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A B S T R A C T

Previous investigations have uncovered divergent mitochondrial clades within the blue-

spotted maskray, previously Neotrygon kuhlii (Müller and Henle). The hypothesis that the

blue-spotted maskray may consist of a complex of multiple cryptic species has been

proposed, and four species have been recently described or resurrected. To test the

multiple cryptic species hypothesis, we investigated the phylogenetic relationships and

coalescence patterns of mitochondrial sequences in a sample of 127 new individuals from

the Indian Ocean and the Coral Triangle region, sequenced at both the CO1 and cytochrome

b loci. The maximum-likelihood (ML) tree of concatenated CO1 + cytochrome b gene

sequences, rooted by the New Caledonian maskray N. trigonoides, yielded 9 strongly

supported, main clades. Puillandre’s ABGD algorithm detected gaps in nucleotide distance

consistent with the ML phylogeny. The general mixed Yule-coalescent algorithm

partitioned the dataset into putative species generally consistent with the ML phylogeny.

Nuclear markers generally confirmed that distinct mitochondrial clades correspond to

genetically isolated lineages. The nine main lineages identified by ML analysis were

geographically distributed in a parapatric fashion, indicating reproductive isolation. The

hypothesis of multiple cryptic species is thus validated.

� 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).

R É S U M É

Des recherches antérieures ont montré des clades mitochondriaux divergents chez la raie

masquée à points bleus, précédemment appelée Neotrygon kuhlii (Müller et Henle).

L’hypothèse d’un complexe d’espèces cryptiques chez la raie masquée à points bleus a été

proposée ; trois espèces ont été récemment décrites et une quatrième, ressuscitée. Afin de

tester l’hypothèse d’espèces cryptiques multiples, nous étudions les relations phylogé-

nétiques et les patrons de coalescence des séquences mitochondriales d’un échantillon de

127 individus de l’océan Indien et de la région du Triangle du corail, séquencés
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1. Introduction

Taxonomic studies of sharks and rays have led to an
upsurge in new species descriptions within the last decade
([1,2]; and references therein). In particular, it appears that
the number of species in the Coral Triangle region has been
considerably under-estimated until recently [1]. Mean-
while, grave concern has been expressed over the risk of
extinction in shallow-water species from a number of
shark and ray families including Dasyatidae or stingrays.
Overfishing of stingrays is particularly severe in the Coral
Triangle region [3–5] and management is urgently needed.
Species are the fundamental units in many studies of
biogeography, community ecology and conservation ecol-
ogy. Both conservation and fisheries management require
that species be clearly identified and populations be
delineated [6].

This paper focuses on the blue-spotted maskray,
previously Neotrygon kuhlii (Müller and Henle, 1841)
[7], a stingray species that inhabits Indo-West Pacific
coral reefs, lagoons and slopes [8]. The blue-spotted
maskray is heavily exploited in Southeast Asia, but its
catch rate and mortality rates are poorly known and its
population trends are unknown [9,10]. Authors have
distinguished the ‘‘Java’’ (Java Sea) form of blue-spotted
maskray from the ‘‘Bali’’ (Kedonganan) form, based on
differences in size at birth and male size at maturity and
treated them as different species [9]. Molecular popula-
tion genetics offer the concepts and the practical tools for
delineating populations, diagnosing closely related spe-
cies, and detecting cryptic species. Cryptic species are
defined as lineages with a substantial amount of genetic
distinctiveness and no detectable morphological diffe-
rences [11–13]. Ward et al. ([14]: 60–62) have noted that
at the CO1 locus, ‘‘the D. kuhlii group showed considerable

within species diversity . . . with four subgroups. . . One was

the sole specimen from Australia (Queensland), one from the

six specimens taken from Kedonganan fish market on Bali

(Indonesia), one from the five specimens from Muara Angke

fish market at Jakarta, Java (Indonesia) and one from the

three specimens from the Penghu Islands (Taiwan). Average

distances among and within these four groups were 2.80%

and 0.18% respectively’’. Subsequent genetic studies in the
genus Neotrygon have focused on its phylogeny [15–17],

and on the population genetic structure and phylogeo-
graphy of the blue-spotted maskray [18,19]. Additional
mitochondrial clades have been uncovered within the
blue-spotted maskray [15,17,19]. These clades have a
parapatric-like distribution [19]. Meanwhile, molecular
markers have advanced the systematics of species in the
genus Neotrygon: cryptic species have been uncovered
within N. ningalooensis and N. picta [17], and the New
Caledonian maskray N. trigonoides (Castelnau, 1873) [20]
has been resurrected [16,21]. The hypothesis that the
blue-spotted maskray may itself consist of a complex of
multiple species has been raised repeatedly [14,15,17,22]
and was also discussed by us [19,23]. We emphasized that
the parapatric-like population structure uncovered in the
Coral Triangle region ‘‘points to incipient speciation, where

some degree of reproductive isolation has been achieved but

ecological compatibility has not yet been reached’’. Recently,
Last et al. [24] described three new species (N. australiae,
N. caeruleopunctata, N. orientale) previously under
N. kuhlii and resurrected a fourth one, N. varidens (Garman
1885) [25]. Diagnostic morphological differences be-
tween the species were proposed but no in-depth
assessment of inter-specific against infra-specific diffe-
rences was included [24].

In the present paper, we compile all CO1 and
cytochrome b gene sequences published thus far for the
blue-spotted maskray and we add new sequences from
samples collected in the western Indian Ocean and
throughout the Indo-Malay archipelago, to construct a
robust mitochondrial phylogeny and establish an updated
distribution of the clades previously uncovered in the
Coral Triangle region [14,15,17,19]. We assess whether
the different clades, including those recently resurrected
or erected as new species [24] correspond to evolutionary
significant units that deserve the status of separate
species.

2. Materials and methods

2.1. Ethics in sampling and information sharing

All specimens examined for the present study were
independently captured by commercial fishers prior to
being sub-sampled for DNA. Some of the sampling

simultanément aux locus CO1 et cytochrome b. L’arbre de maximum de vraisemblance

(ML) des séquences partielles concaténées des gènes CO1 et cytochrome b, raciné par la

raie masquée de Nouvelle-Calédonie N. trigonoides, montre neuf clades principaux

fortement soutenus. À l’aide de l’algorithme ABGD de Puillandre, des lacunes dans la

distribution des distances nucléotidiques sont détectées, qui s’avèrent généralement

cohérentes avec la phylogénie de ML. L’algorithme mixte de Yule-coalescent (GYMC)

partitionne l’ensemble de données en un certain nombre d’espèces putatives, dont la

délimitation est généralement cohérente avec la phylogénie de ML. Les marqueurs

nucléaires confirment, en général, que les clades mitochondriaux distincts caractérisent

des lignées génétiquement isolées. Les neuf lignées principales identifiées par l’analyse de

ML montrent une distribution parapatrique, ce qui indique qu’elles sont reproductivement

isolées. L’hypothèse d’espèces cryptiques multiples est donc validée.

� 2016 Académie des sciences. Publié par Elsevier Masson SAS. Cet article est publié en

Open Access sous licence CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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lities in our survey (Fig. 1) were in countries that have
pted a principle of state sovereignty over biological

ources, including genetic resources with no commercial
 [26]. This includes the Philippines, where sampling
k place under a collaborative research agreement
ween the National Taiwan University, Taipei and the
versity of San Carlos, Cebu; and Indonesia, within the

ework of a memorandum of understanding between

LIPI, Jakarta and IRD, Marseille. Some of the samples were
from West Papua, a former Dutch colony currently
administered by Indonesia [27,28] that has no control
over its own natural resources [29]. For equitable sharing
of results and knowledge, the data produced in the course
of our study will be made accessible from the following
open-access repositories: Hal-IRD (http://www.hal.ird.fr/;
hal@ird.fr), GenBank (http://www.ncbi.nlm.nih.gov) [30],

1. Sampling sites of blue-spotted maskrays, Neotrygon spp. previously under Neotrygon kuhlii, including new samples from present study, samples from

literature, and additional haplotypes from BOLD, Cryobank and GenBank (details in Supplementary Table S1). Individuals were identified to species

rding to present revision, from either their COI or cytochrome b gene sequence. Roman numbers I–VIII designate the haplogroups or clades reported

iously [19,23], four of which have since been described or redescribed [24] (Table 1). Surface of symbol (circle or triangle) proportional to sample size. A.

and I3: clade I from, respectively, Tanzania (N = 7), Tamil Nadu (N = 7) and Vizakhapatnam (N = 1). V1 and V7: N. australiae from, respectively, Ningaloo

 (N = 2) and Gulf of Carpentaria (N = 5). G: Guadalcanal maskray (N. kuhlii according to [24]), Honiara, Solomon archipelago (N = 1); open triangles: N.

noides; solid triangle: Vanikoro, type locality of N. kuhlii; inset: see Fig. 1B. B. Enlarged map of the Indo-Malay archipelago. II1, II2, II3 and II4: clade II from,

ectively, Banda Aceh region (N = 11), Meulaboh (N = 3), Sibolga (N = 10) and Padang (N = 10). III1 and III2: clade III from, respectively, Andaman Sea

t of Thailand (N = 5) and Kuala Lama region (N = 25). N. varidens: IV1 from Kuala Selangor (N = 1), IV3 from Haiphong (N = 2), IV5 from Karimata Strait

 1/8), IV7 from Beibu Gulf (N = 1), IV8 from Sarawak (N = 1/4), IV13 from Penghu (N = 4), IV14 from Taiwan (N = 8). N. orientale: IV2 from Riau

ipelago (N = 4), IV4 from the western Java Sea (N = 40), IV5 from Karimata Strait (N = 7/8), IV6 from Batang (N = 7), IV8 from Sarawak (N = 3/4), IV9 from

 Strait (N = 7), IV10 from the western Sulawesi Sea (N = 11), IV11 from Sandakan (N = 2), IV12 from Makassar (N = 7), IV15 from Bone Bay (N = 2), IV16

 Tomini Bay (N = 3), IV17 from Cagayan (N = 12), IV18 from Kendari (N = 7), IV19 from Lapu-Lapu (N = 7), IV20 from Bitung (N = 12), IV21 from Tanjung

 (N = 2). VI1, VI2, VI3 and VI4: N. caeruleopunctata from, respectively, Pelabuhan Ratu (N = 8), Sadang (N = 4), Bali Strait (N = 3) and southern Bali Island

 14). N. australiae: V2 from Tanjung Luar (N = 5), V3 from Labuan Bajo (N = 8), V4 from off Rote Island (N = 3), V5 from Tanjung Sulamo (N = 1), V6 from

ang (N = 3), V8 from Torres Strait (N = 1), V9 from the northern Great Barrier Reef (N = 1). VII1, VII2: clade VII from, respectively, Ambon (N = 6) and Kei

ds (N = 20). VIII1, VIII2: clade VIII from, respectively, Pulau Numfor (N = 2) and Biak (N = 18). R: Ryukyu maskray, Ishigaki-shima, Ryukyu archipelago

 1).

http://www.hal.ird.fr/;
http://www.ncbi.nlm.nih.gov/
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and DIPnet (http://www.indopacificnetwork.wikispaces.
com/).

2.2. Sampling

A total of 362 individuals, including 341 blue-spotted
maskray and 21 New Caledonian maskray N. trigonoides,
were utilized in the present study. This total includes
203 individuals whose CO1 or cytochrome b gene
sequences were compiled from either the literature
[14,16,17,19,31–38], the BOLD barcode database, the
Cryobank DNA-barcode database (http://cryobank.
sinica.edu.tw/chi/), or the GenBank nucleotide-sequence
database; and 159 new individuals sampled from local
fish-landing places throughout the Indo-Malay archi-
pelago, in eastern Africa, and in New Caledonia. All
individuals included in the present survey are listed in
Supplementary Table S1, along with sampling details,
GenBank accession numbers, voucher specimen details,
and references. An overview of the density of blue-
spotted maskray samples across the Indo-West Pacific,
with a focus on the Coral Triangle region is given in
Fig. 1.

2.3. Molecular analyses

A piece of skin or flesh �0.05 to �1 cm3 was removed,
using surgical scissors, from the pelvic fin, or the pectoral
fin, or the tail and was preserved in 95% ethanol at ambient
temperature. DNA extraction was done using either the
Viogene (Taiwan) tissue genomic DNA extraction protocol,
or the DNEasy DNA extraction kit (Qiagen GmbH, Hilden,
Germany). DNA was stored in 1X, pH 8.0 TE buffer
(AppliChem, Darmstadt, Germany). Polymerase chain
reaction (PCR) amplification of a fragment of the CO1

gene was done according to [19]. For the PCR-amplification
of the cytochrome b gene, we used primers L14735 and CB7

[39,40]. The reaction volume was 15 mL and the reaction
mixture contained 0.2 mM dNTPs, 1.5 mL 10� PCR buffer
(Bioman, Taipei), 0.5 mM of each forward and reverse
primers, 0.2 U Taq DNA polymerase (Bioman), and 1.0 mL
template DNA. The PCR parameters were: initial denatur-
ation at 94 8C for 4 min, followed by 35 cycles of
denaturation (94 8C for 45 s), annealing (48 8C for 1 min),
and extension (72 8C for 1 min), and a final extension step
at 72 8C for 10 min. Intron 5 of the growth hormone gene,
Gh5, was PCR-amplified using exon-anchored primers
Gh5F (50- A G G C C A A T C A G G A C G G A G C -30) and Gh6R

(50-T G C C A C T G T C A G A T A A G T C T C C -30) [41] setting
the annealing temperature to 64.5 8C and the number of
cycles to 35.

The PCR products were sequenced directly using the
same primers as those used for the PCR. Sequences were
analysed in an automated ABI Prism 377 sequencer
(Applied Biosystems, Foster City, CA) at the sequencing
facility of the Taiwan Normal University (Taipei).

2.4. Genetic data analysis

Nucleotide sequences, including those obtained in
the present study, and homologous sequences retrieved

from the BOLD, Cryobank, and GenBank databases (see
Supplementary Table S1) were aligned using BIOEDIT

[42]. Four datasets were analysed: (1) the CO1 gene
sequence dataset, consisting of 330 blue-spotted maskray
and N. trigonoides sequences aligned over a maximum
length of 722 base pairs (bp); (2) the cytochrome b gene
sequence dataset, consisting of 165 blue-spotted maskray
and N. trigonoides sequences aligned over a maximum
length of 1142 bp; (3) the concatenated CO1 + cytochrome
b gene sequence dataset comprising 127 blue-spotted
maskray and 6 N. trigonoides sequences; (4) the Gh5 intron
sequence dataset, consisting of 18 blue-spotted maskray
and N. trigonoides sequences aligned over a maximum
length of 359 bp.

The phylogeny of concatenated CO1 + cytochrome b

gene haplotypes was inferred by using the maximum-
likelihood (ML) method under MEGA6 [43]. The most likely
nucleotide-substitution model, which was determined
according to the Bayesian information criterion, was the
Tamura–Nei model [44] where a discrete Gamma distri-
bution (G = 0.76) was used to model evolutionary rate
differences among nucleotide sites and invariable sites
were allowed. The ML tree was rooted by choosing New
Caledonian maskray N. trigonoides as outgroup [16]. The
robustness of nodes in the tree was tested by bootstrap
resampling.

The CO1 and cytochrome b gene sequence datasets
(Supplementary Table S1) were used separately to assign
individuals that were sequenced at only one of either locus
to a clade uncovered from the phylogenetic reconstruction
described above. For this, an ML tree was constructed using
each of the two datasets under MEGA6 and the assignment
of a haplotype to a clade was determined visually from its
relative position on the tree.

2.5. Delineation of cryptic species

The Automatic Barcode Gap Discovery (ABGD) algo-
rithm proposed by Puillandre et al. [45] was used to
identify gaps in the distribution of pairwise nucleotide
distances. The ABGD algorithm detects the largest signifi-
cant gap in the distribution of pairwise nucleotide
distances and uses it for partitioning the dataset. Gap
detection is then recursively applied to previously
obtained groups to get finer partitions until there is no
further partitioning [45]. The ABGD analysis was run on a
matrix of 127 CO1 + cytochrome b gene sequences,
trimmed to a core length of 1415 bp. Kimura’s [46] two-
parameter substitution model was selected and the
minimum barcoding gap width was set to 1%.

Branch lengths between species are determined by
speciation and extinction rates whereas branch lengths
within a species reflect coalescent processes at the level of
populations [47]. This results in the distinction of species
when mitochondrial clades are substantially deeper than
the coalescent haplogroups at the extremities of the tree.
We ensured that each of the previously identified deep
mitochondrial clades was genetically distant from its
nearest neighbour by several times the mean intra-clade
distance. For this, pairwise intra-clade and between-
clades genetic distances were estimated on the

http://www.indopacificnetwork.wikispaces.com/
http://www.indopacificnetwork.wikispaces.com/
http://cryobank.sinica.edu.tw/chi/
http://cryobank.sinica.edu.tw/chi/
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catenated CO1 + cytochrome b gene sequence matrix
ng MEGA6.
To delimit potential cryptic species, we applied the
eral mixed Yule-coalescent (GMYC) algorithm [47] as
lemented in the program SPLITS under R [48,49]. This

orithm uses an ultrametric tree to differentiate branch-
 patterns consistent with coalescent vs. speciation
cesses, which provides a threshold time for the
sition between populational and species-level pro-

ses. We selected the single-threshold option. The
ametric tree was constructed using BEAST v. 1.7 [50]
ed on the same matrix (127 individuals � 1415 bp) as
t used for the ABGD analysis. Outgroup N. trigonoides

s excluded from the analysis, which focused on the
e-spotted maskray exclusively. A non-calibrated re-
ed lognormal clock, and a constant coalescent tree were
umed. The model of nucleotide substitution was
3 + G + I (see Section 2.4). Ten million generations of

rkov-Chain Monte Carlo analysis were run, of which we
pled a total of 10,000 genealogies. Length of burn-in

s determined by visual inspection of traces in TRACER v.
 [50]. A single analysis was run, for which convergence
s reached rapidly. The TREEANNOTATOR v. 1.7. software [50]
s used to produce the final tree, based on maximum

e credibility and mean node height.

esults

The complete set of partial CO1- and cytochrome b gene
uences, which comprises both those compiled from the
rature and from nucleotide databases, and those
duced in the present study are presented in Supple-
ntary Table S2. New CO1 gene sequences have GenBank
ession numbers KU497912-KU498038 and KU521523;

 cytochrome b gene sequences have GenBank acces-
 numbers KU497752-KU497911 (details in Supple-

ntary Table S1).
The ML tree of concatenated (CO1 + cytochrome b) gene
leotide sequences, rooted by N. trigonoides, showed
ain statistically supported clades (Fig. 2). Here, we

inguished the sister-subclades IVa (N. orientale) vs. IVb

varidens) within previous Clade IV [19,23]. The 7 other
es were Clades I–III, VII, VIII identified previously

,23], N. australiae (our former Clade V), and
caeruleopunctata (our former Clade VI). Variation in
e nomenclature across studies [15,17,19,23,24] is
marized in Table 1. Pairwise nucleotide distances

ween clades ranged from 0.014 to 0.029 (average
22), that is, two to 29 times higher than within-clade
rage distances (0.001–0.007; average 0.004) (Table 2).
Through automatic gap determination using Puillan-
’s ABGD algorithm, 12 distinct mitochondrial lineages
re found, separated from each other by a gap in genetic
ance � 1% (Fig. 2). The ABGD partitioning was consis-
t with the topology of the ML tree. In particular, Clades
nd III were recognized as distinct. The distinction
ween Clades IVa (N. orientale) and IVb (N. varidens) was
firmed. Two subclades were identified within each
de I (Indian-Ocean maskray), and N. australiae. All
ain clades of the ML tree were confirmed by the ABGD

titioning (Fig. 2).

Based on the ultrametric tree of blue-spotted maskray
mitochondrial haplotypes (not shown), the likelihood of
the null model (i.e., where all mitochondrial sequences
belong to a single species) was 1141.9, significantly lower
than the maximum likelihood of the GMYC model
(1145.1); the likelihood ratio was 6.477 (P = 0.039). The
estimated number of clusters within the blue-spotted
maskray was 13 (95% confidence interval: 10–46), whose
boundaries often coincided with the above 9 clades (Fig. 2).
The distinction between clades IVa (N. orientale) and IVb

(N. varidens) was thus confirmed, as was that of
N. caeruleopunctata. The main exception was the lack of
recognition of clades II and III as separate entities. The
individuals collected in the Indian Ocean (our clade I [19])
formed a distinct series of three clusters, as did
N. australiae, and a subcluster was found within clade VIII

(Fig. 2).
The partition into species that was finally retained

considered the tree topology, the nucleotide divergence
between lineages, and the results of the ABGD and GMYC
analyses. This partition was consistent with the current
taxonomy of species, leaving unchallenged the four
nominal species N. australiae, N. caeruleopunctata,
N. orientale and N. varidens (Fig. 2). The inability of the
GYMC algorithm to separate clade II from clade III may be
caused by a lack of power, as the two clades were
approximately equally distant from each other as they
were each from N. caeruleopunctata (Table 2).

Once cryptic species of the blue-spotted maskray had
been identified, it was possible to tentatively assign each
individual in the total sample (Supplementary Table S1) to
either of them, using the partial CO1- or cytochrome b gene
sequence. The ML tree of CO1 gene sequences, rooted by
N. trigonoides (Supplementary Fig. S1), showed the same
9 haplogroups as those highlighted in the phylogenetic
tree of Fig. 2, plus a tenth lineage represented by the single
CO1 gene haplotype from the Ryukyu Islands (GenBank
AB485685; [31]). All haplogroups had acceptable to strong
statistical support, except the haplogroup representing
individuals from the Indian Ocean. All 330 individuals
characterized by their CO1 gene sequence (except a single
individual from India; GenBank HM467799) unambigu-
ously clustered with either one of the 9 lineages of Fig. 2, or
with N. trigonoides. The ML tree of cytochrome b gene
sequences, rooted by N. trigonoides (Supplementary Fig.
S2), similarly showed the same 9 haplogroups as those
highlighted in Fig. 2. Eight out of the 9 haplogroups had
strong statistical support, with bootstrap scores between
93 and 100%. All 165 individuals characterized by their
cytochrome b gene sequence unambiguously clustered
with either one of these 9 blue-spotted maskray lineages,
or with N. trigonoides.

Using the sampling locations of the individuals
(Supplementary Table S1), it was possible to delineate
the geographic distribution of each clade (Fig. 1). The
9 clades of the blue-spotted maskray and the closely
related N. trigonoides had parapatric distributions (Fig. 1).
Zones of contact were identified between N. orientale and
N. varidens in the southeastern part of the South China Sea,
between N. caeruleopunctata and N. orientale in Bali Strait,
and between N. australiae and N. orientale in the Lombok
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clade VII

N. australiae (V)

clade II

clade III
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N. caeruleopunctata (VI )

N. orientale (IVa)

N. varidens (IVb )

clade I

Fig. 2. Maximum-likelihood phylogeny (MEGA6 [43]; Tamura-Nei model with gamma-distributed rate differences among sites + invariant sites [44]; partial

deletion) of blue-spotted maskrays Neotrygon spp. previously under N. kuhlii, based on nucleotide sequences of the concatenated CO1+ cytochrome b gene

fragments. A total of 133 individual sequences (Supplementary Table S1), aligned over 1640 bp, was retained in the final dataset, after all positions with less

than 95% site coverage had been eliminated. N. trigonoides was used as outgroup [16]. Roman numbers I–VIII designate the haplogroups or clades reported

previously [19]. Numbers at a node are bootstrap scores (from 600 bootstrap resampling runs). Vertical black bars summarize the partition obtained

according to Puillandre’s gap detection analysis, ABGD. Vertical grey bars summarize the partition into species obtained from GMYC analysis (SPLITS; single-

threshold option). Open bars: partition into species finally retained considering tree topology, nucleotide divergence between lineages, and results of ABGD

and GMYC analyses.
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a (Fig. 1B). Similar zones of contact are expected
ween Clades II and III east of the northern tip of Aceh,
ween Clades III and N. varidens in the Malacca strait,
ween N. caeruleopunctata, N. orientale, and Clade II west
he southwestern tip of Java, and between N. australiae

 N. caeruleopunctata east of southern Bali (Fig. 1B).
er contact zones may be possible between N. orientale

 Clade VII, between N. australiae and Clade VII, and
ween Clade VII and Clade VIII (Fig. 1B).
Eighteen Neotrygon spp. individuals (out of 37 tested)
re successfully sequenced at the Gh5 intron locus. The
uences have GenBank accession numbers KU497734–
497751. The ML tree derived from the alignment of
uences, rooted by N. trigonoides, is presented in Fig. 3A.

4. Discussion

The present results enforce Ward et al.’s [14] hypothesis
that the blue-spotted maskray is a complex of cryptic
species, for the reasons developed in the following.

4.1. Coalescence patterns

Nucleotide distances between major blue-spotted
maskray clades were several times higher than distances
within, confirming previous observations based on pre-
liminary geographic sampling [14,15,17,19]. Denser geo-
graphic sampling (present study) did not lead to a
dramatically altered ratio of genetic distance between

le 2

-spotted maskray, Neotrygon spp. Mean � SD pairwise genetic distances (number of nucleotide substitutions per site), estimated from concatenated

 + cytochrome b gene fragment sequences (total N = 133) (MEGA6 [43]; Tamura-Nei model [44]). N sample size.

. Clade N Mean pairwise genetic distance

Within clade Between clades (net)

1 2 3 4 5 6 7 8 9

N. australiae 8 0.007

� 0.001

N. caeruleopunctata 15 0.002

� 0.001

0.020

� 0.003

N. orientale 67 0.007

� 0.001

0.017

� 0.003

0.014

� 0.003

N. trigonoides 6 0.001

� 0.001

0.032

� 0.005

0.032

� 0.005

0.028

� 0.004

N. varidens 2 0.001

� 0.001

0.026

� 0,004

0.025

� 0.004

0.016

� 0.003

0.037

� 0.005

Clade I 5 0.003

� 0.001

0.018

� 0.003

0.016

� 0.003

0.014

� 0,003

0.028

� 0.004

0.024

� 0.004

Clade II 5 0.006

� 0.001

0.023

� 0.004

0.015

� 0.003

0.020

� 0.003

0.033

� 0.005

0.027

� 0.004

0.020

� 0.003

Clade III 6 0.001

� 0.000

0.022

� 0.004

0.017

� 0.003

0.017

� 0.003

0.031

� 0.005

0.026

� 0.004

0.019

� 0.003

0.018

� 0.003

Clade VII 13 0.005

� 0.001

0.022

� 0.004

0.021

� 0.003

0.019

� 0.003

0.030

� 0.005

0.027

� 0.004

0.018

� 0.003

0.027

� 0.004

0.026

� 0.004

 Clade VIII 6 0.001

� 0.000

0.026

� 0.004

0.023

� 0.004

0.024

� 0.004

0.030

� 0.005

0.030

� 0.005

0.024

� 0.004

0.029

� 0.004

0.028

� 0.004

0.027

� 0.004

le 1

-spotted maskray, Neotrygon spp. (formerly N. kuhlii) and New Caledonian maskray, N. trigonoides. Lineage nomenclature utilized in present study, and

elationship to recent genetics-based studies. Homology between lineages was assessed by the phylogenetic placement of individuals sequenced at

rent loci and/or by the geographic origin of a sample. Genetic markers indicated in brackets.

esent study Naylor et al., 2012

[15]

Arlyza et al., 2013

[19,23]

Puckridge et al., 2013

[17]

Last et al., 2016

[24]

O1, cytb) (ND2) (CO1) (CO1 + 16S, RAG-1) (CO1)

 australiae N. kuhlii 4 N. kuhlii Clade V Clade 5 N. australiae

 caeruleopunctata – N. kuhlii Clade VI Clade 6 N. caeruleopunctata

 orientale N. kuhlii 1 N. kuhlii Clade IV Clades 2, 3 N. orientale

 varidens N. kuhlii 2 N. kuhlii Clade IV Clade 1 N. varidens

ade I N. kuhlii 3 N. kuhlii Haplogroup I Clade 8 –

ade II – N. kuhlii Clade II – –

ade III – N. kuhlii Clade III Clade 7 –

ade VII – N. kuhlii Clade VII – –

ade VIII – N. kuhlii Clade VIII – –

adalcanal maskray – – – N. kuhlii

ukyu maskray – N. kuhlii Clade IV Clade 4 –

 trigonoides – N. trigonoides Clade 9 N. trigonoides
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clades to that within, compared to Ward et al.’s results
[14]. The gaps in nucleotide distance remained consistent
with the existence of 9 main lineages within the blue-
spotted maskray. The GMYC algorithm determined that
the coalescence patterns within a lineage vs. patterns
between generally conformed to the expectations of infra-
specific vs. inter-specific processes.

4.2. General concordance of mitochondrial and nuclear

differences

In sharks and rays, short mitochondrial DNA
sequences at the CO1 locus (or CO1 DNA barcodes)
have proven their suitability to identify up to 99%
species [14]. This high barcoding success might be
related to the apparent absence of mitochondrial
introgression in this vertebrate group [14], itself
pointing to a likely low incidence of inter-specific
hybridization. This may be an indirect consequence of
complex pre-mating behaviour, which prevents hetero-
specific pairs, or of mismatch in the morphologies of
male and female genitalia, which hampers copulation.
Complex pre-mating behaviour has been reported in
sandtiger shark [52] and New Caledonian maskray
[53]. Mismatch of male–female copulatory apparatuses
has been hypothesized for whiprays of the Himantura

uarnak (Forsskål, 1775) [54] species complex [35]. Other
hypotheses for pre-mating isolation involve chemical or
visual cues [17]. Because cases of mitochondrial
introgression are virtually unknown in sharks and rays
[6], one expects that patterns of inter-specific genetic

differentiation at nuclear loci to be parallel to those at
the mitochondrial locus.

Nuclear markers have also been used to characterize
blue-spotted maskray populations [17,18]. Significant
allele-frequency differences at 2/4 intron loci were
observed between adjacent populations from southern
Java and Bali Strait [18], corroborating the distinction
between previous Clades IVb and VI ([19,23]; present
study), hence the recognition of, respectively, N. orientale

and N. caeruleopunctata as separate species. Two major
clades were observed at the nuclear locus RAG-1 [17]
(Fig. 3B), that distinguished the lineage from the
eastern Andaman Sea (our Clade III) and those from the
adjacent South China Sea (N. varidens) and Java Sea
(N. orientale). Similarly, the RAG-1 marker allowed the
distinction between the lineage from southern Bali
(N. caeruleopunctata; our previous Clade VI) and that of
the adjacent Lombok Island (N. australiae; our previous
Clade V) [17]. Additional information from nuclear marker
Gh5 was produced in the present study. Nucleotide
sequences at intron locus Gh5 confirmed the distinction
between N. orientale on the one side, and N. australiae and
N. caeruleopunctata on the other side, although some other
Gh5 sequences of individuals determined as N. orientale

according to their mitochondrial haplotypes appeared to
cluster with N. australiae and with Clade I. This may either
signal mitochondrial introgression, or reflect incomplete
lineage sorting at the Gh5 locus. In addition, at this locus,
samples from the Moluccas and West Papua (respectively,
our lineages VII and VIII) were distinct from all the other
samples, and also from each other.

 KNS-TAL6 -64
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Fig. 3. Nuclear phylogenies of the blue-spotted maskray, Neotrygon spp. A. Maximum-likelihood phylogeny (MEGA6 [43]; Jukes-Cantor model [51]) with

gamma-distributed rate differences among sites; partial deletion] of Gh5 intron sequences. A total of 18 individual sequences aligned over 356 bp were

retained in the final dataset, after all positions with less than 95% site coverage had been eliminated. N. trigonoides was used as outgroup [16]. Numbers at a

node are bootstrap scores (from 1000 bootstrap resampling runs). B. Summary of the Bayesian phylogeny based on partial RAG-1 sequences (redrawn from

Fig. 2a of [17]; lineage names edited according to Table 1). Numbers at a node are posterior probabilities.
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 Parapatric distribution

Repeated lowering of the sea level caused by global
perature oscillation [55] has led to the repeated
mentation of the marine habitats of the Indo-Malay

hipelago in the Pleistocene [56]. In shallow-water
cies like the blue-spotted maskray, this has caused
eated depletion and fragmentation of the populations,
owed by repeated recolonisation of shallow-water
itats once the sea level rose again, and secondary
tact between long-isolated populations. Population

lapse reduces genetic diversity by the random fixation
 subset of alleles and subsequent population expan-

 favours new, nascent diversification. This succession
isolation episodes with cyclic population collapses,
owed by rapid population expansions, is thought to
e favoured speciation in the blue-spotted maskray
,19].
Secondary contact after recolonisation of inundated
llow-water habitat may have been a factor reinforc-

 genetic isolation instead of promoting re-homogeni-
ion. At the scale of an individual’s lifetime, the blue-
tted maskray is a sedentary species. Long-term site
lity has been inferred from tagging experiments in

 closely-related N. trigonoides, with similar results for
ales and males [53]. Relatively poorly dispersing
cies often form well-delineated parapatric bound-
s [57]. One of the proposed mechanisms is that of a
row and stable hybrid zone, which acts as a
graphic barrier to cross-dispersal [57]. While this
othesis remains to be tested in the blue-spotted

skray species complex, the present study identified
eral of these parapatric boundaries, on which future
etic studies should focus.

onclusion

Sound conservation and fisheries management requires
wledge on population genetic structure, so as to

ineate demes, which are the basic units on which to
duct meaningful demographic analyses. Previous
mpts at investigating the population genetic structure
lue-spotted maskray have found substantially higher

els of population differentiation than usual, leading to
pecting cryptic species. Here, molecular markers
inguished nine main separate lineages within the
e-spotted maskray previously under N. kuhlii. These
ages qualify as distinct species, based on levels of
etic divergence, coalescence patterns, concurrent
erentiation at nuclear loci, and parapatric distribution,
ich points to reproductive isolation. We propose that
eated dramatic demographic lows and highs in the
istocene, combined with individual sedentarity and
sibly homogamy, have driven speciation in the blue-
tted maskray.
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[24] P.R. Last, W.T. White, B. Séret, Taxonomic status of maskrays of the
Neotrygon kuhlii species complex (Myliobatoidei: Dasyatidae) with the
description of three new species from the Indo-West Pacific, Zootaxa
4083 (2016) 533–561.

[25] S. Garman, Notes and descriptions taken from selachians in the U. S.
National Museum, Proc. U.S. Natl. Mus. 8 (1885) 39–44.

[26] M.E. Watanabe, The Nagoya protocol on access and benefit sharing,
Bioscience 65 (2015) 543–550.

[27] J. Saltford, The United Nations and the Indonesian takeover of West
Papua, 1962-1969, Routledge, London, 2003, 256 p.

[28] G. Harvey, The price of protest in West Papua, Griffiths J. Law Hum.
Dignity 3 (2015) 170–203.

[29] C. Budiardjo, Resource-rich West Papua, but who benefits? Jakarta
Post, 2010.

[30] Y. Baskin, GenBank–Storehouse for life’s secret code, Sci. Digest 91
(1983) 94–95.

[31] N. Yagishita, K. Furumitsu, A. Yamaguchi, Molecular evidence for the
taxonomic status of an undescribed species of Dasyatis (Chondrich-
thyes: Dasyatidae) from Japan, Species Divers. 14 (2009) 157–164.

[32] N.C. Aschliman, M. Nishida, M. Miya, J.G. Inoue, K.M. Rosana, G.J.P.
Naylor, Body plan convergence in the evolution of skates and rays
(Chondrichthyes: Batoidea), Mol. Phyl. Evol. 63 (2012) 28–42.

[33] F. Cerutti-Pereyra, M.G. Meekan, N.W.V. Wei, O. O’Shea, C.J.A. Brads-
haw, C.M. Austin, Identification of rays through DNA barcoding: an
application for ecologists, PLoS One 7 (2012) e36479.

[34] Z.D. Wang, Y.S. Guo, X.M. Liu, Y.B. Fan, C.W. Liu, DNA barcoding South
China Sea fishes, Mitochondr. DNA 23 (2012) 405–410.

[35] I.S. Arlyza, K.-N. Shen, D.D. Solihin, D. Soedharma, P. Berrebi, P. Borsa,
Species boundaries in the Himantura uarnak species complex (Mylio-
batiformes: Dasyatidae), Mol. Phyl. Evol. 66 (2013) 429–435. http://
dx.doi.org/10.1016/j.ympev.2012.09.023.

[36] X. Chen, D. Xiang, J.Q. Yu, W.Y. Ding, S.L. Zhang, Complete mitochon-
drial genome of the blue-spotted stingray Neotrygon kuhlii (Mylioba-
tiformes: Dasyatidae), Mitochondr. DNA 25 (2014) 429–430.

[37] K.C. Lim, P.E. Lim, V.C. Chong, K.H. Loh, Molecular and morphological
analyses reveal phylogenetic relationships of stingrays focusing on
the family Dasyatidae (Myliobatiformes), PLoS One 10 (2015)
e0120518.

[38] K.-N. Shen, C.-W. Chang, S.-Y. Tsai, S.-C. Wu, Z.-H. Lin, Y.-F. Chan, C.-H.
Chen, C.-D. Hsiao, P. Borsa, Next generation sequencing yields the
complete mitogenomes of leopard whipray (Himantura leoparda) and
blue-spotted maskray (Neotrygon kuhlii) (Chondrichthyes: Dasyatidae),
Mitochondr. DNA Pt A 27 (2016) 2613–2614. , http://dx.doi.org/
10.3109/19401736.2015.1041119.

[39] S.R. Palumbi, A.P. Martin, S. Romano, W.O. McMillan, L. Stice, G.
Grabowski, The Simple Fool’s Guide to PCR, Version 2. 0, 46 pp.,
Department of Zoology and Kewalo Marine Laboratory, University of
Hawaii, Honolulu, 1991.

[40] T. Kitamura, A. Takemura, S. Watabe, T. Taniuchi, M. Shimizu, Molecular
phylogeny of the sharks and rays of Superorder Squalea based on
mitochondrial cytochrome b gene, Fisheries Sci. 62 (1996) 340–343.

[41] M. Hassan, C. Lemaire, C. Fauvelot, F. Bonhomme, Seventeen new exon-
primed intron-crossing polymerase chain reaction amplifiable introns
in fish, Mol. Ecol. Notes 2 (2002) 334–340.

[42] T.A. Hall, BIOEDIT: a user-friendly biological sequence alignment editor
and analysis program for Windows 95/98/NT, Nucl. Acids Symp. Ser. 41
(1999) 95–98.

[43] K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar, MEGA6:
Molecular Evolutionary Genetics Analysis version 6.0, Mol. Biol. Evol.
30 (2013) 2725–2729.

[44] K. Tamura, M. Nei, Estimation of the number of nucleotide substitutions
in the control region of mitochondrial DNA in humans and chimpan-
zees, Mol. Biol. Evol. 10 (1993) 512–526.

[45] N. Puillandre, A. Lambert, S. Brouillet, G. Achaz, ABGD, automatic
barcode gap discovery for primary species delimitation, Mol. Ecol.
21 (2012) 1864–1877.

[46] M. Kimura, A simple method for estimating evolutionary rates of base
substitutions through comparative studies of nucleotide sequences, J.
Mol. Evol. 16 (1980) 111–120.

[47] J. Pons, T.G. Barraclough, J. Gomez-Zurita, A. Cardoso, D.P. Duran, S.
Hazell, S. Kamoun, W.D. Sumlin, A.P. Vogler, Sequence-based species
delimitation for the DNA taxonomy of undescribed insects, Syst. Biol.
55 (2006) 595–609.

[48] R Development Core Team, R: A language and environment for statis-
tical computing, R Foundation for Statistical Computing, Vienna, 2011
http://www.R-project.org/.

[49] T. Fujisawa, T.G. Barraclough, Delimiting species using single-locus
data and the Generalized Mixed Yule Coalescent approach: a revised
method and evaluation on simulated data sets, Syst. Biol. 62 (2013)
707–724.

[50] A.J. Drummond, A. Rambaut, BEAST: Bayesian evolutionary analysis by
sampling trees, BMC Evol. Biol. 7 (2007) 214.

[51] T.H. Jukes, C.R. Cantor, Evolution of protein molecules, in: H.N. Munro
(Ed.), Mammalian protein metabolism, Acad. Press, New York, 1969, pp.
21–132.

[52] I. Gordon, Pre-copulatory behaviour of captive sandtiger sharks, Car-
charias taurus, Env. Biol Fishes 38 (1993) 159–164.

[53] S.J. Pierce, S.A. Pardo, M.B. Bennett, Reproduction of the blue-spotted
maskray Neotrygon kuhlii (Myliobatoidei: Dasyatidae) in south-east
Queensland, Australia, J. Fish Biol. 74 (2009) 1291–1308.
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