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Abstract—Recent studies have shown that the use of a priori
knowledge can significantly improve the results of unsupervised
classification. However, capturing and formatting such knowledge
as constraints is not only very expensive requiring the sustained
involvement of an expert but it is also very difficult because some
valuable information can be lost when it cannot be encoded
as constraints. In this paper, we propose a new constraint-
based clustering approach based on ontology reasoning for
automatically generating constraints and bridging the semantic
gap in satellite image labeling. The use of ontology as a priori
knowledge has many advantages that we leverage in the context of
satellite image interpretation. The experiments we conduct have
shown that our proposed approach can deal with incomplete
knowledge while completely exploiting the available one.

I. INTRODUCTION

In the last decade, increasingly large volumes of remote
sensing images have been made publicly available. The anal-
ysis and interpretation of these images are no longer manually
feasible but they are mandatory to find actionable solutions to
today’s environmental and societal issues.

One of the most important methods used in the process of
knowledge extraction from satellite images is clustering. Clas-
sically used in exploratory and unsupervised settings, cluster-
ing aims at partitioning large volumes of non-labeled instances
into groups of data based on similarity, density, and proximity.
However, in many cases, the quality of such partitioning is
relative and highly depends on the user’s points-of-interest
and/or expertise. Two experts (e.g., hydrologist and urban
geographer) who do not have the same topic of interest will
evaluate differently the same image clustering/classification
output. Another challenging task is related to the interpretation
and semantics to associate to the clustering output. In this
context, the introduction of knowledge in the process becomes
essential, either for guiding the clustering task or for helping
the interpretation of the clustering results. Furthermore, in the
field of knowledge engineering, ontologies have shown their
effectiveness especially in facilitating symbols and semantics
anchoring, expressing more and more complex knowledge,
as well as performing advanced deductive reasoning. How-
ever, the formalization of knowledge remains a bottleneck

and some concepts remain difficult or even impossible to
define precisely. As an illustrative example, in the context of
remote sensing image analysis, experts can more easily define
concepts related to vegetation or water rather than concepts
related to buildings.

In this paper, we propose a new approach for semantic label-
ing, automatically combining expert knowledge and clustering
with generated constraints. This approach allows to guide and
to improve the semi-supervised clustering process based on
ontology reasoning. Such approach offers multiple advantages:
• Generalization: The approach can be adapted to different

domains;
• Minimal user involvement: Experts are involved only for

building the domain ontology that models the knowledge
of the domain and the constraints are automatically
generated;

• Uncertainty management: Our approach can cope with
incomplete and uncertain knowledge bases;

• Adaptive clustering: Clustering is automatically adapted
to get as closer as possible to the vision of the expert.

The next sections are organized as following, we will first
present related work in Section II. Secondly, we present the
core concepts of ontology and description logics reasoning,
followed by the description of our approach in Section III.
Section IV gives the details of an application of our approach
on remote sensing images and summarizes our experimental
results. Conclusions and future work conclude the paper in
Section V.

II. RELATED WORK

Several studies were conducted to exploit the available
domain knowledge. When labeled data is not available or
insufficient to perform effective supervised learning, two
approaches can be used: knowledge-based classification ap-
proaches and semi-supervised clustering approaches. Although
these approaches share the same end-goal and use the available
knowledge to increase efficiency, they proceed differently.
They are also often used at different stages of the knowledge
extraction process. The main difference between these two



approaches relies on the type of reasoning they adopt. Most
knowledge-based systems use deductive reasoning, whereas
semi-supervised clustering approaches are essentially induc-
tive.

A. Knowledge-based systems

Knowledge-based systems have been widely used to reduce
the semantic gap and to provide high-level of semantic inter-
pretation [1]. Forestier et al. [2] proposed a method that labels
the objects of satellite images using the concepts formalized
in a knowledge base. First, Forestier et al. use a segmentation
algorithm to obtain the objects from the image. Then, a match-
ing process computes the similarity between the characteristics
of the objects and the concepts in the knowledge base. The
objects are then labeled with the concept having the highest
similarity score. Falomir et al. [3] and Andres et al. [4] use
description logic reasoning to label the extracted objects from
the images. They also perform segmentation over the images
to extract the objects.

These approaches rely on expert knowledge in different
ways for the semantic interpretation of the extracted objects.
However, none of them is integrated into and actually feeds the
clustering or segmentation process. Forestier et al.’s method
uses similarity measures of semantic descriptors of the objects
extracted from the satellite image, but it does not exploit
description logics reasoning. Falomir and Andres’ methods
use reasoning, but they do only on pre-extracted objects from
the images, mainly for a posterior interpretation and they do
not guide the clustering process. Overall, only few state-of-art
methods have applied logic reasoning to satellite images.

B. Semi-supervised clustering

In the literature, a large body of research has been proposed
to introduce and leverage a priori knowledge in clustering [5]–
[7]. Typically, several ways have been explored for integrating
expert knowledge and supervision into the clustering process.
Constraint-based clustering at the instance level is known
to be very efficient to guide the cluster formation. Initially
introduced by Wagstaff and Cardie [8], knowledge is expressed
as two types of links: must-link and cannot-link. The constraint
must-link ml(xi, xj) specifies that two instances, noted xi and
xj have to be in the same final cluster, whereas cannot-link
cl(xi, xj) indicates that the two instances should not belong
to the same cluster. Both must-link and cannot-link constraints
are transitive.

Several variants of constrained clustering have been pro-
posed in the literature and can be classified into three cate-
gories whether they integrate:
• Change of the update step for assigning the instances to

the final clusters [9], [10];
• Adjustment of the initialization step of the clustering [11];
• Adaptation of the objective function of the clustering [5].

COP-KMEANS [9] is an adaptation of the k-means algorithm
that integrates constraints. An instance is assigned to a cluster
only if no constraint is violated. Other techniques modify the
initialization step of the clustering algorithm. In the variant

of hierarchical clustering based on constraints proposed by
Davidson and Ravi [11], transitive closures are computed from
the constraints to produce connected instances that are used
later by the clustering algorithm.

Algorithms proposed by [9]–[11] have shown that clustering
results can be improved by the use of constraints guiding
the clustering. However, hard constrained clustering variants
adopt a strict enforcement approach where the algorithm has
to find the most feasible clustering output that respects all
the constraints. Experiments made by Davidson et al. [12]
have shown that these algorithms are very sensitive to noise
and have issues with inconsistent constraints. Soft constrained
clustering algorithms have been proposed for partial enforce-
ment of the constraints, in order to find the best clustering
output that respects the maximum number of constraints. Most
of these approaches rely on the modification of the objective
function of the clustering adding a penalty weight in case of
constraint violation, e.g., CVQE [11] and PCKmeans [13].

Although constraint-based clustering has received lot of
attention in the last years, only few work is focused on
automating constraint generation for guiding the clustering
process. Current methods rely on manually defined constraints
by the expert or user. In many applications, setting constraints
can be very expensive and it requires in-depth knowledge
about the data and the domain. Another inconvenience of
encoding knowledge using only constraints is the loss of
class semantics. In this context, we claim that guiding the
constraint-based clustering process with formalized knowledge
will permit automatic generation of constraints relevant to the
user/expert points-of-interest.

C. Ontology and clustering

There exist some researches that used jointly ontology and
clustering. Most of them are proposed in the context of text
mining. Jing et al. [14] proposed a method to improve text
clustering using an ontology based distance. The process takes
into account the correlations between the terms by exploit-
ing the a priori knowledge contained in Wordnet and other
ontologies. Once the correlations computed, the measures
were implemented in k-means and experiments have shown
improved performance. Hotho et al. [15], [16] exploited the
ontology as a support of a priori knowledge at different stages
of the knowledge extraction process. The ontology is used
in the preprocessing step in order to obtain different text
representations. Several k-means is then performed over the
different obtained representations, which allow the explanation
of the results by selecting the corresponding concepts in the
ontology. Theses approaches [14]–[16] used WordNet as a
background knowledge, which makes these approaches work
well only for topics covered by WordNet. To overcome this
problem, Hu et al. [] exploited Wikipedia as an external knowl-
edge and developed approaches that map the text documents
to Wikipedia concepts and categories. Once the mappings are
established, the documents are clustered based on similarity
metric that combines document content information, concept
information and categories information.



Fig. 1. Overview of Our Approach

Although these approaches are very interesting and use
the ontology as a priori knowledge. They are specific to
text mining and cannot handle quantitative data. This means
that the proposed methods do not deal with the semantic
gap problem [17]. An other difference with the presented
approaches holds on the relation between the ontology and the
clustering. The ontology is first used to match the concepts to
the terms present in the text and then replaces the terms by
the concepts or introduces additional features to the original
data. But no constraints are introduced in the clustering step,
and most of the time, a simple clustering is performed.

III. BACK-END ONTOLOGY FOR IMPROVING
CONSTRAINT-BASED CLUSTERING

A. Preliminaries

We introduce in this section some important elements of the
Web Ontology Language (OWL 2) [18] and the description
logics (DL) [19]. OWL is a standard language introduced
and maintained by the World Wide Web Consortium. The
aim of OWL is to give users a simple way to represent
rich and complex knowledge, while facilitating the sharing
and the publication of this knowledge over the Web. OWL
introduces standardized elements with precise meaning and
formal semantics. The formal part of OWL is mainly based on
DL, which are a family of knowledge representation languages
used before OWL to capture a representation of the domain
knowledge in a structured way.

In the following, we define an ontology O as a set of axioms
(facts) describing a particular situation in the world from a
specific domain point-of-view1. Formally, an ontology consists
of three sets: the set of classes (concepts) denoted NC , the
set of properties (roles) denoted NP , and the set of instances
(individuals) denoted NI . Conceptually, it is often divided into
two parts: TBox T and ABox A, where the TBox contains

1In DL literature, an ontology is considered to be equivalent to a Knowledge
Base.

axioms about classes (Domain knowledge) and ABox contains
axioms about instances (data), such as:

O = < T ,A > = < NC ,NP ,NI > (1)

The formalization of the knowledge using formal semantics
allows automatic interpretation. This is done by computing the
logical consequences of the explicitly stated axioms in O to
infer new knowledge [20]. An interpretation I of an ontology
O consists of (∆I ,.I ), where ∆I is the domain of I , and .I the
interpretation function of I that maps every class to a subset of
∆I , every property to a subset of ∆I×∆I , and every instance
a to an element aI ∈ ∆I .

When quantitative data is available in the domain, extracting
high-level semantics from low-level features is difficult. This
is a known issue in image analysis [17]. Many approaches
have been proposed to tackle this problem also known as the
semantic gap and to some extend, ontologies have demon-
strated their efficiency to reduce the semantic gap. In OWL,
the support of XSD datatypes2 plays a key role. From a DL
point-of-view, datatypes can be seen as a concrete domain
[21] as introduced in OWL. This means that these elements
come with a predefined and unique interpretation. This also
allows the definition of more complex concepts using qualified
datatype restrictions and logical operators.

The interpretation of the ontology is computed using DL
reasoners, which provide a set of inference services. Each
inference service represents a specific reasoning task. This
capability makes OWL very powerful for both knowledge
modeling and knowledge processing.

B. Overview of our approach

In this paper, we propose a new method combining deduc-
tive reasoning based on DL and semi-supervised clustering
based on automatically generated constraints. The key idea of

2W3C XML Schema Definition Language (XSD) :
https://www.w3.org/TR/xmlschema11-2/



our approach is to reason over the available domain knowledge
in order to obtain semantically labeled instances, and use these
labeled instances to generate constraints that will further guide
and enhance the clustering. To enable automatic interpretation
of expert knowledge, we use OWL to formalize the domain
knowledge and DL reasoning to predict instances types. The
exploitation of reasoning keeps our approach generic and
modular. As inputs for the semi-supervised clustering, the
constraints are generated automatically from the reasoning re-
sults and without using any user-labeled data. These elements
make our proposition applicable to any problem where domain
knowledge, even incomplete, is available.

Figure 1 shows an overview of the proposed approach. The
inputs are unlabeled data X = {xi}ni=1 ∈ Rd where each
instance xi is described by a set of attributes V = {vj}dj=1,
and a formalized domain knowledge representing the TBox
T =< NC ,NP > of the ontology. An important aspect about
the formalized domain knowledge that can be used in our
method is its ability to bridge the semantic gap. The concepts
of the TBox have to be defined using low-level properties. The
paper’s focus is not about domain knowledge formalization,
but lot of studies can be found in the literature on this topic
[3], [4], [22], [23]. The figure illustrates the steps to guarantee
an efficient use of the available knowledge to improve and
guide the clustering; these steps can be listed as follows :

• Transformation of the data instances into ABox axioms;
• Reasoning over the constructed Knowledge Base (KB)

for instance semantic classification;
• Constraint generation based on the results of the semantic

labeling;
• Semi-supervised clustering;
• Capitalization of the results and clusters labeling.

In the rest of the section, we will give a detailed description
of these steps. We will also illustrate the effects of our
approach using a simple dataset (Figure 2). As an illustrative
example, we suppose that the expert is interested in identifying
four classes of regions in satellite images and that he has a
formalized knowledge about two concepts C1 and C2. The
two other concepts are not available (unknown or hard to
formalize).

The first step is the data transformation to OWL axioms.
We have designed and implemented a semi-automatic process
(Algorithm 1) that performs this projection. As shown in
the algorithm, our process takes as inputs the TBox of the
ontology and the data X to transform. Based on the properties
NP of the TBox and the variables V describing the data,
the process suggests a mapping between the inputs. Once the
mapping is established, our process generates OWL axioms
that represent the data. Each instance xi is represented as an
OWL instance ai (Algorithm 1), where ai is described by
the properties available in TBox, and where these properties
get their values from the data. At this point, all the required
components are prepared to build up the Knowledge Base
(KB).

Algorithm 1 Semi-Automatic Transformation of Data to
ABox Assertions
Inputs:

Data X = {xi}ni=1 ∈ Rd described by V = {vj}dj=1

Domain Knowledge : T =< NC ,NP >
Output:

ABox : A = {ai}ni=1

Method:
1: for all pk in NP and vi in V do
2: Boolean Query = Does pk correspond to vi
3: if Query.isTrue() then
4: map(NP , V ).add(pk,vi)
5: end if
6: end for
7: for all xi in X do
8: ai := createOWLInstance();
9: for all pk in map(NP , V ) do

10: ai.addProperty(pk)
11: ai.setPropertyType(pk, T .getPropertyType(pk))
12: ai.setPropertyV alue(pk, xi.getV alueOf(vk))
13: end for
14: return ai : OWL representation of xi

A.add(ai)
15: end for

Fig. 2. Illustrative Example (Should be analyzed in color mode)

Note that the KB is actually the combination of TBox
and ABox, where TBox represents the formalized domain
knowledge, while ABox corresponds to the axioms describing



the instances (data). As the OWL language is based on
description logic, it allows the use of deductive reasoning to
infer new possible knowledge. A set of inferences services
can then be used, such as concept satisfiability, classification,
realization, etc.

In our method, we are interested in the realization, which
consists in finding the most specific concept which a given
instance belongs to. Performing this reasoning task over the
constructed knowledge base allows us to retrieve the instances
of the concepts formalized in TBox. Description logic rea-
soning operates under the open world assumption, DL were
designed to deal with incomplete information. This means that
not all the data will be labeled and only the instances that
fit completely in the definition of the concepts will be typed
(Figure 2.b).

Once we classify the instances using the ontology, we
generate a set of ML constraints linking together the identified
instances from the same concept and a set of CL constraints
for the instances identified as belonging to different instances
(Figure 2.c). The generated constraints will be used to guide
the clustering.

As mentioned above (Section II.B), two variants of con-
strained clustering exist, hard and soft constrained algorithms.
In our case, the constraints are automatically generated based
on reasoning over the available knowledge. In this automated
process, encoding the results of reasoning as soft constraints is
the only way to guarantee the consistency of our approach as
the knowledge can contain some approximations and produce
some errors. In this step, we choose to use PCKMeans [13] as
constrained algorithm, but our method can be applied using
most soft constrained algorithms. Compared to the classical
k-means algorithm, the objective function of PCKMeans is
weighted by the ML and CL constraints :

Rpckm =
1

2

∑
xi∈χ
‖xi − µli‖2 +

∑
(xi,xj)∈ML

wij1[li 6= lj ] +

∑
(xi,xj)∈CL

wij1[li = lj ]

where li (li ∈ hkh=1) is the cluster assignment of the instance
xi, and wij1[li 6= lj ] and wij1[li = lj ] correspond to the
cost of the violation of constraints ml(xi, xj) ∈ ML and
cl(xi, xj) ∈ CL. Note also that 1 is an indicator function
with 1[true] = 1 and 1[false] = 0. xi represents the instance
affected to the partition χli with the centroid µli. Algorithm 2
shows the adapted PCKMeans with automatically generated
constraints. Once we apply the constrained clustering, we
obtain semantically labeled clusters that respect the expert’s
vision. Figure 2.c shows the obtained results, we can see that
clusters are labeled with the available concepts. The figure also
shows how the domain knowledge guided the formation of the
clusters based on the automatically generated constraints, even
if this knowledge is incomplete.

IV. EXPERIMENTS

In this section, we describe the data used in our implemen-
tation and the results we obtained. We apply our approach

Algorithm 2 Semi-supervised Clustering with Generated Con-
straints
Inputs:

Dataset : X = {xi}ni=1 ∈ Rd
Sub-dataset of labeled instance: XL = {(xi, Cl)}mi=1

Where Cl ∈ NC the set of Classes of the TBox
k : number of clusters

Method:
Generate the ML and CL constraints from XL

2: λ = size(NC)
for all Concepts Cl in NCλl=1 do

4: Create neighborhood Nl ∈ {Np}λp=1

Set neighborhood class to Cl
6: end for

if λ ≥ k then
8: initialize {µ(0)

h }kh=1 with centroids of {Np}kp=1

else if λ < k then
10: initialize {µ(0)

h }λh=1 with centroids of {Np}λp=1

if ∃ point x cannot-linked to all neighborhoods
{Np}λp=1 initialize µ(0)

λ+1 with x
12: Initialize remaining clusters randomly

end if
14: Repeat until convergence

assign cluster: assign each xi ∈ X to the
cluster h∗, for h∗ = argmin( 1

2‖xi − µ
(t)
h ‖2 +

w
∑

(xi,xj)∈ML 1[li 6= lj ] + w
∑

(xi,xj)∈CL 1[li 6= lj ]
16: estimate means :
{µ(t+1)

h }kh=1 = { 1

‖X(t+1)
h ‖

∑
x∈X(t+1)

h

x}kh=1

t = t+ 1

to a real-world application in the classification of Landsat
5 TM images. The Landsat program is a joint NASA/USGS
program3 that freely provides satellite images covering all the
earth surface. The Landsat scenes can be downloaded from
the USGS Earth Explorer4. The Landsat 5 TM scenes have
a spatial resolution of 30 meters and seven spectral bands.
In our experiments, we extract four images that come from
three different scenes. The size of each one of them is of
780x600 pixels, making each dataset having a size of 468.000
pixels. Each instance is described by 9 attributes, the seven
bands and two spectral indices (NDVI [24] and NDWI [25]).
Three images concern the region of the river Rio Tapajos in the
Amazon and one concerns the region of Languedoc Roussillon
in the South of France.

In our experiments, the only inputs are the TBox of the
ontology containing the expert knowledge, i.e., the formaliza-
tion of two concepts: Vegetation and Water, and the pixels of
the images. We do not use any labeled data and the images
are not segmented. During the constrained clustering step of
our approach, we fixed k=3 as the number of cluster for
PCKMeans and the constraints are automatically generated
based on the reasoning results (See Figure 1). The set of must

3Landsat Science : http://landsat.gsfc.nasa.gov/
4USGS Earth Explorer : http://earthexplorer.usgs.gov/



Fig. 3. Application of our approach to an Landsat satellite image Link : http://earthexplorer.usgs.gov/metadata/3119/LT52280622011302CUB01/

link constraints contains a pair of pixels that are both labeled
as Vegetation Pixels or Water Pixels. The set of cannot link
constraints contains a pair of pixels that one of them is labeled
as Water Pixel and the other one as a Vegetation Pixel.

To build the corresponding TBox, several spectral bands and
indices were used. The concepts were defined using the seven
bands : TM1,...,TM7 and the spectral indices NDVI5 [24] and
NDWI6 [25]. For example, the water concept is defined as
follows :
Water P ixel ≡ Pixel∧((∃TM4. < 0.05∧∃ndvi. < 0.01)∨
(∃TM4. < 0.11 ∧ ∃ndvi. < 0.001))

a) Implementation notes: Several frameworks have been
used to implement our approach. A dedicated process for
preprocessing and transformation of the images have been
developed using the Orfeo ToolBox library7. Concerning the
semantic layer, the transformation of the data to OWL in-
dividuals is ensured by a Java program that uses the OWL
API [26] and a semi-automatic mapping [Algorithm 1]. Pellet
[27] is the DL reasoner that have been chosen to perform
the realization task and materialize the deduced type of the
pixels. Pellet has a xsd datatype oracle that can reason over
the qualified datatype restrictions used to define our concepts.
Finally, constraint generation and the constrained clustering
PCKMeans have been also implemented in Java.

In the rest of this section, we first present the experiments
we made with the three images extracted from the two Landsat
Scenes of Brazil. Then, we show the results of application
of our approach - using the same knowledge - to an image
extracted from the Landsat scene of the south of France.

A. Images from Landsat Scenes of Brazil

The experiments we conducted have multiple objectives.
First, they show the feasibility of our approach and the advan-
tages of simultaneous exploitation of ontology reasoning and
constrained clustering. Secondly, they highlight the capacity

5Normalized Difference Vegetation Index
6Normalized Difference Water Index
7Orfeo ToolBox : https://www.orfeo-toolbox.org/

of the approach to deal with incomplete domain knowledge.
Finally, they demonstrate the effectiveness of the automatic
constraints generation from the ontology to supervise cluster-
ing.

Figure 3 shows the results of applying our approach to
one of the images used in the experiments. For a better
understanding, Figure 3 should be analyzed in color mode.
Figure 3.a represents the raw image in true colors; Figure 3.b
shows the intermediate step of ontology reasoning and the
final result of the approach is illustrated in Figure 3.c. We can
visually see that our approach improves the results obtained
only with reasoning over the ontology. Two important elements
are shown in this figure. The first point we can notice is the
labeling of water present in the top left corner of the images.
These pixels have been semantically labeled using constrained
clustering. This shows how our approach can complete the
knowledge about the concepts of the ontology. Here, the
definition of the experts have not been sufficient to label those
pixels, but using the constrained clustering, those pixels have
been correctly labeled. The second element is the apparition of
the new cluster, which has been identified with the clustering.
This cluster, representing the bare soil (as reported later by
the expert), is not specified in the ontology but has been
detected by the constrained clustering. These figures clearly
illustrate how our approach can deal with different paradigms
and produces labeled and unlabeled clusters simultaneously.

When we apply k-means and our approach on the same
image (Figure 4), we can easily see the improvements offered
by the ontology. The first difference is the automatic semantic
interpretation. A second observation concerns the confusion
between water and vegetation when we use k-means. The
expert explains that those errors are due to the nature of
the Amazonian forest, where some vegetation grows on wet
soils. The ontology is very useful in this case, where the
available domain knowledge helps our approach to distinguish
the instances of the two concepts (vegetation and water).

To evaluate the quality of the results, we calculate precision
and F-measure metrics based on a reference classification



made by the expert. To obtain this reference classification, a
remote sensing expert first labeled manually large parts of the
images (about 70%) and then performed a supervised learning
with the Envi software8. The expert repeats the classification
until obtaining a high quality reference classification. We also
compare the scores of our approach with the ones obtained by
k-means and ontology reasoning. We have to point out that
the evaluation of k-means is made after the intervention of
the expert to label each cluster, which constitutes an important
difference with our approach where the semantic labeling is
automatic.

Fig. 4. The results of k-means (a) and our approach (b) applied to the same
image

Table 1 shows the performances of the different methods on
the three images provided by the expert. Reasoning over the
ontology to label the pixels is operated under the open world
assumption (OWA) and TBox contains the formalization of

8Envi : http://www.exelisvis.co.uk/ProductsServices/ENVIProducts/ENVI.aspx

the two concepts of Water and Vegetation. This configuration
leads to a partial labeling of the instances (83.6 % for Image
1). If we consider only the labeled pixels, the precision of
the ontology is high. However, the ontology is not able to
label the pixels with the third concept (as no definition is
given). It is also not able to label all the vegetation and
water pixels as they are not exactly in conformance with the
specifications of the concept (Figure 3.b). This disadvantage of
the ontology is also a motivation to use our approach, where all
the pixels are classified. Table 1 also shows the improvements
of the clustering results in our approach when compared to
k-means, which demonstrates that, in addition to the semantic
interpretation, our approach has better performance.

We also evaluate the obtained results using the Friedman
test. A critical Friedman diagram represents a projection of
average ranks of classifiers on enumerated axis. The classifiers
are ordered from left (the best) to right (the worst) and a
thick line connects the classifiers where the average ranks are
not significantly different (for the 5% level of significance).
From this two tests (Figures 5 and 6), it can be observed that
our approach outperforms both the classical clustering and the
ontology-based classification as it is situated on the left side
of the both figures.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Rank

Our
A
pproache

Clustering

Ontology
CD

Fig. 5. Friedman Test for Precision Results
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Fig. 6. Friedman Test for F-Measures Results

B. Image from Landsat Scene of France

We also applied our approach to an image (size: 468.000
pixels) extracted from a Landsat 5 TM from the south of



Images Clustering Ontology Our approach
Prec. F-Mes. % labeled Prec. F-Mes. Prec. F-Mes.

Image 1 0.8899 0.8764 83,6 0.8359 0.8360 0.9445 0.9296
Image 2 0.8701 0.8598 81,26 0.8125 0.8126 0.9271 0.9181
Image 3 0.8889 0.9241 90,33 0.9031 0.9020 0.9299 0.9304

TABLE I
EXPERIMENTS RESULT ON IMAGES OF THE AMAZONIAN REGION

Fig. 7. Application of our approach to an image extracted from a Landsat 5 TM scene of the south of France

Fig. 8. Results of k-means (a) and our approach (c) compared with an expert reference classification of an excerpt of a Landsat scene of the south of France

France9. As mentioned in the beginning of this section (Sec-
tion V), the same settings were used in this second experiment.
The TBox contains two concepts (Water and Vegetation). No
labeled instances are used and no expert’s intervention is
needed during the approach application. Figure 7 shows the
different steps of our approach, with the raw image showed in
(a), the ontology reasoning result in (b) and the final result
of our approach in (c). In Figure 7.b, where the ontology
reasoning results are shown, we can see that the water pixels
are well detected this time, but that only few vegetation
pixels are. This means that the vegetation concept does not

9Link : http://earthexplorer.usgs.gov/metadata/3119/LT51960302011286MTI00/

cover all the pixels of vegetation present in this image. As
the experts tend to define the concepts using only trusted
interval values, the concepts cannot cover all the possibilities,
as illustrated here (Figure 7.b) with the vegetation concept
and in the Figure 3.b with the non detected water pixels in the
top left of the image. However, even with this small number
of vegetation pixels detected with ontology reasoning, our
approach has been able to complete the classification of other
vegetation pixels (Figure 7.c). This illustrates the capacity of
our approach to work with incomplete knowledge bases.

The figure 8 shows in (a) the result of k-means, (b) the
remote sensing expert reference classification made using a
manually labeled data and a supervised learning with the Envi



commercial software, and finally (c) the result of our approach.
The comparison with k-means highlights an interesting prop-
erty of our approach, it shows its capacity to efficiently control
the clustering via the automatically generated constraints.
When we apply k-means with k=3, we obtain two cluster
containing water pixels and a cluster with mixed pixels. This is
due to the large number of water pixels and to the initialisation
problem in unsupervised settings. With our approach, we can
see that the obtained results are very close to the reference
classification made by the expert. We recall that no labeled
data were used and no manual intervention is needed in our
case. The hybrid nature of our approach allows the use of
incomplete knowledge via deductive reasoning and exploits
it to generate constraints for the constrained clustering. The
constrained clustering step will then complete the classification
of the pixels if the definition of the concepts does not cover all
the pixels (Vegetation pixels in Figure 7) and discovers new
clusters (The red pixels in Figure 7.c) via its induction nature.

V. CONCLUSION

We have presented in this paper a new hybrid approach com-
bining reasoning over an ontology and clustering, guided by
automatically generated constraints. Combining both deductive
and inductive reasoning, our method can exploit the available
knowledge although it is incomplete. We have applied our ap-
proach to a real-world use case of satellite image classification.
The results have shown that our approach improves the quality
of the clustering while automating semantic labeling.

As future work, we plan to extend our approach by prior-
itizing the constraints in the generation process (currently all
the constraints have the same weight). Another perspective
concerns the enrichment of the ontology by adding new
thematic concepts.
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