for these three biogeochemical

fields. Drift in RMSE is computed from time segments of 100 years beginning every 5 years from the beginning until year 400 of the spin-up

simulation for O2, NO3 and Alk-DIC tracers. The best-fit regressions between drifts in RMSE and spin-up duration over year 250 to 500

are indicated in solid magenta lines; their 90% confidence intervals are given by thin dashed envelopes. Least square correlation coefficients

are tested against a one-tailed t-test with significance level of 90% and ∼ 15 effective degrees of freedom estimated with the formulation of

Bretherton et al. (1999); ∗ indicates if a given least square correlation coefficient passes the test.
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Figure 9. Scatterplot of drifts in root-mean squared error (RMSE) in O2 concentration vs. the duration of the spin-up simulation for the

available CMIP5 Earth system models. Drifts in O2 RMSE are respectively given for surface (a), 150m (b) and 2000m (c) for oxygen

concentrations. Drift in O2 RMSE is computed from several time segments of 100 years beginning every 5 years from the beginning until

the end of the piControl simulation for the available CMIP5 models. Colored symbols indicate the mean drift in O2 RMSE, while vertical

lines represent the associated 90% confidence interval. The best-fit regressions between models’ mean drifts in RMSE and spin-up duration

are indicated as solid green lines; their 90% confidence intervals are given by thin dashed envelopes. Fits are assumed robust if correlation

coefficients are significant at 90% (i.e., r∗ > 0.34). For comparison, drift in O2 RMSE from our spin-up simulation with IPSL-CM5A-LR

(Fig. 8) are represented by magenta crosses.
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from an ensemble of models and is broadly consistent with

our theoretical framework of a drift model established from

the results of the IPSL-CM5A-LR model (Fig. 8).

3.7 Impact of the drift on model skill score assessment

metrics across CMIP5 ESMs

In the following, we investigate the influence of model drift

on skill score assessment metrics that are routinely used to

benchmark model performance. For this purpose, we use the

ensemble-mean O2 RMSE as a metric to assess the distance

between the biogeochemical observations and model results.

For this purpose, we compute O2 RMSE from each ensemble

member of the CMIP5 models averaged from 1986 to 2005

with respect to WOA2013 observations. The model–data dis-

tance is then determined for each CMIP5 model using the

mean across the available ensemble members.

The left-hand side panels of Fig. 10 present the perfor-

mance of available CMIP5 models in terms of distance to

oxygen observations at the surface, 150 and 2000m, respec-

tively. In these panels, the various CMIP5 models are or-

dered as function of their distance to the oxygen observa-

tions. Following Knutti et al. (2013), either the ensemble

mean or the ensemble median is used to identify groups of

models with similar skill within the CMIP5 ensemble. The

left-hand side panels of Fig. 10 show that the ability of mod-

els to reproduce oxygen observations varies across depth lev-

els. The RMSE in the simulated O2 fields in CESM1-BGC,

HadGEM2-ES, HadGEM2-CC, GFDL-ESM2M,MPI-ESM-

LR and MPI-ESM-MR is generally smaller than the en-

semble mean or ensemble median RMSE across the var-

ious depth levels (Fig. 10a, b and c). On the other side

of the ranking, CMCC-CESM, CNRM-CM5, CNRM-CM5-

2, IPSL-CM5B-LR and NorESM1-ME exhibit RMSE gen-

erally higher than the ensemble mean and median RMSE

across the various depth levels. The other models, i.e.,

CNRM-ESM1, GFDL-ESM2G, IPSL-CM5A-LR and IPSL-

CM5A-MR display O2 RMSE that is generally close to the

ensemble mean or the ensemble median.

To assess the impact of model’s drift inherited from the

diversity of spin-up strategies (Fig. 1 and Table 1) on the per-

formance metrics, we use a simple additive assumption to

incorporate an incremental error due to the drift, 1RMSE,

to the above-mentioned RMSE. This incremental error due

to the drift is computed using the relaxation time τ deter-

mined from the piControl simulations of each CMIP5 model

at each depth level (Eq. 1 and Fig. 9) and a common duration

of T = 3000 years for all models (m):

1RMSEm(z) =

T∫

0

driftm(z, t = 0) × exp(−
1

τ(z)
t)dt (2)

where 1RMSE has the same unit as RMSE.

The common duration T is used to bring model drift close

to zero and hence to make models comparable to each other.

We employ 1RMSE to penalize the distance from the ob-

servations assuming that this drift-induced deviation in tracer

fields can be added to RMSE. This means that the effect

of the penalty is to increase the distance giving a consistent

measure of the equilibration error.

The right-hand side panels of Fig. 10 show the influence of

this penalization approach on the model ranking at the var-

ious depth levels. They show that several models have been

upgraded in the ranking while others have not. For exam-

ple, both MPI-ESM-LR, MPI-ESM-MR have been upgraded

at the surface and 2000m. On the other hand, the rank of

HadGEM2-ES and HadGEM2-CC has been downgraded to

the 5th and 3rd position due to the large drift in surface oxy-

gen concentrations in comparison to that of the other mod-

els. The surface drift might be attributed to drivers in oxy-

gen fluxes (e.g., SST, SSS). The ranking of GFDL-ESM2G

and GFDL-ESM2M slightly changes with penalization but

both models stay close to the ensemble mean or the ensem-

ble median. At the bottom of the ranking, models with large

deviation from the oxygen observations (i.e., CMCC-CESM,

IPSL-CM5B-LR, NorESM1-ME, CNRM-CM5) are found.

For these models, the computed 1RMSE and RMSE result

in similar ranking, because even a small drift and hence rela-

tively low1RMSE cannot compensate for their large RMSE.

4 Discussion

4.1 Implications for biogeochemical processes

Our results show that errors in ocean biogeochemical fields

amplify during the spin-up simulation but not at the same rate

at all depths. These differences in error evolution are consis-

tent with an increasing contribution of biogeochemical pro-

cesses in setting the distribution of tracers at depth. Indeed,

Mignot et al. (2013) with the same model simulation showed

that the main physical climate fields as well as the large-scale

ocean circulation reach quasi-equilibrium after 250 years of

spin-up, but our analyses indicate that biogeochemical trac-

ers do not (Fig. 3).

Besides, our analysis demonstrates that drifts in biogeo-

chemical fields are highly model dependent. For example,

despite having the same initialization strategy and compa-

rable spin-up duration, the GFDL-ESM2G, GFDL-ESM2M,

and NorESM1-MEmodels display considerable difference in

drift (Figs. 9 and 10) that mirror large differences in model

performance and properties (e.g., resolution, simulated pro-

cesses).

The identification of the dynamical or biogeochemical

processes responsible for these errors is not within the scope

of this study and would require (or “would have required”)

additional long simulations with additional tracers targeted

for attribution of the various biogeochemical processes and

the underlying ocean physics (e.g., Doney et al., 2004) in-

volved (e.g. using abiotic, passive tracers as suggested in

Geosci. Model Dev., 9, 1827–1851, 2016 www.geosci-model-dev.net/9/1827/2016/
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Figure 10. Rankings of CMIP5 Earth system models based on the standard and penalized version of the distance from oxygen observations.

The standard distance metric is calculated as the ensemble-mean root-mean squared error (RMSE) for O2 concentrations at surface (a),

150m (b) and 2000m (c). The penalized distance metric incorporates drift-induced changes in O2 RMSE (1RMSE) into O2 RMSE at

surface (d), 150m (e) and 2000m (f). Ensemble-mean RMSEs are calculated using available ensemble members of Earth system model

oxygen concentrations averaged over the 1986–2005 historical period relative to WOA2013 observations. 1RMSE is determined using

Eq. (2) and fits derived from the first century of the CMIP5 piControl simulations. Solid red and magenta lines indicate the multi-model

mean standard and penalized distance from O2 observations, respectively. With the same color pattern, dashed lines are indicative of the

multi-model median for the standard and penalized distance from O2 observations.

Walin et al., 2014). Some mechanisms can be nonetheless

invoked to explain differences or similarities in behavior be-

tween biogeochemical fields. For example, the evolution of

surface concentrations for O2 and Alk-DIC is controlled in

part by the solubility of O2 and CO2 in seawater and the

concentration of these gases in the atmosphere (set to the

observed values and kept constant in all experiments per-

formed with IPSL-CM5A-LR discussed here) and the bio-

logical soft-tissue and calcium carbonate counter pumps (in

relation with the vertical transport of nutrients and alkalin-

ity). Therefore, the equilibration of the O2 and Alk-DIC sur-

face fields once the physical equilibrium is to a large de-

gree reached (∼ 250 years of spin-up) is expected (Figs. 3a, c

and 7). Nevertheless, spatial errors could increase depending

on the physical state of the model (Fig. 4b and f). By con-

trast, the evolution of NO3 concentration is predominantly

determined by ocean circulation, biological processes, and

to a lesser extent by external supplies from rivers and atmo-

sphere. Below the surface, concentrations of O2, NO3, and

Alk-DIC evolve in response to the combined effect of ocean

circulation and biogeochemical processes. The combination

of dynamical and biogeochemical processes on the one hand,

and the spin-up strategy on the other hand both shape the

modeled distributions of large-scale biogeochemical tracers.

Consequences of the difficulty in achieving the correct

equilibration procedure have important implications for bio-

geochemical features that are defined by regional charac-

teristics in tracer concentrations, such as high nutrient/low

www.geosci-model-dev.net/9/1827/2016/ Geosci. Model Dev., 9, 1827–1851, 2016
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chlorophyll regions, oxygen minimum zones and nutrient-to-

light colimitation patterns. This point is illustrated by recent

studies focusing on future changes in phytoplankton produc-

tivity (e.g., Vancoppenolle et al., 2013, and Laufkötter et al.,

2015). Vancoppenolle and co-workers report a wide spread

of surface mean NO3 concentrations (1980–1999) in the Arc-

tic with a range from 1.7 to 8.9 µmol L−1 across a subset of

11 CMIP5 models. The spread in present-day NO3 concen-

trations translates into a large model-to-model uncertainty in

future net primary production. Laufkötter et al. (2015) de-

termined limitation terms of phytoplankton production for a

subset of CMIP5 and MAREMIP (Marine Ecosystem Model

Intercomparison Project) models. The authors demonstrate

that nutrient-to-light colimitation patterns differ in strength,

location and type between models and arise from large dif-

ferences in the simulated nutrient concentrations. Although

Vancoppenolle et al. (2013) and Laufkötter et al. (2015) ex-

plain a part of the difference in simulated nutrient concen-

tration by the differences in the spatial resolution and the

complexity of the models, the authors of both studies qualita-

tively invoked differences in spin-up duration to explain the

remaining differences in simulated concentrations. Besides,

a recent assessment of interannual to decadal variability of

ocean–atmosphere CO2 and O2 fluxes in CMIP5 models,

suggests that decadal variability can range regionally from

10 to 50% of the total natural variability among a subset of

6 ESMs (Resplandy et al., 2015). In that study, the authors

demonstrate that, despite the robustness of driving mecha-

nisms (mostly related to vertical transport of water masses)

across the model ensemble, model-to-model spread can be

related to differences in modeled carbon and oxygen con-

centrations. In light of present results, it appears likely that

differences in spin-up strategy and sources of initialization

could also contribute to the amplitude of the natural variabil-

ity of the ocean CO2 and O2 fluxes.

4.2 Implications for future projections

The inconsistent strategies used to spin up models in CMIP5

have resulted in a significant source of uncertainty to the

multi-model spread. It needs to be better constrained in order

to draw robust conclusions on the impact of climate change

on the carbon cycle as well as on climate feedback (e.g.,

Arora et al., 2013; Friedlingstein et al., 2013; Roy et al.,

2011; Schwinger et al., 2014; Séférian et al., 2012) and on

marine ecosystems (e.g., Bopp et al., 2013; Boyd et al., 2015;

Cheung et al., 2012; Doney et al., 2012; Gattuso et al., 2015;

Lehodey et al., 2006). So far, the most frequently used ap-

proach relies on long preindustrial control simulations run-

ning parallel to a transient simulations, allowing the “re-

moval” of the drift in the simulated fields over the historical

period or future projections (e.g., Bopp et al., 2013; Cocco

et al., 2013; Friedlingstein et al., 2013, 2006; Frölicher et

al., 2014; Gehlen et al., 2014; Keller et al., 2014; Steinacher

et al., 2010; Tjiputra et al., 2014). Although this approach

allows one to determine relative changes, it does not allow

one to investigate the underlying reasons for the spread be-

tween models in terms of processes, variability and response

to climate change. The “drift-correction” approach, much as

the one used for this study, assumes that drift-induced er-

rors in the simulated fields can be isolated from the signal of

interest. Verification of this fundamental hypothesis would

require a specific experimental set-up consisting of the per-

turbation of model fields (e.g., nutrients or carbon-related

fields) to assess by how much the model projections would

be modified. So far, several modeling groups have gener-

ated ensemble simulations in CMIP5 using a perturbation

approach. However, the perturbations were applied either to

physical fields only or to both the physical and marine bio-

geochemical fields. To assess impacts of different spin-up

strategies and/or initial conditions on future projections of

marine biogeochemical tracer distributions, ensemble sim-

ulations in which only biogeochemical fields are perturbed

would be needed.

4.3 Implications for multi-model skill-score

assessments

While the importance of spin-up protocols is well accepted in

the modeling community, the link between spin-up strategy

and the ability of a model to reproduce modern observations

remains to be addressed.

Most of the recent CMIP5 skill assessment approaches

were based on historical hindcasts that were started from

preindustrial runs of varying duration and from various spin-

up strategies. Therefore, in typical intercomparison exer-

cises, Earth system models with a short spin-up, and hence

modeled distributions still close to initial fields, are con-

fronted with Earth systemmodels with a longer spin-up dura-

tion and modeled distributions that have drifted further away

from their initial states. Our study highlights that such incon-

sistencies in spin-up protocols and initial conditions across

CMIP5 Earth system models (Fig. 1 and Table 1) could

significantly contribute to model-to-model spread in perfor-

mance metrics. The analysis of the first century of CMIP5

piControl simulations demonstrated a significant spread of

drift between CMIP5 models (Fig. 9). An approximate ex-

ponential relationship between the amplitude of the drift and

the spin-up duration emerges from the ensemble of CMIP5

models, which is consistent with results from IPSL-CM5A-

LR. For example, while the global average root-mean square

error increased up to 70% during a 500-year spin-up sim-

ulation with IPSL-CM5A-LR, its rate of increase (or drift)

decreased with time to a very small rate (0.001 PgC y−2.

Combining a simple drift model and this relationship, we

propose a penalization approach in an effort to assess more

objectively the influence of documented model differences

on model–data biases. Figure 10 compares the standard ap-

proach to assessing model performance (left-hand side pan-

els) to the drift-penalized approach (right-hand side panels).
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This novel approach penalizes models with larger drift with-

out affecting the models with smaller drift. Taking into ac-

count drift in modeled fields results in subtle adjustments in

ranking, which reflect differences in spin-up and initializa-

tion strategies.

4.4 Limitations of the framework

In this work, the analyses focus on the globally averaged O2

RMSE across a diverse ensemble of CMIP5 models, which

differ in terms of represented processes, spatial resolution

and performance in addition to differences in spin-up pro-

tocols. Major limitations of the framework are presented be-

low.

Due to their specificities in terms of processes and resolu-

tion (e.g., Cabré et al., 2015; Laufkötter et al., 2015), regional

drift in CMIP5 models may differ from the drift computed

from globally averaged skill-score metrics (see Figs. S2 and

S3). These differences may lead to different estimates of the

relaxation time τ at a regional scale. Moreover, the combina-

tion of regional ocean physics and biogeochemical processes

in each individual model may drive an evolution of a regional

drift in RMSE that does not fit the hypothesis of an exponen-

tial decay of the drift during the course of the spin-up simu-

lation.

Besides, a difference in the simulated processes and reso-

lution in the different models can explain the relatively low

confidence level of the fit to drift across the multi-model

CMIP5 ensemble (Fig. 9). The relatively low significance

level of the fit reflects not only the large diversity of spin-up

protocols and initial conditions (Fig. 1 and Table 1), but also

the large diversity of processes and resolution of the CMIP5

models. Indeed, as shown in Kriest and Oschlies (2015), var-

ious parameterizations of the particle sinking speed in a com-

mon physical framework may lead to a similar evolution of

the globally averaged RMSE in the first century of the spin-

up simulation but display very different behavior within a

timescale of O(103) years. As such, drift and τ estimates

need to be used with caution when computed from short spin-

up simulations because they can be subject to large uncer-

tainties. An improved derivation of the penalization would

require access to output from spin-up simulations for each

individual model or, at least, a better quantification of model–

model differences in terms of initial conditions.

5 Conclusions and recommendation for future

intercomparison exercises

Skill-score metrics are expected to be widely used in the

framework of the upcoming CMIP6 (Meehl et al., 2014)

with the development of international community bench-

marking tools like the ESMValTool (http://www.pa.op.dlr.de/

ESMValTool; see also Eyring et al., 2015). The assessment of

model skill to reproduce observations will focus on the mod-

ern period. Complementary to this approach, our results call

for the consideration of spin-up and initialization strategies in

the determination of skill assessment metrics (e.g., Friedrichs

et al., 2009; Stow et al., 2009) and, by extension, in model

weighting (e.g., Steinacher et al., 2010) and model ranking

(e.g., Anav et al., 2013). Indeed, the use of equilibrium-state

metrics of the model like the three-dimensional drift of rel-

evant skill-score metrics (e.g., RMSE) could be employed

to increase the reliability of these traditional metrics and, as

such, should be included in the set of standard assessment

tools for CMIP6.

In an effort to better represent interactions between ma-

rine biogeochemistry and climate (Smith et al., 2014), fu-

ture generations of Earth system models are likely to include

more complex ocean biogeochemical models, be it in terms

of processes (e.g., Tagliabue and Völker, 2011; Tagliabue et

al., 2011) or interactions with other biogeochemical cycles

(e.g., Gruber and Galloway, 2008) or increased spatial reso-

lution (e.g., Dufour et al., 2013; Lévy et al., 2012) in order to

better represent mesoscale biogeochemical dynamics. These

developments will go along with an increase in the diversity

and complexity of spin-up protocols applied to Earth system

models, especially those including an interactive atmospheric

CO2 or interactive nitrogen cycle (e.g., Dunne et al., 2013;

Lindsay et al., 2014). The additional challenge of spinning-

up emission-driven simulations with interactive carbon cycle

will also require us to extend the assessment of the impact

of spin-up protocols to the terrestrial carbon cycle. Processes

such as soil carbon accumulation, peat formation as well as

shift in biomes such as tropical and boreal ecosystems for dy-

namic vegetation models require several long timescales to

equilibrate (Brovkin et al., 2010; Koven et al., 2015). In ad-

dition, the terrestrial carbon cycle has large uncertainties in

terms of carbon sink/source behavior (Anav et al., 2013; Dal-

monech et al., 2014; Friedlingstein et al., 2013), which might

affect ocean CO2 uptake (Brovkin et al., 2010). A novel nu-

merical algorithm to accelerate the spin-up integration time

for computationally expensive ocean biogeochemical mod-

els has emerged (Khatiwala, 2008), which could help to dis-

entangle physical from biogeochemical contributions to the

inter-model spread, but at the same time, could also poten-

tially complicate the determination of inter-model spread by

increasing the diversity of spin-up protocols.

To evaluate the contribution of variable spin-up and ini-

tialization strategies to model performance, these should be

documented extensively and the corresponding model out-

put should be archived. Ideally, for future coupled model in-

tercomparison exercises (i.e., CMIP6, CMIP7, Meehl et al.,

2014), the community should agree on a set of simple rec-

ommendations for spin-up protocols, following past projects

such as OCMIP-2. In parallel, any trade-off between model

equilibration and computationally efficient spin-up proce-

dures has to be linked with efforts to reduce model errors

due to the physical and biogeochemical parameterizations.
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The Supplement related to this article is available online
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