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Marine reserves lag behind wilderness
in the conservation of key functional roles
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& Laurent Vigliola2

Although marine reserves represent one of the most effective management responses to

human impacts, their capacity to sustain the same diversity of species, functional roles and

biomass of reef fishes as wilderness areas remains questionable, in particular in regions with

deep and long-lasting human footprints. Here we show that fish functional diversity and

biomass of top predators are significantly higher on coral reefs located at more than 20 h

travel time from the main market compared with even the oldest (38 years old), largest

(17,500 ha) and most restrictive (no entry) marine reserve in New Caledonia (South-Western

Pacific). We further demonstrate that wilderness areas support unique ecological values

with no equivalency as one gets closer to humans, even in large and well-managed

marine reserves. Wilderness areas may therefore serve as benchmarks for management

effectiveness and act as the last refuges for the most vulnerable functional roles.
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T
he establishment of protected areas for cultural and
resource purposes is longstanding and universal in the
history of humankind1, with current global coverage of

12.7% on land but only 7.2% for the marine realm2. Marine
reserves, that is, no-take Marine Protected Areas (MPAs)3, are
widely recognized as effective conservation tools supporting
greater biodiversity and biomass, up to several orders
of magnitude, than nearby exploited areas4 and providing
socio-economic benefits, even beyond their boundaries2,3,5,6.
However, most marine reserves are embedded in regions with
deep and long-lasting human footprints, or are typically
established in response to degradation7. Thus, even the best
marine reserves, that is, those cumulating key features4 (old, large
and no entry), may only partially restore impacted ecosystems or
provide limited benefits and may thus underestimate
conservation targets to measure management effectiveness.

Pre-human impact should be considered as a baseline for
assessing degradation and restoration effectivness8,9. Yet, for
some taxa such as fishes, past data are limited regarding biomass
and other key metrics such as functional diversity that represents
the breadth of roles played by species on which ecosystem
functioning depends10. As an alternative, the last wilderness areas
in the ocean, far from human influences, may provide the most
accurate baselines7,11 to assess both the level of degradation and
marine reserve restoration effectiveness. However, wilderness
areas, owing to their isolation, may possess particular fauna,
habitats and environments that may bias comparisons with
distant marine reserves or exploited areas. Thus, the extent to
which marine reserves can achieve the same ecological value as
wilderness areas remains unknown, in particular for critical
aspects that regulate the functioning of coral reef ecosystems such
as the biomass of top predators12 and herbivores13,14 or the level
of functional diversity15.

New Caledonia (South-Western Pacific) offers a unique
opportunity to test whether marine reserves can achieve the
same ecological value as wilderness areas, as, at a regional scale
and for a given species pool, there is (i) a strong gradient of
human influence from the capital city market of the island
(Noumea, 98,000 inhabitants), (ii) a large variety of restrictions
ranging from traditionally managed areas to long established
(up to 38 years) and large (up to 175 km2) no-entry marine
reserves, and (iii) extensive surveys (1,833 underwater visual
censuses) of fish communities on coral reefs (Fig. 1). Here we
modelled the ‘pure’ effect of isolation from human influence,
through the travel time from the market16,17, for six
complementary metrics of fish community structure (total
biomass, biomass of top predators and herbivores, species
richness, functional richness and biomass-weighted functional
diversity) by decoupling the influence of confounding natural
variables (Methods). We then characterized the shape (saturating
or not and potential thresholds) of these modelled relationships
to delimit wilderness areas, if any, in New Caledonia. Finally,
we tested whether marine reserves can reach the same ecological
value as wilderness areas or whether some particular functional
roles are lacking. We show that the levels of the six fish
community metrics only saturate beyond a threshold of 20 h
travel time from the market. In comparison with those wilderness
areas, even the most effective marine reserve has 3.5 times lower
biomass of apex predators and misses some key functional roles
such as mobile top predators.

Results
Drivers of fish community structure. Using 11 explanatory
variables related to coral reef environment, geography,
geomorphology, habitat and human influence, boosted regression

tree (BRT) models, which are able to cope with interactions and
nonlinear relationships18, explained between 40 and 70% of
the variance (cross-validation, CV) in the 6 fish community
metrics across the 1,626 transects surveyed outside marine
reserves (Supplementary Table 1, 15–49% of explained
deviance). The relative contributions of these explanatory
variables (Supplementary Figs 1 and 2) revealed that human
influence, determined here by travel time from the market, was
strongly associated with all community metrics, in particular
functional richness (44%), that is, the breadth of fish functional
roles (Methods). This result points out that, in the absence of
fishing restrictions, the isolation of coral reefs from humans and
market influence is primarily shaping fish community structure
beyond total biomass alone16,17.

Species richness was also influenced by live coral cover and
depth, confirming the importance of habitat characteristics for
the diversity of fishes hosted by coral reefs19–21. Beyond isolation,
total biomass and biomass of herbivores were also driven by sea
surface temperature (SST) in accordance with metabolic theory
that predicts an increase in the metabolic rate of organisms with
increasing temperature, especially for herbivores22,23. The
directions of the relationships between all environmental
variables and each of the six fish community metrics are
presented in Supplementary Table 2.

Effect of isolation. To better examine how isolation shapes fish
community structure, we extracted the ‘pure’ marginal effect of
travel time from the market on each community aspect and
selected the best model representing each relationship (Methods).
The sigmoid model was consistently selected (Supplementary
Table 3), highlighting that all community metrics increased
nonlinearly with increasing isolation until reaching a saturating
plateau after 20 h travel time from the market, which we con-
sidered as delimitation for wilderness in New Caledonia (Fig. 2).

Top predator biomass and functional richness showed the
steepest increase (69.3 and 60.6% differences, respectively) along
the entire gradient of isolation (that is, from areas close to the
market towards wilderness areas). In comparison, species
richness and biomass-weighted functional diversity were weakly
influenced by isolation, with a difference of 16.9 and 10.5%,
respectively. The inflexion point on the sigmoid curves,
marking the maximum increase, varied depending on the
community aspect; biomass rose faster (6.5 h for total fish
biomass) than biodiversity (21.5 h for fish functional diversity)
along the isolation gradient. This highlights that key ecological
functions are still missing even after total biomass reaches
its maximum.

Although care should be taken in generalizing these thresholds
to define wilderness, they may serve as a guide for other
developed countries with strong fishing pressure in the water-
surrounding populated areas, yet with well enforced restrictions
on their exclusive economic zone and remote reefs. Travel time
from the market is also somehow integrating local human
density, as, in our case, they are closely related, albeit only
between 0 and 9 h travel time whatever the buffer size (between
10 and 100 km) considered to estimate population density
(Supplementary Fig. 3a,c). This implies that fish biomass and
biodiversity are certainly impacted by both local human
population and economic drivers such as proximity to market.
However, their relative contributions are difficult to disentangle
within the range of 9 h of travel time in our study. Yet, after a
certain degree of isolation, distal human pressure such as the
influence of the main market is still present even if there is no
local human population surrounding the reef. This explains our
choice to consider travel time from the market as a more
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continuous and integrative proxy of human pressure than human
density17.

Comparisons along a large human gradient. We then compared
the levels of the six fish community metrics among six categories
of areas as follows: (i) the best marine reserve (38 years old, no
entry, large with 17,500 ha and well enforced); (ii) small marine

reserves (o5 km2); (iii) traditionally managed areas o5 h travel
time; (iv) isolated traditionally managed areas (19 h travel time);
(v) exploited areas (o3 h travel); and (vi) wilderness areas
(420 h travel) (Fig. 3). The different categories had significantly
different levels of fish biomass and biodiversity (Po0.001)
(Supplementary Table 4). The biomass of top predators showed
the most remarkable difference among categories, being 3.5 times
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Figure 1 | Location of study areas in New Caledonia. Sites were located at the outer reef, back reef, lagoon reef or fringing reef depending on the locations
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greater in wilderness areas (median, 35 g m� 2) compared with
any other area, including the best marine reserve (median,
10 g m� 2), even when controlling for environmental, geographic,
geomorphologic and habitat variables (Supplementary Figs 4 and 5,
and Supplementary Table 4). Total biomass and biomass of her-
bivores were also greater in wilderness areas than in the best
marine reserve, albeit not significantly different (Fig. 3a,c). Fish
biomass, and in particular that of top predators, in the wilderness
areas of New Caledonia was similar or higher to those previously
reported in the most isolated Indo-Pacific reefs (Chagos Archipe-
lago11, Hawaiian Archipelago24, Cocos Island25 or Line Islands26),
supporting these baseline levels at least in the Indo-Pacific.

Functional richness was not significantly different between
wilderness and isolated traditionally managed areas (Fig. 3d). The
levels of species richness and biomass-weighted functional
diversity were very similar between wilderness areas, marine
reserves and isolated traditionally managed areas (Fig. 3b,f). At
the opposite end of the gradient, small marine reserves showed

higher levels for all fish community metrics than exploited or
small traditionally managed areas (o5 h), albeit nonsignificantly.
Small marine reserves close to the market never achieved the
same ecological value as isolated areas for any fish community
metric. In contrast, the large and isolated traditionally managed
areas (19 h) showed comparable levels of fish community
structure to wilderness, except for the biomass of top predators,
which was significantly higher in the latter category (Fig. 3e).

The levels of fish biomass and biodiversity within marine
reserves are often related to their size, age, restrictions and
isolation from human populations4,27. Larger marine reserves
tend to better protect fishes with large home ranges, but
ecological recovery after strict closure to fishing can range from
20 to 40 years28,29. Here, the best marine reserve, possessing four
out of five key features for conservation effectiveness (old, large,
enforced and no entry)4, should be considered close to a historical
unfished baseline. The level of biomass in this marine reserve
(around 1,200 kg ha� 1) is comparable to other highly effective
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marine reserves in coral reef ecosystems11. Yet, its fish functional
richness, although being higher than in smaller and younger
marine reserves, still lags behind the level observed in large and
isolated traditionally managed areas or in wilderness areas, with
some key functional groups absent. In particular, the biomass of
top predators in the best marine reserve is less than half that
observed in wilderness areas (Fig. 3e) even after controlling for
confounding variables (Supplementary Figs 4 and 5). Conversely,
this best marine reserve and the large, isolated and traditionally
managed areas are similar to wilderness areas for conserving
biomass of other functional groups such as herbivores, which may
play an essential role in the prevention of phase shifts from coral
to algal-dominated states13,14. Herbivore biomass is low in fished
areas, as they are heavily targeted by fishers in New Caledonia30.
Smaller marine reserves only reach 28 and 27% of herbivore
biomass found in wilderness areas and in the best reserve,
respectively (Fig. 3c).

Missing fish functional roles in MPAs. To highlight which fish
functional roles are missing in exploited areas, marine reserves
and traditionally managed areas compared with wilderness areas,

we built a two-dimensional functional space to examine species
according to their ecological traits31 (Fig. 4 and Supplementary
Fig. 6). Fish communities in wilderness areas filled a larger
volume, corresponding to a larger breadth of functional roles,
than fish communities in marine reserves, traditionally managed
areas or exploited areas. The common volume filled by at least
50% of the fish communities, representing the breadth of core
functions present in a given area, drastically increased (from 10 to
76%) (Supplementary Table 5) with isolation from the market,
suggesting that many functional roles are consistently missing in
most fish communities, even in the best marine reserve. For
example, mobile top predators, such as jacks, were only common
in large, isolated and traditionally managed areas and wilderness
areas (Fig. 4d,g). The proximity of marine reserves to highly
populated places (o3 h of travel time) and the absence of deep
geographical barrier (that is, sandy areas 425 m depth), which
may act as a natural protection against fishing4, might explain the
absence of mobile top predators in the largest and oldest marine
reserve compared with wilderness areas. These fishes are highly
targeted outside marine reserves and probably need large areas to
sustain healthy populations32. High fishing pressure close
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Figure 3 | Human influence on six fish community metrics for six different categories of areas. Boxplot distributions of (a) total biomass (B), (b) species

richness (S), (c) herbivores biomass (B Herb.), (d) functional richness (FRic), (e) apex predator biomass (B APEX) and (f) biomass-weighed functional

diversity (Rao Entropy) for fish communities in fished areas at o3 h from the main market (red), in the small no-take marine reserves at o1 h from the

main market, in the large, old and no-entry marine reserve at o2 h from market, in traditionally managed areas at o5 h travel time, isolated traditionally

managed areas (19 h travel time) and in areas located at 420 h from the main market (blue) (Supplementary Fig. 4). Biomasses were log transformed. The

median values across fish communities sampled in wilderness areas (420 h) for these metrics were considered as benchmarks and were set at the

maximum possible value (100%) (right y axis). Coloured horizontal bars indicate the clusters of areas after a post-hoc Kruskal–Wallis test, the red bars

indicate areas with fish community metrics similar to those in exploited areas (o3 h), blue bars indicate areas with fish community metrics similar to those

in wilderness areas (420 h) and grey bars indicate areas with similar intermediate values for fish community metrics (Supplementary Table 3).
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to populated places can have negative effects within even
well-enforced marine reserves. Conversely, large invertivores
and sedentary top predators (for example, large groupers) were
common in wilderness areas but also in the best marine reserve
and isolated traditionally managed areas. This suggests that most
of crucial ecosystem functions can be maintained through a range
of fisheries restrictions33.

Discussion
The contrasts observed between wilderness areas and fished areas
or marine reserves are probably conservative and may be
even more pronounced in the developing world where MPAs
have fewer key features (for example, fewer restriction and
degraded habitats)4,34 and where fishing pressure is higher35.
In addition, our results are conservative, as wilderness areas of
New Caledonia were sampled between 2012 and 2013, whereas
most of exploited areas were sampled in the 1980s and 1990s.
As human impacts tend to increase through time in all
ecosystems across the world (B57% population growth
between 1986 and 2013 in New Caledonia, mainly at Noumea),
we suggest that levels of fish biodiversity and biomass in the past
were at least as high as those observed in 2013 in wilderness areas
and certainly lower in 2013 than in the past for exploited areas.
Thus, the observed contrasts in our results would have been even
more pronounced if all fish communities were sampled
synchronously in 2013.

By examining the structure of fish communities along a
gradient of isolation and protection, we highlight the nested
and complementary effectiveness of wilderness, marine reserves
and traditionally managed areas in conserving the breadth of
functional roles played by fishes on coral reefs. Old and large
marine reserves can be effective in sustaining high biomass of key
groups such as herbivores, but wilderness areas are essential for
preserving viable populations of large mobile predators that
support unique roles in the functioning of marine ecosystems
through trophic regulation and nutrient transfer across habitats36.
Traditionally managed areas, if sufficiently large and isolated, can
also sustain biomass and biodiversity levels comparable to
wilderness areas. Small marine reserves in highly populated
areas can only sustain a small fraction of the whole fish
community present in wilderness areas. However, these small
no-take marine reserves located in human-dominated areas can
provide recreational and educational benefits37, and can also
serve as seedling cradles to enhance population recovery after
disturbance38.

Wilderness areas are too rare on earth to replace marine
reserves but should be considered as benchmarks, after
controlling for confounding variables, for measuring
management effectiveness and as the last sanctuaries for the
most vulnerable functional roles. The decline of large
mobile predators may be partly compensated for only by
wilderness areas through larval dispersal and adult spillover into
fished areas39.

Methods
Study sites. New Caledonia is located in the South Pacific, B1,200 km off eastern
Australia (Fig. 1). This archipelago comprises a main high island, the ‘Grande
Terre’, the Loyalty Islands and several smaller islands. The ‘Grande Terre’ is
surrounded by one of the largest barrier reef systems in the world (24,000 km2)40.
One third of the human population lives along the shore of the southwest lagoon
where Noumea, the main city (B98,000 people) is located (www.isee.nc). Human
density is very high around Noumea (2,135 people per km2) compared with the
remainder of the country (o5 people per km2) (www.isee.nc).

Coral reef management in New Caledonia. As MPAs considered here are all no
take, we adopt the terminology of ‘marine reserve’ for no-take MPAs (category I
IUCN) to avoid confusion with areas where management allows fishing3. Marine

reserves managed by provincial administrations cover B42,000 ha41. Many other
areas along the coast are managed traditionally (taboo areas) by local tribes and are
coined as traditionally managed areas.

Fishing and collection of resources are prohibited in marine reserves (no take),
but access is open, except in the ‘Yves Merlet’ marine reserve where only scientists
with special authorization are allowed (IUCN category Ia)41.

Three kinds of managed areas were included in the study (Fig. 1): (i) the large,
old and no-entry marine reserve ‘Yves Merlet’ (38 years old, 17,500 ha); (ii) small,
no-take marine reserves (‘Lagon Sud’, 21 years old, o700 ha); and (iii) six
traditionally managed areas.

Survey methodology. Reef fishes and the associated coral reef habitats were
surveyed from 1986 to 2013 across New Caledonia, spanning B5� latitude and
B9.5� longitude. Data were collected along 1,833 underwater visual transects
located from highly populated (2,135 people Per km2) to isolated and uninhabited
sites. There was no temporal replication.

The main reef types (biotope) were included: (1) sheltered coastal reef, (2)
lagoon reef, (3) inner barrier reef and (4) outer reef. For each reef, transects were
performed on both the reef flat and slope, when feasible. Transects were oriented
parallel to the depth contour between 0 and 15 m42.

Distance-sampling underwater visual census (D-UVC)43 technique was used to
survey finfishes along 50-m-long transects in selected sites. Briefly, this method
involved two divers, where each diver recorded the species, abundance, body length
and distance perpendicular to the transect line of each fish or group of fish, while
swimming slowly down the line43.

The minimum distance at which individuals are recorded is potentially
influenced by the level of human pressure in the zone (repulsion in exploited
sites and attraction in remote sites). With fixed transect width, fish density
can be underestimated due to repulsion in exploited sites and overestimated in
remote sites44–47.

In wilderness areas, the median distance per transect at which individuals
(410 cm) were observed is 4 m and even 3 m for the most isolated areas. In the
meantime, the median distance in fished areas close to the market could reach up
to 7 m (Supplementary Fig. 7a,c).

Individuals o10 cm represented 8.5% of the total individuals and this density
was constant along the human gradient (Supplementary Fig. 7b).

To decrease the bias due to diver attraction and repulsion, D-UVC data sets
were truncated at a distance of 7 m on each side of transects. This incorporated
B95% of sighted commercially important species and all top predators, allowing
for the calculation of abundance, biomass and diversity over a 700-m2 area
(2 sides� 7 m width� 50 m long) (Supplementary Fig. 7e,f).

Species density and biomass. Sharks and rays were removed from the main
species list due to the difficulties in assessing their occurrence and abundance with
D-UVC48.

This study focused on 352 species of commercially important teleost fish species
(33 families) (Supplementary Table 6). Top predators (69 species) were
characterized by trophic level 44 (ref. 49). Trophic levels were obtained from
FishBase for each species50. Herbivorous species (89 species) were split into
herbivore–detritivore and macroalgal feeders, and invertebrate sessile feeders.

Species richness was estimated as the number of species per 700 m2 transect.
The biomass of individual fishes was estimated using the allometric

length–weight conversion: W¼ aTLb, where parameters a and b are species-
specific constants, TL is the individual total fork length in cm and W is the weight
in g51. Biomass was log-transformed for statistical analyses.

Fish functional traits. We characterized fishes using six functional traits linked to
diet and feeding behaviour52: (1) maximum size, (2) diet, (3) mobility, (4) position
over the reef, (5) activity and (6) gregariousness52,53. Fish size was coded using six
ordered categories: 0–7, 7.1–15, 15.1–30, 30.1–50, 50.1–80 and 480 cm. Mobility
was coded using three ordered categories: sedentary (including territorial species),
mobile within a reef and mobile between reefs. Activity period was coded using
three ordered categories: diurnal, both diurnal and nocturnal, and nocturnal.
Schooling was coded using five ordered categories: solitary, pairing or living in
small (3–20 individuals), medium (20–50 individuals) or large (450 individuals)
groups. Vertical position in the water column was coded using three ordered
categories: benthic, bentho-pelagic and pelagic. Diet was characterized based on
main items consumed by each species, which resulted into seven trophic categories:
herbivorous–detritivorous (that is, fish feeding on turf or filamentous algae and/or
undefined organic material), macroalgal herbivore (that is, fishes eating large
fleshy algae and/or seagrass), invertivores targeting sessile invertebrates
(that is, corals, sponges and ascidians), invertivores targeting mobile invertebrate
(that is, benthic species such as crustaceans), planktivorous (that is, fishes eating
small organisms in the water column), piscivores (including fishes and
cephalopods) and omnivores (that is, fishes for which both vegetal and animal
material are important in their diet)52,54.

Fish functional space. Pairwise functional distances between species were
computed using the Gower distance, which allows mixing different types of
variables, while giving them equal weight55. A Principal Coordinates Analysis was
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then performed using this functional distance matrix and the first four principal
axes were retained to build a multidimensional functional space31,56.

Functional diversity. We used two functional diversity indices that are known to
be linked to community assembly and ecosystem processes57:

Functional Richness for each community was measured as the volume inside the
convex hull occupied by species of the community31,56. Functional Richness was
computed using the presence/absence data only. It represents the breadth of trait
ranges in the community and can be considered as a proxy for the diversity of roles.

Biomass-weighed functional diversity58 (Rao’s quadratic entropy):

Qa ¼
XS

i¼1

XS

j¼1

dijpipj ð1Þ

where dij is the functional distance between the i-th and the j-th species (Gower
distance) and pi and pj are the relative local biomass of the i-th and the j-th species,
respectively.

The Rao entropy considers both biomass distribution among species and
pairwise functional distances between species. It measures the extent of
dissimilarity in a community between two randomly chosen species from a
community57,59,60. The Rao entropy is not trivially related to species richness, as it
is both dependent on the biomass of species and their functional distinctness,
which may decrease or increase with the addition of species61. If a new species
entering the community is highly functionally dissimilar but has a low biomass, the
Rao entropy will not increase substantially. This is a conservative measure of
functional diversity, with the main ecological assumption being that functional
groups with low biomass should not contribute substantially to ecosystem
processes whatever their functional traits.

We applied the correction derived from equivalent numbers of species60:

RaoEq: ¼ 1
1�Qa

ð2Þ

The equivalent number is the number of maximally functionally distinct species
having equal biomass, which produces maximal entropy59,60.

The Rao equivalent number of species is an unbiased measure of the Rao
entropy.

Explanatory variables. We examined the relationships between the six fish
biodiversity indices and key environmental and human variables hypothesized to
influence the conditions of reef fish communities in New Caledonia at multiple
spatial scales.

Environmental variables: (i) reef area (km2) in a buffer radius (km) (Global
Distribution of Coral reefs 2010), collected from the United Nations Environment
Programme World Conservation Monitoring Centre (www.unep-wcmc.org) as a
measure of habitat availability and connectivity62,63. Three buffers were calculated to
take into account the ecological and evolutionary scales of connectivity. We used 3
and 30 km buffers63 as proxies of ecological connectivity and 600 km buffer as proxy
of evolutionary connectivity64. The Pearson correlation coefficients between the
three reef surface variables range from 0.1 to 0.3; (ii) mean depth (m); (iii) live coral
cover (%); (iv) reef type (fringing, lagoon, inner barrier reef and outer reef); (v) slope
(slope or reef flat area to consider habitat stratification and interactions with
species42); (vi) longitude and latitude; (vii) weekly average SST (1998–2008 in a 5-km
pixel) to consider the geographic extent and the temperature gradient in the study
area (temperature AVHRR (Advanced Very High Resolution Radiometer);
http://oceanwatch.pifsc.noaa.gov/). For each UVC transect, we calculated the
temperature within that pixel; (viii) island type65 with three categories: high island
(island without lagoon, including tectonically uplifted reefs, such as Lifou),
low island (island with a large lagoon such as ‘La Grande Terre’) and atoll
(no island, except reef islands, which are islands that are created by the accumulation
of reef sediments).

Human variables: we used minimum travel time to market (h) as a the main
driver of fishing pressure16,17 to model fish biodiversity and biomass. The major
market in New Caledonia is in the capital city of Noumea.

The travel time to Noumea indicates the proximity of the market and is a proxy
for fish market demand in New Caledonia66. Fish merchants drive 4–5 h each week
to the north of New Caledonia to buy reef fishes (B3 tons) and invertebrates from
fishers in local tribes (Pers. Com.). Fishes and invertebrates are then sold at the
Noumea market and in local supermarkets and restaurants.

Travel time by road between Noumea and the closest village from each transect
were retrieved using Google APIs application in R (XML and RCurl packages). For
islands, the travel time is the commercial boat trip duration if the islands are linked
by commercial routes. For transects not located on ‘La Grande Terre’ and more
than 50 km away from the first inhabited area, the travel time was computed
directly between Noumea and the transect using the average speed of a fishing boat
(10 nm h� 1). Travel times between the first inhabited areas and the transects were
computed using the average speed of a small boat (15 nm h� 1). The total travel
time between the transects and Noumea is the sum of the travel time between the
transects and the first inhabited areas, and the travel time between this inhabited
area and Noumea.

We also considered human population, through the human density in a 50-km
radius around each transect. As the transects were sampled between 1986 and 2013,
we rebuilt demography of New Caledonia from four population census years
(1989, 1996, 2004 and 2009) for the main cities and smaller known populated
locations (villages and tribes) (www.isee.nc). Transects were classified regarding the
closest census: (i) 1989 census: 1986–1992; (ii) 1996 census: 1995–1998; (iii) 2004
census: 2001–2005; and (iv) 2009 census: 2008–2013.

Collinearity exists between environmental and human variables. To avoid
confounding effects in the model, we tested relationships between explanatory
variables. Both travel time and human population were positively correlated
with latitude (Travel Time: r-Pearson¼ 0.47, Po0.0001; Human density:
r-Pearson¼ 0.67, Po0.0001). Latitude was significantly correlated with
both reef area in a 600-km buffer (r-Pearson¼ 0.5604, Po0.0001) and SST
(r-Pearson¼ 0.72, Po0.0001).

The number of inhabitants within a 50-km buffer (log) was correlated with travel
time (r-Pearson¼ � 0.87, Po0.0001) (Supplementary Fig. 3). To avoid confounding
effects of explanatory variables due to their correlation, we only kept SST and travel
time to market for analyses. The human indices based on the number of inhabitants
within a buffer may give the false impression that in transects with values close to
zero there is no human impact, whereas travel time to market is more integrative
with a distal human influence providing a more continuous assessment
(no threshold effect due to the buffer) (Supplementary Fig. 3).

Overall, we selected ten environmental and one human variables as follows: (i)
mean depth (m), (ii) live coral cover (%), (iii) reef type, (iv) the area of reef slope in
a 3-km radius, (v) the area of reef slope in a 30-km radius, (vi) the area of reef slope
in a 600-km radius, (vii) SST (�C), (viii) longitude, (ix) the slope and (x) the type of
island, and (xi) travel time (h) to market.

The final set of variables included into the models follow a 3-step process: (i) choice
of 11 environmental and 2 human variables hypothesized to influence the conditions
of reef fish communities in New Caledonia at multiple spatial scales; (ii) removal of
correlated variables to avoid confounding effects in the model. From this step, ten
environmental and one human variables were selected; (iii) simplification procedure
recommended by Elith et al.18to remove variables having o5% contributions to the
model. Between eight and nine explanatory variables were included in the final
simplified models depending of the biodiversity and biomass index.

Statistical analyses. To decouple the relative effects of environment, humans and
management on biodiversity, we used BRTs, which are able to cope with strongly
interacting factors and nonlinear relationships18. A low CV predictive deviance,
hence a high correlation coefficient from CV (CV R2) and a sufficient number of
trees (N trees) (41,000) are essential criteria to select a good BRT model18. To
address these criteria, we chose the optimal combination of tree complexity (tc),
learning rate (lr) and bag fraction (bf) as the one minimizing the out-of-bag
estimates of error rate with an N tree41,00018. In BRTs, contributions of each
explanatory variable (%) are the proportion of each variable selected to split the
data among all the trees, weighted by the squared improvement to the model as a
result of each split, and averaged over all trees18. The variables with the highest
percentage contributions are the most important variables contributing to the
model. We removed explanatory variables with o5% contributions to the model18

that explained the difference between the set of variables in the ‘full model’
(without simplifications) and the simplified model.

All BRTs were built in R (R Development Core Team 2011 version R version
2.15.2) using the gbm package version 1.6-3.1 and custom code available online18.
To test whether we missed some key variables, which are trivially related to the
geographic placement of transects, we performed spatial autocorrelation analyses
using the Moran’s index for the residuals of modelled biodiversity and biomass
components (results shown in Supplementary Fig. 8).

The ‘no-legislation’ model. To estimate the relative and pure effect of isolation on
each fish community aspect, we first fitted a ‘no-legislation’ BRT model using the 11
explanatory variables (live coral, depth, biotope, slope, type of island and reef area in
a 3, 30 or 600 km radius, SST, longitude and travel time to market) that may
influence the ecological values of reef fish communities and only the 1,626 transects
in areas where no management actions, whether from tribes or provinces, are applied.

Human marginal effect. The marginal effect of travel time to market on fish
biodiversity components was estimated after accounting for the average effects of
all other variables in the ‘no-legislation’ model18.

To characterize the relationship between each ecological aspect and human
influence, we compared four candidate models: a null model, a sigmoid model
(five-parameter logistic model67), a hyperbolic model and a power model. The
Akaike information criterion was used to compare models, whereby lower-valued
Akaike information criterion scores provided support for one model over another.

The linear model was not selected, as the infinite growth of biodiversity or
biomass metrics is not realistic as it is bounded by the regional species pool and
system carrying capacity. Raw relationships between travel time and fish
biodiversity and biomass components are shown in Supplementary Fig. 9.
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The ‘management’ model. To extract the ‘pure’ effect of management on
biodiversity components, a ‘Management’ explanatory variable was constructed
using the following classes of human influence (areas with no management at
o3, 3–5, 5–10, 10–20 and 420 h travel time from Noumea market) and four types
of management (no-take small marine reserve, no-entry large marine reserve,
traditional o5 h and traditional 19 h).

For each fish community aspect, a BRT model using 8 environmental and the
categorized ‘Management’ explanatory variables was built on the complete database
(1,833 transects) and the marginal effect of ‘Management’ was estimated after
accounting for the average effects of all other variables in the model.

We then compared the levels of fitted biomass and biodiversity among marine
reserves, traditionally managed areas and areas located at o3 h and at 420 h of
travel time using the Kruskal–Wallis non-parametric test and its associated
post-hoc pair-wise comparisons (letter-based representation68), as well as the non-
parametric effect size, which is the ratio of the z score from the pairwise Wilcoxon
test divided by the square-root of the number n of transects (r ¼ z=

ffiffiffi
n
p

)69. An
effect size o0.2 is considered small, o0.5 is moderate and 40.8 is large70.

Data availability. The data that support the findings of this study are available
from L.V. (laurent.vigliola@ird.fr) upon request.
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