

LITUARINES, A NEW CLASS OF MARINE MACROCYCLIC LACTONES ISOLATED FROM THE NEW CALEDONIAN SEA PEN *LITUARIA AUSTRALASIAE*

J.P. VIDAL, R.ESCALE, Jean-Marie CHANTRAIN¹, A. AUMELAS², J.P. GIRARD
and J.C. ROSSI

URA CNRS 1.111, Université de Montpellier I;
1) ORSTOM, Nouméa ; 2) CCIPE**, Montpellier

The Coelenterates have been investigated for biological activity, especially the order *Alcyonacea* (Soft corals) and *Gorgonacea*. Although many chemical studies on the Pennatulacea order (Sea pens) have been carried out, the *Veretillidae* family has been comparatively little investigated (1). The metabolites that have been isolated from Sea pens are all diterpenes (2).

In the course of our survey on physiologically active substances (3-4) in marine organisms, we found that certain members contain potentially important antineoplastic constituents.

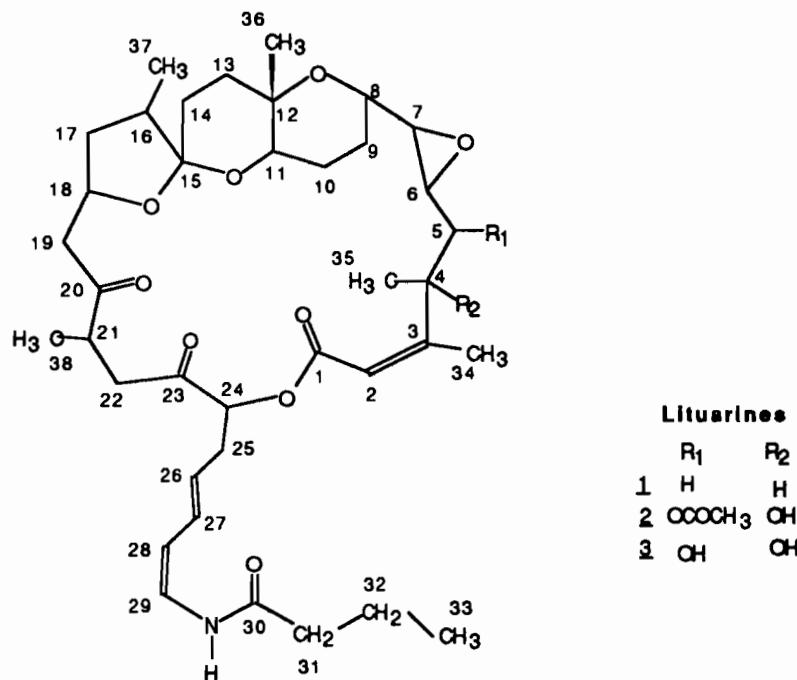
We have now isolated three new 22-membered-ring lactones **1**, **2** and **3**, named **Lituarines A, B and C**, from extracts of the New Caledonian Sea pen : *Lituaria australasiae*.

The sea-pen *Lituaria australasiae* (Gray, 1970), a pennatulacean octocoral of the *Veretillidae* family, was collected at night by SCUBA diving near the "Baie de Saint Vincent" in the Western part of the New Caledonian lagoon, on a shallow sandy bottom, and immediately deep-frozen on board. Zoological sampling was made in the meantime.

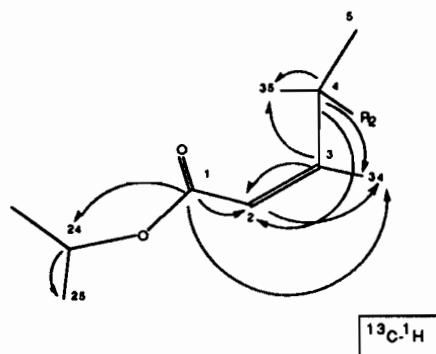
The freeze-dried animal (fresh weight : 12,5 kg) was first extracted with a mixture of ethanol and water (80/20). The extract was then partitioned into a water soluble portion and a CH_2Cl_2 soluble one. The latter (96 g) was subjected to silica gel chromatography under vacuum (eluent : CH_2Cl_2 with increasing proportions from 0 to 3% of MeOH). The fractions that showed an antifungal activity were joined, then defatted with hexane, and purified by inverse phase column chromatography (silica gel Lichroprep RP8, 25-40mm) using a gradient elution of water (from 40 to 20%) in MeOH. Three fractions were obtained. Further purification by the HPLC way was necessary, using a Microporasil column (30x0,8). The 3 fractions were eluted with CH_2Cl_2 and the respective proportions of MeOH (1,0; 1,3; 2,5%). This last step yielded Lituarines A (20 mg), B (10 mg) and C (24 mg).

The CH_2Cl_2 soluble extract, submitted to biological assays proved to inhibit the growth of the following fungi : *Fusarium oxysporum*., *Helminthosporium turcicum*, *Penicillium italicum*, *Phytophthora parasitica*.

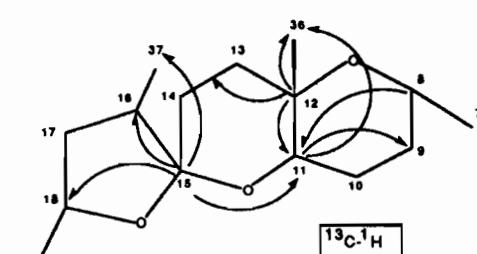
Further investigation with the KB cells test showed that partially purified Lituarines were cytotoxic (DI50 from 1 to 5.10-3 μ g/ml).


Antineoplastic activity (P-388 lymphocytic leukemia assay) was found when testing a mixture of the three substances. Because of this high toxicity, new assays with pure Lituarines will be made soon.

Structure elucidation of lituarines **1**, **2** and **3** by NMR spectroscopy

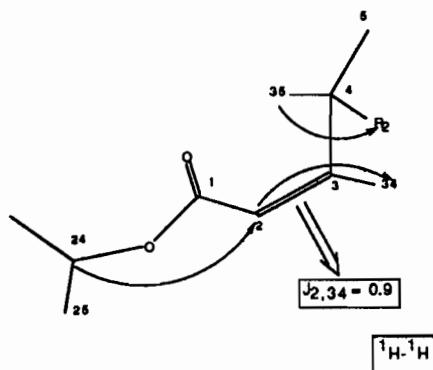

As Lituarines could not be obtained in crystalline state suitable for X-Ray crystal determination, unequivocal assignment of structures **1**, **2** and **3** was performed by 1D and 2D ¹H and ¹³C NMR studies. NMR multipulse sequences used were COSY, TOCSY (56ms), NOESY, ROESY (350ms) and DEPT (135).

Lituarines are the first macrocyclic lactones with two fused tetrahydropyran rings reported from marine sources.

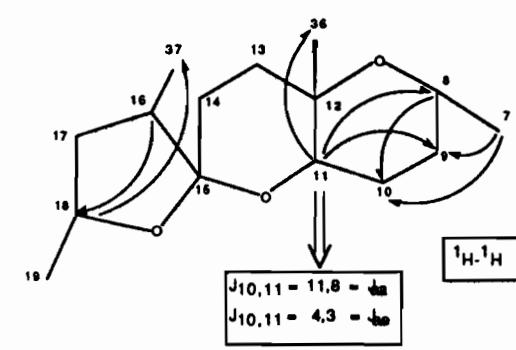


The E and Z configurations of the $\Delta^{26(27)}$ and $\Delta^{28(29)}$ double bonds and the trans configuration of the 6,7-oxirane ring were suggested by the coupling constants ($J_{26,27} = 15\text{Hz}$, $J_{28,29} = 9,7\text{Hz}$ and $J_{6,7} = 2,2\text{Hz}$) and confirmed by the ROESY spectrum (cross-peak H₂₆ and H₂₉).

The connection of the ester oxygen on C-1 with the C-24 and the trans configuration of the tetrahydropyran rings junction were established by the ¹H-¹³C bidimensional heterocorrelated experiments HMQC (5) and HMBC (6) (Scheme 1 and 2).



Scheme 1



Scheme 2

The linkages were established and confirmed by the long-range ^1H - ^1H (TOCSY) correlation spectrum (Scheme 3 and 4).

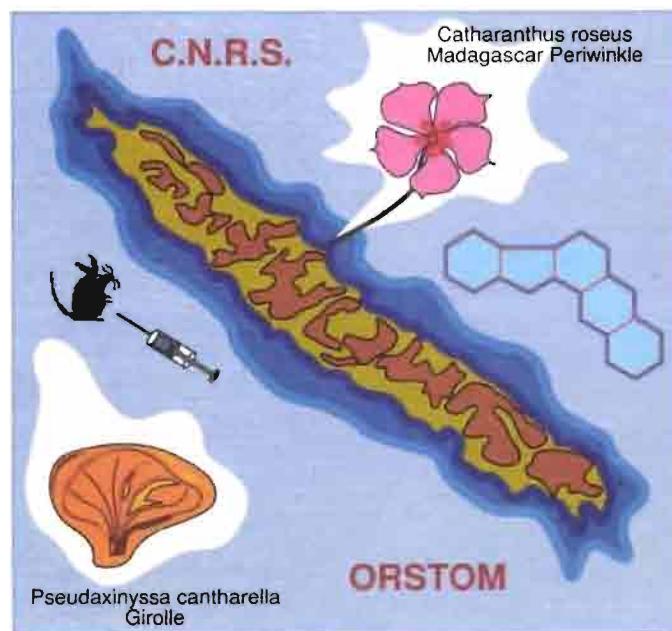
Scheme 4

Scheme 5

Supplementary material available :

FABMS, ^1H NMR, ^{13}C NMR, DEPT (135), ^1H - ^1H COSY, ^1H - ^{13}C HMQC spectra of Lituarines A, B and C, and ^1H - ^1H TOCSY (56ms), ROESY (350ms), NOESY, ^1H - ^{13}C HMBC spectra of Lituarine C.

Acknowledgements : we wish to thank Marie-José D'Hondt (Museum National d'Histoire Naturelle) for the taxonomic study of *L. australasiae*. George Bargibant and Jean-Louis Menou for collection assistance and Professor Jean-François Verbist (Faculté de Pharmacie de Nantes) for Bioassay.


References

1. Clastres A., Laboute P., Ahond A., Poupat C. and Potier P., *J. Nat. Prod.* **47** (1), 155-166 (1984)
2. Faulkner D.J., *Nat. Prod. Reports* **5** 78 (1984)
3. Vidal J.P., Laurent D., Kabore S.A., Rechencq E., Boucard M., Girard J.P., Escale R. and Rossi J.C., *Bot. Mar.* **27**, 533 (1984)
4. Girard J.P., Marion C., Liutkus M., Boucard M., Rechencq E., Vidal J.P and Rossi J.C., *J. Med. Plant Res.* **54**, 193 (1988)
5. Bax A. and Subramanian S., *J. Magn. Reson.* **67**, 565-569 (1986)
6. Bax A. and Summers M.F., *J. Am. Chem. Soc.* **108**, 2093-2094 (1986)

Troisième Symposium sur les substances naturelles d'intérêt biologique de la région Pacifique-Asie

Nouméa, Nouvelle-Calédonie, 26-30 Août 1991

ACTES

Editeurs : Cécile DEBITUS, Philippe AMADE,
Dominique LAURENT, Jean-Pierre COSSON