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Abstract 

Signs of climate change in West Africa over the last few 
decades are among the significant observed in the tropics, in 
particular the decrease in mean annual precipitation. 
Although such change has brought about new eco-climatic 
constraints on vegetation forms, it has not proven easy to 
determine interannual and intra-seasonal variations on a 
regional scale for major vegetation forms, whether natural or 
highly artificial as a result of human activities. The present 
study analyzes vegetation activity via a Normalized 
Difference Vegetation Index (NDVI) defined from ten-day 
SPOT-VGT data (one-km resolution, covering the period 
from 2002 to 2012) in the African Monsoon Multidisciplinary 
Analysis (AMMA) Program observation zone, located in the 
Upper Oueme River Basin in Benin. The statistical analysis is 
mainly based on a multifactor approach allowing 
approximately 54% of interannual NDVI variations to be 
accounted for. Results show that spatio-temporal NDVI 
variability in the River Basin is highly dependent on land 
use, be it forest, wooded savanna, farmland or areas 
undergoing conversion. 
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Introduction 

In the late 1960s West Africa experienced persistent 
drought characterized by both duration and 
irregularity (Lebel et al., 2010). The rainfall deficit in 
the 1970s (Lebel and Ali, 2009), when the whole water 
cycle was greatly affected, seriously impacted 
agriculture, food security (Redelsperger et al., 2006) 
and vegetation (Philippon et al., 2007). For natural 
reasons such as climate change, or through 
anthropogenic change such as agricultural activity, the 

seasonal dynamics of vegetation cover have been 
considerably affected in recent decades in West Africa. 
However, the lack of long-term data has hitherto 
prevented detailed investigation of climate–vegetation 
and spatio-temporal relationships at regional scales 
(Chamaille-Jammes et al., 2006), although such 
knowledge could help understand climate variability 
and lead to improved seasonal forecasting ability and 
predictions of ecosystem responses to climate change 
(Philippon et al., 2007; Mberego et al., 2013). In this 
context, the AMMA (African Monsoon 
Multidisciplinary Analysis) Program was tasked with 
long-term observation of the West African monsoon 
and its features with the aim of assessing hydrological 
impacts of climatic or anthropogenic changes 
(Redelsperger et al., 2006; Lebel et al., 2010). AMMA 
has monitored a wide range of factors, carrying out 
ocean, land and atmospheric measurements over time 
scales ranging from daily variability up to changes in 
seasonal activity over several years, in areas covering 
the scale of West Africa, the meso-scale of Mali, Niger 
and Benin to that of super-sites such as Agoufou, 
Nalohou or Wankama (Zin et al., 2009). 

In this tropical African region, satellite observation is a 
reliable, efficient tool for multi-temporal monitoring of 
land surface, and for obtaining information about 
long-term changes in land characteristics and 
processes (Reed et al., 1994; Chamaille-Jammes et al., 
2006; Redelsperger et al., 2006). Remote sensing data is 
also efficient for monitoring seasonal and interannual 
vegetation response at a regional scale (Fensholt et al., 
2011), while seasonal characteristics of vegetation 
activity, such as emergence and senescence, are closely 
related to annual temperature, precipitation and 
humidity cycles (Reed et al., 1994). Changes in 
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phenological events can be identified and classified 
year-to-year for different land-cover types (Roehrig et 
al., 2005). The most common and reliable index for 
studying vegetation activity is NDVI (Normalized 
Difference Vegetation Index), which has been shown 
to be associated with biomass and photosynthetic 
activity (Gurgel et al., 2003; Rigina and Rasmussen, 
2003; Lasaponara , 2006; Fensholt et al., 2011; Miranda-
Aragón et al., 2012; Mberego et al., 2013). 

The present study in the Upper Oueme Basin (Benin) 
will allow us to determine specific phenological 
variations in wooded savanna typical of Sudano-
Guinean formations, in a region covered by a very 
dense observational network. These environmental 
regional diagnostics will facilitate the different 
requirements in hydrological and climate modeling 
using regional model calibration. So incorporating 
vegetation dynamics into a regional climate model 
used for future prediction is potentially critical to 
realistic simulation of future climate changes in West 
Africa. The problem is to be able to extract seasonal 
and interannual phenological signals from remote 
sensing (especially at low spatial resolution, e.g. 1 km) 
in the Upper Oueme Basin according to the main 
vegetation formations, to discriminate natural forest 
areas and agro-forest mosaics. However, assessing 
land-cover maps is known to be difficult, and 
assessing land-cover-change maps is even more 
challenging, mainly due to the difficulty in obtaining 
accurate land-cover-change reference datasets 
(Grinand et al., 2013). The main research question thus 
is to estimate if the spatio-temporal vegetation 
dynamics are relatively similar on interannual scale, 
with maybe notable differences in intraseasonal 
variations. 

The principal goal of this study was to better 
understand seasonal and interannual variations of 
vegetation activity from NDVI analysis for the main 
land cover classes in the Upper Oueme Basin from 
2002 to 2012. This first step was to establish the major 
regional differences according to land cover, while the 
long-term objective is to understand variability 
according to climatic constraints. 

Data and Methods 

Study Area and Recent Land Cover Changes (1973-
2012) 

The Upper Oueme Basin is located in central Benin 
(8.5°-10.5°N/1.5°-3.0°W) and covers an area of 14,366 

km² (Figure 1). The study area has a small altitude 
range going from an average of 200 to 600 meters asl, 
with the Atacora Mountains in the western part being 
the highest (between 500 and 800 m). The terrain 
gradually slopes down to the south in the river’s 
confluence zone (Figure 1). The whole area has a 
Sudanese climate with a unimodal rainy season. 
Annual average rainfall is 900-1200 mm; the rainy 
season normally starts in April and ends in October 
(Figure 2; Roehrig et al., 2005; Zin et al., 2009). The 
natural vegetation consists of forest, wooded savanna, 
and a patchwork of woodlands and grassy savannah 
(Hahn-Hadjali et al., 2010). Due to small scale farming 
with fallow and fire, natural forest is now observed 
only as relic or protected areas like the Forêt classée de 
l’Ouémé Supérieure (Upper Oueme Forest Reserve; 
Speth et al., 2004; Klein and Roehrig, 2006). Agriculture 
is small-scale with periodic fallow and fire, the main 
crops being yams, manioc, maize, millet and peanuts 
(Klein and Roehrig, 2006; Judex et al., 2006). Seasonal 
temperature variations range between a maximum of 
about 30°C in March and a minimum of about 24°C in 
August, with a significant upward trend since the 
1980’s (Do et al., 2013). Recent climate change in the 
study area has caused variations in regional water 
resources, coupled with vegetation change in land use 
and land cover (Zannou, 2011; Igué et al., 2012). 

TABLE 1 DESCRIPTION OF THE THREE MAIN LAND COVER CLASSES IN THE 
UPPER OUEME BASIN AND THEIR EVOLUTION 1973-2012 (ADAPTED FROM 

LEROUX, 2012). 

Land 
cover 

classes 
Characterization Area 

(2012) 
Evolution from 

1973 to 2012 

Clear 
forest / 

riparian 
forest 

Deciduous clear 
forests (more than 
75% tree canopy 
cover) and dense 

forests along rivers 

3080 
km² 

-87% 

+48% for 
savannas 
+39% for 

crops, bare 
soil 

Savannas 

Grasses forming a 
continuous layer, 

30-60% tree or 
shrub canopy 

cover 

6876 
km² 

+71% 

+2% for 
forest, 

riparian 
+69% for 

crops, bare 
soil 

Crops / 
bare soil 

Including cropland 
(e.g. cotton, corn), 
fallow and villages 

4231 
km² 

+77% 

+27% for 
forest, 

riparian 
+50% for 
savannas 

 
Following the work of Leroux (2012) covering the 
Upper Oueme area and thanks to Landsat and MODIS 
data, land cover can be classified in three major classes 
of vegetation types (Figure 1 and Table 1): clear forest 
and riparian forest (21.7% of the study area), savannas 
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(48.5%), and crops and bare soil (29.8%). Cartographic 
simplification into three classes enables the Upper 
Oueme Forest Reserve to be distinguished, as it is 
almost entirely surrounded by farmland except to the 
north. The diachronic analyses from automatic 
classifications show significant modification of land-
use patterns between the two study dates, 1973 and 
2012 (Table 1). Over the forty-year study period, 
regional forested zones lost 87% of their area, mainly 
to savanna (48%), cropland or bare ground (39%). 
Farmland stretches all the way along the Djougou-
Ouberou-Parakou road and sometimes encroaches on 
supposedly protected forest reserves (Judex and 
Thamm, 2008). Savannas are also spreading 
considerably (71%), mainly through being converted 
into cropland. Land areas already classified as 
cultivated in 1973 had evolved significantly (77%) by 

2012, into either forest (27%) or farmland (50%). 
Leroux (2012) notes here the complexity and possible 
confusion between the evolution of former fallow and 
wooded savanna, with very similar spectral and 
phenological signatures. Each type is affected by 
anthropogenic constraints obviously influencing the 
corresponding NDVI values (whether by seasonal 
bush-clearing fires, deforestation, crop sowing, fallow 
land at different stages of grow-back, etc.). Associating 
the appearance of forest cover with that of dense 
riparian crop-growing is clearly a simplistic shortcut 
which interpretations should take into account. In the 
same way, it is areas classified as agricultural which a 
priori should show the greatest radiometric variations, 
due to contrasts in land use (cultivated fields or 
fallow) and vegetation activity during different stages 
of cultivation, at both seasonal and interannual scales.  

 
FIG. 1 LOCATION OF THREE MAIN AMMA-CATCH SITES, INSTRUMENTED TO STUDY THE SURFACE-CLIMATE PROCESSES IN WEST 

AFRICA, ONE LOCATED IN THE UPPER OUEME BASIN (BENIN): TOPOGRAPHY (TOP LEFT; FROM ASTER GDEM AT 30M SPATIAL 
RESOLUTION), THE THREE MAIN LAND COVER CLASSES (BOTTOM LEFT; ADAPTED FROM LEROUX, 2012) AND LOCATION OF THE 

BASIN IN BENIN (WITH LOCATIONS OF THE MAIN CITIES, ROADS AND RIVERS). 
 

The NDVI Data Set 

The choice of SPOT-4 VEGETATION data (rather than 
MODIS data for example) depends greatly on the huge 
experience from these long-term satellite NDVI data 
within the AMMA program. This experience can thus 
facilitate comparisons which can so allow to validate 
results obtained in this study. SPOT-4 VEGETATION 
data have been available since 1998 from the Vlaamse 
Instelling voor Technologisch Onderzoek (VITO) 
based in Belgium, freely distributed at 
http://free.vgt.vito.be/ (Lasaponara, 2006; Jarlan et al., 
2008). The VEGETATION (VGT) sensor has four 
spectral bands: blue (0.43-0.47 μm), red (0.61-0.68 μm), 

Near InfraRed (NIR, 0.78-0.89 μm) and Short Wave 
InfraRed (SWIR, 1.58-1.74 μm). The spatial resolution 
is approximately 1 km with a daily repeat cycle at an 
altitude of about 820 km (Baret et al., 2006; Jarlan et al., 
2008). Products were pre-processed using a consistent 
algorithm including radiometric calibration, precise 
geo-location and correction of atmospheric effects. The 
VEGETATION instrument covers almost all the 
Earth's land every day. Changes in vegetation cover 
are inferred using the NDVI index. In this study, we 
used S10 VEGETATION products, a 10-day synthesis 
elaborated with the Maximum Value Composite 
(MVC) of NDVI. The descriptive analyses presented in 
the beginning of the study are based on the 10‐day 
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NDVI composite data, while multivariate analyses are 
calculated from monthly average NDVI. Cloud-cover 
influences are therefore favorably reduced in each 
image (Roehrig et al., 2005; Baret et al., 2006; Jarlan et 
al., 2008). The 2002-2012 time-series was finally chosen 
to show recent variations, and used to calculate the 
NDVI average regimes. 

In order to enhance the NDVI analyses, the metadata 
provided by SPOT-VGT enable the mean seasonal 
signature of regional cloud cover to be determined 
from the start, as it is a factor potentially engendering 
considerable interpretation bias. Calculating the 

number of pixels which are disturbed by cloud 
throughout the study area by ten-day periods showed 
that it was mainly the 18th to the 26th periods which 
were affected, i.e. from late June to mid September 
(Figure 2). The maximum level of interference by 
cloud, affecting 65% of pixels, was reached in early 
August, corresponding to the middle of the rainy 
season when temperatures are coolest. Consequently, 
cloudy pixels flagged in the SPOT-VGT metadata 
should not be used to calculate the monthly average 
values analyzed hereafter. 

 

 
FIG. 2 THE SEASONAL CLIMATE REGIMES OF THE UPPER OUEME BASIN (BASED ON 10-DAY MEANS): PRECIPITATION AMOUNT 
(IN 1/100 OF MM; FROM A 2002-2009 FIELD-BASED RAIN-GAUGE INDEX), AIR TEMPERATURE AT 1.5 M ABOVE GROUND LEVEL (IN 
°C; DJOUGOU STATION, 2002-2012), CLOUDINESS (IN % / 100; FROM SPOT-VGT ESTIMATIONS) AND NDVI FOR THE THREE MAIN 

LAND COVER CLASSES (SPOT-VGT DECADAL COMPOSITES 2002-2012) REGIMES. 

Based on the three main land-use classes, (forest, 
savanna and cropland; Figure 1), the three mean NDVI 
regimes were calculated by integrating all pixels 
corresponding to each category. It was apparent from 
this that from August until the end of the rainy season, 
the different NDVI signatures were hard to 
distinguish, firstly because the NDVI values became 
saturated on reaching their maximum (about 0.55-0.60) 
and secondly because of atmospheric bias. This bias 
due to cloudiness explains partially that the highest 
values (corresponding to the saturation of NDVI) are 
here lower than those usually observed in dense forest 
(0.7 to 0.8). The difference also results from the dense 
river system on the forest parts of the Oueme basin 
which participate in the reduction in the maximal 
values of NDVI detected on the scale of a 1 km pixel. If 
the pixels most contaminated by cloud are eliminated 
(as no longer representing vegetation cover in any way 
but merely the weather), it can be seen that they are 

located mainly in the south-east of the study area, with 
over 4% of pixels eliminated in the 2002-2012 time 
period (Figure 3). In the Upper Oueme, the most 
affected areas correspond mostly to the peripheries of 
the main water courses in the east and south-west. 

 
FIG. 3 MAP OF CLOUDY SPOT-VGT NDVI PIXELS (IN %) 

ELIMINATED FROM MONTHLY TIME SERIES (2002-2012). 
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Principal Component Analysis  

Principal component analysis (PCA) is now a normal 
multivariate statistical technique for revealing hidden 
structures in a data set, and for extracting spatio-
temporal modes (or patterns). PCA (also known as 
empirical orthogonal functions – EOF) is appropriate 
for analyzing samples in environmental space and has 
become a widely used technique in remote sensing 
(e.g. Eklundh and Singh 1993; Gurgel et al., 2003; 
Chamaille-Jammes et al., 2006; Lasaponara, 2006; 
Miranda-Aragón et al., 2012). The technique enables 
areas of localized change in multi-temporal data sets 
to be enhanced. With the PCA methodological 
approach, most of the total variance is contained in the 
first component, while only a little is found in the 
following components. In the present study, PCA was 
calculated from raw NDVI values (2002-2012), with no 
attempt to normalize series. It was a methodological 
approach that enabled the main coherent seasonal 
signatures to be shown and identified as a priority. 
Thus, in order for the results obtained from PCA 
(which could be interpreted as phenological processes) 
to be interpreted correctly, additional information was 
needed, such as biogeographical or environmental 
maps. All these validation data were collected during 
the AMMA Program and are now available from the 
AMMA database: http://database.amma-
international.org/. 

Results and Discussion 

Seasonal Phenological Variations According to the 
Three Land Cover Categories 

Differences in NDVI in accordance with land use are 
best distinguished from the dry season, beginning in 
November, until the middle of the rainy season in 
May-June (Figure 2). The lowest values correspond to 
cropland (around 0.25 in January), while forested 
areas have the highest NDVI. The distinction between 
the three radiometric signatures is visible mostly from 
the onset of the rainy season (March-April) or, on the 
other hand, when the rainy seasons ends (November). 
These periods correspond to the most distinctive 
phenophases in terms of plant productivity (growing 
and withering), while in the middle of the rainy 
season savannas often show short periods of NDVI 
values equal or even superior to those observed in 
areas of forest. NDVI mapping reveals all the 
important seasonal differences at the scale of the 
Upper Oueme (Figure 4). The most contrasted map is 
for April, with sharp differences between forest, 
savanna and farmland; the highest NDVI values (>0.5) 
are for forest areas in the south-west, while the central 
forest highland has lower values (0.35-0.45), about the 
same as those of the wooded savanna in the north of 
the Basin. 

a) b) 

 
c) d) 

FIG. 4 SPOT-VGT MONTHLY NDVI MEANS (2002-2012) IN THE UPPER OUEME BASIN IN JANUARY (A), APRIL (B), JULY (C) AND 
OCTOBER (D). 
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FIG. 5 INTERANNUAL SPOT-VGT NDVI (2002-2012) FOR THE THREE MAIN LAND COVER CLASSES IN THE UPPER OUEME BASIN 

(CALCULATED FROM 10-DAY COMPOSITE NDVI TIME-SERIES). 

In the rainy season (e.g. July), when NDVI values are 
fairly similar everywhere (0.50 to 0.60), only the two 
urban areas of Djougou (in the north-west) and 
Parakou (in the south-east) are clearly different, with 
values below 0.40. Generally, the zones influenced by 
human activity (urban hinterlands and/or farmland, 
such as the areas located to the south of the forest 
reserve in the center of the Basin) stand out clearly, 
with NDVI values close to 0.35-0.40. The distinction 
can no longer be made in September and October 
when NDVI reaches saturation point independently of 
vegetation patterns. Klein and Roehrig (2006) observe 
that high rainfall leads to dense vegetation in Benin 
and hence to a saturation of NDVI values minimizing 
differences between land-cover types. 

What Was the Interannual Variability over the 2002-
2012 Period? 

The first analysis of interannual NDVI variations was 
made on the basis of indices calculated from the three 
types of land use over the period from 2002 to 2012 
(each index being obtained from the sample mean of 
all the pixels connected to a specific type of land use). 
The indices showed that there were several dry 
seasons (especially in January and February) where 
abnormally low NDVI values were recorded (<0.25), 
e.g. 2002, 2005, 2007, 2008 and 2012 (Figure 5). Peak 
values reached at the end of the rainy season (October) 
were observed in 2004, 2005, 2007 and 2008. Given the 
concordance of several of these dates, this simple 
observation confirms that the end of an extremely 
active vegetation period (NDVI > 0.60) can perfectly 
well be preceded by unusually low vegetation activity 
during the dry season.  

Intra-seasonal NDVI variations during the rainy 
season, as well as the contrasts between the three 

mean signatures studied here, can vary greatly from 
one year to the next. For example, years during which 
the NDVI signature corresponding to cultivated land 
is very low have been observed (2002, 2006, 2008). It 
can also be seen that the bimodal nature of NDVI 
variations during the growing season is more or less 
marked (and can even disappear certain years, as in 
2006 and 2012). Such interannual variations can 
originate, not only from bioclimatic conditions 
resulting in productivity and phenology varying from 
one year to another, but also from the varying effects 
of regional cloud cover disturbing the NDVI signature 
in the middle of the rainy season. Indeed, in spite of 
the elimination of cloudy pixels flagged in metadata, it 
remains certainly another persistent atmospheric 
biases and cloud contamination which the SPOT 
algorithm did not totally filter (Camberlin et al., 2007). 
Based on coefficients of variation (CV being the ratio 
of standard deviation to the mean; in %) of mean 
monthly NDVI calculated for each pixel throughout 
the study period (N=132), the map of this statistical 
indicator shows a clear contrast between the south-
west (CV<28%) and north-east (CV>35%) parts of the 
Basin (Figure 6). The areas with the highest 
coefficients, in the north-west and especially the north-
east, correspond to the areas subject to the greatest 
human influence during the study period, with forest 
areas being converted to cropland or urbanized. 
Examining the relationship between interannual NVDI 
variability and the three main types of land use shows 
that it is cultivated land that on average records the 
highest coefficients of variation at over 31%, while 
those for savanna are lower, and those for forest areas 
do not exceed 28% (Figure 7). Greater interannual 
NDVI instability is characteristic of the evolution of 
farmland (which can evolve from bare earth, different 
stages of fallow, mixed crops, etc.), whereas NDVI of 
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forests is subject to lower interannual amplitudes due 
their greater specific and phenological coherence. 
Apart from this, greater cloudiness over forests acts as 
an artifact and partly explains the lower local 
variability of NDVI (Figure 7). 

 
FIG. 6 INTERANNUAL RELATIVE COEFFICIENTS OF 

VARIATION (IN %) FROM SPOT-VGT MONTHLY VALUES (2002-
2012). 

 
FIG. 7 AVERAGE VALUES FROM NDVI MONTHLY 

COEFFICIENT OF VARIATION (IN %; BLUE) AND CLOUDY 
PIXELS (IN %; RED), 2002-2012, ACCORDING TO THE THREE 

MAIN LAND-COVER CLASSES. 

Definition of the Main Spatio-temporal Patterns from 
PCA 

In order to determine the main modes of NDVI spatio-
temporal variability and their links to land use, a PCA 
was calculated from a series of monthly means over 
the period from 2002 to 2012. At the same time ten-day 
values were also analyzed, but did not make any 
significant change in the results. Factor analysis was 
calculated from raw values, without seeking to 
normalize the series (thus ensuring that each variable 
had the same weight in the process of obtaining the 
new components; Richman, 1986) and with no resort 
to statistical refinement such as rotating the axes, with 

the aim of extracting modes emanating directly from 
the initial NDVI data. According to the scree-test of 
the PCA, enabling component significance to be 
assessed graphically, only the first four components 
were pertinent (eigenvalues > 3) and accounted for 
53.6% of total variance, while the following ones were 
deemed statistically degenerate. The remaining 46% of 
the information contained in the initial table of raw 
NDVI series will therefore not be described here, as it 
corresponds to extremely limited spatio-temporal 
variability modes or to statistical noise (which may in 
particular be linked to the contamination of pixels by 
cloudiness). 

The first mode (PC1) accounts for 39.4% of total 
variance, and naturally displays a strong seasonal 
signature with excellent concordance with the major 
land-use classes (Figure 8). The first component 
mainly contrasts the variability of forest areas (in the 
south and east-center) with that of human-influenced 
areas, either cultivated or in the process of conversion 
(Figure 9). The two main urban areas stand out in 
particular, with the most negative factor scores. The 
corresponding temporal series shows the extent to 
which intra-seasonal phases are unstable from one 
year to the next, whether it be in the dry or the wet 
season. Two composite months calculated from 
extreme positive and negative values observed in the 
first factor were studied and enabled the spatial 
response during anomalies distinguished by the PCA 
to be compared, and the regional NDVI response to be 
clearly discerned. The composites were calculated 
respectively from the five months recording extreme 
factor scores, with the difference between them 
allowing the areas with the highest variation to be 
localized (Figure 10a). On the scale of the first 
component, sensitivity during extreme interannual 
NDVI phases mainly affects the northern part of the 
Basin (north of 9.7°N), all vegetation forms included 
(wooded savanna and farmland), but does not affect 
the most densely forested hills of the Forest Reserve. 
Such spatially coherent variability thus seems to be 
typically linked to a constraint of bioclimatic origin 
affecting savanna and degraded areas. 

The second mode (PC2) explains 6.4% of total variance 
(Figure 8). It particularly contrasts the west and north-
east of the study area, and basically corresponds to a 
variability signature of forest areas, detected by the 
negative scores of the factorial component (Figure 9). 
More specifically, it was in fact riparian forest forms in 
the north-east of the Basin which stood out. The 
timeline associated with PC2 is characteristic of dry-
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season variations (positive peaks; Figure 8) and allows 
the periods from 2002 to 2004 and from 2005 to 2012 to 
be contrasted (with 2011 being more closely related to 
the first period, however). Composite analysis showed 
high variability in the photosynthetic activity of forest 
areas in the western part of the Upper Oueme Basin, 
with NDVI amplitudes above 0.36 between activity-
phase extremes (Figure 10b). The latter element thus 
suggests a high sensitivity of the densest forest areas 
along the major water courses, with distinct 
interannual phases over the study period. 

The third mode (PC3) synthesizes 5% of interannual 
NDVI variance. As would be expected in the case of a 
factorial approach by principal components, PC3 is 
indicative of a more north-south organization, i.e. a 
spatial representation at right angles to the previous 
one (this being one of the intrinsic principles of a 
factorial approach). This mode thus contrasts NDVI 
variations associated with rapidly-changing forest 
areas in the north of the Basin (positive values also 
associated with some wooded savanna in the west) 
with areas under strong human influence located in 
the south-east (negative values – Figure 9). The 
component shows, firstly that 2002, 2009 and 2010 
were quite different, and secondly that there has been 
a slight downward tendency since 2005, meaning that 
NDVI and thus the associated vegetation activity have 
fallen (Figure 8). Composite analysis suggests that 
change and extreme events mainly affect the northern 
part of the study area (Figure 10c). 

 
FIG. 9 AVERAGE VALUES CALCULATED FROM THE FOUR 

SPATIAL-FACTOR SCORES ACCORDING TO THE THREE MAIN 
LAND-COVER CLASSES. 

PC4 is the last mode considered significant, despite 
accounting for a very low proportion of interannual 
variance (2.8%). It mainly corresponds to areas in the 
center of the Basin (Figure 8), and equally affects all 
three types of vegetation forms studied (Figure 9). It 

displays sharp interannual and intraseasonal 
variations, with the seasonal signal no longer being as 
explicit as for the three previous modes. With their 
plant activities not easy to analyze, extreme events 
mainly correspond to contrasts affecting the southern 
part of the Basin (Figure 10d). Although this mode 
could not be determined on the basis of this analysis 
alone, it is undoubtedly an artifact linked to cloud 
cover and partly expressed by NDVI. 

A multivariate statistical analysis of NDVI thus clearly 
shows distinct regional contrasts and responses 
specific to certain areas and vegetation forms in the 
Upper Oueme Basin. The contrast between areas of 
protected native forest (forest reserves) and areas 
undergoing transformation into farmland (crop-
growing and fallow) is especially clear. An especially 
noticeable change in photosynthetic activity as 
expressed in SPOT-VGT data can be detected from 
2005 onwards. In several cases, riparian forest forms 
established along the major water courses (the Oueme 
and its tributaries) also display specific interannual 
and intraseasonal signatures. In a context of significant 
regional hydroclimatic change being experienced by 
Sudanian and Guinean areas since the 1970s, with 
growing rainfall shortages and falling water tables, 
river flow has decreased by 40 to 60 % (Mahé and 
Paturel, 2009; Descroix et al., 2009). Vegetation activity 
in outlying forest areas of the Oueme hydrographic 
network may thus be reliable short- and medium-term 
indicators of the repercussions of such climatic 
variations, as a number of studies have shown the 
close interactions between hydroclimatic change and 
land-surface state in West Africa (Philippon et al., 
2007; Camberlin et al., 2007). On the other hand, it also 
seems clear that landscape change of agricultural and 
anthropogenic origin is impacting the signatures of 
regional photosynthetic activity, even if the regional 
study described here was carried out over a short 
lapse of time and with the low spatio-temporal 
resolution (at kilometric and ten-day scales) specific to 
SPOT-VGT imaging, and did not allow the change to 
be quantified. 

Conclusions 

The present study was a preliminary one, based solely 
on NDVI, with a descriptive statistical and factorial 
approach analyzing the variability of seasonal and 
interannual signatures. The results obtained in this 
study indicate that the first mode of interannual 
vegetation variability opposes the forest areas (here 
patches of natural protected forest) to highly 
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anthropized landscapes (here agricultural mosaics, 
including fallows and woody areas). The hypothesis 
according to which the interannual trend (and 
consequently, the interannual sensibility) of these 
different landscapes would be globally identical is so 
not verified. In the same way, composite analyses on 
intraseasonal timescale reveal significant regional 

contrasts of NDVI variations, mainly due to land 
cover. This result explains it's important to take certain 
precautions to interpret environmental diagnostics or 
to elaborate models using the vegetation answers at 
very low spatial resolution (e.g. continental-scale) 
because dynamic patterns seems to vary strongly in 
space. 

 

PC1 (39.4% of total variance) 

 

PC2 (6.4%) 

 

PC3 (5%) 

 

PC4 (2.8%) 

 
FIG. 8 SPATIO-TEMPORAL PATTERNS FROM A PRINCIPAL COMPONENTS ANALYSIS (PCA) PERFORMED ON NDVI MONTHLY TIME 

SERIES (2002-2012) OF THE UPPER OUEME BASIN (THE FOUR MAIN FACTORS EXPLAIN 53.6% OF THE TOTAL VARIANCE): A-TOP) 
MAPS OF THE SPATIAL FACTOR SCORES (THE MAP OF THE FIRST COMPONENT IS COMPARED WITH ONE OF THE THREE LAND-

COVER CLASSES); B-BOTTOM) PLOTS OF THE TEMPORAL FACTOR LOADINGS. 
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a) 
PC1 negative composite: NDVI increase 

(09.2003 / 10.2006 / 09.2007 / 08.2009 / 09.2009) 

 
PC1 positive composite: NDVI decrease 

(11.2002 / 04.2006 / 11.2008 / 12.2010 / 04.2011) 

 
Difference between negative and positive 

composites 

 
b) 

PC2 negative composite: NDVI increase 
(10.2002 / 11.2005 / 11.2006 / 11.2007 / 11.2009) 

 
PC2 positive composite: NDVI decrease 

(02.2005 / 02.2006 / 03.2007 / 03.2008 / 02.2012) 

 
Difference between negative and positive 

composites 

 
c) 

PC3 negative composite: NDVI increase 
(10.2002 / 11.2005 / 11.2006 / 11.2007 / 11.2009) 

 
PC3 positive composite: NDVI decrease 

(02.2005 / 02.2006 / 03.2007 / 03.2008 / 02.2012) 

 
Difference between negative and positive 

composites 

 
d) 

PC4 negative composite: NDVI increase (01-
2002 / 06-2002 / 09-2008 / 06-2011 / 03-2012) 

 
PC4 positive composite: NDVI decrease (01-

2004 / 01-2005 / 01-2007 / 01-2008 / 02-2008) 

 
Difference between negative and positive 

composites 

 
FIG. 10 NDVI SPATIAL COMPOSITES (NEGATIVE, POSITIVE, AND DIFFERENCE BETWEEN THEM) CALCULATED FROM EXTREME 

MONTHLY VALUES OF THE FOUR FACTORS FROM PCA (EACH COMPOSITE IS CALCULATED FROM 5 EXTREME MONTHLY 
VALUES). 

One of the main implications of this work on the 
NDVI variability is that it is necessary to be able to 
now absolutely confront it with hydroclimate 
analyses. Results need to be completed by a further 
study involving the cross-impact analysis of regional 
climate (especially rainfall) series available through 

the network of measurements compiled over the 
course of the last twenty years by the AMMA 
Program. In particular, both dry- and wet-season 
extreme climate events need to be detailed on a daily 
scale, as do the discrepancies associated with 
vegetation dynamics of natural formations and 
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forest/savanna/farmland patchworks. More precise 
analysis of the links between vegetation and rainfall 
should also enable the influence of cloudiness on 
radiometric signatures of vegetation indices to be 
better distinguished and thus eliminated. By relying 
on other eco-climatic data, whether from satellites or 
from on-site validation series, the work carried out 
over the Upper Oueme River Basin should enable 
researchers to apprehend and model the 
environmental trajectories favored by climatic vagaries 
together with anthropogenic influences. A 
forthcoming major objective is therefore to perform a 
Dynamic Factor Analysis (DFA). This is a powerful 
multivariate times-series dimension-reduction 
technique enabling the spatio-temporal dynamics of 
vegetation coverage to be analyzed, as well as the 
main physical and bioclimatic drivers of vegetation 
cover in the region (Campo- Bescós et al., 2013) and 
regional anthropogenic land-use evolution to be 
identified. 

But before these eco-hydro-climate studies, the main 
recommendation for the next stages is to merge 
various satellite data (e.g. fusion techniques adapted 
for different spatial resolutions) to improve 
spatiotemporal diagnostics of the vegetation dynamics 
according to land cover but also land uses. These 
analyses correspond moreover to the expectations of 
the ALMIP2 Project (second phase of the AMMA Land 
Surface models Intercomparison Project) which 
compares model, satellite and ground-based estimates 
of evapotranspiration and processes. For example, it 
would be necessary at first to be able to estimate the 
advantage of satellite products such as ECOCLIMAP-
II (developed in the framework of AMMA Program) 
compared with those such as SPOT-VGT or MODIS. 
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