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Abstract 

Background:  This work aimed at characterizing 12 isolates of the genus Tuber including Tuber melanosporum (11 
isolates) and Tuber brumale (one isolate). This was done using internal transcribed spacer (ITS) sequences, confirming 
their origin.

Results:  Analysis of their mating type revealed that both MAT1-1 and MAT1-2 exist within these isolates (with 3 and 
8 of each, respectively). We observed that each of these cultures was consistently associated with one bacterium 
that was intimately linked to fungal growth. These bacterial associates failed to grow in the absence of fungus. We 
extracted DNA from bacterial colonies in the margin of mycelium and sequenced a nearly complete 16S rDNA gene 
and a partial ITS fragment. We found they all belonged to the genus Rhodopseudomonas, fitting within different 
phylogenetic clusters. No relationships were evidenced between bacterial and fungal strains or mating types. Rhodop-
seudomonas being a sister genus to Bradyrhizobium, we tested the nodulation ability of these bacteria on a promis-
cuously nodulating legume (Acacia mangium), without success. We failed to identify any nifH genes among these 
isolates, using two different sets of primers.

Conclusions:  While the mechanisms of interaction between Tuber and Rhodopseudomonas remain to be elucidated, 
their interdependency for in vitro growth seems a novel feature of this fungus.
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Background
Truffles, hypogeous ascomycetes belonging to the genus 
Tuber, include ectomycorrhizal species of major socio-
economic interest. Some species, such as Tuber mela-
nosporum, Tuber magnatum and Tuber aestivum, are 
edible and have great market value. Production of truf-
fles depends on tree saplings (of species belonging to 
genera such as Quercus, Corylus and Tilia) appropriately 

inoculated with fungal inoculants, produced within tra-
ditional or industrial nurseries. Various forms of inocula 
may be used in these nurseries, ranging from soil under 
productive trees, through crushed fresh, deep frozen or 
dried fruit bodies (whole or as debris), to mycelial cul-
tures. Several authors have shown that it is possible to 
synthesize mycorrhizas with Tuber mycelial cultures 
(Chevalier and Frochot 1997; Sisti et al. 1998). However, 
Tuber species are generally difficult to isolate and culti-
vate in laboratory conditions, species like Tuber borchii 
(Barbieri et al. 2005), Tuber rufum, Tuber uncinatum and 
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Tuber macrosporum (Iotti et  al. 2002) being among the 
easiest.

At least for two species (T. magnatum and T. melano-
sporum) the long-standing question of whether Tuber 
species are homo- or heterothallic was recently solved 
with the identification of two mating type loci carry-
ing either MAT1-1-1 or MAT1-2-1 genes (Rubini et  al. 
2011). MAT1-1-1 and MAT1-2-1 encode a protein with 
an alpha domain, and a high-mobility DNA binding 
protein (HMG), respectively. In these species, sexual 
reproduction, which is necessary for fructification, only 
occurs between two different mating types. In fructi-
fication, each spore is of only one mating type, and the 
proportion of spores of each mating type is about 50 %. 
The gleba is from only one mating type, identical to that 
of all the ectomycorrhiza surrounding the fructification 
(Rubini et  al. 2011). Mating type identification is thus a 
major challenge on the way to mastering Tuber fructifica-
tion in the soil. Strain Mel28 of T. melanosporum, whose 
genome has been fully sequenced (Martin et  al. 2010), 
is of the MAT1-2-1 type. Having mycelial cultures rep-
resentative of different mating types would be of great 
interest both for lab experiments and plant tests.

Bacteria are known to be ubiquitously associated with 
ectomycorrhization (for the concept of mycorrhiza 
helper bacteria, see the review by Frey-Klett et al. 2007) 
and neither truffle ectomycorrhiza nor their fruit bod-
ies (Table 1) are exceptions. Recently, Mello et al. (2013) 
showed that “brûlés”—burnt areas around productive 
trees—of T. melanosporum markedly affected soil bacte-
rial communities. These bacteria may have various effects 
on Tuber mycelium growth, including inhibition and 

promotion. For example, one strain of Staphylococcus 
aureus has been shown to produce volatile organic com-
pounds potentially involved in T. borchii mycelial growth 
inhibition (Barbieri et al. 2005). Unexpected procaryotic 
functional activities like nitrogen fixation have been evi-
denced in ascocarps of T. magnatum by Barbieri et  al. 
(2010). Bacteria have been shown to participate in truffle 
aroma elaboration through the production of thiophene 
volatiles (Splivallo et al. 2015). In a recent paper, Benucci 
and Bonito (2016) observed by 454 pyrosequencing the 
dominance of the genus Bradyrhizobium within Tuber 
ascocarps of various geographic origins, but not in other 
truffle genera like Kalapuya, Terfezia or Leucangium.

However, information is still lacking on the character-
istics of mycelial cultures of T. melanosporum, including 
their associated bacteria. The aim of this study is to iden-
tify the bacterial strains associated with T. melanosporum 
and T. brumale in culture, as it could help to control 
mycelial isolation, to mass produce Tuber inoculum and 
to generate truffle productive saplings.

Methods
Isolation and culture of Tuber mycelium
Mycelia were originally isolated from ethanol-steri-
lized fruit bodies of T. melanosporum and T. brumale 
(Table  2), by axenically placing a piece of gleba on 
solid Maltea Moser medium, according to Chevalier 
(1972). All isolates were routinely subcultured on 2  % 
Cristomalt® (Difal, Seysses, France) agar medium (modi-
fied from Chevalier (1972), Maltea Moser being replaced 
by Cristomalt), at 25 °C in the dark. When necessary the 
antibiotics chloramphenicol, tetracycline, gentamicin and 

Table 1  Diversity of  bacterial genera characterized either  directly (“ascocarps”) or after  isolation from  ascocarps (“iso-
lates”) or mycelial cultures of different Tuber species in recent publications

Tuber ascocarp Dominant bacterial genera Bacterial DNA origin References

T. aestivum Pseudomonas, Raoultella Isolates Rivera et al. (2010)

T. borchii Cytophaga/Flexibacter/Bacteroides group Mycelial cultures Barbieri et al. (2000)

T. borchii Bradyrhizobium, rhizobia s.l., Pseudomonas Isolates and ascocarps Barbieri et al. (2005)

T. borchii Pseudomonas Isolates Bedini et al. (1999)

T. borchii Pseudomonas fluorescens, spore-forming Bacillaceae Isolates Citterio et al. (2001)

T. borchii Pseudomonas spp Isolates Sbrana et al. (2000)

T. gibbosum Bradyrhizobium, Rhizobium, etc. Ascocarps Benucci and Bonito (2016)

T. indicum Bradyrhizobium, Methylibium, etc. Ascocarps Benucci and Bonito (2016)

T. lyonii Bradyrhizobium, Polaromonas, etc. Ascocarps Benucci and Bonito (2016)

T. magnatum Sinorhizobium, rhizobia s.l., Bradyrhizobium, Pseudomonas Isolates and ascocarps Barbieri et al. (2007)

T. magnatum Bradyrhizobium Ascocarps Barbieri et al. (2010)

T. melanosporum Bradyrhizobium, Bacteroidetes (peridium) Ascocarps Antony-Babu et al. (2013)

T. melanosporum Bradyrhizobium, Polaromonas, etc. Ascocarps Benucci and Bonito (2016)

T. melanosporum Pseudomonas, Enterobacter Isolates Rivera et al. (2010)

T. oregonense Bradyrhizobium, Methylibium, etc. Ascocarps Benucci and Bonito (2016)
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streptomycin were individually added to the medium at 
concentrations routinely used in the lab for ectomycor-
rhizal mycelium cultivation, i.e., 50, 10, 10, and 80 mg l−1, 
respectively (Bâ et al. 2011).

Bacterial strain cultivation assays were attempted on 
yeast mannitol agar (YMA) medium (Vincent 1970), 
classically used for cultivating Bradyrhizobium and Rho-
dopseudomonas in the lab. Bacterial strains were named 
by placing B before the number of the fungal strain with 
which they were associated (e.g., BMel18 for the bacteria 
associated with the fungal strain Mel18).

Microscopic observations
Changes in mycelial and bacterial growth were fol-
lowed in Petri dishes examined with a Nikon AZ100 
microscope.

Molecular characterization
Total fungal DNA was extracted using REDExtract-
N-Amp polymerase chain reaction (PCR) kits (Sigma-
Aldrich, St. Louis, MO) according to the manufacturer’s 
instructions. Mycelium was confirmed as Tuber by analy-
sis of internal transcribed spacer (ITS) sequences using 
the highly conserved fungal rRNA gene primers ITS1F 
(Gardes and Bruns 1993) and ITS4 (White et  al. 1990) 
for PCR. Each PCR reaction (25  µl) contained 2  µl of 
template DNA, 1× Reaction Buffer (1.5  mM MgCl2), 
200 µM of each dNTP, 0.5 µM of each primer, 2× bovine 
serum albumin and 1 U of GoTaq® DNA polymerase 
(Promega Corporation, Madison, Wi). The PCR thermal 
protocol consisted of an initial 5  min denaturation step 
at 95 °C, 35 amplification cycles of 95 °C for 30 s, 52 °C 
for 1 min, 72  °C for 1 min, and a final extension step of 

72  °C for 10  min. After agarose gel electrophoresis, gel 
bands of the expected size were excised and PCR prod-
ucts were purified using Illustra GFX PCR DNA and Gel 
Band Purification Kit (GE Healthcare, UK). DNA was 
sequenced (Genoscreen, France) with the same primer 
ITS1F as used for PCR. Complementarily, Tuber mating 
types were determined by PCR with each of the pairs of 
primers dedicated to MAT1-1 and MAT1-2 according to 
Rubini et al. (2011).

Bacteria were characterized according to their nearly 
complete 16S rDNA sequences and their partial 16S-23S 
rRNA ITS. A loopful of bacterial cells, taken from the 
margin of the mycelial colony, was suspended in 20 µl of 
sterile water and cell debris removed by centrifugation at 
13,000  rpm for 1  min at room temperature; 2  µl of the 
supernatant was used as a template for PCR.

Amplification of the nearly complete 16S rDNA 
was performed for each bacterial strain using forward 
(FGPS6 5′-GGAGAGTTAGATCTTGGCTCAG-3′) and  
reverse (FGPS1509 5′-AAGGAGGGGATCCAGCCG 
CA-3′) primers (Normand et  al. 1992). Each PCR 
amplification was carried out in a 50-µl reaction tube 
containing 4  µl of bacterial DNA template, 1× Reac-
tion Buffer (1.5  mM MgCl2), 200  µM of each dNTP, 
0.8  µM of each primer, and 1.25 U of GoTaq® DNA 
polymerase (Promega Corporation, Madison, Wi), 
with the following temperature cycles: an initial cycle 
of denaturation at 96  °C for 3  min; 35 cycles of dena-
turation at 95  °C for 30  s, annealing at 55  °C for 30  s, 
and extension at 72  °C for 1 min; and a final extension 
at 72  °C for 3  min. The PCR products were directly 
sequenced using the same primers as for amplifica-
tion, FGPS6 and FGPS1509, and primer 16S-1080r 

Table 2  List of the Tuber mycelial cultures used in this study, with their associated host and geographical origin

nd not determined
a  WT: Wild truffle, O Orchard
b  C. D. C. Dupré, A.O. A. Oudin, J.T. J. Tourvieille

Strain Tuber ascocarp Original hosta Site Authorb Date

MelBal1 T. melanosporum Corylus avellana (WT) Troussey, Meuse, France C.D. February, 1988

MelBal3 T. melanosporum C. avellana (WT) Troussey, Meuse, France C.D. February, 1988

BTR3 T. melanosporum Quercus pubescens (O) INRA, Clermont-Fd, France A.O. December, 1999

MelCR2-00 T. melanosporum Q. pubescens (O) INRA, Clermont-Fd, France A.O January, 2000

MelC89 T. melanosporum nd leg. INRA Bordeaux nd nd

Mel2VDA3 T. melanosporum Quercus sp. (WT) Andryes, Yonne, France A.O. February, 1998

Mel3VDA4 T. melanosporum Q. sp. (WT) Andryes, Yonne, France A.O. February, 1998

Mel14 T. melanosporum Quercus ilex (WT) Apt,Vaucluse, France C.D. February, 1988

Mel18 T. melanosporum nd INRA Coulaures, Dordogne, France A.O January,1994

Mel28 T. melanosporum Q. ilex (WT) Maillane, Bouches-du-Rhône, Fr. C.D. February, 1988

MelBaud1 T. melanosporum Q. pubescens (O) Bauduen, Var, France C.D. March, 1998

TBRS T. brumale Q. pubescens (O) Charente, France J.T. 1991
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(5′-GGGACTTAACCCAACATCT-3′; Sy et  al. 2001). 
Sequencing was performed by Genoscreen (Lille, 
France).

The partial ITS of the 16S and 23S rRNA genes 
was amplified using primers BR5 (5′-CTTG-
TAGCTCAGTTGGTTAG-3′; Willems et  al. 2001) and 
FGPL132′ (5′-CCGGGTTTCCCCATTCGG-3′; Pon-
sonnet and Nesme 1994). Each PCR amplification was 
carried out in a 25-µl reaction tube containing 2  µl of 
bacterial DNA template, 1× Reaction Buffer (1.5  mM 
MgCl2), 200  µM of each dNTP, 0.8  µM of each primer, 
and 0.62 U of GoTaq® DNA polymerase (Promega Cor-
poration, Madison, Wi). The PCR thermal protocol was 
as described in Le Roux et  al. (2014). The PCR prod-
ucts were directly sequenced using the same primer 
BR5. Sequencing was performed by Genoscreen (Lille, 
France).

For nifH genes, two pairs of primers were tested, nifHF/
nifHI (Laguerre et  al. 2001) and polF/polR (Poly et  al. 
2001). They were tested on four randomly chosen bacte-
ria: BMel18, BMel28, BmelC89 and BBTR3. The PCR mix 
and thermal conditions were as described earlier except 
for the annealing conditions: 57 °C for 1 min with nifHF/
nifHI and 55 °C for 30 s with polF/polR. A positive con-
trol was performed using Bradyrhizobium diazoefficiens 
Type strain USDA 110 originally isolated from soybean 
nodule in Florida, in 1957 (Delamuta et al. 2013).

Nucleotide sequence analyses
Fungal ITS, bacterial 16S rRNA and ITS 16S-23S rRNA 
sequences were corrected using the sequence viewer 
program 4 Peaks (http://4peaks.en.softonic.com/mac, 
accessed 11 March 2016). The fungal ITS, bacterial 16S 
rRNA and ITS sequences were deposited in GenBank and 
their accession numbers are presented in Tables 3 and 4. 

For bacterial characterization, multiple alignment and 
phylogenetic tree construction were performed using the 
multiplatform program SeaView version 4 (Gouy et  al. 
2010). This interface drives the Clustal Omega program 
for multiple sequence alignments and includes the BioNJ 
distance-based tree reconstruction method and the max-
imum likelihood (ML) based phylogeny program PhyML.

Plant Nodulation test
Monoxenic nodulation assays were performed on Acacia 
mangium (a promiscuously nodulating legume) accord-
ing to Perrineau et  al. (2011) with four randomly cho-
sen bacteria: BMelC89, BMelCR2-00, BMel3VDA4 and 
BMel18.

Results
All isolates of T. melanosporum and T. brumale exam-
ined in the present study exhibited slow growth. They 
required 2–3  weeks to initiate a new, visible mycelium 
crown around the plug. The growth rate appeared to be 
slightly accelerated when regularly subcultured. Slow 
growth is a general feature of the genus Tuber, depend-
ing on the media, which are generally based on malt or 
potato dextrose agar. On these solid media, growth gen-
erally takes 4–8 weeks to stabilize at its maximum level. 
In our conditions, the average radial mycelial growth 
was estimated as 1 cm in 3 weeks. All the Tuber cultures 
included bacterial associates. The addition of chloram-
phenicol or tetracycline to the Cristomalt agar medium 
had little effect on bacterial (and mycelial) growth. Oth-
ers antibiotics such as gentamicin or streptomycin totally 
blocked both mycelial and bacterial development. These 
bacterial isolates generally grew very poorly on YMA 
media, once isolated from Tuber mycelia, and did not 
survive repeated subculturing, limiting the possibilities 

Table 3  Molecular characterization (partial ITS sequencing) and mating types of Tuber spp. mycelial cultures

nd not determined

Mycelial culture Sequence length (bp) Accession no Closest BLASTn (accession no) Identity Mating type

BTR3 603 KM659869 T. melanosporum (AF132501) 100 MAT 1-2-1

Mel14 nd nd nd nd MAT 1-1-1

Mel18 591 KM659866 T. melanosporum (GU979083) 100 MAT 1-2-1

Mel28 550 KM659874 T. melanosporum (GU979083) 100 MAT 1-2-1

Mel2VDA3 604 KM659868 T. melanosporum (GU979083) 100 MAT 1-2-1

Mel3VDA4 598 KM659867 T. melanosporum (GU979083) 100 MAT 1-1-1

MelBal1 604 KM659870 T. melanosporum (AF300826) 99 MAT 1-2-1

MelBal3 571 KM659873 T. melanosporum (GU810153) 99 MAT 1-2-1

MelC89 609 KM659871 T. melanosporum (GU979083) 99 MAT 1-1-1

MelCR2-00 610 KM659872 T. melanosporum (GU810153) 99 MAT 1-2-1

MelBaud1 nd nd nd nd nd

TBRS 880 KM659875 T. brumale (JF926118) 99 MAT 1-2-1

http://4peaks.en.softonic.com/mac
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of enzymatic or antibiotic resistance characterization. 
Under the microscope, mycelium generally appears as the 
first medium colonizer, outgrowing from the plug, the 
bacterial associate proliferating around growing hyphae 
and ensheathing them with a slight delay (Fig. 1a, b).

As presented in Table  3, fungal ITS sequencing con-
firmed the original taxonomic identity of each of the cul-
tivated Tuber isolates. The mating types of the different 
mycelial cultures (Table  3) are presented in Additional 
file 1, three and eight of them being of the MAT1-1 and 
MAT1-2 type, respectively. The mating type being gener-
ally determined by PCR response to each pair of primers, 
not followed by sequencing, we tested these primers on 
some of the bacterial DNA extracts (BMelBal3, BMelC89, 
BMel2VDA3 and BMel3VDA4): none of them allowed 

us to obtain an amplicon. The PCR positive controls per-
formed on fungal DNA representative of the two mating 
types (T. melanosporum strains MelC89 and Mel2VDA3 
for MAT1-1 and MAT1-2, respectively) were all posi-
tive, with a band of the expected size (421 and 550 bp for 
MAT1-1 and MAT1-2, respectively; not illustrated).

The homologies of the nearly full-length 16S rRNA 
sequences of 11 bacterial isolates and one partial 16S 
rRNA sequence for BMel14 are presented in Table  4. 
All these sequences were close to Rhodopseudomonas 
spp. (Table  4) with an identity percentage of 99–100  %. 
The phylogenetic tree (Fig.  2) allows us to identify a 
first cluster of five strains closely related to Rhodopseu-
domonas sp. strain N-I-2, an endophytic bacteria isolated 
from Prunus avium (Quambush et al. 2014). The second 

Table 4  Molecular characterization (near full 16S rDNA and  partial ITS) of  bacteria associated with Tuber spp. mycelial 
cultures

nd not determined

Bacterial 
isolate

16S sequence 
length (bp)

Accession no Closest BLASTn 
(accession No)

Identity (%) ITS sequence 
length (bp)

Accession no Closest BLASTn 
(accession No)

Identity (%)

BBTR3 1358 KM597510 Rhodopseu-
domonas sp. 
(AJ968691)

100 784 KM597522 Bradyrhizo-
bium sp. 
(EU288750)

96

BMel14 601 KM597518 Rhodopseu-
domonas sp. 
(KF663061)

99 nd nd nd nd

BMel18 1358 KM597517 Rhodopseu-
domonas sp. 
(AJ968691)

100 782 KM597527 Bradyrhizo-
bium sp. 
(EU288750)

96

BMel28 1358 KM597515 Rhodopseu-
domonas sp. 
(AJ968691)

100 784 KM597525 Bradyrhizo-
bium sp. 
(EU288750)

96

BMel2VDA3 1358 KM597512 Rhodopseu-
domonas sp. 
(AJ968691)

100 771 KM597528 Bradyrhizo-
bium sp. 
(EU288750)

93

BMel3VDA4 1353 KM597507 Rhodopseu-
domonas sp. 
(AJ968691)

99 767 KM597519 Bradyrhizo-
bium sp. 
(EU288750)

90

BMelBal1 1356 KM597513 Rhodopseu-
domonas sp. 
(KF663061)

99 761 KM597529 Bradyrhizo-
bium sp. 
(EU288750)

83

BMelBal3 1329 KM597508 Rhodopseu-
domonas sp. 
(KF663061)

99 759 KM597520 Bradyrhizo-
bium sp. 
(EU288750)

83

BMelC89 1356 KM597511 Rhodopseu-
domonas sp. 
(KF663061)

99 765 KM597523 Bradyrhizo-
bium sp. 
(EU288750)

83

BMelCR2-00 1406 KM597514 Rhodopseu-
domonas sp. 
(KF663061)

99 759 KM597524 Bradyrhizo-
bium sp. 
(EU288750)

83

BMelBaud1 1333 KM597509 Rhodopseu-
domonas sp. 
(AJ968691)

100 771 KM597521 Bradyrhizo-
bium sp. 
(EU288750)

93

BTBRS 1358 KM597516 Rhodopseu-
domonas sp. 
(AJ968691)

100 768 KM597526 Bradyrhizo-
bium sp. 
(EU288750)

93
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cluster includes the seven other bacterial isolates and the 
strains Rhodopseudomonas sp. strain ORS1416ri (with 
99–100  % identity), Bradyrhizobium sp. CCBAU 85080 
and Tardiphaga robiniae LMG26468. The sequences of 
five bacterial strains from white truffles (T. borchii and T. 
magnatum; Barbieri et al. 2005, 2007) were also included 
in this phylogeny. They were selected as representative of 
the different 16S clusters obtained by these authors. They 
appear to be close to Bradyrhizobium strains, B. elkanii 
for T. borchii, and in a separate cluster for T. magnatum. 
Within the Bradyrhizobiaceae, all these associates of 
white truffle ascomata were quite distinct from our black 
truffle mycelial associates (Fig. 2).

The mean length of the partial 16S-23S rRNA ITS 
sequence was 770  bp. BLASTn analysis (Table  4) and 
phylogenetic tree reconstruction (Fig.  3) confirmed 
that all mycelial bacteria clustered within the Rho-
dopseudomonas clade, which also included the strain 
Bradyrhizobium sp. CCBAU 85059.

The trials that we carried out to test symbiotic charac-
teristics such as nitrogen fixation and nodulation on our 
Tuber associated strains, remained unsuccessful: both 
pairs of nifH primers that we tested repeatedly failed to 
give a PCR product related to a nifH gene. The positive 
control with B. diazoefficiens type strain gave a band of 
the expected size with both pairs of primers. None of the 
bacterial strains nodulated the promiscuous legume A. 

mangium 3 months after inoculation. In these routinely 
used culture conditions, nodulation is known to usually 
occur within 2–3 weeks after inoculation (Perrineau et al. 
2011).

Discussion
As reported by Iotti et  al. (2002), first isolation from 
inner ascocarp tissue is generally not too difficult as com-
pared with subsequent subculturing, as many cultures 
do not survive that step, a phenomenon that had already 
been mentioned by Chevalier (1972). Both these papers 
also reported lag phases of different duration according 
to the species, with no relationships, regarding these lag 
phases, between the first outgrowth and the subsequent 
subculturing. They also reported that optimal culture 
media for isolating and subculturing could be different: 
casein hydrolysate and Maltea Moser, respectively (Chev-
alier 1972); or modified Woody Plant Medium and Malt 
or Potato Dextrose Agars, respectively (Iotti et al. 2002). 
Among important factors that may influence growth are 
pH, temperature and dietary elements (Michaels 1982, 
https://ir.library.oregonstate.edu/xmlui/handle/1957/ 
9224, accessed 11 March 2016), most optimal tempera-
tures being around 20  °C, and pH over 7. In such con-
ditions, maximum growth was reached after 7 weeks for 
T. melanosporum, with marked intraspecific variations. 
This species was one of the slowest among the six tested 

Fig. 1  Microscopic observation of the bacterial colonization of growing hyphae of Tuber melanosporum isolate Mel18 by Rhodopseudomonas 
sp., on solid medium. a General view of the peripheral mycelia and the bacterial colonies. Bar is 100 µm. b progressive ensheathment of growing 
hyphae by Rhodopseudomonas sp. Bar is 50 µm

https://ir.library.oregonstate.edu/xmlui/handle/1957/9224
https://ir.library.oregonstate.edu/xmlui/handle/1957/9224
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by this last author. Cultures in liquid media have some-
time been used: the only Tuber genome sequenced to 
date was obtained from liquid-grown mycelium of the 
strain Mel28 (Martin et al. 2010).

Based on ribosomal sequence analyses, bacterial asso-
ciates were all found to belong to Rhodopseudomonas, 
a genus of alpha proteobacteria closely related to 
Bradyrhizobium (Giraud and Fleischman 2004). Among 
Rhodopseudomonas species, R. palustris is a photoauto-
trophic bacterium, taxonomically close to some photo-
heterotrophic Bradyrhizobium species, that efficiently 
nodulates stems and roots of the legume Aeschynomene. 
At this time, no strains of R. palustris are described as 
nodulating legumes, but they quite commonly harbor 
nifH genes (Cantera et al. 2004). The low discriminatory 
power of 16S rRNA has long been recognized within 
the Bradyrhizobiaceae (Willems et  al. 2001), necessitat-
ing a complementary characterization using other tar-
gets, such as 16S-23S ITS. Both these targets allowed us 

to confirm the close relationships between Rhodopseu-
domonas and Bradyrhizobium. Moreover, when we re-
blasted the ITS sequences of Bradyrhizobium sp. CCBAU 
85059, isolated, as strain CCBAU 85080, from Astragalus 
tatsienensis nodules in Tibet (Hou et al. 2009), the clos-
est identified strains belonged to the genus Rhodopseu-
domonas. This is probably a result of the fact that these 
authors only considered the genus Bradyrhizobium in 
their phylogenetic analyses. Concerning strain R_45974 
of T. robiniae, isolated from root nodules of Robinia 
pseudoacacia, it was previously described as Rhodop-
seudomonas sp. (De Meyer et  al. 2011) on the basis of 
a 16S rRNA gene phylogeny. More recently, it has been 
re-assigned to this new genus in Bradyrhizobiaceae after 
complementary characterization comprising physiologi-
cal and biochemical tests, and sequencing of housekeep-
ing genes (De Meyer et al. 2012).

More generally regarding molecular characterizations, 
no particular clustering of the bacterial sequences was 
detected in regard to our black truffle ascocarp species or 
geographical origin, mycelial strain or mating type: there 
is not, at this stage, any evidence of specificity between 
a given Tuber mycelium and its associated Rhodopseu-
domonas. However, the fact that, despite a relatively het-
erogeneous geographic origin of the ascocarps, all the 
mycelia-associated strains fall within the same genus 
Rhodopseudomonas is consistent with a non-random 

0.02

BMelC89

BMel14
BMelCR2-00
BMelBal1

BMelBal3

Rhodopseudomonas sp. N-I-2 (KF663061)
BMel3VDA4
BMelBaud1
Tardiphaga robiniae LMG26468 (FR753049)
Bradyrhizobium sp. CCBAU 85080 (EU256466)
BBTR3
BMel2VDA3
BMel28
BTBRS
BMel18
Rhodopseudomonas sp. ORS1416ri (AJ968691)

R. boonkerdii NS23T (EU177512)
R. rhenobacensis DSMZ12706T (AB087719)

R. parapalustris JA310T (AM947938)
R. faecalis gcT (AF123085)

R. thermotolerans JA576T (FR851928)
R. palustris CGA009 (BX572608)

R. harwoodiae JA531T (FN813512)
R.pentothenatexigens JA575T (FR851927)

Bradyrhizobium sp. ORS278 (AF239255)
Bradyrhizobium japonicum LMG6138T (X66024)

Bradyrhizobium elkanii USDA61 (AB110484)

Blastochloris sulfoviridis DSM729T (D86514)

uncultured B. sp. clone Cl-51-TB2-II (AY599678)

uncultured B. sp. clone Cl-10-TB8-II (AY599679)
uncultured B. sp. clone Cl-17-TB4-II (AY599676)

uncult. B. sp. clone
TM15_8 (DQ303296)
uncult. B. sp. clone
TM17_4 (DQ303297)

0.99

0.99

0.97

0.99

0.83

0.72

0.94

1.00
0.82

0.87
0.760.97

1.00
0.98

0.99
0.86

0.861.00

Fig. 2  PhyML phylogenetic tree based on nearly complete 16S 
rRNA (1330 bp) sequences of 12 Tuber spp. associated bacterial 
strains aligned with Rhodopseudomonas spp. type strains (T) and 
related strains, including uncultured Bradyrhizobium sp. clones from 
Tuber borchii and Tuber magnatum ascocarps. Only branch support 
probabilities (estimated with the approximate likelihood-ratio test) 
higher than 0.70 are given at the branching points. Gaps were not 
considered. Scale indicates 2 % sequence divergence. Blastochloris 
sulfoviridis was chosen as an outgroup

100

100
100

99

BMel28
BBTR3
BMel18

100

BMel2VDA3
BTBRS
BMelBaud1

99

100

BMel3VDA4
BMelBal1
BMelCR2-00
BMelC89
BMelBal3

100

100

100

71

83

0.1

Bradyrhizobium denitrificans LMG8443T (AF338176)
Bradyrhizobium japonicum  genosp. I LMG6138T (AJ279264)

Bradyrhizobium elkanii genosp. II LMG6134T (AJ279308)
R. rhenobacensis RbT (AB498837)

R. palustris CGA009 (BX572608)

R. palustris ATCC17001T (AB498825)
R. palustris DSM123T (AB498828)

R. faecalis gcT (AB498823)

Bradyrhizobium sp. CCBAU85059 (EU288750)

Rhodopseudomonas  sp. Vaf02 (KF662908)

Fig. 3  BioNJ phylogenetic tree based on 16S-23S rRNA ITS sequences 
of 11 Tuber spp. associated bacterial strains aligned with Rhodop-
seudomonas spp. type strains (T) and related strains. Only bootstrap 
probability values higher than 70 % (100 replicates) are given at the 
branching points. Gaps were not considered. Scale indicated 10 % 
sequence divergence. Bradyrhizobium denitrificans was chosen as an 
outgroup



Page 8 of 10Le Roux et al. SpringerPlus  (2016) 5:1085 

association. Similarly, the existence of several different 
clades within Rhodopseudomonas sequences (Figs.  2, 3) 
seems to exclude the hypothesis of an accidental con-
tamination of all the mycelial cultures during successive 
subcultivation.

On the fungal side, according to Chevalier (1972) elimi-
nation of the mycelial bacteria frequently leads to the 
loss of the corresponding T. melanosporum culture. This 
author reported that one of these bacteria was attribut-
able to the genus Arthrobacter, with the identification 
tools available at that time. More recently, Barbieri et al. 
(2000, 2002) showed that T. borchii mycelial cultures were 
associated with unculturable bacteria of the Cytophaga–
Flexibacter–Bacteroides phylum. Remarkably, some of 
these bacteria were detected as viable within the hyphae. 
While the presence of other gram negative bacteria in 
mycelial cultures has already been reported, few or none 
of these associates were precisely identified.

Such studies to characterize the dependency of these 
Tuber–bacteria associations are made extremely difficult 
owing to (1) the slow growth of Tuber mycelium and (2) 
the non-cultivability of associated Rhodopseudomonas 
and thus difficulties in characterizing and eliminating 
bacteria from mycelial cultures.

Our Tuber isolates originating from ascocarp inner tis-
sue, it seems likely that in  vitro mycelia-accompanying 
bacteria could also be of ascocarpic origin. Although, 
after several decades, the original ascocarpic material is 
no longer available to check the identity of mycelium-
associated strains to original ascocarpic bacteria, we 
know from the literature that truffle ascocarps have been 
shown to host a number of different microbes including 
yeasts (Buzzini et al. 2005), fungi (Pacioni et al. 2007) and 
bacteria (Table 1). Some bacterial genera have repeatedly 
been reported as colonizing ascocarpic tissue of vari-
ous Tuber species (Table  1). They belonged to different 
lineages of proteobacteria, most of them being within 
alpha or gamma proteobacteria. Among the dominant 
genera, Bradyrhizobium and Pseudomonas were almost 
universally reported whatever the Tuber species under 
consideration and be it after isolation or directly from 
total ascocarp DNA. It has to be noted that bacterial 
communities varied according to the degree of matura-
tion of the ascocarp as shown with T. melanosporum 
(Antony-Babu et  al. 2013) and T. magnatum (Barbieri 
et  al. 2007). Bradyrhizobium is over-represented within 
bacterial communities directly characterized from the 
ascocarp, as is the case for Pseudomonas among bacte-
rial isolates. In T. magnatum ascocarp, Barbieri et  al. 
(2010) reported significant amounts of nitrogen fixation 
(nitrogenase activity estimated by acetylene reduction), 
together with the presence of nifH genes in ascocarps 
at different degrees of maturation. The phylogenetic 

positions of bradyrhizobia associated with ascocarps of 
T. borchii (Barbieri et  al. 2005) and T. magnatum (Bar-
bieri et al. 2007) showed that none of them clustered with 
our T. melanosporum or T. brumale mycelial bacteria. As 
Antony-Babu et al. (2013) remind us, Bradyrhizobium is 
“consistently found at all stages of the maturation pro-
cess and in different truffle species”. These authors sug-
gested that the selection of Bradyrhizobiaceae results 
from deterministic events allowing these bacterial taxa 
to tolerate and colonize the particular environment of the 
ascocarpic tissues (with sulfur-containing molecules and 
aromatic volatile compounds).

During the isolation steps, two main pitfalls have 
to be avoided: the duration of hyphal outgrowth from 
the Tuber explant in competition with other ascocarp 
inhabiting microbes, and failure to grow after the first 
subculture, a particular fate reported by Giomaro et  al. 
(2005). These authors argue that this could be due to 
the non-acclimation of the ascocarpic mycelium to the 
saprophytic stage of in  vitro growth. A positive role of 
the Tuber associated bacterial strains as helpers in this 
progressive adaptation to the new lifestyle cannot be 
excluded. However, in the absence of pure, bacteria-free 
cultures of Tuber mycelium, all the confrontation trials 
(co-cultivation of Rhodopseudomonas-associated myce-
lium and freshly isolated Rhodopseudomonas, on various 
solid media) we attempted (data not shown) were incon-
clusive in terms of fungal growth response (radial myce-
lial growth).

In this study, we observed that whatever the origin of 
the ascocarp, none of the 12 mycelial cultures was devoid 
of Rhodopseudomonas associates. However, these asso-
ciates are genetically diversified in several clusters, for 
both 16S and ITS rDNA, without evidencing any rela-
tionship between strain clustering and criteria such as 
geographical origin of ascocarps, age of mycelial culture 
since its isolation (27–15 years), isolation operator, myce-
lium mating type or Tuber species. In a separate experi-
ment, conducted in 2013 to isolate bacterial associates 
from fresh T. borchii and T. melanosporum ascocarps, we 
never obtained Rhodopseudomonas strains among 123 
and 126 bacterial isolates from each ascocarp, respec-
tively (data not shown), which seems in accordance with 
non-cultivability of these Tuber associates. Remarkably, 
Bradyrhizobiaceae are often well represented among 
ascocarpic DNA, whatever the Tuber species, but absent 
from isolates in the different studies listed in Table  1, 
the only exception being one isolate from T. magnatum 
that grouped with bacteria of the genus Bosea, another 
member of the Bradyrhizobiaceae (Barbieri et  al. 2007). 
Attempts to separate mycelium from bacteria (on sev-
eral selected antibiotics) remained unsuccessful. These 
Rhodopseudomonas associates appear to be consistently 
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essential to mycelial life and development. In the same 
way, repeated subculturing of isolated Rhodopseu-
domonas induced a rapid decline and loss of isolates. 
There appears to be a reciprocal dependency for long-
lasting in vitro growth of both associates.

Conclusions
In the production of Tuber-inoculated plantlets for truffle 
producers, the use of mycelial cultures is possible but lim-
ited by both the availability of fungal cultures and by the 
mass production of fungal inoculants. This work shows 
the constant occurrence of Rhodopseudomonas associ-
ates in the production of Tuber mycelium. The availabil-
ity of both mating types among these mycelial cultures 
is also of major interest as the occurrence of two com-
patible mating types is essential to Tuber fructification. 
The marketing of Tuber-associated plants, estimated to 
involve over 500,000 plants per year, could benefit from 
re-considering the use of mycelial inoculants (instead of 
applying, at a rate of at least 1 g per plant, crushed truf-
fle fructifications whose market price is about 1000 euros 
per kilogram) based on the combination of both mat-
ing types and their associated Rhodopseudomonas. Such 
practices would allow a better mastering of inoculant 
quality and consistency, and possibly later on improve 
and accelerate field fructification of black truffles.
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