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2ENTROPIE, UMR IRD-UR-CNRS 9220, Laboratoire d’Excellence LABEX CORAIL, Institut de Recherche pour le
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High species richness is thought to support the delivery of multiple ecosystem

functions and services under changing environments. Yet, some species might

perform unique functional roles while others are redundant. Thus, the benefits

of high species richness in maintaining ecosystem functioning are uncertain if

functions have little redundancy, potentially leading to high vulnerability of

functions. We studied the natural propensity of assemblages to be functionally

buffered against loss prior to fishing activities, using functional trait combi-

nations, in coral reef fish assemblages across unfished wilderness areas of

the Indo-Pacific: Chagos Archipelago, New Caledonia and French Polynesia.

Fish functional diversity in these wilderness areas is highly vulnerable to fish-

ing, explained by species- and abundance-based redundancy packed into a

small combination of traits, leaving most other trait combinations (60%) sensi-

tive to fishing, with no redundancy. Functional vulnerability peaks for mobile

and sedentary top predators, and large species in general. Functional vulner-

ability decreases for certain functional entities in New Caledonia, where

overall functional redundancy was higher. Uncovering these baseline patterns

of functional vulnerability can offer early warning signals of the damaging

effects from fishing, and may serve as baselines to guide precautionary and

even proactive conservation actions.
1. Introduction
Human activities have already induced the collapse of many ecosystems

around the world [1–3] and, in combination with climate change, have trig-

gered major reductions in biodiversity globally [3–7]. Beyond the loss of

species, there is a growing awareness that the loss of ecological functions

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2016.0128&domain=pdf&date_stamp=2016-12-07
mailto:sdagata@wcs.org
https://dx.doi.org/10.6084/m9.figshare.c.3573198
https://dx.doi.org/10.6084/m9.figshare.c.3573198
http://orcid.org/
http://orcid.org/0000-0001-6941-8489
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://rspb.royalsocietypublishing.org/


rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20160128

2

 on January 13, 2017http://rspb.royalsocietypublishing.org/Downloaded from 
may be the most critical consequence of human disturbances

on ecosystems [8–12]. This diversity of ecological functions

sustains ecosystem services on which humanity depends;

such as biomass production [10]. Sustaining ecosystem func-

tions requires both high functional diversity, i.e. a large

breadth of ecological functions supported by species [13–

17], and high functional redundancy, i.e. a large number of

species supporting identical functions in the system [18].

In theory, species richness is thought to maintain a high

level of both functional diversity and redundancy, thus

ensuring the long-term functioning of ecosystems in a fluctuat-

ing environment [19]. Indeed, high species richness should

increase the probability of having both species supporting

different functions (functional diversity) and many species

supporting the same ecological functions (functional redun-

dancy) [17]. Many experiments confirm this theory, for

example demonstrating the vulnerability of ecosystem func-

tioning to species loss [11,20]. In natural systems, however,

the benefits of high species richness to maintaining ecosystem

functioning have recently been challenged by three patterns.

First, at the scale of ocean basins (and using species checklists),

some functions exhibit over-redundancy, i.e. are supported by

a disproportionately high number of species, while others are

realized by few or one species only, even in the richest regions

[21]. Second, species that support specific or unique traits in

ecosystems (no redundancy) tend to be rare owing to their

low abundance in ecosystems [22]. Third, the distribution of

species richness and abundance among trophic groups is

more critical than simply the number of species to maintain

ecosystem functioning and services [23]. These patterns

demonstrate the importance of preserving both species and

abundance within a wide range of functional groups.

Taken together, these results suggest that high levels of

species richness and abundance may not insure ecosystems

against functional diversity loss as we once hoped, owing to

the high vulnerability of some functions that lack redundancy.

Yet, this hypothesis has, to our knowledge, never been tested

with empirical data in tropical ecosystems with marginal or

no exposure to threats, i.e. where species density and abun-

dances should be close to natural baselines. Assessing the

vulnerability of ecological functions to threats in such scenarios

would reveal the baseline of functional vulnerability, and the

extent to which these ecosystems are buffered against even

limited local species declines or extinctions.

Protected areas (PAs) are often used to assess ecological

baselines against which biodiversity levels in exploited areas

are compared [24]. However, recent studies have shown that

even PAs cannot be considered as true ecological baselines

because anthropogenic disturbances typically started long

before these areas were established [2,25–27]. In addition,

most of these areas are either too small or embedded in areas

influenced by human activities and therefore cannot support

the full range of ecological functions [24,28]. As an alternative,

wilderness areas, i.e. large areas geographically isolated from

humans by natural geographical barriers or with very limited

human presence, may provide ecological baselines close to a

‘natural’ status [2,26,28]. Indeed, wilderness areas are tradition-

ally viewed as areas featuring exceptional concentrations of

biodiversity and abundance [29], albeit potentially suffering

from global changes in a near future [30].

Here, using coral reef ecosystems along a geographical gra-

dient, we propose to test two hypotheses. First disparate

wilderness areas tend to host a similar level of functional
diversity, uncovering a consistent baseline for the breadth of

functions in ecosystems, despite a high turnover in species

composition. Second, this common level of functional diversity

remains highly vulnerable to species declines or losses owing

to a disproportional over-redundancy in some functions and a

‘natural’ lack of redundancy for some critical functions.

Coral reefs are the most diverse marine ecosystems on

Earth [31] and support key services for half a billion people,

such as food and income [32]. We quantified the baseline vul-

nerability to fishing of fish functional diversity in coral reef

ecosystems across the Indo-Pacific geographical gradient,

taking advantage of extensive surveys in French Polynesia,

New Caledonia and Chagos. These three wilderness areas all

benefit from a high level of isolation from humans [33] and a

high level of enforcement owing to the presence of military

forces, thereby limiting illegal fishing activities. As the ecologi-

cal knowledge to assess the functions carried by individual

species is limited, using species functional traits to infer func-

tions offers a viable alternative [34]. Here, we assume that

species with more diverse combinations of functional traits

are more likely to support different functions (e.g. [35–37]).
2. Material and methods
(a) Study regions
Remote atolls and islands in three regions (Chagos Archipe-

lago, New Caledonia, and French Polynesia) were sampled

along the Indo-Pacific biogeographic gradient, encompassing

1308 of longitude (16 000 km) (electronic supplementary

material, figure S1). None of these atolls and islands are

inhabited: the northern Chagos Archipelago (the Great

Chagos Bank, Peros Banhos and Salomon Island) is more

than 650 km south of the Maldives and personnel at the

Diego Garcia atoll navy base are not permitted to the northern

Archipelago other than for fishery patrols; isolated atolls and

islands in New Caledonia (Entrecastaux Archipelago, Astro-

labe Reef, and Beautemps-Beaupré) are located between 300

and 600 km and more than 20 h by boat from the capital

Nouméa [25]; two atolls at the southeast end of the Tuamotu

Archipelago (Paraoa and Ahunui) are located approximately

950 km from Papeete, the capital of French Polynesia; and the

Acteon Group, a cluster of atolls, is located between 200 and

500 km north of Gambier Island, French Polynesia (figure 1).

(b) Fish surveys
Fish data for the Pacific Islands were collected on outer reef

slopes using Underwater Visual Census (UVC) along 50 m

transects. Briefly, this method involved two divers each record-

ing species identity, abundance and body length [38]. Transects

in New Caledonia (18 transects) and French Polynesia (37

transects) were truncated at 10 m wide (10 � 50 m strip trans-

ects). In the Chagos Archipelago, fishes were surveyed along

outer reef slopes using 50 � 5 m strip transects (79 transects).

To make surveys comparable among regions, a common area

of 500 m2 was obtained by randomly aggregating two

Chagos transects (250 m2). Accumulation curves of species

richness were performed for each region to test for potential

biases owing to survey techniques (electronic supplementary

material, figure S1). Species densities and abundances were

estimated for 500 m2 transects and averaged for each region.

Sharks and rays were removed from the main species list

http://rspb.royalsocietypublishing.org/
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Figure 1. Sampled coral reef ecosystems across three regions of the Indo-Pacific. Fishes were identified and counted at the outer reefs of remote atolls (blue stars)
in Chagos (79 transects), New Caledonia (18 transects) and French Polynesia (37 transects).
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because of their specific traits, some poaching in Chagos, and

difficulties in assessing their abundance using UVC [39].

As such, this study focused on 412 fish species belonging to

35 teleost families.

(c) Functional traits and entities
To estimate functional diversity, we used six functional

traits related to major fish attributes: (i) maximum body

size, (ii) diet, (iii) home range, (iv) position over the reef,

(v) activity, and (vi) gregariousness [21,40].

Fish sizes were coded using six ordered categories: 0–7 cm,

7.1–15 cm, 15.1–30 cm, 30.1–50 cm, 50.1–80 cm and more

than 80 cm. Diet was characterized based on the main items

consumed by each species, which led to seven trophic cat-

egories: herbivorous–detritivorous (i.e. fishes feeding on turf

or filamentous algae and/or undefined organic material),

macroalgal herbivorous (i.e. fishes eating large fleshy algae

and/or seagrass), invertivorous targeting sessile invertebrates

(i.e. corals, sponges and ascidians), invertivorous targeting

mobile invertebrates (i.e. benthic species such as crustaceans,

echinoderms), planktivores (i.e. fishes eating small organisms

in the water column), piscivorous (including fishes and

cephalopods), and omnivorous (i.e. fishes for which both vege-

tal and animal material are important in their diet) [21,41].

Home range was coded using three ordered categories: seden-

tary (including territorial species), mobile within a reef, and

mobile between reefs. Position in the water column was

coded using three ordered categories: benthic, bentho-pelagic,

and pelagic. Activity period was coded using three ordered
categories: diurnal, both diurnal and nocturnal, and nocturnal.

Schooling was coded using five ordered categories: solitary,

pairing or living in small (3–20 individuals), medium (20–50

individuals) or large (more than 50 individuals) groups. This

functional trait’s database was built using information about

the ecology of adult life-stages available in the literature and

according to observations made in the Indo-Pacific by the

survey team [40,42,43].

More detailed descriptions linking these traits to ecological

processes can be found in the electronic supplementary

material of published articles [21,28]. Because all traits were

coded using categories, we defined functional entities (FEs) as

groups of species sharing the same trait categories. In total,

412 fish species were clustered into 157 different FEs [21,28].

(d) Fish functional diversity
In order to compare the level of functional richness (FRic)

among the wilderness areas, we measured the FRic of

fishes for each region defined as the volume inside the

convex hull occupied by species within a functional space

[44,45]. To build a functional space, we calculated pairwise

functional distances between species pairs based on the six

functional traits using the Gower metric, which allows

mixing different types of variables while giving them equal

weight [46]. A principal coordinates analysis (PCoA) was

performed on this distance matrix to build a multidimen-

sional functional space. We retained the first four principal

axes (PCs), which faithfully represent the Gower distance

between species [44,45,47].

http://rspb.royalsocietypublishing.org/
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(e) Taxonomic and functional b-diversity
In order to determine if wilderness areas host different

species and functional compositions across the Indo-Pacific,

we assessed taxonomic and functional b-diversity among

regions. We used the b-diversity partitioning framework

based on the Jaccard dissimilarity index [48,49]. Taxonomic

b-diversity (bjac) equals (equation (2.1))

bjac ¼
bþ c

aþ bþ c
, ð2:1Þ

where, a is the number of species in both regions A and B, b is

the number of species present in region A but not in region B

and c is the number of species present in region B but not in

region A.

To distinguish between the species replacement versus nest-

edness components of b-diversity, we decomposed the

pairwise Jaccard dissimilarity index (equation (2.1)) into two

additive components [48,49]. The replacement component of

the Jaccard dissimilarity index (bjtu, equation (2.2)) describes

species replacement without the influence of richness difference

between regions. This index is formulated as follows:

bjtu ¼
2 min (b,cÞ

aþ 2 min ðb,cÞ , ð2:2Þ

where a, b and c are the same as in Equation 1.

The nestedness component of the Jaccard dissimilarity

index (bjne, equation (2.3)) is the difference between bjac and

bjtu. This index accounts for the fraction of dissimilarity

owing to richness difference and is formulated as follows:

bjne ¼
max ðb, cÞ �min ðb, cÞ

aþ bþ c
� a

aþ 2 min ðb, cÞ , ð2:3Þ

where a, b and c are the same as in equations (2.1) and (2.2).

The first term in equation (2.3) expresses a measure of rich-

ness difference, whereas the second term corresponds to the

dissimilarity version of bjtu that is independent of richness

difference (1 2 bjtu, [49]).

The functionalb-diversity among regions was decomposed

into functional turnover and functional nestedness-resultant

components following the same framework [50,51].

Taxonomic and functional b-diversity and their respective

components were computed using the R functions from

the ‘betapart’ R package (R v. 2.15.2, R development Core

Team, 2012).

( f ) Functional vulnerability to fishing
Despite the variety of conceptual approaches, there is growing

agreement in defining vulnerability as the combination of three

components: (i) sensitivity, or the susceptibility of a system to

threats, (ii) exposure, or the level of those threats on a system,

and (iii) adaptive capacity, or the capacity of the system to pre-

pare for and respond to those threats [41,52,53]. By analogy,

the level of ‘functional vulnerability’ in a given ecosystem

relies on (i) functional sensitivity, i.e. the extent to which parti-

cular traits are more prone to decline in the face of certain

threats [54], (ii) exposure or the level of threats, and (iii) func-
tional redundancy, i.e. the degree to which the same functional

traits are supported by many and/or abundant species.

In wilderness areas, exposure to fishing is absent or extremely

low [29]. Therefore, the vulnerability to fishing in wilderness

areas, termed here as ‘baseline vulnerability’, is solely defined as

the combination of species sensitivity to fishing, driven by their

biological traits (e.g. size, growth and reproductive capacity),
and the level of functional redundancy which is determined by

the natural distribution of species density and abundances

among FEs (electronic supplementary material, figure S2).

The sensitivity of each fish species to fishing was esti-

mated using a fuzzy logic expert system to take into

account eight life-history characteristics that are linked to

species productivity and other factors that make fish species

more or less sensitive to fishing [55]. This indicator has accu-

rate predictive capacity [55] and has been widely recognized

as a comprehensive and suitable indicator of fish sensitivity

to fishing [56]. The sensitivity to fishing was aggregated at

the level of FEs by averaging the sensitivity of all species

belonging to the given FE. The scale ranged from 0 to 100.

Functional redundancy is defined as the level of functional

equivalence among species in an ecosystem, such that one func-

tion may be performed by one or many species, and one species

may substitute for another in the latter case [57]. Here, redun-

dancy was assessed using three complementary indices. First,

we used the number of species composing each FE in each

region (FRS). However, the number of species per FE is only

one aspect of functional redundancy. The distribution of species

abundances within FEs represents a complementary aspect of

redundancy [58–60]. Therefore, secondly we took into account

the number of individuals in each FE (FRab).

The mean abundance per 500 m2 of a species i in each

region was calculated according to the formula

abi ¼
PN

i¼1 ni

N
, ð2:4Þ

where N is the number of transects per region and ni is the

number of individuals of species i. Then, functional redundancy

of a given FE for a given region FRab was obtained as follows:

FRab ¼
XS

i¼1

abi, ð2:5Þ

with abi representing the mean number of individuals of species

i per 500 m2 and S is the number of species in the given FE for

that given region.

Thirdly, we computed a redundancy index accounting for

both the number of species and their abundances in each FE.

We used the Shannon entropy index FRShannon with the ration-

ale that a given FE will have more redundancy if represented by

many abundant species. Conversely, FEs will have low redun-

dancy if represented by few and rare species. Accordingly, in

each region, FRShannon for each FE was computed as

FRshannon ¼ �
XS

i¼1

pi ln pi , ð2:6Þ

with

pi ¼
abiPS
i¼1 abi

, ð2:7Þ

where, pi is the individuals’ proportion of species i in the FE,

and S is the number of species per FE.

We applied the correction derived from the equivalent

number of species [61]:

FRshannon EQ ¼ exp ðFRshannonÞ: ð2:8Þ

The equivalent number of species is an unbiased measure of

Shannon entropy, following Hill’s ‘doubling’ property which

ensures that the diversity index doubles with the level of

http://rspb.royalsocietypublishing.org/
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diversity, as opposed to nonlinear diversity indices that

behave counterintuitively [62].

Quantitatively, the vulnerability of fish FEs to fishing

for each region was assessed using a framework based on

multi-criteria decision-making (MCDM) and the TOPSIS

method (Technique for Order Preference by Similarity to an

Ideal Solution). Applied to our specific case, this technique

ranks FEs according to their relative distance to the positive

and negative ideal solutions, which represent the conditions

obtained when the criteria have extreme values [41,63]. The

positive ideal solution (Aþ) corresponds to the conditions

where sensitivity to threats is minimum while redundancy

is maximum (electronic supplementary material, figure S3).

Conversely, the negative ideal solution (A2) corresponds to

the conditions where sensitivity to threats is maximum

while redundancy is minimum.

Functional vulnerability was then expressed as the rela-

tive distance to these positive and negative ideal solutions

according to equation (2.9):

Vi ¼
dþ

d� þ dþ
ð2:9Þ

where Vi is the vulnerability of functional entity i, dþ is the

distance to Aþ and d2 the distance to A2 in Euclidean

space. The vulnerability index ranges from 0 if the criteria

scores correspond to Aþ and to 1 when the criteria scores

correspond to A2 [41,63].

The vulnerability of an FE is high when both the fishing

sensitivity of that FE is high and when redundancy is low [41,64].

(g) Mapping functional sensitivity, redundancy and
vulnerability in functional space

The density distribution of functional redundancy, sensitivity

and vulnerability within the functional space was estimated

using the kernel method with a Gaussian estimation [65].

The smoothing parameter h was estimated using the ad hoc

method, which is the optimum h value obtained for the

normal distribution [65]:

h ¼ sn� 1=6, ð2:10Þ

where, n is the number of FEs, and s2 being the estimated

variance for x and y coordinates:

s ¼ 0:5 (s2
x þ s2

y): ð2:11Þ

The kernel density estimation was computed using the

‘adehabitatHR’ R package (R v. 2.15.2, R development Core

Team, 2014).

Functional redundancy, sensitivity and vulnerability were

mapped onto the functional space for each region and their

match was estimated with the Pearson product-moment

correlation.
3. Results
(a) Similar level of functional diversity across wilderness

areas
The greatest number of species and FEs was found in New

Caledonia, encompassing 83% of FEs recorded in the three

regions (figure 2). By contrast, French Polynesia showed the

lowest number of species (42%) and FE (69%) (figure 2;
additional information in the electronic supplementary

material). Overall, 45% of the total FEs (71) were common

to the three regions, whereas only 13% (56) of the species

were shared (figure 2; additional information in the electronic

supplementary material).

The FRic in each region (FRic) ranged from 82% of the

global functional volume (French Polynesia) to 94.4% (New

Caledonia) (electronic supplementary material, figure S4).

The low variability of functional diversity between biogeo-

graphic regions is consistent with the weak level of

b-functional diversity (functions turnover) between regions

ranging from 0.14 to 0.18 (maximum is 1). Conversely, the

b—taxonomic diversity was higher, ranging between 0.66

and 0.79 (maximum at 1) (electronic supplementary material,

figure S5, table S1 and additional information), implying that

most FEs are present independent of species identities.

(b) Heterogeneous distribution of functional
redundancy across wilderness areas and
functional entities

Despite the overall stability of functional diversity across the bio-

geographic gradient, the highest functional redundancy of both

species per FE (15) and Shannon entropy (17) was found in

New Caledonia, whereas Chagos and French Polynesia only

reached 8–9 species (figure 3b; additional information in the elec-

tronic supplementary material). In each region, more than 60% of

FEs were represented by only one species, and 12–20% of the FEs

were represented by only two species (figure 3a; additional infor-

mation in the electronic supplementary material), showing that

the majority of FEs had low species redundancy.

Mapping variation of Shannon entropy across the functional

space showed a highly heterogeneous distribution of functional

redundancy for each region, with the highest values dispropor-

tionally packed into some parts of the functional space

(figure 4a; electronic supplementary material, figure S7), leaving

most of the functional space with low or no redundancy. The

extreme concentration of functional redundancy in the top left

of the figure (figure 4a) was represented by sedentary small

to medium size detritivorous, invertivorous, planktivores and

omnivorous feeders (e.g. surgeonfishes, damselfishes, butterfly-

fishes) (figure 4a; electronic supplementary material, figure S6).

The top right concentration of redundancy (figure 4a) was

characterized by small to medium size invertivorous feeders

(mobile prey) (see also additional information in the electronic

supplementary material).

(c) High vulnerability of functional entities
in wilderness areas

As most of the functional space had low functional redun-

dancy, the variation in vulnerability to fishing was partly

driven by sensitivity to fishing (mean Pearson’s coefficient

across regions¼ 0.93, p , 0.001). Variations in functional

sensitivity and redundancy across the functional space were

independently distributed (mean Pearson’s coefficient across

locations ¼ 20.09, p . 0.1) albeit the most sensitive species

systematically showed very low redundancy (electronic

supplementary material, figure S8).

Medium to large top predators, both solitary and seden-

tary, such as groupers (top right) and moray eels (top

right), as well as mobile and medium sized schooling species
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such as the bluefin trevally (Caranx melampygus) and the great

barracuda (Sphyraena barracuda) (bottom right) were highly

vulnerable to fishing in the three regions (figure 4c,d; elec-

tronic supplementary material, figure S6) owing to their

high sensitivity to fishing (figure 4b) and low redundancy

(1 species per FE (figure 4a)). For the same reasons, large

invertivores species feeding on mobile prey such as the

humphead wrasse (Cheilinus undulatus), large invertivores

(sedentary and mobile), detritivores and planktivores, located
in the upper right side of the functional space (figure 4b; elec-

tronic supplementary material, figure S6) showed a high

vulnerability to fishing (figure 4b; addition information in

the electronic supplementary material).

At the centre of the functional space, we observed a high

fishing vulnerability peak owing to the presence of two large,

mobile and medium sized schooling species; the bumphead

parrotfish (Bolbometopon muricatum), an invertebrate sessile

feeder and the humpback unicornfish (Naso brachycentron),
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a macroalgae feeder (figure 4b; electronic supplementary

material, figure S6). At the right side of the functional

space, we observed a second peak of vulnerability to fishing

(hence high sensitivity coupled with low redundancy)

characterized by the bicolour parrotfish (Cetoscarus ocellatus),

a large bioeroder [66] and the bluespine unicornfish (Naso
unicornis), a macroalgae feeder, both being the only species

in their respective FEs and highly sensitive to fishing,

explaining their high vulnerability.

Conversely, the high diversity of small to medium size

herbivorous–detritivorous, omnivorous, invertivorous and

planktivores species in some FEs (top left of the functional

space), contributed to their high functional redundancy, coun-

terbalancing (mean Pearson’s coefficient across locations of

20.21, p , 0.001) their high sensitivity to fishing and making

them less vulnerable (figure 4). The higher functional redun-

dancy in New Caledonia decreased the vulnerability of certain

FEs. For example, the functional entity composed of medium

size invertebrate feeders (mainly from the triggerfishes family)

was composed of nine species in New Caledonia and five in

French Polynesia, thereby, in concert with Shannon entropy,

reducing its vulnerability of 12% compared with French Polyne-

sia. Variation in redundancy and vulnerability across the
functional space depicted by the third and fourth axes of

PCoA is showed in electronic supplementary material, figure S9.
4. Discussion
(a) Homogeneous level of functional diversity and

functional vulnerability across the Indo-Pacific
biogeographic gradient

Surprisingly, despite the large differences in species richness

and identity among the three regions, we found very consistent

patterns of functional diversity along the species richness bio-

geographic gradient [67], suggesting that the set of ecological

functions for the growth and persistence of coral reefs are sup-

ported independently of species identity and richness, thus

serving as a ‘natural’ baseline indicator. As such, the pres-

ence/absence of FEs compared with wilderness areas may be

a useful indicator to assess ecosystem conditions under human

pressure. This result is in line with a previous study on the

scale of biogeographic regions demonstrating that functions

are maintained along a gradient of species richness [21]. Similar

consistency was found for functional vulnerability, suggesting

http://rspb.royalsocietypublishing.org/
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that combinations of fish traits have quasi-similar levels of

redundancy across coral reefs and the biogeographic gradient,

albeit New Caledonia had lower levels of vulnerability for

several FEs owing to higher functional redundancy.

(b) High vulnerability of ecosystem functioning
Studies of vulnerability have typically focused on species rather

than ecological functions [41], and often overlook abundance

distributions among species [21,41]. In addition, the assumption

that functional diversity in wilderness areas, seen as a reference,

is not buffered against extinction owing to relatively high func-

tional vulnerability has never been tested. Here, we filled this

gap by assessing the baseline functional vulnerability of fish

assemblages to fishing in some of the most isolated coral reef

ecosystems across the Indo-Pacific. We found that even in the

near-absence of fishing and considering species abundance,

most FEs remain highly vulnerable in each wilderness ecosys-

tem because species diversity is overwhelmingly packed into a

small set of FEs, leaving most FEs with no redundancy or func-

tional insurance. Importantly, functional sensitivity and

functional redundancy are independently distributed among

the combinations of traits. As such, redundancy is seldom com-

pensating for the high sensitivity of some traits, the most

sensitive ones often having no redundancy.

Our study is complementary to previous macro-ecological

investigations showing the heterogeneous distribution of redun-

dancy across FEs [21,41], and attests that the same pattern

translates to the local scale when considering species abun-

dances. This result is not trivial because even FEs with low

species redundancy may be preserved if those species are wide-

spread, abundant and weakly sensitive to threats. This is not the

case for fishes on coral reefs. Consequently, high biodiversity

and abundance of fishes is unlikely to buffer coral reef ecosys-

tems against functional diversity loss. This result is consistent

with the observations that marine ecosystem functions and ser-

vices scale positively and do not saturate with the level of species

and FE richness within local faunas [68,69].

Vulnerability can provide early warning signals of fishing

pressure, because the processes performed by vulnerable traits

are most likely to be the first to decline, even under low pressure

[70]. Indeed, from a sustainable management perspective, this

study highlights key vulnerable FEs that should be under par-

ticular conservation measures. For example, the bluespine

unicornfish (N. unicornis) has been identified as one of the

most important macroalgal consumers on coral reefs [71] yet is

targeted by commercial, recreational and artisanal fisheries

[72]. Macroalgal feeders play a critical role in preventing and

reversing coral-algal shifts and the finding of their high baseline

vulnerability to fishing is worrying [8,9]. Despite recent studies

demonstrating signs of overexploitation in the Pacific [72], this

species is listed as ‘Least concern’ in the Red list of Threatened

Species by the International Union for Conservation of Nature

(IUCN). This is also the case for top predators such as the bluefin

trevally (C. melampygus) and the great barracuda (S. barracuda)
which are highly sensitive to fishing [73,74], while the bluefin

trevally has also been found in very low abundance in marine

PAs compared with wilderness [28]. The IUCN Red list criteria

could benefit from taking a trait based approach to uncover the

species vulnerability from a functional perspective.
5. Conclusion
With biodiversity being lost in the Anthropocene, the need to

carefully manage functional diversity has never been greater.

The slow decrease in abundance of functionally important

species is insidious, despite strong implications for coral

ecosystem functioning and resilience [9]. High redundancy can

highlight the core processes that may persist even under high

levels of fishing pressure because they are highly buffered

against local species extinction. While fishing pressure

should decrease on the most vulnerable FEs, it could potentially

be directed toward the least vulnerable FEs highlighted in the

functional space. Local adaptive management measures

toward those species could focus on gear restrictions, minimum

size limits [75], quotas or fishing bans during spawning times

[76,77] or modified angling techniques (e.g. [78–80]). However,

those species often do not garner the same fishing interest owing

to their low commercial values [81]. Therefore, the burden of

reducing fishing pressure on the most vulnerable FEs should

be shared along market value chains [82], as fisherman targeting

certain species operate under incentives determined by trade

and the agents involved at both local and international scales

[83,84]. Ultimately, a multilayer management approach consid-

ering the complexity of the socio-ecological system is necessary

to maintain ecosystem functioning [82].
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50. Villéger S, Grenouillet G, Brosse S. 2013
Decomposing functional b-diversity reveals that
low functional b-diversity is driven by low
functional turnover in European fish assemblages.
Glob. Ecol. Biogeogr. 22, 671 – 681. (doi:10.1111/
geb.12021)
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