A general approach to length-weight relationships for New Caledonian lagoon fishes

by

Michel KULBICKI (1, 2), Nicolas GUILLEMOT (2) & Marion AMAND (2)

ABSTRACT. - Most studies involving Pacific reef fishes use underwater visual censusing techniques to estimate their biomass and stock. This requires to know the length-weight relationships of all the species censused. Currently, only a small proportion of these relationships (15.4%) are available for reef fish species in the Pacific area. In the present article we propose length-weight relationships at four organisation levels: species, genera, families and morphological groups. A data base of 53,800 specimens belonging to 788 species from New Caledonia were used to estimate the relationships for 396 species, 185 genera, 75 families. At the genus level, the length-weight relationships cover 76% of the Pacific reef species and the coverage is nearly 85% at the family level. A study of the morphology of 1,100 specimens belonging to 311 species allowed to define 30 morphological groups, for which length-weight relationships were then estimated using 32,551 specimens belonging to these species. Using 3 classes of body thickness, a second clustering of these species defined 20 groups allowing length-weight relationships to be estimated from 2D pictures. These relationships allow to estimate weight from length data for most of the species not covered by the relationships at the species, genus or family level. The error levels increase from the species (average error 9.4%) to the family level (13.5%), the morphological groups yielding errors equivalent to those from the family level equations (13.2%). A graphical analysis of the coefficients from 396 length-weight relationships suggests that there are physical limits to fish shapes.

RÉSUMÉ. - Approche généralisée des relations longueur-poids des poissons lagonaires de Nouvelle-Calédonie.

La plupart des études visant à estimer la biomasse ou les stocks de poissons récifaux de l'Indo-Pacifique utilisent des méthodes de recensement visuel en plongée. Cela exige de connaître les relations longueur-poids de toutes les espèces recensées. À l'heure actuelle, seule une faible proportion de ces relations (15,4%) est disponible pour les espèces, genres, familles du Pacifique. Notre article fournit des relations longueur-poids à quatre niveaux d'organisation : espèces, genres, familles et groupes morphométriques. Une base de données comportant 53800 poissons appartenant à 788 espèces de Nouvelle-Calédonie a été utilisée pour estimer les relations pour 396 espèces, 185 genres et 75 familles. Les relations longueur-poids au niveau générique couvrent 76% des espèces récifales du Pacifique et au niveau familial la couverture atteint 85%. Une étude sur la morphologie de 1100 spécimens appartenant à 311 espèces a permis de définir 30 groupes morphométriques pour lesquels des relations longueur-poids ont été estimées sur la base de 32551 spécimens appartenant à ces espèces. Une seconde classification de ces espèces fondée sur 3 classes d'épaisseur du corps permet de définir 20 groupes à partir desquels les relations longueur pour la plupart des espèces pour lesquelles on ne dispose pas de relation au niveau espèce, genre ou famille. Les niveaux d'erreur augmentent de l'espèce (erreur moyenne 9,4%) jusqu'à la famille (13,5%), les groupes morphométriques comportant un niveau moyen d'erreur équivalent à celui de la famille (13,2%). L'analyse graphique des coefficients des relations longueur-poids de 396 espèces suggère qu'il existe des limites physiques aux formes que peuvent prendre les poissons.

Key words. - Reef fish - New Caledonia - Lagoon - Length-weight relationships - Morphology.

Our current knowledge on the biological traits of Indo-Pacific shore fishes is still very limited. In particular, lengthweight relationships are only known for a restricted number of species. There are 5,480 taxa of inshore fishes reported so far from the tropical Pacific (Kulbicki *et al.*, 2004), but we have length-weight relationships for only 720 of them, i.e. 13% (the main source is Fishbase: Froese and Pauly, 2001; see also Kulbicki *et al.*, 1993; Yanagawa, 1994; Kochzius, 1997; Arias-Gonzales *et al.*, 1997, 1998; Letourneur *et al.*, 1998; Gonzales *et al.*, 2000; Khaironizam and Norma-Rashid, 2002). These values increase only slightly (15.4%) if the search is restricted to reef associated species (excluding the smallest Gobiidae and Trypterygiidae: 3,580 taxa and 553 relationships).

Length-weight relationships have many applications in fish stock assessments and ecological studies. They are of special interest for underwater visual censuses (UVC), in order to transform length data into weight data and, as a result, obtain biomass estimates (Samoilys, 1997). Most UVC surveys are performed on reefs by divers who record visual estimates of fish length. The use of video recordings is on the increase but still marginal. The accuracy of length estimates by divers has been the subject of many studies (e.g., Bell *et al.*, 1985; Bellwood and Alcala, 1988; Kulbicki,

⁽¹⁾ École Pratique des Hautes Études, Université de Perpignan, Avenue de Villeneuve, 66860 Perpignan CEDEX, FRANCE. [michel.kulbicki@univ-perp.fr]

⁽²⁾ Centre IRD, BPA5, 98848 Nouméa CEDEX, NOUVELLE-CALÉDONIE.

KULBICKI *et al*.

1990, 1997; Darwall and Dulvy, 1996), errors having potentially important consequences on biomass estimates as indicated by Bellwood and Alcala (1988). The precision of these length estimates varies according to authors, the most reliable study (Harvey *et al.*, 2001, 2002) indicating a precision of 8-16% by divers and < 1% by video cameras for a range of three species.

Biomass estimates for reef fish based on length estimates from UVC work are confronted with the problem of the absence of validated length-weight relationships for a large number of species. So far, there is no standardised procedure to attribute a length-weight relationship to a species for which it is lacking. Most authors use the relationship from a species within the genus or the family of the species of interest. At times they also use relationships from species, which have a similar morphology. However, no author follows an explicit protocol. It is difficult to assess the errors on biomass that these procedures will produce. One possible way to consider this problem would be to use length-weight relationships at the genus or family level. Unfortunately, few of these relationships are available because most studies give lengthweight relationships only at the species level, and only a few (Bauchot and Bauchot, 1978) indicate relationships at a higher taxonomic level (genus or family). Averaging the values of the regression coefficients of length-weight relationships in order to obtain an average relationship for a genus or a family is statistically erroneous. It is, therefore, necessary to estimate these relationships at the genus or family level by considering the initial data on individuals. Unfortunately, this initial data is not available from the literature.

In the present article, we propose to create classes of fish inside which length-weight relationships are homogenous. Two ways of classification have been considered: according to phylogenic criteria and according to morphological criteria. Such a choice has led to four levels of classification: by species, genera, families or by general morphological characteristics. Our purpose is to enable users to find the best length-weight relationship for any species, for which no validated relationship is available. The three first groups are based on taxonomic relationships because most species within a genus or a family tend to have similar shapes. Unfortunately, there are a number of exceptions to this trend and the data we have available do not cover all families or genera. We propose to use the morphological characteristics of a large number of species to define morphological groups, to which almost all Pacific reef species could be related. To achieve this goal the following steps are taken: (1) estimate species specific length-weight relationships, (2) estimate genus and family specific length-weight relationships, (3) explore the physical limits of these relationships, (4) identify discrete morphological groups using multivariate analysis, and (5) estimate the length-weight relationships for each morphological group.

MATERIALS AND METHODS

Morphological parameters

In order to group fish according to their morphology, weight and various morphological measures were taken on each fish specimen, as described on figure 1. This was done on a total of 1,100 fish, representing 311 species, 138 genera and 53 families. Fishes were caught by different methods: rote-none poisoning, spear-fishing, hand-line and gillnet. The sampling was operated from July to September 2003, on various sites and thus various biotopes in the south-eastern lagoon of New Caledonia. Neither geographical nor time influence was taken into consideration. Two to 8 specimens were used for each species. This low number of specimens per species is because morphometric measurements are at the basis of fish taxonomy and are very stable between individuals, as attested by the high correlations between them (e.g., Loubens, 1980).

Several measurements were performed on each fish: CH (Caudal Height), FL (Fork Length), SL (Standard Length), HL (Head Length), H33 (Height at the first third -based on FL- of body, starting from the tail), Hmax (Maximum Height), HH (Head Height), and T (Width or body thickness) (Fig. 1). Species were grouped using the statistical Ward's method, with Euclidian distances, based on the following ratios: SL/Hmax, SL/H33, SL/HT, T/H33, T/HH, T/Hmax, SL/T, SL/FL, SL/CH. The ratios were standardised amongst all species using SL as the common measurement. A second cluster analysis was similarly conducted by using 3 classes of thickness instead of a continuous variable for body thickness (T).

Length-weight relationships

In addition to the fish sampled for their morphology, data

Figure 1. - Measurements performed on each fish. CH: Caudal fin Height; FL: Fork Length; SL: Standard Length; HL: Head Length; H33: Height at the first third (based on FL) of body (starting from the tail); Hmax: Maximum Height; HH: Head Height; T: Width or body thickness. [Mesures réalisées sur chaque poisson : CH : hauteur de la caudale ; FL : longueur à la fourche ; SL : longueur standard ; HL : longueur de la tête ; H33 : hauteur au premier tiers du corps (en partant de la queue) ; Hmax : hauteur maximale ; HH : hauteur de la tête ; T : épaisseur du corps.]

KULBICKI ET AL.

Table I. - Class limits for fish shapes. The class "oddly-shaped" regroups all species which do not fall within the other classes. *[Limites des classes pour les formes de poisson. La classe "odd" regroupe toutes les espèces qui ne tombent pas dans une des autres catégories.]*

Shape	SL/Hmax	T/Hmax
Very-flat	< 2.0	< 0.3
Compressed	2.0 - 3.0	0.3-0.45
Cylindrical	2.5 - 4.8	> 0.45
Semi-elongated	5.0 - 10.0	
Elongated	> 10.0	
Odd	Any other c	ombination

on a number of lagoon species were used to calculate lengthweight relationships. The relationships were thus established from a total of 53,800 specimens, representing 788 species, 191 genera and 77 families. These data were collected between 1985 and 2003. All fishes were caught in the lagoon of New Caledonia, either by rotenone poisoning, spear-fishing, hand-line, gillnet, trawl nets, trammel nets or bottom long-line fishing.

Fork length was the measure used for all species in order to establish these relationships, except for rays, for which disk width is measured instead. The sexes are not differentiated here, although we are aware that males and females may have different length-weight relationships. The parameters *a* and *b* of relationships of the form $W = aL^b$ were estimated through a logarithmic transformation, i.e. lnW = ln a+ b ln L, with *a* and *b* estimated by ordinary least squares regression. L and W are respectively length in cm and weight in g.

The length-weight relationships were estimated according to taxonomic (species, genera, families) and morphological groupings (as defined above). The relationship for a given group was considered as valid when the measures from at least 8 specimens were available and when the significance level was at least of 0.01. In order to compare these relationships among groups, fish were classified (using a cluster analysis using the statistical Ward's method, with Euclidian distances, followed by an ANOVA) according to the ratios of SL/Hmax and T/Hmax into the following classes or shapes: elongated, semi-elongated, cylindrical, compressed, very-flat and oddly-shaped (Tab. I). Genera or families where several of these fish shapes were present were labelled "heterogeneous".

Error estimates

Once the length-weight relationships were estimated the weight of each fish entering the estimate was back-calculated, yielding an estimated weight W_{est} . This value was compared to the true value W, allowing to have an estimation of the relative error E_{rel} :

 $E_{rel} = 100 [W-W_{est}]/maximum (W;W_{est})$

For each species, genus, family or morphological group the E_{rel} were averaged, either for all the specimens or for only the largest ones (the fourth upper quartile) yielding respectively E_{aver} and $E_{75\%}$.

RESULTS

Species, genera and families

The results of length-weight analysis and grouping according to taxonomical criteria are presented in annexe 1. The identifications are essentially based on Rivaton *et al.* (1989), with recent updates in the literature being taken into account.

Relationships were not computed if there were less than 8 specimens. At the species level this allowed to estimate length-weight relationships for 444 species, but only 396 were kept. Relationships were rejected if they were not sufficiently significant (p > 0.01) or if the length interval for which weights were available was too narrow compared to the usual length of the species. At the genus level, all 191 genera had at least 9 specimens and only 6 relationships were rejected. At the family level, there were at least 11 specimens in each of the 77 families tested. Two families were rejected.

The error rates are given in table II. There is a slight but significant increase (p < 0.05) in the error rates from species to families. The average error on all specimens (E_{aver}) is higher than the error on the largest ones ($E_{75\%}$) (Tab. II), this difference being significant (p < 0.05) only at the species level. The error level was independent of body size within a species or morphological group, as there was no significant relationship between the level of error and the shape or size of the fish. At the genus level, genera with either odd shapes, elongated, compressed or very flat had higher relative errors than other shapes (Tab. III). At the family level the highest error levels were found in families with heterogeneous shapes, odd, elongated and semi-elongated shapes.

The coefficients of the length-weight relationship at the species level are function of the fish shape as indicated by figure 2A. An analysis of covariance indicates that the slopes and intercepts are different (p < 0.05) between each shape with the exception of "compressed" and "very flat" which are not significantly different. Similar results are found if one considers the genus or family levels.

One notices that the relationships between the coefficients a and b may be bounded by two lines (Fig. 2A). These two lines are only approximations, but may be defined by the following equations:

Lower boundary: log(a) = -4.86 b + 7.17

Upper boundary: $\log (a) = -2.66 b + 4.92$

These lines could be physical or/and physiological lim-

Table II. - Distribution of the relative errors according to the taxonomic level or group. Confidence intervals are given for p = 0.05. E_{aver} : error based on average for all individuals, $E_{75\%}$: error based on average for the largest individual (last quartile). [Distribution des erreurs relatives en fonction du niveau taxinomique ou du groupe. Les intervalles de confiance sont donnés pour p = 0.05. E_{aver} : erreur basée sur la moyenne de tous les individus. $E_{75\%}$: erreur basée sur la moyenne des plus gros individus (dernier quartile).]

	Species	Genera	Families	Groups (I)
E _{aver}	9.4 ± 0.5	11.4 ± 1.0	13.5 ± 1.5	13.2 ± 1.4
E _{75%}	8.1 ± 0.4	10.2 ± 0.9	13.8 ± 1.8	13.7 ± 2.0

Table III. - Average relative error at the genus and family levels for various fish shapes. "Heterogeneous" refers to genera or families represented by species with different shapes (e.g., Acanthuridae which have "compressed", "very-flat" species as well as "cylindrical" ones). [Erreur moyenne relative pour différentes formes de poissons au niveau du genre ou de la famille . "Hétérogène" se réfère aux genres ou familles représentés par plusieurs formes (par exemple les Acanthuridae englobent des espèces "comprimées", "très plates" aussi bien que "cylindriques").]

Shapa	Nb	E _{75%}	Eaver	Nb	E _{75%}	Eaver
Shape	genera	genera	genera	families	families	families
Cylindrical	103	9.0	9.8	28	11.4	11.5
Compressed	35	9.4	10.1	12	9.6	9.4
Elongated	13	11.9	14.1	4	18.6	16.0
Semi-elongated	14	11.9	20.1	9	14.9	17.9
Very flat	8	13.4	12.8	4	12.0	10.5
Oddly shaped	10	19.4	17.0	5	25.9	20.4
Heterogeneous	4	9.6	10.5	13	16.5	16.0

its. To test this, it is possible to assimilate elongated fish as elongated cylinders with a density of 1. In that case if L is the length of the fish and T its thickness, then the weight W of the fish can be approximated by:

 $W = \pi T^2 L/4$

The most elongated species we observed (a Syngnatidae) had a ratio L/T of 36. This would result in an approximation of its weight by:

 $W = \pi L3/(4 \times 36^2)$, or a = 0.0000596

If we use b = 3 in the equation of the lower boundary (Fig. 2A) we get an *a* of 0.0000654, which corresponds to an L/T ratio of 40 which could be a maximal limit.

If one considers the upper boundary one could assimilate a fish to a three dimensional volume with a length L, a height H and a thickness T. Assuming in a very simplistic manner that these dimensions are linearly related and the fish density equal to 1, we would get a crude approximation of the weight W by:

W = LHT/2

Replacing H and T by their relationship to L by respectively:

H = kL and T = qL

one would then get: $W = kqL^{3}/2$

Looking at the value of a in the upper boundary equation

(Fig. 2A) for b = 3 one finds a = 0.047. This means that the value kq is lower than 0.1 if our crude hypothesis on general fish shape is respected. Interestingly, out of 298 values of kq only 14 were found over 0.1 and only one above 0.15.

Another way to consider the constraints on fish shapes is to analyse the variations of relative (using standard length as the reference) thickness and relative height (Fig. 2B). Fish belonging to the same shape are grouped, the separation between groups following a gradient according to the relative diameter of the species (from the most elongated to the most compact species). The overlap tends to increase as one goes towards the upper limits due to the log scaling. The values are again clearly bounded by an upper and a lower line, indicating that fish shapes are bounded by some physical limits.

Morphological groups

A first cluster analysis allowed to define 16 groups. Eight of these groups were either very large or not homogeneous, containing species with different shapes. In order to have homogeneous groups, a second cluster analysis was performed within each of these 8 heterogeneous groups resulting in a total of 30 groups (Group-I in Tab. IV). Differences in the ratios used to define the groups were tested by ANO-VAs. All ratios were significantly different between groups (i.e. each ratio discriminated at least one group from the others). A MANOVA indicates that groups were statistically different from one another when considering all the ratios together. The most discriminating ratios were SL/Hmax, T/ H33, T/HT, SL/T and the least discriminating ones were SL/ FL, SL/CH. The length-weight relationships for the fish within each group were estimated from a total of 32,551 specimens of fish. The specifications of these relationships along with the characteristics of each group (Group-I) are given in table IV.

The error estimates for the groups are similar to those for families but larger than for genera or species (Tab. II). Errors within groups are always higher than for genera or species (Fig. 3). Compared to families, in the lower error ranges (less than 13% error), groups have larger errors on average, and on the opposite, past the 13% error rate groups yield lower estimates than families (Fig. 3).

To use this grouping to obtain the length-weight relationship for a new species supposes that one has access to at least one specimen in order to take the measurements as indicated on figure 1. As specimens are not necessarily available we propose an alternative method. There are pictures available for most species in Fishbase (Froese and Pauly, 2001) and FAO guides (Carpenter and Niem, 1998). From these pictures we can take all measurements of figure 1 except body thickness (T). This latter parameter may be estimated in 3 major classes: flat (or compressed), i.e. fish for which the

Figure 2. - A: Relationship between the regression coefficients a and b for various fish shapes at the species level. The upper and lower boundary lines are only approximate (see text). B: Relationship (on a log-log scale) between the relative (SL: standard length) thickness and relative height of fish for the various fish shapes at the species level. The upper and lower boundary lines are only approximate (see text). △ Compressed, ■ Elongated, - Cylindrical, \bigcirc Odd, \square Semi-elongated, \diamondsuit Very-flat. [A : Relation au niveau spécifique entre les coefficients de régression a et b pour différentes formes de poisson. Les droites de limite supérieures et inférieures sont approximatives (voir texte). **B** : Relation (échelle log) entre l'épaisseur relative (SL: longueur standard) et la hauteur relative des poissons de différentes formes au niveau spécifique. Les droites limite supérieures et inférieures sont approximatives (voir texte). △ Comprimé, ■ Allongé, - Cylindrique, O Divers, □ Semi-allongé, ♦ Très plat.]

ratio of body thickness to body height (T/Hmax) is less than 35%; normal fish for which this ratio is between 35 and 50%; round fish for which this ratio is above 50%. Using these 3 classes in table V as a proxy of body thickness will reduce the number of valid groups from 30 to 21 (Group-II), ANO-VAs on the remaining ratios (SL/Hmax, SL/HH, SL/H33,

Figure 3. - Distribution of the mean error per species, genus, family or group. Errors are ranked from the lowest to the highest, the highest being given the relative rank 100 and the lowest the relative rank 1. • Species, + Genus, \triangle Family, X Group. [Distribution de l'erreur moyenne par espèce, genre, famille ou groupe. Les erreurs sont rangées de la plus petite à la plus grande, la plus grande se voyant attribuer le rang relatif 100 et la plus petite le rang relatif 1. • Espèce, + Genre, \triangle Famille, X Groupe.]

SL/FL, SL/CH) indicating that each group is significantly different from at least one other group. The error estimates for this new grouping is almost identical to the one for the grouping with 30 classes and is therefore not given on the graphs or tables.

DISCUSSION

Length-weight relationships are in great need for estimating the weight of fish for underwater visual censuses (UVC). UVCs are the most reliable and wide spread method to sample reef fish (e.g., English et al., 1994; Cappo and Brown, 1996; Samoilys, 1997; Samoilys and Carlos, 2000; Labrosse et al., 2001). Even so there are a number of problems linked to UVCs in particular estimating fish length accurately. Harvey et al. (2001, 2002) found that divers have a precision of approximately 10% on estimating fish lengths, which is much less accurate compared to stereo video camera systems which yield estimates within 1%. Several other studies have considered the precision of fish length estimates (see Kulbicki, 1998 for a review). Kulbicki (1997) found that this precision did not change much with the shape of the fish. On the opposite the precision is highly dependent on the training of the diver (Dalwall and Dulvy, 1996). These errors on length estimates may lead to a much higher error in weight. For instance, if one considers a 50 cm grouper, according to our equations (Annexe 1) its real weight would be 1,900 g, if underestimated at 45 cm its estimated weight would be 1,400 g, and over-

of	śes	sés	
evel	tilise	utilis	
ity l	ns ui	ens i	
lideo	atio	cim	
prob	not	spé	
th a l	Les	e de	
s wii	son.	lquu	
imit	vois	: nc	
l e l	sde	-LW	
fider	rme	n ; əc	
con	es fo	non	
s are	se de	g nu	
rval	naly.	lans	
inte	e l'ai	ces a	
The	ir de	spèc	
e 1.	part	e d'e	
figur	is à	mbra	
uo.	téfin	: no	
se fi	ses c	$\sqrt{6.N}$	
o tho	irou	959	
lar to	5.10	veau	
simi	and <i>l</i>	in ni	
are	te a	nce c	
used	imat	nfiar	
ons	o est	le co	
otati	sed t	les a	
he n	us us	rval	
es. T	ime	inte	
hape	spec	u les	
ìsh s	r of	SOL	
the f	mbe	alle	
s of	/: nu	tterv	
alysi	-LV	es ir	
e ani	ip; n	j.L	
m the	grou	gure	
l froi	sin	la fi	
fined	ocie	s de	
s def	of sp	elle	p.]
3dno	ber (sàc	a <i>et</i> l
-Gr	uum	laire	ner
N.	ï	simit	estii
ble	%	ut	tΓ

level of utilisées utilisés	q	2.8590	2.8752			3.0442	2.7227		2.9455	3.0153		2.8931		2.9681		3.4046	2.9695	3.1365	2.9042	2.9790	2.7353	2.4060	3.3577	3.5978	2.9718		2.8856		2.6979		3.0818
obability stations sécimens	а	0.04128	0.03984			0.01990	0.04037		0.02538	0.01976		0.02855		0.02066		0.00892	0.01933	0.01236	0.01984	0.01940	0.02057	0.01322	0.00075	0.00733	0.01921		0.02183		0.02109		0.0061
th a pro Les no re de sp	r	0.985	0.983			0.991	0.993		0.985	0.992		0.994		0.984		0.985	0.996	0.986	0.969	0.987	0.989	0.958	0.982	0.994	0.986		0.993		0.962		0.992
imits wi poisson. : nombi	Group- II	а	q	q	q	c	q	q	e	f	aa	ac	ac	h	h	. .	. Ĺ	k	1	ш	u	0	р	Ь	r	r	s	s	t	t	n
nfidence li f <i>ormes de l</i> upe; n-LW	Thickness	flat	flat	flat	flat	flat	flat	flat	flat	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	round	round	round	round	round	round	round	round	round	round
rvals are co nalyse des J lans un gro	SL/T	7.31 ± 1.17	5.71 ± 0.49	5.59 ± 0.44	6.4 ± 0.48	7.69 ± 0.8	6.72 ± 0.85	8.41 ± 0.53	7.98 ± 0.92	6.51 ± 0.27	5.97 ± 0.35	7.42 ± 0.75	6.49 ± 0.53	6.78 ± 0.55	6.26 ± 0.41	6.96 ± 0.36	7.43 ± 0.47	7.29 ± 0.71	7.08 ± 0.17	7.91 ± 0.87	11.7 ± 1.69	28.0 ± 3.67	10 ± 0	4.02 ± 1.32	5.7 ± 0.45	6.21 ± 0.32	7.28 ± 0.55	6.02 ± 0.85	12.9 ± 2.49	7.16 ± 0.5	5.58 ± 0.18
e 1. The inte artir de l'a d'espèces c	T/Hmax	0.22 ± 0.06	0.35 ± 0.02	0.34 ± 0.03	0.29 ± 0.04	0.28 ± 0.02	0.33 ± 0.04	0.28 ± 0.04	0.33 ± 0.02	0.38 ± 0.03	0.44 ± 0.02	0.37 ± 0.01	0.4 ± 0.03	0.41 ± 0.03	0.44 ± 0.04	0.41 ± 0.04	0.41 ± 0.03	0.44 ± 0.04	0.49 ± 0.08	0.41 ± 0.08	0.39 ± 0.06	0.75 ± 0.1	1.32 ± 0	0.78 ± 0.15	0.58 ± 0.02	0.5 ± 0.01	0.52 ± 0.04	0.64 ± 0.09	0.54 ± 0.05	0.89 ± 0.07	1.33 ± 0.12
e from figure s définis à p N : nombre	HH/T	0.41 ± 0.02	0.53 ± 0.03	0.57 ± 0.01	0.46 ± 0.01	0.46 ± 0.01	0.46 ± 0.02	0.37 ± 0.03	0.56 ± 0.06	0.62 ± 0.05	0.57 ± 0.02	0.47 ± 0.01	0.59 ± 0.06	0.52 ± 0.01	0.56 ± 0.02	0.52 ± 0.03	0.53 ± 0.01	0.62 ± 0.05	0.71 ± 0.17	0.53 ± 0.05	0.53 ± 0.05	1.09 ± 0.38	1.35 ± 0	1.12 ± 0.03	0.67 ± 0.06	0.61 ± 0.01	0.68 ± 0.03	0.78 ± 0.05	0.74 ± 0.08	1.1 ± 0.2	1.78 ± 0.38
nilar to those l b. [Groupe tiveau 95%.	T/H33	0.33 ± 0.02	0.64 ± 0.02	0.5 ± 0.02	0.51 ± 0.02	0.44 ± 0.01	0.81 ± 0.04	0.61 ± 0.05	0.52 ± 0.08	0.72 ± 0.03	0.63 ± 0.04	0.58 ± 0.02	0.49 ± 0.06	0.71 ± 0.02	0.91 ± 0.03	1.04 ± 0.08	0.7 ± 0.03	0.88 ± 0.02	0.85 ± 0.09	0.59 ± 0.03	0.6 ± 0.06	1.08 ± 0.33	2.47 ± 0	1.05 ± 0.28	0.86 ± 0.03	0.8 ± 0.03	0.77 ± 0.05	1.08 ± 0.04	0.64 ± 0.06	1.34 ± 0.1	2.17 ± 0.27
sed are sin mate <i>a</i> anc <i>fiance au 1</i>	SL/CH	3.1 ± 0.5	3.5 ± 0.9	2.9 ± 0.5	3.1 ± 0.7	2.5 ± 0.3	3.9 ± 1.5	3.3 ± 2.2	2.5 ± 0.5	2.2 ± 0.3	4.2 ± 1.9	3.2 ± 1.1	3.9 ± 0.8	3.7 ± 2.6	3.7 ± 1	5.4 ± 3.7	3.8 ± 1.3	3.6 ± 1	5.7 ± 0.9	4.5 ± 1.8	6.3 ± 2.7	> 10	7.6 ± 0	3.6 ± 0.3	3.7 ± 0.7	3.5 ± 0.9	3.1 ± 0.7	4.9 ± 2.1	5.6 ± 5.3	6.7 ± 2.7	7.3 ± 4.1
otations u ed to esti es de cor	SL/HL	3.3 ± 0.4	3.5 ± 0.4	3.4 ± 0.2	3.5 ± 0.4	3.9 ± 0.3	3.5 ± 0.5	3.3 ± 0.4	4.8 ± 0.7	4.2 ± 0.2	3.1 ± 0.3	3.4 ± 0.4	3.3 ± 0.5	3.2 ± 0.2	3.2 ± 0.4	3.5 ± 0.5	3.3 ± 0.2	4 ± 0.5	3.2 ± 0.1	3.5 ± 0.3	4.3 ± 0.3	7.2	5.4 ± 0	2.9 ± 0.8	2.8 ± 0.3	3.1 ± 0.2	3.6 ± 0.6	3.3 ± 0.6	4.6 ± 0.7	4.6 ± 0.4	3.1 ± 0
es. The nc cimens us s intervall	HH/TS	3 ± 0.4	3 ± 0.4	3.2 ± 0.2	2.9 ± 0.3	3.5 ± 0.3	3.1 ± 0.5	3.1 ± 0.1	4.4 ± 0.6	4 ± 0.3	3.4 ± 0.2	3.5 ± 0.4	3.8 ± 0.6	3.5 ± 0.2	3.5 ± 0.3	3.6 ± 0.3	3.9 ± 0.1	4.5 ± 0.3	5.4 ± 0.5	4.3 ± 0.3	6.1 ± 0.6	> 10	13.5 ± 0	4.5 ± 1.3	3.7 ± 0.1	3.8 ± 0.1	4.9 ± 0.3	4.7 ± 0.8	9.3 ± 0.9	7.9 ± 1.4	9.9 ± 1.1
e fish shap oer of spe les sont le	SL/H33	2.4 ± 0.7	3.6 ± 0.6	2.8 ± 0.4	3.3 ± 0.5	3.4 ± 0.4	5.5 ± 1.4	5.1 ± 0.4	4.2 ± 1	4.6 ± 0.2	3.7 ± 0.3	4.3 ± 0.5	3.2 ± 0.4	4.8 ± 0.4	5.6 ± 0.5	7.2 ± 0.4	5.2 ± 0.4	6.4 ± 0.6	6.2 ± 0.4	4.7 ± 0.5	6.9 ± 0.9	> 10	24.7 ± 0	4.2 ± 1.7	4.9 ± 0.4	5 ± 0.4	5.6 ± 0.6	6.5 ± 1.3	8 ± 1.2	9.6 ± 1	12.1 ± 1
ysis of the LW: numl s interval	SL/Hmax	1.6 ± 0	2.0 ± 0	1.9 ± 0.1	1.9 ± 0	2.2 ± 0.1	2.2 ± 0.2	2.3 ± 0.1	2.6 ± 0.2	2.4 ± 0	2.6 ± 0.1	2.7 ± 0.1	2.6 ± 0	2.8 ± 0	2.8 ± 0.1	2.8 ± 0.2	3 ± 0.1	3.2 ± 0.3	3.2 ± 1.3	3.4 ± 0.2	4.5 ± 0.4	> 10	13.2 ± 0	3.0 ± 0.8	3.3 ± 0.1	3.1 ± 0.1	3.8 ± 0.3	3.9 ± 0.6	6.8 ± 0.9	6.4 ± 0.8	7.4 ± 0.9
the anal oup; n-l <i>re 1</i> . <i>Le</i>	q	2.8590	2.8679	3.1220	2.9415	3.0442	2.7496	2.7630	2.9455	3.0153	3.1304	2.9258	3.0146	3.0803	2.9163	3.4046	2.9695	3.1365	2.9042	2.9790	2.7353	2.4060	3.3577	3.5978	3.0936	3.0023	2.9194	2.9174	3.0064	3.0250	3.0818
ied from cies in gr <i>de la figu</i>	а	0.0412	0.0406	0.0235	0.0340	0.0199	0.0373	0.0374	0.0253	0.0197	0.0178	0.0250	0.0214	0.0149	0.0232	0.0089	0.0193	0.0123	0.0198	0.0194	0.0205	0.0132	0.00075	0.00733	0.0114	0.0175	0.0203	0.0191	0.00599	0.00889	0.0061
ps defir of spe <i>celles</i> (t b.]	r	0.985	0.991	0.989	0.992	0.991	0.996	0.966	0.985	0.992	0.992	0.998	0.998	0.99	0.995	0.985	0.996	0.986	0.969	0.987	0.989	0.958	0.982	0.994	0.994	0.993	0.997	0.995	0.987	0.989	0.992
- Grou numbei aires à ner a ei	n-LW	2069	598	192	1518	1927	1009	381	123	104	715	4717	1 210	5255	3518	132	1151	354	150	851	543	82	342	28	204	2542	939	1181	585	1096	35
le IV. 6. N: 1 ! simil r estir	N -dn	7 23	1 11	3	6 24	5 11	1 15	4	6	9	5	0 16	2	4 17	4 23	5	5 5	3	8	3 16	1 13	0 10	8	7 3	6	0 11	7 11	6 12	5 8	8	9 3
Tab 959 soni pou	Gro	6	61	0	0	0	1	0	1			0	0		1	1		1				З	0	1		1		1	1	1	0

KULBICKI ET AL.

estimated at 55 cm it would yield 2,500 g. In other words, a 10% error estimate on length may generate an error on weight of approximately 25%. On top of this error linked to the length estimate there is the error linked to the choice in the length-weight relationship. The number of relationships available for reef fish species in the Pacific is rather limited. Before this work there were relationships for only 15.4% of the species (Fishbase: Froese and Pauly, 2001). We are adding relationships for a few more species (59 species in our list had no relationship available in Fishbase 2000), but what is new is that we provide relationships at higher taxonomic levels. Our data covers 92% of the 100 most speciose genera (amongst the 405 genera of shore fish in the tropical Pacific). In other words the data presented here allows to attribute length-weight relationships at the genus level for 75.6% of the reef species. At the family level, the coverage is nearly 85% and most of the missing families are usually not taken into account during UVC work (e.g., Carapidae, Ophichtidae, Tripterygiidae,...). Unfortunately the precision of the estimates from length-weight relationships at the family level and for some genera is not always satisfactory, in particular for those which have odd shapes or are elongated or semielongated or those which have heterogeneous shapes (Tab. III, Fig. 3). The group approach proposed in this article allows to close the gap in giving relationships which may be useful for either species for which no other relationship are available at present, or for species for which the existing relationships at either the genus or family level are not satisfactory. It may also provide a relationship when the observed fish is out of the length range for which the species, genus or family equation is provided for.

The present work by giving estimates of the relative error shows that: (i) the differences between species, genus, family and groups is on average small (less than 5% - Tab. II); (ii) there is much dispersion in these errors within an organisation level, the range being between 3 and 40% (Fig. 3) and (iii) the error level is linked to the shape of the fish (Tab. III). Looking at the very high values of the correlation coefficient (r) one tends to think that length-weight relationships yield excellent predictions. This is true if one considers the average of a large number of estimates, but our data shows that the dispersion of the estimates may be important in some cases and that it is not predictable from looking at r. A number of authors indicate that length-weight relationships vary with regions (see Écoutin and Albaret, 2002) or with season or year (e.g., Cucalon-Zenck, 1999; Anibeze, 2000). We have not investigated this matter, even though we have enough material to do so, but the level of difference found by most authors suggest that for UVC purposes these differences would remain minor compared to the error made on length estimates by divers. There are also differences according to sexes, but sex is very seldom taken into account during UVC work and the differences due to sex are much lower than those from other sources.

A number of length-weight relationships are available in the literature. Unfortunately for some of them, there are either errors or the types of measure are not indicated (e.g. fork length, standard length or total length). Figure 2A is a convenient way to check that the values available fall within an acceptable range. More interesting, the upper and lower boundaries on the values of the relationship between the coefficients a and b appear to be some physical limits to the dimensions of fish as suggested by our crude approach (Fig. 2B) on general fish shapes (see Pauly (1997), for a discussion on such physical limits). More refined modelling on these limits with more realistic equations of fish volumes could represent a path in understanding some of the physical constraints on fish shapes and connected capacities such as speed or energy consumption (see O'Dor and Hoar (2000) for a comparison between squids and fish; and Blier et al. (1997) for a discussion on fish capacities in this domain), which are useful in bounding some estimates in ecological modelling such as ECOPATH (Christensen and Walters, 2004).

Acknowledgements. - The authors wish to thank the crews of the O.V. ALIS, CORIS and DAWA, and also Gérard Mou-Tham, Pierre Labrosse, Yves Letourneur, Pierre Boblin and Nicolas Audran for their assistance in the field and the laboratory. The authors wish also to thank the referees for their useful comments.

REFERENCES

- ANIBEZE C.I.P., 2000. Length-weight relationship and relative condition of *Heterobranchus longifilis* (Valenciennes) from Idodo River, Nigeria. *NAGA*, 23: 34-35.
- ARIAS-GONZALES E., DELESALLES B., SALVAT B. & R. GALZIN, 1997. - Trophic functioning of the Tiahura reef sector, Moorea Island, French Polynesia. *Coral Reefs*, 16: 231-246
- ARIAS-GONZALES E., HERTEL O. & R. GALZIN, 1998. Fondement trophique d'un écosystème récifal en Polynésie Française. Cybium, 22(1): 1-24.
- BAUCHOT R. & M.L. BAUCHOT, 1978. Coefficient de condition et indice pondéral chez les téléostéens. Cybium, 4(1): 3-16.
- BELL J.D., CRAIK G.J.S., POLLARD D.A. & B.C. RUSSELL, 1985. - Estimating length frequency distributions of large reef fish underwater. *Coral Reefs*, 4: 41-44.
- BELLWOOD D.R. & A.C. ALCALA, 1988. The effect of a minimum length specification on visual estimates of density and biomass of coral reef fishes. *Coral Reefs*, 7: 23-27.
- BLIER P.U., PELLETIER D. & J.D. DUTIL, 1997. Does aerobic capacity set a limit on fish growth rate? *Rev. Fish. Sci.*, 5: 323-340.

- CAPPO M. & I.W. BROWN, 1996. Evaluation of sampling methods for reef fish populations of commercial and recreational interest. *CRC Reef Res. Cent., Townsville, Tech. Rep.*, 6: 1-72.
- CARPENTER K.E. & V.H. NIEM (eds), 1998. FAO Species Identification Guide for Fishery Purposes. The living Marine Resources of the Western Central Pacific. Vol. 2-6. Rome: FAO.
- CHRISTENSEN V. & C. WALTERS, 2004. Ecopath with Ecosim, methods, capabilities and limitations. *Ecol. Model.*, 172: 109-139.
- CUCALON-ZENCK E., 1999. Growth and length-weight parameters of the Pacific Mackerel (*Scomber japonicus*) in the Gulf of Guayaquil (Ecuador). *NAGA*, 22: 32-36.
- DARWALL W.R.T. & N.K. DULVY, 1996. An evaluation of the suitability of non-specialist volunteer researchers for coral reef fish surveys, Mafia Island, Tanzania. A case study. *Biol. Conserv.*, 78: 223-231.
- ÉCOUTIN J.-M. & J.-J. ALBARET, 2002. Relations longueurpoids pour 52 espèces de poissons des estuaires et lagunes de l'Afrique de l'Ouest. *Cybium*, 27(1): 3-9.
- ENGLISH S.C., WILKINSON C. & V. BAKER (eds), 1994. Survey Manual for Tropical Marine Resources. 368 p. Townsville, Australia: ASEAN-Australia Science Project, AIMS.
- FROESE R. & D. PAULY, 2001. Fishbase. World Wide Web electronic publication. <u>www.fishbase.org</u>.
- GONZALES B.J., PALLA H.P. & H. MISHINA, 2000. Lengthweight relationships of five Serranids from Palawan Island, Philippines. NAGA, 23: 26-28.
- HARVEY E., FLETCHER, D. & M.R. SHORTIS, 2001. A comparison of the precision and accuracy of estimates of reef fish length made by divers and a stereo-video system. *Fish Bull.*, 99: 63-71.
- HARVEY E., FLETCHER D. & M.R. SHORTIS, 2002. Estimation of reef fish length by divers and by stereo-video. A first comparison of the accuracy and precision in the field on living fish under operational conditions. *Fish. Res.*, 57: 255-265.
- KHAIRONIZAM M.Z. & Y. NORMA-RASHID, 2002. Lengthweight relationship of mudskippers (Gobiidae: Oxudercinae) in the coastal areas of Selangor, Malaysia. *NAGA*, 25: 20-22.
- KOCHZIUS M., 1997. Length-weight relationship of fishes from a sea-grass meadow in Negros Oriental, Philippines. NAGA, 20: 64-65.
- KULBICKI M., 1990. Comparisons between rotenone poisoning and visual counts for density and biomass estimates of coral reef fish populations. *In*: Proc. Congr. Int. Soc. Reef Studies, Noumea (Ricard M., ed.), pp. 105-112. Nouméa: Univ. Française du Pacifique.

- KULBICKI M., 1997. Bilan de 10 ans de recherche (1985-1995) par l'Orstom sur la structure des communautés des poissons lagonaires et récifaux en Nouvelle-Calédonie. *Cybium*, 21(suppl.): 47-79.
- KULBICKI M., 1998. How acquired behaviour of commercial reef fish may influence results obtained from visual censuses. J. *Exp. Mar. Biol. Ecol.*, 222: 11-30.
- KULBICKI M., MOU-THAM G., THOLLOT P. & L. WANTIEZ, 1993. - Length-weight relationships of fish from the lagoon of New Caledonia. NAGA, 16: 26-30.
- KULBICKI M., LABROSSE P. & J. FERRARIS, 2004. Basic principles underlying research projects on the links between the ecology and the uses of coral reef fishes in the Pacific. *In*: Challenging Coasts. Transdisciplinary Excursions into Integrated Coastal Zone Development (Visser L.E., ed.), pp. 119-158. Amsterdam: Amsterdam Univ. Press.
- LABROSSE P., KULBICKI M. & J. FERRARIS, 2001. Underwater Visual Fish Census Surveys Proper Use and Implementation. 54 p. Noumea, New Caledonia: Secretariat of the Pacific Community.
- LETOURNEUR Y., KULBICKI M. & P. LABROSSE, 1998. -Length-weight relationships of fish from coral reefs of New Caledonia, Southwestern Pacific Ocean. An update. *NAGA*, 1998(4): 39-46.
- LOUBENS G., 1980. Biologie de quelques espèces de poissons du lagon néo-calédonien. III Croissance. *Cah. Indo-Pac.*, 2: 101-153.
- O'DOR R.K. & J.A. HOAR, 2000. Does geometry limit squid growth? *ICES J. Mar. Sci.*, 57: 8-14.
- PAULY D., 1997. Geometric constraints on body size. *Trends Ecol. Evol.*, 12: 442-443.
- RIVATON J., FOURMANOIR P., BOURRET P. & M. KULBICKI, 1989. - Catalogue des poissons de Nouvelle-Calédonie. Vol. 2, 170 p. Orstom Nouméa: Catalogues des Sciences de la Mer.
- SAMOILYS M.A., 1997. Manual for Assessing Fish Stocks on Pacific Coral Reefs. Training Series QE97009. 75 p. Townsville: Queensland Department of Primary Industries.
- SAMOILYS M.A. & G. CARLOS, 2000. Determining methods of underwater visual census for estimating the abundance of coral reef fishes. *Env. Biol. Fish.*, 57: 289-304.
- YANAGAWA H., 1994. Length-weight relationships of Gulf of Thailand fishes. *NAGA*, 17: 48-52.

Reçu le 10 mai 2004. Accepté pour publication le 06 novembre 2004.

ANNEXE 1

Species are arranged by families in alphabetical order; species and genera within each family are presented alphabetically. For each family, each genus and each taxa, the estimation of parameters *a* and *b*, the number of specimens used (N), the correlation coefficient (r), maximum and minimum length (cm), and % of error are given. Name: if no name given, all specimens within the family were considered; "spp." after the genus name indicates that all specimens within the genus were considered. [Les espèces sont rangées par ordre alphabé-tique au sein des familles et genres, les familles étant elles-mêmes ordonnées alphabétiquement. Pour chaque famille, genre et taxon les estimations des paramètres a et b, le nombre de spécimens utilisés (N), le coefficient de corrélation (r), les longueurs maximum et minimum (cm) et le % d'erreur sont donnés. Nom: si aucun nom n'est donné, tous les spécimens au sein d'une famille sont considérés; "spp." après le nom de genre indique que tous les spécimens au sein du genre sont considérés.]

Family	Name	Shape	N	r	L.min	L.max	а	b	%error
Acanthuridae		heterogeneous	1141	0.995	2.0	60.0	0.0301	2.946	13.3
	Acanthurus spp.	compressed	639	0.996	2.5	57.0	0.0280	2.983	10.2
	Acanthurus blochii	compressed	249	0.996	2.5	38.0	0.0251	3.032	9.8
	Acanthurus dussumieri	compressed	95	0.993	2.5	51.5	0.0426	2.868	10.7
	Acanthurus nigricauda	compressed	51	0.995	4.6	22.5	0.0168	3.168	8.8
	Acanthurus mata	compressed	48	0.990	10.0	29.5	0.0222	3.008	6.9
	Acanthurus nigrofuscus	compressed	124	0.990	4.5	18.7	0.0264	3.028	8.7
	Acanthurus triostegus	compressed	22	0.972	6.5	16.5	0.0831	2.570	9.1
	Acanthurus xanthopterus	compressed	35	0.999	8.0	57.0	0.0267	2.984	5.9
	Ctenochaetus spp.	compressed	198	0.994	3.8	21.0	0.0237	3.056	6.5
	Ctenochaetus binotatus	compressed	18	0.969	8.5	15.3	0.0392	2.875	9.3
	Ctenochaetus striatus	compressed	180	0.995	3.8	21.0	0.0231	3.063	7.7
	Naso spp.	heterogeneous	123	0.996	2.0	60.0	0.0085	3.250	15.1
	Naso annulatus	compressed	9	0.989	28.0	42.0	0.0510	2.715	3.6
	Naso brevirostris	cylindrical	27	0.991	2.0	33.0	0.0107	3.243	32.3
	Naso hexacanthus	compressed	9	0.996	18.5	46.0	0.0202	2.956	6.6
	Naso unicornis	compressed	66	0.989	18.5	60.0	0.0179	3.035	6.8
	Zebrasoma spp.	very-flat	181	0.991	4.0	26.5	0.0378	2.857	14.4
	Zebrasoma scopas	very-flat	104	0.989	4.0	16.0	0.0291	2.993	9.1
	Zebrasoma veliferum	very-flat	77	0.995	4.0	24.0	0.0343	2.866	8.0
Albulidae	Albula spp.	cylindrical	31	0.995	35.5	78.0	0.0205	2.869	7.7
Antennariidae	Antennarius spp.	odd	17	0.982	4.0	11.0	0.0236	3.293	9.5
Apogonidae		heterogeneous	1873	0.970	2.0	18.5	0.0143	3.143	17.2
	Apogon spp.	cylindrical	1381	0.975	2.0	16.0	0.0155	3.121	17.3
	Apogon angustatus	cylindrical	59	0.938	2.6	9.0	0.0049	3.780	15.6
	Apogon aureus	cylindrical	116	0.980	6.2	12.0	0.0064	3.509	8.4
	Apogon bandanensis	cylindrical	72	0.959	3.5	10.0	0.0140	3.250	12.9
	Apogon catalai	compressed	9	0.962	5.0	7.0	0.0052	3.935	8.8
	Apogon compressus	cylindrical	13	0.941	6.0	10.4	0.0186	2.984	10.1
	Apogon cookii	cylindrical	15	0.950	4.8	7.0	0.0058	3.689	11.3
	Apogon cyanosoma	cylindrical	42	0.873	4.0	6.9	0.0074	3.563	16.9
	Apogon doderleini	cylindrical	74	0.963	3.5	9.4	0.0090	3.460	15.0
	Apogon ellioti	cylindrical	23	0.975	5.5	13.0	0.0172	2.991	9.8
	Apogon exostigma	cylindrical	62	0.972	4.0	10.3	0.0164	3.069	14.0
	Apogon fraenatus	cylindrical	218	0.982	3.5	11.0	0.0130	3.165	9.2
	Apogon fuscus	cylindrical	53	0.981	4.0	15.0	0.0407	2.699	9.4
	Apogon hyalosoma	cylindrical	42	0.983	6.0	15.0	0.0071	3.449	8.6
	Apogon kallopterus	cylindrical	66	0.980	4.5	12.0	0.0101	3.314	9.2
	Apogon lateralis	cylindrical	106	0.970	3.5	8.5	0.0184	3.051	15.2
	Apogon lineolatus	cylindrical	11	0.901	6.0	7.5	0.0045	3.683	10.7
	Apogon nigrofasciatus	cylindrical	28	0.973	3.5	8.0	0.0086	3.510	10.9
	Apogon norfolcensis	cylindrical	74	0.942	5.8	12.0	0.0102	3.277	10.0
	Apogon novemfasciatus	cylindrical	17	0.971	3.0	9.5	0.0086	3.414	11.6
Apogonidae	Apogon trimaculatus	cylindrical	55	0.977	2.0	16.0	0.0217	2.971	12.7
	Archamia spp.	cylindrical	105	0.924	5.2	8.5	0.0084	3.395	10.3
	Archamia fucata	compressed	49	0.954	5.2	8.5	0.0089	3.323	9.6

Family	Name	Shape	N	r	L.min	L.max	а	b	%error
Apogonidae	Archamia leai	compressed	17	0.957	5.2	8.2	0.0072	3.480	9.2
	Archamia lineolata	compressed	16	0.924	6.0	8.0	0.0485	2.586	7.1
	Cheilodipterus spp.	cylindrical	282	0.978	3.0	18.5	0.0132	3.085	8.1
	Cheilodipterus artus	cylindrical	21	0.976	4.7	14.4	0.0038	3.590	14.6
	Cheilodipterus lachneri	cylindrical	51	0.963	6.0	12.5	0.0022	3.858	8.6
	Cheilodipterus macrodon	cylindrical	16	0.996	8.0	18.5	0.0054	3.433	6.6
	Cheilodipterus quinquelineatus	cylindrical	194	0.974	3.0	11.0	0.0161	2.999	11.6
	<i>Fowleria</i> spp.	cylindrical	70	0.938	3.0	8.2	0.0082	3.567	17.3
	Fowleria aurita	cylindrical	12	0.997	4.1	8.2	0.0376	2.776	4.3
	Fowleria marmorata	cylindrical	13	0.959	4.0	7.5	0.0024	4.136	17.4
	Fowleria variegata	cylindrical	35	0.960	3.0	8.0	0.0134	3.350	19.7
Atherinidae	Atherinomorus lacunosus	cylindrical	49	0.968	6.5	13.0	0.0064	3.298	9.7
Aulostomidae	Aulostomus chinensis	elongated	11	0.989	31.8	68.0	0.0002	3.514	9.8
Balistidae		heterogeneous	595	0.994	5.0	61.0	0.0057	3.393	18.3
	Abalistes stellaris	compressed	111	0.991	14.0	53.5	0.0472	2.760	5.7
	Balistoides spp.	compressed	12	0.994	27.4	61.0	0.0190	3.078	6.6
	Balistoides viridescens	compressed	10	0.998	27.4	61.0	0.0244	3.018	3.9
	Pseudobalistes fuscus	compressed	76	0.989	16.3	58.0	0.0726	2.760	6.2
	Sufflamen spp.	compressed	122	0.982	16.6	36.5	0.0324	2.929	6.0
	Sufflamen fraenatus	compressed	118	0.980	18.5	36.5	0.0287	2.966	6.5
Belonidae	55 5	semi-elongated	81	0.974	16.5	88.0	0.0008	3.203	10.6
	Strongylura spp.	semi-elongated	51	0.957	29.0	75.0	0.0011	3.101	10.3
	Strongylura incisa	semi-elongated	11	0.950	36.5	72.5	0.0016	2.996	11.8
	Strongylura urvilli	semi-elongated	23	0.991	29.0	73.5	0.0005	3.361	8.4
	Tylosurus crocodilus	semi-elongated	29	0.985	29.5	88.0	0.0006	3.285	10.1
Blenniidae		heterogeneous	246	0.860	3.5	16.6	0.0022	3.901	29.9
Dieiminune	Atrosalarias fuscus	cylindrical	50	0.926	3.6	10.2	0.0149	3.018	16.2
	Cirripectes spp.	cylindrical	41	0.981	5.5	10.0	0.0130	3.150	7.8
	Cirripectes chelomatus	cylindrical	19	0.949	7.0	10.0	0.0147	3.099	7.3
	Cirripectes stigmaticus	cylindrical	17	0.989	5.5	9.0	0.0183	2.969	5.7
	Ecsenius spp.	cylindrical	49	0.939	4.0	9.5	0.0239	2.584	7.5
	Ecsenius bicolor	cylindrical	46	0.930	4.0	9.5	0.0239	2.583	10.6
	Meiacanthus spp.	semi-elongated	9	0.866	4.5	6.0	0.0009	4.470	13.7
	Petroscirtes spp.	semi-elongated	15	0.885	3.5	10.5	0.0097	3.016	29.7
	Plagiotremus spp.	elongated	33	0.854	5.0	9.5	0.0018	3.581	22.8
	Plagiotremus rhinorhynchos	elongated	20	0.913	6.0	9.5	0.0012	3,792	13.9
	Plagiotremus tapeinosoma	elongated	10	0.921	5.5	90	0.0057	2 908	15.9
	Salarias fasciatus	cylindrical	25	0.922	4.0	11.0	0.0138	2.980	13.6
Bothidae	Salar lab fase lains	very-flat	260	0.962	5.5	20.5	0.0072	3.213	13.4
Doundar	Arnoglossus spp.	very-flat	32	0.894	6.0	11.5	0.0002	4.811	27.2
	Asterorhombus intermedius	very-flat	59	0.914	7.0	12.5	0.0010	4.075	15.7
	Bothus pantherinus	very-flat	21	0.963	8.0	18.0	0.0020	3 751	18.3
	Engyprosopon grandisauama	very-flat	108	0.979	5.5	12.0	0.0168	2 894	7.1
	Grammatobothus polyophthalmus	very-flat	39	0.969	11.0	20.5	0.0148	2.895	6.8
Bythitidae	Dinematichthys spp	elongated	55	0.869	4.0	10.2	0.0072	3 1 5 5	18.0
Caesionidae	Dinemaneninys spp.	cylindrical	377	0.986	60	24.3	0.0085	3 278	53
Caesionidae	Caesia spp	cylindrical	105	0.986	67	24.5	0.0003	3 253	7.1
	Caesio caerulaurea	cylindrical	00	0.906	67	27.3	0.0200	2 901	61
	Caesio curing	cylindrical	0	0.990	19.5	21.4	0.0200	3 121	2.6
	Pterocaesio spp	cylindrical	182	0.209	60	15.5	0.000	3 721	2.0
	Pterocaesio diagramma	cylindrical	102	0.200	0.0	15.5	0.0092	3.234	5.2
	Pterocaesio trilineata	cylindrical	04	0.991	0.0 6.0	13.3	0.0009	3.541	5.2 60
Callionymidae		cylindrical	25	0.907	2.5	15.0	0.0107	2.170	15.1
Camonymuae	Swachironus spp	cylindrical	25	0.972	25	16.0	0.0329	2.400	12.1
	Synchiropus spp.	cylindrical	12	0.909	10.0	16.0	0.0491	2.317	0.4
	Syncial opus rancas	cymuncai	1 13	0.750	10.0	10.0	0.0007	2.104	2.4

Family	Name	Shape	Ν	r	L.min	L.max	а	b	%error
Callionymidae	Synchiropus splendidus	cylindrical	12	0.935	3.5	6.0	0.0109	3.341	14.8
Carangidae		heterogeneous	988	0.984	3.3	93.0	0.0083	3.197	17.9
	Atule mate	cylindrical	62	0.985	10.0	27.7	0.0166	2.949	11.1
	Carangoides spp.	compressed	352	0.994	8.5	86.0	0.0361	2.812	9.4
	Carangoides armatus	compressed	12	0.990	32.0	51.0	0.0115	3.126	4.9
	Carangoides chrysophrys	compressed	130	0.997	12.5	60.0	0.0267	2.902	7.5
	Carangoides ferdau	compressed	31	0.990	24.5	60.5	0.0368	2.851	6.6
	Carangoides fulvoguttatus	compressed	54	0.993	16.0	81.0	0.0329	2.808	8.8
	Carangoides gymnostethus	compressed	23	0.999	8.5	86.0	0.0463	2.746	5.6
	Carangoides hedlandensis	compressed	16	0.996	9.5	32.0	0.0381	2.864	6.0
	Carangoides orthogrammus	compressed	34	0.994	28.0	62.0	0.0156	3.026	6.3
	Carangoides uii	compressed	19	0.994	12.0	30.5	0.0321	2.902	7.7
	Caranx spp.	compressed	267	0.998	5.5	93.0	0.0198	2.986	13.9
	Caranx ignobilis	compressed	94	0.998	7.0	93.0	0.0164	3.059	8.1
	Carany melampyous	compressed	25	0.999	55	54.0	0.0234	2 918	6.9
	Caranx papuensis	compressed	135	0.997	6.5	65.0	0.0235	2.923	10.2
	Decanterus russellii	cylindrical	17	0.993	11.5	30.0	0.0139	2 963	6.9
	Gnathanodon speciosus	compressed	20	0.999	40	74.5	0.0199	2 995	10.9
	Pseudocarany denter	compressed	11	0.998	27.0	59.0	0.0271	2.555	3.1
	Scomberoides lysan	cylindrical	14	0.995	11.5	55.5	0.0109	2.000	62
	Scomberoides tol	cylindrical	180	0.993	33	37.0	0.0154	2.525	9.6
	Selar crumenonhthalmus	cylindrical	3/	0.995	18.0	27.5	0.0097	3 10/	6.0
Carcharhinidae	Setur crumenophinaimus	cylindrical	150	0.900	10.0	120.0	0.0010	3 566	15.0
Carenariinidae	Carcharbinus spp	cylindrical	131	0.949	45.1	120.0	0.0013	3 508	0.3
	Carcharhinus albimarginatus	cylindrical	10	0.970	61.0	76.0	0.0013	1 268	7.3
	Carcharhinus amblyrhynchos	cylindrical	54	0.921	45.1	120.0	0.0001	3 373	0.3
	Carcharhinus limbatus	cylindrical	26	0.951	45.1	86.0	0.0023	3.373	9.5 7 7
	Carcharhinus sorrah	cylindrical	20	0.977	52.0	01.0	0.0000	3.656	6.6
Contronomidoo	Ambassis interruntus	cylindrical	12	0.962	52.0	91.0	0.0007	2 5 4 2	12.4
Chastadantidaa	Ambussis interrupius	voru flot	2007	0.099	2.0	22.5	0.0079	2.545	12.4
Chaetodontidae	Chastaday app	very-flat	1027	0.965	2.0	10.0	0.0421	2.047	12.9
	Chaetodon spp.	very-flat	1927	0.962	2.0	19.0	0.0450	2.014	11./
	Chaeloaon auriga	very-flat	240	0.992	2.4	19.0	0.0404	2.829	10.5
	Chaelodon bennelli Chaelodon sitninallus	very-flat	20	0.994	3.0	12.0	0.0364	2.003	7.9
	Chaeloaon curinellus	very-flat	(2)	0.980	3.0	10.5	0.0355	2.834	9.0
	Chaetodon ephippium	very-flat	174	0.995	3.4	17.5	0.0225	3.061	0./
	Chaelodon Jidvirosiris	very-flat	1/4	0.994	2.0	10.5	0.0251	3.113	8.4
	Chaetodon lineolatus	very-flat	120	0.987	2.0	20.0	0.0693	2.622	13.3
	Chaetoaon melannotus	very-flat	158	0.988	2.0	11.1	0.0267	3.049	9.9
	Chaetodon mertensu	very-flat	15	0.983	7.0	10.0	0.0043	3.793	5.4
	Chaetodon pelewensis	very-flat	26	0.967	5.0	9.0	0.0153	3.297	11.2
	Chaetodon plebeius	very-flat	283	0.980	2.0	10.0	0.0606	2.628	9.0
	Chaetodon speculum	very-flat	444	0.984	2.0	11.5	0.0664	2.693	8.9
	Chaetodon trifascialis	very-flat	23	0.985	3.0	14.0	0.0258	2.969	10.2
	Chaetodon trifasciatus	very-flat	189	0.983	3.5	12.1	0.0311	2.976	8.0
	Chaetodon ulietensis	very-flat	36	0.995	3.3	12.1	0.0311	2.874	6.9
	Chaetodon unimaculatus	very-flat	13	0.998	4.5	18.0	0.0533	2.833	5.2
	Chaetodon vagabundus	very-flat	65	0.990	4.0	14.0	0.0278	2.973	6.4
	Heniochus spp.	very-flat	146	0.991	3.5	21.4	0.0252	3.082	11.2
	Heniochus acuminatus	very-flat	85	0.990	3.5	17.5	0.0247	3.106	11.6
	Heniochus chrysostomus	very-flat	24	0.981	5.0	14.0	0.0161	3.262	12.8
	Heniochus monoceros	very-flat	29	0.991	9.0	21.0	0.0170	3.211	9.1
Chanidae	Chanos chanos	cylindrical	85	0.978	14.5	35.0	0.0047	3.389	9.1
Chirocentridae	Chirocentrus dorab	semi-elongated	30	0.926	32.5	63.0	0.0051	2.987	10.5
Cirrhitidae		cylindrical	22	0.985	4.3	15.0	0.0093	3.268	8.0
	Cirrhitichtys falco	cylindrical	17	0.939	4.3	8.0	0.0033	3.849	12.6

Family	Name	Shape	N	r	L.min	L.max	а	b	%error
Clinidae		semi-elongated	34	0.893	3.5	8.9	0.0021	3.855	9.0
	Heteroclinus roseus	semi-elongated	10	0.914	3.5	8.0	0.0168	2.775	76.3
Clupeidae		cylindrical	896	0.987	3.5	24.0	0.0093	3.314	19.8
-	Anodontostoma chacunda	cylindrical	691	0.994	3.5	24.0	0.0202	3.049	7.4
	Herklotsichthys quadrimaculatus	cylindrical	70	0.946	5.0	14.5	0.0065	3.317	9.2
	Sardinella fijiensis	cylindrical	36	0.992	5.5	15.5	0.0163	2.971	9.4
Congridae	Conger cinereus	elongated	14	0.999	10.9	110.0	0.0008	3.127	9.7
0	Muraenesox bagio	elongated	14	0.989	56.0	106.0	0.0026	2.824	6.5
Dasyatidae	0	very-flat	82	0.990	17.0	49.5	0.0094	3.352	16.0
5	Dasyatis spp.	very-flat	82	0.990	17.0	49.5	0.0094	3.352	16.0
	Dasvatis kuhlii	verv-flat	78	0.992	17.0	49.5	0.0092	3.357	7.9
Diodontidae	Diodon spp.	odd	25	0.969	1.0	75.0	0.0678	2.784	37.6
	Diodon hystrix	odd	22	0.982	28.0	75.0	0.1934	2.472	9.5
Echeneididae	Echeneis naucrates	cvlindrical	342	0.982	12.0	84.5	0.0008	3.358	9.4
Eleotrididae	Butis amboinensis	cylindrical	14	0.919	4.5	8.5	0.0075	3.029	15.3
Elopidae	Elops machnata	semi-elongated	68	0.953	18.5	85.0	0.0125	2.927	21.2
Engraulidae	1	cvlindrical	96	0.961	5.0	12.5	0.0034	3.492	14.3
	Stolephorus spp.	cylindrical	11	0.829	8.5	12.5	0.0252	2.600	13.8
	Thryssing baelama	cylindrical	85	0.966	5.0	11.5	0.0028	3.586	10.6
Ephippidae	Platax spp.	verv-flat	11	0.999	4.5	50.0	0.0443	2.951	12.4
Fistulariidae	Fistularia spp.	elongated	47	0.976	18.5	44.0	0.0005	3.048	10.1
1 Iotuninuu	Fistularia petimba	elongated	43	0.993	19.0	44.0	0.0003	3.205	5.7
Gerreidae	Gerres spp.	compressed	1590	0.989	3.0	34.0	0.0194	3.070	9.0
Controluce	Gerres filamentosus	compressed	273	0.995	5.0	21.5	0.0240	3.011	8.6
	Gerres ovatus	compressed	963	0.992	3.0	19.0	0.0229	3 005	8.1
	Gerres ovena	cylindrical	339	0.979	4.0	20.0	0.0095	3 3 3 7	12.8
Gobiidae	Genres oyena	cylindrical	296	0.951	23	36.5	0.0264	2 623	24.0
Goondale	Ambhygobius phalaena	cylindrical	57	0.958	3.0	117	0.0184	2.823	13.6
	Fryrias spp	cylindrical	28	0.984	4.5	13.5	0.0120	2.004	12.7
	Exyrtas spp. Exyrtas hellissimus	cylindrical	23	0.969	7.0	13.5	0.0120	2.882	8.8
	Gnatholenis spp	cylindrical	13	0.925	3.5	85	0.0175	2.802	9.7
	Gobiodon citrinus	cylindrical	12	0.932	28	5.2	0.0577	2.027	11.4
	Istigabius spp	cylindrical	51	0.961	3.0	11.0	0.0183	2.432	9.0
	Istigobius decoratus	cylindrical	24	0.978	5.5	11.0	0.0180	2.702	8.9
	Istigobius ornatus	cylindrical	14	0.949	3.8	9.0	0.0098	3 108	20.5
	Orvurichthys spp	cylindrical	23	0.949	7.0	14.5	0.0134	2 903	13.9
	Oxyurichthys spp.	cylindrical	12	0.968	8.0	14.0	0.0126	2.905	10.4
	Priolenis cinctus	cylindrical	13	0.951	3.5	7.0	0.0120	3.008	11.4
	Valenciennea spp	cylindrical	17	0.989	45	12.5	0.0104	2 859	4.5
	Valenciennea longininnis	cylindrical	9	0.980	7.5	12.5	0.0054	3 136	6.5
Grammistidae	valenciennea iongipinnis	heterogeneous	22	0.987	1.0	27.0	0.0124	3 234	30.8
Grammisudae	Diploprion bifasciatum	compressed	16	0.942	13.4	20.0	0.0089	3 278	10.1
Haemulidae	Dipioprion Difuscialian	heterogeneous	1530	0.942	13.4	20.0 75.0	0.0217	2 898	10.1
Themundae	Diagramma pictus	compressed	547	0.997	7.0	75.0	0.0217	2.090	5.8
	Plactorhinchus spp	compressed	106	0.997	7.0	55.5	0.0197	2.960	9.0
	Plactorhinchus chaatodonoidas	compressed	17	0.008	14.0	53.5	0.0173	3.040	6.1
	Plactorhinchus cibbosus	compressed	1/	0.998	7.0	38.0	0.0226	2 962	13.8
	Plactorhinchus lingatus	conpressed	14	0.001	10.5	44.0	0.0220	3 070	13.0
	Plactorhinchus obscurus	compressed	22	0.224	17.5	55 5	0.0120	2885	4.0
	Plactorhinchus views	compressed	14	0.993	240	55.5	0.0270	2.003	0.9
	Domadama aport	compressed	075	0.990	30.0	34.5	0.0113	2.089	3.8
II - min - 1 - 1	romaaasys argenteus	cylindrical	8/5	0.99/	4.0	43.0	0.01188	2.954	0.0
Hemigaleidae	1 ruenoaon odesus	cynndrical	20	0.9/1	32.0	108.0	0.0018	3.544	10.7
riemiramphidae	Hamingumhus	semi-elongated	92	0.896	13.0	44.5	0.0000	4.920	55.4
	nemirampnus affinis	semi-elongated	12	0.985	13.5	21.5	0.0007	3.3/3	13.3
1	Hemirhamphus far	semi-elongated	69	0.921	22.0	44.5	0.3298	1.831	9.0

Holocentridae heterogeneous 1533 0.988 2.9 31.5 0.0222 3.059 11.1 Myripristis spp. cylindrical 504 0.990 3.5 22.5 0.0276 3.030 8.7 Myripristis amaena cylindrical 20 0.995 5.0 17.0 0.0158 3.261 5.1 Myripristis berndti cylindrical 87 0.994 4.5 22.5 0.0277 3.003 8.7 Myripristis berndti cylindrical 87 0.994 4.5 22.5 0.0277 3.003 8.7 Myripristis hexagona cylindrical 16 0.997 4.6 19.0 0.0250 3.089 7.9 Myripristis nelanosticta cylindrical 81 0.953 6.0 14.0 0.0099 3.468 13.5 Myripristis violacea cylindrical 138 0.991 3.5 19.2 0.0364 2.940 8.4 Neoniphon spp. cylindrical 196 0.995 3
Myripristis spp. cylindrical 504 0.990 3.5 22.5 0.0276 3.030 8.7 Myripristis amaena cylindrical 22 0.995 5.0 17.0 0.0158 3.261 5.7 Myripristis berndti cylindrical 87 0.994 4.5 22.5 0.0277 3.003 8.7 Myripristis hexagona cylindrical 16 0.997 4.6 19.0 0.0250 3.089 7.5 Myripristis hexagona cylindrical 16 0.997 4.6 19.0 0.0227 3.003 8.7 Myripristis nelanosticta cylindrical 81 0.953 6.0 14.0 0.0099 3.468 13.5 Myripristis pralinia cylindrical 61 0.993 4.0 19.5 0.0227 3.095 5.8 Myripristis violacea cylindrical 138 0.991 3.5 19.2 0.0364 2.940 8.4 Neoniphon spp. cylindrical 196 0.995 3.5 19.0 0.0288 2.867 8.7 Neoniphon sammara
Myripristis amaena cylindrical 22 0.995 5.0 17.0 0.0158 3.261 5 Myripristis berndti cylindrical 87 0.994 4.5 22.5 0.0277 3.003 8 Myripristis berndti cylindrical 16 0.997 4.6 19.0 0.0250 3.089 7.5 Myripristis hexagona cylindrical 81 0.953 6.0 14.0 0.0099 3.468 13.5 Myripristis melanosticta cylindrical 61 0.993 4.0 19.5 0.0227 3.095 5.8 Myripristis pralinia cylindrical 41 0.996 5.0 15.0 0.0227 3.095 5.8 Myripristis violacea cylindrical 138 0.991 3.5 19.2 0.0364 2.940 8.4 Neoniphon spp. cylindrical 196 0.995 3.5 19.0 0.0288 2.867 8.7 Neoniphon argenteus cylindrical 170 0.993 4.5 18.2 0.0317 2.823 7.0 Neoniphon sammara
Myripristis berndti cylindrical 87 0.994 4.5 22.5 0.0277 3.003 8.2. Myripristis hexagona cylindrical 16 0.997 4.6 19.0 0.0250 3.089 7.9. Myripristis hexagona cylindrical 81 0.953 6.0 14.0 0.0099 3.468 13.5. Myripristis melanosticta cylindrical 61 0.993 4.0 19.5 0.0222 3.024 9.8. Myripristis pralinia cylindrical 41 0.996 5.0 15.0 0.0227 3.095 5.8. Myripristis violacea cylindrical 138 0.991 3.5 19.2 0.0364 2.940 8.4. Neoniphon spp. cylindrical 196 0.995 3.5 19.0 0.0288 2.867 8.7. Neoniphon argenteus cylindrical 57 0.993 4.5 18.2 0.0317 2.823 7.0. Neoniphon sammara cylindrical 170 0.993 4.5 18.2 0.0177 3.139 11.7. Sargocentr
Myripristis hexagona cylindrical 16 0.997 4.6 19.0 0.0250 3.089 7.9 Myripristis kuntee cylindrical 81 0.953 6.0 14.0 0.0099 3.468 13.5 Myripristis melanosticta cylindrical 61 0.993 4.0 19.5 0.0222 3.024 9.8 Myripristis pralinia cylindrical 41 0.996 5.0 15.0 0.0227 3.095 5.8 Myripristis violacea cylindrical 138 0.991 3.5 19.2 0.0364 2.940 8.4 Neoniphon spp. cylindrical 196 0.995 3.5 19.0 0.0228 2.867 8.7 Neoniphon argenteus cylindrical 57 0.993 4.5 18.2 0.0317 2.823 7.0 Neoniphon sammara cylindrical 138 0.995 3.5 19.0 0.0276 2.888 7.3 Plectrypops lima cylindrical 118 0.995 3.5 10.5 0.0177 3.139 11.7 Sargocentron spp.
Myripristis kuntee cylindrical 81 0.953 6.0 14.0 0.0099 3.468 13.4 Myripristis melanosticta cylindrical 61 0.993 4.0 19.5 0.0292 3.024 9.8 Myripristis pralinia cylindrical 41 0.996 5.0 15.0 0.0227 3.095 5.8 Myripristis violacea cylindrical 138 0.991 3.5 19.2 0.0364 2.940 8.4 Neoniphon spp. cylindrical 196 0.995 3.5 19.0 0.0288 2.867 8.7 Neoniphon argenteus cylindrical 57 0.993 4.5 18.2 0.0317 2.823 7.0 Neoniphon sammara cylindrical 138 0.995 3.5 19.0 0.0276 2.888 7.3 Plectrypops lima cylindrical 138 0.995 3.5 19.0 0.0276 2.888 7.3 Sargocentron spp. cylindrical 11 0.963 5.5 10.5 0.0177 3.139 11.7 Sargocentron spp.
Myripristis melanosticta cylindrical 61 0.993 4.0 19.5 0.0292 3.024 9.8 Myripristis pralinia cylindrical 41 0.996 5.0 15.0 0.0227 3.095 5.8 Myripristis violacea cylindrical 138 0.991 3.5 19.2 0.0364 2.940 8.4 Neoniphon spp. cylindrical 196 0.995 3.5 19.0 0.0288 2.867 8.7 Neoniphon argenteus cylindrical 57 0.993 4.5 18.2 0.0317 2.823 7.0 Neoniphon sammara cylindrical 138 0.995 3.5 19.0 0.0276 2.888 7.3 Plectrypops lima cylindrical 11 0.963 5.5 10.5 0.0177 3.139 11.7 Sargocentron spp. cylindrical 822 0.993 2.9 31.5 0.0219 3.047 8.7
Myripristis pralinia cylindrical 41 0.996 5.0 15.0 0.0227 3.095 5.8 Myripristis violacea cylindrical 138 0.991 3.5 19.2 0.0364 2.940 8.4 Neoniphon spp. cylindrical 196 0.995 3.5 19.0 0.0288 2.867 8.7 Neoniphon argenteus cylindrical 57 0.993 4.5 18.2 0.0317 2.823 7.0 Neoniphon sammara cylindrical 138 0.995 3.5 19.0 0.0276 2.888 7.3 Plectrypops lima cylindrical 11 0.963 5.5 10.5 0.0177 3.139 11.7 Sargocentron spp. cylindrical 822 0.993 2.9 31.5 0.0219 3.047 8.7
Myripristis violacea cylindrical 138 0.991 3.5 19.2 0.0364 2.940 8.4 Neoniphon spp. cylindrical 196 0.995 3.5 19.0 0.0288 2.867 8.7 Neoniphon argenteus cylindrical 57 0.993 4.5 18.2 0.0317 2.823 7.0 Neoniphon sammara cylindrical 138 0.995 3.5 19.0 0.0276 2.888 7.3 Plectrypops lima cylindrical 11 0.963 5.5 10.5 0.0177 3.139 11.7 Sargocentron spp. cylindrical 822 0.993 2.9 31.5 0.0219 3.047 8.7
Neoniphon spp. cylindrical 196 0.995 3.5 19.0 0.0288 2.867 8.7 Neoniphon argenteus cylindrical 57 0.993 4.5 18.2 0.0317 2.823 7.0 Neoniphon sammara cylindrical 138 0.995 3.5 19.0 0.0276 2.888 7.3 Plectrypops lima cylindrical 11 0.963 5.5 10.5 0.0177 3.139 11.7 Sargocentron spp. cylindrical 822 0.993 2.9 31.5 0.0219 3.047 8.7
Neoniphon argenteus cylindrical 57 0.993 4.5 18.2 0.0317 2.823 7.0 Neoniphon sammara cylindrical 138 0.995 3.5 19.0 0.0276 2.888 7.3 Plectrypops lima cylindrical 11 0.963 5.5 10.5 0.0177 3.139 11.7 Sargocentron spp. cylindrical 822 0.993 2.9 31.5 0.0219 3.047 8.7
Neoniphon sammara cylindrical 138 0.995 3.5 19.0 0.0276 2.888 7.3 Plectrypops lima cylindrical 11 0.963 5.5 10.5 0.0177 3.139 11.7 Sargocentron spp. cylindrical 822 0.993 2.9 31.5 0.0219 3.047 8.7
Plectrypops lima cylindrical 11 0.963 5.5 10.5 0.0177 3.139 11.7 Sargocentron spp. cylindrical 822 0.993 2.9 31.5 0.0219 3.047 8.7
Sargocentron spp. cylindrical 822 0.993 2.9 31.5 0.0219 3.047 8.7
Sargocentron diadema cylindrical 322 0.989 5.0 15.0 0.0251 2.955 8.3
Sargocentron rubrum cylindrical 371 0.993 2.9 23.0 0.0275 2.998 7.4
Sargocentron spiniferum compressed 122 0.975 11.5 31.5 0.0154 3.119 9.0
Kuhliidae Kuhlia spp. cvlindrical 36 0.997 4.0 24.0 0.0160 3.034 5.0
Initial control C_{10} C_{10} C_{10} C_{10} C_{10} C_{10} Kuhlia marginata C_{10} C_{10} C_{10} C_{10} C_{10} C_{10}
Kyphosidae Kyphosus spp. compressed 22 0.987 17.7 53.5 0.0129 3.151 5.1
Kyphosia spp: Kyphosia spp: Ky
Labridae heterogeneous 1382 0.995 2.5 93.0 0.0107 3.178 15.9
Anampses spp. cylindrical 13 0.980 4.5 13.6 0.0226 2.793 10.6
Bodianus spp. cylindrical 510 0.022 2.175 100 Bodianus spp. cylindrical 510 0.994 8.0 59.0 0.0108 3.173 5 '
Bodianus spp. Cylindrical 910 0105 0101 01110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110 0110
Cheilinus spp cvlindrical 111 0 996 4 2 93 0 0 0155 3 058 15 5
Cheilinus bimaculatus cylindrical 28 0.967 5.0 13.0 0.0679 2.317 10.0
Cheilinus chlorourus compressed 44 0.994 4.2 32.0 0.0197 2.993 11.5
Cheilinus trilobatus compressed 9 0.997 8.5 24.0 0.0162 3.059 8.5
<i>Cheilinus undulatus</i> compressed 16 0.998 23.0 93.0 0.0113 3.136 4.4
Cheilio inermis semi-elongated 12 0.997 5.8 23.7 0.0035 3.082 8.4
Choerodon graphicus cylindrical 140 0.998 4.0 51.5 0.0151 3.122 9.3
Coris spp cylindrical 20 0 998 5 2 55 0 00065 3 254 8 3
Coris ayoula cylindrical 11 0.992 32.5 55.0 0.0027 3.489 52.5
Endlag Endlag<
Image: Complexity of the second sec
Halichoeres spp cylindrical 80 0.980 3.1 19.3 0.0160 2.987 13.5
Halichoeres argus cylindrical 18 0.965 3.1 10.1 0.0175 2.957 14.0
Halichoeres melanurus cylindrical 26 0.949 3.6 10.6 0.0093 3.262 10
Halichoeres trimaculatus Cylindrical 22 0.994 3.5 16.0 0.0275 2.736 10.8
Hemioympus melanterus cylindrical 22 0.05 10.0 0.0242 2.923 7
<i>Labroides dimidiatus</i> semi-elongated 36 0.981 4.5 11.3 0.0059 3.231 10.3
Stathoine Stathoine <t< td=""></t<>
Stethojulis handanensis cylindrical 23 0.922 3.0 10.0 0.0304 2.581 255
Stetholulis interrunta cylindrical 24 0.960 3.1 9.0 0.0292 2.608 23.1
Stetholulis strigiventer cylindrical 147 0.971 2.5 11.5 0.0191 2.876 12.6
Strategies Cylindrical 147 0.571 2.5 11.5 0.0191 2.670 12.0 Thalassoma spin cylindrical 158 0.956 2.8 17.6 0.0123 3.007 24/
Thalassoma spp. Cylindrical 150 0.550 2.6 17.0 0.0125 5.097 24.4 Thalassoma hardwicke cylindrical 10 0.007 5.5 16.3 0.0178 2.078 7.0
Thalassoma hurare Cylindrical 10 0.977 3.5 10.5 0.0178 2.976 7.0 Thalassoma lunare Cylindrical 85 0.077 2.8 16.5 0.0211 2.822 15
Thalassoma lutescens cylindrical 65 0.977 2.6 10.5 0.0211 2.052 15.4 Thalassoma lutescens cylindrical 51 0.004 4.5 17.6 0.0130 3.042 7.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{bmatrix} v \cup y - 1 a i \\ Gazza minuta \end{bmatrix} = \begin{bmatrix} v \cup y - 1 a i \\ V \cup y -$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Leiognathus eauulus very-flat 380 0.003 2.5 200 0.0270 2.097 0.5

Family	Name	Shape	N	r	L.min	L.max	а	b	%error
Leiognathidae	Leiognathus fasciatus	very-flat	61	0.994	5.0	15.5	0.0200	3.102	8.2
	Leiognathus leuciscus	very-flat	59	0.977	5.0	9.0	0.0070	3.488	7.5
	Leiognathus rivulatus	very-flat	39	0.961	6.0	10.0	0.0192	3.008	6.5
	Leiognathus splendens	very-flat	161	0.974	4.5	11.5	0.0288	2.949	8.3
	Secutor ruconius	very-flat	17	0.921	3.5	6.5	0.0268	2.969	13.3
Lethrinidae		heterogeneous	8527	0.996	2.5	86	0.0169	3.040	9.4
	Gnathodentex aurolineatus	cylindrical	53	0.983	8.5	20.5	0.0180	3.063	6.2
	Gymnocranius spp.	compressed	814	0.995	6.5	69.0	0.0302	2.909	5.9
	Gymnocranius euanus	compressed	372	0.991	10.0	49.0	0.0225	3.001	5.3
	Gymnocranius grandocculis	compressed	243	0.995	16.0	69.0	0.0320	2.885	6.5
	Gymnocranius sp. FAO	compressed	120	0.998	9.0	53.0	0.0276	2.933	4.5
	Lethrinus spp.	heterogeneous	7597	0.996	2.5	86.0	0.0165	3.043	9.6
	Lethrinus atkinsoni	compressed	2038	0.991	4.2	45.5	0.0178	3.057	6.3
	Lethrinus genivittatus	cylindrical	877	0.992	2.5	22.0	0.0179	2.995	8.3
	Lethrinus harak	cylindrical	111	0.997	6.0	32.0	0.0170	3.042	6.1
	Lethrinus lentjan	compressed	380	0.995	6.5	44.5	0.0197	2.986	5.5
	Lethrinus miniatus	cylindrical	59	0.991	18.5	54.5	0.0066	3.277	7.2
	Lethrinus nebulosus	compressed	2980	0.996	3.5	69.5	0.0187	2.996	6.1
	Lethrinus obsoletus	cylindrical	133	0.992	11.0	31.0	0.0173	3.026	7.5
	Lethrinus olivaceus	cylindrical	135	0.992	22.5	72.5	0.0294	2.851	8.8
	Lethrinus ravus	cylindrical	9	0.997	11.0	53.2	0.0141	3.065	9.5
	Lethrinus rubrioperculatus	cylindrical	661	0.985	16.5	39.5	0.0128	3.108	5.7
	Lethrinus semicinctus	cylindrical	155	0.993	3.0	29.0	0.0118	3.117	8.6
	Lethrinus xanthochilus	cylindrical	59	0.992	22.0	62.5	0.0201	2.964	7.7
	Monotaxis grandoculis	compressed	63	0.999	4.0	45.0	0.0230	3.022	7.3
Lutjanidae		heterogeneous	5281	0.994	4.0	92.0	0.0167	3.022	11.6
	Aprion virescens	cylindrical	121	0.980	22.5	88.0	0.0230	2.886	8.3
	Lutjanus spp.	heterogeneous	5107	0.993	4.0	77.0	0.0151	3.057	10.8
	Lutjanus adetii	compressed	269	0.991	18.5	47.0	0.0071	3.261	7.1
	Lutjanus argentimaculatus	cylindrical	308	0.997	5.5	68.0	0.0280	2.844	5.6
	Lutjanus bohar	cylindrical	510	0.997	4.0	75.0	0.0156	3.059	6.0
	Lutjanus fulviflammus	cylindrical	867	0.994	5.0	32.5	0.0205	2.960	6.6
	Lutjanus fulvus	cylindrical	318	0.994	4.0	31.0	0.0211	2.974	8.3
	Lutjanus gibbus	compressed	515	0.991	14.2	40.5	0.0131	3.138	6.3
	Lutjanus kasmira	cylindrical	127	0.983	4.0	26.0	0.0084	3.247	7.8
	Lutjanus lutjanus	cylindrical	68	0.994	8.5	28.0	0.0182	2.969	5.8
	Lutjanus monostigma	cylindrical	15	0.986	25.0	53.5	0.0222	2.913	9.4
	Lutjanus quinquelineatus	cylindrical	864	0.969	5.5	23.0	0.0146	3.100	9.9
	Lutjanus rivulatus	compressed	12	0.994	15.5	76.0	0.0084	3.260	11.8
	Lutjanus russelli	cylindrical	171	0.993	9.5	37.0	0.0166	2.978	7.8
	Lutjanus sebae	compressed	34	0.996	24.5	77.0	0.0116	3.152	4.8
	Lutjanus semicinctus	cylindrical	31	0.976	18.0	35.0	0.0040	3.428	8.1
	Lutjanus vittus	cylindrical	998	0.992	9.0	38.5	0.0125	3.075	7.5
	Symphorus nematophorus	cylindrical	41	0.983	44.5	92.0	0.0147	3.046	5.7
Megalopidae	Megalops cyprinoides	semi-elongated	35	0.993	17.0	47.0	0.0122	3.033	7.1
Microcanthidae	Microcanthus strigatus	compressed	14	0.956	9.2	15.0	0.0526	2.818	9.7
	Paramonacanthus japonicus	compressed	48	0.953	5.0	17.0	0.0219	2.889	13
Monacanthidae	Pseudalutarius nasicornis	compressed	209	0.955	8.0	13.5	0.0070	3.262	6.9
Monodactylidae	Monodactylus argenteus	compressed	203	0.993	2.0	18.5	0.0303	2.964	8.0
Mugilidae		cylindrical	2825	0.993	4.0	60.0	0.0127	3.046	7.0
	Liza spp.	cylindrical	1544	0.991	4.0	35.5	0.0141	3.023	6.5
	Liza macrolepis	cylindrical	806	0.992	6.0	29.0	0.0144	3.014	6.7
	Liza melinoptera	cylindrical	735	0.984	4.0	35.5	0.0133	3.045	6.7
	Mugil cephalus	cylindrical	182	0.996	6.5	48.5	0.0109	3.089	6.5
	Valamugil spp.	cylindrical	919	0.995	5.0	60.0	0.0088	3.148	10.7

Family	Name	Shape	N	r	L.min	L.max	a	b	%error
Mugilidae	Valamugil buchanani	cylindrical	680	0.995	7.0	60.0	0.0101	3.104	7.6
	Valamugil engeli	cylindrical	196	0.991	6.5	26.0	0.0058	3.287	8.9
N (11' 1	Valamugil seheli	cylindrical	38	0.996	11.5	43.5	0.0061	3.275	6.1
Mullidae	Mallaidan ann	cylindrical	2902	0.987	3.5	41.0	0.0104	3.224	9./
	Mulloides spp.	cylindrical	29	0.979	10	21.5	0.0074	3.293	12.9
	Muiloides jiavoineaius	cylindrical	016	0.951	25	19.5	0.0120	3.101	/.0
	Parupeneus spp.	cylindrical	10	0.993	3.3	41.0	0.0145	2 1 2 2	10.1
	Parupeneus ciliatus	cylindrical	02	0.998	0.0 2.5	41.0	0.0131	3.122	5.4 0.0
	Farupeneus cutatus	cylindrical	522	0.997	5.5	24.3	0.0110	2.070	9.0
	Farupeneus neplacaninus	cylindrical	01	0.969	250	25.5	0.0109	2 114	0.9
	Parupanaus multifasciatus	cylindrical	53	0.997	3.5.0	228	0.0142	3.114	11.7
	Parupaneus spilurus	cylindrical	10	0.901	11.4	22.0	0.0114	3.022	17
	I arupeneus spiturus	cylindrical	2057	0.995	35	29.5	0.0192	3.022	4.0
	Upeneus spp.	cylindrical	055	0.964	65	17.0	0.0103	3.022	67
	Upeneus auttatus	cylindrical	21	0.975	80	17.0	0.0170	2 8 8 3	5.1
	Upeneus guitatus	cylindrical	332	0.990	7.5	15.5	0.0218	2.005	7.2
	Upeneus sulphureus	cylindrical	38	0.978	11.0	17.0	0.0150	3 3 2 2 2	6.9
	Upeneus tragula	cylindrical	380	0.940	35	24.0	0.0031	3.068	8.0
	Upeneus vittatus	cylindrical	320	0.900	60	24.0	0.0072	3 3 5 4	8.5
Muraenidae	Openeus vinuus	elongated	175	0.900	37	256.0	0.00/2	2 614	13.4
Warachidae	Echidna spp	elongated	22	0.949	11.0	64.0	0.0003	3 352	13.9
	Gymnothorar spp.	elongated	90	0.902	37	120.0	0.0005	3 303	20
	Gymnothorax fimbriatus	elongated	20	0.993	11.0	44.0	0.0004	3 324	10.6
	Thyrsoidea spp	elongated	40	0.995	22.0	223.5	0.0115	2 305	9.8
	Thyrsoidea macrura	elongated	37	0.995	22.0	223.5	0.0113	2.311	13.2
Nemipteridae	This soluce mach and	cylindrical	1539	0.984	3.5	27.0	0.0171	3.004	13.1
- · · · · · · · · · · · · · · · · · · ·	Nemipterus spp.	cylindrical	869	0.974	11.5	27.0	0.0068	3.307	7.9
	Nemipterus furcosus	cylindrical	598	0.976	11.5	27.0	0.0060	3.357	8.7
	Nemipterus peroni	cylindrical	271	0.936	15.5	26.5	0.0079	3.251	8.2
	Scolopsis spp.	cylindrical	669	0.981	3.5	22.0	0.0157	3.054	17.1
	Scolopsis bilineatus	cylindrical	104	0.996	3.5	19.4	0.0138	3.174	8.3
	Scolopsis taeniopterus	cylindrical	563	0.980	7.0	22.0	0.0185	2.981	7.4
Opistognathidae	Opisthognathus spp.	cylindrical	28	0.897	3.5	7.5	0.0231	2.452	13.9
Ostraciidae		odd	67	0.962	2.5	41.0	0.0853	2.577	26.4
	Lactoria spp.	odd	24	0.890	7.5	30.0	0.4029	1.928	35.2
	Lactoria cornuta	odd	15	0.925	20.5	30.0	0.0065	3.168	7.6
	Ostracion cubicus	odd	20	0.998	2.5	41.0	0.1288	2.519	10.5
	Tetrosomus gibbosus	odd	23	0.970	5.0	26.0	0.1820	2.369	11.7
Pinguipedidae	Parapercis spp.	cylindrical	202	0.982	2.5	23.0	0.0133	2.943	9.5
	Parapercis cylindrica	cylindrical	159	0.971	2.5	13.0	0.0124	3.000	14.4
	Parapercis hexophtalma	cylindrical	15	0.996	7.0	23.0	0.0068	3.157	7.8
	Parapercis xanthozona	cylindrical	19	0.983	3.5	17.5	0.0133	2.890	14.1
Platycephalidae		cylindrical	113	0.988	6.0	52.0	0.0112	2.917	12.1
	Cymbacephalus beauforti	cylindrical	14	0.998	19.5	52.0	0.0040	3.211	4.5
	Onigocia macrolepis	cylindrical	39	0.988	6.0	17.0	0.0239	2.646	6.3
	Onigocia spinosa	cylindrical	26	0.990	6.0	19.0	0.0352	2.465	9.1
	Thysanophrys chiltonae	cylindrical	20	0.989	7.5	22.1	0.0027	3.347	9.9
Plesiopidae		cylindrical	57	0.923	3.5	10.5	0.0033	3.856	13.5
	Assessor macneili	cylindrical	27	0.934	3.7	7.0	0.0181	2.791	12.4
	Plesiops coeruleolineatus	cylindrical	23	0.943	3.5	10.5	0.0067	3.496	18.3
Polynemidae	Polydactylus microstoma	cylindrical	112	0.981	10.5	24.5	0.0135	3.117	6.5
Pomacanthidae		compressed	232	0.983	2.0	36.4	0.0584	2.718	15.5
	Centropyge spp.	compressed	210	0.968	2.0	13.5	0.0745	2.577	17.2
	Centropyge bispinosus	compressed	117	0.964	2.0	11.5	0.0920	2.458	15.3

Family	Name	Shape	N	r	L.min	L.max	a	b	%error
Pomacanthidae	Centropyge tibicen	compressed	77	0.979	2.0	13.5	0.0492	2.795	10.6
	Pomacanthus sextriatus	compressed	20	0.999	3.5	36.4	0.0669	2.724	3.7
Pomacentridae		heterogeneous	2262	0.969	1.5	17.8	0.0209	3.191	15.1
	Abudefduf spp.	compressed	135	0.987	5.0	15.5	0.0226	3.132	8.2
	Abudefduf sexfasciatus	compressed	98	0.981	5.0	15.0	0.0213	3.152	10.9
	Abudefduf whitleyi	compressed	34	0.996	5.0	15.5	0.0254	3.093	7.7
	Amblyglyphidodon spp.	compressed	34	0.952	4.5	10.5	0.0144	3.330	13.7
	Amblyglyphidodon curacao	compressed	18	0.986	4.5	10.5	0.0126	3.435	8.2
	Amblyglyphidodon leucogaster	compressed	14	0.926	6.5	10.4	0.0297	2.936	9.8
	Amphiprion spp.	compressed	71	0.978	2.2	12.9	0.0189	3.190	10.9
	Amphiprion akindynos	compressed	21	0.989	4.0	12.9	0.0316	2.930	9.9
	Amphiprion melanopus	compressed	32	0.961	2.2	10.8	0.0155	3.298	12.3
	Amphiprion tricinctus	compressed	13	0.984	5.5	12.0	0.0385	2.904	12.3
	Chromis spp.	compressed	373	0.971	2.0	12.0	0.0229	3.175	13.3
	Chromis atripectoralis	compressed	24	0.989	3.5	9.0	0.0179	3.291	10.4
	Chromis chrysura	compressed	58	0.979	5.5	12.0	0.0228	3.222	8.1
	Chromis fumea	compressed	61	0.975	4.5	9.0	0.0144	3.351	8.6
	Chromis iomelas	compressed	9	0.986	3.5	6.5	0.0151	3.383	7.9
	Chromis lepidolepis	compressed	16	0.898	5.0	6.8	0.1950	1.939	6.3
	Chromis ternatensis	compressed	30	0.921	5.0	7.5	0.0160	3.408	8.7
	Chromis viridis	compressed	144	0.932	2.0	7.0	0.0351	2.900	16.0
	<i>Chrysiptera</i> spp.	cvlindrical	107	0.931	3.5	8.2	0.0260	2.926	12.6
	Chrvsiptera taupou	cylindrical	85	0.946	3.5	8.2	0.0220	3.001	13.5
	Dascyllus spp.	compressed	138	0.976	2.4	13.5	0.0462	2.911	9.8
	Dascyllus aruanus	compressed	112	0.944	2.4	6.5	0.0415	2.989	12.9
	Dascyllus reticulatus	compressed	16	0.971	3.3	8.0	0.0311	3.133	13.6
	Dascyllus trimaculatus	compressed	10	0.997	5.5	13.5	0.0313	3.043	5.7
	Neoglyphidodon spp.	compressed	50	0.981	4.0	10.8	0.0175	3.212	5.8
	Neoglyphidodon nigroris	compressed	10	0.991	6.5	10.6	0.0178	3.182	3.8
	Neoglyphidodon polyacanthus	compressed	37	0.980	4.0	10.8	0.0206	3.146	11.2
	Neopomacentrus spp.	cylindrical	171	0.944	1.5	7.0	0.0258	2.933	10.2
	Neopomacentrus azysron	cylindrical	21	0.974	3.5	6.9	0.0258	2.943	8.1
	Neopomacentrus nemurus	cylindrical	101	0.901	4.5	7.0	0.0259	2.913	9.4
	Pomacentrus spp.	compressed	898	0.955	2.0	14.5	0.0280	3.024	12.1
	Pomacentrus adelus	compressed	143	0.937	2.0	8.0	0.0176	3.292	10.6
	Pomacentrus amboinensis	compressed	128	0.974	2.5	10.5	0.0439	2.824	11.3
	Pomacentrus chrvsurus	compressed	54	0.972	2.5	14.5	0.0264	3.083	12.1
	Pomacentrus imitator	compressed	10	0.952	63	92	0.0102	3 4 6 9	11.2
	Pomacentrus lepidogenys	compressed	36	0.977	4.5	8.0	0.0215	3.210	9.2
	Pomacentrus melanopterus	compressed	13	0.989	4.0	9.5	0.0116	3.387	10.5
	Pomacentrus moluccensis	compressed	38	0.903	5.0	7.6	0.0305	3.012	10.4
	Pomacentrus pavo	cylindrical	172	0.977	2.5	9.5	0.0252	2.972	10.4
	Pomacentrus philippinus	compressed	73	0.972	3.5	9.5	0.0231	3 0 5 8	10.1
	Pomacentrus vaiuli	compressed	84	0.973	2.5	85	0.0472	2 775	13.1
	Teixeirichthys iordani	cylindrical	50	0.970	7.0	10.0	0.0197	3.072	5.4
	Steagstes spp	compressed	205	0.970	2.5	15.5	0.0395	2 080	10.3
	Stegastes fasciatus	compressed	11	0.905	2.5 8.5	12.0	0.0028	1.063	11.7
	Stegastes lividus	compressed	12	0.077	7.5	15.5	0.0652	2 7/1	13.8
	Stepastes nioricans	compressed	182	0.986	25	12.5	0.0384	3 010	15.0 Q /
Priscanthidas	Siegusies nigi icuns	compressed	1102	0.900	2.5	380	0.0304	2 807	7.4
1 Hacanunuae	Heteropriacanthus cruentatus	compressed	119	0.990	4.)	20.0	0.0294	2.007	80
	Priacanthus hamrur	compressed	106	0.990	9.0 1 5	20.0	0.0279	2.023	0.2 5 7
Pseudochromideo		cylindrical	100	0.222	+.)) 7	Q 1	0.0300	2.001	Q 1
1 seudoeni onnude	Pseudochromis spp	cylindrical	07	0.923	4.7	0.1 Q 1	0.0192	2.012	0.1 Q /
	Pseudochromis purpurascens	cylindrical	77	0.951	4.0	0.1	0.0090	3.107	127
	1 seudochromus purpurascens	cymarical	1 12	0.934	4.0	0.1	0.0099	5.145	13./

Family	Name	Shape	N	r	I min	I max	а	h	%error
Pseudochromidae	Pseudochromis salvati	cylindrical	22	0.885	4.9	7.7	0.0218	2 752	9.1
Scaridae	1 seaucentonus surviu	cylindrical	668	0.996	23	68.0	0.0222	2 971	12.6
Journale	Chlorurus sordidus	cylindrical	158	0.997	2.3	37.0	0.0243	2 969	7.6
	Leptoscarus vaigiensis	cylindrical	21	0.996	3.5	19.6	0.0163	2 991	8.7
	Scarus spp	cylindrical	637	0.996	23	68.0	0.0234	2 956	13.3
	Scarus altipinnis	cylindrical	19	0.997	11.0	44.5	0.0184	3.029	6.4
	Scarus ghobban	cylindrical	247	0.997	6.0	49.5	0.0165	3.041	6.7
	Scarus niger	cylindrical	13	0.997	15.0	43.0	0.0134	3.160	6.0
	Scarus psittacus	cylindrical	21	0.970	6.1	15.0	0.0105	3.319	12.9
	Scarus rivulatus	cylindrical	37	0.999	5.0	41.5	0.0175	3.074	6.8
	Scarus schlegeli	cylindrical	75	0.983	4.5	37.0	0.0231	2.969	9.7
Scatophagidae	Scatophagus argus	compressed	45	0.998	5.0	36.0	0.0345	2.948	5.3
Scombridae	Scomberomorus commersoni	cylindrical	49	0.996	19.0	100.0	0.0162	2.856	6.6
Scorpaenidae		heterogeneous	140	0.984	3.0	31.0	0.0246	2.908	15.1
beorpaonidae	Dendrochirus brachypterus	cylindrical	32	0.990	4.0	12.0	0.0097	3.337	6.8
	Pterois spp.	cylindrical	10	0.995	3.5	31.0	0.0358	2.697	14.2
	Scorpaenodes spp	heterogeneous	77	0.976	3.0	15.7	0.0169	3 1 3 8	7.4
	Scorpaenodes sugmensis	cylindrical	38	0.971	3.5	10.8	0.0196	3.038	13.0
	Scorpaenodes parvininnis	cylindrical	11	0.983	3.0	15.0	0.0254	2 999	16.1
	Scorpaenodes scabra	cylindrical	15	0.969	3.0	95	0.0245	2.960	16.0
	Scorpaenonsis spp	heterogeneous	15	0.948	3.5	10.0	0.0131	3 261	24.0
Serranidae	Scorpachopsis spp.	heterogeneous	3403	0.996	3.5	128.0	0.0134	3.031	11.7
Serraindae	Any perodon leucoarammicus	cylindrical	10	0.990	30.5	51.0	0.0014	3 5/18	83
	Cenhalonholis spp	cylindrical	378	0.900	18	50.0	0.0014	3 100	11.2
	Cephalopholis argus	cylindrical	15	0.995	21.5	44.0	0.0003	3 181	7.2
	Cephalopholis bognack	cylindrical	1/0	0.900	1.5	30.5	0.0095	3.101	0
	Cephalopholis miniata	cylindrical	0/	0.900	23.0	46.0	0.0140	3 114	9. 80
	Cephalopholis sonnerati	cylindrical	06	0.975	23.0	50.0	0.0066	3.114	8.0
	Cephalopholis urodeta	cylindrical	17	0.908	15.0	25.5	0.0000	2.818	8.9
	Cromilantas altivalis	compressed	10	0.955	13.0	45.0	0.0262	2.010	12.1
	Eninaphalus spp	heterogeneous	2712	0.905	35	128.0	0.0902	2.409	10.3
	Epinephelus spp.	cylindrical	2/12	0.990	5.5	120.0	0.0122	3.033	8.0
	Epinephelus aceruleopunctatus	cylindrical	200	0.990	2.5	42.5 61.0	0.0114	2 0 2 8	0.0
	Epinephelus cuer uteopunctatus	cymuncal	24	0.997	5.5	76.0	0.0180	2.930	7.0
	Epinephelus Cyanopoaus	oulindrical	165	0.994	9.5	26.5	0.0111	2 0 4 1	1.9
	Epinephetus Juscialus	cylindrical	105	0.965	0.9	100.0	0.0136	2.057	9.0
	Epinephetus Juscoguitatus	cylindrical	22	0.997	10.3	20.0	0.0154	2,000	0.1
	Epinephetus nowianai	cylindrical	00 56	0.997	11.0	59.0 41.0	0.0133	2.999	9.0
	Epinephelus macrospilos	cylindrical	20	0.994	11.0	41.0	0.0132	3.031	7.8
	Epinephetus macutatus	cylindrical	173	0.969	0.5	128.0	0.0110	2.052	7.5
	Epinephetus matabaricus	cylindrical	201	0.996	0.J	25.0	0.0121	2.052	7.0
	Epinephelus merra	cylindrical	42	0.995	5.5 05	23.0	0.0138	2.900	9.3
	Epinephetus ongus	cylindrical	250	0.995	0.3	57.0 61.5	0.0190	2.920	7.1
	Epinepheius polyphekaalon	cylindrical	159	0.992	8.3 16.0	01.5	0.0085	3.100	7.8
		cylindrical	138	0.903	10.0	40.5	0.0114	3.080	10.9
	Epinepheius coloides	cylindrical	212	0.997	0.3	05.0	0.0099	3.102	10.8
	Plectropomus spp.	cylindrical	212	0.996	10./	95.0	0.0107	3.086	1.2
	Fiectropomus laevis	cylindrical	1/	0.996	18.1	95.0	0.0059	3.238	8.6
	Pieciropomus leopardus	cylindrical	191	0.995	10./	91.0	0.0118	3.060	/.1
	Pseudanthias hypselosoma	cylindrical	35	0.990	5.0	9.5.0	0.0137	3.149	7.0
Circuit 1		cylindrical	41	0.995	20.0	0.00	0.0122	3.079	5.8
Siganidae	Siganus spp.	compressed	2065	0.987	2.0	38.0	0.0145	3.122	12.2
	Siganus argenteus	compressed	31	0.991	10.0	32.0	0.0109	3.154	8.5
	Siganus corallinus	compressed	9	0.996	9.0	19.0	0.0023	3.821	6.4
	Siganus aonatus	compressed	669	0.981	2.0	22.5	0.0104	3.272	6.1
	Siganus fuscescens	compressed	481	0.996	3.0	29.5	0.0137	3.068	7.2

Family	Name	Shape	Ν	r	L.min	L.max	а	b	%error
Siganidae	Siganus lineatus	compressed	817	0.997	5.5	35.0	0.0219	2.998	5.9
	Siganus puellus	compressed	11	0.998	5.5	24.0	0.0176	3.028	4.7
	Siganus punctatus	compressed	27	0.994	10.0	36.5	0.0095	3.276	7.7
	Siganus spinus	compressed	9	0.993	6.5	14.0	0.0150	3.093	6.7
Sillaginidae	Sillago spp.	cylindrical	469	0.991	3.5	31.0	0.0040	3.264	6.3
	Sillago ciliata	cylindrical	169	0.988	15.5	31.0	0.0028	3.396	7.2
	Sillago sihama	cylindrical	249	0.992	3.5	29.0	0.0051	3.180	9.1
Soleidae		very-flat	12	0.999	4.5	28.0	0.0064	3.286	6.6
	Pardachirus pavoninus	very-flat	10	0.999	4.5	28.0	0.0078	3.218	4.4
Sparidae	Acanthopagrus berda	compressed	295	0.996	5.0	36.0	0.0224	3.044	6.9
Sphyraenidae		semi-elongated	646	0.990	5.5	104.0	0.0058	3.013	10.9
	Sphyraena spp.	semi-elongated	646	0.990	5.5	104.0	0.0058	3.013	10.9
	Sphyraena barracuda	semi-elongated	179	0.981	19.0	63.0	0.0062	3.011	7.4
	Sphyraena flavicauda	semi-elongated	43	0.961	5.5	35.5	0.0044	3.083	11.2
	Sphyraena forsteri	semi-elongated	95	0.995	8.5	60.0	0.0053	3.034	6.3
	Sphyraena novaehollandiae	semi-elongated	23	0.987	19.0	28.0	0.0240	2.530	4.2
	Sphyraena obtusata	semi-elongated	23	0.940	19.0	26.5	0.0257	2.588	7.7
	Sphyraena putnamiae	semi-elongated	226	0.994	19.5	104.0	0.0075	2.931	6.6
	Sphyraena waitei	semi-elongated	34	0.992	19.0	31.0	0.0089	2.855	3.8
Sphyrnidae	Sphyrna lewini	cylindrical	30	0.991	38.0	91.0	0.0042	3.239	7.6
Synanceiidae		heterogeneous	19	0.980	5.0	29.5	0.0044	3.694	35.5
	Inimicus didactylus	cylindrical	14	0.994	6.5	21.5	0.0232	2.865	6.3
Syngnathidae	Hippocampus spp.	odd	9	0.882	7.0	13.0	0.0004	4.120	36.1
Synodontidae		cylindrical	1188	0.988	4.0	33.0	0.0089	3.028	15
	Saurida spp.	cylindrical	1038	0.986	4.8	33.0	0.0080	3.059	9.1
	Saurida gracilis	cylindrical	95	0.991	4.8	23.0	0.0066	3.165	10.1
	Saurida nebulosa	cylindrical	11	0.996	8.0	18.5	0.0058	3.214	6.8
	Saurida undosquamis	cylindrical	932	0.976	6.5	33.0	0.0063	3.134	9.2
	Synodus spp.	cylindrical	145	0.980	4.0	22.0	0.0085	3.078	16.1
	Synodus dermatogenys	cylindrical	43	0.984	8.0	16.5	0.0047	3.346	8.9
	Synodus hoshinonis	cylindrical	45	0.965	9.0	19.0	0.0018	3.662	11.6
	Synodus variegatus	cylindrical	37	0.992	5.0	22.2	0.0031	3.484	10.6
Teraponidae	Terapon jarbua	cylindrical	87	0.988	2.0	28.5	0.0132	3.131	10.8
Tetraodontidae		odd	282	0.993	2.0	76.0	0.0397	2.788	20.8
	Arothron spp.	odd	96	0.996	2.5	76.0	0.0352	2.901	12.5
	Arothron hispidus	odd	19	0.997	6.5	52.0	0.0634	2.756	10.4
	Arothron immaculatus	odd	10	0.993	4.0	32.5	0.0351	2.845	19.8
	Arothron manillensis	odd	32	0.992	3.5	33.0	0.0299	2.907	13.8
	Arothron stellatus	odd	24	0.998	5.0	75.0	0.0915	2.672	8.6
	Canthigaster spp.	odd	87	0.947	2.0	9.5	0.0424	2.822	10.0
	Canthigaster solandri	odd	10	0.990	3.0	7.5	0.0299	2.979	10.1
	Canthigaster valentini	odd	66	0.915	2.0	8.6	0.0367	2.943	20.9
	Lagocephalus sceleratus	cylindrical	94	0.997	9.0	72.0	0.0182	2.924	11.8
Trichiuruidae	Trichiurus lepturus	elongated	105	0.974	18.0	110.5	0.0002	3.324	12.3
Trypauchenidae	Ctenotrypauchen microcephalus	semi-elongated	23	0.898	4.5	11.5	0.0144	2.568	13.7
Zanclidae	Zanclus cornutus	very-flat	11	0.985	6.5	15.0	0.0147	3.370	2.0